
Flexible Execution of Partial Order Plans With Temporal Constraints

Christian Muise1, J. Christopher Beck2, and Sheila A. McIlraith1

1Dept. of Computer Science
University of Toronto

{cjmuise,sheila}@cs.toronto.edu

2Dept. of Mechanical & Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

Abstract
We propose a unified approach to plan execu-
tion and schedule dispatching that converts a plan,
which has been augmented with temporal con-
straints, into a policy for dispatching. Our approach
generalizes the original plan and temporal con-
straints so that the executor need only consider the
subset of state that is relevant to successful execu-
tion of valid plan fragments. We can accommodate
a variety of calamitous and serendipitous changes
to the state of the world by supporting the seamless
re-execution or omission of plan fragments, with-
out the need for costly replanning. Our method-
ology for plan generalization and online dispatch-
ing is a novel combination of plan execution and
schedule dispatching techniques. We demonstrate
the effectiveness of our method through a prototype
implementation and a series of experiments.

1 Introduction
Plans and schedules often go awry because of unanticipated
changes in the world. In such cases, it is up to the execu-
tion monitoring system (EM) to determine what to do. Typi-
cally, an EM represents the temporal plan it is executing as a
partial-order plan (POP) with an associated simple temporal
network (STN) [Dechter et al., 1991] that captures the tempo-
ral constraints between actions [Younes and Simmons, 2003;
Coles et al., 2010]. The EM executes the POP’s actions one
after another until the goal is reached or a discrepancy is
detected. Often, the EM is forced to resolve discrepancies
through costly replanning, rescheduling, or plan repair (e.g.,
the IxTeT-eXeC system [Lemai and Ingrand, 2003]).

The focus of this paper is on maximizing the robustness of
plan execution by minimizing the need for replanning. We
propose an execution module, TPOPEXEC, which is com-
prised of two components: 1) COMPILER, an offline prepro-
cessor that takes as input a POP and a set of temporal con-
straints, and produces a generalized representation; and 2)
EXECUTOR, an online component that soundly selects a tem-
porally consistent, valid plan fragment from the generalized
plan. TPOPEXEC does no replanning or repair. Rather, it can
serve as a component of a larger execution engine to reduce,
but not eliminate, the need for replanning.

TPOPEXEC reacts to the state of the world, proposing the
next action of one of a large number of valid plan fragments
whose starting state satisfies the necessary conditions for plan
validity. This enables TPOPEXEC to seamlessly elect to exe-
cute parts of a plan multiple times and/or to omit actions that
are no longer necessary for achieving the goal.

Such flexibility can introduce ambiguity in the interpre-
tation of temporal constraints. For example, if you must
start eating 3 to 10 minutes after heating your dinner, and
eating gets delayed causing you to re-heat, then what tem-
poral relationship(s), if any, should exist between the first
heating and the eating? As such ambiguities are not ad-
dressed by STNs, we introduce a specification language for
temporal constraints that avoids the execution-time ambigu-
ities and further supports the specification of constraints be-
tween state conditions and actions. We formally define the
semantics of the temporal constraints and prove the correct-
ness of TPOPEXEC. Compared to conventional EM systems,
our approach has the potential to avoid replanning exponen-
tially more often (in the size of the state). Experiments with a
simulated uncertain environment show TPOPEXEC achieving
the goal in 92% of the trials while the standard STN dispatch-
ing technique only has a success rate of roughly 30%.

TPOPEXEC leverages existing work from both partial-
order plan execution and temporal reasoning. While many
of the core algorithms are based on existing techniques, our
main contribution stems from the dynamic creation of tempo-
ral subproblems that need to be solved during execution. Our
approach is noteworthy for its novelty and broad applicability
while making an important step towards integrating plan exe-
cution and schedule dispatching – tasks that are traditionally
addressed independently [Smith et al., 2000].

2 Preliminaries

STRIPS Following [Ghallab et al., 2004], a STRIPS Plan-
ning Problem is a tuple Π = 〈F,O, I,G〉 where F is a set of
fluent symbols,O is a set of action operators, and I andG are
sets of fluents, corresponding to the initial state and goal con-
dition. Every action a ∈ O is defined by three sets of fluents
PRE, ADD, and DEL, corresponding to the preconditions,
add effects, and delete effects. An action a is executable in
state s iff PRE(a) ⊆ s. An executable sequence of actions
is a plan. A plan that commences with I and terminates in G

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2328

is a valid plan for G. Given a plan a0, . . . , an, the sequence
of actions ai, . . . , an, where i ≥ 0, is a plan suffix.
Partial-order Plans A partial-order plan (POP) is a tuple
P = 〈A,O〉 where A is the set of actions in the plan and
O is a set of orderings between the actions in A (e.g., (a1 ≺
a2) ∈ O) [Weld, 1994]. For this work, we do not require
a set of causal links to be defined. A total ordering of the
actions in A that respects O is a linearization of P . A POP
provides a compact representation for multiple linearizations,
and is considered valid iff every linearization is a valid plan.
We further assume that the set of ordering constraints O in a
valid POP is transitively closed. We typically add two special
actions to the POP, aI and aG, that encode the initial and goal
states through their add effects and preconditions. A POP
suffix of a given POP 〈A,O〉 is any POP 〈A′,O′〉 where (1)
A′ ⊆ A, (2) O′ = {(a1 ≺ a2) | (a1 ≺ a2) ∈ O and a1, a2 ∈
A′}, and (3) ∀a1 ∈ A′, ((a1 ≺ a2) ∈ O) → (a2 ∈ A′).
That is, every ordering originating from an action in the suffix
implies the corresponding action is also in the suffix. While
the same ground action may appear more than once in A, we
assume that every element of A is uniquely identifiable.
Durative Actions Following Fox and Long (2003), any
durative action appears in the plan as a pair of instanta-
neous start and end actions that must alternate (a durative
action must end before it can be started again). We fur-
ther augment the pair of actions with a suitable temporal
constraint to enforce the duration (cf. Section 3.1). We
handle domains where durative actions must overlap, typi-
cally referred to as required concurrency [Fox et al., 2004;
Cushing et al., 2007], but we do not handle situations where
a single durative action must overlap with itself during exe-
cution [Coles et al., 2008]: when a start action occurs, the
corresponding end action must occur before the start can be
executed again. Our work is focused on STRIPS planning
problems and a set of temporal constraints inspired by those
found in PDDL3.0. STRIPS cannot require that two instanta-
neous actions “execute in parallel” (e.g., [Boutilier and Braf-
man, 2001]), so this situation will not arise. In the future, we
hope to expand to other aspects of PDDL including condi-
tional effects, numeric state fluents, and continuous change.

3 Temporal Constraints and Traces
The starting point for our work is a Temporally Constrained
POP (TPOP), 〈〈A,O〉, C〉, which comprises a valid POP
〈A,O〉, and a set of temporal constraints C. Here, we do
not concern ourselves with where the POP comes from, but
options include using a partial-order planner (e.g., VHPOP
[Younes and Simmons, 2003]), relaxing a sequential plan
(e.g., [Muise et al., 2012]), or having a POP specified by the
user. Temporal constraints originate with the user, with the
exception of those generated in the transformation of dura-
tive actions to pairs of instantaneous actions. This decoupling
enables a POP to be re-used in multiple scenarios by simply
varying the temporal constraints. In this section, we propose
a syntax and semantics for the temporal constraints in C.

Consider the TPOPEXEC for a mobile-phone based cog-
nitive assistant (CA) that oversees a user’s daily activities.
The CA knows his/her plan for the day including activities

such as laundry, transportation, dinner, and a movie. It is up-
dated about the state of the world by the user, RSS feeds, etc.
CA “executes” a plan by reminding the user to perform ac-
tions. As the state is updated, CA’s EXECUTOR revises its
reminders. If the user’s date is delayed, they may need to re-
book dinner. If the user’s friend gives them $50, they can skip
going to the bank.

As noted in Section 1, TPOPEXEC is able to seamlessly
re-execute or omit portions of a plan. This can create am-
biguity in the interpretation of standard STNs, as illustrated
by the “heating & eating” example. It is also the case that
many temporal constraints are more compellingly expressed
as constraints between state properties and actions (e.g., “Be
at the movie at least 15 minutes before it starts.”). These two
desiderata serve as motivation for our new language.

3.1 Temporal Constraints
Inspired by PDDL3.0 and linear temporal logic [Gerevini et
al., 2009; Pnueli, 1977], our language introduces four tempo-
ral modal operators ranging over the actions of our TPOP, the
fluents in our planning domain, and time (the positive reals).
Our language supports the specification of a set of constraints,
but no connectives. During execution, actions in our TPOP
may be repeated or skipped, requiring a formalism strictly
more expressive than STNs: in an STN, there is no accom-
modation for unplanned re-execution or omission of actions,
nor is there a facility to express temporal constraints with re-
spect to the state of the world [Dechter et al., 1991].

Definition 1. Temporal Constraint Types

• (latest-before b a l u): A past constraint between ac-
tions a and b over bounds l, u ∈ R≥0 ∪ {∞} stipulates
that if b occurs, then a must have occurred previously
and the most recent occurrence of a is between l and u
time units.

• (earliest-after a b l u): A future constraint between ac-
tions a and b over bounds l, u ∈ R≥0 ∪ {∞} stipulates
that if a occurs, then b must occur in the future and the
next occurrence is between l and u time units.

• (holds-before a f l u): A past fluent constraint between
an action a and fluent f over bounds l, u ∈ R≥0 ∪ {∞}
stipulates that if a occurs, then f must have held between
l and u time units in the past.

• (holds-after a f l u): A future fluent constraint between
an action a and fluent f over bounds l, u ∈ R≥0 ∪ {∞}
stipulates that if a occurs, then f must hold between l
and u time units in the future.

The notation mirrors the PDDL3.0 preference syntax: e.g.,
(latest-before b a l u) should be read as “the latest occur-
rence of action a before an occurrence of b is between l and u
time units”. For the CA example, consider the temporal con-
straint, (latest-before exercise eat meal 30 240): exercise
must be more than a half hour and no more than four hours
after eating. If, after exercising, the user decides to exercise
again (due to an exogenous change in the world), the tim-
ing of the second exercise action must be consistent with the

2329

constraint and the timing of the most recent meal. If the con-
straint had been (earliest-after eat meal exercise 30 240),
there would be no constraint between the meal and the sec-
ond occurrence of exercise: that constraint is only relevant to
the earliest occurrence of exercise after a meal.

If a` and aa denote the instantaneous actions correspond-
ing to the start and end of a durative action a, we augment
the domain with (latest-before aa a` l u) where l and u are
lower and upper bounds on the duration of a.

3.2 Semantics
We define the semantics of our temporal constraints with re-
spect to the execution trace of the plan – a history of action-
state pairs, indexed by time and represented as a timed word
[Alur and Dill, 1994].

Definition 2. Trace

Given a TPOP 〈〈A,O〉, C〉 and planning problem
〈F,O, I,G〉, we define a trace, T , to be a finite timed
word, (σ0, t0), · · · , (σn, tn), where σi ∈ Σ, the alphabet Σ
ranges overA×S, and the time values, ti ∈ R≥0, are strictly
increasing. T is executable iff for every ((ai, si), ti) in T , ai
is executable in si. T is static iff for every ((ai, si), ti) in T ,
if i > 0 then si is the result of executing ai−1 in state si−1.
We signify the concatenation of traces T and T ′ as T · T ′.

We assume that the state of the world is fully observable.
If a fluent changes unexpectedly (e.g., through an exogenous
event), a tuple in the trace reflects this change. A single tu-
ple ((ai, si), ti) ∈ T is an occurrence , and we refer to the
actual trace of performed actions as an execution trace. An
execution trace is valid if it is executable, satisfies every tem-
poral constraint, and the final action is aG (i.e., the goal is
achieved). Finally, we say that an execution trace is a valid
partial trace if it can be extended to be a valid trace.

Figure 1 defines the semantics of our temporal modal op-
erators with respect to a trace. We use the abbreviation
(time-diff i j l u) def

= l ≤ tj − ti ≤ u to indicate that the
time between indices i and j is bounded between l and u;
(occ a i) to denote that action a occurred at ti in the trace.
For both variants of a future constraint, T may be a valid par-
tial trace but not a valid trace because the constraint is not yet
satisfied – e.g., for earliest-after, a appears in T , but b has
not occurred since then. Such constraints are unresolved.

4 Generalizing and Executing TPOPs
Typical EMs execute actions in a plan in the order pre-
scribed, until the goal is reached or a discrepancy is de-
tected. At that point, they trigger replanning or reschedul-
ing [Lemai and Ingrand, 2003; Conrad and Williams, 2011;
Levine, 2012]. The dispatching of STNs operates in a sim-
ilar fashion [Dechter et al., 1991]. In contrast, TPOPEXEC
executes the first action of the cheapest valid plan fragment
whose starting state satisfies the necessary conditions for plan
validity and satisfies the temporal constraints. Such robust-
ness is not found in existing methods without explicit replan-
ning or rescheduling.

Our approach is to provide a flexible representation that
generalizes a plan to capture, for each step of the plan, the
necessary subset of state required to ensure the plan’s valid-
ity. In the case of a TPOP, which compactly encodes k lin-
earizations (sequential plans of length n), this generalization
produces up to kn sequential plans of lengths ranging from 1
to n, each leading to the goal but starting in different states.
The generalized TPOP is represented as a policy, and it allows
for the choice of any one of the (up to) kn sequential plans,
filtering out those that do not respect the temporal constraints.
Our policy enables TPOPEXEC to choose between the execu-
tion of different linearizations depending on the state of the
world. In doing so, it can accommodate a number of unantic-
ipated changes, either calamitous or serendipitous.

TPOPEXEC is comprised of an offline preprocessing phase
(COMPILER) and an online computation phase (EXECUTOR).
COMPILER systematically computes every possible tempo-
rally consistent partial plan that corresponds to a suffix of
the input TPOP. EXECUTOR retrieves a temporally consis-
tent partial plan that it can use to achieve the goal. To sim-
plify the exposition, we present our approach for a subclass
of TPOPs where the constraints, C, are restricted to involve
only actions (i.e., the latest-before and earliest-after con-
straints): referred to as an ATPOP. In Section 4.3, we show
how to express an arbitrary TPOP as an ATPOP. We assume
that the ATPOP is provided to TPOPEXEC. Potential sources
of an ATPOP include manually hand-coding one, annotating
a standard POP with temporal constraints, or computing one
with a dedicated planner. For this work, however, we focus
on executing an ATPOP rather than its synthesis.

4.1 COMPILER: Offline Generalization
Given an ATPOP, execution trace, and state of the world,
TPOPEXEC needs to determine if any fragment of the AT-
POP can achieve the goal and satisfy all of the temporal con-
straints while taking the trace so far into account. We compile
the causal and temporal conditions required for every partial
plan into a policy that indicates if we can still reach the goal,
and if so, what action to execute next and when.

The key component of the policy representation is a partial
plan context. Given an ATPOP, a partial plan context captures
a subset of the original ATPOP actions and orderings, a can-
didate action, a, and a set of sufficient conditions, ψ, both
for the execution of a and to guarantee that some lineariza-
tion of the ATPOP suffix starting from a will lead to the goal,
ignoring for the moment the temporal constraints.

Definition 3. Partial Plan Context

Given a problem 〈F,O, I,G〉 and ATPOP 〈〈A,O〉, C〉, we
define a partial plan context as a tuple 〈Aa,Oa, ψ, a〉, where:

1. Aa ⊆ A is the set of actions to be executed.

2. Oa is a set of ordering constraints over Aa.

3. ψ ⊆ F is a set of fluents sufficient for executing Aa.

4. a ∈ Aa and @a′ ∈ Aa s.t. (a′ ≺ a) ∈ Oa

Context viability captures the notion that there exists a lin-
earization of the partial plan context’s POP that is valid and

2330

((a0, s0),t0), · · · , ((an, sn), tn) |= (latest-before b a l u)
iff ∀j : 1 ≤ j ≤ n if (occ b j) then ∃i : 0 ≤ i < j, (occ a i) ∧ (time-diff i j l u) ∧ ∀k : i < k < j, ak 6= a

((a0, s0),t0), · · · , ((an, sn), tn) |= (earliest-after a b l u)
iff ∀i : 0 ≤ i ≤ n− 1 if (occ a i) then ∃j : i < j ≤ n, (occ b j) ∧ (time-diff i j l u) ∧ ∀k : i < k < j, ak 6= b

((a0, s0),t0), · · · , ((an, sn), tn) |= (holds-before a f l u)
iff ∀j : 1 ≤ j ≤ n if (occ a j) then ∃i : 0 ≤ i < j, (f ∈ si) ∧ [∃t∗ : (ti ≤ t∗ � ti+1) ∧ (l ≤ tj − t∗ ≤ u)]

((a0, s0),t0), · · · , ((an, sn), tn) |= (holds-after a f l u)
iff ∀i : 0 ≤ i ≤ n− 1 if (occ a i) then ∃j : i < j ≤ n, (f ∈ sj) ∧ [∃t∗ : (tj ≤ t∗ � tj+1) ∧ (l ≤ t∗ − ti ≤ u)]

Figure 1: Semantics of the temporal modal operators with respect to a trace. l, u ∈ R≥0 ∪ {∞}, l ≤ u, and a, b are actions.

satisfies every constraint. Formally, given a planning prob-
lem Π, ATPOP 〈〈A,O〉, C〉, valid partial trace T , and current
state of the world s, a partial plan context 〈Aa,Oa, ψ, a〉 is
(1) causally viable wrt. Π and s iff the POP 〈Aa,Oa〉 has a
linearization starting with a that is a valid plan for the plan-
ning problem with s as the initial state, (2) temporally viable
wrt. C and T iff there exists a trace T ′ where the actions in
T ′ correspond to a linearization of 〈Aa,Oa〉 and T ·T ′ satis-
fies every temporal constraint in C, and (3) simply viable wrt.
Π, s, C, and T iff 〈Aa,Oa〉 has a linearization making the
context both causally and temporally viable.
Establishing Causal Viability To generate every causally
viable context, we appeal to the approach of Muise et
al. (2011) which transforms a POP into a policy. As part
of their process, they produce a sequence of condition-action
pairs where the condition holds in a state iff some lineariza-
tion of the POP has a suffix that can reach the goal starting
with the action. Space prohibits us from a full exposition, but
we modify their algorithm in two ways: (1) rather than simply
record the condition ψ and candidate action a, we also record
the set of actions and ordering constraints to build a partial
plan context, and (2) additional ordering constraints are com-
puted to ensure that, when establishing temporal viability, we
reason about the correct linearization. Both modifications are
primarily for bookkeeping and the soundness of the subse-
quent steps. Neither modification has a significant impact on
the algorithm’s performance. The following proposition fol-
lows from the proof of correctness of Muise et al.’s causal
viability algorithm (Muise et al. 2011, Theorem 2).

Proposition 1. Every partial plan context, 〈Aa,Oa, ψ, a〉,
that we produce is causally viable wrt. Π and s iff ψ ⊆ s.

Establishing Temporal Viability Given the temporal con-
straints, for each partial plan context, COMPILER determines
temporal viability by proving consistency of a carefully con-
structed context-specific STN (CSTN).

An STN consists of a set of events and a set of simple tem-
poral constraints. We use Xa to signify an event for action a,
and make the distinction between an action a and an eventXa

corresponding to an execution of a. A simple temporal con-
straint restricts the time between two events to be between a
pair of bounds: [l, u]Xa1 ,Xa2

def
= l ≤ t(Xa2) − t(Xa1) ≤ u

where t(·) is a mapping of events to time-points. A CSTN
contains events corresponding to the scope of the set of sim-
ple temporal constraints relevant to the context. The set of
relevant simple temporal constraints, with respect to the AT-
POP 〈〈A,O〉, C〉 and the context 〈Aa,Oa, ψ, a〉, consists of:

1. Temporal constraints on the unexecuted actions in Aa:

{[ε,∞]Xa1
,Xa2

| (a1 ≺ a2) ∈ Oa}

2. Past temporal constraints ending in Aa:

{[l, u]Xa1
,Xa2

| (latest-before a2 a1 l u) ∈ C, a2 ∈ Aa}

3. Future temporal constraints involving only Aa:

{[l, u]Xa1 ,Xa2
| (earliest-after a1 a2 l u) ∈ C, a1, a2 ∈ Aa}

COMPILER stores only those contexts that have a tempo-
rally consistent CSTN [Muscettola et al., 1998]. Such a
CSTN may or may not lead to a temporally viable partial
plan context depending on the actual timing of occurrences.
To enable a quick, online re-calculation of temporal viability,
COMPILER stores the temporal windows between event Xa

and events in the CSTN that correspond to actions outside of
Aa. We ignore future constraints with a single action outside
of Aa, because without knowing if the first action appears in
the execution trace, the CSTN should not include it.

4.2 EXECUTOR: Online Execution
Given the state of the world and execution trace, EXECUTOR
follows a four step process: (1) retrieve the set of causally
viable partial plan contexts, (2) sort the contexts in ascending
distance-to-goal, (3) identify the first context that is tempo-
rally viable, and (4) return the leading action and its temporal
window. To determine temporal viability, given an execution
trace and the stored temporal windows for events that have
occurred, EXECUTOR uses the following two-step process:

1. If there are unresolved future constraints in the trace, re-
build the CSTN and recheck its consistency.

2. Simulate the execution of past events in the CSTN.

Resolving Future Temporal Constraints For every un-
satisfied future temporal constraint (earliest-after a1 a2 l u),

2331

we have a set of occurrences that are the cause for the con-
straint remaining unsatisfied: the occurrences containing a1
that have happened after the most recent occurrence contain-
ing a2. If Xa1

does not already exist in the CSTN, then
EXECUTOR adds event, Xa1

, corresponding to the latest oc-
currence of a1 and includes the simple temporal constraint
[l, u]Xa1

,Xa2
. If there is more than one occurrence that serves

as a reason for the unsatisfied constraint, EXECUTOR adds an-
other event, X ′a1

, to the CSTN corresponding to the earliest
occurrence containing a1 (with the constraint [l, u]X′

a1
,Xa2

).
The remaining occurrences containing a1 can be ignored as
they cannot further constrain the CSTN. EXECUTOR then re-
checks for consistency to ensure temporal viability.
Simulating Previous Events Using the standard dispatch-
ing algorithm for an STN [Muscettola et al., 1998], EXECU-
TOR tests if a schedule exists for the actions in Aa that ad-
heres to all of the temporal constraints and the execution
trace. For every event Xa in the CSTN where a /∈ Aa, we
have a corresponding latest occurrence ((a, si), ti) ∈ T (start
actions for active future temporal constraints also have an as-
sociated occurrence). EXECUTOR follows the order found in
T to dispatch each event at the time already established, prop-
agating the start times. If EXECUTOR must dispatch an event
at a time outside of its temporal bounds, then the network
is inconsistent (cf. Theorem 2 of Muscettola et al. (1998)).
If the temporal windows remain non-empty, then the process
ends with a temporal window for the event corresponding to
the candidate action, a. This provides EXECUTOR both with
a certificate that the CSTN is consistent, and indicates what
should be done: execute a within its temporal window.

Theorem 1. Given an ATPOP 〈〈A,O〉, C〉, valid partial
trace T , and partial plan context 〈Aa,Oa, ψ, a〉, the context
is temporally viable iff the context’s CSTN is consistent and
can be dispatched following the above two steps.

Proof sketch. For the context to be temporally viable,
〈Aa,Oa〉 must have a linearization that corresponds to some
trace T ′ such that T · T ′ satisfies every constraint in C. The
first set of constraints included in the CSTN ensures that any
schedule follows a linearization of 〈Aa,Oa〉. The CSTN is
consistent and dispatchable iff there is a schedule of the ac-
tions in Aa that satisfies every constraint. We thus have a
candidate for T ′ iff the context is temporally viable. �

Combining Proposition 1 and Theorem 1, we can now as-
certain how TPOPEXEC leverages a partial plan context:

Theorem 2. For a given planning problem Π, ATPOP
〈〈A,O〉, C〉, execution trace T , state of the world s, and par-
tial plan context 〈Aa,Oa, ψ, a〉, the partial plan context is
viable iff (1) ψ ⊆ s, (2) the context’s CSTN is consistent, and
(3) the context’s CSTN can be dispatched.

4.3 Discussion
We have built computational machinery to enable TPOPEXEC
to select a next action and the timing of its execution. Fol-
lowing Theorem 2, as long as a suffix of some linearization
of the POP can achieve the goal while satisfying all temporal
constraints, TPOPEXEC will eventually achieve the goal. Be-
cause determining temporal viability requires some amount

of reasoning online, EXECUTOR filters first based on causal
viability, and then discards the contexts which are not tem-
porally viable. To choose amongst temporally viable con-
texts, EXECUTOR prefers the context with the best plan qual-
ity based on action cost, breaking ties by the minimum tem-
poral distance between the current time and the goal.

The complexity for computing the causally viable contexts
online is at worst linear in the number of contexts, but in prac-
tice is much smaller – typically linear in the size of the rel-
evant portion of the current state. The complexity of deter-
mining temporal viability is at worst polynomial in the size
of the CSTN. However, we have identified many heuristic
checks that successfully determine, in the overwhelming ma-
jority of situations, whether or not the CSTN is temporally
consistent. Naively stored, the number of contexts and tem-
poral networks may pose a problem. However, by leveraging
the commonality between the contexts and their temporal net-
works, we were able to drastically reduce the overall storage
compared to [Muise et al., 2011] to store both the state and
temporal information.

Optimizations We augmented these methods with a number
of critical optimizations. Among the most important are the
following: (1) When constructing a CSTN, COMPILER keeps
only those events in the scope of any temporal constraint in
the CSTN while retaining the transitive ordering from all ac-
tions in Aa (not every action in Aa must be a part of a tem-
poral constraint). This reduces the size and complexity of
the STN. (2) Rather than always doing a full consistency
check for testing temporal viability in the presence of open
future temporal constraints, EXECUTOR evaluates a number
of necessary or sufficient conditions first. EXECUTOR uses a
full consistency check only when more efficient checks fail.
Space precludes us from detailing the techniques here, but
one example is that if no future temporal constraint tightens a
lower or upper bound on an unexecuted action, then the previ-
ously compiled temporal windows remain valid: if the CSTN
was found to be consistent in the offline phase, then it remains
consistent as long as the temporal windows are not tightened.

Reformulation to ATPOP The approach described applies
only to ATPOPs. We reformulate TPOPs involving fluent
temporal constraints into ATPOPs, enabling the elegant ap-
plication of our approach to arbitrary TPOPs. The reformula-
tion is sound, but incomplete with respect to the holds-before
constraint. For completeness, we must expand the tempo-
ral reasoning to handle disjunctive constraints (i.e., having a
sometime-before constraint between actions).

We reformulate our fluent temporal constraints to action
constraints. As such, for each fluent participating in a tem-
poral constraint, we introduce an auxiliary action af with the
precondition of PRE(af) = {f} and no add or delete ef-
fects. These actions are used to record the observation of
fluents. We then replace the fluent temporal modal opera-
tors with suitable counterparts: (holds-before a f l u) (resp.
(holds-after a f l u)) is replaced by (latest-before a af l u)
(resp. (earliest-after a af l u)). This modification permits
TPOPEXEC to observe necessary facts at a time required. Fi-
nally, we require a unique auxiliary action for each fluent con-
straint, as sharing the auxiliary actions is unsound.

2332

5 Experimental Evaluation
The core contribution of this work is the ability to exe-
cute a plan in a world that can change in unpredicted ways,
while reasoning about ongoing causal and temporal viabil-
ity. We accomplish this while avoiding unnecessary replan-
ning, rescheduling, or plan repair. In building on the work of
Muise et al. (2011), TPOPEXEC is able to continue executing
a POP in exponentially many more states than traditional ap-
proaches that execute actions according to a prescribed order-
ing. Nevertheless, the work of Muise et al. (2011) cannot rea-
son about temporal constraints. Many execution monitoring
systems suffer a similar fate. Standard approaches to sched-
ule dispatching, such as Muscettola et al. (1998), are blind
to causal viability and the conditions for the executability of
actions. Such approaches will only succeed on problems that
do not experience obstructive change.

Our evaluation focuses on TPOPEXEC’s robustness and
ability to avoid replanning. We also evaluate the general
properties of TPOPEXEC’s behaviour. The first experiment
demonstrates the increased capabilities of our approach over
restricted forms of our method that improve on existing ex-
ecution strategies (i.e., STN dispatching), and the second
experiment examines the amount of replanning TPOPEXEC
avoids. TPOPEXEC is written in Python, and we conducted
the experiments on a Linux desktop with a 3.0GHz processor.

IPC benchmarks lack a combination of causal requirements
and complex temporal constraints. As such, we tested our im-
plementation on an expanded version of the CA domain that
serves to challenge the causal and temporal reasoning, and
is representative of what we might find in the real world. In
total, there are 19 actions in the plan (11 durative), 8 past
temporal constraints, and 4 future temporal constraints. The
ATPOP has 18 ordering constraints which result in a total of
49,140 linearizations. The types of un-modelled dynamics
include children becoming hungry, laundry being soiled, etc.
In addition to being modelled after real-world temporal re-
quirements, the constraints were designed to pose a challenge
for TPOPEXEC. For example, often in the CA domain there
is ample opportunity for a context to be causally viable but
not temporally viable – the actions in the context can achieve
the goal, but not without violating some temporal constraint.
Such situations challenge the temporal reasoning aspects of
TPOPEXEC to find the most appropriate context.
Rate of Success We simulate our CA agent in a world
where fluents change unexpectedly in both positive and neg-
ative ways (i.e., adding and deleting fluents from the state).
TPOPEXEC fails when EXECUTOR determines the goal is no
longer causally and temporally achievable. The level of vari-
ability in the world is set using parameter α: α = 0 corre-
sponds to no changes whatsoever and α = 1 corresponds to
significant unpredictable change (at least one fluent changes
after every action with 99.998% probability). For 20 different
values of α, we ran 1000 trials for each approach. The pro-
portion of successful trials is referred to as the success rate.

Ignoring the causal requirements and simply dispatching
the ATPOP one action after another mirrors STN dispatch-
ing, which we argued above would be unsuccessful in most
instances. Nonetheless, we test this approach to verify our in-

0.0 0.2 0.4 0.6 0.8
Environment Variability (α)

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

R
at

e

TpopExec

Opportunistic

STN Dispatch

Figure 2: The success rate of the three approaches over a
range of environment dynamics, both good and bad.

tuition and evaluate the level of environmental variability that
an STN dispatching algorithm can handle. We also present
an Opportunistic version of TPOPEXEC that we restricted to
execute an action at most once. It can, however, skip actions
if positive changes allow. Figure 2 shows the success rate for
all three approaches for a given value of α.

TPOPEXEC consistently outperforms both the ablated ver-
sion and STN dispatching by a substantial margin – success-
fully executing the plan in more than 80% of the instances for
almost all values of α and in total succeeding in over 92% of
the simulations compared to just over 30% for the STN ap-
proach. Having the opportunity to re-execute plan fragments
that are required again, while adhering to the imposed tem-
poral constraints, provides us with a distinct advantage. The
ablated version, while heavily restricted, still outperformed
the STN dispatching for the majority of α-values, solving
roughly twice as many instances.
Replan Avoidance We evaluate how often TPOPEXEC
avoids replanning during execution in the CA domain. If
other systems that replan online are able to replan quickly
enough, then their execution behaviour would match ours.
Every replan, however, requires solving a PSPACE problem
which is what we avoid. Similar to the previous experiment,
we evaluate with respect to a range of environment dynamics
(the α parameter). However, to properly gauge the need for
replanning, we only allow for negative changes to the world:
fluents are randomly made false. We count the number of
times during execution that TPOPEXEC would be forced to
replan if it had not generalized the ATPOP, and we consider
only those runs where TPOPEXEC reaches the goal. Figure 3
shows the mean replan rate for a given α-value, normalized
by a theoretical maximum number of replans.

We find that the number of replans avoided increases lin-
early with the increase variability. Due to the temporal con-
straints on the length of the day, and the length of some dura-
tive actions, there is a theoretical limit of roughly 20 replans
required for the dynamics we introduce. In situations where
TPOPEXEC must operate over a larger time frame, we would
expect the potential for replan avoidance to grow.
System Behaviour Profiling EXECUTOR, we found that
35% (resp. 60%) of the time was spent determining if con-
texts were causally (resp. temporally) viable. The remaining
time was used for bookkeeping and data-structure updates for

2333

0.0 0.2 0.4 0.6 0.8
Environment Variability (α)

0.0

0.2

0.4

0.6

0.8

M
ea

n
R

ep
la

n
s

Figure 3: The number of replans that would be required dur-
ing execution over a range of destructive environment dynam-
ics (mean and standard deviation).

the simulation. COMPILER spent the vast majority of time
checking the consistency for the CSTN of each of the 306
partial plan contexts. There is substantial commonality be-
tween CSTNs of similar contexts, and a potential optimiza-
tion is to reuse the computation results. An average of 19
temporal windows were required for every CSTN. However,
the memory bottleneck is the data-structure used for comput-
ing the causally viable contexts. Using a custom represen-
tation, we were able to reduce the memory requirements for
our causal information by a factor of four compared to Muise
et al. (2011), while our total footprint (causal plus temporal
information) used about half the memory of just storing the
causal information with the previous representation.

6 Related Work
Most approaches to executing plans with complex temporal
constraints assume that an action in a plan will be executed
once: an action may appear multiple times in a plan, but
each plan appearance corresponds to exactly one action oc-
currence. IxTeT-eXeC executes actions from a temporally re-
stricted POP and monitors the sufficient conditions for con-
tinued causal and temporal viability, replanning when they
fail to hold [Lemai and Ingrand, 2003]. In a similar vein, the
Pike system executes a temporally restricted POP while con-
tinuously monitoring a weaker set of conditions for temporal
viability [Levine, 2012]. TPOPEXEC can be seen as an im-
proved executor that tries to avoid plan repair and replanning,
and we hope to incorporate our method into a larger system.

The Drake system focuses primarily on executing a plan
with complex temporal constraints [Conrad and Williams,
2011]. While it can choose not to execute an action if non-
execution is explicitly included as part of a complex temporal
constraint, Drake does not represent or reason about causal
validity. One avenue we hope to pursue is using the Drake
temporal reasoning in place of our CSTNs. Doing so would
allow us to handle more expressive constraints.

There is a large body of research on plan execution mon-
itoring (e.g., [Pettersson, 2005; Fritz and McIlraith, 2007;
Doherty et al., 2009]). Some systems, such as the work of
Doherty et al. 2009, monitor temporal constraints, but many
do not. They typically focus on the feasibility of just one par-
tial, sequential plan and resort to replanning when any condi-

tion is violated. There have been a number of temporal logics
introduced for monitoring plans and schedules (e.g., [Koy-
mans, 1990; Kvarnström et al., 2008]). The most related to
our work is TLTL [Bauer et al., 2007]: it uses timed words
at the core of its specification and provides a syntax capable
of expressing the temporal constraints available to an ATPOP.
They do not, however, include a mechanism for deciding what
to do next. It is of interest to consider how we might expand
our constraint specification language to handle all of TLTL.

7 Summary and Discussion
We presented TPOPEXEC, a system for generalizing and ro-
bustly executing a plan that is augmented with temporal con-
straints. In the face of unexpected changes in the world,
TPOPEXEC can select from a large number of valid plan
fragments that are consistent with the temporal constraints,
repeating parts of a plan or omitting actions, as necessary.
This is all done without the need to replan. To accommodate
this flexibility, we introduced temporal constraints over ac-
tions and fluents, formalizing their semantics with respect to
the execution trace. During execution, TPOPEXEC identifies
the partial plans, computed offline, that can achieve the goal
while satisfying all of the temporal constraints. To choose an
action for execution, TPOPEXEC selects one at the start of the
best quality partial plan identified as being viable.

We demonstrated our methodology through a prototype
implementation and a series of experiments to test the robust-
ness and flexibility of TPOPEXEC. In a simulated uncertain
environment for a real-world inspired domain, TPOPEXEC
achieved the goal in 92% of the trials while the standard STN
dispatching technique succeeded 30% of the time.

We aim to address two fundamental limitations with our
work: 1) temporal reasoning and schedule dispatching tech-
niques typically do not consider the state of the world, and
2) execution monitoring schemes for planning problems that
allow multiple action occurrences typically do not allow for
temporal constraints to be defined. The temporal constraints
that we introduce are an essential ingredient for the synthesis
of plan execution and schedule dispatching techniques when
the environment can change in unexpected ways. They also
elucidate the need for referring to both state and actions as
integral parts of a temporal constraint.

There may exist a tradeoff between the time saved by
avoiding replanning and the quality of a new plan that could
be found. In this work, we assume that replanning should be
avoided if at all possible, but we hope to consider this tradeoff
future work. As the contributions of TPOPEXEC can be seen
as complementary to many existing execution monitoring
systems (e.g., IxTeT-eXeC or Kirk [Lemai and Ingrand, 2003;
Kim et al., 2001]), we hope to incorporate our techniques into
a larger system for wider application.

Acknowledgements
We would like to thank the anonymous reviewers whose valu-
able feedback helped improve the final paper. The authors
gratefully acknowledge funding from the Ontario Ministry
of Innovation and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

2334

References
[Alur and Dill, 1994] R. Alur and D. L. Dill. A the-

ory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[Bauer et al., 2007] A. Bauer, M. Leucker, and C. Schallhart.
Runtime verification for LTL and TLTL. Transactions
on Software Engineering and Methodology, pages 1–68,
2007.

[Boutilier and Brafman, 2001] C. Boutilier and R. I. Braf-
man. Partial-order planning with concurrent interact-
ing actions. Journal of Artificial Intelligence Research,
14:105–136, 2001.

[Coles et al., 2008] A. Coles, M. Fox, D. Long, and
A. Smith. Planning with problems requiring temporal co-
ordination. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, pages 892–897, 2008.

[Coles et al., 2010] A. J. Coles, A. I. Coles, M. Fox, and
D. Long. Forward-chaining partial-order planning. In
Proceedings of the 20th International Conference on Au-
tomated Planning and Scheduling, pages 42–49, 2010.

[Conrad and Williams, 2011] P. R. Conrad and B. C.
Williams. Drake: An Efficient Executive for Temporal
Plans with Choice. Journal of Artificial Intelligence Re-
search, 42:607–659, 2011.

[Cushing et al., 2007] W. Cushing, S. Kambhampati,
Mausam, and Weld D. S. When is temporal planning
really temporal. In Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence, pages
1852–1859, 2007.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks. Artificial Intelligence, 49(1-
3):61–95, 1991.

[Doherty et al., 2009] P. Doherty, J. Kvarnström, and
F. Heintz. A temporal logic-based planning and ex-
ecution monitoring framework for unmanned aircraft
systems. Autonomous Agents and Multi-Agent Systems,
19(3):332–377, 2009.

[Fox and Long, 2003] M. Fox and D. Long. PDDL2.1: An
extension to pddl for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research, 20:61–
124, 2003.

[Fox et al., 2004] M. Fox, D. Long, and K. Halsey. An in-
vestigation into the expressive power of PDDL2.1. In Pro-
ceedings of the 16th European Conference of Artificial In-
telligence, 2004.

[Fritz and McIlraith, 2007] C. Fritz and S. A. McIlraith.
Monitoring plan optimality during execution. In Proceed-
ings of the 17th International Conference on Automated
Planning and Scheduling, pages 144–151, 2007.

[Gerevini et al., 2009] A. Gerevini, P. Haslum, D. Long,
A. Saetti, and Y. Dimopoulos. Deterministic planning in
the fifth international planning competition: PDDL3 and
experimental evaluation of the planners. Artificial Intelli-
gence, 173(5-6):619–668, 2009.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso.
Automated Planning: Theory & Practice. Morgan Kauf-
mann, 2004.

[Kim et al., 2001] P. Kim, B. C. Williams, and M. Abram-
son. Executing reactive, model-based programs through
graph-based temporal planning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
pages 487–493, 2001.

[Koymans, 1990] R. Koymans. Specifying real-time prop-
erties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

[Kvarnström et al., 2008] J. Kvarnström, P. Doherty, and
F. Heintz. A temporal logic-based planning and execution
monitoring system. In Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling,
pages 332–377, 2008.

[Lemai and Ingrand, 2003] S. Lemai and F. Ingrand. Inter-
leaving temporal planning and execution: IxTeT-eXeC. In
Proceedings of the ICAPS Workshop on Plan Execution,
2003.

[Levine, 2012] S. J. Levine. Monitoring the execution of
temporal plans for robotic systems. Master’s Thesis, 2012.

[Muise et al., 2011] C. Muise, S. A. McIlraith, and J. C.
Beck. Monitoring the execution of partial-order plans via
regression. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pages 1975–1982,
2011.

[Muise et al., 2012] C. Muise, S. A. McIlraith, and J. C.
Beck. Optimally relaxing partial-order plans with
MaxSAT. In Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling, pages
358–362, 2012.

[Muscettola et al., 1998] N. Muscettola, P. H. Morris, and
I. Tsamardinos. Reformulating temporal plans for efficient
execution. In Proceedings of the 6th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, pages 444–452, 1998.

[Pettersson, 2005] O. Pettersson. Execution monitoring in
robotics: A survey. Robotics and Autonomous Systems,
53(2):73–88, 2005.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs.
In Proceedings of the Eighteenth IEEE Symposium Foun-
dations of Computer Science, pages 46–57, 1977.

[Smith et al., 2000] D. E. Smith, J. Frank, and A. K.
Jónsson. Bridging the gap between planning and schedul-
ing. Knowledge Engineering Review, 15(1):47–83, 2000.

[Weld, 1994] D. S. Weld. An introduction to least commit-
ment planning. AI Magazine, 15(4):27, 1994.

[Younes and Simmons, 2003] H. L. S. Younes and R. G.
Simmons. VHPOP: Versatile heuristic partial order plan-
ner. Journal of Artificial Intelligence Research, 20:405–
430, 2003.

2335

