MISTA 2015

Resource-Aware Scheduling for Data Centers with
Heterogenous Servers

Tony T. Tran® . Peter Yun Zhang® - Heyse
LiT . Douglas G. Down* - J. Christopher
Beck™

Abstract This paper presents an algorithm for resource-aware scheduling of compu-
tational jobs in a large-scale heterogeneous data center. The algorithm aims to allocate
different machine configurations to job classes to attain an efficient mapping between
job resource request profiles and machine resource capacity profiles. We propose a
three-stage algorithm. The first stage uses a queueing model that treats the system in
an aggregated manner with pooled machines and jobs represented as a fluid flow. The
latter two stages use combinatorial optimization techniques to take the solution from
the first stage and apply it to a more accurate representation of the data center. In the
second stage, jobs and machines are discretized. A linear programming model is created
to obtain a solution to the discrete problem that maximizes the system capacity. The
third and final stage is a scheduling policy that uses the solution from the second stage
to guide the dispatching of arriving jobs to machines. Using Google workload trace
data, we show that our algorithm outperforms a benchmark greedy dispatch policy.
We find that our algorithm is able to provide mean response times up to an order of
magnitude smaller than the benchmark dispatch policy. These results show that it is
important to consider the heterogeneity of machine configuration profiles in making
effective scheduling decisions.

1 Introduction

The cloud computing paradigm of providing hardware and software remotely to end
users has become very popular with applications such as e-mail, Google documents,
iCloud, and dropbox. Service providers employ large data centers to provide these

+ Department of Mechanical and Industrial Engineering,
University of Toronto
E-mail: {tran, hli, jcb}@mie.utoronto.ca

° Engineering Systems Division
Massachusetts Institute of Technology
E-mail: pyzhang@mit.edu

* Department of Computing and Software
McMaster University
E-mail: downd@mcmaster.ca

applications. As the demand for computational resources increases, the supply of ser-
vices must efficiently scale. Yet, data centers represent a significant capital investment.
Not only are servers for a data center expensive, maintaining and running a data cen-
ter is a substantial investment. Due to the significant cost of these machines, many
data centers are not purchased as a whole at one time, but rather built incrementally,
adding machines in batches. Data center managers may choose machines based on the
price-performance trade-off that is economically viable and favorable at the time [21].
Therefore, it is not uncommon to see data centers comprised of tens of thousands of
machines, which are divided into ten or so different machine configurations, each with
a large number of identical machines.

Under heavy loads, submitted jobs may have to wait for machines to become avail-
able before starting processing. These delays can be significant and can become prob-
lematic. Therefore, it is important to provide scheduling support that can directly
handle the varying workloads and differing machines so that efficient routing of jobs to
machines can be made. We study the problem of scheduling jobs onto machines such
that the multiple resources available on a machine (e.g., processing cores and memory)
can handle the assigned workload in a timely manner.

We develop an algorithm to schedule jobs on a set of heterogeneous machines to
minimize mean job response time, the time from when a job enters the system until
it starts processing on a machine. The algorithm consists of three stages. In the first
stage a queueing model is used. Here, the system is represented at a very high level
with resources and jobs both pooled. In each successive stage, a finer system model is
used, such that in the third stage we generate explicit schedules for the actual system.
Our experiments are based on job traces from one of Google’s compute clusters [18]
and show that our algorithm significantly outperforms a natural greedy policy that
attempts to minimize the response time of each arrival.

The contributions of this paper are:

— The introduction of a hybrid queueing theoretic and combinatorial optimization
scheduling algorithm for a data center, which efficiently maps job resource request
profiles to different machine resource capacities.

— An extension to the allocation linear programming (LP) model presented in [3] and
used for distributed computing in [2] to a data center that has multiple machines
with multi-capacity resources.

— An empirical study of our scheduling algorithm on real workload trace data, which
serves as a proof-of-concept of our proposed algorithm.

The rest of the paper is organized into a definition of the data center scheduling
problem in Section 2, related work on data center scheduling in Section 3, a presentation
of our proposed algorithm in Section 4, and experimental results in Section 5. Section
6 concludes our paper along with some plans for future work.

2 Problem Definition

The data center of interest is one that is comprised of many independent servers (also
referred to as machines). We are interested in dealing with a server cluster that has on
the order of tens of thousands of machines. These machines are not all identical; the
entire machine population is divided into different configurations denoted by the set
M. Machines belonging to the same configuration are identical in all aspects.

4 Processing Cores 8 GBs Memory

Memory Used
N

Processing Cores Used

Noow

Time
Time

Fig. 2: Memory resource consump-

Fig. 1: Processing cores resource .
tion profiles

consumption profiles

We classify a machine configuration based on its resources. For example, machine
resources may include the number of processing cores and the amount of memory,
disk-space, and bandwidth. For our study, we generalize the system to have a set of
resources, R, which are limiting resources of the data center. Each machine configura-
tion is defined by the capacity of each resource available in the machines belonging to
that configuration. A machine of configuration j € M has cj; amount of resource [€ R
and within a configuration j there are n; identical machines.

In our data center scheduling problem, jobs must be assigned to the machines with
the goal of minimizing the mean response time of the system. We assume that jobs are
assigned immediately as they arrive and the assignment cannot be changed. Jobs arrive
to the data center dynamically over time. Times between arrivals are independent and
identically distributed (i.i.d.). Each job belongs to one of a set of K classes where the
probability of an arrival being of class k is ay,. A distribution of resource requirements
for a job is defined by the class of the job. We denote the expected amount of resource
of type [required by a job of class k as r;. The processing times for jobs in class k on
a machine of configuration j are assumed to be i.i.d. with mean M%k The associated
processing rate is thus p ;.

Each job is processed on a single machine. However, a machine can process many
jobs at once, as long as the total resource usage of all concurrent jobs does not exceed
the capacity of the machine. Figures 1 and 2 depict an example schedule of six jobs on
a machine with two limiting resources: processing cores and memory. Here, the z-axis
represents time and the y-axis is the amount of resource used. The machine has 4
processing cores and 8 GBs of memory. Note that the start and end times of each job
are the same in both figures. This represents the job concurrently consuming resources
from both cores and memory during its processing time.

Any jobs that do not fit within the resource capacity of a machine must wait until
sufficient resources become available. We assume there is a buffer of infinite capacity for
each machine where jobs can queue until they begin processing. Figure 3 illustrates the
different states a job can go through in its lifetime. Each job begins outside the system
and joins the data center once submitted. At this point, the job must be dispatched
to one of the machines. This machine may or may not be immediately available for
the job. The job must wait in the queue if there are insufficient resources, but can
immediately start running if the required resources are available. If the job must join

I
Running

Execute. \ Finish

Qe‘\ Submit /Awa‘\ting (/ ﬁ\\
(\ Arrived | » Dispatch) Execute Cm//

\ /

N K
\ D

_/

Fig. 3: Stages of job lifetime.

the queue, then it will start running on the machine when resources free up and the
job has priority to start processing. Finally, after being processed, the job will exit the
data center.

3 Related Work

Scheduling in data centers has received significant attention in the past decade. Many
works consider cost saving through decreased energy consumption from lowering ther-
mal levels [22,23], powering down machines [4,7], or geographical load balancing [13,
14]. These works often attempt to minimize costs or energy consumption while main-
taining some guarantees on response time and throughput.

The literature on schedulers for distributed computing clusters has focused heavily
on fairness and locality [11,19,24]. Optimizing these performance metrics leads to
equal access of resources for different users and the improvement of performance by
assigning tasks close to the location of stored data in order to reduce data transfer
traffic. Locality of data has been found to be crucial for performance in systems such
as MapReduce, Hadoop, and Dryad. Our work does not consider data transfer or equal
access for different users. The works looking at fairness and locality also differ from
our work in that our model focuses on the heterogeneity of machines with regard to
resource capacity and how the mix of jobs that may be concurrently processed on a
machine is a non-trivial decision.

Ghodsi et al.[8] and Grandl et al. [9] look at scheduling a system with multiple
multi-capacity resources (e.g., CPU, memory, disk storage, and bandwidth). Ghodsi
et al. [8] propose a scheduling policy, Dominant Resource Fairness, that aims to fairly
share resources to each user based on their dominant resource. A dominant resource
for each user is found by first normalizing resource requirements using the maximum
capacity of the resource over all machines and then taking the resource that has the
largest normalized requirement. For example, if a user requests two cores and two GB
of memory and the maximum number of cores and memory on any system is four cores
and eight GB, the normalized values would be 0.5 cores and 0.25 memory. The dominant
resource for the user would thus be cores. Each user is then given a share of the resources
such that the proportion of dominant resources for each user is equal to the dominant
resource share of others. Note that this may compare resources of different types as the
consideration is based on a user’s dominant resource. Grandl et al. [9] study a similar

problem, but emphasize the efficient packing of jobs onto machines. They propose the
Tetris scheduler, which considers a linear combination of two scoring functions: packing
jobs onto machines to best fit the remaining resources, and least remaining work first
that looks at the remaining work (duration times resource requirements) of a job. The
first score favours large jobs, while the second favours small jobs. Tetris chooses the
next job to process based on the job with the maximum score. They compare Tetris
against Dominant Resource Fairness and show that focusing on fairness alone can lead
to poor performance. Their work shows the importance of considering efficient resource
allocation, an issue that has had more attention recently. However, to effectively use
Tetris, a system manager must tune several parameters to customize the job score for
their application. Based on the job score employed, Tetris may over-prioritize large or
small jobs and thus starve jobs that do not have high scores by constantly introducing
new jobs with higher priority. A comparison of our proposed algorithm and the Tetris
scheduler is a key area for future work.

Kim et al. [12] study dynamic mapping of jobs to machines in a heterogeneous envi-
ronment. Jobs have varying priorities and soft deadlines. They find that two scheduling
heuristics stand out as the best performers: Maz-Max and Slack Sufferage. In Max-Maz,
a job assignment is made by greedily choosing the mapping that has the best fitness
value based on the priority level of a job, its deadline, and the job execution time.
Slack Sufferage chooses job mappings based on which jobs suffer most if not scheduled
onto their “best” machines. Al-Azzoni and Down [2] schedule jobs to machines using
an allocation LP to efficiently pair job classes to machines. The solution of the LP
problem maximizes the system capacity and guides the scheduling rules to reduce the
long-run average number of jobs in the system. Further, they show that their heuristic
policy is guaranteed to be stable if the system can be stabilized. Rasooli and Down [20]
extend the allocation LP model to address a Hadoop framework. They compare their
work against the default scheduler used in Hadoop and the Fair-Sharing algorithm
and show that their algorithm greatly reduces the response time, while maintaining
competitive levels of fairness with Fair-Sharing. These papers focus on job execution
time as the key defining characteristic in machine heterogeneity and do not consider
multi-capacity resources of machines.

Chang et al. [5] consider a grid computing system where clusters of resources have
varying computing speeds and the bandwidth capacities between clusters are different.
The authors develop a scoring algorithm that maps jobs to resources based on the
bandwidth availability and cluster load. Maguluri et al. [17] examine a cloud comput-
ing cluster where virtual machines are to be scheduled onto servers. Virtual machines
require some amount of CPU, memory, and storage space that must fit onto the servers
they have been assigned to. Their work assumes that there are different types of vir-
tual machines: Standard, High-Memory, and High-CPU. Each virtual machine type has
specified resource requirements and different instances of virtual machines within a sin-
gle type do not differ. Based on these requirements and the capacities of the servers, the
authors determine all possible combinations of virtual machines that can concurrently
be placed onto each server. A preemptive algorithm is presented that uses the defined
virtual machine combinations. They show that their algorithm is throughput-optimal.
An alternative, non-preemptive algorithm is proposed that is close to throughput opti-
mal. The algorithm works by choosing at the beginning of a time slot the mix of virtual
machine types on each server to maximize the amount of work that can be done for
that time slot. An extension to their work was later done to prove a queue-length op-
timal algorithm for the same problem in the heavy traffic regime [16]. They propose a

routing algorithm that assigns jobs to servers with the shortest queue (similar to our
greedy algorithm presented in Section 5.2) and a mix of virtual machines to assign to a
server based on the same reasoning proposed for their throughput optimal algorithm.
These works differ from our work since virtual machine types have predetermined re-
source requirements. Therefore, it is known exactly how virtual machine types will fit
on a server without having to reason online about each assignment individually based
on their specific requirements. Because the virtual machine sizes are set, inefficiencies
due to fragmentation are not a concern as they are in our system. However, resource
wastage due to fragmentation still exists from virtual machines not completely filling
server capacities. Furthermore, fragmentation occurs inside the virtual machine as well
since jobs may not use the full resources of a virtual machine type and will then occupy
more resources (the size of a virtual machine) than required.

4 Data Center Scheduling

The proposed algorithm, Long Term Evaluation Scheduling (LoTES), is a three-stage
queueing-theoretic and optimization hybrid approach. Figure 4 illustrates the overall
scheduling algorithm. The first two stages are performed offline and are used to guide
the dispatching algorithm of the third stage. The dispatching algorithm is responsible
for assigning jobs to machines and is performed online. In the first stage, we use tech-
niques from the queueing theory literature, which represent the data center as a fluid
model where incoming jobs can be considered in the aggregate as a continuous flow.
We extend the allocation LP model presented by Andradéttir et al. [3] to account for
multiple resources. The allocation LP is used to find an efficient allocation of machine
resources to job classes. In the second stage, a machine assignment LP model is used
to assign specific machines to serve job classes using the results of the allocation LP.
In the final stage, jobs are dispatched to machines dynamically as they arrive to the
system.

4.1 Allocation LP

Andradéttir et al.’s [3] allocation LP was created for a similar problem but with a single
unary resource per machine. The allocation LP finds the maximum arrival rate for a
given queueing network such that stability is maintained. Stability is a formal property
of queueing systems [6] that can informally be understood as the queue lengths in the
system remaining bounded over time.

In our problem, there are |R| resources which must be accounted for. We modify
the allocation LP to accommodate these multiple resources. The model combines each
machine’s resources to create a single super-machine for each configuration. Thus,
there will be exactly |M| pooled machines (one for each configuration) with capacity
cji X mj for resource [. The allocation LP ignores resource fragmentation within the
pooled machines. Fragmentation occurs when a machine’s resource capacity cannot be
fully utilized as a result of the currently available resources of a machine not being
sufficient to admit a job, leaving resources unused with jobs waiting in queue. For
example, if a configuration has 30 machines with 8 cores available on each machine
and a set of jobs assigned to the configuration requires exactly 3 cores each, the pooled
machine would have 240 processors that can process 80 jobs in parallel. However,

Solved
Offline

™~

/ Stage 1: N/ Stage 2: A
Fluid Representation Machine Assignment
Allocate proportion _

of resources from
machine
configurations to job Assign machines to
!

Stage 3:
Dispatch Policy

\f Arrival of new job \

"’ Choose machine ‘
configuration

‘ Choose machine

Fig. 4: LoTES Algorithm.

only 2 jobs could be placed on each individual machine. Therefore, only 60 jobs can be
processed in parallel. The effect may be further amplified when multiple resources exist
as fragmentation could occur for each resource. The subsequent stages of the LoTES
algorithm deal with the issue of fragmentation by treating each machine individually

(see Section 4.2).
The extended allocation LP is given by (1)-(5) below.

max A

s.t. Z (5jlejlnj'),ujk > AapTE ke K,leR
jeEM

811 5s)
M:M jeMkeK,leR

Tkl Tkl

Z5jk,§1 jEMIER
keK

djkt >0 jeEM ke K, leR

Decision Variables
A: Arrival rate of jobs

djk1: Fractional amount of resource [that machine j devotes to job class k

(1)

The LP assigns the fractional amount of each resource that each machine pool
should allot to each job class in order to maximize the arrival rate of the system, while
maintaining stability. Constraint (2) guarantees that sufficient resources are allocated
for the expected requirements of each class. Constraint (3) ensures that the resource
profiles of jobs (i.e., the amount of each resource a job class is expected to request) are
properly enforced. For example, if the amount of memory required is twice the number
of cores required, the amount of memory assigned to the job class from a single machine
configuration must also be twice that of the core assignment. The allocation LP does
not assign more resources than available due to constraint (4). Finally, constraint (5)
ensures the non-negativity of assignments.

Solving the allocation LP will provide 5;kl values which tell us how we can efficiently
allocate jobs to machine configurations. However, due to fragmentation, the allocation
LP solution is only an upper bound on the achievable arrival rate of a system. The
bound for the single unary resource problem is tight: Andradéttir et al. [3] show that
utilizations arbitrarily close to one are possible. This is not possible when fragmentation
occurs.

4.2 Machine Assignment

In the second stage, we use the job-class-to-machine-configuration results from the
allocation LP to guide the choice of a set of job classes that each machine will serve.
We are concerned with fragmentation and so treat each job class and each machine
discretely, building specific sets of jobs (which we call “bins”) that result in tightly
packed machines and then deciding which bin each machine will emulate. This stage is
still done offline and so rather than using the observed resource requirements of jobs,
we use the expected values.

In more detail, recall that the (5;7,C ; values from the allocation LP provide a fractional
mapping of the resource capacity of each machine configuration to each job class. Based
on the 6;kl values that are non-zero and the particular resource requests of jobs and
the capacities of the machines, the machine assignment algorithm will first create job
bins. A bin is any set of jobs that together do not exceed the capacity of the machine.
A non-dominated bin is a bin which is not a subset of any other bin: if any additional
job is added to it, one of the machine resource constraints will be violated. Figure 5
presents the feasible region for an example machine. Assume that the machine has one
resource (cores) with capacity 7. There are two job classes, job class 1 requires 2 cores
and job class 2 requires 3 cores. The integer solutions within the search space represent
the feasible bins. All non-dominated bins exist along the boundary of the polytope
since any solution in the polytope not at the boundary will have a point above or to
the right of it that is feasible.

We exhaustively enumerate all non-dominated bins. Once a complete set of non-
dominated bins is created to represent all assignments of jobs to machines based on
expected resource requirements, the machine assignment model decides, for each ma-
chine, which bin the machine should emulate. Thus, each machine will be mapped to
a single bin, but multiple machines may emulate the same bin.

Algorithm 1 below generates all non-dominated bins. We define K7, a set of job
classes for machine configuration j containing each job class with positive 5;klv and a

set &’ containing all possible bins. Given K{, a job belonging to the ith class in K7, and

w
|

of jobs from class 2

0 T T T
1 2 3
of jobs from class 1

Fi

—

g. 5: Feasible bin configurations.

bi, the yth bin for machine configuration j, Algorithm 1 is performed for each machine
configuration j. We make use of two functions not defined in the pseudo-code:
— sufﬁcientResource(ng , b{;): Returns true if bin b% has sufficient remaining resources
for job .
— mostRecentAdd(b])): Returns the job class that was most recently added to bJ.

Algorithm 1 Generation of all non-dominated bins

y<+—1
x 1
¥ —x
nextBin < false
while z < |K7| do
for i = x* — |K7| do
while sufficientResource(x?, by) do
b, bl +
nextBin < true
end while
end for)
z* < mostRecentAdd (b))
if nextBin then
b,y b — K,
y+—y+1
else))
by < bl — nfb*
end if
if bfl == {} then
r—xr+1
¥ +—x
else
¥ —ax*+1
end if
end while

Algorithm 1 is run for each machine configuration j. The algorithm starts by greed-
ily filling the bin with jobs from a class. When no additional jobs from a class can be
added, the algorithm will move to the next class of jobs and attempt to continue filling

the bin. Once no more jobs from any class are able to fit, the bin is non-dominated. The
algorithm then backtracks by removing the last job added and tries to add jobs from
other classes to fill the remaining unused resources. This continues until the algorithm
has exhaustively searched for all non-dominated bins.

Since the algorithm performs an exhaustive search, solving for all non-dominated
bins may take a significant amount of time. If we let Lj, represent the maximum number
of jobs of class k we can fit onto the machine of interest, then in the worst case, we must
consider erK Ly, bins to account for every potential mix of jobs. We can improve the
performance of the algorithm by ordering the classes in decreasing order of resource
requirement. Of course, this is made difficult as there are multiple resources. One would
have to ascertain the constraining resource on a machine and this may be dependent
on which mix of jobs is used.!

Although the upper bound on the number of bins is very large, we are able to find
all non-dominated bins quickly (i.e., within one second on an Intel Pentium 4 3.00 GHz
CPU) because the algorithm only considers job classes with non-zero 5;kl values. We
generally see a small subset of job classes assigned to a machine configuration. Table 1 in
Section 5 illustrates the size of Kj7 the number of job classes with non-zero 6;“ values
for each configuration. When considering four job classes, all but one configuration has
one or two job classes with non-zero 67, values. When running Algorithm 1, the number
of bins generated is in the thousands. Without the 5;-‘“ values from the allocation LP,
we find that there can be on the order of millions of bins.

With the created bins, individual machines are then assigned to emulate one of
the bins. To match the §7;; values for the corresponding machine configuration, we
must find the contribution that each bin makes to the amount of resources allocated
to each job class. We define N, i, as the number of jobs from class k that are present
in bin ¢ of machine configuration j. Using the expected resource requirements, we can
calculate the amount of resource [on machine j that is used for jobs of class k, denoted
€;jkl = NijgTrr- The machine assignment LP is then

max A (6)

s.t. Z Ajklujk > ATkl ke K,le R (7)
JEM

Zéijklmij:Ajk:l jeEMke K,leR (8)
i€EB;

Zmij:"j jeM 9)

i€B;

x5 >0 jeM,ie€ B; (10)

1 Tt may be beneficial to consider the dominant resource classification of Dominant Resource
Fairness when creating such an ordering [8].

Decision Variables
Ajgi: Amount of resource [from machine configuration j that is devoted to job
class k
x;5: Total number of machines that are assigned to bins of type i in machine
configuration j

Parameters
€jk1: Amount of resource [of a machine in machine configuration j assigned to
job class k if the machine emulates bin 3.
Bj: Set of bins in machine configuration j

The machine assignment LP will map machines to bins with the goal of maximizing
the arrival rate that maintains a stable system. Constraint (7) is the equivalent of con-
straint (2) of the allocation LP while accounting for discrete machines. The constraint
ensures that a sufficient number of resources are available to maintain stability for each
class of jobs. Constraint (8) determines the total amount of resource ! from machine
configuration j assigned to job class k£ to be the sum of each machine’s resource con-
tribution. In order to guarantee that each machine is mapped to a bin type, we use
constraint (9). Finally, constraint (10) forces x;; to be non-negative.

Although we wish each machine to be assigned exactly one bin type, such a model
requires x;; to be an integer variable and therefore the LP becomes an integer pro-
gram (IP). We found experimentally that solving the IP model for this problem is not
practical given a large set B;. Therefore, we use an LP that allows the z;; variables to
take on fractional values. Upon obtaining a solution to the LP model, we must create
an integer solution. The LP solution will have ¢; machines of configuration j which are
not properly assigned, where g; can be calculated as

aj= Y wij— laiy).

i€ B;

We assign these machines by sorting all non-integer x;; values by their fractionality
(245 — |x4j]) in non-increasing order. Ties are broken arbitrarily if there are multiple
bins with the same fractional contribution. We then begin to round the first g; fractional
x;; values up and round all other z;; values down for each configuration. This makes
the problem tractable at the cost of optimality. However, given the scale of the problem
that we study where a configuration can contain thousands of machines, the value of
A* produced by the LP solution is typically very close to the value produced by the IP
solution.

4.3 Dispatching Jobs

In the third and final stage of the scheduling algorithm, a two-level dispatching algo-
rithm is used to assign arriving jobs to machines. The goal of the dispatching algorithm
is to assign jobs to machines so that each machine emulates the bin it was assigned to
in the second stage. In the first level of the dispatcher, a job is assigned to one of the
|M| machine configurations. The decision is guided by the A;j; values to ensure that
the correct proportion of jobs is assigned to each machine configuration. In the second
level of the dispatcher, the job is placed on one of the machines in the configuration to

which it was assigned. At the first level, no state information is required to make deci-
sions. However, in the second level, the dispatcher will make use of the exact resource
requirements of a job as well as the states of machines to make a decision.

Deciding which machine configuration to assign a job to can be done by revisiting
the total amounts of resources each configuration contributes to a job class. We can
compare the Ajj; values to create a policy that will closely imitate the machine as-

signment solution. Given that each job class k has been devoted a total of Zl}:l A

J
resources of type [, a machine configuration j should serve a proportion
Ajki

Pik = ST 4
Elnzll Akl

of the total jobs in class k. The value of p;, can be calculated using the A;y; values
from any resource type I. To decide which configuration to assign an arriving job of
class k, we use roulette wheel selection. We generate a uniformly distributed random
variable, v = [0, 1] and if

j—1 J
Z Pmk <u< Z Pmk>
m=0 m=0

then the job is assigned to machine configuration j.

The second step will then dispatch the jobs directly onto machines. Given a solution
mfj from the machine assignment LP, we create an n; x |K| matrix, Aj7 with element
A{ & equal to 1 if the ith machine of j emulates a bin with one or more jobs of class k
assigned. A7 indexes which machines can serve a job of class k.

The dispatcher will attempt to dispatch the job to a machine belonging to the
configuration that was assigned from the first step. Machines are ordered arbitrarily
and the dispatcher will search over the machines based on the ordering. The first
machine found from those with Agk = 1 that has the available resources for the job
will begin immediate service; this is a first-fit policy that is used by the dispatcher. In
the case where no machines are available, the dispatcher will sort all machines, other
than the machines belonging to the configuration that the job was initially assigned
to, in non-decreasing order of processing times of the job needing assignment. The
dispatcher will then search through these machines for immediate processing and if a
machine exists with sufficient resources to immediately process the job, it will begin
servicing the job. By allowing for the dispatcher to make assignments to machines
with 5;kl = 0, we enable free resources to be used immediately. One could expect
that a system that is not heavily loaded could benefit from the prompt service of jobs
arriving to the system even though the assignment is inherently inefficient according to
the allocation LP solution. If there exists no machine that can immediately process the
job, the job will enter the smallest queue of the machines belonging to the configuration
assigned in the first step with Agk = 1. Ties are broken randomly. Following such a
dispatch policy attempts to schedule jobs immediately whenever possible with a bias
towards placing jobs on bins which have been found to be efficient.

Jobs that are waiting in the queue follow a first-come, first-served (FCFS) order.
An arriving job will have to wait until all jobs that arrived earlier have at least entered
into service before it too can begin processing on the machine. This ensures that some
level of fairness is maintained and prevents jobs with smaller resource requests from
jumping forward in the queue and possibly starving jobs with large resource requests.

of machines | Cores Memory |K/|
6732 | 0.50 0.50 4
3863 0.50 0.25 2
1001 0.50 0.75 1

795 1.00 1.00 2
126 0.25 0.25 2
52 | 0.50 0.12 1
5| 0.50 0.03 1

5 0.50 0.97 2

3 1.00 0.50 2

1 1.00 0.06 1

Table 1: Machine configuration details.

We use this ordering because it is often the default scheduling sequence used in practice
for frameworks that run jobs in a data center environment, such as Hadoop [1].

By dispatching jobs using the proposed algorithm, the requirement of system state
information is often reduced to a subset of machines that a job is potentially assigned
to. Further, keeping track of the detailed schedule on each machine is not necessary for
scheduling decisions since the only information used is whether a machine currently
has sufficient resources, which job is next to be scheduled in the queue, and the size of
the queue.

5 Experimental Results

We test our algorithm using cluster workload trace data provided by Groogle.2 This
data represents the workload for one of Google’s compute clusters over the one month
period of May 2011. The data captured in the trace workload provides information
on the machines in the system as well as the jobs that arrive, their submission times,
their resource requests, and their durations, which can be inferred from finding how
long a job is active. However, because we calculate the processing time of a job based
on the actual processing time realized in the workload traces, it is unknown to us
how processing times may have differed if a job was processed on a different machine.
Therefore, we assume that processing times are independent of machine configuration.
In-depth analysis on the workload has been previously done [21]; we will be using the
data as input for our scheduling algorithm to simulate its performance over the one
month period.

Although the information provided is extensive, we limit what we use for our ex-
periments. We do not consider failures of machines or jobs. Resubmitted jobs due to
failures are considered to be new, unrelated jobs. Machine configurations change over
time due to failures, the acquisition of new servers, or the decommissioning of old ones,
but we will only use the initial set of machines and keep that constant over the whole
month. Furthermore, system micro-architecture is provided for each machine. Some
jobs are limited in which types of architecture they can be paired with and how they

2 The data can be found at https://code.google.com/p/googleclusterdata,.

Job class 1 2 3 4

Avg. Time (h) | 0.03 0.04 0.04 0.03
Avg. Cores | 0.02 0.02 0.07 0.20
Avg. Mem. | 0.01 0.03 0.03 0.06
Proportion | 0.23 0.46 0.30 0.01

of Total Jobs

Table 2: Job class details.

interact with these architectures, but we ignore this limitation for our scheduling ex-
periments. It is easy to extend the LoTES algorithm to account for system architecture
by setting p;r = 0 whenever a job cannot be processed on a particular architecture.
The focus for our work is on the efficient allocation of server resources to job classes
and so we abstract the trace data to look only at resource requests and job durations.

The cluster of interest has 10 machine configurations (we use the configurations
provided from the Google workload trace data) as presented in Table 1. Each configu-
ration is defined strictly by its resource capacity and the number of identical machines
with that resource profile. The resource capacities are normalized relative to the config-
uration with the most resources. Therefore, the job resource requests are also provided
after being normalized to the maximum capacity of machines.

5.1 Class Clustering

The Google data does not define job classes and so in order for us to use the data to
test our LoTES algorithm, we must first cluster jobs into classes. We follow Mishra
et al. [18] by using k-means clustering to create job classes. We make use of Lloyd’s
algorithm [15] to create the different clusters. To limit the amount of information that
LoTES is using in comparison to our benchmark algorithm, we only use the jobs from
the first day to define the job classes for the month. These classes are assumed to be
fixed for the entire month. Due to this assumption and because the Greedy policy does
not use class information, any inaccuracies introduced by making clusters based on the
first day will only make LoTES worse when we compare the two algorithms.

Clustering showed us that four classes were sufficient for representing most jobs.
Increasing the number of classes led to less than 0.01% of jobs being allocated to the
new classes and therefore, we use only four classes in our experiments. The different
job classes are presented in Table 2.

5.2 Benchmark Algorithm: A Greedy Dispatch Policy

To illustrate the performance of the LoTES algorithm, we propose a Greedy dispatch
policy as a benchmark. We chose to compare LoTES against the Greedy dispatch policy
because it is a natural heuristic, which aims to quickly process jobs. The dispatch
policy, like the LoTES algorithm, attempts to schedule jobs onto available machines
immediately if possible. If a machine is found that can immediately process a job, the
dispatch policy will make that assignment. In the case where no machines are available

for immediate processing, the policy will choose the machine with the shortest queue
of waiting jobs. Ties are broken randomly. However, an assignment cannot be made if
the requested resources of a job by themselves exceed the capacity of a machine. If a
queue forms, jobs will be processed in FCFS order.

The Greedy dispatch policy is similar to the LoTES algorithm. The key difference
in the two approaches is that the LoTES algorithm restricts the set of machines it con-
siders to the set of machines found from solving the higher level allocation problems in
the first two stages. By comparing against the Greedy policy, we can test how effective
LoTES is and how useful the proper machine-job mapping is to system performance.

5.3 Implementation Challenges

In our experiments, we have not directly considered the time it takes for the scheduler
to make dispatching decisions. As such, as soon as a job arrives to the system, the
scheduler will immediately assign it to a machine. In practice, decisions are not instan-
taneous and depending on the amount of information needed by the scheduler and the
complexity of the scheduling algorithm, the delay may be an issue. For every new job
arrival, the scheduler requires state information of one or more machines. The state of
the machine must provide the currently available resources and the size of the queue. As
the system becomes busier, the scheduler may have to obtain state information for all
machines in the data center. Thus, scaling may be problematic as the algorithms may
have to potentially search over a very large number of machines. However, in heavily
loaded systems where there are delays before a job can start processing, the scheduling
overhead will not adversely affect system performance so long as the overhead is less
than the waiting time delays. An additional issue may be present that could reduce
performance of the scheduler at heavy loads. The scheduler creates additional load on
the network connections within the data center itself. This may need to be accounted
for if the network connections become sufficiently congested.

Note, however, that the dispatching overhead of LoTES is no worse than that of
the Greedy policy. The LoTES algorithm benefits from the restricted set of machines
that it considers when making scheduling decisions, but that does not guarantee that
LoTES would not also end up obtaining state information on every machine when the
system is heavily loaded. Therefore, a system manager for a very large data center must
take into account the overhead required to obtain machine state information. There
is work showing the benefits of only sampling state information from a limited set of
machines to make a scheduling decision [10]. If the overhead of obtaining too much
state information is problematic, we suggest that one can further limit the number
of machines to be considered once a configuration has already been chosen. Such a
scheduler could decide which configuration to send an arriving job to and then sample
N machines randomly from the chosen configuration, where N € [1, n;]. Restricting the
scheduler to only these N sampled machines, the scheduler can dispatch jobs following
the same rules as LoTES. This allows the mappings from the offline stages of LoTES
to still be used, but with substantially less overhead for the online portion.

Mean Response Time (h)

0 100 200 300 400 500 600 700
Time (h)

Fig. 6: Response Time Comparison.

5.4 Simulation Results: Workload Trace Data

We simulate the LoTES algorithm and the Greedy dispatch policy using the workload
traces from Google. We created an event-based simulator in C++ to emulate a data
center with the workload data used as input to our system. The LP models are solved
using IBM ILOG CPLEX 12.5. We run our tests on an Intel Pentium 4 CPU 3.00 GHz,
1 GB of main memory, running Red Hat 3.4-6-3. Because the LP models are solved
offline prior to the arrival of jobs, the solutions to the first two stages are not time-
sensitive. Regardless, the total time required to obtain solutions to both LP models
and to generate bins requires less than one minute of computation time. This level of
computational effort means that it is realistic to re-solve these two stages periodically,
perhaps multiple times a day, if the job classes or machine configurations change due,
for example, to non-stationary distributions. We leave this for future work.

Figure 6 presents the performance of the system over the one month period. The
graph provides the mean response time of jobs over every one-hour long interval. We
include a job’s response time in the mean response time calculation in the interval in
which the job begins processing. We see that the LoTES algorithm greatly outper-
forms the Greedy policy. On average, the Greedy policy has response times an order
of magnitude longer (15-20 minutes) than the response times of the LoTES algorithm
(1-2 minutes). The difference on average shows the strong performance of LoTES, how-
ever, a more interesting result is the performance difference when the system becomes
heavily loaded. During the one-month period, the Greedy policy has two large spikes
in response times that occur where jobs must wait for close to 10 hours around the 70
hour and 280 hour time points. During both occurrences, the LoTES algorithm pro-
duces schedules with response times on the order of 1 hour long in the first occurrence,
and 10 minutes in the second occurrence.

Figures 7 and 8 provide the core and memory utilization of the machines over time.
At the end of each hour, we record the instantaneous utilization of resources over all
machines and graph those results. We observe that curves are typically very close to

Core Utilization

0 100 200 300 400 500 600 700
Time (h)

Fig. 7: Processing Core Utilization Comparison.

c

8

T

N

5

2

o

E

(7}

=
0.3 :]

‘‘‘‘‘ Greedy
0.2+ LoTES B
0.1]
0 i i i i i i
0 100 200 300 400 500 600 700

Time (h)

Fig. 8 Memory Utilization Comparison.

each other, but at certain time points, the Greedy policy has higher utilization. We
believe the increased utilization is due to the build up of jobs in queue for the Greedy
policy. With a large queue, as soon as jobs are completed, the available space is filled
again with a waiting job. Since LoTES is doing a better job of increasing throughput in
the short term through efficient allocation, queues do not form as often. However, over
the long term, as this is an open system and we assume that no jobs are abandoned, the
long-run throughput of both systems will be the same and therefore long-run resource
utilizations are also the same. As a result, LoTES is doing a better job at smoothing
the utilization curves.

14000

12000 A '—i g
T ! 1
: b
‘ : it
g 10000 = L
> I '] [3 1
=1 1437
l¢] e
> 8000f i
a 1]
§ '
S 6000} |t 1
[
Qo
€
=3
Z 4000t | g
2000 H /1 e fr=e- Greedy 4
1 LoTES
1
ol ; ; ; ; ; ;
0 100 200 300 400 500 600 700

Time (h)

Fig. 9: Empty Queue Comparison.

Figure 9 plots the number of empty queues for both schedulers. Of the 12,583
machines present in the system, we graph the number of machines that have an empty
queue during each hour of the simulation. Although the queue length at a machine
may change during the hour long period, we only record the state of the queue at the
end of the hour. We see that very quickly, the LoTES algorithm is able to keep the
queues of all machines relatively empty. However, the Greedy policy often has a large
number of machines with a queue. This queue formation leads to the higher resource
utilization and the increased response times.

6 Conclusion and Future Work

In this work, we developed a scheduling algorithm that creates a mapping between
jobs and machines based on their resource profiles to improve the response time of
the system. The algorithm consists of three stages where a fluid representation and
queueing model are used at the first stage to fractionally allocate job classes to ma-
chine configurations. The second stage then solves a combinatorial problem to generate
possible assignments of jobs on machines. An LP model is developed to maximize sys-
tem capacity by choosing which of the generated sets of jobs that each machine should
aim to emulate. The final stage is an online dispatching policy that uses the solution
from the second stage to decide on the machine to assign to each incoming job. Our
algorithm was tested on Google workload trace data and was found to reduce response
times by up to an order of magnitude when compared to a benchmark dispatch policy.
This improvement in performance is also computationally cheaper than the benchmark
policy during the online scheduling phase since the proposed algorithm often requires
state information for fewer machines when making assignment decisions.

The data center scheduling problem is very rich from the scheduling perspective and
can be expanded in many different ways. Our algorithm assumes stationary arrivals
over the entire duration of the scheduling horizon. However, the real system is not

stationary and the arrival rate of each job class may vary over time. Furthermore,
the actual job classes themselves may change over time as resource requirements may
not always be clustered in the same manner. As noted above, the offline phase is
sufficiently fast (about one minute of CPU time) that it could be run multiple times
per day as the system and load characteristics change. Beyond this we plan to extend
the LoTES algorithm to more accurately represent dynamic job classes. This would
allow the LoTES algorithm to learn and predict the expected job population and
make scheduling decisions with these predictions in mind. Not only do we wish to be
able to adjust our algorithm to a changing environment, but we also wish to extend
our algorithm to be able to more intelligently handle situations where there is high
variance in the mix of job classes in the environment. The high variance will lead to
system realizations that differ significantly from the bins created in the second stage
of the LoTES algorithm.

We also plan to study the effects of errors in job resource requests. We used the
amount of requested resources of a job as the amount of resource used over the entire
duration of the job. In reality, most jobs may end up using less or more resources
than requested due to the fact that users may under or overestimate their resource
requirements. In addition, the utilization of a resource may change over the duration
of the job itself. We plan to incorporate these uncertainties regarding resource usage
to improve system utilization. This adds difficulty to the problem because instead of
creating a schedule where we know the exact amount of requested resources once a job
arrives, we only have an estimate of the requests and must ensure that a machine is
not underutilized or oversubscribed.

Acknowledgment
This work was made possible in part due to a Google Research Award and the Natural

Sciences and Engineering Research Council of Canada (NSERC).

References

—_

. Apache Hadoop. http://hadoop.apache.org

2. Al-Azzoni, 1., Down, D.G.: Linear programming-based affinity scheduling of independent
tasks on heterogeneous computing systems. IEEE Transactions on Parallel and Distributed
Systems 19(12), 1671-1682 (2008)

3. Andradéttir, S., Ayhan, H., Down, D.G.: Dynamic server allocation for queueing networks
with flexible servers. Operations Research 51(6), 952-968 (2003)

4. Berral, J.L., Goiri, f., Nou, R., Julia, F., Guitart, J., Gavalda, R., Torres, J.: Towards
energy-aware scheduling in data centers using machine learning. In: Proceedings of the
1st International Conference on energy-Efficient Computing and Networking, pp. 215—-224.
ACM (2010)

5. Chang, R.S., Lin, C.Y., Lin, C.F.: An adaptive scoring job scheduling algorithm for grid
computing. Information Sciences 207, 79-89 (2012)

6. Dai, J.G., Meyn, S.P.: Stability and convergence of moments for multiclass queueing net-
works via fluid limit models. IEEE Transactions on Automatic Control 40(11), 1889-1904
(1995)

7. Gandhi, A., Harchol-Balter, M., Kozuch, M.A.: Are sleep states effective in data centers?
In: International Green Computing Conference (IGCC), pp. 1-10. IEEE (2012)

8. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant

resource fairness: Fair allocation of multiple resource types. In: NSDI, vol. 11, pp. 24-24

(2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource pack-

ing for cluster schedulers. In: Proceedings of the 2014 ACM conference on SIGCOMM,
pp. 455-466. ACM (2014)

He, Y.T., Down, D.G.: Limited choice and locality considerations for load balancing. Per-
formance Evaluation 65(9), 670-687 (2008)

Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.: Quincy: fair
scheduling for distributed computing clusters. In: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp. 261-276. ACM (2009)

Kim, J.K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider, M., Tide-
man, S., Chitta, R., Dilmaghani, R.B., Joshi, R., et al.: Dynamically mapping tasks with
priorities and multiple deadlines in a heterogeneous environment. Journal of Parallel and
Distributed Computing 67(2), 154-169 (2007)

Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, T.D.: Reducing electricity
cost through virtual machine placement in high performance computing clouds. In: Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 22. ACM (2011)

Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.: Greening geographical load bal-
ancing. In: Proceedings of the ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pp. 233-244. ACM (2011)

Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory
28(2), 129-137 (1982)

Maguluri, S.T., Srikant, R., Ying, L.: Heavy traffic optimal resource allocation algorithms
for cloud computing clusters. In: Proceedings of the 24th International Teletraffic Congress,
p- 25. International Teletraffic Congress (2012)

Maguluri, S.T., Srikant, R., Ying, L.: Stochastic models of load balancing and scheduling
in cloud computing clusters. In: Proceedings IEEE INFOCOM, pp. 702-710. IEEE (2012)
Mishra, A., Hellerstein, J., Cirne, W., Das, C.: Towards characterizing cloud backend work-
loads: insights from Google compute clusters. ACM SIGMETRICS Performance Evalua-
tion Review 37(4), 34—41 (2010)

Ousterhout, K., Wendell, P.,; Zaharia, M., Stoica, I.: Sparrow: distributed, low latency
scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pp. 69-84. ACM (2013)

Rasooli, A., Down, D.G.: COSHH: A classification and optimization based scheduler for
heterogeneous hadoop systems. Future Generation Computer Systems 36, 1-15 (2014)
Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM
Symposium on Cloud Computing, pp. 1-13. ACM (2012)

Tang, Q., Gupta, S.K., Varsamopoulos, G.: Thermal-aware task scheduling for data centers
through minimizing heat recirculation. In: IEEE International Conference on Cluster
Computing, pp. 129-138. IEEE (2007)

Wang, L., Von Laszewski, G., Dayal, J., He, X., Younge, A.J., Furlani, T.R.: Towards
thermal aware workload scheduling in a data center. In: Pervasive Systems, Algorithms,
and Networks (ISPAN), 2009 10th International Symposium on, pp. 116-122. IEEE (2009)
Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay
scheduling: A simple technique for achieving locality and fairness in cluster scheduling.
In: Proceedings of the 5th European conference on Computer systems, pp. 265-278. ACM
(2010)

