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Abstract10

Wind farms are frequently located in proximity to human dwellings, natural habi-
tats, and infrastructure making land use constraints and noise matters of increasing
concern for all stakeholders. In this study, we perform a constrained multi-objective
wind farm layout optimization considering energy and noise as objective functions,
and considering land use constraints arising from landowner participation, environ-
mental setbacks and proximity to existing infrastructure. A multi-objective, con-
tinuous variable Genetic Algorithm (NSGA-II) is combined with a novel constraint
handling approach to solve the optimization problem. This constraint handling ap-
proach uses a combination of penalty functions and Constraint Programming to bal-
ance local and global exploration to find feasible solutions. The proposed approach
is used to solve the wind farm layout optimization problem with different numbers
of turbines and under different levels of land availability (constraint severity). Our
results show increasing land availability and/or number of turbines, increases en-
ergy generation, noise production, and computational cost. Results also illustrate
the potential of the proposed constraint handling approach to outperform existing
methods in the context of evolutionary optimization, yielding better solutions at a
lower computational cost.
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Nomenclature11

Roman Symbols12

R Set of coordinates of noise receptors13

T Set of coordinates of turbines14

D Set of all direction-speed wind states15

a Turbine induction factor16

Af Octave-band A-weighting correction, dB17

AP Non-feasible polygon area, m2
18

Aw Octave-band noise attenuation, dB19

c Constraint20

CT Thrust coefficient of the turbine21

D Diameter of turbine rotor, m22

d Distance between a turbine that violates a constraint and the closest feasible23

region24

f Objective function25

g Amount of constraint violation26

l Number of variables27

LW Turbine sound power emittance, dB28

m Number of constraints29

n Number of objective functions30

nT Number of turbines31

ngen Total number of generations32

nnf Number of infeasible turbines33

nreg Number of turbines violating regulatory constraints34

pd Wind state probability35

rr Radius of turbine rotor, m36

RAEP Penalty coefficient for energy objective function37

RSPL Penalty coefficient for sound objective function38

t Current generation index39
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u Downstream wind speed, m/s40

u0 Upstream wind speed, m/s41

ua Wind speed behind turbine rotor, m/s42

Acronyms43

AEP P Penalized annual energy production objective function44

SPLP Penalized sound pressure level objective function45

AEP Annual Energy Production46

CHCP Constraint Handling via Constraint Programming47

CP Constraint Programming48

GA Genetic Algorithm49

MD Maximum Distance50

MIP Mixed Integer Programming51

NSGA-II Non-dominated Sorting Genetic Algorithm-II52

SPL Sound Pressure Level53

WFLO Wind Farm Layout Optimization54

Greek Symbols55

α Turbine entrainment factor56

φ Domain feasibility percentage57

1. Introduction58

Installed capacity for generating electricity from wind has seen a significant in-59

crease during the past decade [1–3]. In contrast to these growing trends, wind energy60

still faces resistance to being widely used onshore, due to health and environmental61

concerns. Although it is not proven that the noise production of turbines can have62

negative health impact, a number of jurisdictions have established regulations that63

limit noise emissions [4–6].64

Wind farm design can be an iterative, lengthy process, in which designers have to65

check for compliance with land use constraints and environmental restrictions. Tra-66

ditionally wind farm designers and researchers have considered energy or profit as67

the objective functions to be maximized [7, 8], while some included other constraints68

such as land use, setbacks, noise limits, and terrain complexity in their optimization69

model [9–14]. Among these constraints, however, noise production of turbines has70
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been considered as an objective function together with energy generation, making71

the problem a multi-objective optimization [15–17]. This consideration elucidates the72

nature of trade-off between energy generation and noise production as highly depen-73

dent characteristics of wind farms. With the goal of further exploring this trade-off74

and proposing a more efficient optimization approach, the focus of this study is on75

multi-objective optimization considering energy generation and noise production as76

objective functions, while taking land use constraints into account.77

Stochastic metaheuristics such as Genteic Algorithms (GAs) [18] and Particle78

Swarm Optimization (PSO) [19] are the most common approaches for the wind farm79

layout optimization problem [7, 8, 20, 21]. In addition, deterministic heuristics such80

as the Extended Pattern Search (EPS) approach of Du Pont and Cagan [22] are also81

used. Donovan [23, 24] and Fagerfjäll [25] introduced an alternative approach which82

uses mixed-integer programming (MIP) and solves the wind farm layout optimiza-83

tion (WFLO) problem by the traditional branch-and-bound method. Although MIP84

solvers are widely available in operation research software packages, they all have85

limitations solving non-linear, non-convex problems such as WFLO. Thus, Donovan86

and Fagerfjäll made some approximations in their wake models and simplified the87

problem at the expense of accuracy in the solutions. Archer et al. [26] improved the88

accuracy of the simplified wake model by introducing a wind interference coefficient,89

while Turner et al. [27] suggested more accurate linear and quadratic mathematical90

optimization models that can be solved by MIP solvers. The accuracy problem was91

resolved by Zhang et al. [17], who proposed the first Constraint Programming (CP)92

and MIP models that incorporated the full non-linearity of the problem. Despite93

these advances in the solution of the WFLO with mathematical programming mod-94

els, all of them use a discretized domain to solve the problem, a feature that can lead95

to suboptimal solutions. Moreover, these state-of-the-art MIP models [17, 27] still96

suffer from limitations on problem size and turbine density, e.g., typically discretiz-97

ing the wind farm into only 100 − 400 potential turbine locations. To address the98

limitations associated with mathematical programming, Guirguis et al. [28] recently99

proposed a continuous-variable, gradient-based, non-linear optimization approach100

that relies on exact gradient information to solve the WFLO problem. The authors101

showed that this approach outperforms the current mathematical programming ap-102

proaches.103

One challenge to the use of stochastic algorithms to solve multi-objective opti-104

mization problems is a technique to ensure feasible solutions. Typically, stochastic105

algorithms search through both feasible and infeasible space, with the possibility106

that the lowest cost solution found will fail to satisfy some hard constraints. Penalty107

functions are the most widely used approach to bias evolutionary algorithms toward108
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feasible solutions due to their simplicity, applicability, and strong theoretical basis109

[29]. This approach adds a function of constraint violations to the objective functions110

recasting the constrained problem as unconstrained. Thus, penalty functions can be111

used for constraint handling, regardless of the optimization method that solves the112

recast unconstrained optimization problem. When penalty functions are used with113

evolutionary algorithms, there is no need for an initial feasible population, which is114

by itself NP-hard to compute for many problems.115

However, the penalty function approach has several limitations. When a penalty116

function penalizes the objective functions of a solution, it is unlikely for that solution117

to pass through to the next generation. As a result, the penalty function approach118

favors global exploration when dealing with infeasible solutions, potentially slowing119

convergence when the solution lies on the feasibility boundary. Although previous re-120

search works (e.g., [30]) have tried to address this issue, none of them have suggested121

what we term local exploration: an approach to generate new feasible solutions in the122

neighborhood of the current infeasible solution. In contrast, we use the term global123

exploration to refer to the search for new solutions elsewhere in the search space.124

With these definitions, our goals in this work are to improve the ability to solve125

continuous, multi-objective WFLO problems through enhancement of the penalty126

function approach with an efficient local exploration approach.127

Other approaches based on multi-stage optimization or adaptive operators have128

been used for constraint handling with evolutionary algorithms, with the most recent129

of these approaches proposed by Elsayed et al. [31]. At each generation, multiple130

search operators are used and the appropriate combination of these search operators131

is determined adaptively. Oh et al. [32] also suggested a general constraint handling132

approach in which the subset of constraints that plays a key role in feasibility within133

a certain tolerance is selected and handled before the other constraints. This tol-134

erance is specified by statistics on feasible solutions and several predefined criteria.135

The selected constraints are handled first to guide the solution set toward the feasible136

region. Constrained multi-objective optimization problems can also be tackled based137

on constrained-domination [33]. In these methods, an extended Pareto dominance138

criterion considers constraint violations as a second-tier dominance check, poten-139

tially demoting infeasible solutions to a lower non-domination rank [34]. A more140

comprehensive approach for constraint-domination [35] ranks the solutions based141

on their objective function values, constraint violations, and a combination of ob-142

jective function values and constraint violations. A recent study by Jain et al. [36]143

uses Deb’s constraint-domination approach [34] together with a reference-point based144

non-domination sorting. Mohamed et al. [37] modified Deb’s constraint handling ap-145

proach to consider the sum of constraint violation as a second metric to handle the146
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constraints. All the aforementioned approaches have had an acceptable performance147

when applied to different benchmark or engineering problems; however, they are all148

based on biasing the search towards the feasible region by discarding infeasible solu-149

tions.150

Some previous studies have employed Constraint Programming (CP) to improve151

the performance of evolutionary optimization algorithms. In a study by Wang et al.152

[38] a CP-based GA is developed to solve the resource portfolio planning of make-to-153

stock products problem. They formulated the problem as a non-linear mixed integer154

programming (MIP) and solved it using GA. The infeasible solutions that are gener-155

ated in the recombination process of the GA are repaired by the CP model that finds156

a feasible solution in proximity with the infeasible solution in the objective space. In157

a recent study by Di Alesio et al. [39] GA and CP are combined to support stress158

testing of task deadlines. After each generation, the GA passes the new generation159

to the CP model, which modifies the solutions, while considering the constraints.160

Zhu et al. [40] proposed a combination of GA and boolean CP for solving course of161

action optimization in Influence Nets. One aspect of algorithm behavior that these162

studies failed to analyze is the extent to which the CP search reduces the diversity of163

the population. In other words, it is not clear the extent to which local exploration of164

CP prevents the optimization algorithm from performing global exploration. Thus,165

it is necessary to investigate the potential of using an alternative global exploration166

constraint handling approach as a complement for CP.167

In this study, a novel approach is proposed for constrained multi-objective, con-168

tinuous problems, by hybridizing Constraint Programming and penalty functions for169

constraint handling. The proposed approach solves the optimization problem with170

the NSGA-II algorithm, launching sub-problems to repair infeasible solutions given171

a strict computational budget. Infeasible solutions that could not be repaired with172

the given computation budget are handled by standard dynamic penalty operators.173

By leveraging Constraint Programming methods as a constraint handling operator174

within Evolutionary Algorithms, we perform a combination of global exploration and175

local exploitation and improve the efficiency of the optimization algorithm without176

adding to the computational cost.177

The proposed approach is used for wind farm layout optimization under land-use178

constraints. The WFLO problem is formulated to consider energy generation (maxi-179

mize), noise levels (minimize), and compliance with land-use and setback constraints,180

extending previous work of Kwong et al. [15, 16]. Results show that the convergence181

rate for the proposed CP/Penalty hybrid outperformed that of the Penalty-only ap-182

proach within the same run-time. In the context of the WFLO problem, results show183

that in the most constrained case studied in this work, annual energy production is184
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increased by 50 MWh and average noise received by noise receptors is reduced by185

0.42 dBA compared to solutions found by handling optimization constraints with186

penalty operators only.187

2. Constrained WFLO Problem Formulation188

In this problem, the goal is to maximize the energy generation of a wind farm,189

while minimizing the noise levels estimated at any residence inside the wind farm or190

in its neighborhood.191

In order to calculate energy generation of the wind farm, changes in the wind192

speed due to the interaction of multiple wake regions needs to be understood. This193

understanding can provide us with the wind speed profile inside the wind farm.194

Finally, Annual Energy Production (AEP) of wind farm can be calculated based on195

wind speed profile and power generation of turbines.196

To calculate wind speed inside a single wake region, Jensen’s wake model [41] is197

used. The key assumption in this model is that the wake area immediately behind198

the turbine rotor is equal to the sweeping area of the turbine. Based on the mass199

conservation principle, and assuming a linear expansion of the wake profile, the wind200

speed (u) at an arbitrary distance (x) downstream of the turbine can be written as,201

u = u0

(
1− a r2r

(rr + αx)2

)
, (1)

where u0 is the upstream wind speed, rr is the radius of the turbine, a is the tur-202

bine induction factor, and α is the turbine entrainment factor calculated using the203

following empirical correlation,204

α =
0.5

ln Z
Z0

, (2)

where Z is the turbine hub height and Z0 is terrain roughness. In Equation 1, turbine205

induction factor is defined as,206

a = 1− ua
u0

(3)

where ua is the wind speed immediately after turbine rotor. Jensen [41] correlated207

the turbine induction factor (a) to the thrust coefficient of turbine (CT ) as,208

CT = 4a(1− a) (4)

where CT is often provided by turbine manufacturer.209

The above analysis is valid for a single wake region only. To take the effect of210
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multiple wake interactions into account, a commonly used approach [42–44] is to211

assume that the total kinetic energy deficit at a any location inside the wind farm212

is the sum of the kinetic energy deficits caused by each single wake affecting that213

location. Mathematically, the wind speed at an arbitrary location i that is affected214

by the wake region of k upstream turbines can be calculated as,215

(u0 − ui)2 =
k∑

j=1

((u0 − uij))2 , (5)

where uij is the wind speed at location i if this location was only affected by the216

wake region of turbine j. The value of uij can be determined using Eq. 1. In this217

work, we have used the kinetic energy deficit approach for wake combination (Eq. 5)218

and Jensen’s wake model (Eqns. 1, 2, 3, and 4 ) to estimate the wind speed profile at219

any point inside the wind farm. The rational behind this modelling choice, besides220

its wide adoption in the relevant literature, is that WFLO is concerned with mid-221

and far-wake behavior, while more detailed (and mathematically complex) models of222

wind turbines provide more information about near-wake behavior. Hence, despite223

the limiting assumptions (flat terrain, uniform thrust, infinite number of blades,224

among others) to which this modelling approach owes its mathematical simplicity,225

it has been widely used in the literature on wind farm layout optimization (e.g.,226

[13, 16, 45, 46]), and it has been reported to be reasonably accurate [47, 48].227

In addition to wind speed profile, turbine characteristics together with the mete-228

orological wind speed data are needed to calculate AEP. Tables 1 and 2 show turbine229

characteristics and power generation respectively. For the wind resource, this work230

implements the distribution defined by Kusiak et al. [49], which utilizes 24 wind231

directions in 15◦ intervals and 43 wind speeds from 4 m/s to 25 m/s in 0.5 m/s232

intervals. Each direction-speed is assigned a probability and Fig. 1 shows the dis-233

tribution of these direction-speed probabilities. Based on this information, AEP can234

be calculated as,235

AEP (T) =

nT∑
i=1

∑
d∈D

Pi,d pd, (6)

where T is the set of turbine coordinates, nT is the number of turbines, D is the set236

of wind states, Pi,d is the power generation of turbine i at wind state d, and pd is the237

annual probability of wind state d (i.e. wind speed and direction).238

In wind farm layout design, all residences inside or in the neighbourhood of wind239

farm are potential noise receptors and sound level needs to be measured at them.240

Following the previous work [15, 16, 46, 50, 51], we use ISO-9613-2 standard [52],241
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Table 1: Wind turbine parameters.

Parameter Value

Turbine Hub Height (Z) 80 m
Terrain Roughness Length (Z0) 0.1 m
Rotor Radius (rr) 38.5 m
Thrust Coefficient (CT ) 0.8
Cut-in Speed 4 m/s
Cut-off Speed 25 m/s
Rated Speed 15 m/s
Rated Power 1.5 MW
Average Noise Production (Lw) 100 dB

Table 2: Power output of a single turbine as a function of wind speed.

Wind Speed (m/s) 4 5 6 7 8 9

P (kW) 63.44 204.30 345.16 486.02 626.88 767.74

Wind Speed (m/s) 10 11 12 13 14 15-25

P (kW) 908.60 1049.46 1190.32 1331.18 1472.04 1500.00

to calculate the equivalent continuous downwind octave-band sound pressure level242

(SPL) at each noise receptor and for each sound source. The countinous audiable243

frequency range is discretized to eight octave bands with nominal mid-band frequen-244

cies from 63 Hz to 8 kHz and SPL for each octave-band (Lf ) can be written as245

Lf = LW −Aw(f), where LW is the octave-band sound power emitted by the source,246

and Aw(f) is the octave-band attenuation. Table 3 shows the values of LW for the247

studied turbine at different wind speeds. The attenuation term, i.e., Aw(f), is the248

sum of attenuation effects caused by geometrical divergence, atmospheric absorption,249

ground effects, sound barriers, and miscellaneous effects. In the present work, we250

followed the previous work by assuming negligible attenuation effects due to sound251

barriers and miscellaneous effects. The readers are referred to [52] for comprehensive252

details on how to calculte attenuation term. Sine the hearing system of human is253

more sensative to certain frequencies, the SPL calculated for each octave-band has254

to be converted to an effective SPL. Among several octave-band weightings available255

for this conversion, A-weighted sound pressure levels [6] are customarily used in wind256

9



Figure 1: Wind rose showing the distribution of speed-direction probabilities.

Table 3: Sound power emittance (LW ) of turbine at different wind speeds.

Wind Speed (m/s) 3 7.2 7.9 8.6 9.3 10 11.5 12.9 25

LW (dB) 97.1 97.1 99.7 102.0 103.4 104.0 104.0 104.0 104.0

farm layout design. The equivalent continuous A-weighted downwind sound pressure257

level at a specific location is calculated as,258

SPL(T,R) = 10 log

(
nT∑
i=1

8∑
j=1

10
0.1

(
L
(i,j)
f (T,R)+A

(j)
f

))
, (7)

where R is the set of noise receptor coordinates. Further details for the calculation259

procedure are available in the ISO-9613-2 document [52].260

Two constraints are considered for this problem, namely proximity and regula-261

tory constraints. The proximity constraint restricts the distance between each pair262

of turbines to be at least five times their rotor diameter. This constraint is handled263

by calculating the Euclidean distance of turbines from each other in Cartesian co-264
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ordinates. Thus, turbine i with coordinates (xti , yti) is feasible if its distances from265

each of the other turbines is greater than five times its diameter,266

c1(T) = 5D −
√

(xti − xtj)2 + (yti − ytj)2 ≤ 0, ∀j (8)

where D is the diameter of turbine i.267

The regulatory constraints disallow placement of turbines in proximity with hu-268

man dwellings, natural habitats, and infrastructure. We define the areas that tur-269

bines are forbidden to be placed as non-feasible areas of the domain. We assume270

that all the non-feasible areas of the domain can be modeled as convex polygons.271

There are several well-known approaches in the literature to determine if a point272

is inside a polygon [53–55]; however, they are not convenient for this application273

because they include many conditionals and/or inverse trigonometric functions. In274

this study, we used an approach based the area of the non-feasible polygon. All275

the non-feasible polygons are considered to be convex and the non-convex polygons276

are divided into multiple convex polygons. The main idea is to draw lines from the277

location of a turbine to the vertices of the polygon, such that each adjacent pair of278

vertices creates a triangle with the location of turbine. The summation of the areas279

of these triangles is compared to the area of the polygon and if they are the same, the280

turbine is inside the non-feasible polygon. Thus, turbine i with coordinates (xti , yti)281

is feasible if for any non-feasible polygon called Pk,282

c2(T) = APk
− Aik < 0, ∀k (9)

where APk
and Aik are the area of the non-feasible polygon and the summation of283

the areas of the aforementioned triangles, respectively. APk
and Aik are calculated284

in Eq. 10 and Eq. 11 using the so-called shoelace formula [56],285

APk
=

1

2

[
n∑

j=1

|(xvjyvj+1
− yvjxvj+1

)|

]

+
1

2
|(xvnyv1 − yvnxv1)|

(10)

286

Aik =
1

2

n∑
j=1

|xti(yvj − yvj+1
) + xvj(yvj+1

− yti)

+xvj+1
(yti − yvj)|+

1

2
|xti(yvn − yv1) + xvn(yv1 − yti)

+xv1(yti − yvn)|

(11)
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where j ∈ {1, 2, · · · , n}, n is the number of the non-feasible polygon’s vertices and287

(xvj , yvj) are the coordinates of each vertex.288

289

3. Multi-Objective Optimization with NSGA-II290

A general multi-objective minimization problem can be formulated as,291

minimize
x

f1(x), f2(x), · · · , fn(x)

subject to ci(x) ≤ 0, i = 1, · · · ,m
(12)

where x = [x1, x2, · · · , xl] and n, l, and m are the cardinalities of objective functions,292

variables, and constraints, respectively. For a multi-objective minimization problem,293

it is unlikely that a solution can minimize all the objective functions simultaneously.294

In this case, there exists a solution set for which none of the objective functions can295

be improved without degrading the value of another. This set of optimal solutions296

is called non-dominated solution set (Pareto set).297

As details of the NSGA-II genetic algorithm for unconstrained, multi-objective298

optimization problems can be found elsewhere (e.g., [34]), here we focus on the299

key non-domination sorting operation, which is based on two different metrics, non-300

domination rank and crowding distance. Non-domination ranking aggregates multi-301

ple objective values for each solution into a single rank indicator for each subset of302

the population that can be considered as equally desirable. To this end, an integer303

rank (starting at 1) is assigned to the non-dominated solutions. At any given rank304

level j, the rank-j solutions are found by searching for the non-dominated solution305

set after removing all the k-ranked solutions, k = 1, . . . , j − 1, from consideration.306

Crowding distance, on the other hand, is used to preserve diversity in the population307

and improve convergence. For a given solution, its crowding distance is calculated308

as its distance to the closest solution with the same rank. To discriminate between309

competing solutions, NSGA-II uses the non-domination rank as the primary objec-310

tive and prefers solutions with greater crowding distance to break ties. In the case of311

a double tie, when solutions have same non-domination rank and crowding distance,312

both solutions are considered equally desirable.313

4. Constraint Handling314

In this section, we discuss the two approaches used to handle the constraints: dy-315

namic penalty functions and hybridization of CP with the dynamic penalty approach316

that we call Constraint Handling via Constraint Programming (CHCP).317
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4.1. Penalty Functions Approach318

Dynamic penalty functions [29] penalize the objective functions of the infeasible
solutions with penalty coefficients that increase as the optimization process advances.
The penalized objective functions using dynamic penalty approach can be formulated
as,

fP
1 (x) = f1(x) +

m∑
i=1

(max(0, gi(x)))2
(

t

ngen

)2

Rf1,i

fP
2 (x) = f2(x) +

m∑
i=1

(max(0, gi(x)))2
(

t

ngen

)2

Rf2,i

...
319

fP
n (x) = fn(x) +

m∑
i=1

(max(0, gi(x)))2
(

t

ngen

)2

Rfn,i (13)

where fP
1 , f

P
2 , · · · , fP

n are the penalized objective functions, Rf1,i, Rf2,i, · · · , Rfn,i are320

the penalty coefficients for constraint i and different objective functions, t is the cur-321

rent generation number and ngen is the total number of generations according to the322

termination criterion. In Eq. 13, the term that depends on the current generation323

number is squared following [57].324

If we assume the proximity constraint as the first constraint, g1 is the first con-325

straint function and shows the amount of proximity constraint violation. This func-326

tion can be defined as327

g1 =

nT−1∑
i=1

nT∑
j=i+1

max

(
0, 5D −

√(
xti − xtj

)2
+
(
yti − ytj

)2)
, (14)

where nT is the number of turbines and {(xti , yti), (xtj , ytj)} are the coordinates of328

each pair of turbines that violate the proximity constraint.329

In a similar fashion to the proximity constraint, we can assume the regulatory330

constraint as the second constraint and calculate g2 as the amount of regulatory331

constraint violation, defined as the summation of the minimum distances of the332

infeasible turbines to the sides of the non-feasible areas in which they are located.333

Hence, for a polygon with n sides the distance of turbine i from side j can be defined334

as the height of the triangle formed by the turbine’s location point and two vertices335

of side j. We calculate this height by dividing the area of the triangle by the base of336

the triangle, i.e., side j,337

di,j =
|xti(yvj − yvj+1

) + xvj(yvj+1
− yti) + xvj+1

(yti − yvj)|√
(xvj − xvj+1

)2 + (yvj − yvj+1
)2

(15)
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where j ∈ {1, 2, · · · , n}. Finally, g2 can be defined as,338

g2 =

nreg∑
i=1

min{di,1, di,2, · · · , di,n} (16)

where nreg is the number of turbines that violate the regulatory constraint.339

The penalized objective functions are defined as,340

AEP P (T) = AEP (T) +
2∑

i=1

(max(0, gi))
2

(
t

ngen

)2

RAEP,i (17)

and341

SPLP (T,R) = SPL(T,R)

+
2∑

i=1

(max(0, gi))
2

(
t

ngen

)2

RSPL,i,
(18)

As an infeasible solution is penalized by the dynamic penalty approach, its chance342

to participate in the parent selection and recombination process decreases signifi-343

cantly. Thus, this infeasible solution is typically discarded by the GA and a new344

solution is generated in the next generation. As the cardinality of feasible solutions345

is significantly lower in highly constrained problems, using dynamic penalty function346

may result in a Pareto set with a low cardinality and/or diversity [29].347

4.2. Constraint Handling via Constraint Programming (CHCP)348

In this study, the CHCP approach introduced in our previous work [51] is ex-349

panded to be applicable to general optimization problems. The idea behind the CP350

model used in the CHCP approach is to find feasible solutions that are as close as351

possible to the corresponding infeasible solutions in the variable space. Since this352

model only searches the neighborhood of the infeasible solutions, its behavior is one353

of local exploration, as defined in Sec. 1. The rationale and main advantage of re-354

pairing the infeasible solutions is that the GA does not have to search for new feasible355

solutions, which potentially reduces computational cost in highly constrained spaces356

[58]. In addition, repairing infeasible solutions helps explore the boundary of the fea-357

sible region, making the CP model suitable for constrained problems, for which the358

optimal solutions exist at the boundary of the feasible space. However, the drawback359

of repairing the infeasible solutions is that it reduces the global exploration behavior,360

which may be desirable in some cases. Our proposed CHCP balances both local and361

global exploration behaviors by hybridizing the CP model with penalty functions.362

When an infeasible solution is generated, it is first handled by the CP model. If363
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the CP model cannot repair the solution, i.e., cannot find a feasible solution which364

is close enough to the infeasible solution in a certain amount of time, the infeasible365

solution is penalized by the dynamic penalty approach.366

The CP model of the proposed CHCP approach is formulated as,367

minimize
x

l∑
j=1

(
x∗j − xj

)2
subject to ci(x) ≤ 0, i = 1, · · · ,m

(19)

where x∗j is the value of variable xj in the infeasible solution under repair. The objec-368

tive function is the sum of squared Euclidean distances between the repaired solution369

and the current infeasible solution. The constraints for this subproblem are the same370

as those of the original optimization problem solved by the GA (i.e., Constraints 8371

and 9). Since it is common to use integer variables in commercially available CP372

solvers (in this work we use IBM ILOG CP Optimizer V12.6 [59]), as a matter of373

convenience, but without loss of generality, the domains of the optimization (input)374

variables are discretized solely for the purpose solving this subproblem.375

The CP subproblem, has three independent parameters, namely (a) the dis-376

cretization resolution used for the optimization variables, (b) the computation budget377

(e.g. time) allocated to solving the subproblem, and (c) the maximum acceptable378

value of the objective function of the CP subproblem. For simplicity, hereafter we379

call this parameter maximum distance. This parameter effectively determines the380

size of the neighborhood that is explored during the CP subproblem. An important381

measure of the CHCP approach, which depends on the above mentioned parameters,382

is the percentage of infeasible solutions that are repaired by the CP model. Here-383

after, we will refer to this quantity as CP percentage.384

A set of preliminary experiments with different benchmark problems were con-385

ducted to evaluate the effects of the above mentioned parameters on the CP percent-386

age [51, 58]. Based on these experiments, the domain of each variable is discretized to387

150 bins. Our experiments showed that a finer discretization increases the computa-388

tional cost, while CP percentage and optimization results do not change significantly.389

The time limit per call for the CP model is set to 10 seconds. Increasing the time390

limit increases the computational cost, while it does not affect CP percentage and391

optimization results. However, it was shown that maximum distance has a signifi-392

cant effect on the CP percentage and optimization results. Thus, in our experiments,393

the maximum distance is set to different values, while keeping the other parameters394

fixed.395

The above mentioned CP model of the CHCP approach can be formulated for396
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the WFLO problem as,397

minimize
(xti ,yti )

nnf∑
i=1

((
x∗ti − xti

)2
+
(
y∗ti − yti

)2)
,

subject to
√

(x∗tj − xti)2 + (y∗tj − yti)2 ≥ 5D,

∀j ∈ {1, 2, · · · , nT}, j 6= i,

Aik − APk
> 0 ∀Pk ∈ S,

(20)

where nnf is the number of infeasible turbines in an infeasible layout (i.e., the number398

of turbines that violate either the proximity or the regulatory constraint in an infea-399

sible layout), S is the set of all the non-feasible polygons, and (x∗ti , y
∗
ti

) and (xti , yti)400

are the current and repaired coordinates of the ith infeasible turbine respectively.401

5. WFLO Test Cases402

Tests are performed with an in-house C++ implementation of the NSGA-II algo-403

rithm and the CHCP approach uses the C++ interface of IBM ILOG CP Optimizer404

V12.6 [59] for the CP model. The code is compiled with the TDM-GCC version 4.7.1405

compiler under Linux Red Hat version 6.2 and is run serially on a Dell PowerEdge406

T420 Tower Server with 2 Intel Xeon E5-2400 processors and 164 GB of RAM.407

As described in [46, 50, 51], random wind farm test cases are generated with408

predefined feasibility percentages, as follows. Following the standard test cases in409

the literature, a domain of 3 km × 3 km square is considered for the wind farm.410

The feasibility percentage of a wind farm domain is the percentage of area available411

for turbine placement. This percentage is shown as φ from now on. The domain is412

divided 225 random convex polygons with similar areas. Some of these polygons are413

then labeled as non-feasible until the desired feasibility percentage (φ) is achieved.414

Based on industrial wind farm design experience, nine wind farm maps with415

φ = 70%, 80%, and 90% feasibility percentages (φ), and 5, 10, and 15 turbines416

(nT = 5, 10, and 15) are considered. Figure 2 shows the map of WFLO test case417

with φ = 80% and nT = 10. Shaded polygons are non-feasible. A noise receptor418

(indicated with a cross) is located randomly inside each non-feasible polygon. Thus,419

highly constrained domains contain more noise receptors.420

The population size and the number of generations for the GA are set based on421

a set of preliminary computational experiments. For φ = 70%, a population size of422

200 results in the best solutions, regardless of the number of turbines. Similarly, for423

φ = 80% and 90% the population sizes of 150 and 100 perform the best, respectively.424
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Based on these population sizes, the corresponding number of generations is set to425

keep the number of objective function evaluations constant.426

We followed Deb et al. [34] to set the NSGA-II parameters. The recombination427

and mutation probabilities are set to 0.95 and 0.05 respectively. Convergence of the428

optimization is determined by monitoring the changes in crowding distance for a429

certain number of generations. Based on our numerical experiments with a set of430

benchmark optimization problems from the literature [34, 36], we consider the opti-431

mization run to have converged if the variance of the crowding distance of solutions432

with rank 1 is less than 0.005 in the last 100 generations. In order to make the to-433

tal run-time insensitive to the hardware, we set a limit of 80, 000 objective function434

evaluations as a termination criterion.435

To account for the impact of randomness and the dependence of the penalty ap-436

proach on problem-specific penalty coefficients, 20 different random seeds and two437

different penalty coefficients, i.e., 40 runs, are used to solve each WFLO problem438

(e.g. 10 turbines and 70% feasibility). The experiments for the WFLO problem are439

conducted with different maximum distances for the CP model and hence different440

CP percentages. The 40 Pareto fronts that result from these experiments for each441

maximum distance are merged and an overall Pareto front is determined, containing442

the non-dominated solutions across all 40 runs. In this work, we have favoured this443

approach to study the performance of the algorithms, as opposed to obtaining an444

average or median Pareto front across all runs, given that such definitions are not445

straight forward to implement and interpret in multi-dimensional spaces [60]. More446

specifically, using an average Pareto front, however calculated, would result in an-447

alyzing solutions that are the result of arbitrary operations in the objective space,448

but that may not correspond to any feasible solution in the input space.449

6. Results and Discussion450

In this section, we analyze the performance of the proposed CHCP approach in the451

constrained WFLO problem. First, we characterize the behavior of CHCP through452

a parametric study of the maximum acceptable value of the objective function for453

the CP subproblem (maximum distance), and the number of infeasible solutions454

generated during the optimization, in response to changes in the maximum distance,455

number of turbines (i.e. problem size), and land availability (constraint severity).456

Second, we compare the performance of CHCP with dynamic penalty functions and457

discuss the implications of the results for wind farm design practice. Finally, we458

present our results in terms of CHCP’s ability to converge and computational cost459

for this problem.460
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Figure 2: Sample wind farm domain. Darker areas indicate regions where turbines cannot be
located. The marker (+) inside each region represents a noise receptor.

6.1. CHCP behavior461

The variation of the CP percentage with different maximum distances are com-462

pared for different number of turbines in Fig. 3. Each scatter point shows the CP463

percentage of a test case for a specific maximum distance. It is observed that decreas-464

ing the maximum distance decreases the CP percentage. As the maximum distance465

decreases, the CP model is forced to find feasible solutions closer to the infeasible466

solutions in the same time limit. When the CP model is unable to do so, it passes467

these solutions to the dynamic penalty operator, thus decreasing the percentage of468

solutions that are effectively handled by the CP subproblem (CP percentage).469

The performance of the CHCP approach on the constrained WFLO problem470

is evaluated in Tables 4 and 5. Table 4 compares the average number of infeasible471

solutions generated in 40 runs using different constraint handling approaches. For 5472

and 10 turbines, using the CHCP approach results in the generation of more infea-473
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Figure 3: CP percentage for different maximum distances and different number of turbines with all
the feasibility percentages (dynamic penalty is represented with a maximum distance of 0).
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Table 4: Average number of infeasible layouts generated per each run by the different constraint
handling approaches, for different WFLO test cases. Note that MD denotes the maximum distance
used in the CP model of the proposed CHCP approach.

nT φ Dynamic Penalty CHCP

MD = 50 MD = 100 MD = 1,000 MD = 10,000

5 70% 2,190 5,308 5,324 4,672 5,365
5 80% 514 1,084 1,200 1,330 1,475
5 90% 139 286 325 372 239

10 70% 3,056 7,556 5,478 6,203 7,578
10 80% 1,869 4,203 5,117 3,459 5,080
10 90% 2,663 2,372 3,809 2,922 3,662

15 70% 350,575 7,827 8,723 6,808 7,681
15 80% 416,098 5,857 5,665 5,552 7,212
15 90% 353,616 5,028 5,450 4,935 6,625

sible solutions compared to using dynamic penalty approach. The CHCP approach474

replaces the infeasible solutions with the closest feasible solutions that can be found475

within the allotted computation budget. As a result, the repaired solutions lie close476

to the feasibility boundary, thus making it more likely for the GA operators to gen-477

erate infeasible solutions through subsequent recombination and mutation operators.478

For 15 turbines, the number of infeasible solutions for the penalty approach increases479

significantly, while this number for the CHCP approach remains in the same order480

of magnitude as that of 5 and 10 turbines. As the number of turbines increases,481

more constraints are added to the domain and the probability of finding feasible so-482

lutions with the penalty approach decreases drastically. On the other hand, because483

the CHCP approach explores the boundary of the feasible space, it performs better484

in highly constrained domains. Thus, the CHCP has a more robust performance485

compared to the dynamic penalty approach from this point of view. Changes to the486

maximum distance do not show a general trend on the number of infeasible solutions487

for cases with different numbers of turbines or land availabilities.488

Table 5 shows the CP percentage for different constraint handling approaches.489

As expected, for the same maximum distance, when the number of turbines in-490

creases, the CP percentage decreases. An increase in the number of turbines, makes491

the problem more constrained. Hence, finding feasible solutions that are close to492

the infeasible solutions becomes harder for the CP model. Note, however, that for493

the largest maximum distance, almost all infeasible solutions were repaired by the494

CHCP step. This illustrates the interplay between the maximum distance and the495

optimization problem itself in the resulting CP percentage.496
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Table 5: Average of the CP percentages of each run for different constraint handling approaches
and different WFLO test cases. Note that MD denotes the maximum distance used in the CP
model of the proposed CHCP approach.

nT φ Dynamic Penalty CHCP

MD = 50 MD = 100 MD = 1,000 MD = 10,000

5 70% 0.0 20.5 41.8 77.8 99.4
5 80% 0.0 22.9 47.8 85.0 99.6
5 90% 0.0 19.1 39.5 84.4 97.2

10 70% 0.0 19.4 42.3 80.1 97.7
10 80% 0.0 19.5 39.1 76.1 96.3
10 90% 0.0 11.0 26.5 69.0 94.6

15 70% 0.0 18.4 31.5 71.4 94.3
15 80% 0.0 16.2 31.8 71.7 94.2
15 90% 0.0 9.8 22.4 67.6 93.9

6.2. Energy-noise trade-off for constrained WFLO497

Figures 4, 5, and 6 show the comparison of optimal Pareto sets found by different498

constraint handling approaches. In these figures, the horizontal axis is reversed with499

the purpose of locating the utopia point in the bottom left corner of each figure.500

Note that, for all the test cases except the test case with 10 turbines and 80% of land501

availability, there are CHCP setups that outperform the dynamic penalty approach.502

For the test case with 10 turbines and 80% of land availability, Fig. 5(b) shows503

that the Pareto set found by the dynamic penalty approach is slightly better than504

those obtained when having a maximum distance, i.e., within the same energy gen-505

eration, the noise production of the dynamic penalty approach is slightly lower than506

that of different CHCP setups. To investigate this issue further, Figure 7(a) shows507

the best Pareto fronts found by different setups of the CHCP approach (different CP508

percentages) and the Pareto fronts obtained in all 40 runs of the dynamic penalty509

approach. It can be observed that, in 38 of those 40 runs, the Pareto fronts obtained510

by CHCP outperform those obtained through dynamic penalties. However, there are511

2 runs of the dynamic penalty approach that make the final Pareto set obtained with512

the dynamic penalty approach slightly better than those of the CHCP approach.513

To explore the reason for these differences, the actual turbine layouts correspond-514

ing to these solutions, which corresponds to the points (AEP = 48.19 GWhr , SPL515

= 41.67 dBA), (AEP = 48.19 GWhr, SPL = 42.35 dBA), and (AEP = 48.19 GWhr,516

SPL = 43.68 dBA) in the objective space, obtained with dynamic penalty, MD =517

1,000, and MD = 10,000 respectively, are plotted and compared to each other in Fig.518

7(b). It is shown that the three layouts are similar with the main differences found519
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(a) nT = 5, φ = 70%

(b) nT = 5, φ = 80%

(c) nT = 5, φ = 90%

Figure 4: Comparison of constraint handling approaches for 5 turbines (horizontal axis is reversed
and φ shows the land availability percentage).
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(a) nT = 10, φ = 70%

(b) nT = 10, φ = 80%

(c) nT = 10, φ = 90%

Figure 5: Comparison of constraint handling approaches for 10 turbines (horizontal axis is reversed
and φ shows the land availability percentage).
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(a) nT = 15, φ = 70%

(b) nT = 15, φ = 80%

(c) nT = 15, φ = 90%

Figure 6: Comparison of constraint handling approaches for 15 turbines (horizontal axis is reversed
and φ shows the land availability percentage).
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in the turbines residing in Y ' 3000 and 2000 < X < 3000 for dynamic penalty520

case. This part of the domain is far from the non-feasible areas, which means that521

optimization variables with values corresponding to these coordinates would be far522

from the boundary of the feasible domain. Hence, the CHCP approach did not ex-523

plore this area to the extent that the dynamic penalty approach did.524

To study the effect of number of turbines and land availability on energy gener-

(a) Solution comparison (b) Layout comparison

Figure 7: Comparison of the all solutions found by the dynamic penalty approach in 40 runs with
the Pareto fronts of the different setups of CHCP approach and Layout comparison for Dynamic
Penalty (red squares), MD = 1,000 (black circles), and MD = 10,000 (purple triangles) with same
energy generation and different noise production.

525

ation and noise production, the best performing maximum distances are compared526

to study the effect of number of turbines and land availability on energy generation527

and noise production. Figure 8(a) compares the Pareto set of the best performing528

maximum distance for 15 turbines and different levels of land availability. It is shown529

that, as the land availability increases, energy generation is increased and noise lev-530

els at the receptors are decreased. Similarly, Fig. 8(b) compares the Pareto of the531

best performing maximum distance for 70% land availability and different number532

of turbines. As the number of turbines increases, energy generation increases signif-533

icantly. However, it is possible to find layouts that have relatively the same level of534

noise production specially when comparing 10 turbines and 15 turbines Pareto fronts.535

This discussion on the results shown in Fig. 8 is in line with previous discussions536

published in the literature, readers are referred to [46, 50] for more details.537

As the final point in our energy-noise trade-off discussion, optimization result538

for the test case with 15 turbines, 70 percent land availability, and using CHCP with539
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(a) 15 turbines and different land availabilities. (b) φ = 70% and different number of turbines

Figure 8: Comparison of the best performing CP percentage for (a) 15 turbines and different land
availabilities and (b) 70% land availability and different number of turbines.

MD = 10,000 are shown in Fig. 9. In this figure, the wind farm domain has been540

discretized into 100 m × 100 m square cells, and each square has been colored based541

on the number of turbines in all Pareto optimal layouts that have fallen into each cell,542

divided by the maximum number of turbines that any cell received. Thus, darker543

cells indicate that more turbines were located in this region among all the layouts544

in the final Pareto set. Overall, Fig. 9 is a way to visually represent a summary of545

all Pareto-optimal layouts, illustrating which regions of the wind farm domain are546

correlated with a higher probability of Pareto optimality. Of course, each Pareto-547

optimal layout could be visualized individually, though they are not show them here548

for the sake of brevity.549

550

6.3. Convergence and computational cost551

Tables 6 and 7 show the computational cost and convergence of the different con-552

straint handling approaches for the WFLO problem. Table 6 provides evidence that553

the CHCP approach has lower run-times than the penalty approach. In addition,554

the CHCP approach results in better convergence, as suggested in Table 7 by the555

number of runs that met the convergence criterion set forth in Section 5. Note also556

that the run-time and convergence behavior of the CHCP does not have a defined557

trend with respect to the maximum distance.558

In summary, our results show that the CHCP approach has a better overall per-559

formance compared to penalty functions when applied to constrained, multi-objective560

WFLO problem studied. The implementation of CHCP approach increased annual561
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Figure 9: Final optimization result for 15 turbines, 70 percent land availability, and using CHCP
with MD = 10,000.

energy generation of wind farm by a minimum value of 50 MWh for the most con-562

strained case, while reducing the noise received by the noise receptors 0.42 dBA. This563

improvement is achieved while the computational cost of this approach is similar to564

the previous approaches.565

The parameters of the CHCP approach can be tuned in such a way that its per-566

formance is optimized. The most important characteristic of the proposed CHCP567

approach is the maximum distance. There is a certain maximum distance for each568

of the investigated problems for which the proposed CHCP approach performs the569

best. This maximum distance varies for different problems, though it was observed570

that more often higher maximum distances were preferable.571

7. Conclusion572

In this study, the multi-objective, constrained wind farm layout optimization573

(WFLO) problem was solved with a novel constraint handling approach. The energy574

generation was maximized and the noise received by the stakeholders was minimized,575

while land use constraints were satisfied.576

The novel constraint handling approach, Constraint Handling via Constraint Pro-577

gramming (CHCP) was used with Genetic Algorithms to improve optimization effi-578

ciency. This approach used a Constraint Programming (CP) model to repair infea-579
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Table 6: Average run-time (hr) per each run by the different constraint handling approaches, for
different WFLO test cases. Note that MD denotes the maximum distance used in the CP model of
the proposed CHCP approach.

nT φ Dynamic Penalty CHCP

MD = 50 MD = 100 MD = 1,000 MD = 10,000

5 70% 15.26 14.24 15.70 14.81 13.97
5 80% 15.77 17.02 17.95 16.92 16.36
5 90% 17.59 15.59 19.29 17.33 14.56

10 70% 55.42 48.77 47.80 50.03 58.93
10 80% 61.17 54.04 55.45 54.61 63.47
10 90% 68.56 58.96 60.49 63.22 66.96

15 70% 119.30 106.85 108.82 109.25 129.89
15 80% 124.53 117.53 113.20 116.53 133.04
15 90% 156.82 141.65 138.92 147.02 165.72

sible solutions by finding the closest feasible solutions with a given computational580

budget. The infeasible solutions were penalized if the CP subproblem could not be581

solved in the allotted time.582

Solving the WFLO problem with CHCP approach resulted in finding layouts583

with higher energy generation, while lower noise was received by wind farm neigh-584

bors, specially for highly constrained problems. More importantly, this improvement585

was achieved in a lower computational time and better convergence rate compared586

to the previously used approaches. We expect that considering continuous variable587

Constraint Programming sub-problems, which might require using a different solver,588

such as SCIP [61] can further improve the performance of CHCP approach.589

Future work on the WFLO problem could focus on expanding the proposed al-590

gorithm to consider terrain complexities such as hills. This consideration usually591

requires computationally expensive CFD simulations. However, the lower compu-592

tational cost of the proposed approach makes it a suitable candidate for being hy-593

bridized with CFD simulations. In this case, the conditions for which the proposed594

CHCP approach has the best performance should be fully understood. To this end,595

a larger base of WFLO problems with larger number of turbines and constraints596

should be solved using the proposed CHCP approach.597

598
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Table 7: Number runs (out of 40 runs) that met the convergence criterion (Section 5) for different
constraint handling approaches and different WFLO test cases. MD denotes the maximum distance
used in the CP model of the proposed CHCP approach.

nT φ Dynamic Penalty CHCP

MD = 50 MD = 100 MD = 1,000 MD = 10,000

5 70% 16 19 17 23 21
5 80% 27 16 19 18 22
5 90% 20 24 16 25 28

10 70% 6 6 12 5 8
10 80% 8 9 7 7 7
10 90% 16 18 19 13 19

15 70% 0 2 1 1 2
15 80% 3 2 4 5 3
15 90% 5 8 9 4 5
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