
Multi-Point Constructive Search: Extended Remix?

J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

Abstract. Multi-Point Constructive Search maintains a small set of “elite solu-
tions” that are used to heuristically guide constructive search through periodi-
cally restarting search from an elite solution. Empirical results indicate that for
job shop scheduling optimization problems, multi-point constructive search leads
to significantly better solutions for equivalent search effort when compared to
chronological backtracking and bounded backtracking with random restart. For
satisfaction problems (quasigroup with holes completion), significant reduction
in the magnitude of mean search effort (the number of fails and run-time) is also
achieved versus chronological backtracking and bounded backtracking with ran-
dom restart. Two conjectures about the relationship between the clustering of
good solutions in a search tree and the performance of multi-point constructive
search are made. Preliminary empirical results are consistent with the conjec-
tures, suggesting directions for future work to develop a deeper understanding of
the observed performance.

1 Introduction

Metaheuristics such as genetic algorithms, scatter search and path relinking [7], and
tabu search with reintensification [14], often maintain a set of sub-optimal solutions that
are used to guide search. In the case of scatter search and tabu search with reintensifica-
tion, a small number (e.g., five to ten) of “elite solutions,” typically containing the best
solutions that have been encountered so far, are used to define the areas in the search
space that appear promising. Search is periodically restarted from the elite solutions
to explore these promising areas. In contrast, constructive search follows a heuristic
decision-making procedure until a dead-end or (sub-optimal) solution is found and then
backtracks to search through alternative decisions. While there are a number of ways in
which the alternatives may be explored (e.g.,[17]), such techniques are variations on the
way in which a single search tree is explored. We view such search as a “single point”
technique: search begins at the single heuristically preferred point in the search tree
and gradually moves away. An exception to single point search are techniques that use
random restarts [15, 9]. Through periodic restarts, different points in the search space
are sampled by a randomized heuristic. Randomized restart techniques do not maintain
a set of solutions nor allow an existing set of solutions to impact the parts of the search
tree that are subsequently explored.
? This work has received support from ILOG, SA. A shorter version of this paper appears at

CP2005.

This paper introduces the maintenance of multiple solutions to guide constructive
tree search. Given a set of elite solutions, we probabilistically choose to start construc-
tive search either from a random elite solution or from an empty solution. If a good
solution is found within some bound of the search effort, it is inserted into the elite
set, replacing one of the existing solutions. Our empirical results both on constraint
optimization and constraint satisfaction problems demonstrate significantly improved
search performance when compared with bounded backtracking with random restart
and with standard chronological backtracking. For satisfaction problems, we are able to
achieve more than a three-fold reduction in search effort.

The contributions of the paper are the introduction and investigation of multi-point
constructive tree search; the introduction of a technique to start constructive search from
an existing solution while exploiting existing variable ordering heuristics; the demon-
stration of significant search performance gains resulting from multi-point search for
both constraint optimization and constraint satisfaction problems; and the generation of
empirical evidence that is consistent with simple conjectures to explain the multi-point
constructive search performance.

Multi-point constructive search is introduced in the following section. Empirical
results on the job shop scheduling problem and the quasigroup completion problem are
presented in Sections 3.1 and 3.2, respectively. Section 4 presents conjectures to explain
the observed behaviour and preliminary empirical evidence supporting the conjectures.
Avenues for future work are presented in Section 5.

2 Multi-Point Constructive Search

For clarity, we introduce Multi-Point Constructive Search (MPCS) in the context of
constraint optimization before presenting adaptations for constraint satisfaction.

Pseudocode for the basic Multi-Point Constructive Search (MPCS) algorithm is
shown in Algorithm 1. The algorithm initializes a set, e, of elite solutions and then en-
ters a while-loop. In each iteration, with probability p, search is started from an empty
solution (line 6) or from a randomly selected elite solution (line 12). In the former case,
if the best solution found during the search, s, is better than the worst elite solution, s
replaces the worst elite solution. In the latter case, s replaces the starting elite solution,
r, if s is better than r. Each individual search is limited by a fail-bound: a maximum
number of fails that can be incurred. When an optimal solution is found and proved or
when some overall bound on the computational resources (e.g., CPU time, number of
fails) is reached, the best elite solution is returned.

Constructive search from an existing solution and the upper bound on the cost func-
tion are discussed in detail below. We first provide more detail on a number of aspects
of the algorithm.

– Elite Solution Initialization The elite solutions can be initialized by any search tech-
nique. In this paper, we use independent runs of a standard chronological backtrack-
ing with a randomized heuristic and do not constrain the cost function. The search
effort is limited by a maximum number of fails for each run. We assume that (proba-
bly very poor) solutions can be easily found. We do not start the while-loop with an

Algorithm 1: MPCS: Multi-Point Constructive Search
MPCS():

1 initialize elite solution set e

2 while termination criteria unmet do
3 if rand[0, 1) < p then
4 set upper bound on cost function
5 set fail bound, b

6 s := search(∅, b)
7 if s 6= NIL and s is better than worst(e) then
8 replace worst(e) with s

else
9 r := randomly chosen element of e

10 set upper bound on cost function
11 set fail bound, b

12 s := search(r, b)
13 if s 6= NIL s is better than r then
14 replace r with s

15 return best(e)

empty elite set to ensure that the initial solutions are independently generated and
therefore diverse. Elite set diversity is important for metaheuristics; further work is
needed to determine its impact on constructive search.

– Finding a Solution From Scratch A solution is found from scratch (i.e., line 6) using
any standard constructive search with a randomized heuristic and a bound on the
number of fails. It is possible that no solution is found within the fail bound.

– Bounding the Search The effort spent on each individual search is bounded by
an evolving fail bound. A single search (lines 6 and 12) will terminate, returning
the best solution found, after the it has failed (i.e., backtracked) the corresponding
number of times. We associate a different fail bound, initialized to 32, with each
elite solution. Whenever search from an elite solution does not find a better solution,
the fail bound for that elite solution is doubled. When an elite solution is replaced
(lines 8 and 14), the bound associated with the new elite solution is set to 32. When
searching from an empty solution, we use the mean fail bound of the elite solutions
and do not increase any fail bounds in the case of failure to find a better solution.
The choice of 32 as a starting fail bound was arbitrary, though based on the intuition
that the minimum should allow for a small search effort.

2.1 Starting Constructive Search from an Elite Solution

Our goal is to perform some form of backtracking search away from the starting or ref-
erence solution. To do this, we create a search tree using any variable ordering heuristic
and by specifying that the value assigned to a variable is the one in the reference solu-
tion provided it is still in the domain of the variable.

A search tree is created by asserting a series of choice points of the form: 〈Vi =
xi〉 ∨ 〈Vi 6= xi〉. Given the importance of variable ordering heuristics in constructive
search, we expect that the order of these choice points will have an impact on search
performance and so we use any variable ordering heuristic to choose the next vari-
able to assign, Vi. The choice point is formed using the value assigned in the reference
solution or, if the value in the reference solution is inconsistent, a heuristically cho-
sen value. More formally, let a reference solution, s, be a set of variable assignments,
{〈V1 = x1〉, 〈V2 = x2〉, . . . , 〈Vm = xm〉}, m ≤ n, where n is the number of vari-
ables. Our variable ordering heuristic has complete freedom to choose a variable, Vi,
to be assigned. If x ∈ dom(Vi), where 〈Vi = x〉 ∈ s, the choice point is made with
xi = x. Otherwise, if x /∈ dom(Vi), any value ordering heuristic is used to choose
z ∈ dom(Vi) and the choice point is asserted with xi = z. Because our criterion for
assigning the value that is in the reference solution is 〈Vi = x〉 ∈ s, the case where no
value is assigned to Vi in s (i.e., when s is a partial solution and m < n) is covered.

Because we place an upper bound on the cost function (line 10) or, more generally,
allow the addition of constraints such as nogoods to the model, the reference solution is
not necessarily still a valid solution. To take a simple example, if the reference solution
had a cost value of 100 and we now constrain search to solution of less than 100, we
will not reach the reference solution. Rather, via constraint propagation, we will reach
a dead-end or different solution close to the reference solution from where we will
backtrack. This is why the possibility that x /∈ dom(Vi) must be taken into account.

This technique for starting constructive search from a reference solution is quite
general. Existing, high performance variable ordering heuristics can be exploited and,
as noted, we make no assumptions about changes to the constraint model that may have
been made after the reference solution was originally found. To our knowledge this is
the first work that has sought to start constructive search from an existing solution.

2.2 Setting the Bounds on the Cost Function

Before we search (lines 6 and 11), we place an upper bound on the cost function. As
we are conducting constraint-based search, the bound may have an impact on the set of
solutions that will be searched and, therefore, on the solutions that may enter the elite
set. Intuitions from constructive search and metaheuristics differ on the appropriate
choice of an upper bound. In single point constructive search for optimization with a
discrete cost function, the standard approach is to use c∗−1, as the upper bound, where
c∗ is the best solution found so far. Using a higher bound would only expand the search
space without providing any heuristic benefit. In contrast, in pure local search there is
no way to enforce an upper bound and so search space reduction is not an issue. It is
common to replace solutions when a better, but not necessarily best known, solution
is found: since the elite solutions are used to heuristically guide search, even solutions
which are not the best known can provide heuristic guidance.

We experiment with the following three approaches to setting the upper bound:

1. Global bound: Always set the upper bound on the search cost to c∗ − 1.
2. Local bound: When starting from an empty solution, set the upper bound to be equal

to one less than the cost of the worst elite solution. When starting from an elite
solution, set the upper bound to be one less than the cost of the starting solution.

3. Adaptive: Whenever a new global best solution is found, use the global bound pol-
icy for a fixed number of searches and then revert to using the local bound policy.
Whenever a new best solution is found, the counter for the number of searches is
reset. This means that if new best solutions are consistently found, the global bound
policy will continue to be used. In all our experiments, we set the fixed number of
searches to be |e|, the size of the elite set. This size was chosen because it seemed
reasonable that the use of the global bound should be a function of the number of
elite solutions. Note however that if p = 0.5, as it does in all our experiments, we
expect that only half of the elite solutions will be a starting point for a global bound
search. No experiments have been performed yet with different parameter values.

For problems with strong propagation from the cost function, we expect the global
bound policy to out-perform the local bound policy: when a new best solution results
in substantial reduction in the search space, it will pay off to take advantage of it. In
contrast, in problems with minimal or no back-propagation, we expect the heuristic
guidance from the local bound policy will result in stronger performance. The adaptive
approach is an attempt to combine the expected strengths of these two policies.

2.3 Applying MPCS to Constraint Satisfaction Problems

The core of MPCS is the maintenance and heuristic use of sub-optimal solutions. To
adapt the approach to a satisfaction context, therefore, we must decide how to compare
non-satisfying “solutions.” A common approach is to allow inconsistent variable assign-
ments and use the number of violated constraints as an objective to be minimized. The
drawback to this approach is that much of the propagation power of standard constraint
solvers is lost when constraints are relaxable. We, therefore, choose another approach
by rating partial solutions by the number of unassigned variables. When a dead-end is
encountered, the number of variables that have not been assigned are counted. Partial
solutions with fewer unassigned variables are assumed to be better. We make no effort
to search after a dead-end is encountered to try to determine if any of the currently
unassigned variables could be assigned without creating further constraint violations.

In addition to enabling the use of standard constraint models and solvers, allowing
partial solutions has a number of further implications. First, our assumption that it is
easy to find sub-optimal solutions during the elite solution initialization remains true:
any partial solution is a sub-optimal solution. Second, because our elite solutions may
be partial solutions, it is necessary, as noted above, that our procedure for searching
from elite solutions is general enough to handle partial solutions. Third, since the cost
function is the number of unassigned variables, reducing the bound on the cost function
is not constraining and has no impact on the constraint-based search. We expect this
to affect the relative performance of the global and local bound policies. Finally, on a
technical level, comparing partial solutions means that rather than evaluating the sub-
optimal solutions found by the solver, we must evaluate the dead-ends. In ILOG Solver,
this is implemented using the trace mechanism to “catch” each fail.

3 Empirical Studies

In this section, we present experiments that apply MPCS to a constraint optimization
and a constraint satisfaction problem: respectively, job shop scheduling and quasigroup-
with-holes completion.

3.1 The Job Shop Scheduling Problem

An n × m job shop scheduling problem (JSP) contains n jobs each composed of m
completely ordered activities. Each activity, ai, has a pre-defined duration, di, and a
resource, ri, that it must have unique use of during its duration. There are also m re-
sources and each activity in a job requires a different resource. A solution to the JSP
is a sequence of activities on each resource such that the makespan, the time between
the maximum end time of all activities and the minimum start time of all activities, is
minimized. The decision variant of the JSP asks if there is a solution for makespan D or
less. It is NP-complete [6]. We are interested in the optimization version of the problem:
given a maximum CPU time, return the best solution found.

Experimental Details Ten 20 × 20 random JSPs were generated using an existing
generator [21]. The routings of the jobs through the machines are randomly generated
and the activity durations are independently and randomly drawn from [1, 99].

For all algorithms, texture-based heuristics [2] are used to identify a resource and
time point with maximum competition among the activities and then choose a pair of
unordered activities, branching on the two possible orders. The heuristic is randomized
by specifying that the resource and time point is chosen with uniform probability from
the top 10% most critical resources and time points. When starting search from an elite
solution, the same code is used to choose a pair of activities to be sequenced and the
ordering in the solution is asserted. The standard constraint propagation techniques for
scheduling [15, 12, 13] are also used for all algorithms.

We experiment with five algorithms:

– Standard chronological backtracking denoted chron.
– Bounded backtracking with restart (bbt) following the same fail-bound sequence

used for the multi-point techniques. The algorithm is Algorithm 1 with a single
difference: line 12 is replaced by a copy of line 6. Every search is from an empty
solution, but the fail bound evolves as in multi-point search.

– Multi-Point Constructive Search. Three variations of MPCS are used correspond-
ing to the different ways to set the upper bound on the cost function: multi-point
with global bound, mpgb; multi-point with local bound, mplb; and multi-point with
adaptive bound, mp-adapt. We set p = 0.5, meaning that the computational effort is
evenly split between searching from an empty solution and searching from an elite
solution. In the metaheuristic literature, the size of the elite solution set is small,
typically between five and ten. We have followed this convention in all our experi-
ments by setting |e| = 8. The elite solutions are initially populated by independent
runs, limited to 1000 fails each, of a randomized algorithm that produces semi-
active schedules. No effort was made to tune these parameters: they were chosen
based on values often used in the metaheuristic community and intuition.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600

M
ea

n
R

el
at

iv
e

E
rr

or

Time (secs)

chron
bbt

mplb
mpgb

mp-adapt

Fig. 1. Mean relative error (MRE) relative to the best known solutions for each algorithm over
ten independent runs of ten problem instances.

As the heuristic is randomized, all algorithms are run ten times with aggregate re-
sults presented as described below. A time limit of 600 CPU seconds is given for each
run: algorithms report whenever they have found a new best solution allowing the cre-
ation of normalized run-time graphs. All algorithms are implemented in ILOG Sched-
uler 6.0 and run on a 2.8GHz Pentium 4 with 512Mb RAM running Fedora Core 2.

It should be noted that the only differences between bbt and the MPCS variations
is the maintenance and use of the elite solutions. In particular, the same heuristics,
propagation, and fail-bound sequence are used across these algorithms.

Results For each algorithm run we calculated the error at different time points relative
to the best known solution for the problem instance. The mean relative error (MRE) is
the arithmetic mean of the relative error over each run of each problem instance:

MRE(a, K, R) =
1

|R||K|

∑

r∈R

∑

k∈K

c(a, k, r) − c∗(k)

c∗(k)
(1)

where K is a set of problem instances, R is a set of independent runs with different
random seeds, c(a, k, r) is the lowest cost found by algorithm a on instance k in run r,
and c∗(k) is the lowest cost known for k.

Figure 1 demonstrates that multi-point search is a significant improvement in terms
of finding higher quality solutions over both chronological backtracking and bounded

backtracking with random restart. Statistical analysis1 is performed for time points
t ∈ {100, 200, . . . , 600}. The difference between bbt and mpgb and between bbt and
mp-adapt is statistically significant at all time points. The bbt algorithm performs sig-
nificantly better than mplb at t = 100 but significantly worse for t ≥ 300. Turning to
the MPCS variations, mplb is significantly worse than mp-adapt for t ≤ 400 and sig-
nificantly worse than mpgb at t ≤ 300. The mp-adapt algorithm is significantly better
than mpgb at all t ≥ 300.

3.2 The Quasigroup-with-Holes Completion Problem

An n × n quasigroup-with-holes (QWH) is a matrix where each row and each column
is required to be a permutation of the integers 1, ..., n and where some of the matrix
elements are filled in and others are empty. Finding a complete quasigroup requires
that all the empty cells (“holes”) are filled with consistent values. The problem is NP-
complete and bounded backtracking with randomized restart has been shown to be a
particularly strong performer on QWH problems [11].

Experimental Details For this experiment, we generated 100 balanced, order-30 QWH
problems (i.e,. n = 30) using a generator that guarantees the satisfiability of each in-
stance [1]. Ten sets of problem instances are generated with different numbers of holes,
m = {315, 320, . . . , 360}. These values were chosen to span the difficulty peak iden-
tified in the literature. For each value of m, ten problem instances are generated for a
total of 100 instances. Each algorithm was run ten times on each problem instance with
a limit on each run of 2,000,000 fails.

The same search framework as for the JSP was used, implemented in ILOG Solver
6.0 on the same machine. The only difference in parameters were for the MPCS vari-
ations where the limit to initialize each elite solution was set to 100 fails. All other
parameters (i.e., elite set size, fail-bound sequence, etc.) are identical to that used above
and no tuning was done. The search heuristics and constraint propagation techniques
obviously differ from those used in the JSP. The variable ordering heuristic randomly
chooses a variable with minimum domain size while the value ordering is random.
When starting search from an elite solution, a variable is chosen by the variable or-
dering heuristic and then the value that it is assigned to in the reference solution is
assigned if possible. If the value in the solution is not in the domain of the selected vari-
able the value ordering heuristic is used to randomly select a value. Global all-different
constraints with extended propagation [19] are placed on each row and column.

Results Each problem instance is attempted ten times by each algorithm. In Figure 2
and 3, we present the mean number of fails and mean run-time required for each sub-
set and algorithm: each point is the mean over ten independent runs of ten problem
instances. The MPCS variants perform very well, with mplb and mp-adapt incurring
over three times fewer mean fails and lower mean run-time on the hardest problems

1 All statistical results are measured using a randomized paired-t test [5] and a significance level
of p ≤ 0.005.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 310 320 330 340 350 360

M
ea

n
N

um
be

r o
f F

ai
ls

Number of Holes

chron
bbt

mpgb
mplb

mp-adapt

Fig. 2. Mean number of fails to solve order-30 problems in each subset. Each point on the graph
represents the mean of ten independent runs of the algorithm on ten problem instances.

compared to bbt. In fact, mplb and mp-adapt are significantly better than all other tech-
niques for m ≥ 325. In particular, the expected impact of the lack of propagation from
the cost bound is observed: unlike the JSP results, mplb now out-performs mpgb with
mp-adapt being slightly worse. The mpgb algorithm is significantly better than bbt only
on the easier problems (m ∈ {320, 325, 330, 360}). All these statistical results hold
for both the mean number of fails and the mean run-time. The bbt algorithm is signifi-
cantly better than chron in terms of the mean fails at m ≥ 335 but in terms of the mean
run-time only at m ≥ 350.

Table 1 presents the percentage of runs for each problem set and algorithm for which
a solution was found (recall that all problem instances are soluble). These numbers
mirror the mean fails reported in Figure 2 with mplb and mp-adapt finding solutions on
almost all of the runs. The fact that not all runs resulted in a solution means that the
results in Figures 2 and 3 are lower bounds on the true mean results.

4 Discussion

The empirical results demonstrate the MPCS performs very well on both constraint
optimization and constraint satisfaction problems. The central open question is an ex-
planation of the strong performance. There remains significant empirical work to be
done to develop such an explanation but we can make two related conjectures about

 0

 100

 200

 300

 400

 500

 600

 700

 310 320 330 340 350 360

M
ea

n
R

un
-ti

m
e

(s
ec

s)

Number of Holes

chron
bbt

mpgb
mplb

mp-adapt

Fig. 3. Mean run-time to solve order-30 problems in each subset. Each point on the graph repre-
sents the mean of 100 values: ten independent runs of the algorithm on ten problem instances.

problem structure that may be necessary for strong performance of MPCS and conduct
a preliminary experiment to seek support for these conjectures.

Conjecture 1: Solutions Cluster Given a search tree generated by chronological back-
tracking, we conjecture that good solutions tend to cluster together, meaning that few
backtracks and heuristic decisions are needed to move between some high quality so-
lutions. More formally, we conjecture that the cost difference between two solutions is
correlated with “tree distance:” the distance between the solutions in the search tree,
where distance might be measured, for example, by the number heuristic decisions
needed to move from one solution to the other in the tree. We have no direct evi-
dence for such clustering. However, clustering with a different definition of distance,
has been reported in the JSP [22] and for SAT problems [20]. Furthermore, such clus-
tering appears to be consistent with, and therefore may have a connection with, the
heavy-tailed phenomenon [10]. Finally, we can anecdotally report that during the ex-
ecution of chronological search for JSPs, it is not uncommon to observe long periods
where no new better solutions are found followed by a short burst where a number of
such solutions are found in a few seconds.

Conjecture 2: Solution Clusters Change The tree distance between a given pair of
solutions changes if the variable order changes. More formally, the tree distances be-
tween a given pair of solutions in different search trees are not highly correlated. Toy
examples can easily be generated where two sibling solutions in one variable order are

% of Runs Successful
Algorithm 315 320 325 330 335 340 345 350 355 360 All Hardest Sets

chron 100 82 76 66 68 58 78 78 97 90 79 71
bbt 100 84 76 71 85 71 90 99 100 100 88 82

mpgb 100 96 88 87 83 78 92 99 100 100 93 88
mplb 100 98 93 94 94 95 98 100 100 100 97 96

mp-adapt 100 97 89 90 98 95 98 100 100 100 97 95
Table 1. The percentage of runs for each subset for which a solution was found by each algorithm.
Also displayed is the percentages for all problems and for the 600 problems in the hardest problem
sets: 325-350. The highest percentage in each column is shown in bold.

far apart for the reverse order. It seems reasonable that such a phenomenon may exist
in practice, but again, we have no direct empirical evidence.

The combination of these conjectures leads to a possible explanation of the behaviour
of MPCS: solution clustering implies that search in the region of good solutions is likely
to find other good solutions; changing clusters implies that the randomized variable or-
dering makes it very likely repeated searches from a given elite solution will encounter
different solutions. Under this interpretation, bounded backtracking with random restart
may exploit Conjecture 1: when searching in an area devoid of good solutions (i.e., an
anti-cluster), search is restarted because there is a reasonable probability that the new
search will find a cluster. Bounded backtracking does not, however, exploit Conjecture
2 because good solutions are never purposely revisited. If this is true, then eliminat-
ing the (conjectured) changes in solution clusters should eliminate the advantage that
MPCS has over bounded backtracking. The simplest way to remove the possibility of
changing clusters is to remove the variability in variable ordering. Therefore, we make
the following hypothesis:

Hypothesis With a static variable ordering, MPCS will perform no better than bounded
backtracking with restart.

To test this hypothesis, we use lexicographic variable ordering for the QWH problems.
Note that even with a lexicographic variable ordering, searching from an elite solution is
unlikely to visit the same search states. The randomized value ordering means that once
the elite solution has been revisited and backtracking returns to a node, by definition, the
value assignment in the elite solution has already been explored. A random consistent
value is then chosen leading to a different order of exploration of the search tree.

Aside from the lexicographic variable ordering heuristic, all parameters, the value
ordering, the fail-bound sequence, and the maximum fail bound (i.e., 2,000,000) remain
as above. We present the mean number of fails and the mean run-time (Figures 4 and
5, respectively) to solve 100 order-27 QWH problems. As above there are ten problems
for each number of holes and we solve each problem ten times with each algorithm. The
mplb-lex algorithm failed to find a solution in 24 of the 1000 runs and bounded-bt-lex
similarly failed in 31 of the 1000 runs. The other algorithms found solutions in all runs.

The results support our hypothesis: mplb is statistically significantly better than bbt
(both in terms of the number of fails and the run-time) for all subsets with m ≥ 268,
while there are no significant differences in either measure between mplb-lex and bbt-

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 250 255 260 265 270 275 280 285 290 295 300

M
ea

n
N

um
be

r o
f F

ai
ls

Number of Holes

bbt-lex
mplb-lex

bbt
mplb

Fig. 4. Mean number of fails to solve order-27 problems in each subset. Each point on the graph
represents the mean of ten independent runs of the algorithm on ten problem instances.

lex for any of the subsets (even at a lower confidence level, p ≤ 0.01 – recall that our
standard measure of significance is p ≤ 0.005).

While our experimental results appear to strongly support our hypothesis, there are
a number of weaknesses with this experiment that suggest caution. First, we tested an
implication of two conjectures and therefore, on a logical basis, confirmation of our
hypothesis does not imply that the premises are true. By the contrapositive, disconfir-
mation of our hypothesis would place the validity of the conjectures in doubt, so, at
least, we can claim that our experiment has not shown the conjectures to be false. Sec-
ond, as can be observed from the differences in the performance of bbt and bbt-lex, the
static variable order has a large impact on search performance that cannot be attributed
to changing solution clusters. Our manipulation was somewhat blunt and observed dif-
ferences in performance may be caused by factors other than the conjectured change in
solution clustering. The effect of these factors may swamp the impact that we intended
to evaluate. With these caveats, our experimental results are consistent with our two
conjectures about the structure of search trees. More focused empirical work is neces-
sary to further test these promising conjectures and develop a true understanding of the
behaviour of multi-point constructive search.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 250 255 260 265 270 275 280 285 290 295 300

M
ea

n
R

un
-ti

m
e

(s
ec

s)

Number of Holes

bbt-lex
mplb-lex

bbt
mplb

Fig. 5. Mean run-time to solve order-27 problems in each subset. Each point on the graph repre-
sents the mean of ten independent runs of the algorithm on ten problem instances.

5 Future Work

The use of sub-optimal solutions to guide constructive search is not limited to the al-
gorithms presented in this paper. Inspired by work in the metaheuristics literature, we
are pursuing a number of alternative algorithmic methods, such as path relinking [7], in
which sub-optimal solutions can be used to guide constructive search.

One weakness in the current work is that no investigation of the different parameter
settings has been done. Experiments are underway to evaluate varying the proportion
of time spent searching from elite solutions (i.e., the p value), different sizes for the
elite set, different fail-bound sequences, and using limited discrepancy search rather
than chronological search. We hope to be able to develop a model of the behaviour of
the MPCS algorithms and an understanding of the characteristics of the problems and
search spaces where such algorithms perform well.

There are also a number of areas of future work in investigation of combinations of
MPCS with recent advances and in applying it to other constructive search formalisms.
In particular, the following directions seem promising:

– Recent work on adaptive variable ordering heuristics [18] notes that restarting re-
sults in more informed heuristics suggesting a good fit with the multi-point search.

– Large neighbourhood search [16, 8] and other iterative methods [4] already perform
repeated searches. A multi-point extension of these techniques is straightforward.

– Hybrid techniques [3] that mix different constructive search algorithms and meta-
heuristics can easily be extended to maintain elite solutions.

– Techniques that adaptively allocate computational resources to different search al-
gorithms have shown some impressive results [3]. Such techniques may be useful
in adaptively setting the algorithm parameters such as the p value.

– Multi-point search techniques are naturally decomposable and therefore might be
exploitable in a multi-processor architecture.

– Constructive tree search is used in other search formalisms such as SAT solving
and mixed-integer programming. It would be interesting to see if the techniques
introduced in this paper can also be exploited in these areas.

6 Conclusion

This paper introduces multi-point constructive search. The search technique builds on
existing CP infrastructure, notably search heuristics, constraint propagation, and mod-
eling techniques and operates by maintaining a small set of elite solutions: high quality
solutions that have been encountered during the problem solving. The overall algorithm
consists of a series of resource-limited constructive searches either from an empty solu-
tion or from an elite solution. Depending on the outcome of the searches, new solutions
are inserted into the elite set, replacing existing solutions. Two sets of experiments
are conducted and significant performance gains relative to chronological backtracking
and bounded backtracking with random restart are observed both on constraint models
of optimization problems (job shop scheduling) and satisfaction problems (quasigroup-
with-holes completion). Finally, two conjectures are made that relate the performance of
multi-point constructive search to the clustering of high quality solutions in a search tree
and to the changes in this clustering with different variable orders. Though significant
work remains, preliminary experimental evidence is consistent with the conjectures.

The contributions of the paper are:

1. The introduction of multi-point constructive search.
2. The introduction of a technique to restart constructive search from an existing so-

lution that exploits existing variable ordering heuristics.
3. The demonstration of significant search performance gains resulting from multi-

point search for both constraint optimization and constraint satisfaction problems.
4. Empirical evidence that is consistent with two conjectures regarding the relation

between the clustering of solutions in search trees and the performance of multi-
point constructive search.

References

1. D. Achlioptas, C.P. Gomes, H.A. Kautz, and B. Selman. Generating satisfiable problem
instances. In Proceedings of the Seventeenth National Conference on Artificial Intelligence,
pages 256–261, 2000.

2. J. C. Beck and M. S. Fox. Dynamic problem structure analysis as a basis for constraint-
directed scheduling heuristics. Artificial Intelligence, 117(1):31–81, 2000.

3. T. Carchrae and J.C. Beck. Low knowledge algorithm control. In Proceedings of the Nine-
teenth National Conference on Artificial Intelligence (AAAI04), pages 49–54, 2004.

4. A. Cesta, A. Oddi, and S.F. Smith. A constraint-based method for project scheduling with
time windows. Journal of Heuristics, 8(1):109–136, 2002.

5. P. R. Cohen. Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge,
Mass., 1995.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York, 1979.

7. F. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: advances and appli-
cations. In G.C. Onwubolu and B.V. Babu, editors, New Optimization Techniques in Engi-
neering. Springer, 2004.

8. D. Goddard, P. Laborie, and W. Nuijten. Randomized large neighborhood search for cumu-
lative scheduling. In Proceedings of the Fifteenth International Conference on Automated
Planning and Scheduling (ICAPS05), 2005.

9. C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomiza-
tion. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-
98), pages 431–437, 1998.

10. C.P. Gomes, C. Fernàndes, B. Selman, and C. Bessiere. Statistical regimes across con-
strainedness regions. In Proceedings of the Tenth International Conference on the Principles
and Practice of Constraint Programming (CP2004), pages 32–46, 2004.

11. C.P. Gomes and D. Shmoys. Completing quasigroups or latin squares: A structured graph
coloring problem. In In Proceedings of the Computational Symposium on Graph Coloring
and Generalizations, 2002.

12. P. Laborie. Algorithms for propagating resource constraints in AI planning and scheduling:
Existing approaches and new results. Artificial Intelligence, 143:151–188, January 2003.

13. C. Le Pape. Implementation of resource constraints in ILOG Schedule: A library for
the development of constraint-based scheduling systems. Intelligent Systems Engineering,
3(2):55–66, 1994.

14. E. Nowicki and C. Smutnicki. An advanced tabu algorithm for the job shop problem. Journal
of Scheduling, 8:145–159, 2005.

15. W. P. M. Nuijten. Time and resource constrained scheduling: a constraint satisfaction ap-
proach. PhD thesis, Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, 1994.

16. L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In Pro-
ceedings of the Tenth International Conference on the Principles and Practice of Constraint
Programming (CP2004), pages 468–481, 2004.

17. S.D. Prestwich. Combining the scalability of local search with the pruning techniques of
systematic search. Annals of Operations Research, 115:51–72, 2002.

18. P. Refalo. Impact-based search strategies for constraint programming. In Proceedings of the
Tenth International Conference on the Principles and Practice of Constraint Programming
(CP2004), pages 557–571, 2004.

19. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), volume 1, pages 362–367,
1994.

20. J. Singer, I.P. Gent, and A. Smaill. Backbone fragility and local search cost peak. Journal of
Artificial Intelligence Research, 12:235–270, 2000.

21. J.-P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe. Contrasting structured and ran-
dom permutation flow-shop scheduling problems: search-space topology and algorithm per-
formance. INFORMS Journal on Computing, 14(2):98–123, 2002.

22. J.-P. Watson, J.C. Beck, A.E. Howe, and L.D. Whitley. Problem difficulty for tabu search in
job-shop scheduling. Artificial Intelligence, 143(2):189–217, 2003.

