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Abstract. We propose domain-independent dynamic programming (DIDP) and con-

straint programming (CP) models to exactly solve type-1 and type-2 assembly line

balancing problem with sequence-dependent setup times (SUALBP). The goal is to

assign tasks to assembly stations and to sequence these tasks within each station,

while satisfying precedence relations specified between a subset of task pairs. Each

task has a given processing time and a setup time dependent on the previous task on

the station to which the task is assigned. The sum of the processing and setup times

of tasks assigned to each station constitute the station time and the maximum station

time is called the cycle time. For type-1 SUALBP, the objective is to minimize the

number of stations, given a maximum cycle time. For type-2 SUALBP, the objec-

tive is to minimize the cycle time, given the number of stations. On a set of diverse

SUALBP instances, experimental results show that our approaches significantly out-

perform the state-of-the-art mixed integer programming models for SUALBP-1. For

SUALBP-2, the DIDP model outperforms the state-of-the-art exact approach based on

logic-based Benders decomposition. By closing 76 open instances for SUALBP-2, our

results demonstrate the promise of DIDP for solving complex planning and scheduling

problems.
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Key words: Domain-independent dynamic programming, Constraint

programming, Assembly line balancing

1. Introduction

The simple assembly line balancing problem (SALBP) is a well-known production planning prob-

lem (Becker and Scholl 2006), with many applications in the production of automotive and house-
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hold items (Boysen et al. 2022). The SALBP is often the last step of production, performing the final

assembly of a product from previously manufactured parts. Commonly utilized for the production

of standardized products, an assembly line is a series of interconnected workstations linked by a

transportation system, such as a conveyor belt, where work pieces move through the stations in a

predetermined order. At each station, a set of tasks is performed sequentially. Due to the technical

structure of the products, the set of tasks must adhere to a partial precedence ordering: if (𝑎, 𝑏)
represents a precedence relation between task 𝑎 and 𝑏, then 𝑏 must be assigned to the same or a later

station than 𝑎. If assigned to the same station, 𝑏 must be after 𝑎 in the task sequence. In a feasible

production plan, each task is assigned to a single station, ensuring all precedence constraints are

met. The tasks at each station form the station’s workload, and the total time for these tasks is the

station time. The cycle time is the maximum station time across all stations.

In many real production lines, setup operations such as tool changes, curing, or cooling processes

are required between consecutive tasks (Kumar and Mahto 2013). The assembly line balancing

problem with setups (SUALBP) extends the SALBP by integrating setup times into task scheduling

(Andres et al. 2008). Specifically, tasks assigned to the same station must satisfy sequence-dependent

setup times in the schedule. Scholl et al. (2013) further extended this problem by distinguishing

between forward and backward setup times. A forward setup occurs when one task immediately

follows another within the same cycle, while a backward setup must happen between the last task

of one cycle and the first task of the next cycle on the same station (Zohali et al. 2022).

In the literature, SUALBP is also known as the general assembly line balancing problem with

setups (Martino and Pastor 2010) and the setup assembly line balancing and scheduling problem

(Scholl et al. 2013). SUALBP is categorized into two main types: SUALBP-1 minimizes the number

of stations given a fixed cycle time and SUALBP-2 minimizes the cycle time given a fixed number

of stations. Due to different application scenarios, other variants also exist in the literature (Wee

and Magazine 1982, Becker and Scholl 2006).

There has been a variety of approaches applied to the SUALBP-1 variants including mixed-integer

programming (MIP) (Akpinar and Baykasoğlu 2014a), constraint programming (Güner et al. 2023),

hybrid bee colony algorithms (Akpinar and Baykasoğlu 2014b), Benders decomposition (Akpinar

et al. 2017), simulated annealing (Özcan 2019), and variable neighborhood search (Yang and Cheng

2020). For SUALBP-2 variants, MIP models (Tang et al. 2016), genetic algorithms combined with

dynamic programming (Yolmeh and Kianfar 2012), and meta-heuristics (Şahin and Kellegöz 2017)

have been developed.
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Narrowing our scope to standard SUALBP-1 and SUALBP-2, Andres et al. (2008) proposed

a mathematical model and multiple heuristics for the former while Martino and Pastor (2010)

developed heuristic algorithms. Later, Scholl et al. (2013) presented a new MIP model and multiple

heuristics. For SUALBP-2, Seyed-Alagheband et al. (2011) introduced a MIP model based on the

formulation of Andrés et al. (2008) and devised a simulated annealing meta-heuristic algorithm.

Esmaeilbeigi et al. (2016) proposed improved MIP models for both SUALBP-1 and SUALBP-

2 that represent the state-of-the-art exact techniques for the former. More recently, Zohali et al.

(2022) developed the state-of-the-art exact approach for SUALBP-2 using logic-based Benders

decomposition.

In this work, we create novel domain-independent dynamic programming (DIDP) and constraint

programming (CP) models for both types of SUALBP. The superior performance of the proposed

DIDP models against the state-of-the-art approaches demonstrates the promise of this emerging

exact method for solving complex planning and scheduling problems.

Main contributions. Our contributions are four novel optimization models (DIDP and CP) for

SUALBP-1 and SUALBP-2, and new state-of-the-art results of the proposed DIDP models com-

pared to the best exact algorithms in the literature. We successfully close 76 open instances for

SUALBP-2 and detect potential flaws in empirical results of Zohali et al. (2022). We also investigate

a local improvement algorithm for the DIDP model of SUALBP-2.

Outline of the paper. In Section 2, we define the problem, summarize the notation, present the

state-of-the-art MIP models and exact algorithms, and introduce domain-independent dynamic

programming and constraint programming. The proposed CP models for SUALBP-1 and SUALBP-

2 are presented in Section 3. Similarly, the DIDP models for SUALBP-1 and SUALBP-2 are

presented in Section 4. A local improvement algorithm to solve the DIDP model of SUALBP-2

is briefly introduced in Section 5. In Section 6, experimental results on benchmark instances are

presented, followed by discussions regarding potential flaws in previous work. Finally, we conclude

this work in Section 7.

2. Background

In this section, we define the assembly line balancing problem with setups, summarize the notation,

present the state-of-the-art MIP models, briefly introduce the state-of-the-art logic-based Ben-

ders decomposition for SUALBP-2, and review domain-independent dynamic programming and

constraint programming methodologies.
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Table 1 Notation and definition for SUALBP-1 and SUALBP-2 (Esmaeilbeigi et al. 2016).

Notation Definition

𝑛 the number of tasks

𝑉 the set of tasks, i.e., 𝑉 = {1,2, ..., 𝑛}
𝑖, 𝑗 , 𝑣 the task indices

E the set of precedence relations, i.e., (𝑖, 𝑗) ∈ E if 𝑖 ∈𝑉 precedes 𝑗

𝑡𝑖 the execution time of task 𝑖 ∈𝑉
𝑃𝑖 (𝑃∗𝑖 ) the set of direct (all) predecessors of task 𝑖 ∈𝑉
𝐹𝑖 (𝐹∗𝑖 ) the set of direct (all) successors of task 𝑖 ∈𝑉
𝑐(𝑐) the upper (lower) limit of the cycle time

𝑚(𝑚) the upper (lower) limit of the station number

𝐸𝑖 the earliest assignable station for task 𝑖 ∈𝑉 , e.g., 𝐸𝑖 = ⌈
𝑡𝑖+

∑
𝑗∈𝑃∗

𝑖
𝑡 𝑗

𝑐
⌉

𝐿𝑖 the latest assignable station for task 𝑖 ∈𝑉 , e.g., 𝐿𝑖 =𝑚 + 1− ⌈
𝑡𝑖+

∑
𝑗∈𝐹∗

𝑖
𝑡 𝑗

𝑐
⌉

𝐾𝐷(𝐾𝑃) the set of definite (possible) stations, i.e., 𝐾𝐷 = {1, ..., 𝑚}, and 𝐾𝑃 = {𝑚 +
1, ..., 𝑚}

𝐾 the set of stations, i.e., 𝐾 = 𝐾𝐷 ∪𝐾𝑃
𝑘 the station index

𝐹𝑆𝑖 the set of assignable stations for task 𝑖 ∈𝑉 , i.e., 𝐹𝑆𝑖 = {𝐸𝑖, 𝐸𝑖 + 1, ..., 𝐿𝑖}
𝐹𝑇𝑘 the set of tasks which can be assigned to station 𝑘 ∈ 𝐾 , i.e., 𝐹𝑇𝑘 = {𝑖 ∈ 𝑉 |𝑘 ∈

𝐹𝑆𝑖}
𝐴𝑖 the set of tasks that cannot be assigned to the station to which task 𝑖 ∈ 𝑉 is

assigned, e.g., 𝐴𝑖 = { 𝑗 ∈𝑉 |𝐹𝑆 𝑗 ∩ 𝐹𝑆𝑖 = ∅}
𝐹𝐹
𝑖
(𝑃𝐹

𝑖
) the set of tasks which can directly follow (precede) task 𝑖 ∈ 𝑉 in forward

direction, i.e., 𝐹𝐹
𝑖
= { 𝑗 ∈𝑉 − (𝐹∗

𝑖
−𝐹𝑖) −𝑃∗𝑖 − 𝐴𝑖 −{𝑖}} and 𝑃𝐹

𝑖
= { 𝑗 ∈𝑉 |𝑖 ∈ 𝐹𝐹

𝑗
}

𝐹𝐵
𝑖
(𝑃𝐵

𝑖
) the set of tasks which can directly follow (precede) task 𝑖 ∈ 𝑉 in backward

direction, i.e., 𝐹𝐵
𝑖
= { 𝑗 ∈𝑉 − 𝐹∗

𝑖
− 𝐴𝑖} and 𝑃𝐵

𝑖
= { 𝑗 ∈𝑉 |𝑖 ∈ 𝐹𝐵

𝑗
}

𝜏𝑖 𝑗 the forward setup times from task 𝑖 ∈𝑉 to task 𝑗 ∈ 𝐹𝐹
𝑖

𝜇𝑖 𝑗 the backward setup times from task 𝑖 ∈𝑉 to task 𝑗 ∈ 𝐹𝐵
𝑖

𝜏
𝑖

the smallest forward setup time from any other task to task 𝑖 ∈𝑉
𝜇
𝑖

the smallest backward setup time from any other task to task 𝑖 ∈𝑉
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2.1. Problem Definition and Notation

Following Esmaeilbeigi et al. (2016), SUALBP consists of 𝑛 assembly tasks with precedence

constraints, that require processing on 𝑚 different, ordered assembly stations with cycle time 𝑐. In

the two main types of SUALBP, one of 𝑚 or 𝑐 is the objective while the maximum value of the

other is fixed. All stations are capable of performing all assembly tasks, and the tasks allocated to

a specific station must be fully sequenced. If a task is assigned to station 𝑗 , all of its successors

must be assigned to the same or subsequent stations (i.e., 𝑗 , 𝑗 +1, ..., 𝑚). Tasks assigned to the same

station must be sequenced to adhere to any precedence constraints. The processing time for each

task is predetermined and deterministic. However, the setup time required before performing a task

is dependent on the preceding task in the station’s processing sequence.

For tasks assigned to a station, there are two types of sequence-dependent setups to consider: (i)

a forward setup, which accounts for the setup times between any two consecutive tasks within the

same cycle, and (ii) a backward setup, which accounts for the setup times between the last task of

one cycle and the first task of the subsequent cycle on the same station. The sum of processing and

the forward and backward setup times on a station constitutes the station time. The cycle time, 𝑐,

is the maximum station time. The setups are not symmetric, i.e., the setup time from task 𝑖 to 𝑗

might be different from the setup time from task 𝑗 to 𝑖. Nevertheless, the forward setups satisfy the

triangle inequality.

In SUALBP-1, the cycle time 𝑐 is fixed, and the goal is to minimize the number of stations 𝑚.

Conversely, in SUALBP-2, the number of stations 𝑚 is fixed, and the objective is to minimize the

cycle time 𝑐. In both scenarios, the key decisions involve (i) assigning tasks to stations and (ii)

determining the sequence of tasks at each station.

We use the notation proposed by Esmaeilbeigi et al. (2016), as shown in Table 1 for both

SUALBP-1 and SUALBP-2. For SUALBP-1, 𝑐 = 𝑐 = 𝑐. For SUALBP-2, 𝑚 = 𝑚 = 𝑚. To obtain all

the parameters in the table, we adapt the preprocessing techniques in the literature (Kuroiwa and

Beck 2023a, Esmaeilbeigi et al. 2016, Zohali et al. 2022).

2.2. State-of-the-art MIP Model for SUALBP-1

The state-of-the-art MIP model is the second station-based formulation (SSBF) proposed by

Esmaeilbeigi et al. (2016). Since the SSBF model can be adapted to both SUALBP-1 and SUALBP-

2, we call it SSBF-1 in this section. The decision variables are:

• 𝑥𝑖𝑘 : binary variable, 𝑥𝑖𝑘 = 1 iff task 𝑖 ∈𝑉 is assigned to station 𝑘 ∈ 𝐹𝑆𝑖.
• 𝑧𝑖: integer variable representing the index of the station task 𝑖 ∈𝑉 is assigned to.
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• 𝑢𝑘 : binary variable, 𝑢𝑘 = 1 iff any task is assigned to station 𝑘 .

• 𝑔𝑖 𝑗 𝑘 : binary variable, 𝑔𝑖 𝑗 𝑘 = 1 iff task 𝑖 is performed immediately before task 𝑗 on station 𝑘 .

• ℎ𝑖 𝑗 𝑘 : binary variable, ℎ𝑖 𝑗 𝑘 = 1 iff task 𝑖 is the last and 𝑗 is the first task on station 𝑘 .

• 𝑟𝑖: integer variable encoding the rank of task 𝑖 in a sequence of all tasks. The sequence is

composed of the task sequences on all the active stations, i.e., starting from the first station and

ending at the last active station.

The SSBF-1 MIP model proposed by Esmaeilbeigi et al. (2016) is as follows.

min
∑︁
𝑘∈𝐾𝑃

𝑢𝑘 +𝑚 (1a)

s.t.
∑︁
𝑘∈𝐹𝑆𝑖

𝑥𝑖𝑘 = 1, ∀𝑖 ∈𝑉, (1b)∑︁
𝑘∈𝐹𝑆𝑖

𝑘 · 𝑥𝑖𝑘 = 𝑧𝑖, ∀𝑖 ∈𝑉, (1c)∑︁
𝑖∈𝐹𝑇𝑘∩𝐹𝐹

𝑖

𝑔𝑖 𝑗 𝑘 +
∑︁

𝑖∈𝐹𝑇𝑘∩𝐹𝐵
𝑖

ℎ𝑖 𝑗 𝑘 = 𝑥𝑖𝑘 , ∀𝑖 ∈𝑉,∀𝑘 ∈ 𝐹𝑆𝑖, (1d)∑︁
𝑖∈𝐹𝑇𝑘∩𝑃𝐹

𝑗

𝑔𝑖 𝑗 𝑘 +
∑︁

𝑖∈𝐹𝑇𝑘∩𝑃𝐵
𝑗

ℎ𝑖 𝑗 𝑘 = 𝑥 𝑗 𝑘 , ∀ 𝑗 ∈𝑉,∀𝑘 ∈ 𝐹𝑆 𝑗 , (1e)

∑︁
𝑖∈𝐹𝑇𝑘

∑︁
𝑗∈(𝐹𝑇𝑘∩𝐹𝐵

𝑖
)
ℎ𝑖 𝑗 𝑘 = 1, ∀𝑘 ∈ 𝐾𝐷, (1f)∑︁

𝑖∈𝐹𝑇𝑘

∑︁
𝑗∈(𝐹𝑇𝑘∩𝐹𝐵

𝑖
)
ℎ𝑖 𝑗 𝑘 = 𝑢𝑘 , ∀𝑘 ∈ 𝐾𝑃, (1g)

𝑟𝑖 + 1+ (𝑛− |𝐹∗𝑖 | − |𝑃∗𝑗 |) · (
∑︁

𝑘∈(𝐹𝑆𝑖∩𝐹𝑆 𝑗 )
𝑔𝑖 𝑗 𝑘 − 1) ≤ 𝑟 𝑗 , ∀𝑖 ∈𝑉,∀ 𝑗 ∈ 𝐹𝐹𝑖 , (1h)

𝑟𝑖 + 1 ≤ 𝑟 𝑗 , ∀(𝑖, 𝑗) ∈ E, (1i)

𝑧𝑖 ≤ 𝑧 𝑗 , ∀(𝑖, 𝑗) ∈ E, (1j)∑︁
𝑖∈𝐹𝑇𝑘

𝑡𝑖 · 𝑥𝑖𝑘 +
∑︁
𝑖∈𝐹𝑇𝑘

∑︁
𝑗∈(𝐹𝑇𝑘∩𝐹𝐹

𝑖
)
𝜏𝑖 𝑗 · 𝑔𝑖 𝑗 𝑘 +

∑︁
𝑖∈𝐹𝑇𝑘∩𝑃𝐵

𝑖

𝜇𝑖 𝑗 · ℎ𝑖 𝑗 𝑘 ≤ 𝑐, ∀𝑘 ∈ 𝐾𝐷, (1k)∑︁
𝑖∈𝐹𝑇𝑘

𝑡𝑖 · 𝑥𝑖𝑘 +
∑︁
𝑖∈𝐹𝑇𝑘

∑︁
𝑗∈(𝐹𝑇𝑘∩𝐹𝐹

𝑖
)
𝜏𝑖 𝑗 · 𝑔𝑖 𝑗 𝑘 +

∑︁
𝑖∈𝐹𝑇𝑘∩𝑃𝐵

𝑖

𝜇𝑖 𝑗 · ℎ𝑖 𝑗 𝑘 ≤ 𝑐 · 𝑢𝑘 , ∀𝑘 ∈ 𝐾𝑃, (1l)∑︁
𝑖∈𝐹𝑇𝑘\{ 𝑗}

𝑥𝑖𝑘 ≤ (𝑛−𝑚 + 1) · (1− ℎ 𝑗 𝑗 𝑘 ), ∀𝑘 ∈ 𝐾,∀ 𝑗 ∈ 𝐹𝑇𝑘 , (1m)

𝑢𝑘+1 ≤ 𝑢𝑘 , ∀𝑘 ∈ 𝐾𝑃\{𝑚}. (1n)

𝑔𝑖 𝑗 𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐹𝑇𝑘 ,∀ 𝑗 ∈ (𝐹𝑇𝑘 ∩ 𝐹𝐹𝑖 ), (1o)
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ℎ𝑖 𝑗 𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐹𝑇𝑘 ,∀ 𝑗 ∈ (𝐹𝑇𝑘 ∩ 𝐹𝐵𝑖 ), (1p)

|𝑃∗𝑖 | + 1 ≤ 𝑟𝑖 ≤ 𝑛− |𝐹∗𝑖 |, ∀𝑖 ∈𝑉, (1q)

𝑥𝑖𝑘 ∈ {0,1}, ∀𝑖 ∈𝑉,∀𝑘 ∈ 𝐹𝑆𝑖, (1r)

𝑟𝑖, 𝑧𝑖 ∈ Z+, ∀𝑖 ∈𝑉, (1s)

In SSBF-1, the objective function (1a) minimizes the number of stations. Constraint (1b) assigns

each task to a station, while (1c) links variables 𝑥𝑖𝑘 and 𝑧𝑖. Constraints (1d) and (1e) ensure that

each task at station 𝑘 is part of a cycle, preceded and followed by exactly one other task. Constraints

(1f) and (1g) enforce that only one backward setup occurs per cycle. Precedence relations within

the same station are expressed by constraints (1h) and (1i), with (1j) extending this to tasks across

different stations. Knapsack constraints (1k) and (1l) limit station times to the cycle time. Constraint

(1m) restricts the allocation of tasks based on setup conditions. Constraint (1n) ensures stations are

sequentially utilized, avoiding gaps. Finally, constraints (1o) to (1s) define variable domains.

Note that the decision variables 𝑟𝑖 and 𝑧𝑖 are set to continuous in Esmaeilbeigi et al. (2016).

However, doing so results in infeasible solutions being labeled as feasible for some problem

instances. In addition to the MIP model, Esmaeilbeigi et al. (2016) developed pre-processing

techniques to prune the number of variables and constraints. We implement all these techniques

but omit the details here.

2.3. State-of-the-art MIP Model for SUALBP-2

The decision variables of the state-of-the-art SSBF-2 MIP model proposed by Zohali et al. (2022)

are:

• 𝑥𝑖𝑘 , 𝑧𝑖, 𝑔𝑖 𝑗 𝑘 , ℎ𝑖 𝑗 𝑘 , 𝑟𝑖 as defined in Section 2.2.

• 𝑐: continuous variable to represent the cycle time.

The SSBF-2 MIP model proposed by Zohali et al. (2022) is as follows.

min 𝑐 (2a)

s.t. (1𝑏) − (1𝑒), (1ℎ) − (1 𝑗), (1𝑜) − (1𝑠), (2b)∑︁
𝑖∈𝐹𝑇𝑘

∑︁
𝑗∈(𝐹𝑇𝑘∩𝐹𝐵

𝑖
)
ℎ𝑖 𝑗 𝑘 = 1, ∀𝑘 ∈ 𝐾, (2c)∑︁

𝑖∈𝐹𝑇𝑘
𝑡𝑖 · 𝑥𝑖𝑘 +

∑︁
𝑖∈𝐹𝑇𝑘

∑︁
𝑗∈(𝐹𝑇𝑘∩𝐹𝐹

𝑖
)
𝜏𝑖 𝑗 · 𝑔𝑖 𝑗 𝑘 +

∑︁
𝑖∈𝐹𝑇𝑘∩𝑃𝐵

𝑖

𝜇𝑖 𝑗 · ℎ𝑖 𝑗 𝑘 ≤ 𝑐, ∀𝑘 ∈ 𝐾, (2d)
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𝑖∈𝐹𝑇𝑘\{ 𝑗}
𝑥𝑖𝑘 ≤ (𝑛−𝑚 + 1) · (1− ℎ 𝑗 𝑗 𝑘 ), ∀𝑘 ∈ 𝐾,∀ 𝑗 ∈ 𝐹𝑇𝑘 , (2e)∑︁

𝑖∈𝐹𝑇𝑘
𝑥𝑖𝑘 ≥ 1, ∀𝑘 ∈ 𝐾, (2f)

𝑐 + 𝑐 · (
∑︁
𝑘∈𝐹𝑆 𝑗

𝑘 · 𝑥 𝑗 𝑘 −
∑︁
𝑘∈𝐹𝑆𝑖

𝑘 · 𝑥𝑖𝑘 ) ≥ 𝐷𝑖 𝑗 , ∀𝑖 ∈𝑉, 𝑗 ∈ (𝐹𝐹𝑖 \𝐴𝑖), (2g)

𝑐 ≤ 𝑐 ≤ 𝑐. (2h)

In SSBF-2, the objective function (2a) aims to minimize the cycle time. Constraint (2c) ensures

that each cycle includes exactly one backward setup. The knapsack constraint (2d) limits the station

time to the cycle time. Constraint (2e) dictates that only task 𝑗 is assigned to station 𝑘 when

ℎ 𝑗 𝑗 𝑘 = 1. Constraint (2f) introduces valid inequalities, ensuring that there is at least one task at each

station, given that 𝑛 > 𝑚 (Zohali et al. 2022). Constraint (2g) provides additional valid inequalities,

where 𝐷𝑖 𝑗 is a lower bound on the cycle time 𝑐 if tasks 𝑖 and 𝑗 are scheduled at the same station

(Esmaeilbeigi et al. 2016).

As above, we implement all of Zohali et al.’s pre-processing techniques but omit the details here.

2.4. State-of-the-art Exact Approaches for SUALBP-1 and SUALBP-2

The MIP model in Section 2.2 is the state-of-the-art exact approach for SUALBP-1 (Esmaeilbeigi

et al. 2016).

For the SUALBP-2 problem, the state-of-the-art exact method is the full-featured logic-based

Benders decomposition (FFLBBD) (Zohali et al. 2022). This approach decomposes SUALBP-2

into a master problem and a series of subproblems, each corresponding to a station. The master

problem focuses on task assignment to stations, considering only processing times and precedence

constraints. Each subproblem sequences the tasks assigned to a station, accounting for sequence-

dependent setup times. Optimal station schedules generate cuts that are fed back into the master

problem, and a relaxation of the subproblems is included in the master to tighten the gap between

the two levels. The LBBD algorithm also integrates pre-processing, relaxations, valid inequalities,

and bounds. Both the master problem and subproblems are modeled as MIP formulations. Due to

the complexity of this approach, we direct readers to the original paper (Zohali et al. 2022) for full

details.

2.5. Constraint Programming

Constraint programming (CP) is an approach to combinatorial optimization originating in the

artificial intelligence community (Hooker and van Hoeve 2018). CP features rich variable types (e.g.,
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interval variables and graph variables (Dooms et al. 2005)) and global constraints that represent

common combinatorial sub-structure and that have an associated inference algorithm (Rossi et al.

2006). CP allows greater flexibility and extensibility in the types of constraints (Laborie et al. 2018)

compared to MIP, resulting in the development of many global constraints that capture modeling and

inference techniques. However, as CP relies on local inference algorithms within global constraints

to limit search and propagation of information between constraints via variable domains, a global

problem view is often lacking, frequently resulting in a relatively loose CP dual bound of the global

objective (Hooker 2002, Bockmayr and Kasper 1998, Achterberg 2009). Nonetheless, Kuroiwa and

Beck (2023b) showed that CP is able outperform MIP on finding and proving optimal solutions for

five out of nine problem classes tested and is often able to find better quality solutions than MIP

across different time limits.

CP has been used to solve SALBP-1 and SALBP-2 and outperforms MIP for larger instances

(Bukchin and Raviv 2018). Recently, CP has been applied to the two-sided disassembly line

balancing problem with AND/OR precedence and sequence-dependent setup times, where each

station is composed of two independent workstations (sides) and precedence constraints must be

addressed considering the predecessors of a task on both sides of the assembly line (Çil et al. 2022,

Kizilay 2022). CP has also been used in multi-manned SUALBP-1 to minimize the number of

workers required for assigned tasks (Güner et al. 2023). In all cases, CP outperforms MIP for these

non-standard variants. This paper proposes CP models inspired by Çil et al. (2022).

2.6. Domain-Independent Dynamic Programming

The Domain-Independent Dynamic Programming (DIDP) framework is a recent exact method for

combinatorial optimization problems (Kuroiwa and Beck 2023a). Applied to problems such as

traveling salesman with time windows, multi-commodity pickup and delivery traveling salesman,

and SALBP-1 (Kuroiwa and Beck 2023b), DIDP outperformed MIP and CP models in six out of

nine tested problem classes. This success motivates us to investigate using DIDP to solve SUALBP.

DIDP is a model-and-solve framework for dynamic programming. A problem is represented as

a dynamic programming model expressed in a domain-independent modeling language, Dynamic

Programming Description Language (DyPDL). As in MIP and CP, the model is then solved by a

generic solver.

A DyPDL model is expressed by a tuple
〈
V,S0,K,T ,B,C, ℎ

〉
, where V = {𝑣1, ..., 𝑣𝑛} is the

set of state variables with S0 being the target state and B the set of base cases. T is the set of

transitions between states, while C is the set of state constraint. K is the set of constants and ℎ is
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the dual bound. A solution to a DIDP model can be found by solving the recursion to determine

the optimal cost of 𝑆0. The recursion is a sequence of transitions from 𝑆0 to a state satisfying one

of the base cases.

Existing solvers for DIDP are based on heuristic state-space search approaches that have been

developed in the field of artificial intelligence over the past 50 years (Hart et al. 1968). In particular,

Kuroiwa and Beck (2023b) showed that complete anytime beam search (CABS) (Zhang 1998)

achieves the best performance compared to other state-space search variants on each of the nine

combinatorial optimization problems that were used for evaluation. Further, CABS outperformed

both MIP and CP solvers (solving MIP and CP models, respectively) on six of the nine problem

classes. As the name suggests, CABS, is a complete search approach: given enough time will find

optimal solutions and prove optimality (Zhang 1998). For a more detailed description of CABS,

please see our online appendix (Zhang and Beck 2024a).

DIDP has been applied to SALBP-1 (Kuroiwa and Beck 2023a), where the DIDP formulation is

inspired by the state-of-the-art branch-bound-and-remember approach (Morrison et al. 2014). Our

novel DIDP formulations for SUALBP are inspired by this DIDP model.

3. CP Models for SUALBP-1 and SUALBP-2

In this section, we present the novel CP models for SUALBP-1 and SUALBP-2. We summarize the

additional notation used in the CP models in Table 2.

3.1. CP model for SUALBP-1

The decision variables of the proposed CP model are:

• 𝑡𝑎𝑠𝑘𝑖, 𝑡𝑎𝑠𝑘
𝑘

𝑖 , 𝑑𝑘𝑠 , 𝑑𝑘𝑡 , 𝑑𝑘 ′𝑠 , and 𝑑𝑘 ′𝑡 are defined as in Table 2.

• 𝑢𝑘 : binary variable, 𝑢𝑘 = 1 iff any task is assigned to station 𝑘 .

Table 2 Summary of notation in the CP models.

Symbol Definition

𝑡𝑎𝑠𝑘𝑖 (𝑡𝑎𝑠𝑘
𝑘

𝑖 ) (optional) interval variable (Laborie et al. 2018) of task 𝑖 (on station 𝑘 𝑘 ∈
𝐹𝑆𝑖), with a size of 𝑡𝑖 and a range between 0 and 𝑐

𝑑𝑘𝑠 (𝑑𝑘𝑡 ) interval variables of dummy first (last) task on station 𝑘 , with size 0

𝑑𝑘
′
𝑠 the next task after the dummy first task on station 𝑘

𝑑𝑘
′
𝑡 the previous task before the dummy last task on station 𝑘
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The CP model is as follows:

min
∑︁
𝑘∈𝐾𝑃

𝑢𝑘 +𝑚 (3a)

s.t. Alternative(𝑡𝑎𝑠𝑘𝑖, 𝑡𝑎𝑠𝑘
𝐸𝑖

𝑖 , ..., 𝑡𝑎𝑠𝑘
𝐿𝑖

𝑖 ), ∀𝑖 ∈𝑉, (3b)

NoOverlap({𝑡𝑎𝑠𝑘 𝑘𝑖 ∪ {𝑑𝑘𝑠 , 𝑑𝑘𝑡 },∀𝑖 ∈ 𝐹𝑇𝑘 }, {𝜏𝑖 𝑗 ,∀𝑖, 𝑗 ∈ 𝐹𝑇𝑘 }), ∀𝑘 ∈ 𝐾𝐷 ∪𝐾𝑃, (3c)

First({𝑡𝑎𝑠𝑘 𝑘𝑖 ,∀𝑖 ∈ 𝐹𝑇𝑘 } ∪ {𝑑𝑘𝑠 , 𝑑𝑘𝑡 }, 𝑑𝑘𝑠 ), ∀𝑘 ∈ 𝐾𝐷 ∪𝐾𝑃, (3d)

Last({𝑡𝑎𝑠𝑘 𝑘𝑖 ,∀𝑖 ∈ 𝐹𝑇𝑘 } ∪ {𝑑𝑘𝑠 , 𝑑𝑘𝑡 }, 𝑑𝑘𝑡 ), ∀𝑘 ∈ 𝐾𝐷 ∪𝐾𝑃, (3e)

PresenceOf(𝑡𝑎𝑠𝑘 𝑘𝑖 ) ≤ 1, ∀𝑘 ∈ 𝐾𝐷,∀𝑖 ∈ 𝐹𝑇𝑘 , (3f)

PresenceOf(𝑡𝑎𝑠𝑘 𝑘𝑖 ) ≤ 𝑢𝑘 , ∀𝑘 ∈ 𝐾𝑃,∀𝑖 ∈ 𝐹𝑇𝑘 , (3g)

TypeOfNext(𝑑𝑘𝑠 ) = 𝑑𝑘
′
𝑠 , ∀𝑘 ∈ 𝐾𝐷 ∪𝐾𝑃, (3h)

TypeOfPrev(𝑑𝑘𝑡 ) = 𝑑𝑘
′
𝑡 , ∀𝑘 ∈ 𝐾𝐷 ∪𝐾𝑃, (3i)

StartOf(𝑑𝑘𝑡 ) +Element(𝜇𝑑𝑘′𝑡 𝑑𝑘′𝑠 ) ≤ 𝑐, ∀𝑘 ∈ 𝐾𝐷, (3j)

StartOf(𝑑𝑘𝑡 ) +Element(𝜇𝑑𝑘′𝑡 𝑑𝑘′𝑠 ) ≤ 𝑐 · 𝑢𝑘 , ∀𝑘 ∈ 𝐾𝑃, (3k)

EndBeforeStart(𝑡𝑎𝑠𝑘 𝑘𝑖 , 𝑡𝑎𝑠𝑘
𝑘

𝑗 ), ∀𝑘 ∈ 𝐾𝐷 ∪𝐾𝑃,∀𝑖 ∈ 𝐹𝑇𝑘 ,∀ 𝑗 ∈ 𝐹𝑇𝑘 ∩ 𝐹∗𝑖 , (3l)∑︁
𝑘∈𝐹𝑆𝑖

𝑘 ·PresenceOf(𝑡𝑎𝑠𝑘 𝑘𝑖 ) ≤
∑︁
𝑘∈𝐹𝑆 𝑗

𝑘 ·PresenceOf(𝑡𝑎𝑠𝑘 𝑘𝑗 ), ∀𝑖 ∈𝑉,∀ 𝑗 ∈ 𝐹∗𝑖 , (3m)

0 ≤ 𝑡𝑎𝑠𝑘𝑖 ≤ 𝑐, ∀𝑖 ∈𝑉, (3n)

0 ≤ 𝑡𝑎𝑠𝑘 𝑘𝑖 ≤ 𝑐, ∀𝑖 ∈𝑉,∀𝑘 ∈ 𝐹𝑆𝑖, (3o)

0 ≤ 𝑑𝑘𝑠 , 𝑑𝑘𝑡 ≤ 𝑐, ∀𝑘 ∈ 𝐹𝑆𝑖, (3p)

𝑢𝑘 = 1, ∀𝑘 ∈ 𝐾𝐷, (3q)

𝑢𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾𝑃. (3r)

The objective (3a) minimizes the number of stations used. Constraint (3b) aligns fixed and

optional interval variables. Constraint (3c) ensures interval variables form a sequence on each

station. Constraints (3d) and (3e) require 𝑑𝑘𝑠 and 𝑑𝑘𝑡 to be the first and last tasks on station 𝑘 .

Constraints (3f) and (3g) restrict task assignments to open stations. Constraints (3h) and (3i) ensure

that 𝑑𝑘 ′𝑠 follows 𝑑𝑘𝑠 and 𝑑𝑘 ′𝑡 precedes 𝑑𝑘𝑡 . Constraints (3j) and (3k) account for backward setup time

using an element constraint. Constraint (3l) ensures that within the same station, a follower task

starts after its predecessor. Constraint (3m) prevents a task from being assigned to a later station

than its followers. Constraints (3n) to (3r) define variable domains.
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3.2. CP model for SUALBP-2

The decision variables of the proposed CP model are:

• 𝑡𝑎𝑠𝑘𝑖, 𝑡𝑎𝑠𝑘
𝑘

𝑖 , 𝑑𝑘𝑠 , 𝑑𝑘𝑡 , 𝑑𝑘 ′𝑠 , and 𝑑𝑘 ′𝑡 as defined in Table 2.

• 𝑐: integer variable to represent the cycle time.

The CP model is as follows:

min 𝑐 (4a)

s.t. (3𝑏) − (3𝑒), (3ℎ), (3𝑖), (3𝑙), (3𝑚), (4b)

PresenceOf(𝑡𝑎𝑠𝑘 𝑘𝑖 ) ≤ 1, ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐹𝑇𝑘 , (4c)

StartOf(𝑑𝑘𝑡 ) +Element(𝜇𝑑𝑘′𝑡 𝑑𝑘′𝑠 ) ≤ 𝑐, ∀𝑘 ∈ 𝐾, (4d)

0 ≤ 𝑡𝑎𝑠𝑘𝑖 ≤ 𝑐, ∀𝑖 ∈𝑉, (4e)

0 ≤ 𝑡𝑎𝑠𝑘 𝑘𝑖 ≤ 𝑐, ∀𝑖 ∈𝑉,∀𝑘 ∈ 𝐹𝑆𝑖, (4f)

0 ≤ 𝑑𝑘𝑠 , 𝑑𝑘𝑡 ≤ 𝑐, ∀𝑘 ∈ 𝐹𝑆𝑖, (4g)

𝑐 ≤ 𝑐 ≤ 𝑐. (4h)

The objective (4a) minimizes cycle time. Constraint (4c) restricts task assignments to open sta-

tions. Constraint (4d) incorporates backward setup time using an element constraint. Constraints

(4e) to (4h) define variable domains.

Some CP frameworks such as MiniZinc (Nethercote et al. 2007) do not support optional interval

variables. A CP model for SUALBP in that context would need many integer variables to represent

task assignment explicitly and also many interval variables to address the sequencing problems in

stations, with some linking constraints for these two sets of variables. The propagation would likely

be weak as inferences based on sequencing decisions are obtained much deeper in the search tree

compared to when assignment decisions are made.

4. DIDP Models for SUALBP-1 and SUALBP-2

In this section, we present the novel DIDP models for SUALBP-1 and SUALBP-2. We summarize

the addtional notation used in the DIDP models in Table 3.

4.1. DIDP model for SUALBP-1

A DIDP model can be defined using a state-transition system. A state in our DIDP model is defined

by the set of unscheduled tasks, the current station that tasks are being assigned to, the first and

previous (i.e., most recently assigned) tasks on the current station, and the remaining cycle time
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Table 3 Summary of notation in the DIDP models.

Symbol Definition

𝑈 set variable for unscheduled tasks

𝜅 integer (resource) variable representing the index of the current station

𝑑𝑠 dummy task with 0 processing time and 0 forward and backward setup

𝑝 ( 𝑓 ) element variable for the previous (first) task of the current station

𝑟 integer resource variable for the remaining time of the current station

𝑡𝑐 integer resource variable for the used time of the current station

on the current station. Transitions consist of assigning a task as the next one on the current station,

closing the current station to allow no further tasks to be assigned, and assigning a task as the first

task on a station.

In our DIDP model, we use set variables and element variables, where a set variable

represents a group of elements such as customers, tasks, or items, and an element variable

represents an element of a set. DyPDL allows the use of resource variables to capture dominance

relations between states. In our DIDP model for SUALBP-1, we use an integer resource variable

to represent the remaining time of the current station. If two states have the same variable values

except for the resource variable, the state with a larger remaining time dominates and the other

state can be soundly pruned. Similarly, in our DIDP model for SUALBP-2, we consider an integer

resource variable representing the used time of the current station. Then the state with a smaller

used-time value dominates another with all the other variable values being the same.

For the proposed DIDP model, we first present the state variables and the base cases of the model.

We then present the recursive function in a dynamic programming form. An alternative perspective

on this problem definition by defining the state transitions that implement the recursive function is

provided in our online appendix (Zhang and Beck 2024a).

State variables.

• 𝑈: set variable for unscheduled tasks. In the target state (i.e., the initial state),𝑈 =𝑉 .

• 𝜅: integer resource variable representing the index of the current station. In the target state,

𝜅 = 0. A smaller 𝜅 is better. The state variable 𝜅 is used only for computing a state-based dual bound.

• 𝑝: element variable for the previous task of the current station. In the target state, 𝑝 = 𝑑𝑠 where

𝑑𝑠 is a dummy task with 0 processing time and 0 forward and backward setup with any other tasks.
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• 𝑓 : element variable for the first task of the current station. In the target state, 𝑓 = 𝑑𝑠. A state
keeps track of this task in order to handle the backward setup time when closing a station.

• 𝑟: integer resource variable for the remaining time (cycle time minus used time) of the current
station. In the target state, 𝑟 = 0. A larger 𝑟 is better.
Base case. A base case states a set of conditions that terminate the recursion. The base case of the
DIDP model is: 𝑈 = ∅ ∧ 𝑓 = 𝑑𝑠. Note that 𝑓 = 𝑑𝑠 is necessary since the current station has to be
closed to correctly incorporate the backward setup time.
Recursive function. We represent the cost of a state by V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑟) and define 𝑈1 = { 𝑗 ∈ 𝑈 |
𝑈 ∩𝑃∗

𝑗
= ∅} as the set of tasks with all predecessors scheduled. Then,𝑈2 = { 𝑗 ∈𝑈1 | 𝑟 ≥ 𝑡 𝑗 + 𝜏𝑝𝑖} is

the subset of𝑈1 that can be assigned next to the current station considering processing and forward
setup times. Finally, 𝑈3 = { 𝑗 ∈𝑈1 | 𝑟 ≥ 𝑡 𝑗 + 𝜏𝑝𝑖 + 𝜇𝑖 𝑓 } further considers backward setup times. The
recursive function of the DIDP model is then defined as follows:

computeV(𝑉,0, 𝑑𝑠, 𝑑𝑠,0) (5a)

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑟) = (5b)

0 if𝑈 = ∅, 𝑓 = 𝑑𝑠, (i)

1+min 𝑗∈𝑈1V(𝑈\{ 𝑗}, 𝜅 + 1, 𝑗 , 𝑗 , 𝑐 − 𝑡 𝑗 ) if𝑈1 ≠ ∅, 𝑓 = 𝑑𝑠, (ii)

min 𝑗∈𝑈2V(𝑈\{ 𝑗}, 𝜅, 𝑗 , 𝑓 , 𝑟 − 𝑡 𝑗 − 𝜏𝑝 𝑗 ) if𝑈2 ≠ ∅, 𝑓 ≠ 𝑑𝑠, (iii)

V(𝑈, 𝜅, 𝑑𝑠, 𝑑𝑠,0) if𝑈3 = ∅, 𝑓 ≠ 𝑑𝑠, 𝜇𝑝 𝑓 ≤ 𝑟, (iv)

∞ otherwise, (v)

𝑈1 = { 𝑗 ∈𝑈 |𝑈 ∩ 𝑃∗𝑗 = ∅}, 𝑈2 = { 𝑗 ∈𝑈1 |𝑟 ≥ 𝑡 𝑗 + 𝜏𝑝𝑖}, 𝑈3 = { 𝑗 ∈𝑈1 |𝑟 ≥ 𝑡 𝑗 + 𝜏𝑝𝑖 + 𝜇𝑖 𝑓 }

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑟) ≤ V(𝑈, 𝜅′ , 𝑝, 𝑓 , 𝑟), if 𝜅 ≤ 𝜅′ , (5c)

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑟) ≤ V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑟 ′), if 𝑟 ≥ 𝑟 ′ , (5d)

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑟) ≥max



⌈ 𝜇
𝑓
+∑𝑖∈𝑈 (𝜏𝑖+𝑡𝑖)−(𝑚−𝜅)·(max𝑖∈𝑈 𝜏𝑖)+max(𝑚−𝜅,0)·(min𝑖∈𝑈 𝜇

𝑖
)−𝑟

𝑐

⌉
, (i)⌈ 𝜇

𝑓
+∑𝑖∈𝑈 𝑡𝑖−𝑟

𝑐

⌉
, (ii)∑

𝑖∈𝑈 𝑤
2
𝑖
+ ⌈∑𝑖∈𝑈 𝑤

′2
𝑖
− 𝑙2⌉, (iii)

⌈∑𝑖∈𝑈 𝑤
3
𝑖
− 𝑙3⌉, (iv)

0. (v)

(5e)

The term (5a) computes the cost of the target state. Equation (5b) is the main recursion of the
DIDP model. Specifically, (5b-i) refers to the base case, while (5b-ii) corresponds to assigning the
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Table 4 Numeric constants for calculating a knapsack-based dual bound.

𝑡𝑖 (0, c/2) c/2 (c/2, c] 𝑡𝑖 (0, c/3) c/3 (c/3, c/2) 2c/3 (2c/3, c]

𝑤2
𝑖

0 0 1 𝑤3
𝑖

0 1/3 1/2 2/3 1

𝑤
′2
𝑖

0 1/2 0

first task to the current station. The recursion here can be understood as assigning the cost of the

current state as equal to one more than the state where 𝑗 is the first task on station 𝜅 + 1. Case

(5b-iii) represents assigning the next task after others have already been assigned to the current

station. Since the number of used stations remains unchanged, the cost of the current state equals

that of the state where 𝑗 is scheduled next on station 𝜅. Task 𝑗 then becomes the new last task on

station 𝜅. Cases (5b-iv) and (5b-v) correspond to closing the current station and detecting dead-

ends, respectively. Inequalities (5c) and (5d) formulate state domination in two scenarios: if other

variables are equal a state with smaller 𝜅 or larger remaining time dominates. Term (5e) states the

state-based dual bounds. Both (5e-i) and (5e-ii) are novel dual bounds whose validity we prove

below. (5e-iii) and (5e-iv) were first used for SALBP-1 (Kuroiwa and Beck 2023a) and are also

valid here. (5e-v) is a default 0 dual bound if no problem-specific bound is provided.

The numeric constants 𝑤2, 𝑤
′2, 𝑤3 are indexed by a task 𝑖 and depend on the processing time 𝑡𝑖,

as shown in Table 4. These values are obtained by ignoring precedence relations and were originally

proposed by Scholl and Klein (1997).

4.1.1. Correctness of Novel Dual Bounds For the proposed state-based dual bound (5e-i),

𝜏
𝑖

is the smallest forward setup time from any task to task 𝑖 and 𝜇
𝑖

is the smallest backward setup

time from any task to task 𝑖. The value max𝑖∈𝑈 𝜏𝑖 is the largest minimum forward setup time to

any unscheduled task. Similarly, min𝑖∈𝑈 𝜇
𝑖

is the smallest minimum backward setup time to any

unscheduled task.

THEOREM 1. Term (5e-i) is a valid lower bound of the number of additional stations to be used

at the current state.

Proof. In Fig. 1 solid rectangles are stations that have tasks assigned, while dashed rectangles

are stations that have no tasks assigned yet. Let the number of remaining stations to be used be 𝛽,

the number of stations that are already used be 𝛼, and the current station, 𝜅. 𝑟 contributes to the
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Figure 1 Illustration of dual bound (5e-i).

total time of the current station 𝜅 and is hence excluded from the calculation of 𝛽. Let the total time

represented by the dashed rectangles in the best possible solution given the current state be 𝑇 , then,

𝑇 = 𝜇
𝑓
+
∑︁
𝑖∈𝑈

𝑡𝑖 +
∑︁
𝑖∈𝑈

𝛿∗𝑖 (6)

where 𝛿∗
𝑖

is either the forward setup time starting from task 𝑖 (i.e., 𝜏𝑖 𝑗 , where 𝑗 is the immediate

successor of 𝑖 on the assigned station) or the backward setup time (i.e., 𝜇𝑖 𝑗 , where 𝑗 is the first and

𝑖 is the last task on the assigned station) in the best possible solution reachable from the current

state. Without knowing the best possible solution, the value of
∑
𝑖∈𝑈 𝛿

∗
𝑖

is unclear. A lower bound

can be obtained as ∑︁
𝑖∈𝑈

𝛿∗𝑖 ≥
∑︁
𝑖∈𝑈

𝜏
𝑖
− (𝑚 − 𝜅) ·max

𝑖∈𝑈
𝜏
𝑖
+max(𝑚 − 𝜅,0) ·min

𝑖∈𝑈
𝜇
𝑖
. (7)

The inequality (7) is true since: (i) each station needs to consider a backward setup time and for

the 𝑚 − 𝜅 stations that are definitely used in the future, (𝑚 − 𝜅) ·min𝑖∈𝑈 𝜇
𝑖

is a lower bound on the

real backward setup times on these stations,1 however, since it is possible that 𝑚 < 𝜅 at some states

and negative backward setup times should not be added, max(𝑚 − 𝜅,0) ·min𝑖∈𝑈 𝜇
𝑖

is used; and (ii)

as the remaining setup times are all forward,
∑
𝑖∈𝑈 𝜏𝑖 − (𝑚 − 𝜅) ·max𝑖∈𝑈 𝜏𝑖 is a lower bound of the

sum of all minimum forward setup times, minus all those that will be replaced by backward setup

times in the (𝑚 − 𝜅) possibly used stations. Thus,

𝑇 ≥ 𝜇
𝑓
+
∑︁
𝑖∈𝑈

𝑡𝑖 +
∑︁
𝑖∈𝑈

𝜏
𝑖
− (𝑚 − 𝜅) ·max

𝑖∈𝑈
𝜏
𝑖
+max(𝑚 − 𝜅,0) ·min

𝑖∈𝑈
𝜇
𝑖
. (8)

1 Recall that 𝑚 is a lower bound on the number of machines uses.
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Given that 𝛽 = ⌈𝑇−𝑟
𝑐
⌉, we finally have

𝛽 ≥
⌈
𝜇
𝑓
+∑𝑖∈𝑈 (𝜏𝑖 + 𝑡𝑖) − (𝑚 − 𝜅) · (max𝑖∈𝑈 𝜏𝑖) +max(𝑚 − 𝜅,0) · (min𝑖∈𝑈 𝜇

𝑖
) − 𝑟

𝑐

⌉
. (9)

A corner case is the target state where 𝜅 = 𝑟 = 0 and 𝑓 = 𝑑𝑠. In that case, the inequality is

simplified to

𝛽 ≥
⌈∑

𝑖∈𝑈 (𝜏𝑖 + 𝑡𝑖) +𝑚 · (min𝑖∈𝑈 𝜇
𝑖
) −𝑚 · (max𝑖∈𝑈 𝜏𝑖)

𝑐

⌉
, (10)

which is also valid as
∑
𝑖∈𝑈 (𝜏𝑖 + 𝑡𝑖) +𝑚 · (min𝑖∈𝑈 𝜇

𝑖
) −𝑚 · (max𝑖∈𝑈 𝜏𝑖) is smaller than the real total

station time of all active stations. □

Similarly, if forward setup times are not considered and only the backward setup of the current

station is counted, (5e-ii) is obtained. We omit the proof of its correctness. In most of cases, (5e-i)

is greater than (5e-ii), but there are exceptions. We present the proof of the case where (5e-ii) is

greater than or equal to (5e-i) as follows:

THEOREM 2. Term (5e-i) does not dominate (5e-ii).

Proof. Let 𝑚 = 𝜅 + 2 and 𝜅 > 𝑚. Also, let 𝑈 = {𝑖, 𝑗}, 𝜏
𝑖
= 2, and 𝜏

𝑗
= 12. Then (5e-i) becomes

less than or equal to (5e-ii) as follows:⌈𝜇
𝑓
+∑𝑖∈𝑈 𝑡𝑖 + 2+ 12− 2× 12+ 0− 𝑟

𝑐

⌉
=

⌈𝜇
𝑓
+∑𝑖∈𝑈 𝑡𝑖 − 10− 𝑟

𝑐

⌉
≤
⌈𝜇

𝑓
+∑𝑖∈𝑈 𝑡𝑖 − 𝑟

𝑐

⌉
.

Let 𝜇
𝑓
= 1,

∑
𝑖∈𝑈 𝑡𝑖 = 50, 𝑟 = 1, and 𝑐 = 10, then at this state, (5e-i)= 4 < 5 =(5e-ii). Thus, (5e-i) does

not dominate (5e-ii).

4.2. DIDP model for SUALBP-2

This model is similar to the DIDP model of SUALBP-1, with a new state variable 𝑐 to represent the

cycle time and the replacement of 𝑟 by 𝑡𝑐. In this model, we use 𝑡𝑐 to keep track of the accumulated

time on the current station. By contrast, in the model of SUALBP-1, we use 𝑟 to keep track the

remaining time of the current station. By definition 𝑡𝑐 + 𝑟 = 𝑐′ where 𝑐′ is the cycle time of the

current station. As above, the transition-centric view of the model definition is provided in our

online appendix (Zhang and Beck 2024a).

State variables.

• 𝑈, 𝑝, 𝑓 : these set variables are the same as the DIDP model for SUALBP-1.

• 𝜅: integer variable for the current station. In the target state, 𝜅 = 0. Since the objective of

SUALBP-2 is not to minimize the number of active stations, a smaller number of active stations is

not preferred anymore, and so 𝜅 is not a resource variable.
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• 𝑡𝑐: integer resource variable for the used time of the current station. In the target state, 𝑡𝑐 = 0

represents that no task is assigned to the current station. A smaller 𝑡𝑐 is better.

• 𝑐: integer resource variable for the cycle time. A smaller 𝑐 is better. In the target state, 𝑐 = 0.

Note that the state variable 𝑐 is used only for computing a state-based dual bound.

Base case. The base case of the DIDP model is:𝑈 = ∅∧ 𝑓 = 𝑑𝑠. Note that 𝑓 = 𝑑𝑠 is necessary since

in the base case one has to include the backward setup time for the last station.

Recursive function. We use V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐, 𝑐) to represent the cost of a state. Let 𝑈1 = { 𝑗 ∈
𝑈 |𝑈 ∩ 𝑃∗

𝑗
= ∅}. The recursive function of the DIDP model is as follows:

computeV(𝑉,0, 𝑑𝑠, 𝑑𝑠,0,0) (11a)

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐, 𝑐) = (11b)

0 if𝑈 = ∅, 𝑓 = 𝑑𝑠, (i)

min 𝑗∈𝑈1 (max(𝑡 𝑗 ,V(𝑈\{ 𝑗}, 𝜅 + 1, 𝑗 , 𝑗 , 𝑡 𝑗 ,max(𝑐, 𝑡 𝑗 )))) if𝑈1 ≠ ∅, 𝑓 = 𝑑𝑠, 𝜅 < 𝑚, (ii)

min



min 𝑗∈𝑈1 (max(𝑡𝑐 + 𝑡 𝑗 + 𝜏𝑝 𝑗 ,V(𝑈\{ 𝑗}, 𝜅, 𝑗 , 𝑓 ,

𝑡𝑐 + 𝑡 𝑗 + 𝜏𝑝 𝑗 ,max(𝑐, 𝑡𝑐 + 𝑡 𝑗 + 𝜏𝑝 𝑗 )))) if𝑈1 ≠ ∅, 𝑓 ≠ 𝑑𝑠, (iii)

max(𝑡𝑐 + 𝜇𝑝 𝑓 ,

V(𝑈, 𝜅, 𝑑𝑠, 𝑑𝑠, 𝑡𝑐 + 𝜇𝑝 𝑓 ,max(𝑐, 𝑡𝑐 + 𝜇𝑝 𝑓 ))) if𝑈1 = ∅, 𝑓 ≠ 𝑑𝑠, (iv)

∞ otherwise, (v)

𝑈1 = { 𝑗 ∈𝑈 |𝑈 ∩ 𝑃∗𝑗 = ∅},

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐, 𝑐) ≤ V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐′ , 𝑐), if 𝑡𝑐 ≤ 𝑡𝑐′ , (11c)

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐, 𝑐) ≤ V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐, 𝑐′), if 𝑐 ≤ 𝑐′ , (11d)

V(𝑈, 𝜅, 𝑝, 𝑓 , 𝑡𝑐, 𝑐) ≥max



⌈∑
𝑖∈𝑈 (𝜏𝑖+𝑡𝑖)+𝑡𝑐+(𝑚−𝜅)·(min𝑖∈𝑈 𝜇

𝑖
−max𝑖∈𝑈 𝜏𝑖)+𝜇 𝑓

min(𝑚,𝑚−𝜅+1) − 𝑐
⌉
, (i)⌈ ∑

𝑖∈𝑈 𝑡𝑖+𝑡𝑐+𝜇 𝑓

min(𝑚,𝑚−𝜅+1) − 𝑐
⌉
, (ii)

0. (iii)

(11e)

The term (11a) is to compute the objective of the target state. Equation (11b) is the main recursion

of the DIDP model. Specifically, (11b-i) handles the base cases, while (11b-ii) refers to assigning

the first task to the current station. The recursion here can be understood as assigning the cost of

the current state as equal to the maximum station time of the state where 𝑗 is the first task on

station 𝜅 +1. Case (11b-iii) corresponds to assigning the next task to a station after other tasks have
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Figure 2 Illustration of dual bound (11e-i).

been assigned. Cases (11b-iv) and (11b-v) deal with closing the current station and dead-ends,

respectively. Inequality (11c) and (11d) describe the state domination in two scenarios: (i) smaller

used time dominates larger one and (ii) smaller cycle time dominates larger one, given all the other

state variables are the same. Term (11e) formulates two novel state-based dual bounds and a default

0 dual bound.

4.2.1. Correctness of Novel Dual Bounds

THEOREM 3. Term (11e-i) is a valid dual bound of the cycle time at the current state.

Proof. In Fig. 2, solid rectangles are stations that have tasks assigned, while dashed rectangle

are stations that have no tasks assigned yet. Let the number of stations that are already used be 𝛼,

the current station be 𝜅, the number of remaining stations to be used be 𝑚 − 𝜅, the current cycle

time be 𝑐, and the difference between the future larger cycle time and 𝑐 be 𝛽. Let the total time

represented by the dashed rectangles in the best possible solution given the current state be 𝑇 ; 𝑡𝑐

contributes to the total time of the current station 𝜅 and is hence excluded from the calculation of

𝑇 . Then,

𝑇 = 𝜇
𝑓
+
∑︁
𝑖∈𝑈

𝑡𝑖 +
∑︁
𝑖∈𝑈

𝛿∗𝑖 . (12)

where 𝛿∗
𝑖

is either the forward or the backward setup time ending at task 𝑖 as defined in the proof of

Theorem 1. Similar to the proof of Theorem 1, the following inequality is valid.∑︁
𝑖∈𝑈

𝛿∗𝑖 ≥
∑︁
𝑖∈𝑈

𝜏
𝑖
− (𝑚 − 𝜅) ·max

𝑖∈𝑈
𝜏
𝑖
+ (𝑚 − 𝜅) ·min

𝑖∈𝑈
𝜇
𝑖
. (13)

Thus,

𝑇 ≥ 𝜇
𝑓
+
∑︁
𝑖∈𝑈

𝑡𝑖 +
∑︁
𝑖∈𝑈

𝜏
𝑖
− (𝑚 − 𝜅) ·max

𝑖∈𝑈
𝜏
𝑖
+ (𝑚 − 𝜅) ·min

𝑖∈𝑈
𝜇
𝑖
. (14)
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Given that 𝛽 = ⌈ 𝑇+𝑡𝑐
𝑚−𝜅+1 − 𝑐⌉, we finally have

𝛽 ≥
⌈∑

𝑖∈𝑈 (𝜏𝑖 + 𝑡𝑖) + 𝑡𝑐 + (𝑚 − 𝜅) · (min𝑖∈𝑈 𝜇
𝑖
−max𝑖∈𝑈 𝜏𝑖) + 𝜇 𝑓

(𝑚 − 𝜅 + 1) − 𝑐
⌉
. (15)

Also, 𝜅 ≤ 𝑚 is always true, as the only case that can increase 𝜅 requires 𝜅 < 𝑚, as shown in (11b-ii).

Thus, 𝑚 − 𝜅 + 1 ≥ 1 and we do not need to handle 0 divisors in the dual bounds.

Another corner case is the target state where 𝜅 = 𝑡𝑐 = 𝑐 = 0 and 𝑓 = 𝑑𝑠. In that case, the inequality

is simplified to

𝛽 ≥
⌈∑

𝑖∈𝑈 (𝜏𝑖 + 𝑡𝑖) +𝑚 · (min𝑖∈𝑈 𝜇
𝑖
−max𝑖∈𝑈 𝜏𝑖)

𝑚

⌉
. (16)

Therefore, we finally get

𝛽 ≥
⌈∑

𝑖∈𝑈 (𝜏𝑖 + 𝑡𝑖) + 𝑡𝑐 + (𝑚 − 𝜅) · (min𝑖∈𝑈 𝜇
𝑖
−max𝑖∈𝑈 𝜏𝑖) + 𝜇 𝑓

min(𝑚,𝑚 − 𝜅 + 1) − 𝑐
⌉
. (17)

□

Similarly, (11e-ii) is obtained if forward and backward setup times are not considered and we

omit the proof of its correctness. In majority of cases, (11e-i) leads to a larger dual bound than

(11e-ii). Nevertheless, we prove the necessity of (11e-ii) by displaying a case where (11e-ii) needs

to be strictly greater than (11e-i).

THEOREM 4. Term (11e-i) does not dominate (11e-ii).

Proof. Let 𝑚 = 𝜅 + 2, 𝑈 = {𝑖, 𝑗}, 𝜏
𝑖
= 2, and 𝜏

𝑗
= 12. Also, let 𝜇

𝑖
= 1, 𝜇

𝑗
= 1, and 𝜇

𝑓
= 1. Then

(11e-i) becomes less than or equal to (11e-ii) as follows:⌈∑
𝑖∈𝑈 𝑡𝑖 + 2+ 12+ 2× (1− 12) + 1+ 𝑡𝑐

min(𝑚,2+ 1) − 𝑐
⌉
=

⌈∑
𝑖∈𝑈 𝑡𝑖 − 7+ 𝑡𝑐
min(𝑚,3) − 𝑐

⌉
≤
⌈∑

𝑖∈𝑈 𝑡𝑖 + 𝑡𝑐
min(𝑚,3) − 𝑐

⌉
.

Let
∑
𝑖∈𝑈 𝑡𝑖 = 30, 𝑡𝑐 = 1, 𝑚 = 5, and 𝑐 = 5, then at this state, (11e-i)= 3 < 6 =(11e-ii). Thus, (11e-i)

does not dominate (11e-ii).

4.3. DIDP vs Decision Diagrams

Given dynamic programming models, Decision Diagram (DD) based optimization (Bergman et al.

2016) is a potential alternative to DIDP. Although there is no existing work that uses DD to solve

SALBP or SUALBP, if a problem-specific merge operator is developed, it may be possible to

solve the proposed models with DD-based approaches (Gillard et al. 2021). However, as there are

currently no DD-based solvers that can read DyPDL models and the creation of a valid merge

operator is a contribution in itself, we leave this investigation for future work.
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Algorithm 1: Local Improvement

Input: X - incumbent solution of the original problem

1 𝐾, {𝑐𝑘 ,∀𝑘 ∈ 𝐾} ← StationTimeDecreasing(X);
2 repeat

3 𝑘← pop(𝐾);
4 X′

𝑘
, 𝑐
′

𝑘
← LocalImprovement(X𝑘 );

5 until 𝑐′
𝑘
≥ 𝑐𝑘 or 𝑐′

𝑘
≥ 𝑐𝑘+1;

6 X′← UpdateSolution(X,X′k);
7 return X′ , 𝑐′

𝑘
;

5. Local Improvement for SUALBP-2

In this section, we present a local improvement algorithm based on the DIDP model for SUALBP-2.

The idea is simple: given a feasible solution of SUALBP-2, the task schedule of each station can

be independently re-optimized to reduce the station time, which might lead to a better cycle time.

We call this process the “local improvement”.

The local improvement method can be done combined with any anytime search algorithm. If

the original algorithm is exact, it remains exact after the combination. Whenever a new incumbent

with objective 𝑐 is found for SUALBP-2, we try to refine this solution. Specifically, we first sort the

stations in a decreasing order of station time. Then starting from the first station, we search for the

sequence that minimizes station time. If no improvement exists on a station, the local improvement

algorithm cannot (further) decrease the cycle time and it exits. If a better solution with objective 𝑐′

is hence found, we return to where the SUALBP-2 algorithm paused with 𝑐′ as the incumbent cost.

The local improvement (LI) algorithm is shown in Algorithm 1. The initialization of the algorithm

is conducted in line 1, where the stations are sorted in a decreasing order of the station times in the

incumbent solution X. 𝐾 is the set of sorted stations while 𝑐𝑘 is the station time of station 𝑘 ∈ 𝐾 .

In the loop from line 2 to line 5, each station in 𝐾 is popped in order and the corresponding station

time is re-optimized. If the station time is not reduced or the reduced station time is greater than

or equal to the station time of the next station in 𝐾 , the local improvement is finished. The entire

solution of SUALBP-2 is then updated and returned as shown in line 6 and line 7.

The task re-sequencing subproblem on a station is very similar to the travelling salesman problem

with precedence constraints, which can be solved with DIDP (Kuroiwa and Beck 2023b). Thus, we
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formulate each of the re-sequencing problem as a DIDP model. Since the DIDP model is simple,

we present it in our online appendix (Zhang and Beck 2024a).

6. Experiments

In this section, we evaluate the performance of our DIDP and CP models compared to the state-

of-the-art MIP and FFLBBD models (Esmaeilbeigi et al. 2016, Zohali et al. 2022) using the SBF2

dataset (788 instances) (Scholl et al. 2013).2

The dataset includes four setup time levels, defined by the parameter 𝛼, which indicates the ratio

of average setup time to average task processing time. Larger 𝛼 values correspond to longer setup

times. Zohali et al. (2022) generate four datasets with 𝛼 values of 0.25, 0.50, 0.75, and 1.00.

The SBF2 dataset, designed for SUALBP-1, provides the optimal number of stations for type-1

but lacks information on the number of stations and optimal cycle time for type-2. Zohali et al.

(2022) use 𝑚 =
∑
𝑖∈𝑉 𝑡𝑖/𝑐, where 𝑐 is the pre-defined cycle time from the SBF2 dataset for each

instance, making it also applicable for testing SUALBP-2.

Zohali et al. (2022) cluster these instances into four classes:

• Data set A: small (132 instances) with up to 25 tasks.

• Data set B: medium (140 instances) with 28 to 35 tasks.

• Data set C: large (188 instances) with 45 to 70 tasks.

• Data set D: extra-large (328 instances) with 75 to 111 tasks.

For evaluation, we use the fraction of instances solved and proven optimal over time, as well

as the fraction over primal integral (Berthold 2013). The primal integral measures the trade-off

between solution quality and computational time. For an optimization problem, let 𝑠𝑡 be a solution

found at time 𝑡 by an algorithm, 𝑠∗ be the optimal (or best-known) solution, and 𝑐 be a function

mapping a solution to its cost. The primal gap function 𝑝 is defined as:

𝑝(𝑡) =


1 if no 𝑠𝑡 or 𝑐(𝑠𝑡)𝑐(𝑠∗) < 0,

0 if 𝑐(𝑠𝑡) = 𝑐(𝑠∗) = 0,
|𝑐(𝑠∗)−𝑐(𝑠𝑡 ) |

𝑚𝑎𝑥{|𝑐(𝑠∗) |,|𝑐(𝑠𝑡 ) |} otherwise.

(18)

The primal gap ranges from [0,1], with lower values indicating better performance. We use

𝑝(𝑇), the primal gap at the time limit 𝑇 , to gauge the final solution quality. Let 𝑡𝑖 ∈ [0,𝑇] for

2 https://assembly-line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013/
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𝑖 = 1, . . . , 𝐿 − 1 denote the time points when new incumbent solutions are found, with 𝑡0 = 0 and

𝑡𝐿 =𝑇 . The primal integral is defined as:

𝑃(𝑇) =
𝐿∑︁
𝑖=1

𝑝(𝑡𝑖 − 1) · (𝑡𝑖 − 𝑡𝑖−1). (19)

The primal integral ranges from [0,𝑇], with lower values indicating better performance. 𝑃(𝑇)
decreases if a better solution is found within the same computational time or if the same solution

cost is achieved more quickly. If an instance is proven infeasible at time 𝑡, we set 𝑝(𝑡) = 0, reflecting

the time to prove infeasibility.

For the DIDP models, we use the state-of-the-art solver based on complete anytime beam search

(CABS) (Kuroiwa and Beck 2023b, Zhang 1998) in didp-rs v0.4.0.3 Beam search (Shapiro 1992)

is a breadth-first search with the maximum number of nodes at a given depth upper bounded by

the beam width, 𝑏: the top 𝑏 states according to the heuristic function are expanded at each depth.

CABS sequentially performs beam search starting with 𝑏 = 1 and doubling 𝑏 in each iteration. In

a given iteration, beam search may find some feasible solutions as it can reach base case states.

CABS proves optimality when it searches all states in the state space and finds no better solution

than the incumbent. Some states are pruned via dominance rules and dual bounds without being

expanded. Further details of CABS can be found in our online appendix (Zhang and Beck 2024a)

and in the literature (Kuroiwa and Beck 2024, Zhang 1998).

We have also tested the local improvement algorithm combined with DIDP models for the

original problem and subproblems of SUALBP-2. Since we use CABS as the DIDP solver, we call

the entire algorithm local improvement CABS (LICABS). For the CP models, we use CP Optimizer

20.1.0 (IBM 2023). For the MIP models, we use Gurobi 9.5.1 (Gurobi Optimization 2021). All

the experiments are implemented in Python 3.8. Each instance is run for 1800 seconds on a single

thread on a Ubuntu 22.04.2 LTS machine with Intel Core i7 CPU and 16 GB memory. All the code,

data, and results are available online (Zhang and Beck 2024b).

6.1. Results for SUALBP-1

The results on SUALBP-1 are shown in Fig. 3 and 4. Better performance is indicated by curves

closer to the top left corner of the graphs. The DIDP model outperforms CP and MIP models. More

specifically, Fig. 3 shows that the DIDP model finds optimal solutions and proves optimality for

more instances in a shorter computation time than the CP and MIP models. In 1 second, DIDP finds

3 https://didp.ai/
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Figure 3 Ratio of instances solved to optimality

over time for SUALBP-1

Figure 4 Ratio of instances over primal integral for

SUALBP-1

and proves optimality on 55% of the instances. MIP and CP cannot achieve the same performance
in 1800 seconds. At the 1800 second time limit, DIDP has found and proved optimality for 78% of
the problem instances compared to 45% and 50% for CP and MIP, respectively.

In addition to the full DIDP model, we also test three DIDP models with different sets of dual
bounds. DIDP-(5e)[v] uses only the 0 dual bound (5e-v), DIDP-(5e)[iii-v] uses the dual bounds
from (5e-iii) to (5e-v), and DIDP-(5e)[ii-v] uses the dual bounds from (5e-ii) to (5e-v). While
DIDP-(5e)[ii-v] achieves slightly worse performance than the full model, DIDP-(5e)[iii-v] is only
competitive with CP and MIP. However, DIDP-(5e)[v] with the 0 dual bound is worse than all
compared models. The comparison of the four DIDP models demonstrates the importance of the
state-based dual bounds in DIDP models.

Fig. 4 shows that DIDP also finds high-quality solutions faster than CP and MIP models. As
is often observed, although the CP model proves fewer optimal solutions than the MIP model, it
demonstrates a higher solution quality (Hooker and van Hoeve 2018). However, DIDP outperforms
CP and MIP on both measures. The four DIDP variants behave similarly, with the same relative
performance ranks as in Fig. 3. This fact indicates that DIDP can find high-quality solutions for
SUALBP-1 even without tight dual bounds; in fact, the first feasible solution found by DIDP often
has the optimal objective value. CABS then just needs to prove optimality, which is substantially
accelerated by the better pruning power brought by tighter dual bounds.

6.2. Results for SUALBP-2

The results on SUALBP-2 are shown in Fig. 5 and 6. The LICABS results are discussed in Section
6.4. As above, better performance is indicated by curves closer to the top and left-side of the
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Figure 5 Ratio of instances solved to optimality

over time for SUALBP-2

Figure 6 Ratio of instances over primal integral for

SUALBP-2

graphs. In general, the two graphs demonstrate similar though reduced performance of the three

models compared to SUALBP-1. The DIDP model continues to substantially outperform CP and

MIP models. Fig. 5 shows that the DIDP model finds optimal solutions and proves optimality for

more instances in a shorter computation time than CP and MIP models. In 1 second, DIDP finds

and proves optimality on 32% of the instances. CP achieves the same level at 30 seconds and is by

that measure 30 times slower. MIP reaches the same level at 120 seconds. At the 1800 second time

limit, DIDP has found and proved optimality for 55% of the problem instances compared to 37%

and 41% for CP and MIP, respectively.

DIDP-(11e)[iii] is the DIDP model with only the 0 dual bound (11e-iii) and DIDP-(11e)[ii-iii]

uses dual bounds (11e-ii) and (11e-iii). While DIDP-(11e)[ii-iii] performs worse than the full DIDP

model solved with CABS, it outperforms the full DIDP model solved with LICABS. Similar to the

results of SUALBP-1, DIDP-(11e)[iii] with 0 dual bound trails all compared models.

Fig. 6 shows that DIDP finds high-quality solutions faster than CP and MIP models. Although

the CP model again proves fewer optimal solutions than the MIP model, it demonstrates a higher

solution quality than the MIP model and is almost equal to the DIDP model at the time limit.

However, DIDP achieved the same level of quality as CP and MIP in considerably less than 180

and 140 seconds, respectively. DIDP-(11e)[iii] with 0 dual bound is not able to find high-quality

solutions for SUALBP-2 in a short time. Different from SUALBP-1, the first few SUALBP-2

solutions found by DIDP do not have optimal objective values. Without tight dual bounds, CABS

cannot find high-quality solutions easily due to a lack of promising guidance.
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Figure 7 Density distribution of instances solved

to optimality for SUALBP-1

Figure 8 Density distribution of instances solved

to optimality for SUALBP-2

Overall the experimental results for SUALBP-1 and SUALBP-2 show that DIDP substantially

outperforms MIP and CP while CP is competitive with MIP: CP finds better solutions than MIP in

a given time but trails MIP in the number of solutions proved optimal over time.

6.3. Algorithm Performance w.r.t Network Density of Instances

We also compare the network density of the instances solve to optimality by DIDP, CP, and MIP,

as shown in Fig. 7 and 8. The network density for SUALBP is defined as 𝜌 = |E |
𝑛(𝑛−1) , where E is the

set of all precedence relations and 𝑛 is the number of tasks. In Fig. 7 and 8, the width of each violin

plot at a specific density reflects the proportion of the solved instances with this density, rather

the number of the solved instances. Such plots are useful for visualizing the distribution of solved

instances for given approach but do not reflect the number of solved instances and thus care should

be taken with comparisons across approaches.

All three approaches can handle instances with relatively high density (i.e., more precedence

relations), while DIDP can also solve instances without many precedence constraints. This fact

indicates the advantage of the DIDP paradigm. For SUALBP-1, as shown in Fig. 7, CP has the

highest mean density value, since more precedence constraints enhance the domain filtering by

constraint propagation.

6.4. Comparison to Zohali et al. for SUALBP-2

As noted, the state-of-the-art exact algorithm for SUALBP-2 is the full-featured logic based Benders

decomposition (FFLBBD) approach proposed by Zohali et al. (2022). We were not able to obtain

their source code but, as they ran experiments on the same SBF2 data set, we can compare the

quality of results to what the authors provided in the online appendix to that paper. The detailed
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comparison is shown in Table 5. The results of FFLBBD are taken from paper by Zohali et al.

(2022) with different hardware, but the same time and memory limits of 1800 seconds and 16 GB.

For the overall comparison, DIDP proves 438 instances to optimality while FFLBBD only proves

371. Since these benchmark instances are first investigated by Zohali et al. (2022), according to

their results, FFLBBD reports solving 9 instances to optimality that DIDP does not, while DIDP

solves 76 instances to optimality that FFLBBD does not. Thus, our DIDP approach solves 67 more

instances to optimality than FFLBBD while DIDP closes 76 open instances (i.e., DIDP failed to

optimally solve 9 instances which FFLBBD did solve).

For data set A, B, and C, DIDP outperforms FFLBBD in terms of the average optimality gap

(‘Gap’ column), average runtime (‘Time’ column), the number of instances with feasible solutions

found (‘Feas’ column), and the number of instances with optimal solutions found and proved (‘Opt’

column). However, for the extra large data set D, FFLBBD is better, though DIDP shows some

advantages in proving optimality and solution speed for 𝛼 = 0.75 and 𝛼 = 1.00.

However, our results indicate some problems with the results published in the online appendix of

Zohali et al. (2022) where they provide the objective function values for each problem instance. For

the small instance jackson c=14.alb, the best lower bound (LB) and upper bound (UB) on the

cycle time according to Zohali et al. are both 13. Our DIDP, CP, and MIP models all find a solution

with cycle time of 12. We have manually confirmed that the DIDP solution is feasible, implying an

error in the LB provided by Zohali et al. For the small instance jackson c=7.alb, the best LB

and UB of the cycle time according to Zohali et al. are 8. Our DIDP, CP, and MIP models all find an

optimal solution with cycle time being 9. We do not have access to the detailed solution produced

by FFLBBD for this instance and so are unable to analyze it further. There are six instances with

inconsistent optimal objectives obtained by DIDP/CP/MIP and FFLBBD, as shown in Table 6. In

both cases where DIDP finds a better ‘optimal’ solution, we have verified the solution feasibility.

Thus, some of the results reported by Zohali et al. are incorrect.4

6.5. Results of the Local Improvement Algorithm for SUALBP-2

Interestingly, as we can see in Fig. 5 and 6, the performance of the local improvement algorithm

is worse than our core DIDP model. To explain this observation, we use two metrics: the mean

number and mean proportion of incumbent solutions that are improved by local improvement in

each problem instance.

4 Based on recent communication with the authors of Zohali et al., their incorrect results were due to data entry errors. Their
corrected entries are consistent with our results on all instances for which their methods and one or more of ours prove optimality.
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Table 5 Results of DIDP and FFLBBD: better results are in bold.

Class 𝛼 #
DIDP FFLBBD

Gap Time Feas Opt Gap Time Feas Opt

A

0.25 33 0.00 0.0007 33 33 0.00 0.12 33 33

0.50 33 0.00 0.0012 33 33 0.00 0.49 33 33

0.75 33 0.00 0.0022 33 33 0.00 0.64 33 33

1.00 33 0.00 0.0038 33 33 0.00 0.74 33 33

B

0.25 35 0.00 3 35 35 0.02 28 35 33

0.50 35 0.00 4 35 35 0.01 42 35 34

0.75 35 0.00 7 35 35 0.10 51 35 32

1.00 35 0.00 8 35 35 0.11 54 33 33

C

0.25 47 1.47 824 47 34 2.68 1399 47 13

0.50 47 3.07 922 47 28 5.71 1371 47 13

0.75 47 4.13 951 47 28 8.17 1350 47 14

1.00 47 4.99 919 47 27 10.39 1398 47 13

D

0.25 82 11.25 1556 82 13 3.57 1440 82 18

0.50 82 14.03 1575 82 13 6.19 1551 82 15

0.75 82 17.14 1616 82 12 9.94 1620 82 11

1.00 82 18.77 1627 82 11 13.32 1639 82 9

sum 788 788 438 788 371

Table 6 Instances with different optimal objectives by using DIDP and FFLBBD.

Instance Class 𝛼 DIDP OptVal FFLBBD UB FFLBBD LB

jackson c=7 A 0.75 9 8 8

jackson c=14 A 0.50 12 13 13

lutz1 c=2357b B 0.25 2475 2472 2472

sawyer30 c=54 B 0.75 58 57 57

hahn c=1806 C 0.25 2830 2848 2848

hahn c=4676 C 0.25 4847 4798 4798
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Table 7 Mean number and proportion of CABS iterations that lead to real improvement.

Instances All A B C D

Mean number 0.897 0.167 0.386 0.686 1.530

Mean proportion 0.081 0.037 0.053 0.071 0.117

The results are shown in Table 7. Over all instances, local improvement finds a new incumbent

8.1% of the times that it is called, which appears non-trivial. However, as local improvement solves

the subproblems to optimality, it also means that in 91.9% of the calls, our core model had already

found the optimal sequence on the station with the maximum cycle time (given the task assignment).

As the local improvement is only called when an incumbent is found, on average it only finds 0.897

improving solutions per instance. Thus, local improvement does not bring a performance gain with

the runtime spent on it. The mean number and the value of local improvement is increasing as the

problem size gets larger, and, in fact, local improvement does find better solutions than our core

model for some of the extra large instances.

7. Conclusions

In this paper, we study the assembly line balancing problem with sequence-dependent setup time

(SUALBP), where tasks need to be assigned to stations and sequenced within each station, taking

into account the processing time of tasks and sequence-dependent setup time between tasks. In

type-1 SUALBP, an upper limit of station time is given and the objective is to minimize the number

of active stations, while in type-2 SUALBP, the number of stations is fixed and the objective is to

minimize the maximum station time.

We developed novel domain-independent dynamic programming (DIDP) and constraint pro-

gramming (CP) optimization models. The DIDP models are formulated as state-based transition

systems and solved with a DIDP solver using complete anytime beam search. We also proposed

state-based dual bounds to accelerate the solving process of DIDP models. The CP models adopt a

scheduling perspective, using optional interval variables and sequencing constraints.

We compared the performance of the proposed DIDP and CP models with the state-of-the-art

MIP models on a diverse set of SUALBP instances from the literature. Experimental results show

that the DIDP models are significantly superior to the CP and MIP models in terms of proving

optimality and finding high-quality solutions. The CP models prove optimality for slightly fewer

instances than MIP but can find higher quality solutions than MIP on average.
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For type-2 SUALBP, we compare the proposed DIDP model with the state-of-the-art exact

algorithm, the full-featured logic-based Benders decomposition (FFLBBD) (Zohali et al. 2022).

DIDP outperforms FFLBBD in terms of proving optimality, especially for small, medium, and large

instances. For extra large instances, DIDP is competitive with FFLBBD. In particular, DIDP proves

optimality for 67 more instances than FFLBBD and closes 76 open instances, with 9 instances that

are proved by FFLBBD not solved optimally by DIDP.

We investigate a local improvement addition to the DIDP model for SUALBP-2, where a

station-specific DIDP model seeks to improve new global incumbent solutions by improving the

task sequence without changing task-to-station assignments. However, as the re-sequencing rarely

improves the solution quality, the overall performance of the algorithm is worse than the core DIDP

model.

This work represents an important contribution to exact methods for SUALBP and demonstrates

the promising prospect of DIDP for solving complex planning and scheduling problems. Our

main directions for future work are the continued exploration of DIDP performance across diverse

combinatorial optimization problems as well as a study of solver behavior to develop better DIDP

solution approaches.
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