
Managing Restaurant Tables using Constraints
 Alfio Vidotto1, Kenneth N. Brown1, J. Christopher Beck2

1 Cork Constraint Computation Centre, Department of Computer
Science, University College Cork, Ireland.

av1@student.cs.ucc.ie, k.brown@cs.ucc.ie
2 Toronto Intelligent Decision Engineering Laboratory, Department of

Mechanical and Industrial Engineering, University of Toronto, Canada.
jcb@mie.utoronto.ca

Abstract

Restaurant table management can have significant impact on both
profitability and the customer experience. The core of the issue is a
complex dynamic combinatorial problem. We show how to model
the problem as constraint satisfaction, with extensions which
generate flexible seating plans and which maintain stability when
changes occur. We describe an implemented system which provides
advice to users in real time. The system is currently being evaluated
in a restaurant environment.

1. Introduction
Effective table management can be crucial to a restaurant's profitability –
inefficient use of tables means that the restaurant is losing potential custom, but
overbooking means that customers are delayed or feel cramped and pressured, and
so are unlikely to return. In addition, customer behaviour is uncertain, and so
seating plans should be flexible or quickly reconfigurable, to avoid delays. The
restaurant manager is faced with a series of questions. Should a party of two be
offered the last four-seater table? For how long should we keep a favourite table
for a regular customer? Should a party of four be offered a table for 8 p.m.? If no
table is available at 7 p.m., what other times should be offered? When a party takes
longer than expected, can we re-assign all diners who have not yet been seated to
avoid delays? When a party doesn't appear, can we re-assign all other diners to
gain an extra seating? In Computer Science terms, table management is an online
constrained combinatorial optimisation problem – the restaurant must manage
reservations, and manage unexpected events in real-time, while maximising the use
of its resources.

In this paper, we describe an implemented solution to the restaurant table
management problem which helps managers answer the above questions. The
solution is based on constraint programming, and handles both flexibility and
stability. The system we describe is currently being evaluated in a restaurant. The
remainder of the paper is organised as follows. Section 2 presents more details of
the table management problem, and describes one particular restaurant. Section 3

reviews the necessary elements of constraint programming. Section 4 presents a
basic constraint model and search algorithm. Section 5 extends the model to
represent flexibility, and to search for flexible plans, while section 6 describes our
approach to finding stable plans. Section 7 presents the user interface for our
implemented system. Finally, section 8 describes conclusions and future work.

2. Restaurant Table Management
Eco [1] is a popular medium-size restaurant in Douglas, Cork City, with a high
turnover seven days a week. It was a pioneer in computer and internet solutions,
first offering email booking in 2000. The restaurant has 23 tables, ranging in size
from 2 to 8 (Figure 1). Some of the table capacities depend on the state of other
tables: for example, tables 2 and 15 can both seat 6, but when one is occupied by 5
or 6 diners, then the other can seat at most 4. The tables can also be reconfigured:
for example, the 2-seater tables 21 and 22 can be joined to accommodate 3 to 5
diners. The maximum party size that can be seated at a conjoined table is 30. There
are over 100 different possible restaurant configurations, and thus the restaurant
capacity ranges from 85 to 94. An evening session in the restaurant begins at 4
p.m., and the last party should be seated by 10:30 p.m. As a guide, the restaurant
aims to have between 190 and 210 covers (individual diners) each evening – fewer
than that, and the tables are not being well utilised; more than that, and the kitchen
will be stretched to provide the food on time. Table management in Eco, as in most
restaurants, has two distinct phases: booking and floor management.

Figure 1: Layout of the restaurant Eco

In the booking phase, the booker must negotiate start times with customers to
ensure that customers' requirements are satisfied, while maintaining a flexible table
assignment that maximises the chances of being able to seat the desired number of
covers. Typically, the booker will allocate specific tables to each booking request,
and these rarely change; when a request cannot be accommodated on the current
booking sheet, either the customer must be persuaded to accept another time, or the
request must be declined. It is possible, however, that a reallocation of diners to
tables would allow the new request to be accepted. In some cases, in order to

maintain a balanced plan, a restaurant will decline a booking, or suggest a different
time, even if a table is available. In addition, the booker must estimate the expected
duration of the meal, based on the characteristics of the booking (including time,
day of the week, and party size).

In floor management, the objectives are different. The evening starts with a
partially completed booking sheet. The customers have been given definite times,
and the aim is now to seat the customers with minimum delay, to modify the
seating plan when changes happen, and to accept or decline "walk-ins" –
customers arriving at the restaurant without a booking. The main challenge is that
individual customers are unpredictable – they may arrive late, they may not arrive
at all, they may take longer or shorter than expected, they may change the size of
their party, and they may arrive believing a booking has been made when none has
been recorded. The floor manager must make instant decisions, balancing current
customer satisfaction with expectations for the rest of the evening.

The initial problem is to construct an interactive software tool, which assists
restaurant staff in both the booking and floor management phases. As a research
problem, our goal is to evaluate whether constraint programming techniques can
provide support for the dynamic and uncertain aspects of the problem. If the
research prototype is successful, a new tool will be developed, and incorporated
into customer relationship management software.

3. Constraint Programming
A Constraint Satisfaction Problem (CSP) is defined by a set of decision variables,
{X1, X2, …, Xn}, with corresponding domains of values {D1, D2, …, Dn}, and a set
of constraints, {C1, C2, …, Cm}. Each constraint is defined by a scope, i.e. a subset
of the variables, and a relation which defines the allowed tuples of values for the
scope. A state is an assignment of values to some or all of the variables, {Xi=vi,
Xj=vj, ...}. A solution to a CSP is a complete and consistent assignment, i.e. an
assignment of values to all of the variables, {X1=v1, X2=v2, …, Xn=vn}, that
satisfies all the constraints. The standard methods for solving CSPs are based on
backtracking search interleaved with constraint propagation. An introduction to
constraint programming can be found in [2], while [3] surveys recent research.

For search, the order in which variables and values are tried has to be specified as
part of the search algorithm, and has a significant effect on the size of the search
tree. The standard variable ordering heuristic chooses the variable with the
smallest current domain, or the smallest ratio of domain size to the number of
constraints acting on the variable. For an instance of a CSP, a single run with a
single ordering heuristic can get trapped in the wrong area of the search tree. To
avoid this, randomized restarts have been proposed [4] – for a single heuristic, if
no result has been found by a given time limit, the search is started again. Tie
breaking and value ordering are done randomly, and so each restart explores a
different path. Similarly, algorithm portfolios [5] interleave a set of randomized
algorithms. In [6] search robustness is enhanced by combining multiple variable
and value ordering heuristics with time-bounded restarts.

In constraint propagation, the domains of unassigned variables are reduced by
removing values which cannot appear in any solution that extends the current state.
For example, if we have the constraint X < Y, and X and Y's domains are {2,3,4,5}
and {1,2,3,4} respectively, then the values 4 and 5 can be removed from X's
domain, and 1 and 2 from Y's domain, since none of those values could possibly
satisfy the constraint. Reducing the domains reduces the size of sub-tree that has to
be explored. A large part of the success of constraint programming tools is due to
efficient domain filtering algorithms for specialised constraints; e.g. [7].

Dynamic problems are problems that change as the solution is being executed – for
example, in scheduling, a machine may break down, or a scheduled action may be
delayed due to the late arrival of supplies. Dynamic CSPs [8] model changes to
problems. The aim may be to minimise the effort to find new solutions, or to
minimise the distance between successive solutions. Attention has recently turned
to problems where we have some model of what the changes might be. Both [9]
and [10] reason about the probability of future events: [9] searches and propagates
constraints over a tree of possible futures; [10] samples possible futures, and then
selects an action which minimises regret over the samples. [11] searches for
optimally stable solutions. They start with the original solution and iteratively
check whether reassigning one variable, two variables, etc., is sufficient to solve
the new problem. [12] proposes special stability constraints. Some approaches aim
to prevent instability by providing robust solutions. In [13] flexible solutions to
scheduling problems are achieved by adding slack to activity durations. Super
solutions [14] are solutions that guarantee a limited number of repairs in case of
changes.

4. Modelling the static table management problem
As discussed in section 2, the restaurant problem is inherently dynamic, but we can
view it a sequence of static problems, each linked by a set of changes. In this
section, we describe our representation of the static problem as a CSP, and discuss
our algorithm for solving it.

We model table management as a scheduling problem, viewing tables as resources,
and parties as tasks. Each party has a fixed start and end time, and a size. Each
party must then be allocated to a table (or set of tables), such that the table is large
enough for the party, and such that no two parties that overlap in time are allocated
to the same table. Each party must be seated without interruption on the table. The
problem is to determine whether or not a set of parties can be seated, and to
provide a feasible seating plan if there is one. Despite having fixed start and end
times, the underlying scheduling problem is NP-complete [15]. Figure 2 shows a
problem instance with five parties (left) and a possible allocation (right), where
tables T2 and T3 have been joined for the first two time slots.

To represent this as a CSP, we model the parties as decision variables, and the
tables as the values to be assigned. The detailed constraint model is generated
automatically from a template and from details of the restaurant. Figure 3 shows
the resulting model for the simple problem of Figure 2. The variables P1, P2, P3, P4,
and P5 can take values from the domains D1, D2, D3, D4, and D5 respectively. Since

T3 can be joined onto T2 to give a capacity of 6, T2 appears in D2. Constraints C1
and C2 ensure that any parties overlapping in time use different tables. C3 ensures
that if the extra capacity of T2 is required, then T3 cannot be assigned
simultaneously (P2 is the only party that could require the increased capacity). C4
is an extra constraint that ensures that T3 and T4 cannot both be fully occupied at
the same time (which could only happen if they are assigned P3 and P2
respectively). C5 ensures that in timeslot 1, the number of usable tables is not less
than the number of parties, where the number of usable tables is decremented each
time two tables are joined. C6 and C7 similarly ensure that the number of seats is
not less than the number of diners. For this example, C5, C6 and C7 are always
true, but are shown here for illustration. Finally, C8 breaks a symmetry in the
problem, and ensures that an ordering is forced between pairs of equivalent parties.

Party Size Start End Table[size] 0 1 2 3
P1 2 0 2 T1[2] P1 P4
P2 4 0 2 T2[3] P5
P3 3 1 3 T3[3]

P2

P4 2 2 4 T4[4] P3
P5 2 2 4

Figure 2: Problem instantiation at time 0 (left); and a possible seating plan (right)

Variables: {P1, P2, P3, P4, P5}
Domains: D1={T1, T2, T3, T4}, D2={T2, T4}, D3={T2, T3, T4}, D4={T1, T2, T3, T4}, D5={T1, T2, T3, T4}
Constraints:

C1. alldifferent([P1,P2,P3])
C2. alldifferent([P3,P4,P5])
C3. (P2==T2) => (P1 ≠ T3, P3 ≠ T3)
C4. (P3 ≠ T3) || (P2 ≠ T4)
C5. 3 + (P2==T2) ≤ 4
C6. P1.size + P2.size + P3.size ≤ 12
C7. P3.size + P4.size + P5.size ≤ 12
C8. P4 < P5

Figure 3: CSP Model for the problem of Figure 2

Restaurant table management is a real-time problem – neither the booker nor the
floor manager can wait for an exhaustive search before replying to a customer.
Therefore, we impose a time limit on each search, and if no seating plan is found
within that limit, we report no solution. Even with the time limit, though, solvers
can give widely varying results depending on the particular search heuristic used.
Initial tests showed that search based on a single heuristic may solve some
instances quickly, but can be too slow on others, exceeding the time limit.
Different heuristics tried over the same set of instances showed different partitions
between hard and easy instances. However, there were very few instances that
none of the heuristics could solve.

Therefore, we devised a restart approach with multiple different ordering
heuristics, and an increasing time limit for each set of restarts. This multi-heuristic
algorithm (MH) was described in [6], where we demonstrated the benefit, in terms
of efficiency and robustness, of the approach. The pseudocode for the algorithm is
shown below.

while Solve(heuristic(i),limit) == false

 limit = Increase(i,limit)

 if i == n then i = 1

 else i == i + 1

Solve(.,.) takes heuristic i (composed of a variable and a value ordering), and
applies standard search up to a time limit. If it finds a solution, or proves there is
no solution, it returns true; otherwise it hits the time limit and returns false.
Increase(.,.) is the time limit function and takes the form Increase(i,limit)=limit*10
if i=n; limit otherwise. MH thus tries each ordering in turn for a limited time,
restarting the search after each one, and gradually increasing the time limit if no
result was found. This is similar to the way iterative deepening [16] explores each
branch to a certain depth, and then increases the depth limit, and is similar to
randomized restarts, except we use different ordering heuristics. In total, we have
11 different variable ordering heuristics, including versions of min-size-domain
and lexicographic, and including orders based on increasing and decreasing party
size and start time. We have 3 different value orderings (increasing table size,
decreasing table size, and lexicographic), giving a total of 33 different heuristic
combinations.

Using this model configuration we are able to solve the static problem efficiently.
Instances representing a full booking sheet of 200 covers can be solved in less than
0.5 seconds on average (examples will be shown in section 7). Note that the real
problems are typically smaller than this, either because we build the plan
incrementally, or when we react to changes, some diners have already started and
cannot be moved.

5. Flexibility and Optimisation
The previous section described a satisfaction problem: i.e. it does not consider
optimisation, but simply returns the first allocation it finds, or reports failure.
However, there are likely to be many possible seating plans, and some will be
significantly better than others in terms of efficient use of the tables, and thus in
their ability to accept future bookings. In this section we describe a measure to
estimate the quality of a solution, and an algorithm which uses that measure to
search for seating plans of increasing quality.

Ultimately, seating plans should be assessed by the final number of covers
achieved. Therefore, whether we are in the booking phase or in the floor
management phase, we should maintain a seating plan aimed at maximising the
covers. Thus after each change, we should be searching for:

argmax seating plan [current covers + expected future covers] (1)

As the number of current covers is known and constant, we focus on the expected
future covers. We do not have well-founded distributions of the new requests we
can expect, and so our measure of expected covers must be an approximation.
Thus we introduce a heuristic measure, flexibility, and search for:

argmax seating plan [flexibility] (2)

The flexibility measure is based on the number of usable start times for future
requests. Let TB be the number of tables, and T be the time horizon discretised in
15-minute units. We superimpose a grid G of size TB×T over the seating plan. For
each grid square (table, time-unit) in G that corresponds to an unoccupied slot we
compute the number of time units available before the table becomes occupied
again. Squares with numbers less then a standard dinner duration d are ignored, as
they do not represent usable start times. We then compute flexibility as follows:

flexibility = Σ tb∈ TB, tu∈ T ((G[tb,tu] ≥ d) × size(tb)) (3)

The term (G[tb,tu] ≥ d) takes value 1 when the pair (tb,tu) represents a usable start
time, and 0 otherwise, while size(tb) is the size of table (tb).

0 1 2 3 4 5 6 7 8
[2] 1

As an illustration, consider Figure 4, which shows a restaurant with 3 tables: T1
and T2 have capacity 2, T3 has capacity 3, and T1 and T2 can be joined to give a
capacity of 4. The evening is divided into 8 time units. Party P1 (size 3, start 1, end
4) has two possible allocations, shown in (i) and (ii). The remaining grid cells
show the number of time units available. If we assume the standard dinner duration
is d = 3, then we count only squares with value at least 3, and we obtain:
flexibility(i)=(2x2)+(2x2)+(3x6)=26, and flexibility(ii)= (2x6)+(2x6)+(3x2)=30,
and thus plan (ii) would be preferred. Note that the values for T3 are given a higher
weight, since it can seat more customers.

For each problem instance, we then perform a branch-and-bound search,
optimising for flexibility. Inside the search, we again apply the multi-heuristic
approach. The benefit resulting from applying this optimisation criterion is
illustrated in section 7 (Figures 9, 10, and 12).

T1 4 3 2 1
T2[2] 1

P [3] 1
4 3 2 1

T [3] 3 8 7 6 5 4 3 2 1

 (i)
0 1 2 3 4 5 6 7 8

[2] T1 8 7 6 5 4 3 2 1
T [2] 2 8 7 6 5 4 3 2 1
T [3] 1 3 P [3] 1 4 3 2 1

 (ii)

Figure 4: Flexibility maps for two possible allocations

6. Minimising Disruption
The constraint satisfaction and optimisation models described above do not
consider the number of table reallocations from one plan to the next – their aim is
to find any (improving) plan. During the floor management phase, however, too
many changes cause confusion in the restaurant, making it difficult for staff to
understand and evaluate each new solution. In particular, frequent changes in the
table configurations will annoy both staff and customers. Therefore, the table
management system should, when possible, try to maintain the stability of the plan,
and should prefer new plans with few changes.

Therefore we extend the previous models, so that when changes occur, we search
for new solutions in two phases: first, we search in the neighbourhood of the
previous solution, placing a limit on the number of changes allowed; second, if no
acceptable plan is found in the first phase, we allow all allocations to float, and we
search for any new solution. The pseudocode is shown below.

solution = original

discrepancy = 0

while ((timer < timeout_1) && (discrepancy < discrepancyMax))

 if Solver.solve(CSP,MH,timeout_1,original,discrepancy) == true

 solution = getSolution()

 return solution

 else discrepancy += 1

if Solver.solve(CSP,MH,timeout_2,original,any) == true

 solution = getSolution()

return solution

The number of allowed changes from the original solution is represented by the
variable discrepancy. The initial discrepancy limit is set to 0: i.e. we first check to
see if the new event can be integrated into the original solution without any further
changes. If not, the discrepancy limit is incremented until either a solution is
found, or the limit reaches discrepancyMax. In the latter case, a final search is
carried out for a new solution with no limit on the number of changes. The solve
procedure is extended to include the discrepancy limit, which is posted as a
constraint on the solution. A similar procedure is applied when searching for
flexible solutions, which allows the user to trade-off stability for flexibility.
Section 7 (Figure 12) will illustrate how this is performed.

7. The Integrated Table Management Adviser
The models and algorithms described in the previous three sections have been
implemented using Ilog Solver 6.0. Access to the models is provided by a
graphical user interface, which also presents other relevant information regarding
the state of the restaurant or booking sheet, and allows the user (booker or floor

Figure 5: User interface, displaying a seating plan and a new booking request

manager) to control the table allocation process, switching between manual
operation, basic solving, optimising for flexibility, or maintaining stability.

Figure 6: Seating plan with the new request accommodated into table 4

A screen shot of the interface is shown in Figure 5, displaying one possible seating
plan on one evening in May 2006. The list on the left side displays in alphabetical
order the parties (with time, name and table) which are allocated on the plan. New
booking requests are processed by editing a form, and selecting time, party size,
and expected duration. The user has the option to specify or forbid a table for the
new party; otherwise the system will use any suitable table.

Figure 6 represents the seating plan accommodating the new request (Keane). It
also shows the total covers, the covers partitioned in 3 periods, the total parties, the
number of parties seated at oversized tables, and the number of changes from the
previous plan. Note that O'Grady at 5:30, Buckley at 6:00, O'Driscoll at 7:00 and
Counihan at 9:30 are all seated at conjoined tables.

By default, the system does not allocate parties of 2 into four-seater or larger
tables, but the user can override this and specify a preference for a more
comfortable table. In Figure 7, party Keane has been moved to table 11, which is
for 5 people. The operation required 3 changes from the previous table allocation.

During booking, availability requests are common – e.g. "when can you seat a
party of 4?" The user can process such requests using the same booking form, by
selecting “not specified” in the “Time” box. Figure 8 shows the answer provided
by the system for a request for 4 people, for the seating plan in Figure 7. The
message also groups the available times by the available duration. This is
important information, since the booker may be able to sell the table for one hour
at 7 o’clock if the customer is only asking for a quick main course. The procedure
that checks the availability is again based on the MH algorithm.

Figure 7: New seating plan after imposing a preference for party Keane

Figure 9 (top) shows a reallocation of the plan in Figure 7 that accommodates a
new party Meane at 9:00 in table 8. Note that in this case the number of changes
necessary to find a new plan is higher, i.e. the system performed a more complex
operation. Figure 9 (bottom) represents a first step in a search for a more flexible
allocation. The new plan has been obtained pressing the “Improve” button (Figure
5). Note that there has been only one change from the previous plan, with party
Crowley (3 people at 6:00) moved from table 6 (6-seater) to table 9 (4-seater). The
increase in the flexibility estimate is 16 (8 time units × 2 table size saved), which
may allow an extra 2-hour dinner (8 time unit) for 2 people. The run time to obtain
the change is 0.16 sec.

Figure 8: Message showing the availability for 4 people on the sheet of Figure 7

The user can repeat the improvement process to find more flexible seating plans.
Figure 10 (top) shows the plan obtained after four iterations, and (bottom) the plan
obtained unlocking party Keane from table 11 (and after three more iterations).

Figure 9: Adding party Meane (top), first flexibility improvement (bottom)

In both phases, we can observe the effect of our flexibility measure, which by
increasing the number of usable start times makes better use of tables, and reduces

Figure 10: Improvement after several steps, with Keane fixed (top), unfixed (bottom)

the unusable zones (empty squares) in between parties. The increase in the
flexibility estimate over Figure 9 (top) is 68 and 96 for Figure 10 (top) and
(bottom). This can be regarded as 3 and 5.5 times the (2 hour × 2 people)
improvement obtained from the first step of Fig 9-bottom. The run time from Fig 9
(bottom) to 10 (top) was 8.1 sec, and from 10 (top) to 10 (bottom) was 1.01 sec.

Figure 11 shows an instant during the floor management phase. The current time is
represented by the vertical line at 5.30pm. Party Keane (table 4) was due to finish,
but is going to be late, creating a conflict with the next party Fennell. In this case,
the user can edit Keane, extending the duration from 1.30hrs to 1.45hrs, and ask
the system to search for a reallocation that avoids the conflict.

Figure 11: An instant during floor management, with a late finish (Keane, T4)

Figure 12 (top) represents a first reallocation, while on the bottom we see a seating
plan after four improvement iterations. We can again observe the benefit of the

Figure 12: Reallocation after a late finish (top), improvement after four iterations (bottom)

improvement, with fewer unusable zones, and more possibilities to seat extra
parties. The four iterations have improved the flexibility estimate by steps of 4, 5,
4, and 26, for a total of 39, or ~2.5 (2 hour × 2 people) dinners. The number of
changes from the initial allocation was 2, 1, 3, and 36; the last iteration gave a
large improvement but required a large change in the seating plan.

By default, the timeout for each improvement step is set to 10 seconds, partitioned
in 7 seconds for search with limited discrepancy and 3 seconds for unlimited (or
global) search. These limits are configurable by the user.

The research prototype software discussed above is currently being evaluated in
the restaurant. The main aim of the evaluation is to determine whether constraint-
based methods could support a practical restaurant management tool. Specifically,
the evaluation will check that the software:

(i) models the restaurant adequately;

(ii) provides acceptable seating plans in reasonable time;

(iii) can join and separate tables correctly;

(iv) proposes flexible seating plans in reasonable time;

(v) reports quickly whether or not a booking request can be accepted, and
recommends sensible alternative times for a booking;

(vi) provides useful advice when a seating plan has to be reconfigured.

If the evaluation is positive (and first indications are promising), then we will
investigate commercial development.

8. Conclusions and Future Work
In this paper we presented a constraint based solution for enhancing restaurant
table management. We introduced the table management problem, describing the
main issues concerning booking and floor management. We presented a basic
constraint model, which can be used to solve the underlying static problem. We
then described two enhancements, which (i) optimise a flexibility measure, and (ii)
search for similar plans after a change occurs. The flexibility measure is based on a
weighted count of the possible start times for new bookings, and is intended to
allow more efficient use of resources. The search for similar solutions minimises
the number of changes to the seating plan, and is intended to simplify floor
management. We have described the integrated system, which allows a user to
control table allocation, while receiving advice from the underlying models. The
system has been implemented, and is currently undergoing trials in Eco restaurant.

Future work will focus on improving the flexibility measure, to take into account
the expected distribution of demand. Monday evenings, for example, show a
noticeably different pattern of dining from Friday evenings, and thus the system
should tailor its advice accordingly. Our first approach will be to include weights
in the flexibility measure, increasing the importance of availability at specific
times. Should the current evaluation trial prove positive, we expect to begin a

development phase. This will include redeveloping the constraint models to ensure
they are suitable for the operating environment, and redeveloping the user-
interface, based on the feedback from the evaluation.

Acknowledgements
This work is funded by Enterprise Ireland under grant number SC/2003/0081. We
are grateful for the problem description, data and advice given by the Eco
restaurant in Douglas, Cork. The user interface was developed by James Lupton,
and supported by the Science Foundation Ireland Overhead Investment Plan, 2005-
2006. Finally, we are grateful for the external liaison assistance of James Little at
Cork Constraint Computation Centre.

References
1. www.eco.ie
2. Dechter, R. Constraint Processing, Morgan Kaufman, 2003.
3. Rossi, F., van Beek, P. and Walsh, T. (eds.), Handbook of Constraint Programming,

Elsevier, (forthcoming) 2006
4. Gomes, C.P.; and Shmoys, D.B. "Approximations and Randomization to Boost CSP

Techniques", Annals of Operations Research, 130:117-141, 2004
5. Gomes, C.P.; and Selman, B. "Algorithm portfolios", Artificial Intelligence 126(1-

2):43-62, 2001
6. Vidotto, A.; Brown, K.N.; and Beck, J.C. "Robust Constraint Solving Using Multiple

Heuristics", Proceedings of the Sixteenth Irish Conference on Artificial Intelligence &
Cognitive Science (AICS’05), 203-212, 2005

7. Régin, J.-C. "A Filtering Algorithm for Constraints of Difference in CSPs",
Proceedings AAAI-94, pp 362–367, 1994.

8. Verfaillie, G.; and Schiex, T. "Solution Reuse in Dynamic Constraint Satisfaction
Problems", Proceedings AAAI-94, pp307-312, 1994

9. Fowler, D.W.; and Brown, K.N. "Branching constraint satisfaction problems and
Markov Decision Problems compared", Annals of Operations Research, 118(1-4):85-
100, 2003

10. Bent, R.; and Van Hentenryck, P. "Regrets Only! Online Stochastic Optimization
under Time Constraints", Proceedings AAAI-04, 2004

11. Ran, Y.; Roos, N.; and van den Herik, J. "Approaches to Find a Near-minimal Change
Solution for Dynamic CSPs" CPAIOR'02: Proceedings of the 4th International
Workshop on Integration of AI and OR techniques in Constraint Programming for
Combinatorial Optimisation Problems, pp373-387, 2002

12. Petcu, A.; and Faltings, B. "Optimal solution stability in continuous-time
optimization", DCR-05: Proceedings of the 6th International Workshop on
Distributed Constraint Reasoning, pp207–221, 2005

13. Davenport, A.J.; Gefflot, C.; and Beck, J.C. "Slack-based Techniques for Robust
Schedules", Proceedings of the Sixth European Conference on Planning (ECP-2001),
2001

14. Hebrard, E.; Hnich, B.; and Walsh, T. "Robust Solutions for Constraint Satisfaction
and Optimization", Proceedings of the Sixteenth European Conference on Artificial
Intelligence, ECAI-04, 2004

15. Arkin, E.M.; and Silverberg, E.B. "Scheduling jobs with fixed start and end times",
Discrete Applied Mathematics, 18:1-8, 1987

16. Korf, R. E. "Depth-first iterative deepening: an optimal admissible tree search",
Artificial Intelligence, 27:97—109, 1985.

	1. Introduction
	2. Restaurant Table Management
	3. Constraint Programming
	4. Modelling the static table management problem
	5. Flexibility and Optimisation
	6. Minimising Disruption
	7. The Integrated Table Management Adviser
	8. Conclusions and Future Work
	Acknowledgements
	References

