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Abstract

Empirical Analysis of Local Search Algorithms and Problem Difficulty in Satisfiability
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Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

2006

The central thesis of this dissertation is that an empirical analysis leads to a deeper under-

standing of local search methods and problem difficulty in satisfiability (SAT) and that the

understanding can form a foundation for better algorithm designs. The investigation of prob-

lem difficulty for local search algorithms has received much attention from researchers, and

this work is a continuation of such effort.

We provide evidence that the decrease in the local search cost in the over-constrained region

for satisfiable instances is largely due to the effects of less extensive high-quality local minima

compared to the under- and critically-constrained region. We also show that a backbone-guided

local search algorithm works well for over-constrained instances because of its robustness to

backbone estimation. Finally, our results from problem difficulty lead to the integration of

path relinking with existing local search algorithms, which is demonstrated to be effective on

various problem domains.
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Chapter 1

Introduction

The central thesis of this dissertation is that an empirical analysis leads to a deeper understand-
ing of local search methods and problem difficulty in satisfiability (SAT) and that the under-
standing can form a foundation for better algorithm designs. The investigation of problem diffi-
culty for local search algorithms has received much attention from researchers [51, 67, 57, 61],
and this work is a continuation of such effort. Our results in problem difficulty provide the
motivation to apply an existing metaheuristic from the Operations Research literature to local
search algorithms for SAT.

In particular, in this dissertation:

• we identify a major contributing factor for the easy-hard-easy pattern in problem diffi-
culty seen across the phase transition region for SAT local search algorithms.

• we characterize backbones for SAT and job-shop scheduling problems and identify the
reasons for the success of a backbone-guided local search algorithm for SAT.

• motivated from the problem difficulty analysis, we apply path relinking, which has been
successfully integrated in the state-of-the-art job-shop scheduling algorithm, to local
search algorithms for SAT.

1.1 Background Information on Satisfiability

The Satisfiability (SAT)problem in propositional logic is an important class of problems in
Artificial Intelligence (AI). Because of its status as the prototypicalNP -complete problem, it
is especially critical in the area of complexity theory [29]. In addition to its prominence in
theoretical domain, SAT has shown its usefulness in many application problems. Many combi-
natorial decision/optimization problems can be effectively solved using SAT, and its range of
applications is growing with the development of SAT-encoding techniques [48, 31] and pow-
erful solvers [47, 25, 24, 50].

A satisfiability problem is conceptually very simple: it is a combinatorial decision problem,
where the goal is to determine whether there exists a set of assignments to Boolean variables
such that a givenformula can besatisfied. The formula consists of Boolean variables joined
using Boolean operators AND, OR, and NOT. If there exists a set of assignments that satisfy

1



CHAPTER 1. INTRODUCTION 2

all the constraints (clausesin SAT terminology), the formula is said to be satisfiable, and in the
opposite case, it is unsatisfiable (see Chapter 2 for a more detailed description of SAT).

There are specialized algorithms for SAT that attempt to find a set of assignments that
will satisfy a given formula (prove satisfiability for some algorithms). There are two types of
SAT solvers: one is called a constructive or systematic search method, which considersall the
possible combinations of variable assignments (explicitly or implicitly) to determine whether
a formula is satisfiable. The other type is a local search method, which starts with a set of
random assignments and tries to incrementally improve (minimize) its objective function by
changing its variable assignment one at a time. Generally, the objective function for a local
search algorithm is the number of unsatisfied clauses.

1.2 Motivations

This thesis is motivated by the need for a better understanding for local search algorithms,
particularly for SAT. Not only does the research have academic merit in terms of advancing the
research in the area, but also, it has practical implications as it enables better algorithm designs
and potentially allows wider range of real-world problems to be solved through satisfiability.
Our work is specifically motivated by the following:

Problem difficulty for local search Search cost for algorithms in general is sensitive to the
tightness of the constraints for a given problem. For constructive search algorithms, for
example, there is a level of constrainedness that makes a problem especially hard [7, 10].
In such a case, the problem is neither under-constrained, which would have abundance of
satisfying solutions, or over-constrained, which would allow quick pruning of unpromis-
ing search space. Thus, generally, for constructive search algorithms, problem difficulty
follows the easy-hard-easy pattern across the under-, critically-, and over-constrained re-
gions [7, 10]. Interestingly, such a pattern in problem difficulty is observed in SAT local
search algorithms as well. We are interested in understanding why such pattern exists
when there is no notion of pruning or search space reduction for local search algorithms.
Among the notable literature in this area of research, we base our work on Parkes et
al. [51], Yokoo [67], and Singer et al. [57] for SAT domain and Watson et al. [61] for
another, non-SAT domain.

Backbones in local searchA backbone variable is one that has the same truth assignment in
all optimal solutions to a given problem [51, 17]. Recently, algorithms that take advan-
tage of the estimates of membership in the set of backbone variables were introduced
[68, 17]. This type of backbone-guidance biases the underlying algorithms such that
they concentrate on correctly setting the variables that are likely backbones before the
non-backbone variables. However, whether these algorithms really take advantage of
the backbone information is not well known. The goal here is to identify how well the
backbone-guided algorithms estimate the backbone variables and test if the backbone
variables are indeed responsible for their success.

Long-term memory in local search Long-term memory is an important feature in various
search algorithms such as Ant Colony Optimization [16], Genetic Algorithm [26], and
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Backbone-Guided search [68]. Based on a Tabu Search,i-TSAB [49] is one of the state-
of-the-art algorithms for job-shop scheduling problems [62]; this algorithm also uses
long-term memory in the form ofpath relinking. Motivated by these successful algo-
rithms and our problem difficulty results, we apply long-term memory to local search
algorithms in SAT.

Constructive versus local searchOn problems where the proof of satisfiability is not impor-
tant but the essence is in finding a satisfying solution, a local search algorithm is often
as good or better than a constructive search algorithm [56, 53]. Due to the differences
in their approaches, however, their performance varies for various problem domains and
even for individual instances in the same domain. We would like to identify the strengths
and weaknesses of both algorithms on various domains. Further, we investigate whether
those factors known to affect local search cost will also affect constructive search cost.

Applications of SAT In addition to the critical role it assumes in complexity theory, satisfia-
bility can be applied to practical problems as a solution technique. It has been applied
to graph colouring problems [56], scheduling problems [9], logistics planning problems
[41], and most recently to formal verification problems [1, 5]. Water Network Security
problem is a real-life application problem from Sandia National Laboratories.1 Being
mostly a binary decision problem, it is well-suited to be solved as SAT. Although there
are other methods such as Integer Programming and Greedy heuristic, the former is sus-
ceptible to the tractability issue while the latter does not guarantee optimality. Here,
the goal is to evaluate the feasibility of applying SAT to the Water Network Security
problem.

1.3 Outline

The outline of the thesis is as follows:
Chapter 2 provides background information for the thesis and looks at the literature relevant

to the area of our research interest. A few of the well-known algorithms for both constructive
and local search methods are presented as are some popular techniques found in modern SAT
solvers. We also extend the literature review to local search solvers and techniques outside of
satisfiability. Such AI domains as Constraint Programming and Scheduling share many simi-
larities with SAT in how the problems are approached and the solvers are designed. Techniques
used in those domains are examined with a particular focus on the use of memory. Literature
on the problem difficulty in local search is also examined. We present many suggested reasons
behind varying local search cost with different levels of constrainedness. Finally, literature on
applications of SAT is discussed.

Chapter 3 presents an application problem that is solved as a satisfiability problem. Aside
from the problem itself, it also serves as a motivation for analyzing SAT. In Water Network
Security problem, we are interested in being able to locate the source of terrorist attack in
a given water distribution network. Here, we study the feasibility of solving the problem as
satisfiability and compare the results to the existing methods.

1In New Mexico, USA.
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Chapter 4 compares two of the most prominent search algorithms for constructive and local
search methods. zChaff [47] and Walksat [55] are run on various domains of SAT ranging from
randomk-SAT to highly structured problems. We also apply some of the factors that are known
to affect local search cost to the constructive search method and see how the performance
differs for the two types of algorithms.

Chapter 5 presents detailed analyses of problem difficulty for local search algorithms. Lo-
cal search cost varies with respect to the levels of constrainedness, which is typically measured
by the ratio of the number of clauses and the number of variables. Around the region where
a problem instance is “critically-constrained”, local search cost shows unexpected behaviours.
We investigate some of the factors that affect the search cost by verifying Yokoo [67] and
Singer et al.’s [57] work, and suggest a unifying explanation for the phenomenon seen around
the critically-constrained region. We also examine Watson et al.’s [61] work on the problem
difficulty on job-shop scheduling problems (JSP) and test specific conjectures made with re-
spect to SAT problems.

Chapter 6 examines the idea of backbone and its usage in SAT solvers. Motivated from
Watson et al.’s work on JSP, the relationship between the number of optimal solutions and the
backbone size is examined. We introduce a new technique for measuring the effect of non-
backbone variables and explain the different characteristics observed from SAT and JSP. Also,
Zhang’s [68] backbone-guided local search algorithm is analyzed to verify the backbone’s
influence on the algorithm. To this end, we conduct an experiment that evaluates how the
different levels of prior backbone information affect the algorithm’s performance. Further, we
independently test how accurately the algorithm estimates backbone values.

Chapter 7 discusses how the idea of long-term memory and elite pool maintenance can be
incorporated as a metaheuristic for local search algorithms for SAT. In particular,path relink-
ing, which has been successfully applied to a tabu search for job-shop scheduling problems
in i-TSAB [49], is integrated with Walksat and Novelty+ [44, 30] using a design methodol-
ogy similar to that used for the tabu search [62]. Their performance is compared with their
respective underlying algorithms, as well as Zhang’s backbone-guided algorithm.

Chapter 8 provides the conclusions and highlights the major contributions of the work. It
ends with suggestions for further research stemming from the thesis.

1.4 Summary of Contributions

The contributions of the thesis are as follows:

• We extend the previous work done on the problem difficulty for local search algorithms.
Confirming Singer et al.’s [57] work by different methods, we identify the extensiveness
of local minima to be a major factor for local search cost.

• We identify the driving force behind a backbone-guided local search algorithm and the
reason for its success on certain instances. The key is in the way the backbone esti-
mates can guide the underlying algorithm without requiring a very accurate backbone
information.
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• A new way of measuring the global effect of a non-backbone variable for a given in-
stance, namelydegree of implication, is introduced. It is a measure of how tightly the
variables are linked to one another. A study on SAT and job-shop scheduling problems
shows that non-backbone variables in SAT have much greater degree of implication on
average, explaining the weaker correlation between the number of optimal solutions and
the backbone size in SAT compared to JSP.

• Long-term memory in the form of path relinking is adopted to local search algorithms
for SAT. By taking advantage of the diversification mechanism, the algorithms with path
relinking show promising results. Further, through empirical testing, the importance of
diversity in the elite pool is shown for algorithms with long-term memory.

• The performance of a local search algorithm is compared against a constructive search
algorithm on various problem domains. We confirm the belief that a local search al-
gorithm is superior on random instances while a constructive search algorithm is better
on structured instances. Further, some of the factors that affect local search cost do not
influence constructive search cost to the same degree.

• The Water Network Security problem is encoded as SAT. With further research, there is
potential for incorporating SAT as a verification tool for this type of problem.



Chapter 2

Literature Review

In this chapter, we look at the previous work done on satisfiability (SAT) and problem diffi-
culty in local search algorithms.1 First, various SAT solvers and SAT solving techniques are
discussed. Here, we identify two major techniques for solving SAT problems as well as meta-
heuristics that can be used to drive these solvers. We also look at local search algorithms in
other combinatorial optimization problems and see how the features in the problems may be
useful to SAT solvers. Secondly, we examine the work done on problem difficulty in SAT.
These include the strengths and weaknesses of local search and constructive search algorithms
for various problem types and possible explanations for the variance in their performance. Fi-
nally, some applications of SAT are presented.

2.1 Satisfiability

Satisfiability (SAT) is a combinatorial decision problem that plays a prominent role in com-
plexity theory and Artificial Intelligence [34]. The goal of satisfiability problems is to show
whether the given logical formula is satisfiable or not. Typically they are presented as con-
junctive normal form (CNF) formulas. A CNF formula is made up ofclauses, which are made
up of literals. Clauses are disjunction of literals, and literals are signed variables, positive or
negative. CNF formula is satisfiable if and only if all of its clauses can be satisfied with all the
variables assigned to a particular value, namelytrue or false. In turn, a clause is satisfiable
if and only if at least one literal in the clause is true. A CNF formula is shown below as an
example:

F = (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x3 ∨ x1 ∨ ¬x2)

All literals inside the clause (a bracket of literals) are joined byor’s (∨) and each clause is
joined byand’s (∧). Again, if F can be madetrue, the formula is satisfiable, and if not, the
formula is unsatisfiable. In this instance, settingx1 to true andx3 to true will satisfy all three
clauses (x2 can be eithertrue or false).

1Some of the material that is specific only to certain chapters are presented in the respective chapters.

6
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Maximum Satisfiability Maximum satisfiability, or MAX-SAT, can be seen as a general-
ization of SAT in which, instead of satisfying all clauses of a given formulaF , the objective
is to satisfy as many clauses as possible [34]. An optimal solution to a MAX-SAT instance
is a variable assignment that satisfies a maximal number of clauses inF . In SAT, an optimal
solution is equivalent to a satisfying solution.

2.2 Constructive Search Methods

There are two major methods for solving a SAT problem: one is aconstructive search, also
known as abacktrackingor systematic search, where every possible combination of variable
assignment is tried (either explicitly or implicitly). Another solving method islocal search,
which starts from a random set of assignments for all variables and makes incremental moves
towards minimizing the number of unsatisfied clauses. This section examines the mechanics
of a constructive search method and introduces various techniques that have been created over
the years to improve its performance.

The most well-known constructive search algorithm isDavis-Putnam, Logemann, and
Loveland (DPLL)[12] procedure [14]. Most of the state-of-the-art constructive SAT solvers
are based on DPLL. The procedure for DPLL can be seen in Figure 2.1.

A DPLL algorithm chooses a variable to assign (if no unit clauses are available at first) a
value according to some heuristic. This decision and the level with respect to the search tree is
recorded. Based on this assignment, clauses containing the literal corresponding to the assigned
variable can be deleted, and the opposing literals of the assigned variable can be deleted from
their respective clauses. In the example CNF formula in Section 2.1, if the heuristic decides to
assignx1 = false, the second clause will be deleted fromF since it is satisfied and no longer
needs to be considered (unless there is backtracking, which we will get into later). Further, the
literal x1 in the first and third clause will be deleted from its respective clauses. This leads to a
simplified formulaF ′ = (x2) ∧ (¬x3 ∨ ¬x2).

At this point,unit propagation, a powerful technique that drives DPLL, takes place. Here,
unit clauses (those clauses with only one literal) are identified and set to their correct values. In
the example above, the unit propagation will setx2 = true in order to satisfy the first clause,
leading to yet another simplified formulaF ′′ = (¬x3), which can be satisfied withx3 = false.

If there is a conflict in variable assignments (thus an empty clause found), the search can
undo (i.e. backtrack) all the unit propagations made up to the last point where a heuristic
decision was made to a variableQ (see Figure 2.1). IfQ has not been tried with both values,
it can be flipped and the unit propagations can take place again. IfQ has been tried with both
values, the algorithm further backtracks until the last heuristic decision was made. If no such
decision exists, the formulaF is unsatisfiable. On the other hand, whenever there are no more
clauses left inF (from clause deletion resulting from variable assignments), the corresponding
set of assignments is a satisfying solution.

2.2.1 Improvement of DPLL

DPLL-based algorithms have evolved considerably since their introduction in 1962. Although
DPLL-based algorithms have not changed very much in terms of its core propagation tech-
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DPLL (F )

Input: a CNF formulaF

Output: a decision of whetherF is satisfiable

unit propagation(F )

if an empty clause is generated,return ‘unsatisfiable’

else ifall variables are assigned a value,return ‘satisfiable’

else

Q := some unassigned variable

return DPLL (F ∧Q) OR DPLL (F ∧ ¬Q)

Figure 2.1: DPLL pseudo-code [14].

nique, through the use of clever heuristics andconflict learningamong other techniques, sig-
nificant improvement in performance has been observed. Here, we introduce some of the more
popular mechanisms.

Conflict Learning The idea with the conflict learning is to avoid the same mistakes that were
made earlier in the search. Thus, when a contradiction is encountered, the set of assignments
that caused the contradiction (theconflict set) is identified and recorded as a clause such that
the same set of assignments is not made later in the search.

Consider the following example by Dixon et al. [15]. Suppose that a partial assignment
contains{a,¬b, d,¬e} and that our problem contains the following two clauses:

(¬a ∨ b ∨ c ∨ ¬d ∨ e) (2.1)

(¬c ∨ ¬d) (2.2)

Based on the partial assignment, the first clause allows us to concludec, while the second
clause allow us to conclude¬c. From this contradiction, we form anogood, a new clause to
prevent us from assigning the same partial assignment:

(¬a ∨ b ∨ ¬d ∨ e) (2.3)

With chronological backtracking, if a search finds a dead-end, it will simply go back up
to the previous decision variable to flip its value. However, that previous decision variable
may not be directly in conflict with the current variable we just instantiated. What we would
rather do is to identify which of the decision variables had the conflict(s) with the current
variable. This is the idea behindbackjumping. By storing some information about the nogoods
discovered during the search, we can backjump to the deepest variable that conflicts with the
current variable assignments.
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Branching Heuristics Branching heuristics come into play when a constructive search al-
gorithm needs to choose a variable (Q in Figure 2.1) to assign a value. The primary criterion
for the selection of a branching variable is to pick one that will enable a cascade of unit prop-
agations [15]. Based on this idea,MOMS rulebranches on the variable that has theMaximum
Occurrences in clauses of Minimum Size[37, 27, 11]. This heuristic is based on the intuition
that shorter clauses are more important than longer ones. Thetwo-sided Jeroslow-Wang(J-W)
rule works in a similar fashion [66].

Theunit propagation rule[11] computes the exact number of propagations that would be
caused by a branching choice [15]. Compared to a more approximate method such as MOMS,
this method is considerably more expensive computationally and thus is not often implemented.

Another strategy that works well is branching on the variables that are likely to be in the
backbone[17]. A backbone variable is one that has the same value in all optimal solutions to a
given problem. Again, from Dixon et al.’s work [15], given a problemC and a partial assign-
mentP , the backbone heuristic attempts to branch on variables that are in the backbone of the
subset of those clauses inC that are satisfied byP ; the likelihood that any particular variable
is backbone is approximated by counting the appearances of the literal in the satisfied clauses
in C. This heuristic is known to outperform the previous branching heuristics mentioned here
[15].

One branching heuristic that works well with the conflict learning is thevariable state
independent decaying sum (VSIDS)used inzChaff[47]. This method keeps a count of the
number of times each literal occurs in a formula. This includes those literals from the new
clauses added from conflict learning. VSIDS then selects a variable with the highest count.
Meanwhile, all the counts are divided by a constant factor periodically such that the information
from the recent conflicts are favoured [47, 15].

Watches Moskewicz et al. [47] developed a more efficient way to detect unit clauses that is
now standard in DPLL implementations. This method chooses two arbitrary literals from each
clause to bewatched. By having thesewatched literalsfor each clause, the only time a clause
needs to be checked for whether it is a unit or not is when one of the watched literals is falsified.
At this point, there is either another literal (distinct from the remaining watched literal) that can
be watched, or the only uninstantiated literal left in the clause is the remaining watched literal,
at which point, unit propagation can take place. Considering that DPLL algorithms spend
the majority of its time in unit propagation, this technique brings tremendous speedup over
conventional DPLL algorithms.

2.3 Local Search Methods

The other end of the spectrum for SAT solving techniques is a local search method. Ever since
the introduction of GSAT [56], local search algorithms have continuously gained popularity.
Despite the inherent incompleteness, their ability to solve hard satisfiable problems coupled
with the simplicity of their implementation have drawn many researchers into the field [53].
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2.3.1 GSAT

As one of the first local search algorithms, GSAT showed tremendous scalability and speed on
various types of hard satisfiable instances. Among these were random 3-SAT, graph-colouring,
N-queens encodings, and Boolean induction problems [56]. The basic procedure for GSAT is
simple: it starts with a random truth assignment to all the variables. If the assignment does not
satisfy the given CNF formula, a variable that would lead to the largest increase in the total
number of satisfied clauses is flipped. The number of clauses made satisfied by the change in a
variable is denoted bymake, and the number of clauses made unsatisfied is denoted bybreak.
Such procedure is repeated until a satisfying solution is found or it has reached the maximum
number of flips. This process repeats itself as necessary for a specified maximum number of
tries. See Figure 2.2 for the pseudo-code.

2.3.2 Noise Strategies and Walksat

A big improvement in the performance of local search came with the idea of addingnoiseto
the algorithm. Because GSAT always picks the variable that will yield the largest increase in
the number of satisfied clause, the algorithm is largely deterministic. While this is advanta-
geous in the early phase of the search, such a strategy can often lead to local minima, where
the algorithm can be trapped indefinitely. In order to avoid this, noise was introduced to the
procedure: instead of always choosing the variable with the highestmake− break count, with
some probabilityp, the algorithm randomly chooses a variablev from the variables that appear
in the unsatisfied clauses. With probability1 − p, the greedy heuristic is used as before. The
algorithm with this modification is known as GWSAT [55].

With a few additional subtle changes to GWSAT, Selman et al. [55] created the powerful
Walksat [55] that has been the algorithm of choice for much ensuing research in this area. The
pseudo-code for Walksat can be found in Figure 2.3.

There are two subtle differences between GWSAT and Walksat. First, whereas GWSAT
picks a variablev from the list of variables (with no duplicates) that appear in unsatisfied
clauses, Walksat employs a two-stage process for pickingv: it first picks a clausec randomly
from all the unsatisfied clauses, and then a variable fromc is selected. This favours those
variables that appear inmanyunsatisfied clauses for Walksat while in GWSAT’s case, all the
variables that appear in unsatisfied clauses have equal likelihood for being picked [55].

Secondly, when Walksat greedily picks a variable to flip, it only looks at thebreak count
while GWSAT considersmake − break count. To our knowledge, there is no clear evidence
as to which counting method works better.

2.3.3 Further Strategies for Improvements

Since the introduction of Walksat, there have been incremental improvements on the perfor-
mance of local search. Novelty [44] works in the same general framework as GSAT except
that it avoids picking the same variable repeatedly by keeping track of the variables that were
flipped last. If the variable with the bestmake−break count is the most recently flipped one, it
is flipped with probability1− p [30]. Otherwise, the second best variable is flipped. Novelty+
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Input: a CNF formulaF , Max-Flips, Max-Tries

Output: a satisfying truth assignment if found

for i := 1 to Max-Tries

T := a randomly generated truth assignment

for j := 1 to Max-Flips

if T satisfiesF then return T , ‘satisfiable’

v := variable with the largestmake− break

T := T with v’s value flipped

end for

end for

return ‘no satisfying assignment found’

Figure 2.2: GSAT pseudo-code [56].

[30] is an extension of Novelty with a random walk. In each search step, with probabilitywp,
the variable to be flipped is randomly picked from the selected clause.

Adaptive noise mechanismfor Walksat is a way to vary the noise valuep dynamically
during the search [32]. Intuitively, during the early stages of the search when the number of
unsatisfied clauses is decreasing at a high rate, we want to make Walksat more deterministic
by having a smallerp. However, when the search stagnates, we want to increase the noise
value to guide the search out of local minima. The improvement in performance from the
adaptive noise mechanism is substantial in certain problem instances while it rarely hurts the
performance [68].

A clause-weighting scheme dynamically varies the weights of unsatisfied clauses such that
the ones that are harder to satisfy are given higher priority to satisfy than others [59]. Examples
of dynamic local search algorithms for SAT include Morris’ Breakout Method [46], GSAT
with clause weighting [54, 18], Discrete Lagrangian Method (DLM) [65], Smoothed Descent
and Flood (SDF) and Exponentiated Sub-Gradient (ESG) [53], and Scaling and Probabilistic
Smoothing (SAPS) algorithm [36]. All these algorithms dynamically vary the weights of the
clauses to adjust the search space that they focus on.

2.4 Use of Memory in Local Search

So far the discussion of local search methods was in the context of SAT. However, local
search methods are broadly used for other combinatorial problems including constraint satis-
faction problems, travelling salesman problems, quadratic assignment problems, and job-shop
scheduling problems [29]. Naturally, there are many similarities in the design of local search
methods for SAT and other combinatorial problems. In this section, we examine a key fea-
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Input: a CNF formulaF , Max-Flips, Max-Tries,p

Output: a satisfying truth assignment if found

for i := 1 to Max-Tries

T := a randomly generated truth assignment

for j := 1 to Max-Flips

if T satisfiesF then return T , ‘satisfiable’

c := an unsatisfied clause ofF , selected at random

if there exists a variable inc with break = 0

v := such a variable

else

with probability1− p

v := a variable inc with minimal break

with probabilityp

v := randomly selected variable fromc

T := T with v’s value flipped

end for

end for

return ‘no satisfying assignment found’

Figure 2.3: Walksat pseudo-code [55, 57].
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ture,memory, in non-SAT local search methods and see how it is applied to SAT local search
methods.

Memory has been integral part of local search methods. The use of memory has been of
particular importance fortabu search, as the main mechanism for guiding the search is defined
by the memory. Tabu search is a metaheuristic that can be superimposed on other procedures
to prevent them from becoming trapped at locally optimal solutions [21]. This inner procedure
is often a greedy heuristic that moves from one solution2 to another based on some evaluation
function.

Similar to most other local search methods, tabu search begins with a solution. This can
be from a random assignment or from some initialization. Then tabu search generates a list of
candidates to move to from the current solution’sneighbours(further defined in Section 2.4.1).
From the list, tabu search moves to the “best” candidate based on some criteria, forming a new
solution. This process of finding a list of candidates and moving to a new solution repeats until
some termination criteria (often the number of iterations or aspiration criteria) is met.

Central to tabu search is atabu list, which keeps a list of moves that may not be performed.
Thus, when generating a list of candidates from a current solution, some neighbouring solutions
cannot be added to the list. The tabu list serves to insure that the moves in the list are not
reversed thus preventing previous moves from being repeated. Criteria for moves entering the
tabu list can be defined in many ways (discussed below), and similar criteria exist for moves to
be off the tabu list. The length of the stay for a given move is called the tabu tenure.

2.4.1 Memory in Tabu Search

Memory in tabu search may be viewed as a way to modify the neighbourhoodN(x) of the
current solutionx. When tabu search looks for the next move, it considers the current solution’s
neighbourhood as the next candidates. Memory modifies the neighbourhood such that the
candidates are fromN∗(x) ⊆ N(x) [23]. Depending on how memory is defined and what
aspects of memory is used, the resulting subset,N∗(x), can significantly vary. For instance,
with a long tabu list and tabu tenure, the search has only limited choice of moves as most of
the neighbouring moves are tabu. The opposite is true with a short tabu list and tabu tenure.

Glover and Laguna [23] identify four dimensions to memory: recency, frequency, quality,
and influence. Each dimension uniquely defines the criteria by which moves enter and exit the
tabu list. In particular, recency and frequency complement each other and form the basis for
the short-term and long-term memory as discussed in the following.

2.4.1.1 Short-term Memory

The most commonly used short-term memory is in the form ofrecency-basedmemory, where
the underlying algorithm keeps track of solution attributes that have changed in the recent past.
Selected attributes of recently visited solutions are recorded as tabu (and stored in tabu list),
and this will prevent the search from revisiting the same solution [23]. Tabu tenure is critical to

2In the Artificial Intelligence community, a “solution” is just astate(with all variables fully instantiated) in
search space, not necessarily an optimal solution.
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the performance of tabu search as appropriate tenure length will ensure that the same solution
is not revisited while not ruling out too many possible solutions.

2.4.1.2 Long-term Memory

Although in some applications the use of short-term memory suffices, in most applications,
significant performance improvement can be found by integrating long-term memory. In long-
term memory, instead of relying on an individual solution for generating a modified neigh-
bourhood, an algorithm may generate a pool ofelite solutions(usually a collection of local
minima visited along the search) or some attributes from past visits in the search space [23].
For example, from a pool of elite solutions, one can use the information on how often certain
common attributes among solutions occur or how often attributes change as a basis to form the
neighbourhood. Another way is to combine the elite solutions using some kind of weight that
indicates the quality of the solutions.

Two important components of long-term memory areintensificationand diversification.
Intensification encourages moves in the search space that have historically been good. The
idea behind intensification is that one should explore more thoroughly the portions of the search
space that seem promising in order to make sure that the best solutions in these areas are indeed
found.

The purpose of diversification is to prevent the search process from concentrating in one
area of search space for too long since an optimal solution may be in another part of the search
space. Diversification can be as simple as randomization in the search process. Partial or full
restart is another way to achieve some diversity in the search. Also, diversity can be used as
a criterion for elite pool replacement strategy: by not allowing a solution that is too close to
another elite solution, the elite pool can maintain its diversity.

Path Relinking One way to exploit an elite pool is to use the individual elite solutions to
generate another solution. The idea behindpath relinking is to generate combinations of a
set of elite solutions, thereby creating paths between these solutions. Along the path, there
will be a new set of solution(s) in a neighbourhood space that will share significant subset of
attributes contained in the parent solutions [22]. Further, path relinking encourages a different
neighbourhood structure to be used than in the standard search phase. For example, moves
that are allowed in path relinking may be excluded normally due to infeasibility or the hill-
descending nature of the move.

To generate the desired path, two solutions from the elite set can be chosen (by some
heuristic or randomly). Then, starting from one of the two solutions, a series of moves can be
made toward the other solution. This is shown in Figure 2.4, wherex′ is path-relinked withx′′.
The motivation behind this is to isolate assignments that frequently and influentially occur in
high quality solutions, and then introduce compatible subsets of these assignments into other
solutions that are generated. If any of the solutions visited during the path relinking stage is
better than either of the two parent solutions, a parent solution can be replaced, and the process
can be repeated. Often the details of the implementation are problem domain specific.

One of the successful applications of this method is Nowicki and Smutnicki’si-TSAB
algorithm [49].i-TSAB, based on tabu search, uses path relinking as a means of diversification,
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Figure 2.4: Two different paths going from solutionx′ to x′′. Original path shown by heavy
line; relinked path shown by dotted line [22].

and as it stands,i-TSAB is the current state-of-the-art local search algorithm on the makespan-
minimization form of the classic job-shop scheduling problem [62].

2.4.2 Use of Memory in SAT Solvers

In this section, we look at how the memory mechanisms discussed above are applied to SAT
solvers. In the SAT domain, use of memory is rather limited and simple. Most popular imple-
mentations come in the form of tabu list, where an algorithm keeps recently flipped variables to
prevent them from being reversed too quickly. Also, there is some usage of long-term memory
via clause-weighting.

2.4.2.1 Tabu List

The use of memory in SAT was introduced in HSAT [20]. Built based on the architecture
of GSAT, it remembers when variables are flipped the last. Thus, when HSAT is offered a
choice of variables, it always picks the one that was flipped the longest ago. The addition of
the short-term memory significantly reduces the number of flips required to find a satisfying
solution compared to GSAT. Similar ideas have been implemented on Walksat by McAllester
et al. [44], where an explicit tabu list is kept of variables that have been flipped in the lastt
flips. The algorithm flips the variable from an unsatisfied clause only if it is not on the tabu
list. One of the most successful local search algorithm, Novelty, also keeps track of recently
flipped variables in order to avoid repeatedly flipping the most recently flipped variable [44].

2.4.2.2 Clause-Weighting

Another way of using memory in local search methods is more implicit. In clause weighting
schemes, clauses that are unsatisfied more frequently than others are assigned higher weights
such that they get a higher priority in being satisfied than other clauses, thus, in effect, warping
the search space. There are many variations in how the weights are assigned and how often
they are updated [54, 18]. Frank’s work [18] indicated that the weighting scheme acts as a
short-term memory that is only relevant at the existing search space but not necessarily at the
new space.
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Scaling and Probabilistic Smoothing (SAPS) algorithm by Tompkins [59] claimed the use
of short- and long-term memory via dynamic clause-weighting. It noted that the superior
performance of SAPS does not necessarily come from “warping” the landscape (via clause-
weighting) as commonly believed, but rather, due to the diversification effect from the scaling
(i.e. clause-weighting) and smoothing. The scaling helps the algorithm to escape local optima
(short-term memory) while the smoothing reduces the clause-weighting effects once the search
has left the trap (long-term memory). While Frank viewed the decay of previous weightings as
lack of long-term memory, Tompkins considered it as active averaging of the weights, hence
long-term memory.

Another algorithm that uses clause-weighting is Pure Additive Weighting Scheme (PAWS),
augmented byUsual Suspectheuristic [38]. Instead of the usual contextual perturbation of
clause weights (short-term memory), the algorithm keeps the weights for an extended period
of time to provide long-term effects that channel its effort on clauses that are hardest to satisfy.
PAWS+US provided notable (though not substantial) improvement in performance over PAWS
in about a third of all instances tested.

2.4.2.3 Backbone-Guided Search

One of the more recent adaptations of long-term memory for SAT solvers is through the use of
elite solutions. Zhang’sBackbone-Guided (BG)Walksat algorithm [68] uses long-term mem-
ory to gather some information about the problem instance at hand and make “educated” de-
cisions when flipping variables. The BG algorithm is based on the idea ofbackbonevariables
(those variables that have the same truth assignment in all optimal solutions). Thus, if we know
which variables are in the backbone, we can focus on setting those variables to correct values,
and the resulting set of clauses should be easier to solve. However, since it is impossible to
know the backbone variables without knowing all the optimal solutions in advance, Zhang es-
timates the backbone variables by running the base algorithm repeatedly for a short (relative to
the entire run) period of time until a pool ofelite solutionsis collected. From this, he can esti-
mate which variables are in the backbone based on how often one literal appears compared to
its negation. Based on these estimates, the BG algorithm makes biased decisions when choos-
ing unsatisfied clauses and flipping variables in order to try to set the backbone variables to
correct literal values. A more detailed description of the BG local search is provided in Section
6.3.1.

When compared to its base algorithm Walksat [55], Zhang’s algorithm is particularly strong
on over-constrained MAX-SAT problems and some structured problems. However, on critically-
and under-constrained problems (see Section 2.5), the performance actually deteriorated with
the use of backbone guidance.

One of the key differences between a backbone-guided search and path relinking is that,
in a backbone-guided search, all the elite solutions are combined such that the search makes
decisions based on the aggregated information from the elite solutions. However, path relinking
influences the decision-making using the features of individual elite solutions. We will further
address this difference in Chapter 7.
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2.5 Problem Difficulty for Local Search

Along with the research to advance the speed of SAT solvers and their scalability, another re-
lated research area is in identifying difficult satisfiability problems and their key characteristics.
Because there is so much variance in problem difficulty even for problems of the same size in
a specific problem domain, being able to identify and predict whether an instance will be dif-
ficult is of practical interest as well as theoretical [57]. There are number of factors that have
been shown to affect the local search cost to different degrees, including the number of optimal
solutions, backbone size, number of local optima, and the extensiveness of local minima.

Clauses-to-Variables Ratio Clauses-to-variablesc/v ratio is known as one of the most im-
portant features in predicting problem difficulty in satisfiability problems. In under-constrained
regions with relatively lowc/v ratio, almost all instances are satisfiable, making it easy to find
an optimal solution. In over-constrained regions with highc/v ratio, almost all instances are
unsatisfiable. Here, for constructive search algorithms, proving instances to be unsatisfiable is
easy since backtracking search can cut off potential solution paths early in the search [7]. The
critically-constrained region, which hasc/v ratio of 4.3, is known to have the hardest prob-
lems. This region coincides with thephase transitionregion, where about half the instances
are satisfiable and the rest are unsatisfiable [45, 10]. The phase transition region for 3-SAT,
100-variable instances can be seen in Figure 2.5. Though it is not the focus of our work, there
has been substantial work in understanding the phase transition [64, 69, 43].

While the decrease in the search cost with increasingc/v beyond the critically-constrained
region makes sense for systematic solvers, such observed phenomenon for local search algo-
rithms is less intuitive. More specifically, for satisfiable instances, local search cost falls past
the phase transition region despite the decreasing number of satisfying solutions. Thus, there
must be a competing factor that offsets the effects from the number of satisfying solutions in
order to decrease the local search cost beyond the phase transition region. The following are
some of the possible factors.

2.5.1 Number of Optimal Solutions and Backbone Size

With all things equal, the more optimal solutions an instance has, the easier it should be to
solve. For local search algorithms, the number of satisfying solutions is especially important
due to their stochastic nature. Past studies have confirmed this: Clark et al. [8] reported a
relatively strong negativelog − log correlation between the local search cost and the number
of satisfying solutions. Thus, the search cost rises going from the under-constrained region
to the critically-constrained region. However, as the number of satisfying solutions continues
to fall with increasingc/v ratio past the critical region, the search cost actually decreases for
satisfiable instances.

The same peak in local search cost was observed by Parkes [51]. Parkes claimed that
the search cost peak at the critically-constrained region is from the rapid emergence of large-
backbone instances at the criticalc/v ratio. Further, Parkes noted that for any given size of
backbone, the cost is actually higher for instances from the under-constrained region.

Singer et al. [57] further refined the relationship between the local search cost and the
number of optimal solutions by showing that a strong correlation between search cost and
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Figure 2.5: Percentage of satisfiable instances and size of the search tree for 3-SAT, 100 vari-
ables from Crawford et al. [10].

the number of optimal solutions exists only for those instances with small backbones. For
these problems, they claimed that finding the backbone was easy and the main difficulty was
encountering an optimal solution once the backbone has been established. The correlation
between the two factors was not as strong in larger backbone sizes because the main difficulty
of finding an optimal solution was in identifying the cluster of optimal solutions (backbones).

2.5.2 Extensiveness of Local Optima

A part of the explanation for decreasing search cost past the criticalc/v ratio can be addressed
by the distance between local optima and their nearest global optimum. Singer et al. [57]
observed that the Hamming distance between a quasi-solution3 and its nearest optimal solution
decreases withc/v for fixed backbone sizes. This result indicates that at higherc/v ratio,
although it may take a little longer to find a quasi-solution, once found, it is fairly close to a
global optimal. However, in critically-constrained region, the study claims that there are vast
number of high-quality solutions spread throughout the search space that they may mislead the
search.

Singer et al. further reported that the correlation between the search cost and Hamming
distance between a quasi-solution and its nearest optimal is especially high for small-backbone
instances. The Hamming distance between a quasi-solution and its nearest optimal is a good
indicator of howextensiveor spread-out the quasi-solution area is. The more extensive this
area (larger Hamming distance), the harder the instance gets since there are more attractive
solutions that do not move the search closer to a globally optimal solution. Hence the strong
positive correlation makes sense. For further discussion, readers may refer to Section 5.3.

3A quasi-solution was defined as a solution with 5 unsatisfied clauses for 100 variable instances
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Backbone Fragility Singer et al. [57] introduced yet another reason for the decreasing search
cost beyond the critically-constrained region suggestingbackbone fragilityas the possible ex-
planation. They definedbackbone-fragileinstances as those that have a large reduction in the
backbones size on average upon random removal of small set of clauses.Backbone robustness
was defined as the opposite of backbone fragility.

According to the study, if an instance is backbone-fragile, we can expect that the quasi-
solutions, where only the removed clauses are unsatisfied, will be attractive to local search
algorithm and possibly Hamming-distant from the nearest global optimal. Thus, backbone
fragility, which is an intrinsic property of an instance, approximately corresponds to how ex-
tensive the quasi-solution area is. The hypothesis was supported by strong negative correlation
between the search cost and backbone robustness in large backbone problems. However, the
correlation was not as strong for small-backbone instances; they claimed that the low correla-
tions was from the fact that these instances were generally easier to solve and backbone did
not affect them as much. Thus, the typical local search cost peaks in the critically-constrained
region because of the appearance of many large-backbone instances which are moderately
backbone-fragile. Further addition of clauses will make the instance more backbone-robust as
is the case in the over-constrained region.

2.5.3 Number of Local Minima

Yokoo [67] claimed that the decreasing local search cost past the phase transition is from the
decreasing number of local minima with the increasingc/v ratio. Abundance of local minima
distracts the local search algorithms from getting closer to the optimal solution. The study
showed that the number of local minima indeed falls with respect to the increasingc/v ratio,
thus making the search easier past the phase transition region. He claimed that this factor along
with the number of optimal solutions cause the search cost peak at the phase-transition region.
This is further discussed in Section 5.2.

2.6 Applications of Satisfiability

In addition to the prominent role SAT plays in the theoretical research for complexity theory,
there are many areas of its applications. In particular, AI planning problems, scheduling, con-
straint satisfaction problems, cryptographic key search, and inductive inference can be easily
encoded into SAT and be solved with regular SAT solver [34]. More recently, SAT has been
applied to hardware design and verification problems with success. Here, three areas of appli-
cations are discussed:

Planning as Satisfiability The term planning in AI is used to describe the construction of
a sequence of actions that will achieve a goal [52]. A planning domain consists of a set of
operators or action types. Each operator may be executed only in some particular set of states
(its preconditions), and has some particular set of effects on its state (its effects). A planning
problem consists of a planning domain together with an initial state and a desired goal state
(or set of goal states). The planning problem is solved by producing a sequence of actions
(operator instances) that takes the initial state to a goal state.
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In 1992, Kautz and Selman proposed a way to solve planning problem as satisfiability [41].
Compared to the previous method of deduction, it allows more flexible and accurate modeling
of planning problems. In terms of performance, directly SAT-encoded problems that are solved
using Walksat outperformed Graphplan, which at the time was the state-of-the-art algorithm for
planning problems [39].

Scheduling Problems as Satisfiability Scheduling problems are ubiquitous; in manufactur-
ing environment, a series of jobs must be scheduled such that a set of machines or tools are
used efficiently. In hospitals, one may have to assemble a number of surgical teams using a
variety of specialists subject to a set of constraints on consecutive numbers of hours worked,
availability of operating rooms, etc [9].

Crawford and Baker [9] examined the application of satisfiability for job-shop scheduling
problems (JSP). In an × m job-shop scheduling problem,n jobs must be processed exactly
once on each ofm machines. Each jobi (1 ≤ i ≤ n) is routed through each of them machines
in some pre-defined order. They found that the problems get very large quickly when they are
encoded into SAT; the size of the problems made it hard for SAT solvers be competitive with
the existing methods such as the slack-based heuristics used by Smith and Cheng [58]. They
further noted that a DPLL-based algorithm outperformed a local search method, primarily due
to the abundance of unit propagations available in JSP.

Formal Hardware Verification with Satisfiability An active area of research for SAT ap-
plication is in formal hardware verification. Formal verification meansproving that a property
holds for a model of a design [35]. It is involved with the development of methods to analyze
and determine whether a given implementation of a system conforms with its specification.
With the exponential growth in system complexity, verification has become a true bottleneck
in the development of software and hardware systems. In fact, over 50% of the resources
invested in developing systems are reportedly spent on verification [1].

Along with automatic test pattern generation, SAT is is one of the most efficient ways to
address formal hardware verification [5]. Since the introduction ofbounded model checking
(BMC) by Biere et al. [4], using SAT as a hardware verification tool has proven to be very
efficient. By taking advantage of the depth-first nature of SAT search procedures, the BMC
technique is both faster and more compact than existing Binary Decision Diagram based ap-
proaches [4].

2.7 Conclusions

The work discussed above serves as a motivation and a starting point for our work from here
on. We believe that there are still many unanswered questions in the areas of problem difficulty
for local search algorithms and also, in the concept and applications of backbone. Also, in gen-
eral, we found that there is not much literature that compares the performance of constructive
search and local search algorithms on a wide range of problems. All these issues will be dis-
cussed in the upcoming chapters. Further, based on the literature from non-SAT, combinatorial
optimization domains, we implement a metaheuristic to a local search algorithm for SAT that
uses long-term memory.



Chapter 3

Water Network Security Problem as
Satisfiability

Along with the aforementioned areas of application of Satisfiability (SAT), problems with dis-
crete valued variables may be solved as SAT. Binary integer programming problems are par-
ticularly well-suited for SAT due to the natural 1-to-1 mapping of the variables into the SAT
literals. In this chapter, we give a concrete example of such case by solving a real applica-
tion problem using SAT and comparing the results with other existing methods to demonstrate
the potential usage of SAT in this class of problems and also serve as a motivation for further
research. To our knowledge, this kind of comparison between SAT and integer programming
(IP) has never been done although similar work exist for comparisons between SAT and CSP
[31, 40, 2].

3.1 Problem Description

Water Network Securityproblem is a real-world problem faced by the researchers at Sandia
National Laboratories.1 Here, we try to minimize the public’s health risk in the event that the
integrity of a water distribution network is compromised by an outside source (i.e. terrorist
attack, ground water leakage, contamination, etc.). There are two sub-problems that arise from
the application: one is the sensor placement optimization, and the other issource inversion.
Source inversion, which is this chapter’s focus, looks at identifying the location of attacks given
that there are contaminant concentration readings from one or more sensors. By identifying the
location of the attacks, the water flow can be re-routed or contained to the immediate area such
that the damage is minimized and the clean-up team can be placed in correct locations.

Integer Programming Formulation In order to be able to locate the point of attack, an at-
tack from any of the possible finite attack points need to bedistinguishablefrom another attack
point. More rigorously, attacki causes certain nodes to observe nonzero concentrations of the
contaminant at certain time. Given a sensor placements, two attacksi andj are considered

1In New Mexico, USA.
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distinguishable(dij = 1) if and only if there exists a vertexv such thatv has a sensor (sv = 1)
and exactly one ofi,j causes a nonzero concentration at vertexv.

We can illustrate the concept of distinguishability with a simple example seen in Figure
3.1. Here, in order to distinguish attackA from B, a sensor must be either at node 1 or 2, thus
DAB = {1, 2}. Similarly, we haveDBC = {2, 3, 4} andDAC = {1, 3, 4}.

SetDij of nodesv that can distinguish a pairi andj are pre-computed. In other words, if
any one of the nodes from a setDij has a sensor,(i, j) attack pair is covered.

The problem withn attacks is most naturally modeled as a binary integer programming
problem as follows:

Maximize distinguishability:
n−2∑
i=0

n−1∑
j=i+1

dij

subject to:
∑

v

sv ≤ maxNumSensors (3.1)

∑
v∈Dij

sv ≥ dij (3.2)

where,
dij = 1 if two attacksi,j are distinguishable, otherwisedij = 0,
Dij represent the set of nodes that can distinguish attacki andj,
sv = 1 if nodev has a sensor, otherwisesv = 0.

Constraint 3.1 stipulates that the number of sensors used must not exceed the sensor budget.
Constraint 3.2 says that if any one of the nodesv for the given attack pair from the setDij has
a sensor (sv = 1), the attack pair is covered (dij = 1).

There are two typical approaches to this type of integer programming (IP) problem: One is
to use standard IP solvers such as ILOG CPLEX and the other is to use some heuristic method.

Figure 3.1: An example of a simple water network with 3 attacks and 5 nodes.
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While CPLEX can solve IP problems to optimality, its scalability may be an issue. As with
many other combinatorial optimization problems, the search space grows exponentially with
the problem size, and quickly, it can become infeasible to solve using this method.

The other approach is to treat the problem as a set-cover problem and use a greedy heuristic.
By re-arrangingDij, we can form a setEv of a pair of attack(i, j) that can determine which
attack pairs can be distinguished by each nodev. The heuristic selects one node at a time
for sensor placements starting from the node that will cover the most number of attack pairs.
Following a sensor placement, all the attack pairs covered by the node are removed from all
sets, and subsequent sensor placement is made. This is repeated until the maximum number of
sensors have been used. This method can solve larger problems than the integer programming
method, but its drawback is that it does not guarantee the optimality.

3.2 Water Network Security Problem as Satisfiability

In this section, we propose a method to encode the binary integer programming problem as a
SAT problem. One of the advantages of encoding the problem as satisfiability is that we can
exploit powerful SAT solvers. There have been other practical problems such as planning and
hardware verification problems that have been encoded as SAT in order to take advantage of the
speed of SAT solvers. What makes this problem particularly appealing to re-formulate as SAT
is the fact that most of the variables and constraints are binary. Due to the “natural” translation
to SAT and the availability of highly optimized SAT solvers, this approach has the potential to
be faster and more scalable than the IP method while being able to prove optimality.

Solving the Water Network problem as SAT is a two-step process: First, the CNF (Con-
junctive Normal Form) formula must be generated using appropriate encoding method, and
secondly, the resulting CNF formula must be solved using a SAT solver.

3.2.1 SAT Encoding of IP

The IP formulation discussed in Section 3.1 is used as the basis of CNF generation. Constraint
3.2 from the IP formulation says that each attack pairi, j will be covered if any one of the
nodes inDij has a sensor. Thus, each attack pairDij can be represented as a clause:

(sp ∨ sq ∨ sr ∨ ...)

wheresp, sq, sr, ... ∈ Dij

Encoding Constraint 3.1 of the IP formulation as CNF is non-trivial due to the comparison
of the binary variables to a non-negative integer (constant). To get around this, a dummy
variabletk,h is introduced and has the following definition:

Let tk,h = 1 if and only if
∑k

v=1 sv = h wherek represents the current node.

For each nodek, there will be a set of clauses to enforce that the total number of sensors
used so far will be less than or equal to the maximum allowed number of sensors. Then
using this variable, everyk = [1, .., mn], wheremn is the maximum number of nodes, can
be expressed explicitly using recursion as follows:
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For nodek,

[(¬tk,h)⊕ (tk−1,h−1 ∧ sk)⊕ (tk−1,h ∧ ¬sk)]

∧[(¬tk,h−1)⊕ (tk−1,h−2 ∧ sk)⊕ (tk−1,h−1 ∧ ¬sk)]

...

∧[(¬tk,0)⊕ (tk−1,0 ∧ ¬sk)]

where⊕ representsXOR operator.

The first line represents the case when there areh sensors used when counting from 1 to
k nodes (tk,h = 1). In such a case, either the second or the third round bracketmustbe true
in order to satisfy the first line. The second round bracket is true if the current nodek is used
(sk = 1) and thus,h − 1 sensors are used when counting up tok − 1; the third bracket is true
if the current nodek is not used. All the subsequent lines will be automatically satisfied by the
negation of the dummy variable in the first round bracket of each line. All of these lines must
be converted to the conjunctive normal from by expanding out theXOR’s and manipulating
the resultants using De Morgan’s law. In addition to these clauses for each sensor, a boundary
condition must be set such that the maximum number of nodes are used. Formn total number
of nodes:

(tn,maxNumSensors)

Modeling the constraints as above makes the entire formula satisfiable if and only ifall the
attack pairs are covered. Thus, if not all the attack pairs can be covered with the given number
of sensors, SAT solver will simply return “unsatisfiable”. However, we need to know what the
maximum number of attack pairs that can be covered given the sensor budget. To overcome this
problem, we can adjust the formulation such that it can be solved as aWeighted Maximum-SAT
problem, which is a superset of SAT problems. This is discussed in the following section.

The implementation of the SAT encoding is done using Python. The encoding translator
takes in the input file and converts each constraint using the method above, and then outputs
file with CNF formulae.

3.2.2 Solving as Satisfiability

Once the CNF formula is generated, it can be solved using a SAT solver. A popular way of
solving the SAT problem is to use a constructive SAT solver such aszChaff[47]. Local search
algorithms such asWalksat[55] have been tried as well, but based on preliminary results, con-
structive search algorithms are far superior on this problem due to its rich structure. Further,
zChaff has the added benefit of being able toprovesatisfiability. As mentioned earlier, one
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of the major drawbacks of solving this as SAT is that the solver will only show whether the
formula is satisfiable or not. For satisfiable cases, we know that all the attack pairs can be
distinguished by placing the sensors as directed by the SAT solution. However, if the for-
mula is unsatisfiable, the SAT solver will simply state this and not provide us with any other
information.

To address this problem, we can reformulate the CNF formula as Weighted Maximum-
Satisfiability (MAX-SAT) problem. In MAX-SAT problems, given a formulaF , one tries to
maximize the number of satisfied clauses. Further,WeightedMAX-SAT problems have weights
associated with each clause in order to signify the “importance” of each clause. Here, one tries
to maximize the weighted sum of the satisfied clauses (or minimize the weighted sum of the
unsatisfied clauses). MAX-SAT is a special case of weighted MAX-SAT with all the weights
set equal to 1, and similarly, SAT is a special case of MAX-SAT with 0 unsatisfied clauses
allowed.

The set of clauses thatmustbe satisfied is the one that describes the maximum number of
sensors (Constraint 3.1 in the original IP). Thus, we assign a large, arbitrary positive weight
(say 1 million) for all the clauses that help enforce the maximum number of sensors. The other
set of clauses that determines which attack pairs are distinguishable can be thought of as “soft”
clauses. We would like to maximally satisfy these clauses, but the results will be still valid even
if some are violated. They are assigned a small, arbitrary weight (say 1). Again, these weights
will enforce the MAX-SAT solver to fully satisfy the “hard” constraints while satisfying as
many “soft” constraints as possible.

3.3 Results and Discussion

Results from three different approaches to the Water Network problem are compared: solving
the integer programming problem using ILOG CPLEX 10 (translated using AMPL), using the
greedy heuristic (implemented in C++), and solving the IP as SAT problem. Ideally, for the
last method, the problem can be solved as MAX-SAT usingmaxsat[6] or a similar MAX-SAT
solver, but at this point, the technique is not competitive with the other two methods. Thus, a
SAT solver zChaff was used to determine the satisfiability of a given SAT formula.

Table 3.1 shows the results for four different problem sizes. The IP formulation was run on
a machine with 3.6GHz Intel Xeon and 8GB of RAM, and the greedy heuristic and SAT was
run on a machine with 2.8GHz Intel Pentium 4 and 512MB of RAM. The results from the first
machine was scaled to the first machine using a speed-up factor of 1.427.2 The run-time for
SAT is the time to generate the CNF formulas plus the time to solve them.

The results show that the heuristic-based model is very competitive with the IP model
in terms of getting the optimal answers. For the cases with 250 and 500 attacks, the two
methods, in fact, found identical answers, and for the case with 100 attacks, the two answers
were nearly identical. However, there is quite a significant difference in the coverage for the
largest case of 1000 attacks, where CPLEX clearly outperformed the greedy heuristic. The
sudden deterioration in the greedy heuristic’s quality in the 1000 attack case was unexpected.

2This was based on empirical results run on both machines for a few simple problems. For memory-intensive
problems such as the problems at hand, we believe that the speed-up will be far greater.
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Data Compact100 Inversion250 Inversion500 Inversion1000

No. Pairs 4950 31125 124750 499500

No. Attacks 100 250 500 1000

No. Nodes 3358 3358 3358 3358

Method IP Greedy SAT IP Greedy SAT IP Greedy SAT IP Greedy SAT

Covered pairs 4382* 4380 unsat 19566* 19566* unsat 60329* 60329* unsat 476997* 337374 unsat

Covered pairs (%) 88.5 88.5 n/a 62.9 62.9 n/a 48.4 48.4 n/a 95.5 67.5 n/a

Run time(s) 24 0.2 4.9 1731 4.2 102 1388 20.3 336 2283 433 6828

Table 3.1: Performance comparison between the IP, greedy heuristic, and SAT methods when

maxNumSensors = 20. Optimal solutions are denoted by *.

Whether this is due to the size of the problem or the characteristic of the particular instance is
unknown.

As for the SAT method, since it cannot provide the coverage detail, one way of providing
useful information is through determining whether the given number of sensors can cover all
the nodes. zChaff was very good at determining the satisfiability for all the problem sizes. In
Table 3.1, almost all of the run-time for SAT is due to the generation of the CNF formulas as
zChaff proved satisfiability almost instantly. However, we have seen greater than 1 order of
magnitude of speed-up when going from Python to C++ for the greedy heuristic, and we can
expect similar kind of speed-up for SAT generation.

There is a significant difference in the run-time for the IP and greedy heuristic. For the
first three problems, the greedy heuristic is faster than the IP method by around 2 orders of
magnitude. The gap in the run-time decreased for the 1000 attacks case, where the greedy
heuristic was only 5 times faster than the CPLEX. Further, to our surprise, the dramatic increase
in run-time with the problem size in the greedy heuristic is not seen for the IP method. In fact,
the run-time actually decreased going from 250 to 500 attacks.

At this point, the role that SAT for this application is to complement the solution of either
the greedy heuristic. SAT can “quickly” verify whether the number of sensors used to cover
all the attacks is optimal. Another way of using SAT is to find the optimal number of sensors
required by repeatedly running the problem with differentmaxNumSensors. To this end,
we solved theInversion250 instance using 188 sensors, which is the minimum number
of sensors required to fully be able to distinguish all the attack combinations. It took 4204
seconds to generate the CNF formula and 4998 seconds to solve it using zChaff. On the other
hand, CPLEX’s result was a little confounding in that the number of attack combinations dis-
tinguished wasone less(31124) than the total number of attack combinations of

(
250
2

)
= 31125

(the run-time was 9.3). At this point, we found no explanation for the disparity in the answer.
There are a couple of interesting observations with SAT: first the CNF generation time in-

creased by about 40 times with the increase inmaxNumSensors. This was expected due
to the recursive style used for the encoding of the Constraint 3.1. Secondly, it actually took
slightly longer to solve the problem than to generate the CNF formula with the increased
maxNumSensors. This is in stark contrast with the previous results in Table 3.1, where the
CNF generation time dominated the total generation+solving time. Intuitively, it does make
sense, however, for the problem to be tougher in the region where it is close to satisfiabil-
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ity since the solver must explore deeper into the search space before concluding satisfiability.
Thus, we expect the run-time with 188 sensors to be close to the upper bound for this instance.
By the same argument, we can expect decreasing run-time asmaxNumSensors increases
beyond 188. These issues of problem difficulty in SAT are discussed in detail in Chapter 5.

There is room for improvement for SAT especially in the way the problem is encoded into
CNF. With the SAT encoding employed here, the number of clauses explodes with respect to
the number of attacks and sensors. Essentially, every node (except for those near the boundary)
requiresmn lines ofXOR’s, wheremn is the maximum number of sensors. Since every line
containingXOR’s must be further translated into CNF formula, the number of clauses quickly
multiplies. There have been previous work done on generating compact CNF formulas using
RenamingandSkolemization[48] that may significantly improve the time it takes to encode
the CNF and further allow MAX-SAT to be a feasible approach to the problem.

3.4 Conclusions and Future Work

A novel way of approaching the Water Network Security problem was discussed: The binary IP
formulation for the problem can be translated into a CNF formula, which can be solved using a
state-of-the-art SAT solver. The results also showed that SAT may be used in conjunction with
the greedy heuristic as a way to verify the optimal number of sensors required to cover all the
attack pairs.

Comparison between the greedy heuristic and the IP method show that the greedy heuristic
makes relatively few sacrifices in terms of approaching optimality to achieve significant speed-
up and scalability compared to the IP method. At the same time, as problem size grew, the
search cost for the greedy heuristic increased significantly while that for the IP method stayed
near constant, which was surprising.

As shown in the results, a major portion of the run-time for solving this problem came from
the generation of the CNF formula. There are more compact SAT-encoding methods that could
facilitate faster generation of CNF formulas, as well as better SAT-solving performance, and
ultimately allow SAT to be more useful in practice for these types of problems.



Chapter 4

Comparison of Constructive and Local
Search Methods: Problem Domains and
Search Cost Factors

Generally speaking, there are two main types of satisfiability (SAT) solvers: one is constructive
search, also known as complete search, where every possible combination of variable assign-
ment is explicitly or implicitly tried to determine whether the given SAT formula is satisfiable
or not. The other type is stochastic local search. Typically, with a local search algorithm, one
starts from a randomly generated truth assignment for all the variables. The algorithm then
changes or “flips” the assignment of the variable that leads to the largest decrease of its cost
function, where the cost function is usually defined as the number of unsatisfied clauses [56].

Due to the differences in the search techniques, the resulting behaviours as well as the
strengths and weaknesses are quite different for constructive and local search methods. For
example, constructive search methods can prove that a formula is unsatisfiable by exhaust-
ing all the combinations in the search space while local search methods cannot. In terms of
performance, constructive search has been known to be more effective on highly structured
problems with many dependent variables such as hardware and software verifications [63]. On
the other hand, local search methods can often find satisfying assignments for extremely large
CNF formulas that are far beyond the capability of current constructive search methods [53].
They tend to be highly effective on hard randomk-SAT problems, logistics planning formulas,
graph colouring, and circuit synthesis problems [63].

Recently, there has been some work on the underlying reason behind a local search method’s
performance on various problem domains. In particular, past studies have suggested the num-
ber of optimal solutions for a given formula and backbone size to be of significance in deter-
mining local search cost [8, 57]. Such factors, however, have not been studied to the same
extent for constructive search algorithms.

The purpose of this chapter is two-fold: first, it attempts to identify the problem domains
of each method’s strengths and weaknesses experimentally. Secondly, it applies some of the
factors that affect local search cost to a constructive search method, namely number of optimal
solutions and backbone size, to see if the same factors influence constructive search cost as
well.

28
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4.1 Background Information

One SAT solver each from constructive and local search methods are used for this chapter: for
the constructive search,zChaff 2004.5.13[47] developed by SAT Research Group of Princeton
is used, and for the local search,Walksat[55] is used. The following is a brief description of
the two algorithms.

4.1.1 zChaff Algorithm

As with most other complete SAT solvers, zChaff is based on the Davis-Putnam, Logemann,
and Loveland (DPLL) [13, 12] backtrack search algorithm (refer to Chapter 2 for more details
on DPLL). One of the two major improvements of zChaff from the basic DPLL algorithm
comes from a more powerfulBoolean Constraint Propagator (BCP)for unit propagations.
Since major portion of constructive SAT solvers’ run-time is spent in the BCP process, even a
small increase in its efficiency has a noticeable impact on the end results. One way to reduce
the number of clauses the BCP must check is to visit only those clauses that are possiblyunit
(have only one literal) for unit propagation. That is, there is no need to visit those clauses that
have at least two literals presentafter the variable instantiation since the BCP will not be able
to perform unit propagation. To achieve this, zChaff “watches” (any) two uninstantiated literals
in every clause (unless it has less than two literals already). Clauses need to be visited only
when one of the watched literals is deleted from the clause by a variable instantiation. When
one of the literals is deleted, there are two possibilities:

1. There is another literal (other than the other watched literal), which can be assigned to
be watched. There is no further unit propagation here.

2. The only uninstantiated literal left in the clause is the other watched literal, at which
point, unit propagation can take place.

A visit to the clause does not guarantee implication (i.e. unit propagation), but the clause
just needs to update the watched literals. Watched literals save many unnecessary visits to
clauses without implications. Further, it is very cheap even during backtracking since there is
no need to modify the watched literals [47].

The other improvement in zChaff over conventional DP solver is from a clever decision
heuristic for choosing a variable to branch on. This heuristic, called Variable State Independent
Decaying Sum (VSIDS), chooses the literal that appears most frequently. This is done by
simply maintaining a counter for each literal of the frequency of its appearance. However,
this counter is periodically divided by a constant, which makes the literals in clauses that are
recently added to the set ofconflict clausesweigh more than older literals. Conflict clauses
are formed from the set of assignments that has no possible satisfying solution. Since difficult
instances generate many conflict clauses, VSIDS heuristic ensures zChaff will concentrate on
getting the “tough” literals correct.

4.1.2 Walksat Algorithm

Walksat, introduced by Selman and Kautz in 1994 [55], is still one of the best performing local
search algorithms for SAT and serves as the core engine of state-of-the-art SAT solvers [44, 30].
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The detailed description of Walksat is given in Section 2.3. The Walksat implementation by
Tompkins calledUBCSAT[59] is used.

4.2 Search Cost of Constructive and Local Search on Vari-
ous Problem Domains

Both zChaff and Walksat are run on a diverse set of instances to measure their effectiveness
in various problem domains. All instances for the testing are drawn either from Zhang’s work
[68] or the Satisfiability Library [33]. The test set has a good mix of practical problems as
well as randomly generated ones including hardware verification, parity problems, quasigroup,
graph colouring, randomk-SAT, and planning.

4.2.1 Methodology

For Walksat, because the algorithm is highly stochastic, every instance was run 20 times inde-
pendently with the maximum number of flips set to 10 million per run. zChaff, on the other
hand, was run once per instance since the algorithm is largely deterministic. Run-time (the
mean run-time for Walksat) is used as the metric that measures the search effort for both algo-
rithms as any other measures such as the number of flips or decisions are algorithm specific.
For zChaff, the maximum time allowed for search is set as the average time that it takes for
Walksat to either find a satisfying solution or finish all 10 million flips (unless otherwise stated
in the results).

4.2.2 Results

The results are separated into three tables: Table 4.1 and 4.2 feature mostly structured instances
from Zhang’s paper [68]. Table 4.1, which consists of instances from Table 3 in Zhang’s paper,
is considered “easier” of the two tables in the paper. Table 4.2 (Table 4 in Zhang’s paper), the
harder of the two, consists of instances that Walksat could not solve within the cutoff value
of 10 million flips limit in any of the 20 runs. Finally, Table 4.3 consists of randomk-SAT
instances from the Satisfiability Library.

Table 4.1, 4.2, and 4.3 show quite a disparity in performance in the two search methods.
Planning, parity learning problems, quasigroups, and hardware verification were dominated
by zChaff while Walksat was superior in randomk-SAT instances and graph colouring. For
example, on hardware verification problems, zChaff was able to completely solve some in-
stances in less than 10 seconds while Walksat left hundreds of clauses unsatisfied in longer
time frame. Onk-SAT instances, however, it took less than 10 seconds for Walksat to solve
most of the problems while zChaff could not solve any of them in less than 100 seconds. While
the domains of each algorithm’s strength was expected from the previous studies, the degree of
disparity in performance was surprising. Possible reasons for such results is discussed below.
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Walksat zChaff

Domain Instance # vars # clauses clause/var# solns fnd # unsat clauses Time Time

Planning bwlarge.c 3016 50457 16.7 3 0.85 31.6 0.33

bw large.d 6325 131973 20.9 0 4.45 56.34 2.62

Parity par8-1 350 1149 3.3 10 0.5 6.73 0

learning par8-2 350 1157 3.3 7 0.95 7.07 0

problems par8-3 350 1171 3.3 3 1.15 8.47 0.01

par8-4 350 1155 3.3 2 1.1 8.93 0

par8-5 350 1171 3.3 0 1.3 9.53 0

Quasigroup qg1-08 512 148957 290.9 7 0.9 276.76 6.42

qg2-08 512 148957 290.9 1 3.65 359.28 22.4

qg3-08 512 10469 20.4 13 0.35 22.14 0.01

qg6-09 729 21844 30.0 0 1.7 61.47 0

qg7-09 729 22060 30.3 5 0.75 52.18 0.01

Graph g125.17 2125 66272 31.2 4 0.85 100.19 TO - 110

colouring g250.29 7250 454622 62.7 7 0.8 371.42 TO - 383

Table 4.1: An “easier” set of instances from Zhang’s paper [68]. For Walksat, it shows the

number of times a satisfying solution was found out of 20 runs, the average number of unsatis-

fied clauses at the end of the run, and the average run-time. For zChaff, it shows the time taken

to solve the problem unless it timed out (TO).
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Walksat zChaff

Domain Instance # vars # clauses clause/var# unsat clauses Time Time

Hardware bmc-ibm-1 9685 55870 5.8 23.3 31.81 1.09

verification bmc-ibm-2 3628 14468 4.0 5.15 24.65 0.01

bmc-ibm-3 14930 72106 4.8 109.95 33.2 0.05

bmc-ibm-4 28161 139716 5.0 106.55 38.28 1.47

bmc-ibm-5 9396 41207 4.4 10.6 327.67 0.03

bmc-ibm-6 51654 368367 7.1 314.9 75.63 2.29

bmc-ibm-7 8710 39774 4.6 17.65 56.59 0.01

bmc-galileo-8 58074 294821 5.1 75.3 586.94 1.26

bmc-galileo-9 63624 326999 5.1 73.6 559.04 8.73

bmc-ibm-10 61088 334861 5.5 380.45 69.8 10.5

bmc-ibm-11 32109 150027 4.7 424.8 48.75 7.09

bmc-ibm-12 39598 194778 4.9 531 60.39 26.53

bmc-ibm-13 13215 65728 5.0 81.6 28.09 3.39

Parity par-16-1-c 317 1264 4.0 6.4 11.55 0.74

learning par-16-1 1015 3310 3.3 11.2 10.68 1.56

problems par-16-2-c 349 1392 4.0 6.85 11.92 1.52

par-16-2 1015 3374 3.3 11.4 11.03 2.1

par-16-3-c 334 1332 4.0 6.8 11.87 0.26

par-16-3 1015 3344 3.3 12.2 10.85 0.54

par-16-4-c 324 1292 4.0 6.2 11.78 0.01

par-16-4 1015 3324 3.3 12.15 10.76 0.47

par-16-5-c 341 1360 4.0 7 11.87 1.08

par-16-5 1015 3358 3.3 11 10.97 1.45

par-32-1-c 1315 5254 4.0 23.6 14.67 TO - 30

par-32-1 3176 10277 3.2 33.55 13.75 TO - 30

par-32-2-c 1303 5206 4.0 22.1 14.53 TO - 30

par-32-2 3176 10253 3.2 34.05 13.71 TO - 30

par-32-3-c 1325 5294 4.0 23.1 14.64 TO - 30

par-32-3 3176 10297 3.2 33.15 13.75 TO - 30

par-32-4-c 1333 5326 4.0 23.65 14.72 TO - 30

par-32-4 3176 10313 3.2 32.5 13.89 TO - 30

par-32-5-c 1339 5350 4.0 23.1 14.67 TO - 30

par-32-5 3176 10325 3.3 33.45 13.94 TO - 30

random 3-SAT f2000 2000 8500 4.3 1.6 21.69 TO - 30

Table 4.2: A “harder” set of instances from Zhang’s paper [68] for which Walksat could not

find the satisfying solution for. For Walksat, it shows the average number of unsatisfied clauses

at the end of the run and the average run-time, out of 20 runs. For zChaff, it shows the time

taken to solve the problem unless it timed out (TO).
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Walksat zChaff

Instance # vars # clauses clause/var# solns fnd # unsat clauses Time Time

gen-k10-r720-1719 38 27360 720.0 20 0 186 105.84

gen-k5-v131-1749 131 2816 21.5 20 0 11.8 TO - 100

gen-k5-v170-1758 170 3655 21.5 17 0.15 29.2 TO - 100

gen-k9-v46-1808 46 16422 357.0 20 0 31.3 TO - 100

gen-k9-v46-1810 46 16422 357.0 20 0 20.2 TO - 100

hgen6-n520-815 520 2184 4.2 4 1.4 15.4 TO - 100

hgen6-n520-816 520 2184 4.2 1 1.6 16.5 TO - 100

hgen6-n520-817 520 2184 4.2 4 0.95 15.3 TO - 100

hgen6-n650-822 650 2730 4.2 0 1.8 17.6 TO - 100

hgen7-n520-866 520 2298 4.4 10 0.5 11.6 TO - 100

hgen7-n520-867 520 2298 4.4 9 0.55 14.2 TO - 100

hgen7-n650-870 650 2872 4.4 18 0.1 6.97 TO - 100

hgen7-n650-871 650 2872 4.4 6 0.7 15.6 TO - 100

hgen7-n650-872 650 2872 4.4 1 0.95 17.2 TO - 100

uf600-r4.25-1116 600 2550 4.3 15 0.25 9.13 TO - 100

uf700-r4.25-1120 700 2975 4.3 20 0 0.87 TO - 100

uf700-r4.25-1121 700 2975 4.3 0 1.3 17.5 TO - 100

uf700-r4.25-1122 700 2975 4.3 17 0.15 7.83 TO - 100

uf700-r4.5-1135 700 3150 4.5 0 5 18.8 TO - 100

uf700-r4.5-1136 700 3150 4.5 0 5 18.9 TO - 100

uf700-r4.5-1137 700 3150 4.5 0 4 18.5 TO - 100

Table 4.3: Randomk-SAT instances from the Satisfiability Library [33]. For Walksat, it shows

the number of times a satisfying solution was found out of 20 runs, the average number of

unsatisfied clauses at the end of the run, and the average run-time. For zChaff, it shows the

time taken to solve the problem unless it timed out (TO).
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4.2.3 Unit Propagation and Implication

One way to classify the problem domains is by the structuredness of formulas [63]. In the
domains where zChaff was successful, there were far more clauses with just one or two literals,
which is one of the characteristics of structured instances. The numerous unit clauses quickly
allowed zChaff to eliminate clauses and variables, which generated additional unit clauses from
vast number of clauses with only two literals initially. Therefore, zChaff could go deep into
the search tree without having to make many heuristic-based decisions while eliminating many
constraints. On the other hand, for the local search algorithm, falsifying a unit clause was not
unlikely, as a false assignment just penalized the search by one unit (just like any other clauses).

For example, in the hardware verification domain, where zChaff was particularly strong,
the average number of unit clauses was 192 with some instances having as many as 447, and
all had minimum of 49 unit clauses. Considering that 80% of the clauses have two literals for
this class of problems, the unit clauses will lead to large number of propagations for zChaff.

Similar patterns can be detected in parity learning, another domain of zChaff’s strength,
where 3.7% of the total clauses in the par8-x instances were unit. The distribution is shown in
Table 4.4. Similarly, in par16-x instances, 1.6% of the total clauses were unit.

The domains of Walksat’s strengths were in randomk-SAT and graph colouring problems.
In randomk-SAT, all the clauses havek literals per clause. In graph colouring problems, there
are no unit clauses and almost all (>99%) clauses have exactly two literals. In these instances,
there were no “free” assignments that can be made through unit propagation for zChaff, but
instead, many nodes must be assigned first according to some heuristic and backtracked when
found to be dead-ends.

4.3 Effects of Number of Optimal Solutions and Backbone
Size to Search Cost for Randomk-SAT Instances

Past studies have shown that the number of optimal solutions (i.e. satisfying solutions for SAT)
predicts the local search cost well for small-backbone 3-SAT instances [29, 57]. Also, Parkes
[51] and Singer et al. [57] have suggested that the local search cost is positively correlated with
the size of backbone. A backbone literal is one that must be true in all optimal solutions to a
given problem instance [15]. The aim of the this section is to investigate if such correlations
exist for constructive search algorithms, where these factors have not received much attention
from researchers as cost determinants.

Number of literals 1 2 3

Distribution (%) 3.7 27.8 68.5

Table 4.4: Distribution of clause size for parity problems (par8-x).
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4.3.1 Methods and Test Instances

In order to find the backbone for a given instance, all the optimal solutions must be enumerated
(this will also give us the number of optimal solutions obviously). This is done by running
zChaff such that each time a satisfying solution is found, the negation of the satisfying set of
assignment is added as a clause, and zChaff is run until the instance is no longer satisfiable. As
enumerating all the optimal solutions is very expensive computationally, this affected the type
and size of instances we could use for this experiment.

All of the instances used for this section are random 3-SAT with 100 variables. One of the
reasons for focusing on the random 3-SAT instances is due to their availability in various con-
strainedness as well as the wide range in the number of optimal solutions and backbone sizes
for a given problem size (number of variables) and constrainednessc/v. Here,c represents the
number of clauses andv represents the number of variables. The higher thec/v ratio, the more
constrained the instance is.

Each instance has 400, 430, or 471 clauses to represent under-, critically-, and over-constrained
regions, and they are all satisfiable. Again,c/v = 4.3 is the phase transition region. Critically-
constrained instances are from the Satisfiability Library [33]. The other sets of instances are
generated using a typical randomk-SAT generation method: Variables were negated with 50%
probability, and no duplicate variables (regardless of its polarity) were included for a given
clause as was the case for duplicate clauses. The number of instances used is summarized in
Table 4.5.

As seen in Figure 4.1, the over-constrained instances (c/v = 4.71) are dominated by high-
backbone instances while for the under- and over-constrained instances, backbone size is a
little more evenly distributed. For the under-constrained region, about half of the instances
were omitted since generating all the satisfying solutions for them were extremely expensive
computationally. Inclusion of these instances would have shifted the distribution curve left
towards the smaller|backbone| region. Here,|backbone| represents the fraction of the variables
that are backbone.

Again, zChaff was used to represent the constructive search algorithms and Walksat was
used to represent local search algorithms. Because both algorithms solved the problem in-
stances rather quickly, instead of time, the number of decisions and the number of flips were
used as the measure of search cost (finding 1 satisfying solution) for zChaff and Walksat re-
spectively. Since we are interested in comparing the performance of the two algorithms to
themselves independent of each other, we can use separate metrics for each algorithm. An
advantage of using these metrics is that the results are independent of the machines and the
intra-algorithm comparison of results is more accurate. Figure 4.2 shows that the run-time is
highly dependent on the number of decisions, justifying the use of the number of decisions

Number of clauses 400 430 471

Number of instances 37 102 72

Table 4.5: Number of instances used for each constrainedness (all instances have 100 vari-

ables).
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Figure 4.1: Distribution of problem instances used for this chapter according to their backbone
sizes for various constrainedness (c/v = 4.0, 4.3, 4.71).

made as an accurate measure of search cost for zChaff. Similarly, the run-time of Walksat can
be accurately determined by the number of flips needed to find a satisfying assignment.

Walksat was run with no time limit until a satisfying solution is found for an instance. Every
instance was run twenty times with different random seeds, and the results were averaged over
all the runs.

4.3.2 Number of Optimal Solutions

According to Singer et al. [57], small backbone instances (|backbone| = 0.1) had especially
high log − log correlation between the number of optimal solutions and local search cost with
ther value at approximately -0.78. As the backbone size increased, the correlation dropped to
-0.69 (|backbone| = 0.5) and -0.11 (|backbone| = 0.9). The drop in the correlation was not
surprising as the large backbone size implied that the optimal solutions were tightly clustered
and the local search’s main difficulty was finding this cluster [57].

Hoos [29] observed a similar drop in the correlation with respect to the constrainedness
for local search algorithms. The correlation in the under-constrained region (c/v = 3.26)
was -0.90, whereas that in the over-constrained region (c/v = 5.46) was -0.51 for 50 variable
instances. Since the under-constrained region has smaller backbone size on average and vice
versa, the two studies are in agreement. The difference in the magnitude of drop is due to the
less-than-perfect correlation between thec/v and|backbone|. Figure 4.1 illustrates this point
as over-constrainedc/v = 4.71 instances have instances with low to moderate|backbone| and
so on.

For this experiment, similar to Hoos’ study, but with the addition of results for a construc-
tive search algorithm, we show the correlation between the cost and the number of optimal
solutions with respect to various levels of constrainedness.
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Figure 4.2: Scatter-plot of zChaff’s run-time versus the number of decisions it makes before
arriving at a satisfying solution for 3-SAT 250-variable instances.

Walksat The number of optimal solutions has a strong negativelog− log correlation with the
number of flips (the search cost) of Walksat for both under- and critically-constrained instances
(Figure 4.3left, 4.4 left). As the constrainedness increases, the drop in the correlation can be
seen from Figure 4.5 (left), which agrees with findings of both Hoos and Singer et al. Table 4.6
shows the numerical results from the correlation as well as the regression analysis. However,
the slopea of theleast square linemonotonically increases (|a| decreases) with constrainedness
contrary to Hoos’ results, which showed greatesta value for the critically-constrained region.
The discrepancy may be from the fact that Hoos used GWSAT instead of Walksat. Singer et
al.’s study supports the monotonically decreasinga with constrainedness since according to
their study, with fewer optimal solutions available, the majority of the search cost is incurred
from getting to the right region of the search space. Thus, the correlation as well as thea value
should decrease with respect toc/v.

zChaff The correlation between the zChaff’s search cost and the number of optimal solutions
is significantly weaker than that for Walksat across all the constrainedness (seeright side of
Figures 4.3, 4.4, 4.5). The correlation coefficient and the parameters for least square line are

c/v r a b

4.0 -0.83 -0.371 4.854

4.3 -0.75 -0.261 4.257

4.71 -0.47 -0.153 3.626

c/v r a b

4.0 -0.49 -0.192 2.845

4.3 -0.29 -0.112 2.411

4.71 -0.06 -0.026 2.019

Table 4.6: Data from regression analysis of the correlation between number of optimal solu-

tions and search cost for Walksat(left) and zChaff(right). r is the correlation coefficient,a and

b are the parameters for least square lineax + b. All instances have 100 variables.
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Figure 4.3: Scatter-plots of the search cost versus the number of optimal solutions for Walk-
sat(left) and zChaff(right) for under-constrained instances (100 variables, 400 clauses).
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Figure 4.4: Scatter-plots of the search cost versus the number of optimal solutions for Walk-
sat(left) and zChaff(right) for critically-constrained instances (100 variables, 430 clauses).
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Figure 4.5: Scatter-plots of the search cost versus the number of optimal solutions for Walk-
sat(left) and zChaff(right) for over-constrained instances (100 variables, 471 clauses).
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summarized in Table 4.6 (right). The weaker correlation for zChaff (compared to Walksat) is
due to zChaff’s heavy reliance on propagation to assign values; the greater number of optimal
solutions does not necessarily provide more opportunities for propagation. On the other hand,
Walksat’s highly stochastic nature, as well as the fact that it starts with a “complete” solution
(all variables are assigned truth value) allows it to stumble upon a satisfying solution with
higher probability when a greater number of optimal solutions are available throughout the
search space.

zChaff shows a drop in both the correlation coefficientr and the regression slopea with
increasing constrainedness similar to that seen in Walksat. The correlations at and beyond the
critically-constrained region are fairly weak to non-existent. This can be attributed to the same
reason as Walksat in that for over-constrained instances, the difficulty of search comes from
finding the right cluster. Thus, if a cluster of an over-constrained instance has a few more
satisfying solutions than a cluster of another over-constrained instance, the difference in the
number of satisfying solutions will not greatly affect the search cost.

4.3.3 Backbone Size

Parkes [51] demonstrated that for under-constrained instances, only a small fraction of the vari-
ables appear in the backbone. However, as thec/v ratio approached the critically-constrained
region, instances with large backbones (around 75-95% of the variables) rapidly emerged.
Hence, it was suggested that the peak in average Walksat cost near the critical value may
be due to the emergence of large-backbone instances at this point. Parkes further showed that
the cost for the local search is strongly influenced by the size of the backbone. In this section,
we verify Parkes’ observations for local search as well as investigating the effects of backbone
to constructive search cost.

Walksat In accordance with Parkes’ claim, thelog of the number of flips (search cost)
for Walksat showed positive correlation with the backbone size for all constrainedness (see
left in Figures 4.6, 4.7, 4.8). Whereas from Parkes’ results it is difficult to understand how
strong the correlation is, Table 4.7 (left) clearly shows that the correlation is much stronger for
under-constrained instances than for over-constrained instances. It also shows that only when
|backbone| is small to moderate is|backbone| a good search cost predictor. If|backbone| is
large enough, the cost is determined by the effort required to find the right cluster in the search
space, at which point, the difference in|backbone| is not a significant factor (similar argument
as in the number of optimal solutions).

It is interesting to note that the magnitude of correlation|r| between the local search cost
and the|backbone| is extremely similar to that between the local search cost and the number
of optimal solutions (|a| is significantly higher for the number of optimal solutions). Also,
intuition tells us that higher|backbone| will result in smaller number of satisfying solutions,
and vice versa. This suggests possibly high negative correlation between the number of optimal
solutions and the|backbone|, which is further investigated in Chapter 6.

zChaff The correlation for zChaff between thelog of the number of decisions made and
the backbone size was not as strong as that of Walksat as shown in Table 4.7 (right). Again,
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c/v r a b

4.0 0.85 0.012 2.964

4.3 0.72 0.010 2.779

4.71 0.47 0.008 2.586

c/v r a b

4.0 0.630 0.008 1.793

4.3 0.390 0.006 1.676

4.71 0.110 0.003 1.740

Table 4.7: Data from regression analysis of the correlation between|backbone| and search cost

for Walksat(left) and zChaff(right). r is the correlation coefficient,a andb are the parameters

for least square lineax + b. All instances have 100 variables.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90  100

lo
g 1

0(
N

um
be

r 
of

 fl
ip

s)

Backbone size (%)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  10  20  30  40  50  60  70  80  90  100

lo
g 1

0(
N

um
be

r 
of

 d
ec

is
io

ns
)

Backbone size (%)

Figure 4.6: Scatter-plots of the search cost versus the backbone size for Walksat(left) and
zChaff(right) for under-constrained instances (100 variables, 400 clauses).
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Figure 4.7: Scatter-plots of the search cost versus the backbone size for Walksat(left) and
zChaff(right) for critically-constrained instances (100 variables, 430 clauses).
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Figure 4.8: Scatter-plots of the search cost versus the backbone size for Walksat(left) and
zChaff(right) for over-constrained instances (100 variables, 471 clauses).

we believe that the disparity in the correlation strength between Walksat and zChaff stems
from the stochastic nature of Walksat (see Figure 4.7). Smaller|backbone|, which has satis-
fying solutions spread throughout the search space will allow Walksat to be in a promising
region with higher probability while zChaff’s propagation method cannot take advantage of
the wide-spread satisfying solutions. Similar to Walksat, however, zChaff showed a monotonic
decrease with respect to constrainedness for bothr anda. Another possible reason for decreas-
ing r with constrainedness is from the fact that there is much larger spread in|backbone| for
under- and critically-constrained instances (Figure 4.6, 4.7) than for over-constrained instances
(Figure 4.8). For example, if there were more instances with smaller|backbone| for the over-
constrained case, we suspect the correlation between the search cost and the backbone size to
be slightly higher.

4.4 Conclusions and Further Research

Our contribution from this chapter is two fold: first, we identified the strengths and weaknesses
of both the constructive and local search algorithms in terms of problem domains. Previous to
our study, there was little work done comparing the two different types of algorithms. Secondly,
the two factors that affect the local search cost on 3-SAT problems, namely the number of
optimal solutions and the backbone size, were applied to a constructive search algorithm to see
if they have similar effects to its search cost.

1. zChaff and Walksat were selected to represent the constructive and local search method
respectively. We showed that zChaff was far more effective than Walksat on hardware
verification, planning, parity learning, and quasigroups problems. Walksat, on the other
hand, was dominant on randomk-SAT and graph colouring problems. Wei [63] sug-
gested the structuredness of the problems in the domains to be the reason for zChaff’s
success. A similar observation was made in this study, where instances with many unit
clauses were more advantageous to zChaff and those with no “free” assignments were
more effectively handled by Walksat.
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2. It has been known that the number of optimal solutions and the backbone size affect the
local search cost for a given problem instance. We verified this by showing that random
3-SAT instances of various constrainedness have moderate to strong negative correla-
tion between the Walksat search cost and the number of optimal solutions, and moderate
positive correlation between the cost and the backbone size. In both cases, the over-
constrained instances showed weaker correlation compared to the under- and critically-
constrained instances. When the same search cost factors were applied to zChaff, weaker
correlations than what we saw from Walksat were observed for both the number of op-
timal solutions and the|backbone|. We believe this is due to the fact that zChaff relies
mostly on propagation, which does not heavily depend on the number of optimal solu-
tions or |backbone|, for performance. Further, the fact that Walksat starts from a com-
plete solution and moves among solutions makes it more dependent on these factors than
zChaff. As with Walksat, however, similar weakening of the correlations was observed
in zChaff with increasing constrainedness.

For further research in the performance of the constructive and local search, it may be in-
teresting to look at different ways of characterizing the structuredness in problem instances.
One of the cost determinants for zChaff could be measured by the number of implicants per
variable assignment.1 In other words, after every variable instantiation, the number of propa-
gations made should affect the search cost. Another cost determinant could be the fraction of
variable assignments that can be made before having to make a heuristic decision.

With respect to the study of the search cost factors for the two algorithms, the factors should
be studied on structured instances as well. One of the challenges for this study will be from
the difficulty in controlling the constant elements (e.g.problem size, class of problems) while
manipulating variables such as the constrainedness and the number of optimal solutions.

1This suggestion is from Fahiem Bacchus.



Chapter 5

Problem Difficulty for Local Search
Algorithms

As shown in the Chapter 4, the number of optimal solutions has a significant impact on the
local search cost and to a lesser extent, on the constructive search cost as well. For the under-
constrained region, the negativelog− log correlation between the number of solutions and the
average search cost of Walksat is significant. The negative correlation follows from the fact
that the greater number of solutions will yield higher probability that Walksat will “land” on
a satisfying solution for a fixed number of possible states (i.e. variables). Thus, by extending
this argument, we can expect the local search cost to continuously rise with respect to the
constrainedness due to the falling number of satisfying solutions. However, even for satisfiable
instances, as problems get more constrained past the critically-constrained region, problems
tend to get a little easier to solve for local search algorithms [10]. Although in the previous
chapter we observed a weakening of the negative correlation between the number of solutions
and the local search cost in the over-constrained region, this weakening does not explain the
drop in the search cost past the critically-constrained region.

For constructive search algorithms, such a drop in the search cost in the over-constrained
region is intuitive: when a problem instance is over-constrained, problems actually get easier
since constructive search algorithms can quickly fathom nodes without exploring too deep into
unpromising regions. These algorithms find critically-constrained problems to be the toughest
since they do not have a lot of solutions nor allow quick pruning of literal assignments.

For local search algorithms, which cannot prove satisfiability for a given instance, there is
no notion of eliminating conflicting variable assignments or unpromising nodes. Thus over-
constraining the problems should not necessarily make the problem easier. However, a similar
(though not as significant in magnitude) drop in the search cost is observed for this type of
search algorithm in the over-constrained region. The drop in local search cost in spite of the
decreasing number of optimal solutions shows that there ought to be additional factors that
make over-constrained problems easier for local search algorithms.

This chapter looks at why such a drop in search cost is observed beyond the critically-
constrained region for local search algorithms. There have been a few studies on this matter.
Notably, Singer et al. [57] and Yokoo [67] provide interesting insights and a good starting point
for the chapter. Both papers presented plausible if not conclusive evidence for the observed
phenomenon. The purpose of this chapter is to address any shortcomings in the two studies

43
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and validate their conjectures to form a better understanding for the local search cost peak
found in the critically-constrained region.

In addition to satisfiability, we also look at the problem difficulty for local search injob-
shop scheduling problems (JSP)and address similarities and differences between the two do-
mains. Based on the work of Watson et al. [61], we apply the problem difficulty model for JSP
to SAT.

5.1 Background Information

In this section, the actual local search cost around the critically-constrained region is presented
to verify the easy-hard-easy pattern in the local search cost. Further, the works of Singer et al.
and Yokoo are discussed.

5.1.1 Search Cost for Various Levels of Constrainedness

Phase transitionregion orcrossover pointis a region where the probability of solution (satisfi-
ability) changes abruptly from near 0 to near 1. In this region, where the problem is critically-
constrained, the computational difficulty for finding a satisfying solution for SAT is also at its
greatest [7]. Crawford and Anton [10] empirically showed that the abrupt change in satisfia-
bility and the peak in search cost indeed coincide at this phase transition point for constructive
search algorithms.

Later, Clark et al. [8] showed that a similar easy-hard-easy pattern across the constrained-
ness is found for local search algorithms. Here, we experimentally verify that the local search
cost peak actually occurs at the critically-constrained region.

Test Instances For all the experiments in this chapter, we use a randomly generated set of
instances as shown in Table 5.1 and 5.2, unless stated otherwise. For the problem generation,
variables were negated with 50% probability, and no variable (regardless of sign) appeared
more than once in a clause. Also, no duplicate clauses were allowed.

Results All the instances were run 20 times with the maximum number of flips set to 100000.
The mean search cost for every instance was again averaged according to the constrainedness.
Figure 5.1 (left) clearly shows that the difficulties at local search is the greatest atc/v = 4.3
for satisfiable instances, similar to that reported in the previous studies [7, 10, 8]. To the right

c/v ratio 4.0 4.2 4.3 4.41 4.5 4.71

Number of instances 75 69 80 82 66 76

Table 5.1: Number of satisfiable instances used across variousc/v ratio (random 3-SAT, 100

variables).
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c/v ratio 4.2 4.3 4.41 4.5 4.7 5.0

Number of instances 62 77 75 67 45 81

Table 5.2: Number of unsatisfiable instances used across variousc/v ratio (random 3-SAT, 100

variables).

of thec/v = 4.3 region, the search cost quickly plateaus at around 2500 flips. For the under-
constrained region, however, the average cost continuously drops at a similar rate past the
c/v = 4.0. At c/v = 2.0, the search cost was around 28.1 This is not surprising considering
the abundance of satisfying solutions and the loose constraints atc/v = 2.0. We could not test
for instances withc/v > 4.71 due to the scarcity of satisfiable instances in that region.

As a reference, such easy-hard-easy pattern is not observed for unsatisfiable instances when
using the local search algorithm (see Figure 5.1right). Rather, there is a monotonic increase in
the cost with the increasing constrainedness. Here, the search cost for unsatisfiable instances
is defined as the number of flips it takes to get to an optimal solution, which is founda priori
usingmaxsat[6].

5.1.2 Previous Studies on Additional Factors

Characteristics of local minima found during local search algorithms are critical to the algo-
rithms’ effectiveness in finding globally optimal solution. Local minima, in general, have been
studied in great depth in a variety of literature. For example, along with Yokoo [67] and Singer
et al.’s [57] work on local minima, Hoos [34] investigated the distribution and density of lo-
cal minima for travelling salesman problems. In Hoos’ work, to quantify the local search
characteristics,fitness-distance analysiswas used. Fitness-distance analysis aims to evaluate
the nature of the relationship between the solution quality and the distance between solutions

1Not shown in Figure 5.1

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3.9  4  4.1  4.2  4.3  4.4  4.5  4.6  4.7  4.8

S
ea

rc
h 

co
st

 (
nu

m
be

r 
of

 fl
ip

s)

Constrainedness (c/v)

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 4.1  4.2  4.3  4.4  4.5  4.6  4.7  4.8  4.9  5

S
ea

rc
h 

co
st

 (
nu

m
be

r 
of

 fl
ip

s)

Constrainedness (c/v)

Figure 5.1: Average search cost for Walksat for satisfiable (left) and unsatisfiable (right) in-
stances of variousc/v ratios (100 variables).
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within a given search landscape [34]. Also, Watson et al. [61] showed the importance of local
minima in job-shop scheduling problems, and presented a variety of models as a function of
local minima that influence the search cost for tabu search.

Yokoo’s study [67] examined the change in the number of local minima across the con-
strainedness. The definition oftrue local minimum (optimum) is a set of assignments that has
the fewest unsatisfied clauses among all the neighbouring states. Here, a neighbouring state is
a set of assignments that can be reached with a flip of a variable assignment from the current set
of assignments. The study observed that the number of local minima decreases monotonically
with the increasing constrainedness (see Figure 5.2right). The study claimed that the fewer the
local minima, the easier the instance is for local search, because there are fewer sub-optimal
solutions that will distract the search, misleading it possibly away from an optimal solution.
According to Yokoo, this factor, along with the number of optimal solutions, form the two fac-
tors that account for the peak in the local search cost at the critical region. Where the instance
is critically constrained, the combination of low number of solutions while having enough local
minima to distract the search algorithm, makes it hard to reach optimality.

However, Yokoo’s study did not show why the cost-peak should necessarily occur at the
critically-constrained region. The rate of decrease in the number of local minima is dramati-
cally reduced well before the critical region ofc/v = 4.67 [67] (c/v ratio moves slightly as
a function of the number of variables [10]). Also, the reduction in the number of available
solutions is very smooth and lacks any notable features across the critical region. Another
weakness in the study’s argument is that the intuition that the number of local minima should
affect the local search cost was never verified experimentally or analytically.

Singer et al. [57] agreed that the decreasing number of solutions explains the increasing
search cost towards the critically-constrained region. However, they identified the competing
factor that makes the search easier past the critical region to be theextensivenessof the area
where the local minima reside in. Extensiveness of local minima refers to how spread out they
are in the search space. They claimed that as the problem gets more constrained, local minima
encountered during the search are clustered closer to the optimal solutions. On the other hand,
when a problem is under-constrained, local minima tend to be spread out throughout the search
space, yielding attractive, low-cost solutions far away from the global minima. This requires
the search to wander through a greater portion of the search space before arriving at an optimal
solution. The reason that the under-constrained instances are easy to solve despite the exten-
siveness of local minima is due to the abundance of optimal solutions throughout the search
space.

For their experiment, Singer et al. defined a local optimum as a set of assignment with
fiveunsatisfied clauses. They then determined theproximitybetween a local optimum to and
its closest global optimum by simply taking the Hamming distance between the two solutions.
The results from Singer et al. in Figure 5.3 clearly shows the decrease in the proximity of
local minima to their closest global minima with the increasing constrainedness across all the
backbone sizes. Thus, they claimed that the decrease of search cost observed in the over-
constrained region is due to this extensiveness of local minima.
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Figure 5.2: Average number of optimal solutions (left) and average number of local optima
(right) for 3-SAT problems (20 variables) from Yokoo [67].

Figure 5.3: Hamming distance to nearest optimal solution (hdns) from local optima according
to pre-set backbone sizes from Singer et al. [57].
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5.2 Number of Local Minima

Yokoo [67] formed an argument around the number of local minima as the factor that con-
tributes to the decreasing local search cost past the phase transition point. However, the actual
relationship between the number of local minima and the local search cost was not shown in
the study. A moderate to strong negative correlation is expected between the two variables in
order to support Yokoo’s study. Here, we use a set of satisfiable, 20 variable instances across
variousc/v ratio (see Table 5.3). The chosen size for problem instances is due to computational
difficulty in enumerating all the local minima. Here, a local minimum is defined as a solution
state that has less than or equal number of unsatisfied clauses than its neighbours.2 In case of a
plateau, all solutions that have the fewest unsatisfied clauses are counted as local minima.

However, as shown in Figure 5.4, thelog − log correlation between the number of local
minima and the search cost of Walksat is not as strong as we expected withr = −0.44 and the
slope of the least squares regression fit line ata = −0.775. The moderater value shows that
the number of local minima indeed is a contributing factor to that makes local search cost drop
past the transition phase but likely not the only factor.

5.3 Extensiveness of Local Minima

The purpose here is to empirically verify Singer et al.’s [57] claim that the local minima ex-
tensiveness is indeed greater in the under- and critically-constrained region than in the over-
constrained region. One of the things we did differently from Singer et al.’s study is to aggre-
gate the results for all the backbone sizes. This way, we are able to better isolate the contribut-
ing factors that affect for various constrainedness since we are interested in the search cost for
all the backbone sizes. Also, we use a different definition of local minimum from Singer et
al.’s study; we found that Singer et al.’s local minimum definition to be too arbitrary, and thus,
it is newly defined in the following section.

Along with the differences above, we also usefitness-distance analysis (FDA)in order
to measure the spread of local minima in the search space. As mentioned earlier, FDA is a
well-known technique that has been used in other problem domains to assess the relationship
between local minima and global minima. In the SAT domain, fitness refers to the number
of unsatisfied clauses, and the distance is the Hamming distance between an assignment to its
closest global optimum. For Walksat, the evaluation function is simply the number of unsat-
isfied clauses since it determines which of the unsatisfied clauses to “fix”.Fitness-distance
correlationsimply measures the correlation between the quality of local minima and their dis-

2Those solution states that are one flip away from the current state.

c/v ratio 3.0 3.5 4.0 4.3 4.5 4.7 4.85 5.0 5.2 5.5

Number of instances 100 95 86 60 53 87 58 87 63 48

Table 5.3: Number of satisfiable instances used across variousc/v ratio (20 variables).
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Figure 5.4: Search cost of Walksat versus the number of local minima for 3-SAT, satisfiable,
20 variable instances of various constrainedness.

tance to the nearest globally optimal solutions [34].
Zhang [68] performed a similar analysis on Walksat by plotting the quality of local minima

against their distance to nearest global minima on a three-dimensional plot using the frequency
of the FDA-value pairs as the third axis. Here, a FDA-value pair for a local minimum is
characterized by two values: the distance to nearest optimum and the number of unsatisfied
clauses. The major difference between Zhang’s and our method is that whereas Zhang used
aggregated data over all the instances for a givenc/v ratio, we examined instances on individual
basis as typically done in FDA. We believe that our instance-based results give better idea as
to the spread of local minima as opposed to the “average” results for the entire instances of a
c/v ratio. To our knowledge, FDA and FDC have never been applied in the SAT domain.

Following from Singer et al.’s conjecture that the extensiveness of the local optima in the
over-constrained region is less than under- and critically-constrained region, we should see
that local optima in the over-constrained region have shorter distance to their nearest global
optimum than those found in the under- and critically-constrained region. Thus, we should see
higher FDC for over-constrained region than under- and critically-constrained region.

5.3.1 Methods and Test Instances

Again, Walksat is used to represent local search algorithms. The same set of 3-SAT instances
in Table 5.1 and 5.2 were used.

Local minima used for this study are defined as those solutions that have fewer unsatisfied
clauses than the solutions visited just before and after the current solution. They may be non-
strict local minima, in which case, only one of the local minima is used as the “representative”
from that region in search space. They are collected by running Walksat 10 times per instance
until each run finds optimal solution for satisfiable instances. For unsatisfiable instances, the
maximum number of flips was set to 100,000.



CHAPTER 5. PROBLEM DIFFICULTY FOR LOCAL SEARCH ALGORITHMS 50

Enumeration of all the optimal solutions for satisfiable instances are done by runningzChaff
[47] solver, and for unsatisfiable instances,maxsat[6] solver was used.

5.3.2 Fitness-Distance Analysis Results

Fitness-distance plots for individual satisfiable instances for various constrainedness are given
in Figure 5.5 and 5.6. Again, they do not necessarily represent the “average” case for each
respective clause size (if such exists) but rather portray fairly “typical” fitness-distance plots
from our experience. What is surprising from the results is how spread-out local minima are
throughout the search space forall of the constrainedness levels. There are numerous local
minima that have only one unsatisfied clause and yet are half-way across the search space from
the closest global optimum (i.e. Hamming distance of 50 for 100-variable instances).

The prevalence of high-quality local minima far away from the global optima for the en-
tire range of constrainedness is contrary to our expectation. Preliminary results from the 3-
dimensional plot with the third axis being the frequency of the FDA-value pairs, further show
that the local search algorithmconsistentlyvisits these local minima that are considerably dis-
tant from the global minima (see Figure 5.7 and Figure 5.8). In fact, as Figure 5.8 shows, a
majority of the local minima visited by the search have Hamming distance of 20 or more to
their closest global optimum. This is because, to Walksat, for a given number of unsatisfied
clauses, a local minimum that is distant from the global minimum is just as good as the one that
is close to the optimum. The general shape of the fitness-distance plots is quite different from
that from that of travelling salesman problems, where the gradient towards the bottom left of
the plot is much more clearly defined along the diagonal of the plot area [34].

Fitness Distance Correlation Fitness-distance correlation (FDC) shows that there is a slight
increase in the correlation coefficientr with respect to the increasing constrainedness (see Table
5.4). This result supports Singer et al.’s conjecture that the proximity between local minima and
their closest global minimal reduces with greaterc/v ratio, since the reduction in the number
of high quality local minima in the region distant from the global optimum will result in a more
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Figure 5.5: Fitness-distance plots for an under-constrainedc/v = 4.0 (left) and a critically-
constrainedc/v = 4.3 (right) instance. Both are satisfiable and have 100 variables.
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Figure 5.6: Fitness-distance plots for over-constrained instances.c/v = 4.5 (left) andc/v =
4.71 (right). Both are satisfiable and have 100 variables.
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Figure 5.7: A 3-dimensional fitness-distance plot for a critically-constrained (c/v = 4.3),
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Figure 5.8: Orthogonal projections of the 3-dimensional plot in Figure 5.7.Left shows the
normalized frequency of FDA-value pairs against distance to nearest optimum.Right shows
the frequency of FDA-value pairs against number of unsatisfied clauses.

“streamlined” set of points along the diagonal of the plot area, thus increasing FDC. However,
the increase in FDC withc/v is not as strong as we expected.

We also looked at FDC across variousc/v ratios for unsatisfiable instances as a reference.
Here, ther value actually drops with the increasing constrainedness, which suggests greater
spread of high-quality local optima for over-constrained instances. However, given the fact that
the search cost does not decline past the phase transition region (Figure 5.1left), the decreasing
FDC is not very surprising.

FDC and Search Cost Based on the fitness-distance analysis, we conjecture that the search
cost and FDC are negatively correlated. For high FDC instances, the search will not get trapped
in local optima far away from global optima, thus advancing from low-quality and distant
region to high-quality, lesser-distant (from the nearest optimum) region more quickly. On the
other hand, harder instances, where search algorithm spends more time in high-quality, more-
distant region, will reduce the correlation between quality and number of clauses.

In Figure 5.9, satisfiable instances in the under- (left) critically-constrained (right) region
are plotted based on the average local search cost for 10 runs and its FDC value. As seen from
the figure, there is indeed a strong negative correlation between the logarithm of the search
cost and the FDC value, ranging from -0.55 to -0.78. Figures 5.10 shows the similar kind of
correlation exist in the over-constrained region withr = −0.59 (left) andr = −0.81 (right).
The differences in the strength of correlation do not seem to have a particular relationship with

c/v ratio 4.0 4.2 4.3 4.41 4.5 4.71

Average FDCr 0.40 0.42 0.43 0.46 0.44 0.50

Table 5.4: Average fitness-distance correlation value for satisfiable instances of different con-

strainedness (100 variables).
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c/v ratio 4.2 4.3 4.41 4.5 4.71 5.0 6.0

Average FDCr 0.62 0.60 0.60 0.56 0.55 0.52 0.50

Table 5.5: Average fitness-distance correlation value for unsatisfiable instances of different

constrainedness (100 variables).

respect to the constrainedness.

5.3.3 Average Distance of Local Minima from Global Minimum

One major difference among instances of various constrainedness (shown in Figure 5.5 and
Figure 5.6) is the extensiveness of high-quality local minima. For the instances shown, the
spread of high-quality local minima decreases with increasing constrainedness. For example, in
the under-constrained region (Figure 5.5left), there are local minima with onlyoneunsatisfied
clause that are 55 Hamming distance away from the closest global optimum. In the over-
constrained region (Figure 5.6right), however, the maximum distance for local minima with
one unsatisfied clause is 33.

This is more clearly displayed in Figure 5.11, which shows the average Hamming distance
of local minima visited by Walksat for various constrainedness (the same set of instances as
the fitness-distance analysis is used). Here, for a given number of unsatisfied clauses, local
minima from instances with lowerc/v ratio is much further away from their closest global
minima than those from the higherc/v ratio. This results in Walksat spending much of its time
far away from the global optimum for critically-constrained instances and makes them more
difficult than over-constrained instances despite having more optimal solutions.

Algorithm Independence of Results It is conceivable that the results seen in Figure 5.11
are due to the intrinsic characteristics of Walksat. From the way Walksat chooses one clause
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Figure 5.9: Correlation between the search cost (inlog scale) and FDC value for satisfiable,
under-constrained (left, c/v = 4.0) critically-constrained (right, c/v = 4.3) instances.
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Figure 5.10: Correlation between the search cost (inlog scale) and FDC value for satisfiable,
over-constrained instances (left, c/v = 4.5; right, c/v = 4.71).
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out of all the unsatisfied clauses and the way it determines the variable to flip, there is bias
built into Walksat (as with all other search algorithms) that affects the type of local minima it
visits. Also, it is inherently very stochastic, more so than other SAT solvers [55], due to the
frequency at which it makes random movement even when hill-climbing (improving) moves
are available.

In order to provide evidence that Figure 5.11 is the property of the instances themselves
and not algorithm-dependent, GSAT was applied to the same set of instances. Local minima
sampled by GSAT are consideredtrue local minima because GSATalwayschooses to make
hill-climbing moves until it cannot find a better solution from the current set of neighbouring
solutions. For this experiment, we used GSAT implementation in UBCSAT [59] with 10 inde-
pendent runs on each instance, and each run was restarted from a random spot each time it was
stuck at a local minimum, (at which point, the state was recorded as a local minimum) until it
found a satisfying solution.

The resulting plot of mean distance-to-nearest-optimum versus the number of unsatisfied
clauses for varyingc/v ratio is shown in Figure 5.12. As with the Walksat case, in general,
under-constrained instances tend to have high-quality local minima that are further away from
the global minimum compared to over-constrained instances. However, the difference in the
average Hamming distance between the various constrainedness for a given number of un-
satisfied clauses is not as dramatic for GSAT as it was for Walksat. There is also a notable
exception from the usual pattern; the local minima with 1 unsatisfied clause forc/v = 4.71
is further away from the global minimum than those forc/v = 4.5. At this point, we suspect
that this is from a random error, but this has not been verified. The convergence of the plots
at lower-quality local minima is similar to what was observed in Walksat results although the
convergence is much faster for GSAT.

In general, we can conclude that regardless of the search algorithm used, local minima
found in under-constrained region tend to be further away from the global optima, contributing
to decreasing search cost beyond the critically-constrained region.

5.3.4 Summary

In Section 5.3, we have looked at the extensiveness of local minima from a different perspective
compared to the previous study (Singer et al. [57]): we demonstrated using fitness-distance
analysis that the local minima visited by Walksat are spread out throughout the search space
for the variousc/v ratios we have tested. High-quality local minima that are very distant from
their nearest optimal solutions are common in allc/v ratios and appear frequently. The fitness-
distance correlation indeed increased withc/v though not to the extent we expected.

When the average distance to nearest optimum was plotted for local minima of varying
qualities for differentc/v ratios (Figure 5.11), it was clear that for local minima of given quality,
those from under-constrained region are further away from their nearest optima than those from
over-constrained region. We believe that this difference in extensiveness of local minima is a
major contributing factor for the decreasing local search cost in the over-constrained region.
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Figure 5.12: Distance to nearest optimum versus number of unsatisfied clauses for local min-
ima visited by GSAT.

5.4 Problem Difficulty in Job-Shop Scheduling Problems vs
SAT

Many parallels can be drawn across various problem domains in the field of optimization.
For example, search space consisting of high-quality local optima (minima) away from global
optima is prevalent in bothjob-shop scheduling problems(JSP) and satisfiability. Also, many
constraint satisfaction problemsshow the phase-transition property, where the constrainedness
of an instance plays an important role in determining the satisfiability and search cost [7].
We also pointed out that the high fitness-distance correlation is an important characteristic of
travelling salesman problems. In this section, we examine the problem difficulty for local
search algorithms in job-shop scheduling problems and how it compares with that of SAT.

Watson et al. [61] presented a series of analyses on job-shop scheduling problems and offer
insight on the local search cost factors. They considered an×m job-shop scheduling problem,
wheren jobs must be processed exactly once on each ofm machines. Each job is routed
through each of them machines in some pre-defined order (see Section 6.1 for a more detailed
description of JSP). Among a few models Watson et al. proposed for factors determining the
search cost for JSP, thedlop−opt model was one of the most effective models. Thedlopt−opt

model, which was motivated from Singer et al.’s [57] study, demonstrated that instances with
higher average distance between local optima (lopt) and their nearest global optima (opt) are
harder to solve than those with smaller distance. This makes sense because if the local minima
visited by the algorithm are closer to the global minima, then the search is more likely to be
able to move quickly from a local minimum to its nearest global minimum.

For both6 × 4 and6 × 6 cases, the correlation between the search cost and the average
distance to the nearest optimal solutions for local minima was very strong withr2 values at
0.774 and 0.682 respectively [61]. However, Watson et al. noticed that the residuals were
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much greater for very high-cost instances. Further, Watson et al. pointed to Singer et al.’s [57]
results where they showed higher residuals in very high-backbone instances for theirdlopt−opt

model. Following these two results, Watson et al. conjectured that thedlopt−opt model will be
less accurate (thus higher residuals) for very high-cost SAT instances than for the entire range
of search cost.

To test this hypothesis, 365 satisfiable instances of 3-SAT with 100 variables were studied.
The instances were fairly evenly divided among 420, 430, 441, 450, and 471 clauses. For each
instance, all the optimal solutions were enumerated. Then, using Walksat, each instance was
solved 10 times while storing all the local optima visited during the runs. The same definition
of local minimum as Section 5.3 is used. For each instance, the average distance of local
minima from their closest global minima is plotted against the average search cost. As shown
in Figure 5.13 (left), across the entire cost range, the correlation between the cost and distance
to the nearest optimum is strong with the coefficientr = 0.73. Unlike the JSP results, however,
it is hard to tell from the figure whether the residuals are actually higher in the very high-cost
region.

The instances are then divided into two sets depending on their average search cost. If
the average search cost (measured by number of flips) is greater than 5000, the instance was
considered high cost, and otherwise, it is considered low cost. The correlation coefficient and
the residual standard error for the two sets as well as for the entire set is shown in Table 5.6.
Contrary to the Watson et al.’s conjecture, the high cost instances do not show any higher
residual error than the low cost instances. In fact, the high cost residual error is slightly lower.
Also, the correlation coefficient declines for both sets when the original set is divided into high-
and low-cost sets. This is more likely from the fact that the range of the search cost has been
reduced, which should make the correlation drop.

In order to further test the hypothesis, an additional set of high-cost instances were consid-
ered: 192 instances (100 variables and 430 clauses) with search cost greater than 5000. The
resulting residual standard error is 0.47, which is similar to the results seen in Table 5.6. The
plot for this set of instances can be seen in Figure 5.13 (right). The result is further supported
when considering only the instances with 100 variables and 430 clauses from the first set (with
all the cost range considered). In this case, the residual error is 0.64 (see Table 5.6).
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Figure 5.13: Average search cost versusdlopt−opt for all instances (left) and for high-cost (>
5000 flips) instances (right).
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correlationr residual error

All cost, All c/v 0.73 0.64

High cost, Allc/v 0.52 0.44

Low cost, All c/v 0.60 0.53

All cost, Onlyc/v = 4.3 0.69 0.64

Table 5.6: The correlation coefficientr and residual error for 3-SAT instances with 100 vari-

ables and variousc/v ratios. The instances were divided into high (> 5000) and low (≤ 5000)

cost instances.

Based on our results, Watson et al.’s results of inaccuracy of thedlopt−opt model for very
high-cost instances in JSP do not seem to be applicable for SAT domain. Also, Singer et al.’s
results do not seem to either support or contradict Watson et al.’s conjecture; despite the fact
that the correlation coefficientr decreases with increasing|backbone| for a givenc/v ratio,
which supports the conjecture, ther value hardly changes at all acrossc/v ratio for a given
|backbone|, which does not support the conjecture.

One major limitation for our results arises from the relative ease with which Walksat was
able to solve these 100 variable instances. Even with some of the hardest instances from the
entire set, Walksat was able to solve it within a few seconds. It is plausible that this conjecture
hold true for much more difficult instances. However, this could not be tested due to the
extreme computational cost of enumerating all the solutions and finding distance-to-nearest-
optimum for more difficult instances.

5.5 Conclusions and Future Work

This chapter looked at problem difficulty for local search algorithms in SAT. Unlike construc-
tive search algorithms, which can prove a given problem instance is unsatisfiable, local search
algorithm cannot take advantage of reduced search space and quick pruning of variables that
are present in over-constrained instances. Thus, the decline in the local search cost with in-
creasing constrainedness past the phase transition point is surprising given that the number of
solutions continue to decrease.

Yokoo [67] claimed that it is the decreasing number of local minima that reduces the lo-
cal search cost past the phase transition region. However, we showed that when the average
search cost is plotted as a function of the number of local minima for 20 variable instances,
the correlation was not as strong as we expected. Thus, we concluded that the number of local
minima is one of the contributing factors but not the sole factor that leads to the reduction in
local search cost past the phase transition point.

Singer et al. [57] claimed that the competing factor that makes SAT instances easier with in-
creasing constrainedness is the extensiveness of local minima in the under-constrained region.
We validated the claim by performing fitness-distance analysis on instances of various con-



CHAPTER 5. PROBLEM DIFFICULTY FOR LOCAL SEARCH ALGORITHMS 59

strainedness and observing that the fitness-distance correlation (FDC) increased with respect
to the constrainedness. Higher FDC suggests that the spread of local minima is less extensive,
which makes the problem easier to solve since the local search algorithm will not be distracted
towards high-quality local minima that are far away from global minima. We verified this by
showing the strong negative correlation between the local search cost and the FDC for allc/v
ratios. In the end, we believe it is the combination of the two factors, one being the decreasing
number local minima and the other being the decreasing extensiveness of local minima, that
make the over-constrained problems easier than the critically-constrained problems.

For future studies on this topic, given that the number of local minima decreases and the av-
erage distance between high-quality local minima and global minima decreases with increasing
constrainedness, one can directly verify this result by studying the local minima that disappear
from adding clauses to a given instance. We conjecture that the local minima that are far away
from the global minima will be the first to disappear with added clauses.

In addition to the analysis of the problem difficulty for a SAT local search algorithm, we
also compared the problem difficulty for SAT and JSP. In particular, Watson et al. [61] noted
a deterioration of thedlopt−opt model for high-cost JSP instances and conjectured that a similar
pattern will exist for high-cost SAT instances. Our results failed to support this hypothesis
as the residuals in high-cost instances were actually lower than that for the overall results.
However, this may be from the relatively easy nature of the problem instances used for the
experiment. It would be interesting to see how thedlopt−opt model holds for much larger,
difficult instances.

One area for future work is examining the problem difficulty for structured instances. Wat-
son et al. suggest a possible deterioration of thedlopt−opt model for the structured instances
in SAT. Along with the investigation of thedlopt−opt model, fitness-distance analysis should be
performed on structured instances to see if similar extensiveness of local minima is found for
structured instances. One of the challenges of studying the structured instances is the genera-
tion of all the solutions and having enough instances to make the results stable. This may be
addressed by taking advantage ofmorphingrandom instances to introduce structuredness to
the problem [19].

One of the ramifications of this study is the understanding ofbackbone-guided search
mechanism and the reason behind its success. Backbone-guided search algorithms rely heav-
ily on local optima to estimate the assignments to backbone variables and to eventually find
an optimal solution. The fitness-distance analysis from this chapter raises some interesting
questions: if a large subset of local optima is far away from the global optima as it has been
throughout the fitness-distance analysis, how do backbone-guided search algorithms perform
at the level that they claim to? Could there be some other benefits from keeping a pool of
solutions other than for estimating backbone values? As the idea of backbone-guided search
is getting more popular [17, 42], it is imperative to investigate the claims of backbone-guided
search algorithms and gain better understanding of the mechanism. We turn to these questions
in the next chapter.



Chapter 6

Understanding Backbones and
Backbone-Guided Search

A backbonevariable is one that has the same value in all optimal solutions to a given problem
[15]. Since its introduction by Parkes et al. [51], the idea of backbone has received a lot of
attention from researchers. Along with its implications in phase transition and problem diffi-
culty for SAT [51, 57], the concept of backbone has also been applied to various SAT solvers
to improve their performance. Zhang [68] built a mechanism for estimating the backbone prior
to solving a problem and integrated it with a local search algorithm (Walksat). It has also
been applied with success to a constructive search algorithm in Dubois and Dequen’s work
[17]. Further, in addition to satisfiability, backbone has been studied in other combinatorial
problems including job-shop scheduling and travelling salesman problems [61, 42].

Even with the active research on backbones, it is still an area that is largely untapped and
speculative. For example, Watson et al. [61] noted that the correlation between the number of
optimal solutions and the backbone size is extremely high for job-shop scheduling problems
(JSP), and suggested that the two factors may be redundant. Is this an intrinsic property of
backbone, or does it only apply to JSP? Does backbone really provide no more information
than knowing the number of optimal solutions? Things are even cloudier when it comes to the
applications of backbone. Do the Backbone-Guided search algorithms really take advantage
of the backbone information given that we do not know how accurate the backbone estimates
are?

The purpose of this chapter is to answer the questions surrounding backbones and con-
tribute to our understanding of the nature of backbones and their usage in applications.

6.1 Job-Shop Scheduling Problems

Here, we introduce job-shop scheduling problems (JSP) in detail since we will re-visit Watson
et al.’s [61] conjectures regarding backbones in JSP. Watson et al. consider the well-known
n × m static job-shop scheduling problem (JSP), in whichn jobs must be processed exactly
once on each ofm machines. Each jobi (1 ≤ i ≤ n) is routed through each of them machines
in some pre-defined orderπi, whereπi(j) denotes thejth machine(1 ≤ j ≤ m) in the routing
order. The processing of a job on a machine is called anoperation, and the processing of job

60
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i on machineπi(j) is denoted byoij. An operationoij cannot begin processing untiloij−1 has
completed processing, and pre-emption and concurrency are not allowed.

A solutions to an instance specifies a processing order for all of the jobs on each machine,
and implicitly specifies an earliest start timeest(x) and earliest completion timeect(x) for
each operationx [61]. The objective is to minimize themakespanCmax(s), where,

Cmax(s) = max(ect(o1m), ect(o2m), ..., ect(onm)) (6.1)

An important piece of information in any solution to a JSP is itscritical pathas it defines the
makespan for the solution. A critical path of a solutions consists of a sequence of operations
o1k1 , o2k2 , ..., olkl

, such thatest(o1k1) = 0, ect(olkl
) = Cmax(s), andest(oiki

) = ect(oi−1ki−1
)

for 1 ≤ i ≤ l [61]. Local search algorithms for JSP typically focus on rearranging the sequence
of operations on the critical path in order to find a better makespan. Figure 6.1 illustrates the
critical path for a10× 10 JSP example.

Backbones for Job-Shop Scheduling Problems Similar to SAT, a notion ofbackboneexists
for JSP. A common way to represent a JSP is throughdisjunctive graph, where

(
n
2

)
binary

variables are defined for each of them machines. The variables represent the precedence
relationship between pairs of jobs on the same machine. Consequently, a backbone of a JSP
can be defined as the set of binary variables that have the same value in all optimal solutions.
Watson et al. [61] further defined|backbone| as the number of such variables normalized by
m

(
n
2

)
.

For the6 × 6 case considered by Watson et al., the order of the 6 jobs can be represented
by 15 =

(
6
2

)
binary variables by establishing precedence relationship for each pair of jobs for

a resource. For all 6 resources, 90 binary variables are generated. The definition of the binary
variables is as follows forn jobs andm resources case (n×m):

Let xijk represent a binary variable that describes the precedence relationship be-
tween jobi and jobj on machinek.
If xijk = 1, job i comes before jobj on machinek.
If xijk = 0, job j comes before jobi on machinek.
where,
i = {0, 1, .., n− 2}
j = {i + 1, i + 2, .., n− 1}
k = {0, 1, .., m− 1}

6.2 High correlation between|backbone| and number of op-
timal solutions

“Exceptional similarity” was reported between ther values of the|backbone| and |optsols|
models in Watson et al. [61], where|optsols| represents the number of optimal solutions.
It was found that the correlation between|backbone|2 and log10|optsols| for 6 × 4 and6 ×
6 problems were -0.9337 and -0.9103 respectively. The paper concluded that for job-shop
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Figure 6.1: A10 × 10 JSP example with the critical path highlighted by the thick borders.
JiAp representspth operation of jobi.

scheduling problems, the number of optimal solutions and|backbone| are redundant factors in
their correlation to search cost. Watson et al. then conjectured that such a strong correlation
between the two factors may be present in SAT.

We apply a similar methodology used in Watson et al.’s work to investigate this conjecture.
By enumerating all the optimal solutions to a set of SAT instances, we can find the|backbone|
and the number of optimal solutions, and compute their correlation. Satisfiable, random 3-SAT
instances with 100 variables and various number of clauses are analyzed. The test instances
are the same set of instances used in Chapter 5. The variables for these instances were negated
with 50% probability, and no duplicate clauses were allowed. Again, zChaff [47] was used
to enumerate all the optimal solutions and determine the|backbone| for each instance. Unsat-
isfiable instances were not considered. The ensemble of instances used for the experiment is
summarized in Table 6.1.

One of the limitations here is the different number of instances used for differentc/v ratio.
We believe that we have a sufficient number of instances forc/v > 4.0. The reason for smaller
number of instances used forc/v = 4.0 is because we eliminated those instances that we could
not completely enumerate all the solutions due to the computational expense.

Figure 6.2 (left) shows the scatter graph whenlog10|optsols| is plotted against|backbone|2.
As can be seen,|backbone|2 is strongly negatively correlated to the number of solutions. It

c/v ratio 4.0 4.2 4.3 4.41 4.5 4.71

Number of instances 37 69 80 82 66 76

Table 6.1: Number of SAT instances used for various constrainedness (all satisfiable, 100

variables).
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is interesting that for instances of very high|backbone|2, there is almost a perfect correlation
between the number of optimal solutions and|backbone|2. The correlation coefficient is -0.81,
which is high but less than that of the JSP.

In order to show the negative correlation between the number of optimal solutions and
|backbone|2, we took a subset of6×6 instances (605 instances) from Watson et al. and plotted
the two factors as shown in Figure 6.2 (right). The particular subset here has a slightly lower
correlation value ofr = −0.87 between the two factors than the entire set used by Watson
et al. Here, the data used are directly from Watson et al.’s work, and we did not re-run their
experiment.

One noticeable difference between SAT (Figure 6.2left) and JSP (Figure 6.2right) is the
distribution of the instances in terms of|backbone|2: JSP has greater number of high backbone
instances than SAT. This suggests that these JSP instances are more highly constrained. Also,
even though the correlation values for these particular sets of instances are fairly similar, the
residual standard errorsres of SAT is much larger than that of JSP at 0.647 and 0.533 respec-

tively. Here,sres =
√P

(Y−Yest)
2

n−2
, whereY is the observed value,Yest is the predicted values

from the regression line, andn is the number of data points used.
The higher degree of correlation in JSP as well as smaller residual error indicates that given

the number of optimal solutions of an instance, the backbone size of JSP can be predicted
with higher accuracy than in SAT. A possible reason for the higher correlation between the
number of optimal solutions and|backbone|2 in JSP is that a solution in JSP is dominated by
the operation sequence on the critical path. Presumably, backbone variables will tend to be
between a pair of activities on the critical path in most optimal solutions. Thus we should be
able to swap those activities that are not on the critical path (likely non-backbone) and come
up with another optimal solution. If not, the new solution should still be fairly close to another
optimal solution, not counting the one we just used to derive the new solution. Using Figure 6.1
as an example, a pair of operations that are not on the critical path such asJ5A7 (7th operation
of job 5) andJ9A7 can be swapped without affecting the overall makespan. The same thing
can be said aboutJ8A4 andJ7A7. On the other hand, for SAT, non-backbone variables may
or may not be as loosely constrained depending on individual instances and inter-dependence
among clauses, thereby creating highervariation in the number of optimal solutions.

We note that for JSP (and SAT) we are not claiming that JSP solution can be generated by
identifying the backbone and simply counting the combinations of the non-backbone variables.
The combinations of the non-backbone variables rather provide a loose upper bound for the
number of optimal solutions. What we are claiming here is that the effects of changing the
values of non-backbone variables are more predictable because of the regularity of JSP.

Another way to look at this is from the scope of non-backbone variable assignments. In
SAT, a change in a non-backbone variable assignment is potentially more “global”, meaning
that it could affect other parts of the solution (including backbone variables) since the changed
variable is linked to other variables through the clauses which the variable is part of. In JSP,
however, change in a non-backbone variable assignment (swap of operation sequence for a
particular machine) is more likely to be “local” in that it is less likely to affect the rest of the
solution. Thus, in JSP, non-backbone variables can change their assignments much more freely,
producing a consistent number of solutions. Since we suspect that thedegree of implications,
which is a measure of a variable’s global effect, for non-backbone variables in SAT is greater
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Figure 6.2: Scatter plots of the number of optimal solutions versus the|backbone|2 for SAT
(left) and JSP (right). Satisfiable instances of 100 variables and various constrainedness (see
Table 6.1) for SAT and6× 6 instances for JSP.

than those in JSP, the number of non-backbone variables (hence, the number of backbone
variables) in SAT is not as good of a predictor for number of optimal solutions as it is in JSP.

6.2.1 Degree of Implication

Following the observations above, we conjecture that the greater correlation between the num-
ber of solutions and|backbone|2 for JSP is due to thesmallerdegree of implication for its
non-backbone variables than SAT. The higher the degree of implication, the greater the im-
pact a non-backbone variable has globally in the entire solution space, which results in a more
unpredictable number of solutions for a given backbone (or non-backbone) size.

Measuring Degree of Implication We need a way to measure the degree of implication for
both SAT and JSP. One way is to calculate themodified distance-to-nearest-optimum. Distance-
to-nearest-optimum (dno) measures the Hamming distance between a solution and its nearest
optimal solution (as seen in Section 5.3).Modifieddno (mdno) specifies that the local mini-
mum’s nearest optimum must come from the subset of optimal solutions with a non-backbone
variable of interest set to a particular value. For example, if we want to calculate the degree of
implication for a non-backbone variablex flipped totrue, then, we calculatemdno based on
the subset of optimal solutions with variablex = true.

For a given instance, we have a set of optimal solutions, and a set of backbone and non-
backbone variables can be subsequently identified. If we pick a non-backbone variable from
an optimal solution and flip its value, we will get a new solution. The Hamming distance from
this new solution to its nearest optimal solution with the non-backbone variable set to this new
value (i.e. mdno) will represent the impact of a change in the non-backbone assignment. The
actual algorithm to calculatemdno for a given instance is shown in Figure 6.3.

Methods For SAT, the same ensemble of 100-variable instances used in Section 6.2 was used
for this experiment (see Table 6.1 for details).
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total mdno := 0

hasBeenSeen := {}
for each optimal solutions ∈ S, whereS is a set of all optimal solutions

for each non-backbone variablenbv ∈ s

s′ := s with nbv’s value flipped

if s′ /∈ hasBeenSeen container

Computemdno amongS that have the same truth value fornbv

total mdno+ = mdno

hasBeenSeen := hasBeenSeen ∪ s′

avg mdno = total mdno
sizeof(hasBeenSeen)

Figure 6.3: Algorithm for finding the average Modified Distance-to-Nearest-Optimum (mdno)

for a problem instance.

For JSP, 5936× 6 instances from Watson et al.’s collection were used. These are the same
subset of the instances used for Figure 6.2 (right) except that 12 instances were omitted because
each had only one optimal solution. In such cases,mdno cannot exist by definition since there
are no non-backbone variables. The number of variables in the JSP instances is 90, which is
similar in size as the SAT problems.

For each problem instance (both SAT and JSP), all solutions were enumerated, which in
turn revealed|backbone|. Then using the algorithm in Figure 6.3, averagemdno can be found
for each instance. The distribution of the instances with respect to|backbone| can be seen in
Table 6.2.

Results and Discussion Since the problem size for SAT and JSP is different, we normalized
mdno with respect to the number of variables. The plot of averagemdno with respect to
|backbone| is as shown in Figure 6.4. The vertical bars for each data point indicate the standard
deviation.

|backbone| 0-.09 .10-.19 .20-.29 .30-.39 .40-.49 .50-.69 .60-.69 .70-.79 .80-.89 .90-1

# SAT instances 21 32 29 33 37 44 23 30 81 80

# JSP instances 0 0 13 37 40 84 76 82 118 143

Table 6.2: Number of instances used for various constrainedness. Satisfiable instances with

100 variables for SAT.6× 6 instances for JSP (90 variables).
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As expected,mdno for SAT is significantly greater on average than for JSP for backbone
size less than 0.7. This indicates that the impact of a change of non-backbone variable in SAT
is much more global than it is for JSP, thus making it more difficult to predict the number of
solutions given a backbone size. These results directly support our hypothesis.

Interestingly, at|backbone| > 0.7, JSP displays greatermdno than SAT, although not by
a significant margin. Although this seems contradictory to our hypothesis, a closer look at
Figure 6.2 reveals that SAT should indeed have a smallmdno at high |backbone|. In this
region, the correlation between the|backbone|2 and the number of satisfying solutions seems
to be comparable to that of JSP. It is the small to moderate|backbone|2 region that SAT seems
to have much weaker correlation than JSP.

6.3 Backbone as Search Guidance

So far, we have focused on the characteristics of backbone, how it can affect the search cost
and its relationship with other attributes of SAT. In this section, we look at how backbone infor-
mation can be used in SAT solvers to guide the search for a solution. In particular,Backbone-
Guided (BG) local search algorithmby Zhang [68] is analyzed. The purpose of this study is
to examine the actual mechanism of backbone guidance and verify whether the performance
observed is due to the guidance from the backbone estimates. It is not clear whether the success
(or the lack thereof on certain problem instances) really results from taking advantage of the
backbones or from other benefits of maintaining a pool of local minima.

6.3.1 Backbone-Guided Local Search Algorithm by Zhang

Zhang’s [68] Backbone-Guided local search algorithm is built around the notion that more
constrained variables must be assigned to the correct value first. In the case of backbone
variables, they must be set to the correct value or otherwise the instance cannot be satisfied.
Thus, correctly setting these variables should get priority from the algorithm. However, the
backbones for a given instance cannot be found without enumerating all the optimal solutions.
Therefore, what Zhang does instead is toestimatethe backbones usinglocal minimaof the
given instance. He claims that Walksat, the underlying algorithm used, is quite adept at finding
high-quality local minima.

The Backbone-Guided (BG) algorithm has two major phases in its operation: theinitial-
ization phaseconsists ofpseudo backbone frequencycomputation, where the backbones are
estimated using local minima generated by Walksat. This is done simply by running Walksat
multiple times on a problem instance for a fixed number of flips and collecting the best local
minimum reached in each run. Then, from the set of local minima, pseudo backbone frequency
for each literal can be computed. Specifically, pseudo backbone frequencyp(lj) for a literal lj
is defined as follows:

p(lj) =

P
∀si∈S,lj∈si

1

|S|

whereS is the set of local minima,i is the ith local minimum, andj is thejth variable.
Also, by definition,p(lj) = 1− p(¬lj), where¬lj is the negation oflj.
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Figure 6.4: Modified distance-to-nearest (mdno) plots for satisfiable 3-SAT (100 variables,
various number of clauses) and JSP (6 × 6). Error bars represent the variance inmdno from
instance to instance for the particular backbone size.

Zhang presented another way of calculatingp(lj), in which, the quality of each local mini-
mum (i.e. number of unsatisfied clauses) is taken into consideration since not all local minima
are of equal quality. However, for our set of instances, the first method performed slightly
better than the second method. Thus, only the first method is considered.

The second ormain phaseis where BG uses the pseudo backbone information to steer
Walksat towards “fixing” tightly constrained variables (literals with high pseudo backbone fre-
quencies) first. Zhang suggested many heuristics to bias Walksat’s choices. There are four
main ways BG algorithm can bias Walksat:BG-ClausePickbiases the way Walksat chooses a
clause to fix whileBG-NoisePickandBG-GreedyPickbias the way Walksat chooses a variable
to fix once a clause is selected.BG-InitPick influences the way the initial assignment is made.
To understand how the four heuristics are integrated with Walksat, recall Walksat’s architecture
from Section 2.3.2. Walksat employs two stages for selecting a variable to flip:

1. A clause from the list of all unsatisfied clauses is picked at random; this is where the
BG-ClausePick takes place (if used).

2. • From the selected clause, if there exists a variable with zerobreak count1, flip that
variable.

• If no such variable exists, with probabilityp, randomly pick any one of the liter-
als from the selected clause; this is where the BG-NoisePick takes place. With
probability 1 − p, select the literal with the leastbreak count; this is where the
BG-GreedyPick takes place (in case of a tie).

1Break count is the number of clauses made unsatisfied from flipping a variable’s value.
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Depending on which of the four heuristics are selected, the heuristics will influence various
portions of Walksat’s search. Further, the backbone estimates can be used to bias the initial
assignments when the algorithm re-starts. A more detailed description of the heuristics is as
follows:

• BG-InitPick: generate an initial assignment based on the pseudo backbone frequencies.
Specifically, a variable is assigned a particular value with a probability proportional to
the corresponding literal’s pseudo backbone frequency.

• BG-ClausePick: probabilistically pick a clause among all unsatisfied clauses based on
their constrainedness, which corresponds to the sum of the literals’ pseudo backbone
frequencies in the clause. BG algorithm selects a clauseC among all unsatisfied clauses
in K with probability pC = qC/Q. Here, theqC is the sum of the pseudo backbone
frequencies of all the literals in clauseC ∈ K, andQ =

∑
C∈K qC is a normalizing

factor.

• BG-NoisePick: probabilistically pick a literal from selected clause based on its pseudo
backbone frequency. The algorithm chooses literallj to flip with probability (1−p(lj))Pw

i=1(1−p(li))

given that the selected clause hasw literals.

• BG-GreedyPick: probabilistically pick a literal from selected clause among all the literals
that have the smallestbreak count (i.e. a tie situation) based on its pseudo backbone
frequency. As in BG-NoisePick, literallj is chosen with probability (1−p(lj))Pw

i=1(1−p(li))
.

Any combination of the heuristics can be used for the main phase, where the Walksat with
the biased moves will be run multiple times. The local minima found during the main phase
can also be combined with the existing pool of local minima to update the pseudo backbone
frequencies. BG Walksat achieves this by simply adding the new local minima to the existing
pool and re-calculating all the pseudo backbone frequencies periodically.

When Zhang tested BG Walksat on random 3-SAT instances withc/v =4.3, 6.0, and 8.0,
using BG-NoisePick on its own yielded the best results by improving the base Walksat for all
the c/v ratios. Some of the other strategies actually worsened the Walksat’s performance or
improved it only for certainc/v ratios [68].

6.3.2 Perfect Backbone Experiment

Intuitively, if the performance of BG Walksat depends on the guidance from the pseudo back-
bones, the accuracy of pseudo backbone frequencies generated in the initial phase of BG Walk-
sat algorithm must be one of the determining factors that affects the overall search cost in
finding a satisfying solution. For example, perfect information about the true backbone of an
instance should quickly guide Walksat to a satisfying solution since Walksat will be forced to
makebiasedchoices, correctly fixing backbone variables that do not match the given informa-
tion. On the other hand, poor backbone information can have a worsening effect on Walksat
since it will tend to mislead the algorithmawayfrom a satisfying solution.

In this experiment, Zhang’s algorithm will be given theactual backbone information(to a
certain extent) from which it can bias the clause and variable selection. The aim here is to reveal
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whether the BG algorithm is actually exploiting the backbones of instances. More specifically,
pseudo backbone frequencies for backbone variables are based onprior knowledge(pk) as
follows:

p(lj) = |bj − (1− pk)|

where,0 ≤ pk ≤ 1, andbj is the correct backbone value founda posteriori for variable
j. Naturally, the higher the prior knowledge, the closer the pseudo backbone estimate is to the
real backbone value. For example, if a backbone variable has a prior backbone knowledge of
pk = 0.7, p(lj) will be set to 0.7 ifbj = true and 0.3 ifbj = false. Thus, the closerpk is to
1, the more prior knowledge is provided.

Further, in order to simulate different levels of randomness in the prior knowledge, instead
of using a fixed value ofpk, an upper and a lower bound are specified such thatpk is selected
uniformly between the two bounds for each variable. For example, with the bounds set to [1,
1], BG algorithm has a “perfect” information while [0, 1] bounds will havepk set anywhere
between the 0 and 1 with uniform probability, representing complete randomness. Although
all the backbone variables in a problem share the same upper and lower bounds, each backbone
variable has its ownpk.

Methods A mix of satisfiable and unsatisfiable 3-SAT instances were used. They all have
100 variables, and the number of clauses range from 430 to 600. The number of instances
used is summarized in Table 6.3. On every instance, Walksat and variations of Backbone-
Guided Walksat are run 100 times. Each run continues until either an optimal solution has
been found or a maximum number of flips has been reached. For unsatisfiable instances, an
optimal solution has the fewest unsatisfied clauses.2 For Walksat, UBCSAT implementation
with the noise value of 0.5 was used.

For the BG Walksat initialization phase, 15 local minima were collected from 15 inde-
pendent Walksat runs of 300 steps. Based on the pool of local minima, pseudo backbone
frequency for each non-backbone variable is calculated by the method described in Section
6.3.1. For backbone variables, their pseudo backbone frequencies are replaced with the prior
backbone knowledgepk. This initial phase is then followed by the main phase with 4 runs
of 25000 steps, for maximum of 104500 steps.BG-NoisePickwas used as the heuristic that
biases Walksat. In particular, this heuristic biases Walksat only when it chooses a variable to
flip randomly. Out of all the heuristics suggested by Zhang, this is the best performing heuristic
for these instances. Further, when BG-GreedyPick was used for the same set of instances, the
effect of prior backbone knowledge was very similar.3

Results and Discussion Two key observations can be made from the results (see Figure 6.5
to 6.7). First, for satisfiable instances withc/v = 4.3 andc/v = 4.71 (Figure 6.5) BG Walksat
does not perform much better than the [0, 1] case, where the prior knowledge can be anywhere
from 0 to 1. This brings up the question of the accuracy of the pseudo backbone frequen-
cies used in regular BG Walksat. Specifically, forc/v = 4.3 andc/v = 4.71 cases, random

2Optimal (fewest) number of unsatisfied clauses were found usingmaxsat[6].
3The results are not shown here.
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c/v ratio 4.3 4.71 5.0 6.0
Satisfiable 44 76 - -
Unsatisfiable 48 - 100 58

Table 6.3: Number of instances used for various constrainedness (all 100 variables).
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Figure 6.5: The mean search cost for various amounts of prior backbone knowledge for BG
Walksat for satisfiable, 100 variable instances. 430 clauses (left) and 471 clauses (right). The
numbers inside square brackets indicate lower and upper bound of the amount prior backbone
knowledge.
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Figure 6.6: The mean search cost for various amounts of prior backbone knowledge for BG
Walksat for unsatisfiable, 100 variable instances. 430 clauses (left) and 500 clauses (right). [pk
lower bound,pk upper bound].
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Figure 6.7: Mean search cost for various amounts of prior backbone knowledge for BG Walksat
(unsatisfiable, 100 variables, 600 clauses). [pk lower bound,pk upper bound].

assignment of pseudo backbone frequencies is as good as the estimation method used in BG
algorithm. The accuracy issue with the pseudo backbones is further discussed in Section 6.3.3.
Secondly, as expected, prior knowledge of backbone variables affect the results significantly.
When BG Walksat algorithm is given high prior backbone knowledge, it performs much better
than when given low prior knowledge.

Surprisingly, the effect of lesser prior knowledge is not very high until the information re-
ally starts to degrade. For example, for all the satisfiable cases, perfect backbone information
([1, 1]) case has similar mean search cost as the [0.25, 1] case, where pseudo backbone fre-
quencies can be as low as only 25% correct. However, the search cost drastically increases
when the backbone information is further lowered to [0, 1]. Similarly, the difference in search
cost is very dramatic for [0.5, 0.75] and [0.25, 0.5] case; the search cost for [0.5, 0.75] is very
good (except for the case of 600 clauses, where it shows a slight drop in performance) while
that for [0.25, 0.5] was exceptionally poor. These results indicate that the performance of BG
Walksat is not appreciably affected by the range of lower bound as long as the averagepk (av-
erage of upper and lower bounds) is kept above certain level. Once thepk reaches below some
threshold, it seems like the performance degrades significantly.

Similar to the results shown in Zhang’s paper [68], BG Walksat outperforms Walksat only
in the most constrained regionc/v = 6.0. In all other regions, BG actually hurts the perfor-
mance of Walksat. More discussion of the BG’s performance with respect toc/v ratio is given
in Section 6.3.3.

Perfect Backbone Experiment with Fixed Prior Knowledge To investigate further into
this idea of threshold value, fixed prior knowledge values are used this time instead of variable
value between upper and lower bound. Figure 6.8 (left) shows that the search cost remains
steady forpk > 0.5. But below this point, the search cost dramatically increases. In fact,
the search cost forpk < 0.5 would have been larger if the maximum number of flips was
greater than 104500 since BG Walksat could not find a satisfying solution in some cases.4 In

4Naturally, the number of satisfying runs decreased with lower prior backbone knowledge.
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retrospect, this result is intuitive sincepk > 0.5 would lead the BG Walksat towards the correct
value, where aspk < 0.5 would mislead the algorithm.

What is unexpected, however, is the fact that there is such a sharp transition in the search
cost at aroundpk = 0.5 and that the performance of BG Walksat does not depend very much
on the prior knowledge as long aspk is above 0.5. A similar observation of flat search cost
with respect to prior knowledge can be made forpk < 0.3. This observation is valid for larger
backbone instances and unsatisfiable instances as both Figure 6.8 (right) and 6.9 show similar
“transition zone” aroundpk = 0.5. These results show that BG Walksat is quite robust with
respect to the pseudo backbone estimates; as long as the estimation of the pseudo backbone
frequencies are reasonable (i.e. pk > 0.5), it will perform better than Walksat, especially for
the over-constrained instances (see Figure 6.6right and 6.7).

6.3.3 Accuracy of Pseudo Backbones

As suggested in the previous section, the estimation of the pseudo backbone variables are crit-
ical to the performance of BG Walksat. More specifically, BG Walksat needs the backbone
estimation to bepk > 0.5 such that the algorithm is guided towards the “right direction”.
According to Figure 6.5, BG Walksat does not perform much better than the [0, 1] case for
satisfiable instances (in fact, BG Walksat is worse). However, for unsatisfiable instances, es-
pecially with highc/v ratio, BG Walksat’s effectiveness increases, outperforming Walksat for
c/v = 6.0 [68] (see Figure 6.6 and 6.7).

Given what we know about the BG Walksat’s performance with respect to the prior back-
bone knowledge, by examining the pseudo backbones, we can find out whether it is the back-
bones that makes BG Walksat efficient in over-constrained problems or some other benefits
from maintaining the pool ofelite solutionsduring the search. More specifically, through this
experiment, we want to find out how close pseudo backbone frequencies are compared to the
actual backbone values by measuring the discrepancy between them for each backbone vari-
able.
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Figure 6.8: Mean search cost for varying prior backbone knowledge for BG Walksat for satis-
fiable, 100 variables instances. 430 clauses (left) and 471 clauses (right).
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Figure 6.9: Mean search cost for varying prior backbone knowledge for BG Walksat for unsat-
isfiable, 100 variable instances. 500 clauses (left) and 600 clauses (right).

Methods Two sets of data were collected for this experiment: one is the actual backbone
variables and their values, and the other is the pseudo backbone estimates using the method
described in Section 6.3.1. To get the actual backbone information, we enumeratedall the
satisfying solutions using zChaff [47] for each instance. As for finding the pseudo backbones,
for each instance, Walksat was run 150 times independently with each run having a maximum
of 500 flips. From each run, the assignment with the lowest number of unsatisfied clauses is
chosen,5 and from this set of local minima,pseudo backbone frequenciesp(lj) for each literal
lj are calculated.

As shown in the Perfect Backbone experiment in Section 6.3.2 (and also mentioned in
Zhang [68]), BG Walksat performs well only when the problems are over-constrained. Thus,
the instances tested here are concentrated in the over-constrained region. However, under- and
critically-constrained instances are considered as well. Because not many satisfiable instances
exist in the highly over-constrained problems, only the unsatisfiable instances (MAX-SAT) are
considered. As usual, the number of variables is 100. The number of instances used for each
c/v ratio is summarized in Table 6.4.

Once the two sets of data, namely the pseudo backbone estimates and the actual backbone
results are aggregated, the two sets can be compared on a variable-by-variable basis for each
instance to see how accurate the estimates of backbone variables are using Zhang’s pseudo
backbone method.

For each backbone variablexj ∈ B, whereB is the set of backbone variables in an instance,

5If a satisfying set of assignments is found in the run, it is discarded from the set of local minima.

c/v ratio 4.2 4.3 4.7 5.0 6.0

Number of instances 66 81 95 100 58

Table 6.4: Number of instances used for various constrainedness (all unsatisfiable, 100 vari-

ables).
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the discrepancydj is the difference between the actual backbone valuebj ∈ {0, 1} and the
pseudo backbone frequencyp(lj)

6: dj = bj − p(lj), wheredj = [0, 1].
Naturally, the smaller the value ofdj, the more accurate the pseudo backbone estimate is

for that variable, and vice versa. It should be noted thatdj corresponds to1 − pk, since for
the prior knowledgepk, higher is better while the opposite is true fordj. We expect to see
better pseudo backbone estimates for highly constrained problems as BG Walksat performs
significantly better in this region than low constrained problems [68].

Results and Discussion For eachc/v ratio, the distribution of the backbone variables ac-
cording to their discrepancy valuesdj is plotted in Figure 6.10. For eachc/v ratio, each back-
bone variable is separated into 5 different “bins” depending on itsdj value. For instance,
0 ≤ dj ≤ 0.4 is a very good estimation of the backbone value whiledj > 0.7 is a very poor
one. The distribution of backbone variables is normalized by the|backbone|. As can be seen
from the figure, most of the backbone estimates (over 70% of|backbone|) are fairly close to
the actual backbone valuedj < 0.4. As seen from the Perfect Backbone experiment, prior
knowledgepk > 0.5 will help BG search, and that is the case fordj < 0.5.

The percentage of those backbone variables having discrepancy value greater than 0.5,
thereby misleading the BG Walksat, is 15%, 14%, 15%, 18%, and 14% respectively forc/v
ratio of 4.2, 4.3, 4.7, 5.0, and 6.0. In general, Figure 6.10 shows that for given a backbone vari-
able, the probability of it having a “good” (dj < 0.5) pseudo backbone estimate is fairly similar
for variousc/v ratio and is not necessarily dependent on the constrainedness. This is somewhat
unexpected given how much the performance of BG Walksat varies with the constrainedness
as well as the results from the extensiveness of local minima (see Section 5.3).

One reason for BG Walksat’s superior performance in the over-constrained problems may
simply come from the fact that the instances in this area have larger|backbone| than those
in lesser constrained region (see Table 6.5). Since most of the pseudo backbone variables
are “good” estimates (dj < 0.5), the greater|backbone|, the more information BG Walksat
will have when deciding which variables to flip. Figure 6.11 illustrates this point. Instead of
normalizing the discrepancy value by the|backbone| as in Figure 6.10, it is normalized by
the total number of variables, in order to show the distribution of the discrepancy in pseudo
backbone information with respect to the entire set of variables.

As expected, the fraction of backbone variables having “good” estimates increases mono-
tonically with respect to thec/v ratio. Similar monotonicity is observed for cases of poor
estimates (dj > 0.5) except for the slight drop in the discrepancy for thec/v = 6.0 case.

In general, the performance of BG Walksat is better in over-constrained region,notbecause

6p(¬lj) = 1− p(lj).

c/v ratio 4.2 4.3 4.7 5.0 6.0

|backbone| 0.230 0.281 0.450 0.547 0.564

Table 6.5: Mean|backbone| each number of clauses.
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Figure 6.10: The distribution of the backbone variables according to their discrepancydj be-
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it estimates the backbones better during the preliminary phase, but rather, due to the larger
|backbone| that takes advantage of “good” pseudo backbone estimates.

6.4 Conclusions and Future Work

In this chapter, the notion of backbone variables in problem instances was discussed as well
as the general characteristics of backbones across different problem domains. In both the
job-shop scheduling problems (JSP) and satisfiability (SAT) problems, the backbone size for
an instance had a high correlation with the number of optimal solutions. Especially for JSP,
Watson et al. [61] reported the negative correlation between|backbone|2 and the number of
optimal solutions to be exceptionally high at|r| > 0.91, and its magnitude was noticeably
higher than the magnitude of the correlation coefficient we obtained for SAT at|r| = 0.81. We
believe that the difference between the twor values in JSP and SAT is due to the smallerdegree
of implicationfor JSP than SAT. For JSP, from an optimal solution, if a non-backbone variable
changes its value, it is still fairly close to the next closest optimal solution (not including the
original solution), thus displaying smaller degree of implication. This allows JSP to produce
a more consistent number of solutions per flip in non-backbone variable. On the other hand,
for SAT instances, a change in the non-backbone assignment affects much greater search space
due to its global influence and thus, the size of non-backbone (i.e. size of backbone) is not as
good of a predictor for the number of optimal solutions as it is for JSP.

We also investigated how backbones work as a guiding tool for a search algorithm. There
are numerous algorithms that claim to take advantage of backbones to guide the search to an
optimal solution. Among these, Backbone-Guided local search (BG Walksat) by Zhang [68]
was tested to see whether the algorithm really takes advantage of the backbone information.
By supplying the BG Walksat with pre-determined quality of backbone information, we were
able to establish that the information quality must be better than a certain threshold value to
really take advantage of the given information. This threshold for the random 3-SAT instances
is around 50%, that is, the backbone information must at least point the algorithm to the right
“direction” when deciding betweentrue andfalse for the variable assignment. When the
information is not far from the actual backbone value, it can drastically reduce the performance
of BG Walksat.

We also noted from the Pseudo Backbone experiment that the accuracy of pseudo backbone
frequencies is generally very good (dj < 0.4) for over 75% of the backbone variables. To our
surprise, the accuracy of pseudo backbone frequencies did not show noticeable dependence
on the constrainedness. However, as observed in our experiment as well as through Zhang’s
documented results [68], BG Walksat clearly performed much better in the over-constrained
region than under- and critically-constrained region. We provided evidence that the reason for
this is not because BG Walksat is necessarily better in estimating the pseudo backbone values
for over-constrained problems, but rather, due to larger|backbone| that allows the algorithm to
take advantage of the “good” information found in the preliminary run.

Overall, both the Perfect Backbone experiment and the Pseudo Backbone experiment showed
the importance of the set of local minima and backbone estimation to the performance of the
Backbone-Guided search algorithm. It was to our surprise that the backbone estimation for a
given variable only needs to be fairly good but not great (discrepancy with the actual backbone



CHAPTER 6. UNDERSTANDING BACKBONES AND BACKBONE-GUIDED SEARCH 77

value less than 40%) in order to take advantage of the pseudo backbone information. These re-
sults suggest not only the usefulness of keeping a pool of local minima but also the robustness
of the mechanism. It would be interesting to see how this holds for other problem domains or
different algorithms such as genetic algorithms [26], ant colony optimization algorithms [34],
and multi-point constructive search [3] that use the idea of maintaining a pool of solutions as a
metaheuristic.

One of the factors that should be considered in the future work for the Perfect Backbone
experiment is the role that the non-backbone variables play. Although non-backbone variables
are not as constrained as backbone variables, in practice, they could be very highly constrained
and affect the search cost appreciably. For example, if there is a variable that has an actual
backbone value of 0.02 (i.e. false in 98% of optimal solutions), setting the variable tofalse
will make the rest of the search significantly easier than if it were set totrue. With most of
the current research focused on backbone variables, this could reveal the importance of non-
backbone variables in algorithm designs and search cost.

Also, most of the experiments done in this chapter can be repeated for constructive search
algorithms that use backbone guidance. It would be interesting to see how accurate the back-
bone estimation needs to be in order to have an effective Backbone-Guided constructive search
given its depth-first nature.



Chapter 7

Applying a Metaheuristic to Local Search
Algorithms for SAT

In the previous chapter, we investigated the use of estimates of the backbone as a local search
guidance tool. Backbone-Guided (BG) local search algorithm by Zhang [68] first collects a
pool of local minima in its initiation phase using Walksat. Then from the pool of local minima,
the algorithm estimates the pseudo backbone frequencies and uses that information to bias
Walksat to “fix” the over-constrained variables first. One of the most important concepts in the
BG local search is the use of the pool of local minima orelite solutions. The creation of this
elite set, as well as its maintenance, update, and the utilization the available information in the
elite set are critical to the performance of the BG algorithm. An elite set provides a mechanism
for an algorithm to learn from the previous runs and enablesintensificationaround “good”
solutions from the past as well as thediversificationaway from the current search space. Also,
elite solutions can serve as the basis from which new solutions can be created.

In general, there are two ways to make use of the elite solutions. One is anaggregate
method, where all or a subset of the elite solutions are combined or aggregated such that the
characteristics of the entire subset are captured as a whole. BG Walksat falls into this category
as does Ant Colony Optimization [16]. Typically, the “average” or the most frequently appear-
ing characteristics of the elite set provide some sort of information for the algorithm or a place
in search space where the algorithm can start a new search.

The other way to utilize the elite solutions is by anon-aggregateor instance-basedmethod,
where individual solutions from the elite pool rather than the average population data form the
basis for (a) new solution(s) or a starting point. Genetic algorithms are a well-known approach
that uses this non-aggregate method. Here, an individual instance (likely a local minimum) of
the elite pool can be used as the starting point of a new search effort, or a pair of local minima
can be combined in various ways to extract features of the two solutions.

One of the disadvantages of the aggregate method is that it encourages the search algorithm
to focus on the search space that is preferred by the elite solutions. While this is beneficial if
the elite solutions are pointing to the right direction, if not, the search will likely be stuck in
an unpromising region. And provided the evidence in Section 5.3 that a major portion of high-
quality local minima is indeed very far from an optimal solution, the non-aggregate method
may be better suited for SAT local search algorithms than the aggregate method. We believe
that the non-aggregate method will allow the underlying search algorithm to explore a greater

78
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portion of search space than the aggregate method, thus making it less sensitive to the accuracy
of elite solutions. Thus, we conjecture that a non-aggregate method will be especially beneficial
in the under- and critically-constrained region, where the extensiveness of local minima is
greater than in the over-constrained region.

In this chapter, we introduce a way to integrate a non-aggregate method to local search
algorithms for SAT. In particular,path relinkingintroduced by Glover [23] is integrated with
Walksat [55] and Novelty+ [44, 30], and their performance is compared to the underlying algo-
rithms. The implementation of path relinking with Walksat/Novelty+ is motivated by Nowicki
and Smutnicki’s work withi-TSAB [49] algorithm.i-TSAB, based on a tabu search, is one of
the best performing local search algorithms for job-shop scheduling problems, and path relink-
ing is used as a metaheuristic [62]. To our knowledge, such a non-aggregate method has never
been applied to local search algorithms for SAT.

7.1 Background Information

The way path relinking is used in Nowicki and Smutnicki’si-TSAB is briefly discussed here.

7.1.1 Path Relinking for Tabu Search

One of the best performing local search solvers for job-shop scheduling problems (JSP) is
Nowicki and Smutnicki’s [49]i-TSAB algorithm [62]. Based on a particular implementation
of tabu search,i-TSAB employs sophisticatedmove operatorsas well as a mechanism for di-
versification through path relinking. Due to the highly “tuned” nature of thei-TSAB algorithm,
Watson et al. [62] implemented a simpler version ofi-TSAB calledi-STS (Simplified Tabu
Search), which facilitates understanding of the effects of diversification with marginal decrease
in performance.

Here, we are interested in the wayi-STS achieves diversification through path relinking. As
mentioned in Section 2.4.1.2, path relinking generates combinations of a set of elite solutions
by exploiting paths between and beyond these solutions [23]. New solutions along the paths can
be a part of another set of reference solutions depending on specific designs. This is the basic
approach thati-STS takes: using a bi-level search procedure, it uses its underlying algorithm,
STS, to construct a set of elite solutionsE in the preliminary phase. In the main phase, path
relinking is used to combine individual solutions fromE to form a new solution, where the
underlying algorithm can start the search again.

The details of the algorithm fori-STS’s path relinking step is similar to our implementation
of WsatPR shown in Section 7.2 as we inherited most of the design fromi-STS.

7.1.2 Walksat and Novelty+ Algorithms

As before, the UBCSAT version 1.0.0 by Tompkins [59] is used as the underlying Walksat and
Novelty+ algorithms. Detailed descriptions of Walksat and Novelty+ are provided in Section
2.3.

In terms of the computational effort, path relinking requires little overhead. Thus, the
run-time for the algorithms with path relinking is nearly identical to that of the underlying
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algorithms given the number of total flips is the same.

7.2 Architecture of Walksat with Path Relinking (WsatPR)

In this section, the architecture of the new algorithm, Walksat with path relinking (WsatPR) is
discussed. Novelty+ with path relinking is constructed in the same way, and thus, it will not be
individually described.

There are two phases to WsatPR: in the preliminary phase of the algorithm, a set ofelite
solutions(local minima) are found using regular Walksat and stored in theelite pool, much like
Zhang’s Backbone-Guided local search. There are a few differences in terms of the termination
criteria, but for the most part, the initial phase is similar for the two algorithms. In the main
phase, path relinking with Walksat or pure Walksat is performed using the elite solution(s)
as a starting point. If a satisfying assignment is not found by the end of the run, the best
solution found so far can replace either one of the two starting elite solutions. The main phase
is repeated until a termination criterion (often the maximum cutoff) is met.

7.2.1 Elite Phase: Collecting Initial Elite Solutions

As in the standard Walksat procedure, we start with a random solution. If not all the clauses
are satisfied, Walksat is run until it reaches a preset number of flips without finding a new best
assignment (i.e. stagnation thresholdst1). The best assignment is inserted into the list of elite
solutions (assignments)E. This procedure is repeated untilN solutions are inserted intoE.

We believe that setting a stagnation threshold allows for a more robust design of the algo-
rithm than a maximum number of flips for terminating runs since a stagnation threshold will
compensate for the difficulty of a given instance to a certain degree.

7.2.2 Main Phase: Path Relinking and Walksat

Once all the elite solutions are generated, path relinking and Walksat can be applied to these
assignments. With probability1−prp, we perform the regular Walksat on a randomly selected
solution fromE, and with probabilityprp, we perform path relinking between two randomly
chosen solutions fromE, which is then immediately followed by a regular Walksat run. The
main phase repeatedly performs the two procedures until a satisfying assignment is found or
a maximum number of flips for a given instance (maximum cutoff) has been reached. The
detailed description of the two procedures is as follows:

Regular Walksat Picked with probability1 − prp. Walksat is run on a randomly chosen
assignmentei from E until it reaches a stagnation thresholdst2 (or until a satisfying
solution is found). At the end of the run, if the best solution found from this rune∗ is
better (fewer unsatisfied clauses) thanei, e∗ replacesei.

Path Relinking with Walksat Picked with probabilityprp. Two solutions,em and en, are
chosen randomly fromE. Then letXd be a set of variables that have different values
in em and en. Starting from the better one of the two solutions, flip a variable from
Xd that will result in the greatest net gain in terms of the number of satisfied clauses
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(make − break1 count). Repeatedly flip subsequent variables inXd with the next best
make−break count until the new solution is half-way between the two original solutions
em anden. That is, if the two solutions werek flips apart in Hamming distance in the
beginning, fromXd, flip k/2 variables. Then from the new solutionep, Walksat can be
applied until it reaches a stagnation thresholdst2 (or until a satisfying solution is found),
resulting ine∗. It should be noted thate∗ can only come from those solutions visited
after the path relinking stage. Ife∗ is better than therandom(em, en), which returnsem

or en with a uniform probability,e∗ replaces that assignment inE.

The idea here is to find the right mix of diversification and intensification of the solutions
in the elite setE. With path relinking, diversification is achieved by combining two solutions
and guiding the algorithm across the search space between the two disparate regions. Intensifi-
cation is provided by simply letting Walksat re-visit the past solution and start from that point.
However, as will be discussed in Section 7.3, path relinking can actually hurt the diversity of
an elite pool, and the terms “diversification” and “intensification” may be misnomers [60].

Figure 7.1 and 7.2 show the architecture of Walksat with path relinking.

7.3 Effects of Parameters

Contrary to the regular Walksat algorithm, which requires only one parameter, WsatPR requires
additional parameters for its added features: namely, the size of the elite pool|E|, stagnation
thresholdsst1 andst2, and the path relinking probabilityprp. The following set of experiments
show how we arrived at parameter settings that we used for Section 7.4. These experiments
further show insights and characteristics from which we glean knowledge of the new algorithm.
The Walksat noise parameterp, which determines the probability with which Walksat will flip
a random variable instead of making a greedy choice, is set to 0.5 forall the runs.

7.3.1 Stagnation Threshold for Walksat

In the WsatPR algorithm, Walksat plays an instrumental part in generating the elite pool and
ultimately driving WsatPR towards an optimal solution. Thus, before looking at stagnation
thresholds for WsatPR, we investigate the effect of placing a stagnation threshold for Walksat.
Typically, Walksat is run without any stagnation threshold due to its ability to easily escape
local minima. However, since we impose stagnation thresholds for Walksat within WsatPR,
we ran the regular Walksat with a threshold to learn its behaviour with respect to the threshold.
When Walksat is run with a stagnation threshold, it restarts with a random solution whenever it
fails to find the new best solution within the threshold. This is repeated until the total number
of flips reaches the maximum cutoff value.

We used 100 satisfiable, uniform 3-SAT instances with 250 variables and 1065 clauses
(c/v = 4.26) from the Satisfiability Library [28]. Walksat was run 10 times per instance for
each stagnation threshold, and the maximum cutoff value for each run was set to 1 million

1make is the number of clauses made satisfied from flipping a variable’s value andbreak is the number of
clauses made unsatisfied from the flip.
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# Elite phase

while (! E full)

while (! reached stagnation thresholdst1)

Flip a variable according to Walksat heuristic

if satisfying solution foundreturn ‘satisfiable’

end

E := E ∪ e∗ # wheree∗ is best solution found in most recent run

end

# Main phase

while (! reached maximum number of flips)

if ( probability(prp) )

# Path relinking

Randomly select two solutionsem, en ∈ E

ep := pathRelinking(em, en)

while (! reached stagnation thresholdst2)

Starting fromep, flip a variable according to Walksat heuristic

if satisfying solution foundreturn ‘satisfiable’

end

if e∗ is better thanej := random(em, en)

E := E \ ej ∪ e∗

else

# Regular Walksat

while (! reached stagnation thresholdst2)

Starting fromei ∈ E, flip a variable according to Walksat heuristic

if satisfying solution foundreturn ‘satisfiable’

end

if e∗ is better thanei

E := E \ ei ∪ e∗

end

end

Figure 7.1: The architecture of Walksat with path relinking (WsatPR). See Figure 7.2 for the

pathRelinkingprocedure.



CHAPTER 7. A METAHEURISTIC TOLOCAL SEARCH ALGORITHMS 83

pathRelinking (em, en)

Input: two solutionsem, en

Output: a new solutionep

Xd := a set of variables with different values inem anden

k := |Xd|
ep := better ofem anden

for (from i := 1; until i = k/2; incrementi by 1)

xd := variable fromXd with the largestmake− break

ep := ep with xd flipped

Xd := Xd \ xd

end

return ep

Figure 7.2: Path relinking procedure.
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flips. For each stagnation threshold value, the search cost was averaged across all the runs and
all the instances. Figure 7.3 shows the total number of flips required to reach a satisfying so-
lution when the stagnation threshold is varied for Walksat. For the lower-end of the stagnation
threshold range, the number of flips required to find a satisfying solution goes down sharply
with respect to the stagnation threshold. However, a plateau is reached when the stagnation
threshold is at approximately 10000. The plateau verifies Walksat’s ability to escape local
minima quickly and shows that too frequent restarts can hurt its performance.

7.3.2 Parameters for WsatPR

Here, we show WsatPR’s performance with respect to its stagnation thresholds. Again, the
duration of each Walksat’s run within WsatPR is determined by the stagnation thresholdst1
andst2 respectively for the preliminary and main phase.

The 21 instances used for the next set of experiments for WsatPR parameter setting is from
SAT-03 competition [28]. These are the same set of instances used for Table 7.3 (on page 91).
The number of variables vary from 38 to 700 and thec/v ratios range from 4.2 to 720, and
all instances are satisfiable. Each instance was run 5 times independently with the maximum
number of flips set to 1 billion. Every instance here is considered very difficult; Walksat could
not find a satisfying solution for a few instances within the cutoff limit. The number of runs
per instance is set to a relatively small number due to the computational cost.

The goal here is not necessarily to find exact parameter settings to be used for Section 7.4,
where we compare WsatPR’s performance with other algorithms. Rather, the aim is to get a
general idea as to how WsatPR reacts to various changes in the settings.

Preliminary Phase Stagnation Threshold At the elite solution collection stage, it is critical
to let Walksat run long enough so that it has time to incrementally improve upon the current
best solution for a given run and arrive at a high-quality local minimum. At the same time,
if Walksat runs too long without improving, it will leave us with less time at the main phase.
The key is in striking the right balance between the quality of the elite solutions and the effort
required to achieve such quality.

For this experiment, we set all other parameters other thanst1 to fixed values. The elite pool
size|E| = 8 comes from thei-TSAB [49], andst2 =10 million andprp = 0.5 are determined
from our experience.

As Figure 7.4 (left) shows, neither the search cost nor the success rate (percentage of runs
finding a satisfying solution) fluctuates very much with respect to the threshold (with the excep-
tion of the spike in the search cost atst1 = 400). We believe that this is from the combination
of the two effects: first, Walksat was able to find high-quality elite solutions with relative ease.
Second, even when Walksat was not able to find high-quality solutions initially, with the up-
dates of elite pool in the main phase, the overall quality improved quickly.

Both the success rate and the cost steadily deteriorates (i.e. cost getting larger) withst1 >
2500. This is due to the fact that the quality of elite solutions did not improve very much after
this point for most instances, and the increased time spent in the preliminary run ended up
reducing the time remaining for the main phase.

Even thoughst1 = 1600 performed the best on average, we conservatively choose to use
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Figure 7.4: Normalized search cost and success rate (%) for varying elite phase stagnation
thresholdst1 (left); for varying main phase stagnation thresholdst2 (right).

st2 = 10000 from here on, because there are a few instances that are exceptionally difficult and
benefit from increased time spent in the elite phase.

Main Phase Stagnation Threshold The main stagnation threshold is similar to the elite
phase threshold in that it needs to recognize when the search is not improving and in such case,
allow the underlying algorithm to restart from a different area in search space. At the same
time, the algorithm must be able freely explore the search space without interruption.

Figure 7.4 (right) shows that the search cost decreases sharply aroundst2 = 80000 and
remains relatively constant forst2 > 80000. The same type of pattern can be seen for the
success rate. To our surprise, both figures in Figure 7.4 show a search cost peak with small
threshold valuesst1 = 400 andst2 = 40000. At this point, it is not clear as to why this is the
case.

From this point and on, we setst2 = 70000. The reason for choosing a relatively smallst2
is to maximize the effect of path relinking without sacrificing Walksat’s ability to explore.

Path Relinking Probability With Path Relinking probabilityprp, the algorithm performs
path relinking on two randomly selected elite solutions, and with probability1 − prp, it per-
forms Walksat on an elite solution.

With the other parameters fixed to|E| = 8, st1 = 10000, andst2 = 70000, the path
relinking probabilityprp was varied from 0 to 1. As Figure 7.5 (left) shows, the average search
cost was the smallest withprp = 0.2. On the other hand, the success rate was the best when
prp = 0.8. Overall, the WsatPR performed quite consistently when0.2 ≤ prp ≤ 0.8. It
is interesting to note that all ranges withprp > 0 performed better thanprp = 0, which
shows that path relinking indeed improves Walksat’s performance on average. However, it is
important to note thatprp = 0 does not exactly represent the pure Walksat case since pure
Walksat does not have to spend any time collecting elite solutions. We choose to useprp = 0.5
for the rest of the experiment from here on.

Elite Pool Size Elite pool size|E| determines how many elite solutions will be collected and
maintained for WsatPR. The greater the size, the more diverse the set of elite solutions will
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Figure 7.5: Normalized search cost and success rate (%) for varying path relinking probability
prp (left); for varying elite pool size|E| (right).

be, thus allowing for larger area of search space to be explored. On the other hand, with a
smaller elite pool size, the quality of the elite pool will improve more quickly during the main
phase since fewer solutions need to be updated. As|E| gets even smaller, the path relinking
algorithm will behave more like regular Walksat with restarts because there is very little path
relinking to be done among a small number of elite solutions.

Here, we usedst1 = 10000, st2 = 70000, andprp = 0.5, and varied|E| from 2 to 32. As
Figure 7.5 (right) shows, both the success rate and the search cost improves monotonically with
respect to the pool size (with the exception of the slight decrease in success rate at|E| = 8). We
believe the poor performance of WsatPR with small|E| is due to the degradation of diversity
in the elite pool, which is a result of two effects that feed off of each other: first, especially with
more difficult problems, excessive amount of path relinking between a small group of solutions
quickly degrades the diversity of the pool because the way path relinking keeps the common
traits of the starting solutions and flips only those variables with different values. Secondly,
once all the solutions in the elite pool reach a certain quality, the updates of the pool seldom
happen, because the best solution found during the rune∗ replaces a starting solution only if it
is better. Since the diversity of the pool has degraded, the elite pool updates are less frequent;
since there are fewer updates, the elite pool gets more stale and the diversity does not improve.

We conjecture|E| to be a function ofmin(maximum cutoff for instance, average search
cost for instance). The larger the cutoff value (or the more difficult the problem), the larger
|E| should be in order to allow greater diversity in the pool while allowing for frequent path
relinking. With smallermin(cutoff, search cost), large|E| hurts the performance, because it
requires greater portion of the time to be spent on collecting the elite solutions, and also, the
improvement in the overall quality of the elite pool is slower. Thus for Section 7.4, where the
maximum cutoff value was set to 10 million (instead of 1 billion), we found that a relatively
small |E| = 8 works well for most of the instances (also,i-STS used|E| = 8). When we
tested|E| À 8 with the maximum cutoff set to 10 million on a few instances, there was a clear
degradation of performance compared to|E| = 8.

Additional Factors In addition to the parameters above, there are a few other adjustable
factors for WsatPR. One of the more influential factors for the pool diversity is the replacement
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strategy forem anden by the best solution found during the main phase (e∗). In the current
implementation,e∗ must be better (fewer unsatisfied clauses) thanrandom(em, en) (see Figure
7.2). While this protects the elite pool from accepting a low-quality solution, it is susceptible
to stagnation in the elite pool from infrequent updates. However, on average, we found that
having this quality barrier helpful. One way to increase the frequency of pool updates is by
lowering the quality barrier such thate∗ needs only be better than the worst solution inE. Also,
another way could be acceptinge∗ with some probability. We have not attempted these two
variations for WsatPR.

We found that using theadaptive noise strategyby Hoos [32] improves the performance of
WsatPR on average. Here, the probabilityp, with which Walksat makes a random flip instead of
using its greedy heuristic, is dynamically varied throughout the search such that the algorithm
is more deterministic in the beginning where the improvements in solutions are significant and
frequent. When the algorithm struggles to improve upon the best known solution so far, it
becomes more stochastic in order to become more mobile and be able to cover greater area in
the search space.

7.4 Results and Discussion

In this section, we verify the validity of the conjecture made earlier in the chapter and compare
the performance of path relinking algorithms to their underlying algorithms.

7.4.1 Conjecture Verification

One of the motivations for implementing path relinking on the existing local search algorithms
for SAT is to take advantage of its perceived ability to explore a wide range of search space.
Whereas the aggregate method is susceptible to being trapped in one part of search space due
to its dependence on elite solutions, the non-aggregate method should allow greater mobility
of the search algorithm. This follows from the fact that the latter method exploits the diversity
in the traits of individual instances rather than the average trait of the elite pool. Thus, we
conjecture that in the under- and critically-constrained region, where the extensiveness of local
minima is significant, the non-aggregate method will outperform the aggregate method and
vice versa for the over-constrained region.

Methods In order to verify our conjecture, we compared the performance of an aggregate
method and a non-aggregate method against their underlying algorithm for varyingc/v ra-
tio. Zhang’s BG Walksat represents the aggregate method, while WsatPR represents the non-
aggregate method. Walksat is the underlying algorithm for both methods.

For all three algorithms, adaptive noise was used, which is denoted by a “*A” suffix on
the algorithm’s name. The cutoff value for the maximum number of flips was set to 1 million.
WsatPR*A was run with|E| = 8, st1 = 3000, st2 = 21000, andprp = 0.5. BG Walksat*A
was run with the same parameters as described in Zhang’s paper [68], namely|E| = 30, 10000
flips in the preliminary phase, and 100000 flips in the main phase with 7 re-starts (which
adds up to 1 million flips). Here, BG Walksat*A was run only with the BG-NoisePick as the
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addition of both BG-GreedyPick and BG-InitPick worsened BG Walksat*A’s performance for
c/v < 8.0. Finally, Walksat*A was run without any re-starts.

The test instances are random 3-SAT with 1000 variables. For each number of clauses
4000, 4200, 4300, 5000, 6000, and 8000, 100 instances were used, which may be satisfiable or
unsatisfiable. The phase transition region for 1000 variables seemed to be betweenc/v = 4.2
andc/v = 4.3. Each algorithm was run 20 times on each instance, and the average best number
of unsatisfied clauses was reported for eachc/v ratio.

Cost Difference Figure 7.6 shows the difference in the average solution quality (measured
by the best number of unsatisfied clauses) of the two metaheuristics when compared to the un-
derlying algorithm Walksat*A. The results do not support our conjecture that the non-aggregate
method (WsatPR*A) will outperform the aggregate method in the under- and critically-constrained
region and vice-versa for the over-constrained region. While WsatPR*A is indeed better than
BG Walksat*A in the under- and critically-constrained region, the performance gap actually
increases significantly asc/v increases. This is surprising given what we were led to believe
about to the extensiveness of local minima and the characteristics of the aggregate and the
non-aggregate methods.

In terms of the BG Walksat*A’s inability to improve Walksat*A’s performance to any appre-
ciable degree, with more “tuning” of parameters, we may able to improve the performance of
BG Walksat*A. Zhang’s results on 2000-variable instances showed BG Walksat*A had about
30 fewer unsatisfied clauses than Walksat*A atc/v = 8.0. However, this is still inferior to the
cost difference of 43 by WsatPR*A, which is achieved on smaller, 1000-variable instances.

7.4.2 Performance Comparison

Instances from various problem domains are used to test and compare the performance of the
base algorithms (namely Walksat and Novelty+) to their variants including path relinking and
adaptive noise strategy. Algorithms with path relinking are denoted by a “*PR” suffix on the
algorithm’s name and those with adaptive noise are denoted by “*A”. Also, the results from
the Backbone-Guided Walksat (BG) by Zhang [68] are included. With the results from Section
7.3 in mind, as well as from our past experience,|E| = 8, st1 = 10000, st2 = 70000, and
prp = 0.5 are used for all the instances tested in this section. The cutoff for the maximum
number of flips for any given instance is set to 10 million.

The instances used in this section are identical to the ones used in Section 4.2. As before,
the results are broken down into three different tables: Table 7.1 corresponds to the “easier” set
of instances from Zhang’s work (Table 3 in Zhang [68]). Table 7.2 corresponds to the “harder”
set of instances from Zhang’s work (Table 4 in Zhang), where the regular Walksat could not
solve any of the instances within 20 tries. Table 7.3 is a set of randomk-SAT instances from
the SAT-03 competition [28]. Readers should note that only Table 7.1 shows the results for
the base algorithms since the algorithms with adaptive noise strategy outperformed the base
algorithms on most of the instances.

For the instances in Table 7.1, which shows the number of satisfying solutions found out of
20 trials, path relinking clearly improved the performance of Walksat for both the fixed noise
value and the adaptive noise strategy case. For both cases, the average number of satisfied
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Figure 7.6: Difference in the average solution quality of WsatPR*A and BG Walksat*A com-
pared to Walksat*A. The solution quality is measured by the number of unsatisfied clauses.

Walksat Novelty+ BG

Instance #vars c/v Base Base+PR Base+A Base+PR+ABase Base+PR Base+A Base+PR+ABase+A

bw large.c 3016 16.7 0 0 3 8* 0 1* 12 9 0

bw large.d 6325 20.9 0 0 0 10* 0 0 2 14* 0

par8-1 350 3.3 5 7* 10 11* 20 20 20 20 19

par8-2 350 3.3 4 1 7 10* 20 20 20 20 18

par8-3 350 3.3 1 2* 3 11* 20 20 20 20 19

par8-4 350 3.3 0 1* 2 5* 20 20 20 20 13

par8-5 350 3.3 0 2* 0 2* 20 20 20 20 9

qg1-08 512 290.9 0 0 7 13* 0 0 11 12* 12

qg2-08 512 290.9 0 0 1 6* 0 0 1 3* 6

qg3-08 512 20.4 6 16* 13 13 20 20 17 19* 18

qg6-09 729 30.0 0 0 0 0 2 1 0 1* 0

qg7-09 729 30.3 0 0 5 12* 3 1 7 10* 8

g125.17 2125 31.2 0 0 4 7* 4 12* 20 20 2

g250.29 7250 62.7 0 0 7 7 1 4* 20 0 4

Average 1.14 2.07* 4.43 8.21* 9.29 9.93* 13.57 13.43 9.14

Number of best results 0 0 0 3 7 6 8 7 1

Table 7.1: An “easier” set of instances from Zhang’s paper [68]. It shows the number of times

a satisfying solution was found out of 20 runs. +PR refers to path relinking and +A refers to

adaptive noise strategy added to the base algorithm. The best result for each instance is inbold.

The results that are improved by path relinking are denoted by *.
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Walksat Novelty+ BG Wsat

Instance #vars c/v Base+A Base+PR+A Base+A Base+PR+A Base+A

bmc-ibm-1 9685 5.8 23.3 8.4* 20.6 23.7 4.7

bmc-ibm-2 3628 4.0 5.2 1.0* 1.0 1.0 1.1

bmc-ibm-3 14930 4.8 110.0 102.3* 82.0 125.0 30.5

bmc-ibm-4 28161 5.0 106.6 135.7 118.7 260.6 50.6

bmc-ibm-5 9396 4.4 10.6 1.0* 11.7 23.0 1.4

bmc-ibm-6 51654 7.1 314.9 504.9 190.8 602.0 135.3

bmc-ibm-7 8710 4.6 17.7 4.8* 20.9 37.2 7.9

bmc-galileo-8 58074 5.1 75.3 20.4* 663.3 1136.0 15.8

bmc-galileo-9 63624 5.1 73.6 24.7* 777.2 1313.0 17.8

bmc-ibm-10 61088 5.5 380.5 522.2 233.6 603.4 166.0

bmc-ibm-11 32109 4.7 424.8 505.6 240.2 496.2 370.3

bmc-ibm-12 39598 4.9 531.0 598.6 295.1 561.4 460.7

bmc-ibm-13 13215 5.0 81.6 88.8 69.2 98.6 3.2

f2000 2000 4.3 1.6 0.9* 0.4 1.1 1.9

par-16-1-c 317 4.0 6.4 4.8* 0.9 1.1 5.6

par-16-1 1015 3.3 11.2 9.6* 2.4 2.1* 11.2

par-16-2-c 349 4.0 6.9 5.3* 2.3 1.8* 6.9

par-16-2 1015 3.3 11.4 9.9* 2.3 2.0* 11.8

par-16-3-c 334 4.0 6.8 5.1* 1.8 1.8 6.3

par-16-3 1015 3.3 12.2 9.7* 2.9 2.3* 11.2

par-16-4-c 324 4.0 6.2 4.8* 1.6 1.7 6.0

par-16-4 1015 3.3 12.2 9.9* 2.7 2.1* 11.2

par-16-5-c 341 4.0 7.0 5.3* 2.1 2.2 6.5

par-16-5 1015 3.3 11.0 10.4* 2.5 2.2* 11.3

par-32-1-c 1315 4.0 23.6 20.1* 13.2 10.7* 22.5

par-32-1 3176 3.2 33.6 31.6* 12.3 10.1* 30.9

par-32-2-c 1303 4.0 22.1 20.6* 11.4 9.8* 22.6

par-32-2 3176 3.2 34.1 31.3* 12.0 9.4* 31.5

par-32-3-c 1325 4.0 23.1 20.3* 12.1 10.0* 23.1

par-32-3 3176 3.2 33.2 30.2* 12.1 9.6* 30.5

par-32-4-c 1333 4.0 23.7 20.7* 12.4 10.4* 23.0

par-32-4 3176 3.2 32.5 31.1* 12.9 9.7* 31.0

par-32-5-c 1339 4.0 23.1 20.5* 12.7 10.6* 23.6

par-32-5 3176 3.3 33.5 31.6* 12.7 9.9* 31.3

Average 74.4 83.9 84.4 158.9 47.8

Number of best results 0 3 8 18 8

Table 7.2: A “harder” set of instances from Zhang’s paper [68]. It shows the mean number of

unsatisfied clauses found out of 20 runs. +PR refers to path relinking and +A refers to adaptive

noise strategy added to the base algorithm. The best result for each instance is inbold. The

results that are improved by path relinking are denoted by *.
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Walksat Novelty+ BG Wsat

Instance #vars c/v Base+A Base+PR+A Base+A Base+PR+A Base+A

gen-k10-r720-1719 38 720.0 20 20 20 20 19

gen-k5-v131-1749 131 21.5 20 20 20 20 18

gen-k5-v170-1758 170 21.5 17 20* 20 20 18

gen-k9-v46-1808 46 357.0 20 20 20 20 20

gen-k9-v46-1810 46 357.0 20 20 20 20 20

hgen6-n520-815 520 4.2 4 5* 4 5* 1

hgen6-n520-816 520 4.2 1 0 1 0 1

hgen6-n520-817 520 4.2 4 12* 15 19* 2

hgen6-n650-822 650 4.2 0 0 0 0 0

hgen7-n520-866 520 4.4 10 4 14 10 3

hgen7-n520-867 520 4.4 9 5 5 6* 6

hgen7-n650-870 650 4.4 18 11 20 18 7

hgen7-n650-871 650 4.4 6 5 7 10* 1

hgen7-n650-872 650 4.4 1 0 0 1* 0

uf600-r4.25-1116 600 4.3 15 16* 15 14 6

uf700-r4.25-1120 700 4.3 20 20 20 20 20

uf700-r4.25-1121 700 4.3 0 0 0 0 0

uf700-r4.25-1122 700 4.3 17 19* 15 14 8

uf700-r4.5-1135 700 4.5 0 0 0 0 0

uf700-r4.5-1136 700 4.5 0 0 0 0 0

uf700-r4.5-1137 700 4.5 0 0 0 0 0

Average 9.62 9.38 10.29 10.33 7.14

Number of best results 7 9 9 10 4

Table 7.3: Randomk-SAT instances from SATLIB [28]. It shows the number of times a

satisfying solution was found out of 20 runs. +PR refers to path relinking and +A refers to

adaptive noise strategy added to the base algorithm. The best result for each instance is in

bold. The results that are improved by path relinking are denoted by *.
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answers found doubled by employing path relinking. For Novelty+, the improvement is not
as dramatic. In fact, for Novelty+*A, use of path relinking resulted in slightly lower average
number of satisfied answers. Comparing by instances, while Walksat*A could not solve a
logistics instancebw large.d , adding path relinking enabled it to find a satisfying solution
10 out of 20 attempts. A similar remarkable improvement is seen for Novelty+*A increasing
the number of satisfying solutions found from 2 to 14.

However, for a graph colouring problemg250.29 , path relinking was detrimental to Nov-
elty+*A’s performance. Novelty+*A found a satisfying solution in all 20 attempts whereas
Novelty+*PR*A could not find one at all for any of its 20 attempts. This is surprising in
that path relinking improved the performance for Novelty+ algorithm for bothg125.17 and
g250.29 . We believe that this is due to a stagnation threshold that is too small for the in-
stance. As will be further noticed in Table 7.2 and 7.3, there are instances that are extremely
large and hard for Walksat that there is a significant period of status quo between improve-
ments in the best number of unsatisfied clauses. For these instances, path relinking actually
interrupts the Walksat’s run, preventing the potential improvements. However, for majority
of the instances in Table 7.1, which both Walksat(*A) and Novelty+(*A) reached a plateau in
the solution’s quality, path relinking was able to guide the base algorithm to a different search
space, making a positive difference in performance.

Comparing WsatPR*A and Zhang’s BG Wsat*A, both performed on a comparative level
for the most part. While BG Wsat*A dominated the parity problems, for the logistics problems
(bw large ), which could not be solved using BG Wsat*A, WsatPR*A solved almost half of
the time.

For Table 7.2, none of the instances (with exception tof2000 andpar-16-1-c ) could be
solved optimally, and thus, the average (best) number of unsatisfied clauses is shown for each
instance. The results vary significantly from instance to instance. For example, for some of
thebmc (hardware verification) instances, path relinking improved Walksat*A by a substantial
degree. Also, forf2000 (random 3-SAT) andpar (parity) instances, path relinking consis-
tently improved Walksat*A’s performance. 28 out of 34 instances found in Table 7.2 were
better solved with WsatPR*A than Walksat*A. However, there were a fewbmc instances that
path relinking hurt Walksat*A’s performance by a significant margin that the average number
of unsatisfied clauses for all instances in Table 7.2 was actually higher with path relinking.

For Novelty+*A, the improvement from adding path relinking is modest while the same
instances for which the performance degraded by path relinking for Walksat*A was similarly
degraded for Novelty+*A. These instances tend to be extremely large in size, and thus it takes
time for the base algorithms to improve upon the best solution so far. We believe that with
larger stagnation thresholds for both the preliminary and main phases, the algorithms with path
relinking will be more competitive.

For most of the hardware verification problems (bmc), BG Wsat*A significantly outper-
formed all other algorithms. However, WsatPR*A was slightly better on the parity problems
than BG Wsat*A. This agrees with the results in Section 4.2.2 and Zhang [68] that BG Wsat
performs well on over-constrained instances.

In Table 7.3, the integration of path relinking did not affect the underlying algorithms’ per-
formance very much. Only noticeable differences are forhgen6-n520-817 , where the path
relinking improved Walksat*A by 200% and forhgen7-n520-866/7 , where it degraded
the performance by 100%. For Novelty*A’s case, the effects were very little as well resulting



CHAPTER 7. A METAHEURISTIC TOLOCAL SEARCH ALGORITHMS 93

in a very slight improvement on average.
Both Walksat*A and Novelty+*A, as well as their *PR variants (almost completely) dom-

inated Zhang’s BG Wsat*A, suggesting that the backbone-guidance hurt the performance of
the underlying algorithm for this set of instances. This is not surprising given the past strug-
gles of BG Wsat on critically-constrained instances. Further, it is interesting to note that BG
Wsat*A is good for problems that are very effectively solved with zChaff [47]. For exam-
ple, the hardware verification problems, which BG Wsat*A excels at (in relative terms against
Walksat/Novelty and their variants), zChaff outperforms BG Wsat*A by a wide margin (see
Section 4.2.2 for results on zChaff).

7.5 Conclusions and Future Work

The motivation for integrating path relinking, a metaheuristic, with the existing SAT local
search algorithms is two fold: first, Backbone-Guided local search by Zhang [68] provided an
example of how maintaining a pool of elite solutions can be beneficial to local search algo-
rithms. It provides a mechanism for learning from the previous (preliminary) runs and biasing
the underlying algorithm based on the aggregated information. With path relinking, instead
of aggregating the results, we randomly select and combine a pair of solutions from the elite
set. This way, the search algorithm is not confined to the search space that is directed by the
average traits of the elite solutions, thus possibly allowing greater search space to be explored.

The second motivation is from the successful integration of path relinking in local search
algorithms in other problem domains.i-TSAB [49], the state-of-the-art solver for job-shop
scheduling problems, uses path relinking as an diversification mechanism [62]. We believe
that a similar kind of benefits of path relinking can be exploited for the SAT domain.

Following the design ofi-STS [61], which is a simplification ofi-TSAB, Walksat and
Novelty+ were retrofitted with path relinking. Experimental results with various parameter
settings revealed many insights on the issues of elite pool maintenance, pool diversity, and
the effects of path relinking in general. Stagnation thresholds need to find a right balance
between letting the underlying algorithm explore on its own and taking advantage of the elite
pool. Further, the size of the elite pool is critical in maintaining the pool diversity especially
for extremely difficult problems. Path relinking, known as a diversification mechanism, can
actually hurt the diversity of the pool by making the two elite solutions that are being path-
relinked more alike. The effect of diversification and long-term memory in general has been
examined in the JSP context [60], and further research is necessary for SAT.

Our conjecture that the non-aggregate method will outperform the aggregate method in
the under- and critically-constrained region and vice versa in the over-constrained region was
not supported by the results on random 3-SAT instances of variousc/v ratio. The conjecture
followed from our study in Section 5.3, where the extensiveness of local minima was greater
in the under- and critically-constrained region than in the over-constrained region. However,
WsatPR*A, the non-aggregate method, outperformed BG Walksat*A throughout thec/v ratio,
with the performance gap actually increasing with thec/v ratio. While the results suggest that
the mechanisms of path relinking is still not well understood, they do show promising results
in this direction of research.

Overall, we observed mixed results of WsatPR when tested on a wide range of problem
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domains. For logistics and quasigroup problems, path relinking provided significant improve-
ment for the base algorithms. Also, for parity problems, consistent improvement was observed
by using path relinking. On the contrary, for the instances that were especially difficult for
Walksat and Novelty+ such as hardware verification problems, path relinking worsened the un-
derlying algorithms’ performances. We believe this is due to the fact that the instances in this
class of problems are extremely large. More refined stagnation thresholds and elite pool size,
such as making them dependent on the size of the problem,c/v ratio, and/or given maximum
cutoff value, should be able to improve the performance of path relinking.

Another possible way to improve its performance is by adopting a hybrid approach; with
a very diverse elite pool, an instance-based method such as path relinking can be used to take
advantage of its tendency to visit the unexplored search space between elite solutions. With a
less diverse elite pool, an aggregate method such as BG can be used, which does not deteriorate
the pool diversity.



Chapter 8

Conclusions and Future Work

In this final chapter, we re-visit the major contributions from the thesis and suggest future areas
of research stemming from this work. We then end with concluding remarks.

8.1 Contributions

We recount the contributions from this thesis. Most of the major contributions are direct con-
sequence of extending the body of work for understanding local search algorithms for SAT
and surrounding issues including their problem difficulty, performance on various problem
domains, and the idea and applications of backbones.

8.1.1 Fitness-Distance Analysis on SAT

The easy-hard-easy pattern observed for satisfiable instances when using local search algo-
rithms was surprising to many researchers. Since the discovery of such pattern, much effort
was put into understanding the behaviour of local search algorithms. In the thesis, we tested
the idea of extensiveness of local minima for various constrainedness (measured byc/v ratio)
using fitness-distance analysis. To our surprise, fitness-distance correlation did not fluctuate
appreciably throughout the constrainedness though a slight increase was observed. However,
fitness-distance plots on individual instances confirmed what Singer et al. [57] has conjec-
tured about the extensiveness of local minima: in the under-constrained instances, there are
numerous high-quality local minima that are extremely distant from their closest optimal so-
lutions, while in the over-constrained instances, high-quality local minima tended to be closer
to optimal solutions. When the average distance to optimal solutions was plotted against the
quality of local minima for various constrainedness, it confirmed the visual evidence from the
fitness-distance plots. This factor along with the number local minima contributes to the de-
creasing local search cost in the over-constrained region in spite of the small number of optimal
solutions.

95
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8.1.2 Backbones as Search Guidance

The concept of backbones has been successfully applied to existing algorithms as a heuristic.
Backbone-Guided local search (BG Walksat) by Zhang [68] in particular is known to be ef-
fective on over-constrained, random 3-SAT instances as well as structured problems. Before
this thesis, however, there was not much research done as to why BG Walksat performs well
particularly on over-constrained problems. We revealed through the Perfect Backbone Exper-
iment that BG Walksat benefits from the backbone information as long as the information is
relatively close to the true backbone. On average, if the backbone information was pointing to
the right polarity between the two literals, BG Walksat was better than regular Walksat. We
believe that this robustness is what makes BG Walksat effective.

In terms of the actual quality of the backbone estimates for various constrainedness, over
70% of the backbone estimates were sufficiently close to the true backbone values. We were
surprised to find that the estimates in over-constrained instances were not any more accurate
than the estimates in under- and critically-constrained instances. We concluded that the dis-
crepancy in BG Walksat’s performance for different levels of constrainedness is simply from
the fact that over-constrained instances have larger backbones; since the backbone estimates
need only be somewhat accurate, instances with larger backbones provide greater backbone
information to the algorithm.

8.1.3 Degree of Implication

In evaluating the correlation between the backbone size and the number of optimal solutions,
we observed that the correlation was higher for job-shop scheduling problems (JSP) than SAT.
We conjectured that the result is from the greater influence the non-backbone variables in SAT
have on the global solution space compared to JSP. The greater the influence of non-backbone
variables, the more difficult it will be to predict the number of optimal solutions given the
backbone size. In order to test this hypothesis, we designed a way to measure this influence,
a measure calleddegree of implication, for non-backbone variables. This measurement clearly
showed that the non-backbone variables in SAT indeed have greater degree of implication than
those in JSP, thus leading to the weaker correlation between the backbone size and the number
of optimal solutions for SAT.

8.1.4 Long-term Memory

Path relinking was integrated to Walksat [55] and Novelty+ [44, 30] as a form of long-term
memory. To our knowledge, such instance-based use of long-term memory has never been
implemented on local search SAT solvers. It showed strong results especially for logistics
planning, quasigroup, and parity problems. Compared to the aggregate-method used in BG
Walksat [68], our instance-based method was much stronger throughout the various levels of
constrainedness on 3-SAT instances.

In addition, through empirical testing, characteristics of path relinking, elite pool mainte-
nance, and diversification were revealed. Specifically, path relinking, known as a diversification
mechanism, can actually hurt the diversity of an elite pool when the pool size is sufficiently
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small. This is due to the fact that path relinking rewards those variables that are the same be-
tween two elite solutions while setting the variables with opposing values to the same values.

8.1.5 Other Contributions

Another contribution comes from the application of satisfiability to a real-world problem. Wa-
ter Network Security problem, which is often solved using Integer Programming or Greedy
set-cover heuristic, was encoded as a satisfiability problem. We showed that with further re-
search, satisfiability could be useful as a verification tool for this application.

We also compared the performance of a constructive search algorithm and a local search
algorithm. Through empirical testing, we validated the previous claims that constructive search
algorithms are superior in structured instances while local search algorithms outperform in
random problems. The discrepancy in search effort for the two types of algorithms on various
domains was dramatic. Further, we showed that the factors that affect local search cost affect
constructive search algorithms to a much lesser extent. These factors include the number of
optimal solutions and the backbone size of an instance.

8.2 Future Work

As a consequence of this thesis, many interesting questions arose for further research. Here are
some possible avenues for future work.

8.2.1 Structured Instances

Most of the empirical work done in this thesis is based on random 3-SAT instances. The
use of random 3-SAT instances facilitated the manipulation of the properties of the problems
such as their size and constrainedness. However, it would be critical to apply the same set of
experiments on structured instances if this work were to have an impact on real-world problem
solving. From our limited experience, the characteristics of structured instances significantly
differ from the random instances, and it would not be surprising to see a different set of results.
Provided that we can generate a sufficient number of instances of desired properties, future
study of structured instances should include the following:

Problem difficulty for structured instances From what we have seen in the past,a priori
factors that affect search cost for random instances such as the problem size and con-
strainedness were not as good of a predictor for structured instances. Also, it would be
interesting to see how much thea posteriorifactors affect structured instances. These in-
clude the number of optimal solutions, number of local minima, and the extensiveness of
local minima. There have been previous work for job-shop scheduling problems, where
Watson et al. [61] noticed that with structured instances, the accuracy ofdlopt−opt model1

deteriorated considerably. They conjectured that a similar type of decline in the model’s
accuracy for SAT.

1dlopt−opt model describes the search cost versus the average distance between the local minima and their
closest optimal solutions.
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Degree of structurednessIn addition to the comparisons between structured and random in-
stances, the degree of structuredness should influence problem difficulty and accuracies
of various models. One way to vary the degree of structuredness is bymorphinga given
problem [19]. Morphing can introduce structure or randomness into a wide variety of
problems.

Performance testing In most of the literature including this thesis, most of the performance
testing of algorithms were based on random instances. In general, more work should be
done with structured instances as they have more direct implications to SAT applications
than random instances.

8.2.2 Constructive Search

A comprehensive study on constructive search algorithms should complement this thesis very
well. In Chapter 4, we presented some preliminary work on the factors that affect constructive
search cost by applying the same factors that affect local search cost, namely the number of op-
timal solutions and the backbone size, to zChaff [47]. Although the concept of being trapped in
local minima does not exist for constructive search methods, the number of local minima could
still affect the search cost since the abundance of high-quality local minima will still attract the
solver deeper into the search tree. One of the possible factors for constructive search cost is
the number of implicants per variable assignment.2 Because constructive search algorithms are
driven by unit propagations, this factor could be critical to the difficulty of a given instance.

Although our focus of backbones in Chapter 6 was in the context of local search algorithms,
the idea of applying backbones and backbone estimates does exist for constructive search al-
gorithms as well. In Dubois and Dequen’s work [17], the backbone was estimated using partial
assignments and used as a branching heuristic (see Section 2.2.1). It would be interesting to
see how accurate their method of backbone estimation is through the Pseudo Backbone Exper-
iment (Section 6.3.3). Furthermore, the Perfect Backbone Experiment (Section 6.3.2) can also
be applied here to see if the constructive search based backbone algorithm is just as robust (to
the quality of backbone estimates) as the local search based ones.

Finally, with respect to the use of metaheuristics, we can adopt some long-term memory
strategy for constructive search algorithms. In fact, such method has already been success-
fully applied on a constructive search algorithm in Constraint Satisfaction Problem domain.
Multi-Point Constructive Search [3] uses a set of elite solutions to heuristically guide construc-
tive search through periodically restarting the search from an elite solution. We believe that
constructive search algorithms in SAT domain can easily adopt such technique to improve its
scalability and speed.

8.2.3 Backbones

In addition to the study of backbones on constructive search algorithms, there are many ex-
tensions to the Perfect Backbone and Pseudo Backbone Experiments. For instance, while the
thesis concentrated on the actual backbones, there are non-backbone variables that are highly

2This suggestion is from Fahiem Bacchus.
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constrained as well. These variables should have a noticeable impact especially in the under-
and critically-constrained region, where there is a large number of non-backbone variables.
For the Perfect Backbone Experiment, we expect to see a larger cost difference between good
and poor backbone estimates. If non-backbone variables are included for the Pseudo Backbone
Experiment, the accuracy of the backbone estimates for over-constrained instances should be
better than those that are less tightly constrained following from the results of local minima
extensiveness (Section 5.3).

8.2.4 Long-term Memory

The integration of path relinking on Walksat (WsatPR) and Novelty+ (Novelty+PR) in Chapter
7 showed us that this could be fertile area of research. In more general terms, we have shown
the potential of the use of long-term memory for local search algorithms as did Zhang [68].
Here are some more specific ideas on this topic:

Development of SAT solvers with long-term memoryThe performance we have achieved
through WsatPR serves as a motivation for building better, more sophisticated algorithms
using long-term memory. This could involve a form of long-term memory other than path
relinking or improving the current implementation based on the existing architecture of
WsatPR. One area of immediate interest from the thesis is incorporatinga priori infor-
mation of a given instance (i.e. number of variables, constrainedness, etc.) to allow better
parameter settings such as the elite pool size and stagnation thresholds.

Intensification and diversification The existing work claims that the benefits of the use of
long-term memory come from the diversification achieved through maintaining a pool
of elite solutions and using appropriate metaheuristics to explore disparate search space
[23, 22, 62]. Path relinking is thus known as a diversification mechanism while the un-
derlying algorithms are associated with intensification. Though this logic has an intuitive
appeal, there is not much literature that critically examines this idea for SAT (there has
been work in the job-shop scheduling context [60]). From our experience, in many cases,
path relinking hurt the diversity of elite pool. By the same argument, Walksat is able to
quickly move away from starting solutions (at least for smaller instances) using its supe-
rior mobility. This suggests the reversal of roles of intensification and diversification. It is
plausible that the two observations we made were algorithm/domain-specific. Nonethe-
less, more research in this area is needed to advance our knowledge of metaheuristics
and for better algorithm designs.

Importance of diversity Aside from the fact that we do not have a clear understanding of
what constitutes intensification and diversification, the importance of pool diversity is
an area that is not well studied. Researchers believe (as we do from our preliminary
results) that the pool diversity is important to the underlying algorithm, but there is little
empirical or analytical evidence to support this idea.
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8.3 Conclusions

The central thesis of this dissertation is that an empirical analysis leads to a deeper under-
standing of local search methods and problem difficulty in satisfiability (SAT) and that the
understanding can form a foundation for better algorithm designs. The thesis filled the gaps
in understanding problem difficulty for local search algorithms by accounting for the dip in
the search cost past the phase transition region. It also examined the idea of backbone and
backbone-guided local search algorithms. In doing so, we came up with a new way of measur-
ing the global effect of non-backbone variables, as well as explaining the type of performance
seen in a backbone-guided local search algorithm. Finally, motivated by its successful appli-
cations on non-SAT local search algorithms as well as by our problem difficulty results, we
integrated a long-term memory strategy with local search algorithms for SAT, opening a new
avenue of research in the area.
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