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Abstract

Recent work aimed at developing a deeper understanding of
suboptimal heuristic search has demonstrated that the use of
a cost-based heuristic function in the presence of large oper-
ator cost ratio and the decision to allow re-opening of visited
nodes can have a significant effect on search effort. In parallel
research, phase transitions in problem solubility have proved
useful in the study of problem difficulty for many compu-
tational problems and have recently been shown to exist in
heuristic search problems. In this paper, we show that the
impact on search effort associated with a larger operator cost
ratio and the number of node re-expansions is concentrated
almost entirely in the phase transition region. Combined with
previous work connecting local minima in the search space
with such behavior, these observations lead us to hypothesize
a relationship between the phase transition and the existence
of local minima.

1 Introduction

The phase transition in problem solubility has been an im-
portant tool in the study of problem difficulty for a number
of computational problems (e.g., SAT (Mitchell, Selman,
and Levesque 1992; Crawford and Auton 1996) and CSP
(Smith and Dyer 1996; Prosser 1996)). In a recent work, we
showed the existence of a rapid transition in problem solu-
bility in heuristic search and the occurrence of the hardest
problems during this transition (Cohen and Beck 2017).

In this paper, we empirically analyze how the phase tran-
sition phenomenon interacts with two algorithm design deci-
sions: the use of cost-based heuristics on problems with dif-
fering operator cost ratio (Wilt and Ruml 2011; 2014; Cush-
ing, Benton, and Kambhampati 2010; 2011) and whether or
not to allow re-opening of closed nodes (Valenzano, Sturte-
vant, and Schaeffer 2014; Sepetnitsky and Felner 2015;
Sepetnitsky, Felner, and Stern 2016). For Greedy Best First
Search (GBFS) we show the following:

1. The effect of large operator cost ratio on the search ef-
fort is most significant in the phase transition region and
diminishes outside.

2. The number of node re-expansions peaks in the phase
transition and declines outside.
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3. exceptionally hard problems (Gent and Walsh 1994a;
Smith and Grant 1995) appear in the relaxed region of
the phase transition where the median effort is relatively
low.

2 The Phase Transition Phenomenon

Cheeseman, Kanefsky and Taylor (1991) showed that many
NP-complete problems exhibit a transition between regions
of solubility and insolubility over a narrow interval of an
appropriate problem generation control parameter. One re-
gion is under-constrained with high density of solutions and
the other is over-constrained with low likelihood that a so-
lution exists. Furthermore, the hardest problems occur in
this interval. As noted, a significant body work in the 1990s
developed these insights across a number of problem types.

Researchers have used the terms mushy region (Smith
and Dyer 1996) to refer to the interval and crossover point
(Crawford and Auton 1996) to refer to the point in which
the probability that a problem is soluble is 0.5. We adopt
these terms and quantify the mushy region as the range of
the control parameter’s values in which the observed portion
of soluble problems is between 0.1% and 99.9%.

In a previous work, we showed that both the solubility
and problem hardness aspects of the phase transition phe-
nomenon can also be observed for GBFS on unit-cost do-
mains (Cohen and Beck 2017). As this paper extends this
work we present the foundational definitions.

Definition 1. (Observed connectivity density) Ler G(V, E)
be an arbitrary transition graph. We define the observed

connectivity density of this graph P(G) = \VI(‘I%
Definition 2. (Restricted instance) Let G(V, E) be an arbi-
trary transition graph. G (V, E> is considered a restricted
instance of G if P(G) < P(G) and E C E.

Definition 3. (Relaxed instance) Let G(V, E) be an arbi-
trary transition graph. G (V, E‘> is considered a relaxed ver-
sion of G if P(G) > P(G) and E D E.

Model 1. (p-Constrained Benchmark Problems) Given an
existing problem’s transition graph G(V, E) and the re-

quired connectivity density p, the class Rgq,, consists of all
problem instances (T, S;, S,) such that:

1. T, the transition graph, is a restricted instance of G if
p < P(G), or a relaxed instance otherwise. P(T) = p.



2. S;€S, a randomly chosen initial state, 3k :(S;, Sg) € T.
3. Sy € S, a randomly chosen goal state such that Sy # S;
and 3k : (Sk, Sy) € T.

Finally, we use the following control parameter from
which the required connectivity density p is derived:

___ Expected number of edges in the transition graph

Number of states

3 A Domain-Specific Model

While Model 1 provides a domain-independent way to gen-
erate relaxed and restricted problems, for some domains one
can find a domain-specific parameter that controls the con-
strainedness of the problem. For example, in the Grid Nav-
igation domain, the probability of a blocked cell ¢ clearly
controls the constrainedness of the generated instances: a
high ¢ will produce more constrained state spaces with lower
solution density while a low g produces the opposite.’

We therefore define a domain-specific model for Grid
Navigation and use it in our analysis.

Model 2. (¢-Constrained Grid Navigation Problems) Given
grid dimensions n X m, we denote by G, (V, E) the tran-
sition graph of an n X m grid navigation problem and by q
the probability of a blocked cell. We define the class Ry, , 4
that consists of all problem instances (T, S;, Sy) such that:

1. T, the transition graph, is an instance of Gy, in which
each cell is blocked with probability q.

2. S;€S8, a randomly chosen initial state, 3k :(S;, Sx) € T.

3. S4 € S, a randomly chosen goal state such that Sy # S,
and 3k : (Sk, Sq) € T.

4 Cost-based Heuristics

Definition 4. (Cost-based search; Cushing, Benton, and
Kambhampati, 2011) A best first search in which g(x) =
ge(x), the cost to reach state x, and h(x) = h.(x), an esti-
mation of the cost of the cheapest path from state x to a goal
state.

Definition 5. (Size-based search; Cushing, Benton, and
Kambhampati, 2011) A best first search in which g(x) =
ga(x), the distance (i.e., the number of actions) to reach
state x, and h(x) = hg(z), an estimation of distance of
the shortest path from state x to a goal state. Also called
distance-based search.

Definition 6. (Operator cost ratio; Wilt and Ruml, 2011)
The ratio of the largest edge weight in the graph to the small-
est edge weight in the graph.

Wilt and Ruml (2011) showed, empirically and theoreti-
cally, that a larger operator ratio can have a negative effect
on the search effort of various best-first search algorithms,
including GBFS. Their analysis showed that cost-based ver-
sions of sliding puzzle and the pancake problem become in-
tractable as the operator cost ratio is increased. The cost-
based grid navigation problem, however, does not suffer

'With ¢ = O the state space is still highly constrained, as there
are only four actions per state. It is possible to relax the domain fur-
ther by allowing more actions (e.g., diagonal moves, jumps, etc.).

from a significant increase in search effort and the authors
attribute it to size-bounded local minima and the large num-
ber of duplicates.”> To mitigate the negative effect of large
operator cost ratio, a number of authors suggest using size-
based search (Cushing, Benton, and Kambhampati 2011;
Wilt and Ruml 2011; 2014).

In this section, we present an empirical analysis of size-
based and cost-based search on versions of these three do-
mains plus TopSpin, across the phase transition. For each
of the domains, we propose a cost function that is flexible
enough to allow us to control the operator cost ratio and ex-
amine the change in search effort as we manipulate it.

All the experiments in this section use GBFS configured
to not re-open closed nodes and to randomly break ties in
h-values. We generated random problem instances for 25
~ values in [0, [nodes| — 1], with higher density inside the
phase transition. For each ~ value we generated 1000 ran-
dom instances. For each instance, we record its solubility
and the number of nodes expanded in order to find a solu-
tion or prove that none exists.

4.1 Median-Case Analysis

Grid Navigation. We consider a 500 x 500 Grid Naviga-
tion Problem based on Model 2. We define C,,(s,a), the
cost of applying action a on state s, using a parameter m:

1™, ifa=up
2™ if a = down
Om 5 = ’ .
(5,0) 3™ ifa = left

4™, ifa = right

The parameter m controls the operator cost ratio. As the
smallest operator cost is fixed to 1, the operator cost ratio
is then 4™. The heuristic function is based on Manhattan
Distance, weighted accordingly.

Figure 1 shows the probability of solution and Figure 2
shows the median number of expanded nodes, for m &
{1,2,4, 10}, plotted against the probability that a cell is not
blocked (1 — q).

We see a rapid transition in the problem solubility and the
peak of the median search effort is located in close proximity
to the crossover point, as been shown for Model 1 (Cohen
and Beck 2017). Even as we increase the operator cost ratio,
the median effort peak remains at the crossover point.

To directly compare the effect of the different cost func-
tions across the phase transition, we analyze the relative
number of expanded nodes. Since the operator cost ratio
has no effect on the search effort required to solve insoluble
instances (i.e., every node that is accessible from the initial
state will be expanded exactly once to prove insolubility),
we focus only on the soluble instances. To avoid bias due to
small sample size, we only consider the points in the phase
transition in which at least 10% of the problems are soluble.

Figure 3 shows the median ratio of the number of ex-
panded nodes when using a cost function with higher op-
erator cost ratio (i.e., m € {2,4,10}) to the search effort
when using the lowest operator cost ratio heuristic (m = 1).

2See Fan, Miiller, and Holte (2017) for recent work.
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Figure 1: 500 x 500 Grid Navigation: Probability of a solu-
tion vs. probability of an unblocked cell.
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Figure 2: 500 x 500 Grid Navigation: Median effort vs.
probability of an unblocked cell.
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Figure 3: 500 x 500 Grid Navigation: Median effort ratio
of soluble instance vs. probability of an unblocked cell.
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Figure 4: 500 x 500 Grid Navigation: Median effort ratio be-
tween the distance heuristic and a cost heuristic with m=4.
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Figure 5: 8-Pancake Problem: Median effort ratio of soluble
instance vs. 7.

As Figure 3 clearly shows, the increase in search effort, as-
sociated with the large operator ratio, is centered in the re-
gion of phase transition. Outside that region, the effort ratio
gradually diminishes towards a ratio of one.

Figure 4 shows the median search effort ratio for the
500x 500 Grid Navigation Problem (Model 2) with a large
operator ratio (m=4) between the cost heuristic and the dis-
tance heuristic d. The improvement due to the distance
heuristic is also concentrated in the phase transition region.
In fact, the distance heuristic seems to behave similarly to a
cost-based heuristic with a lower operator cost ratio (which,
of course, it is).

Pancake Problem. For the 8-Pancake Problem, based on
Model 1, our cost function is defined based on the bottom
pancake in the sub-pile that is about to be flipped. Although
somewhat artificial, this cost function is easily incorporated
into the gap heuristic (Helmert 2010) and allows us to in-
vestigate the effect of the operator cost ratio on the search
effort. Given z, the size of the lowest pancake in the flipped



sub-pile, we define the cost of the flip to be z™. Again, we
use the parameter m to control the operator cost ratio, which
is 8" for the 8-Pancake Problem.

Figure 5 shows the median effort ratio between cost-based
search for m € {1,2,3} and a distance-based search us-
ing d. The increase in search effort ratio that is associated
with larger operator cost ratio is significant only inside the
phase transition region and diminishes outside. The distance
heuristic, as before, behaves similarly to a cost-based heuris-
tic with a lower operator cost ratio.

Sliding Tiles. We consider the 3 x 3 Sliding Tiles Prob-
lem based on Model 1 for which the state space consists of
two large disconnected components (Wilson 1974). In our
investigation we generate problems in which the initial state
and the goal state are in the same component, and the added
(resp., removed) edges of the relaxed (resp., restricted) in-
stances are within this component. This allows us to observe
the full phase transition on one component and to avoid the
sudden connection of two large components.

Wilt and Ruml (2011) incorporate costs for the Sliding
Tiles problem by assigning different costs for moving each
tile. In a later work, they showed that using an inverse cost
structure, in which the cost of moving a tile is in inverse
correlation to the face of the tile, has a larger expected lo-
cal minimum (Wilt and Ruml 2014). We therefore use a
parametrized version of Wilt and Ruml’s cost function in
which the cost of moving a tile with a face-value of z is Z%n
The parameter m controls the operator cost ratio, which is
8™, for this domain. The heuristic function is based on the
standard Manhattan Distance, weighted by the cost associ-
ated with each tile.

Figure 6 shows the median search effort ratio between a
cost-based search for me{1,1.5,2} and a search based on
the distance heuristic d. The impact on search effort ratio
that is associated with a larger operator cost ratio is concen-
trated in the phase transition, and diminishes, though is still
apparent, as we move away from the phase transition.
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Figure 6: 3 x 3 Sliding Tiles: Median effort ratio of soluble
instance vs. 7.
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Figure 7: 10-disk Top: Median effort ratio of soluble in-
stances vs. 7.

TopSpin. Wilt and Ruml (2014) found that in some cases,
using a cost-based heuristic requires less search effort than
using the distance heuristic that has a lower operator cost
ratio, due to smaller local minima in the cost-based heuristic.
We observe such behavior for the TopSpin domain.

We consider a 10-disk TopSpin domain with a 4-disk turn-
stile. Our cost function is based on the sum of faces of the
disks in the turnstile:

Cm(s,a) = (Z z2)"

2€T,

where T, is the set of faces of the disks in the turnstile, and
m is a parameter controlling the operator cost ratio.

Figure 7 shows the median search effort for the TopSpin
problem with a PDB heuristic for me{0.5,1,1.5}, com-
pared to a distance-based heuristic. As expected, we ob-
serve an increased effort as we increase the operator cost
ratio. In this case the distance heuristic is not strictly better
than the cost-based heuristic for m=0.5. This is consistent
with Wilt and Ruml’s observation. The differences diminish
as we move away from the phase transition.

4.2 The Hardest Instances

In the previous section we investigated the effect of operator
cost ratio on the median search effort. Here we examine the
hardest instances across the constrainedness range.

Figure 8 shows the 99.9%-percentile effort ratio for solu-
ble instances of the Grid Navigation Problem (note the log
scale on the y-axis for better readability). The differences
are significantly larger (i.e., the effort ratio peaks at 40) in-
side the phase transition region, compared to the median
case. However, high-percentile ratios too, gradually dimin-
ish towards one as we move away from the phase transition.
Interestingly, the peak of the ratio curve slightly shifts to the
more relaxed areas, compared to the median case.

Figure 9, Figure 10 and Figure 11 show the 99.9%-
percentile effort ratio for soluble instances of the Pancake
Problem, TopSpin and Sliding Tiles Problem respectively.
Again, we see that the ratio of the number of expanded nodes
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Figure 8: 500 x 500 Grid Navigation: 99.9%-percentile ef-
fort ratio vs. probability of an unblocked cell.
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Figure 10: TopSpin: 99.9%-percentile effort ratio vs. -.
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Figure 11: Sliding Tiles: 99.9%-percentile effort ratio vs. .

Figure 9: 8-Pancake: 99.9%-percentile effort ratio vs. .

inside the phase transition is significantly larger compared to
the median case and it diminishes as we move away from the
phase transition. Also, we can see a much stronger shift in
peak compared to the median case. For the Sliding Tiles, we
observe that the peak is located beyond the phase transition
region, however as we move away from the peak we see the
expected decline.

The shift in peak suggests that the largest ratio for the
hardest problems is found in a more relaxed region of the
phase transition. Figure 12 and 13 show the relative effort
(compared to the distance heuristic) and absolute effort in
the higher percentiles of the Pancake problem with m = 3.
We can see that the peak of the highest percentiles of the ab-
solute effort and the peak of the effort ratio both shift to the
more relaxed regions in the phase transition. However, the
results suggest that this phenomenon is limited to the high-
est percentiles (> 99%). Similar results have been observed
for the other domains.
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Figure 12: 8-Pancake: 99.9%-percentile effort ratio vs. +.

4.3 Discussion

The behavior of the median search effort ratio and the hard-
est instances suggests that the effect of the operator cost ra-
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Figure 13: 8-Pancake: 99.9%-percentile effort vs. 7.

tio is concentrated inside the phase transition. Our results
provide a deeper understanding of Wilt and Ruml’s obser-
vations on the operator cost ratio (Wilt and Ruml 2011;
2014), empirically demonstrating that they depend on the
constrainedness of the problem.

The anomaly of finding the hardest instances in the “easy”
regions of the phase transition has been observed for other
types of computational problems (Gent and Walsh 1994a;
1994b; Hogg and Williams 1994). Such problem instances
have been termed exceptionally hard problems (ehps). The
ehps are not simply outliers but rather outliers in an unex-
pected region of the phase transition and hence have been
the subject of a number of investigations (Gent and Walsh
1994a; Smith and Grant 1995).

We previously showed that, for unit-cost problems, the
100%-percentile peaks in the “easy” region (Cohen and
Beck 2017). However, that curve is dominated by insolu-
ble instances. This result is not surprising, since heuristic
search with a heuristic function that returns a finite value
has to exhaust the accessible state space to prove infeasi-
bility. However, the existence of soluble ehps in heuristic
search is a new result.

The deviation observed for the effort ratio of the hard-
est problems of the Sliding Tiles domain, although small, is
an anomaly that may be due to the interaction of the phase
transition phenomenon and the reasons for ehps that requires
further study to understand.

5 Node Re-Expansions

In A*, f(n) = g(n) + h(n) and re-expansions of previ-
ously visited nodes only occur when using an inconsistent
heuristic. In suboptimal search algorithms such as GBFS
and Weighted A*, as g(n) is not considered or is weighted
less than h(n), we are not guaranteed to avoid re-expansions
even when using an admissible and consistent heuristic.
Although no theoretical or empirical analysis of which we
are aware has specifically addressed re-expansions in GBFS,
the authors of several recent works chose to configure GBFS
to not re-open closed nodes, even if a shorter path is found
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Figure 14: 250 x 250 Grid Navigation: Median and higher
percentiles of node re-expansions.

(Valenzano et al. 2014; Xie, Miiller, and Holte 2014).

For Weighted A*, re-expansions can have significant neg-
ative effect on the search effort. Valenzano, Sturtevant
and Schaeffer (2014) presented empirical analysis of re-
expansions for Weighted A* on pathfinding problems. As
they increased the weight on h(n), the proportional search
effort spent on re-expansions of visited nodes increased. For
w = 10, they observe that 91% of the total node expan-
sions were re-expansions. Sepetnitsky, Felner and Stern
(2016) performed an empirical analysis for Weighted A* and
showed that in more than 90% of the cases, a policy of node
re-opening leads to a search effort that is at least as high as
no-reopening, reaching 99.9% for higher weights.

5.1 GBFS

In this section we present an empirical analysis of the effect
of node re-expansions across the constrainedness range. All
the experiments in this section use GBFS. Naturally, we con-
figure the search to re-open closed nodes if a cheaper path is
found. As before, we randomly break h-value ties. We limit
the analysis to unit-cost problems and generated 1,000 ran-
dom problem instances for each of the 25 sampled ~ values
in [0, |nodes| — 1].

Grid Navigation. Figure 14 shows the median and higher
percentiles of re-expansions across the constrainedness
range. On average, re-expansions only occur within the
phase transition: the median number of re-expansions out-
side of the phase transition region is zero. Even when con-
sidering the higher percentiles, we see that outside the phase
transition the number is much smaller than inside and de-
clines further from the phase transition region. The re-
expansions seem to follow a low-high-low pattern, consis-
tent with the easy-hard-easy pattern in search effort. Also,
for percentiles > 99%, we can see the peak stretches toward
areas where the median is declining, similar to the ehps.

Figure 15 shows the number of re-expansions relative
to total expansions (Valenzano, Sturtevant, and Schaeffer
2014) and presents a similar pattern.
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Figure 15: 250 x 250 Grid Navigation: Median and higher
percentiles of node re-expansions.
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Figure 16: 8-Pancake Problem: Median and maximal node
re-expansions vs. .

90

Pancake Problem. Figure 16 shows the median and
higher percentiles of re-expansions for the 8-Pancake prob-
lem. The median is very low, which can be attributed to the
quality of the gap heuristic. However, the trends are clear
and similar to the Grid Navigation problem. In the median
case, we see zero re-expansions outside the phase transition
region, and the higher percentiles of re-expansions decrease
as we move away from the phase transition. Again, the peak
is wider for the higher percentiles. Similar trends are ob-
served for the relative number of re-expansions.

Sliding Tiles. Figure 17 shows the results for the 3 x 3
Sliding Tiles problem. The re-expansions peak inside the
phase transition. The median reaches zero shortly after leav-
ing the phase transition region. The higher percentiles do not
reach zero in the sampled  range, however we can see the
decline as we move away from the phase transition. As ex-
pected, the peak of the higher percentiles is wider for higher
percentiles.

TopSpin results are similar to those of the Grid Navigation
and the Pancake Problem and are omitted due to space.

5.2 Weighted A*

With the interest in node re-expansions in Weighted A* and
the similarity between GBFS and Weighted A* with large
weight on h(n), it is interesting to see if the GBFS behavior
we have observed can also been seen in Weighted A*.

We use the Grid Navigation problem (Model 2), for which
the heuristic function remains admissible and consistent for
all values of ¢. Figures 18 and 19 show the relative and
absolute number of expanded nodes for Weighted A* with
different weights on h(n).

When w = 1, the number of node re-expansions is zero
everywhere, as expected. As we increase w, the number of
node re-expansions increases in the phase transition. Consis-
tent with our observation for GBFS, as we move away from
the phase transition, the number of re-expansions declines
for all weights to the point it reaches zero.
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Figure 17: 3 x 3 Sliding Tiles: Median and maximal node
re-expansions vs. 7.
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Figure 18: 500 x 500 Grid Navigation: Median percent of
node re-expansions vs. probability of an unblocked cell.
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Figure 19: 500 x 500 Grid Navigation: Median absolute
node re-expansions vs. probability of an unblocked cell.
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Figure 20: 500 x 500 Grid Navigation: 99.9%-percentile of
node re-expansions vs. probability of an unblocked cell.

We also analyzed the higher percentiles of node re-
expansions for each w value. Figure 20 shows the 99.9%-
percentile of node re-expansions for w € {1,1.5,2,5,10}.
The results show that the 99.9%-percentile of relative node
re-expansions is also higher as we increase the weight, al-
though it is already very high for w = 1.5. Again, the peak
of the higher percentiles is wider.

6 Discussion

Our results show that the phase transition phenomenon plays
an important role in 1) the relation between search effort for
cost-based heuristics and operator cost ratio and 2) the rela-
tion between search effort and allowing node re-expansions.
Consistent with these observations, we also show that the
distance heuristic, that can mitigate the effect of a large oper-
ator cost ratio, provides significant improvement only inside
the phase transition.

It is important to clarify that while the phase transition
is useful in predicting the location of the hardest problems
(both the median hardest and single hardest instances), it

does not predict the required search effort. Such a prediction
requires taking into account other factors such as the size of
the state space and the strength of the heuristic. However,
our results show that the phase transition is a key factor in
search effort.

The Phase Transition and Local Minima. Previous work
has shown that the negative effect of increasing the operator
cost ratio is due to the deepening of the local minima, while
the distance heuristic tends to have smaller local minima
(Wilt and Ruml 2011; 2014; Cushing, Benton, and Kamb-
hampati 2010; 2011). Our results show that the effect of
increasing the operator ratio, and the benefit often gained by
using the distance heuristic, is significant in the phase tran-
sition region, and decreases as we move away.

These results suggest a connection between the con-
strainedness of a problem and the existence of local minima.
A reasonable hypothesis is that the likelihood and/or extent
of local minima is much larger in the phase transition and
insignificant outside. A prime area for our future work will
be to investigate this hypothesis.

The hypothesis is supported by the discovery of soluble
ehps in heuristic search. Such instances in other types of
computational problems are associated with large insoluble
subproblems that the search has to exhaust if it enters (Smith
and Grant 1997; 1995; Gent and Walsh 1994a). Wilt and
Ruml (2014) defined local minima in heuristic search as a
region that does not contain the goal but that the search will
have to exhaust if it enters. The similarity between these
definitions, as well as their similar location in the phase tran-
sition, suggests that they are analogous phenomena. As the
large insoluble subproblems are directly associated with the
constrainedness of the problem, we conjecture a similar re-
lationship exists for the local minima in satisficing heuristic
search.

Several methods have been suggested to mitigate the ef-
fect of local minima, including the use of randomization
(Valenzano et al. 2014) and local exploration (Xie, Miiller,
and Holte 2014; 2015). Investigating these methods using
the framework of phase transition may yield interesting new
insights.

Wilt and Ruml (2015) suggested a quantitative metric to
evaluate and compare heuristics for greedy best first search,
called the Global Distance Rank Correlation (GDRC), simi-
lar to the Fitness-Distance Correlation (FDC) used for other
computational problems (e.g., Heckman and Beck, 2008).
They note that, in general, domains with large local min-
ima have poor GDRC. Investigating the implications of the
phase transition to the GDRC/FDC metric is also an inter-
esting open question.

7 Conclusion

We performed an empirical analysis of problem instances
generated across the phase transition on two aspects of heur-
sitic search algorithms: using cost-based search with vary-
ing operator cost ratio and using node re-expansions. We
showed that the effect on search effort associated with a
larger operator ratio is concentrated in the phase transition.
We also demonstrated that the number of node re-expansions



for both GBFS and Weighted A* peaks in the phase transi-
tion and decreases sharply outside.

Our results suggest that many of the phenomena that are
associated with larger search effort are effected by the phase
transition and, therefore, that they should be studied at dif-
ferent level of constrainedness. We hypothesize that the
existence of local minima in heuristic search problems is
closely related to the phase transition phenomenon.
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