
Managing Restaurant Tables
Using

Constraint Programming

ALFIO VIDOTTO

A Thesis Submitted to the National University of Ireland

in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy.

November, 2007

Research Supervisor: Dr. Kenneth N. Brown and Dr. J. Christopher Beck.
Head of Department: Prof. Gregory Provan.

Department of Computer Science,
National University of Ireland, Cork.

Contents

Table of Contents i

List of Figures vi

List of Tables xii

Abstract xv

Declaration xvi

Acknowledgements xvi

1 Introduction 1
1.1 Issues in restaurant table management 1

1.2 Contributions . 2

1.3 Overview of the dissertation . 3

2 Restaurant table management 7
2.1 Introduction . 7

2.2 The problem . 7

2.2.1 Table capacity and combinability 8

2.2.2 Sources of uncertainty 10

2.2.3 The sequential decision problem 13

2.2.4 Quality measures . 15

2.3 Case study: the Eco restaurant 18

2.3.1 An example of booking and floor management 22

i

2.4 Chapter summary . 25

3 Background 26
3.1 Constraint Programming . 26

3.1.1 Basic CSP representation 27

3.1.2 Constraint propagation 29

3.1.3 Search . 31

3.1.4 CSP solubility and phase transition 37

3.1.5 Extending the representation to improve solving 38

3.1.6 Constraint optimization problems 41

3.1.7 Local search . 42

3.1.8 Variations to standard CSPs 44

3.1.9 Dynamic problems: modelling changes and uncertainty . . 45

3.2 Description of scheduling . 55

3.2.1 Dynamic scheduling . 56

3.2.2 Solving dynamic scheduling 57

3.2.3 Scheduling jobs with fixed start and end times 61

3.2.4 Scheduling for restaurant table allocation 67

3.3 Restaurant revenue management 68

3.3.1 State of the art . 68

3.4 Discussion . 76

4 Modelling and solving the static decision problem 78
4.1 Introduction . 78

4.2 The scheduling problem . 79

4.2.1 Managing infeasibility 81

4.3 Basic CSP representation . 82

4.3.1 Scheduling using single tables 82

4.3.2 CSP representation . 83

4.4 Additional checks and constraints 89

4.4.1 Pre-solving checks . 90

4.4.2 A symmetry breaker constraint 91

4.4.3 Example . 92

ii

4.5 CSP of the restaurant Eco with single tables 94

4.6 Multiple heuristics and time-slicing 97

4.6.1 Initial tests on single heuristics 98

4.6.2 Using multiple heuristics 98

4.6.3 Properties . 99

4.6.4 MH configuration . 104

4.6.5 Evaluation metrics: efficiency and robustness 106

4.6.6 Experiments . 107

4.6.7 Test dimensioned upon the restaurant Eco 108

4.6.8 Tests scaled on a restaurant of 100 tables 115

4.6.9 Tests on quasi-group with holes (QWH) 120

4.6.10 Discussion . 125

4.7 Chapter summary . 126

5 Modelling table configurations and seating plan flexibility 127
5.1 Introduction . 127

5.2 Representing table configurations 128

5.2.1 Example . 128

5.2.2 CSP model with table configurations 129

5.3 Modelling Eco with table configurations 135

5.3.1 Initial domains . 135

5.3.2 Occupancy constraints 136

5.3.3 Restaurant capacity and pre-solving checks 137

5.4 Additional constraints . 138

5.4.1 Capacity constraint . 138

5.4.2 A symmetry breaker on identical tables 139

5.4.3 Evaluating the effect of the new constraints 142

5.5 Constraints on poor table assignments 143

5.5.1 Long dead-zones constraint 145

5.5.2 Over-sized tables constraint 145

5.5.3 Efficiency with the constraints on poor table assignments . 145

5.6 Flexibility and optimization . 147

5.6.1 Constraint implementation of flexibility 150

iii

5.6.2 Using future knowledge 155

5.7 Anytime algorithm . 158

5.7.1 Selecting the search algorithm 159

5.7.2 Objective . 160

5.7.3 Experiments . 160

5.7.4 Results . 161

5.8 Chapter summary . 163

6 Solving the dynamic problem 166
6.1 Introduction . 166

6.2 The dynamic problem . 167

6.2.1 Possible changes during the booking phase 168

6.2.2 Possible changes during floor management 168

6.2.3 Modelling the booking phase using dynamic scheduling . 169

6.2.4 Modelling the floor phase using dynamic scheduling . . . 170

6.3 Solution process . 176

6.3.1 Solvers . 176

6.4 Seating plan stability constraining the number of changes 178

6.5 Objective . 179

6.6 Booking simulation . 180

6.6.1 Results on standard booking 181

6.6.2 Results on booking with diner’s start time flexibility . . . 184

6.6.3 Results on booking for different flexibility measures . . . 188

6.6.4 Results on booking using future knowledge 188

6.7 Floor management simulation on walk-ins 190

6.8 Floor management simulation on delays 195

6.8.1 Test on late finish . 195

6.8.2 Late finish with a restaurant load of 80% 197

6.8.3 Late finish with a restaurant load of 100% 199

6.8.4 Test on late arrivals . 200

6.8.5 Late arrival with restaurant loads of 80% and 100% 201

6.9 Chapter summary . 204

iv

7 Restaurant trials 206
7.1 Introduction . 206

7.2 The prototype . 207
7.2.1 Adding a new request . 207

7.2.2 Making a preference . 208
7.2.3 Availability enquiry . 208

7.2.4 Adding a new request which cannot fit in the current plan . 212
7.2.5 Improving seating plan flexibility 212

7.2.6 Providing availability by flexibility 214
7.2.7 Floor management . 218

7.2.8 Reaction to changes, stability and optimization 218
7.3 Trial and evaluation . 220

7.3.1 Questionnaire overview 221
7.4 Chapter summary . 225

8 Future work 227
8.1 Search algorithm . 227

8.2 Table mix . 228
8.3 Flexibility . 228

8.4 Managing critical changes . 229
8.5 Supporting robustness . 230

8.6 Supporting stability . 231

9 Conclusions 232
9.1 Summary of contributions . 233

9.1.1 Representing restaurant table management 233

9.1.2 Modelling and solving the static decision problem 233
9.1.3 Modelling combinable tables and seating plan flexibility . 234

9.1.4 Managing uncertainty on table demand and changes . . . 234
9.1.5 An interactive tool for restaurant table management 235

9.2 Final discussion . 236
9.3 Conclusions generalized . 237

Appendix A 239

v

Bibliography 246

vi

List of Figures

2.1 Restaurant table management: the sequential decision problem. . . 13
2.2 General profile of quality against number of covers, assuming an

optimal occupancy of 200 covers. 16
2.3 General profile of quality against waiting time. 17
2.4 Table map of the restaurant Eco. 18
2.5 Booking sheet representing the initial seating plan. 24
2.6 Booking sheet representing the final restaurant allocation. The

allocations that have not changed from the initial seating plan ap-
pear highlighted in grey. 24

3.1 Search tree with inconsistency found at the end of the first path
explored using CBT. 35

3.2 Search tree, discrepancy, and order of exploration using CBT,
ILDS, and DDS. 36

3.3 Example of temporal robustness increased using slack for the ta-
ble allocation problem - if P2 finishes late, P5 and P4 can swap
without introducing any more delay. 52

4.1 Sequence of changes: time 0 (top), initial booking sheet with 4
parties and possible seating plan; time 1 (middle), new booking
request P5 for time 2, and possible allocation into the current plan;
time 2 (bottom), late finish of party P1, and possible seating real-
location. 80

4.2 Use cases: (left) booking phase; (right) floor phase. 81
4.3 Problem instance (top); and a possible seating plan with no table

configuration (bottom). 82

vii

4.4 An example of µ-coloring on interval graphs representing an in-
stance of SFSE−OC for restaurant table allocation: set of intervals
over the real line (top); problem instance (middle); possible solu-
tion (bottom). 84

4.5 Example showing the set of overlapping parties over time. 86

4.6 CSP representation: variables, values, domains, and constraints. . 88

4.7 CSP representation for the example of Figure 4.3. 89

4.8 Additional checks and constraints for the example of Figure 4.3. . 93

4.9 Two equivalent or symmetric seating plans: P4 > P5 (top) ; P4 <

P5 (bottom). 93

4.10 Representation of a booking sheet of 65 parties - for convenience,
parties have been listed in increasing order of start time. 94

4.11 Multiple-heuristic algorithm. 99

4.12 Problem instance (top); and a possible seating plan (bottom). . . . 105

4.13 Comparison of CSP(X, D, C1, C2) (model with basic constraints)
against CSP(X, D, C1, C2, C3, C4, C5) (model extended with
additional checks and constraints). Each point is an average over
1000 instances. Note log-scale on left hand axis. The solvability
curve refers to the right hand axis. All instances with more than
82 parties were found infeasible. 110

4.14 Benefit of using multiple rather than single heuristics. 111

4.15 Results on constant or uniform dinner durations. 112

4.16 Realistic distribution of start times. 113

4.17 Realistic distribution of dinner durations. The curve shows the
mean duration over time. For each point in the curve, durations
are uniform within the range (or maximum deviation) represented. 113

4.18 Results on realistic start times and dinner durations. 114

4.19 Comparing MH against msd: frequency of failure to solve within
tmax (top); mean r-time (bottom). 116

4.20 MH with and without msd: frequency of failure to solve within
tmax (top) mean r-time (bottom). 118

4.21 Comparing MH against RR: frequency of failure to solve within
tmax (top); mean r-time (bottom). 119

viii

4.22 QWH: an instance (top), remaining domains (middle), and a solu-
tion (bottom). 120

4.23 Comparing MH against msd on QWH: frequency of failure to
solve within tmax (top); mean r-time (bottom). 123

4.24 Comparing MH against RR on QWH: frequency of failure to solve
within tmax (top); mean r-time (bottom). 124

5.1 Problem instance (top); seating plan with table configuration (bot-
tom). 129

5.2 Group of four tables of capacity 2, arranged in a square, where
each pair of adjacent is combinable and has capacity 4. The graph
of possible combinations forms a cycle. 131

5.3 Occupancy constraint. 132

5.4 CSP representation for the example of Figure 5.1. 135

5.5 Procedure to generate the new capacity constraint. 139

5.6 Problem instance (top); partial allocation during search (bottom). . 140

5.7 Procedure to generate the symmetry breaker for single tables of
equal capacity. 140

5.8 Symmetrical allocations: (top) accepted; (bottom) rejected. 141

5.9 Symmetry breaker for identical tables in Eco. 141

5.10 Evaluating the additional constraints: frequency of failure to solve
within tmax (top); mean r-time (bottom). The basic version of
CSP includes constraints C1 to C5 (Chapter 4). We compare it
against versions extended with C6 (capacity constraint), with C7

(symmetry breaker), or with both C6 and C7. In the graph, the
curve from top-left to bottom-right (solvability) is the percentage
of instances with a feasible solution. Each point in the graph is an
average over 100 instances. 144

5.11 Procedures to generate: (top) the constraint on long dead-zones in
the range 30 to 120 minutes; (bottom) the constraint on over-sized
tables for parties of size 1 and 2. 146

ix

5.12 Evaluating the constraints on poor table allocations: frequency
of failure to solve within tmax (top); mean r-time (bottom). We
compare the version of CSP including constraints C1 to C6 against
versions extended with C8 (dead zone constraint), with C9 (over-
sized table constraint), or with both C8 and C9. 148

5.13 Graph showing how the introduction of the constraints on poor
table allocations, C8 and C9, affects the solvability curve. 149

5.14 Example of seating plan with three parties (top); and correspond-
ing grid of distances (bottom). 151

5.15 Procedure for mapping seating allocations into grids of distances. . 151

5.16 Example of seating map: initial domains (top); mapping the occu-
pancy (second top); rearranging the domains of distances (second
bottom); final map, assigning the exact distance to the domain of
each cell (bottom). 153

5.17 Flexibility map for two possible allocations. 155

5.18 Flexibility map for two possible allocations. 156

5.19 Basic algorithm for anytime solutions. 159

5.20 Anytime algorithm, performance profile of versions SA1, SA2,
SA3, SA4, with instances of size 1 to 50 parties. Horizontal axis
in logarithmic scale. 162

5.21 Anytime algorithm, performance profile of versions SA1, SA2,
SA3, SA4, with instances of size 21 to 40 parties. Horizontal axis
in logarithmic scale. 163

6.1 Example of dynamic problem on the booking phase: sequence of
static instances (left); possible seating plans (right). 171

6.2 Example of dynamic problem on the floor phase: sequence of
static instances (left); possible seating plans (right). 174

6.3 Diagram representing the solution process of the dynamic prob-
lem: to each change CHN corresponds a new problem instance. . 176

6.4 Basic algorithm for stable solutions. 178

x

6.5 Tests on standard booking: mean number of covers over number
of requests, comparing SOLV ER1, SOLV ER2, SOLV ER3,
and SOLV ER4. Reservation target is 180 covers. 182

6.6 Tests on standard booking: flexibility profile over number of re-
quests, for SOLV ER1, SOLV ER2, SOLV ER3, and SOLV ER4.184

6.7 Tests on booking with negotiation. Mean number of covers over
number of requests (top). Flexibility profile over number of re-
quests (bottom). Comparing SOLV ER2 for different levels of
negotiation. 187

6.8 Tests on standard booking: mean number of covers over number
of requests, comparing SOLV ER2 over the different measures of
flexibility. 189

6.9 Tests on standard booking: mean number of parties over number
of requests, comparing SOLV ER2 with and without using future
knowledge. 191

6.10 Tests on floor management: mean number of parties over number
of walk-ins, comparing SOLV ER1, SOLV ER2, SOLV ER3,
and SOLV ER4. 193

6.11 Tests on floor management: flexibility profile over number of
walk-ins, comparing SOLV ER1, SOLV ER2, SOLV ER3, and
SOLV ER4. 194

7.1 User interface, displaying a seating plan and a new booking request.208

7.2 Seating plan with the new request accommodated into table 4. . . 209

7.3 New seating plan after imposing a preference for party Keane. . . 209

7.4 User interface, displaying a table map of the new seating plan with
party Keane. 210

7.5 Procedure for computing availability by start time and duration. . 211

7.6 Computing the possible start times (and durations) available for a
dinner for 4 people. 211

7.7 New seating plan with party Meane accommodated. 213

xi

7.8 First improvement: seating plan showing dead zones and poor
table usage (top); party Crowley moved into a more suitable table
(bottom). 215

7.9 Improvement after several steps, with party Keane fixed (top), un-
fixed (bottom). 216

7.10 Procedure for computing flexibility by available start time and
dinner duration, for a booking request of a given size. 217

7.11 Flexibility for the possible time slots available for a dinner for 4
people for Figure 7.8 (top) and for Figure 7.9 (bottom). 217

7.12 An instant during floor management, with a late finish (Keane, T4). 218
7.13 Reallocation after a late finish (top); improvement after four iter-

ations (bottom). 219
7.14 Allocation optimized for a Saturday (top); for a Sunday (bottom). 224

xii

List of Tables

2.1 Main sources of uncertainty. 11

2.2 A description of the main events that can occur in restaurant table
management. For each event, we report at which stage the event
can occur (booking phase = B, floor phase = F), and the corre-
sponding possible decisions. 14

2.3 Single capacity of the 23 tables in Eco. 19

2.4 Capacity of the 16 table configurations in Eco. 20

2.5 Possible restaurant layouts in Eco. 21

2.6 Main business rules in Eco. 21

2.7 Special requests and table preferences in Eco. 22

2.8 Dinner session: end-to-end allocation statistic. 23

4.1 Domains in Eco. 95

4.2 r-time for different heuristics over the same set of instances. . . . 98

4.3 List of variable (or party) ordering heuristics. 105

4.4 List of value (or table) ordering heuristics. 105

4.5 New set of variable ordering heuristics without msd. 117

4.6 List of variable ordering heuristics. 121

4.7 List of value ordering heuristics. 121

5.1 Domains in Eco: considering only single tables (second column);
and considering only combined tables (third column). 136

5.2 Number of tables and configurations in Eco, categorized by party
size. 138

5.3 Booking distribution in Eco, for Sundays or for any other day. . . 158

xiii

6.1 CSP representation for the example of Figure 6.1. Note: (RC,
M2, M3, M4) = (12, 4, 3, 2). 172

6.2 CSP representation for the example of Figure 6.2. Note: (RC,
M2, M3, M4) = (12, 4, 3, 2). 175

6.3 Comparing the four solvers on the reservation target. 182
6.4 Late finishes. Results over 30 seating plans of 50 parties - i.e. for

each delay value D we test 1023 delay instances. 198
6.5 Late finishes. Results over 30 seating plans of 60 parties - i.e. for

each delay value D we test 1267 delay instances. 199
6.6 Late arrivals. Results over 30 seating plans of 50 parties - i.e. for

each delay value D we test 1023 delay instances. 202
6.7 Late arrivals. Results over 30 seating plans of 60 parties - i.e. for

each delay value D we test 1267 delay instances. 202

7.1 Performance over 4 improvement steps for the example of Fig-
ure 7.13. 220

7.2 Distribution of bookings over time in Eco, for Sundays and Satur-
days. 224

xiv

Abstract

Restaurant table management can have significant impact on both profitability
and customer experience. The core of the issue is a complex dynamic combinato-
rial problem - restaurants must take reservations, and manage unexpected events
in real time, making good use of resources, and providing good service to cus-
tomers. Although the application of artificial intelligence to real world problems
has shown a considerable and increasing success in recent years, the problem of
restaurant table management has been left largely unexplored.

In this dissertation we develop a solution based on constraint programming
to support, enhance, and automate the uncertain and highly dynamic restaurant
table management problem. Specifically, our solution allows inexperienced users
to take bookings and seat diners, and to automatically reconfigure seating plans;
it uses resources, maximizing table usage and final turnover; it enables reaction
to unplanned events, minimizing the propagation of delays over future diners; it
maintains feasible, flexible, and stable seating plans, simplifying both booking
and floor management, in processing table requests, and in tracking and control-
ling table allocations; it supports the booker with data on time availability, sug-
gesting flexible booking times; and it supports the use of future knowledge, to
provide flexible seating plans for expected booking patterns.

Restaurant table management is a new application problem for constraint pro-
gramming. We represent the problem as multiple machine scheduling with fixed
start and end times and reconfigurable machines. We model the problem as con-
straint satisfaction and develop a search algorithm based on multiple heuristics
and time slicing. We extend the model to generate flexible seating plans, and im-
plement a limited discrepancy algorithm to maintain stability when changes occur.
The constraint based model presented in this dissertation represents a successful
case of research applied to a real world dynamic problem, integrating reaction
efficiency, optimization, stability, and robustness. The research underneath this
thesis was carried out using information from a real restaurant, was tested using
computer simulations, and was finally validated with trials at the restaurant.

xv

Declaration

This thesis is submitted to University College Cork, in accordance with the re-
quirements for the degree of Doctor of Philosophy in the Faculty of Science. The
research and thesis presented in this dissertation are entirely my own work. Some
parts of the work have been published in the following articles.

1. Vidotto, A., Brown, K. N. and Beck, J. C., Managing Restaurant Tables
using Constraints, Knowledge Based Systems, March 2007, Vol. 20, Issue
2, Pages 160-169.

2. Vidotto, A., Brown, K. N. and Beck, J. C., Managing Restaurant Tables
using Constraints, Applications and Innovations in Intelligent Systems XIV,
Proceedings of the 26th SGAI International Conference on Innovative Tech-

niques and Applications of Artificial Intelligence (AI-2006), Applications

Stream, Springer (1 84628 665 4), 2006, Pages 3-16.
Awarded Rob Milne Memorial Prize for best refereed application paper.

3. Vidotto, A., Brown, K. N. and Beck, J. C., Robust constraint solving using
multiple heuristics, Proceedings of the 16th Irish Conference on Artificial

Intelligence and Cognitive Science (AICS-2005), Portstewart, Northern Ire-
land, 2005, Pages 203-212.

4. Vidotto, A., Brown, K. N. and Beck, J. C., Robust constraint solving us-
ing multiple heuristics, Proceedings of the 11th International Conference of

Principles and Practice of Constraint Programming (CP-2005), Doctoral

Paper, Sitges, Spain, 2005, Page 871.

xvi

Acknowledgements

I would like to thank my supervisors, Dr. Ken Brown and Dr. Chris Beck, for
helping me during my PhD. This work was funded by Enterprise Ireland under
grant number SC/2003/0081. I am grateful for the problem description, data and
advice given by the Eco restaurant in Douglas, Cork. The user interface of the
prototype software used during a trial period in Eco was developed by James
Lupton, and supported by the Science Foundation Ireland Overhead Investment
Plan, 2005 - 2006. Finally, I am grateful for the external liaison assistance of
James Little at Cork Constraint Computation Centre.

xvii

Chapter 1

Introduction

1.1 Issues in restaurant table management

Effective table management can be crucial to a restaurant’s profitability - ineffi-
cient use of tables means that the restaurant is losing potential custom, but over-
booking means that customers are delayed or feel cramped and pressured, and so
are unlikely to return. In addition, customer behavior is uncertain, and so seating
plans should be flexible or quickly reconfigurable, to avoid delays. The restaurant
manager is faced with a series of questions. Should a party of two be offered the
last four-seater table? For how long should we keep a favorite table for a regular
customer? Should a party of four be offered a table for 8 p.m.? If no table is avail-
able at 7 p.m., what other times should be offered? When a party takes longer than
expected, can we reassign all diners who have not yet been seated to avoid delays?
When a party does not appear, can we reassign all other diners to gain an extra
seating? In Computer Science terms, table management is an online constrained
combinatorial optimization problem - restaurants must manage reservations, and
manage unexpected events in real-time, making good use of resources, and pro-
viding good service to customers.

On current systems, booking and floor allocations are done manually, and re-
quire experienced personnel. The first computerized table management programs
have recently started to appear in some busy restaurants, but most of them provide
no advice to the user, and do not support dynamic table reallocation. Restaurant

1

table management could be improved if we could develop software that can be
used by staff with less expertise and knowledge, and that can help the automation
and optimization of the (dynamic) allocation process.

In this dissertation we propose and defend the following thesis:

Constraint programming can be used as a tool to support, enhance, and auto-

mate uncertain and highly dynamic restaurant table management.

Specifically, constraint programming can be used:

• to model table management, and careful modelling can improve efficiency;

• to model and solve the underlying static decision problem;

• to model table (re)configurations and seating plan flexibility;

• for complex or stable seating plan reallocations;

• to model knowledge on future demand to build more flexible seating plans;

• to exploit diners’ start time flexibility to preserve seating plan flexibility;

• to improve robustness in managing uncertainty (on demand and changes).

1.2 Contributions

The research developed in this dissertation provides a practical solution to restau-
rant table management, supporting flexibility, stability, and robustness. The solu-
tion improves current systems in that: it allows inexperienced users to take book-
ings and seat diners, and to automatically reconfigure seating plans; it allows a
more efficient use of resources, maximizing table usage and final turnover, with

2

fewer customers turned away; it supports and improves the reaction to unplanned
events, minimizing the propagation of delays over future diners; it maintains fea-
sible, flexible, and stable seating plans, simplifying both booking and floor man-
agement, in processing table requests, and in tracking and controlling table al-
locations; it supports the booker with data on time availability, suggesting more
flexible booking times; it is less sensitive to the uncertainty on table demand and
on changes; and it supports the use of future knowledge, to provide seating plans
adequately flexible with respect to the expected booking patterns.

The research developed in this dissertation is valuable also for the constraint
programming community, and for computer scientists in general. Restaurant ta-
ble management is a new application problem for constraint programming. Like
scheduling for table management, many real world problems are dynamic and
uncertain. The interest on such problems has been growing considerably in re-
cent years, with new solving techniques being regularly introduced. Typical goals
concerning dynamic problem solving are [24]: (i) to provide quick reactions to
changes; (ii) to compute the best plan by reasoning on the possible future devel-
opments of the problem; (iii) to maintain stable solutions; (iv) to provide solutions
that are robust in accommodating changes at little cost. Although real problems
often involve multiple goals, current solving techniques tend to focus on one sin-
gle goal at a time. Further, the integration of research techniques into industrial
applications is still in its early phase. The constraint based model presented in
this thesis represents a successful case of research applied to an industrial prob-
lem, integrating reaction efficiency, optimization, stability, and robustness.

1.3 Overview of the dissertation

The structure of the dissertation is as outlined below.

Chapter 2 Restaurant table management - We present full details of the
table management problem. Specifically, we characterize a two phase problem of
booking and floor management. We describe common features of the restaurant
environment, such as table capacity and combinability, and we introduce general
business rules used to control the table allocation process. We discuss the sources

3

of uncertainty, on table demand, customer behavior, and restaurant performance.
We introduce the main measures to evaluate the quality of solutions. We finally
describe one particular restaurant, and report an example of booking and floor
management based on real data.

Chapter 3 Background - We give an introduction to constraint program-
ming, providing an overview of the main literature, with particular interest on
extensions for modelling changes and uncertainty in dynamic problems. We then
give a description of scheduling, focusing on the subclass of scheduling with fixed
start and end times, which we have used to represent restaurant table management.
We finally review some research on the more general topic of restaurant revenue
management.

Chapter 4 Modelling and solving the static decision problem - We tackle
the underlying static decision problem. We model the problem as a subclass of
scheduling with fixed start and end times, and characterize it as NP-complete. We
present a basic constraint representation, and then extend it with specialized con-
straints and search algorithms, designed to produce a more efficient and robust
search. We conclude showing the benefit achieved through careful modelling,
comparing the final advanced solution to the original basic solution.

Chapter 5 Modelling table configurations and seating plan flexibility -
We extend the constraint model to represent table configurations, and to allow
multiple joining and separation of tables over the same dining session. Then we
extend the model to represent seating plan flexibility, and to select seating plans
maximizing flexibility - i.e. advising which tables have to be allocated or joined,
and when, in order to get a seating plan more flexible for accommodating future
table demand. We design three objective functions based on different flexibility
measures: the first maximizes usable start times, the second minimizes the time
between meals (or dead zones), and the third maximizes the potential number of
seatings. Flexibility is then extended to weight the expectation of future table de-
mand over time, with weights generated from booking patterns retrieved from past
booking sheets. We design new specialized constraints to speed up the search pro-

4

cess with more constraint propagation. We develop search algorithms for anytime
solutions, aiming to achieve reasonable flexibility improvements in practical time.
We conclude with a test for the selection of the algorithm with the best anytime
profile. Again, through careful modelling we achieve an efficient solution.

Chapter 6 Solving the dynamic problem - We tackle the dynamic problem,
considering it as a sequence of static problems linked by changes. We present a
search algorithm for solution stability involving limited discrepancy search. We
test our models over simulated booking and floor management sessions. We com-
pare against simulations of traditional allocation systems. We show that our model
is capable of complex reallocations, which allows more flexibility to accommo-
date future table requests (bookings or walk-ins), and more robustness to accom-
modate changes (e.g. delays) without delaying other parties. We also show that
the solutions we provide are indeed more flexible for the accommodation of future
table requests, improving the final number of people the restaurant can accommo-
date. We show the potential benefit of using our optimization model to exploit
customer’s start time flexibility, i.e. when some customers are flexible over the
time to have their dinner. We evaluate the three flexibility measures designed
in Chapter 5, showing they are all accurate in representing the real flexibility.
We evaluate flexibility weighted by the expected distribution of table demand (or
booking pattern), noticing a further improvement when some level of customer’s
start time flexibility is also included.

Chapter 7 Restaurant trials - We demonstrate how the interface of the im-
plemented software application provides access to the models and algorithms de-
scribed in the previous chapters, presents relevant information regarding the state
of the restaurant or booking sheet, and allows the user (booker or floor manager)
to control the table allocation process, switching between manual operation, basic
solving, optimizing for flexibility, or maintaining stability. We conclude with a
discussion about the evaluation of the software in a real restaurant (Eco [32]).

Chapter 8 Future work - We examine possible extensions of the research.
This includes optimizing the multiple heuristic approach developed in Chapter

5

4 for improving search efficiency and robustness, involving restaurant table mix
optimization, designing better flexibility measures based on future table demand,
and investigating other approaches to improve robustness or to support stability in
managing uncertain events.

Chapter 9 Conclusions - We summarize the work done and the contribu-
tions achieved. We conclude with final comments on the thesis defended.

Appendix A - We report the questionnaire compiled by the general manager
of the restaurant Eco at the end of the trial period.

6

Chapter 2

Restaurant table management

2.1 Introduction

In this chapter we present the restaurant table management problem in detail,
giving more evidence about its complexity, significant uncertainty, and high dy-
namism, and describing the traditional solutions. We first characterize a two phase
problem of booking and floor management. Then, we present the main ingredi-
ents that make it a complex problem, which involves dealing with physical con-
straints and business rules, on table capacity and combinability, and dealing with
the sources of uncertainty, on table demand, customer behavior, and restaurant
efficiency. We represent table management as a sequential decision problem, and
discuss some measures for evaluating the quality of final solutions, considering
the perspective of both the restaurant and the customer. We conclude the chapter
by describing a real restaurant, Eco, and an example of booking and floor man-
agement, discussing some data and figures taken from a real dinner session.

2.2 The problem

Table management, in most restaurants, has two distinct phases: booking and floor
management.

In the booking phase, the booker must negotiate start times with customers
to ensure that customers’ requirements are satisfied, while maintaining a flexible

7

table assignment that maximizes the chances of being able to seat the desired num-
ber of people. Typically, the booker will allocate specific tables to each booking
request, and these rarely change; when a request cannot be accommodated on the
current booking sheet, either the customer must be persuaded to accept another
time, or the request must be declined. It is possible, however, that a reallocation
of diners to tables would allow the new request to be accepted. In some cases, in
order to maintain a balanced plan, a restaurant will decline a booking, or suggest
a different time, even if a table is available. In addition, the booker must estimate
the expected duration of the meal, based on the characteristics of the booking
(including time, day of the week, and party size).

In floor management, the objectives are different. The evening starts with a
partially completed booking sheet. The customers have been given definite times,
and the aim is now to seat the customers with minimum delay, to modify the seat-
ing plan when changes happen, and to accept or decline “walk-ins” - customers
arriving at the restaurant without a booking. The main challenge is that individ-
ual customers are unpredictable - they may arrive late, they may not arrive at all,
they may take longer or shorter than expected, they may change the size of their
party, and they may arrive believing a booking has been made when none has been
recorded. The floor manager must make instant decisions, balancing current cus-
tomer satisfaction with expectations for the rest of the evening. In either phase,
decisions have to be taken in real time. As a general guide, we can expect a man-
ager to take an average of 10 to 20 seconds to decide on where to allocate a new
booking, or on how to reallocate a seating plan after a change.

2.2.1 Table capacity and combinability

Typically, restaurants have sets of tables of different capacities. Dinners must take
place on tables of suitable capacity, e.g. a party of four can only be accommodated
into a table of capacity at least four. Some of the table capacities may depend on
the state of adjacent tables: for example, two adjacent tables may not be fully
occupied at the same time if there is not enough space to fit all the chairs. Some
tables may be combinable with others, e.g. in case there is a large party, or if there
are too many parties of size 6 to seat on 6-seater tables. There may be different

8

possible layouts (or restaurant configurations) a restaurant can assume, depending
on how tables are combined. The capacity of a combined group of tables may not
be equal to the capacity of the single tables, e.g. joining two tables for four may
not be able to accommodate a group of 8 people. Consequently, the capacity of
the restaurant may change according to the layout being used.

The number of configurable layouts can be regarded as a degree of flexibility
of the restaurant. More possible layouts means more possibilities to accommodate
parties. For example, if NL is the number of possible layouts, we can see this as
though the restaurant manager can decide how to allocate his customers by picking
the most suitable restaurant from NL different possibilities. In terms of reasoning
(for the manager) or computation (for a computerized allocation system), this
number is also a measure of complexity. For a given set of bookings each layout
may allow a number of possible ways to allocate the set. Then, if we have to
work out the best allocation, we expect it will be approximatively NL times harder
than considering a single restaurant with no table configuration. Of course, this
is the complexity relative to the worst and ideal case, i.e. when we want to find
the optimal solution and we assume we know in advance the number, nature, and
behavior of all present and future bookings. In the reality, the problem has a
high level of uncertainty, e.g. we can only estimate how long a dinner is going
to last or which booking requests will arrive next, and the manager uses heuristic
approximations to define and allocate the dinner slots.

A restaurant with combinable tables allows multiple joining and separation of
tables during the same evening session. For example, a group of combinable ta-
bles T1, T2, and T3 may be able to accommodate three parties of two, followed
by a party of 5, followed by two parties, one of 3 and one of 2. This means that,
if we take a number of pictures on different instants over the final schedule of a
standard evening we can end up with a collection of several different layouts. The
complexity coming from considering dynamic layouts is therefore higher. For in-
stance, we have to reason not only about the possible restaurant configurations, but
also about the sequence of restaurant configurations to operate over time. Again,
in the reality table management is realized by using cheaper heuristics. Further,
for the floor phase, restaurants may aim to maintain a stable seating plan, i.e. to
limit the number of reconfigurations. In fact, if the configuration of tables gets

9

frequently modified the restaurant may become too chaotic, and this can annoy
both the staff and especially the customers.

Extending physical constraints with business rules

Table, configuration, and layout capacities represent physical constraints and there-
fore cannot be violated. Examples of such constraints are: (i) a table for two can-
not accommodate four; (ii) the restaurant cannot serve more than two parties of
10 people at the same time because there are only two suitable tables (or groups
of combinable tables) which can serve 10 people; and (iii) the number of peo-
ple eating at the same time cannot exceed the restaurant capacity, considering the
highest capacity layout. However, by simply satisfying these physical constraints
table management may lead to very poor allocations and profit. For example, re-
serving many tables for six for parties of two people is feasible but poor (unless it
is Valentine’s Day). Similarly, large unusable time slots between two consecutive
dinners on the same table must be avoided. For example, a booking for a dinner
expected to last until 8:30 p.m. should not be allocated to a table already reserved
for a dinner starting at 9:15 p.m. as the 45 minutes in between the two dinner slots
would not be sufficient for accommodating any extra dinner.

In order to guarantee an acceptable level of turnover, restaurants must aim to
maximize the use of their resources (tables) over time. They do this by applying
business rules, e.g. limiting the number of twos in oversized tables, or minimizing
the time between meals.

2.2.2 Sources of uncertainty

Table management is an online and dynamic problem where partial solutions have
to be generated over time and before the complete problem is known. Specifically,
the restaurant must manage reservations as they arrive, and manage unexpected
events in real-time. There is uncertainty in how the problem develops over time.
Table 2.1 reports the main sources of uncertainty, concerning customer behavior
and restaurant performance.

10

Table 2.1: Main sources of uncertainty.

Source Description
Customer behavior Table demand (future requests by number, size, and time)

Actual arrival time and dinner length
Cancellations and no-shows (cancellations without notice)
Walk-ins (customers arriving without a booking)
Unexpected bookings
Changes in booking time and/or size

Restaurant performance Kitchen and staff efficiency to provide food on time

Table demand

The lack of knowledge about future table demand, i.e. about the distribution of
future requests by number, size, and booking time, makes it difficult for the restau-
rant to build up a seating plan that maximizes the table usage. For example, should
a party of two be offered the last four-seater table? The answer depends on the
expectation we have on the arrival of parties of size four, but we can never be sure
that any party of four will actually arrive.

Arrival and dinner length

Customers rarely arrive at the precise booking time, and the exact length of their
stay is also unpredictable. Late arrivals or dinners lasting longer than expected
may easily cause delays for future dinners. The restaurant has to preallocate a
dinner slot to each customer, but how large should each slot be in order to make
sure dinner durations are neither over nor under estimated - i.e. tables are being
well utilized, and consecutive dinners allocated on same tables are not going to
overlap and produce delays? This is really a gamble between the chance to im-
prove the table usage and the risk of increasing the waiting time of parties that
cannot be seated on time. Restaurants use estimates of the expected duration of a
meal based on the characteristics of the booking (including time, day of the week,
and party size). For example, a dinner at 9:00 p.m. is expected to last longer than
one at 4:00 p.m., people typically stay longer on Fridays and Saturdays rather than
on Mondays, and the bigger the party the longer (usually) the stay.

11

Cancellations and no-shows

Every night, in many restaurants, some parties cancel or simply do not turn up.
These changes can potentially degrade the profit of an evening session, if the freed
dinner slots remain unsold. As a contingency, some restaurants try to maintain a
list of reserves, i.e. customers whose requests have been initially rejected but that
are willing to be contacted in case a table should become available. Another way
to prevent tables from remaining unsold is represented by overbooking, but this is
quite risky, and can be undertaken only by experienced staff.

Walk-ins

Even in those nights when a restaurant is initially fully booked, there may be some
cancellations, some parties may arrive and get seated earlier, others may leave
before the expected time, and thus some tables may become free. These tables
can be sold to walk-ins, i.e. customers entering the restaurant with no reservation
and asking for immediate availability. There can usually be many of these parties,
and their arrival is again unpredictable.

Unexpected bookings

Sometimes it happens that a party arrives believing a booking has been made, but
the name does not appear in the booking sheet. Whether the booking has been
erroneously placed on the wrong day, or has not been made at all, when the party
turns up the manager may have to accept the blame for the mistake and seat the
party. The accommodation of the unexpected party may not be possible without
delaying future parties - especially if this happens at 8 o’clock on a Saturday night,
when a restaurant can be packed and there can be already people with reservation
waiting at the entrance.

Booking time and/or size

The booking time or the size of a reservation may change from the initial booking
request. Note that a change in booking time can be infeasible if the restaurant
is fully booked for the new time, as can be an increase in size if there are no

12

larger tables available. If an infeasible request happens before the dinner session
starts, e.g. the customer phones up giving notice of the new booking details, the
restaurant can reject it and therefore the current seating plan can be maintained.
Disruptions and delays may become necessary instead when such changes happen
in dinner time, e.g. if there is a party of 8 with a reservation for 5 at the door, but
all the tables that can accommodate 8 have already been reserved.

Kitchen and staff efficiency

Kitchen and staff have a limited and uncertain power of service. Roughly, assum-
ing there is no shortage of staff, a restaurant has the potential to serve a certain
(limited) number of parties at the same time - this also depends on the size of the
parties, and on the amount and the type of food that has been ordered. Thus, if
for example a restaurant can simultaneously serve at most 8 meals, the tendency
would be to limit the number of reservations for the same booking time to 8. How-
ever, if it happens that one chef calls-in sick, or that customers order a lot of food,
the kitchen may no longer be able to provide food on time. In this case, customers
have to wait more for the food to be ready, their dinner duration gets stretched,
and therefore some following dinners may get delayed.

2.2.3 The sequential decision problem

Restaurant table management is a sequential decision problem: uncertain events
occur in sequence, and for each event an action has to be taken (Figure 2.1).

Figure 2.1: Restaurant table management: the sequential decision problem.

Table 2.2 summarizes the possible events during table management, in booking or
in the floor phase, and describes the possible decisions for each event type.

13

Table 2.2: A description of the main events that can occur in restaurant table man-
agement. For each event, we report at which stage the event can occur (booking
phase = B, floor phase = F), and the corresponding possible decisions.

Possible Event Stage Possible Decisions
new booking request B if there is a suitable table available in the

F current table allocation then accept;
otherwise suggest alternative times / reject

booking change B if the change can be accommodated in the
F current table allocation then accept;

otherwise suggest alternative times / reject
booking cancellation B remove the booking from the current table

F allocation
walk-in F if there is a suitable table available in the

current table allocation then accept;
otherwise suggest alternative times / reject

no-show F if a booking does not arrive after 30 min
then remove it from the current table
allocation

on-time/late arrival F accommodate the party at the earliest
available time

early arrival F accommodate the party at the earliest
available time (even earlier than the
booking time if this does not increase
delays for other bookings)

dinner shorter than expected F no decision is necessary, though the slot
of time that has been gained can now be
used for future allocations

dinner longer than expected F if another dinner was expected to start in
the same table (immediately after) then
reallocate the second dinner to another
table (if possible); otherwise delay it

party turning up with fewer F try to reallocate the party to a table of
people than the table size more suitable capacity; otherwise seat
that was booked the party at the table originally assigned
party turning up with more F if the preassigned table is no longer of
people than the table size suitable capacity then accommodate the
that was booked party to a suitable table as soon as one

becomes available
party that arrives believing a F accommodate the party at the earliest
booking has been made when available time
none has been recorded

14

2.2.4 Quality measures

In restaurant table management, intermediate decisions and partial schedules have
to be generated over time aiming to maximize the quality of the final solution, i.e.
the results at the end of each evening session. The quality of results is some bal-
ance between restaurant income, customer satisfaction, and working conditions.
In this section we discuss the main criteria for quality evaluation, considering
the restaurant perspective but also the customer perspective. In fact, the manager
must make sure customers are also satisfied - the restaurant cannot be happy if the
profit of one night was excellent, but no customer is going to come back because
the service was disappointing.

The following criteria can be used to give explanation to questions on final
solutions, e.g. “how good was last night?”, but also to questions on intermedi-
ate solutions, e.g. “given the current state at 6 p.m., is the current seating plan
expected to favor both customer satisfaction and a good final turnover?”

Quality from the restaurant perspective

From the restaurant perspective, the quality of a schedule (or of a dinner session)
can be represented as a function of the number of people the restaurant served over
the session. This number is generally called covers. The quality grows with the
number of covers, but not indefinitely. In fact, more covers means that the work
load on the restaurant resources (i.e. tables, kitchen, and staff) increases, however
resources have a limited capacity. Further, the restaurant may have gained extra
covers (and profit) by packing parties into small tables, or by rushing diners to
finish their meal to free the table for the next customer, but this decreases customer
satisfaction and therefore cannot be done indefinitely. Figure 2.2 represents a
general profile of quality against covers, assuming, for example, a restaurant with
an optimal occupancy (or target) of 200 covers.

Restaurants can also estimate the quality of a schedule with respect to the
closing time. The closing time should not be too early, otherwise it would mean
that it has been a very quiet night, and possibly not too late, to avoid paying extra
hours to the staff. For example, it may be better closing at 11:45 p.m. having
served 170 customers than closing at 00:15 a.m. serving 180.

15

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

S
co

re

Number of people accommodated [covers]

Quality profile
Target score

Figure 2.2: General profile of quality against number of covers, assuming an op-
timal occupancy of 200 covers.

Quality must also be a function of profit. Obviously, considering the short
term target of one night, the quality must increase proportionally with the profit.
However, in some cases a restaurant may prefer to degrade the profit of the night
in order to satisfy an important customer. For example, they may reserve extra-
spacious tables to VIP parties. Similarly, a restaurant may reserve a table to a
regular customer even if the party has not yet confirmed his arrival - with the risk
that the table may remain unsold. Of course, VIP and regular customers are very
important, and a loss in profit for a night may be worthwhile in order to ensure a
higher profit for the long term.

Quality from the customer perspective

A first index of quality for the customer is characterized by the waiting time.
Restaurants should aim to seat parties as soon as possible after the arrival time,
or at least within 15 minutes from the booking time. A delay of half an hour
becomes very annoying, and longer delays can be unacceptable - the customer

16

is likely to go away, and perhaps never come back. Figure 2.3 shows a general
profile of quality against waiting time, where we give a score from 0 (completely
unacceptable) to 100 (completely acceptable) to the possible waiting times.

 0

 20

 40

 60

 80

 100

-30 -15 0 15 30 45 60

S
co

re

Waiting time (seating time - booking time) [minutes]

Quality profile
Target score

Figure 2.3: General profile of quality against waiting time.

A second index of quality is service efficiency, represented by the time a party
have to wait for the food (e.g. first course) to be ready and delivered. For example,
the restaurant should aim to allow between 5 to 15 minutes to serve the first course,
less than that and the customer may feel pressured, more than that and he may get
annoyed.

A third index of quality is represented by table preference. Customers like to
dine in comfortable tables, neither too tight nor too large. For example, parties
of four usually prefer to seat into tables of capacity in the range 4 to 6, even
though larger tables can also be used. Occasionally, e.g. as a last resort when
the restaurant has been overbooked, four people may be accommodated in a table
that normally serve 3, but this becomes very uncomfortable. Restaurants may
have to satisfy specific preferences, especially if they concern regular or important
customers, e.g. reserve a more comfortable table to the bank manager.

17

2.3 Case study: the Eco restaurant

Eco [32] is a popular medium-size restaurant in Douglas, Cork City, with a high
turnover seven days a week. It was a pioneer in computer and internet solutions,
first offering email booking in 2000. Figure 2.4 shows the restaurant table map.

Figure 2.4: Table map of the restaurant Eco.

The restaurant has 23 tables, ranging in size from 2 to 8. Some of the table
capacities depend on the state of other tables: for example, tables 2 and 15 can
both seat 6, but when one is occupied by 5 or 6 diners, then the other can seat at
most 4. The tables can also be reconfigured: for example, the 2-seater tables 21
and 22 can be joined to accommodate 3 to 5 diners. The maximum party size that
can be seated at a conjoined table is 30. There are 386 different possible restaurant
configurations, and thus the restaurant capacity ranges from 83 to 96. An evening
session in the restaurant begins at 4 p.m., and the last party should be seated by
10:30 p.m. As a guide, the restaurant aims to have between 180 and 210 covers
(individual diners) each evening - fewer than that, and the tables are not being
well utilized; more than that, and the kitchen will be stretched to provide the food
on time.

18

Table 2.3 displays the capacity of each table in the Eco restaurant, and reports
those cases where the capacity depends on the state of other tables. Note that, as
named in Eco, table WT (window table) is the one located in the window box (see
Figure 2.4). Table 2.4 shows the 16 possible table configurations in Eco, along
with the range of capacity each one is used for.

Table 2.3: Single capacity of the 23 tables in Eco.

Tables Capacity Particular case capacity
T1 6 max is 4 if T14 seats 5 or 6
T2 6 max is 4 if T15 seats 5 or 6
T3 3 -
T4 2 -
T5 2 -
T6 6 -
T7 2 -
T8 2 -
T9 4 -

T10 4 -
T11 5 -
T12 2 -
T14 6 max is 4 if T1 seats 5 or 6
T15 6 max is 4 if T2 seats 5 or 6
T16 7 -
T17 4 -
T18 2 -
T19 2 -
T20 2 -
T21 2 -
T22 2 -
T23 2 -
WT 8 -

There are different possible layouts (or restaurant configurations) the restau-
rant can assume depending on which (if any) of the 16 table configurations are
used. Note that, in Table 2.4 some tables appear in more than one of the 16 groups,
therefore the maximum number of simultaneous table configurations must be less
than 16. For instance, there can be layouts with no configuration, i.e. using all the
23 tables as single tables, and with one or more configurations, up to 6 different

19

Table 2.4: Capacity of the 16 table configurations in Eco.

Possible configurations Capacity range
T1 + T14 7 to 12
T5 + T6 7 to 9
T14 + T15 8 to 11
T14 + T15 + T16 12 to 16
T14 + T15 + T16 + T17 + T18 17 to 23
T14 + T15 + T16 + T17 + T18 + T19 + T20 24 to 30
T15 + T16 8 to 11
T17 + T18 5 to 7
T17 + T18 + T19 8 to 11
T17 + T18 + T19 + T20 12 to 16
T18 + T19 3 to 4
T18 + T19 + T20 5 to 8
T19 + T20 3 to 4
T21 + T22 3 to 5
T21 + T22 + T23 6 to 10
T22 + T23 3 to 5

from the set of 16. An example of layout with 6 configurations at the same time
can be obtained by joining table 1 and 14, table 15 and 16, table 17 and 18, table
19 and 20, table 21 and 22, and table 5 and 6. Table 2.5 displays the number of
possible layouts by increasing number of table configurations operating simulta-
neously. We can see that the restaurant allows for a total of 386 different layouts.
Moreover, depending on the layout the overall capacity of the restaurant ranges
from 83, when all tables are utilized singularly, to 96, obtained by joining tables
1 and 14, tables 17, 18, 19, and 20, tables 21, 22, and 23, and tables 5 and 6.

In order to guarantee an acceptable level of turnover, the Eco restaurant applies
the business rules reported in Table 2.6. For instance (rule a), the restaurant should
aim not to waste any table for four or more by allocating it with any party of two,
especially if bigger parties are likely to arrive. Further (rule b), large unusable
time slots between two consecutive dinners on the same table must be avoided.
8 o’clock bookings are also regarded as poor (rule c). In fact, as the standard
duration for a dinner at 8 o’clock is at least two hours, and because very few

20

Table 2.5: Possible restaurant layouts in Eco.

Table configurations Possible layouts
0 (all tables are single) 1

1 16
2 78
3 144
4 119
5 25
6 3

7+ 0

tables are usually sold after 10 p.m., 8 o’clock bookings are likely to prevent
tables from serving any more parties later on. These bookings are very rarely
accepted, and often a different time is arranged (e.g. 7:30 or 8:30) in order to
preserve the potential number of seatings. The restaurant aims to achieve three
dinners per table at the end of an evening session (rule d). Note that this target
becomes easier to achieve if we make sure no table has large idle times and if we
do not accept any 8 o’clock bookings. As a final point (rule e), the restaurant very
rarely sells any table to any party of a single person, especially when the restaurant
is or is expected to be busy.

Table 2.6: Main business rules in Eco.

Rules description
a) no or very few parties of two into 4+ seater tables
b) no large unusable time slots between two consecutive dinners
c) none or very few bookings at 8 o’clock
d) three seatings per table
e) no or very few parties of one person

The restaurant deals with special requests and table preferences, and there are
priorities depending on who is making a requests. Table 2.7 summarizes the main
examples.

21

Table 2.7: Special requests and table preferences in Eco.

Case Description
request from VIP accepted even if there are no tables available

(some parties will have to be delayed),
and accommodated into comfortable tables
(e.g. using a 4-seater even if it is for a couple)

table preference any party can book a specific table,
if this allows to maintain a good seating plan

special tables preference preferences also concern special tables
(e.g. tables 1, 2, and 6, which are booths)

restaurant sides preference there is an old side (more quiet),
and a new side (more noisy)

window table preference more private, but near the door
(therefore can be cold)

buggies or wheel chairs require tables of extra size
families with kids may fit into smaller tables

2.3.1 An example of booking and floor management

Both booking and floor management act in accordance to the quality criteria in-
troduced in Section 2.2.3, i.e. reservation and unexpected events are processed
aiming to maintain a seating plan that can possibly favor a good final score on all
covers, closing time, profit, waiting time, service efficiency, and table preference.
In this section we discuss the figures of one example regarding one dinner session
at the Eco restaurant. This will give more evidence about the way bookings and
uncertain events are handled in the real case. The data concerns one Monday night
in early 2006.

Booking sheet and seating plan

Shortly before the opening time (which is scheduled at 4 p.m.), the sheet with
the bookings for the night passes from the reservation office to the restaurant re-
ception. Figure 2.5 reproduces the booking sheet prepared by the booker. Each
row is a table over time, and there are four groups of columns which identify the
seating position of each party on a table. The name of the parties are written into
an appropriate seating slot, along with the booking time and the size.

22

Each party is allocated by the booker into a table (or set of tables) of suitable
capacity. For example, party Forde booked a dinner for 10 people for 7 o’clock,
and has been allocated into the table configuration composed by table 1 and 14.
Further, the restaurant seating plan shows a dynamic layout over the night, e.g.
the group of tables 17, 18, and 19 are kept separate for their first seating and are
then joined to serve party O’Sullivan, which is expected for 7:30 p.m.

Only three bookings for two people are allocated into tables for four or more.
One of these bookings was a special case, i.e. Nicky and Jean requested a booth
(table 6) for their wedding anniversary. Dinner slots are allocated so that they do
not create any large unusable time slots. For example, party Derry (4:30 p.m.) is
allocated in the same table of party Hegarty (6:30 p.m.), and not with Owen (7:30
p.m.), as the expected dinner duration for Derry is 2:00 hours. Finally, there is
only one booking at 8 o’clock (Murphy), all tables have still the potential to serve
three seatings, and there are no bookings of size one.

From initial seating plan to final allocation

When the evening session starts, the booking sheet represents an initial allocation
plan. Figure 2.6 represents the final restaurant allocation, i.e. each party is posi-
tioned into the same table it was eventually seated at the restaurant. The parties
that maintained the original allocation are highlighted in gray.

Comparing final allocations to the initial plan

Many changes happened between the initial plan and the final allocation. For
comparison, Table 2.8 reports some statistics about the two sheets.

Table 2.8: Dinner session: end-to-end allocation statistic.

Covers Parties Covers/Parties
Initial plan 126 38 3.32
Cancellations 6 (5%) 3 (8%) 2.00
Final Allocation 159 50 3.18
Walk-ins 42 (26%) 15 (30%) 2.80
Allocations changed from initial plan 79 (63%) 27 (71%) 2.93

23

Figure 2.5: Booking sheet representing the initial seating plan.

Figure 2.6: Booking sheet representing the final restaurant allocation. The allo-
cations that have not changed from the initial seating plan appear highlighted in
grey.

24

The initial booking sheet counted 38 parties, for a total of 126 covers. There
were 3 cancellations before or during the night, for a total of 6 people. In the final
restaurant allocation there were 50 parties, corresponding to 159 people. During
the night 15 walk-in parties were allocated, for a total of 42 people, which corre-
sponds to 26% of the total number of covers. Note that 27 out of 38 parties (i.e.
71%) got seated into a table different from the initial plan. This happened in order
to find space for walk-ins, to accommodate delays and other unexpected events,
and to maintain appropriate allocations of parties to table. The manager says that
the number of changes from the initial plan is particularly higher on Mondays,
Tuesdays, and Wednesdays, but it gets much lower on weekends. In fact, at the
weekend the restaurant is busier and the initial booking sheet is already almost
full, thus there is less flexibility for reallocations but also less necessity to make
space for walk-ins. Further, on weekends the restaurant gets under pressure, there-
fore reducing the changes makes the allocation job easier, helps keep everything
under control, and prevents both customers and staff from getting annoyed and
stressed by chaotic reallocations and continuous reconfigurations of tables. Fi-
nally, note how the mean number of covers per party is slightly decreased at the
end of the night. In fact, most of the parties walking in were twos.

2.4 Chapter summary

In this chapter, we have described restaurant table management, viewing it as
a two phase problem of booking and floor management. We have introduced the
main physical constraints that characterize the restaurant environment, concerning
table capacity and combinability, and discussed how restaurants use business rules
to control the allocation process, to ensure an acceptable table usage. We then
described the sources of uncertainty, concerning table demand, customer behavior,
and restaurant efficiency. We discussed the principal measures for evaluating the
quality of final solutions, considering the perspective of both the restaurant and
the customer. We finally introduced a real restaurant, Eco, and an example of
booking and floor management, discussing some data and figures taken from a
real dinner session. In the next part of this thesis we are going to develop and test
our model of the problem, using the restaurant Eco as case study.

25

Chapter 3

Background

In this chapter, we start with an introduction to Constraint Satisfaction Problems

(CSPs), describing the fundamental concepts for representing and solving CSPs,
and reviewing the state of the art about Constraint Programming techniques. We
then introduce the scheduling problem, focusing on the subclass that we will use
to represent our restaurant application, i.e. scheduling jobs with fixed start and end
times. We conclude with a review of the relevant literature concerning restaurant
management.

3.1 Constraint Programming

Constraint Programming (CP) is a powerful AI problem solving technique whose
application domain has been growing considerably in the past decade. In par-
ticular, CP has been used with success to model many real world combinatorial
problems, like resource allocation, scheduling, routing, and configuration. A de-
tailed introduction to CP can be found in [33], while [81] surveys recent research.†

In general, modelling a problem involves two main issues:

(i) how do we represent the problem?

(ii) how do we solve the problem?

†Unless otherwise noted, the information presented in this section can be found in [33].

26

A constraint program represents the problem as a Constraint Satisfaction Prob-

lem (CSP), and then solves the CSP with a combination of constraint propagation
and search (typically backtracking search).

3.1.1 Basic CSP representation

In CP terms, representing a problem means selecting a set of decision variables,
each with a domain of values, and a set of constraints over these variables that
restricts the values that subsets of variables can take.

A CSP is then a triple 〈X,D,C〉 defined by:

X = {X1, X2, ..., Xn} , set of decision variables;

D = {D1, D2, ..., Dn} , corresponding domains of values;

C = {C1, C2, ..., Cm} , set of constraints.

Each constraintCi is defined by a scope (Si), i.e. an ordered subset of variables
〈Xi1, Xi2, .., Xik〉, and by a relationRi ⊆ D(Xi1)×D(Xi2)× ..×D(Xik), which
defines the allowed tuples of values for the scope. The number k ∈ {1, 2, .., n} is
called arity of the constraint. In particular, we have: unary constraints, involving
a single decision variable; binary constraints, involving two variables; and non-

binary constraints, involving n > 2 variables. Finally, binary CSPs are CSPs
where all constraints are binary, while non-binary CSPs are CSPs which are not
binary.

Constraints are naturally stated using equations, logical relations, or other
mathematical representations, which are implicit versions of the scope-relation

form introduced above. For example, given 3 variables, X1, X2, and X3, with
initial domains D1 = D2 = D3 = {3, 4, 5}, possible constraints are:

Cunary : X1 6= 4 ,

Cbinary : X1 < X2 ,

Cglobal : all-different(X1, X2, X3) .

27

The correspondent scopes and relations are expressed as follow:

Cunary : S = 〈X1〉, R = {3, 5} ;

Cbinary : S = 〈X1, X2〉, R = {(3, 4), (3, 5), (4, 5)} ;

Cglobal : S = 〈X1, X2, X3〉,
R = {(3, 4, 5), (3, 5, 4), (4, 3, 5), (4, 5, 3), (5, 3, 4), (5, 4, 3)} .

The all-different constraint affects X1, X2, and X3, and it belongs to the class
of global constraints. Global constraints are defined to act on a collection of vari-
ables. In terms of the problem described above, a global constraint is no different
from any other constraint. But in terms of constraint functions in a library they
are different. Normal constraints have a fixed arity, e.g. “≤” has an arity of 2. A
global constraint has no fixed arity - it can be applied to a collection of variables.

An assignment to X (or state) is an assignment of values to some or all of the
variables in X:

{X1 = v1, X2 = v2, .. , Xi = vi}, vk ∈ Dk, 1 ≤ k ≤ i, i ≤ n .

An assignment of i < n variables is called a partial assignment, while for i = n

variables we have a complete assignment.

An assignment (partial or complete) satisfies a constraint C if the tuple of
values in the assignment {v1, v2, .., vi} is allowed in the constraint relation RC .
Continuing the example above, a partial assignment {X1 = 5, X2 = 3} does
satisfy Cunary and Cglobal, as the relations of the two constraints contain, in the
order, {5} and {(5, 3, 4)}. For the same assignment, instead, constraint Cbinary is
not satisfied, as {5, 3} does not appear in its relation.

An assignment that satisfies all constraints is called a consistent (or legal)
assignment. A solution to a CSP is a complete and consistent assignment, i.e. an
assignment to all of the variables,

{X1 = v1, X2 = v2, .., Xn = vn}, vk ∈ Dk, 1 ≤ k ≤ n ,

that satisfies all the constraints.

28

CSP tightness, density, and size

Constraints (and CSPs) are classified in terms of tightness (t), depending on the
number of tuples they disallow. For example, given two variablesX1 andX2, both
with initial domains {1, ..., 10}, we can observe how the following four constraints
have considerably different (and increasing) tightness:

C1 : ¬(X1 = 2 ∨X2 = 7) ,

C2 : X1 6= X2 ,

C3 : X1 < X2 ,

C4 : (X1 = 1 ∧X2 = 3) ∨ (X1 = 8 ∧X2 = 9) .

A CSP (X,D,C) is conceptually represented as a constraint graph G(V,E),
where each variable Xi ∈ X corresponds to a node Vi ∈ V , and for every set
of variables connected by a constraint Cj ∈ C there is a corresponding hyper-
edge Ej ∈ E. The number of hyper-edges connected to each node is called the
degree of the node (or variable). CSPs are classified also in terms of density (d),
depending on the percentage of edges compared to the total possible.

The size of a CSP is the size of the search space, i.e. D1×D2× ...×Dn, or all
possible combinations of values to the set of variables. Consider, for simplicity, a
CSP composed of a set of n variables, each with an initial domain of m values. In
this case the pair (n,m) is sufficient to define the problem size - for the example
above, the 2 variables with domain size 10 would generate a search space of size
100. The average difficulty of solving randomly generated CSPs has been related
to the quadruple 〈n,m, d, t〉 (discussed in Section 3.1.4).

3.1.2 Constraint propagation

In constraint propagation, the domains of decision variables are reduced by re-
moving values which cannot appear in any solution. For example, if we have the
constraintX < Y , and X and Y ’s domains are {2, 3, 4, 5} and {1, 2, 3, 4} respec-
tively, then the values 4 and 5 can be removed from X’s domain, and 1 and 2
from Y ’s domain, since none of those values could possibly satisfy the constraint.
Reducing the domains reduces the size of the search tree that has to be explored.

29

A large part of the success of constraint programming tools is due to efficient do-
main filtering algorithms for specialized constraints, e.g. the global all-different

constraint [80]. Propagation on global constraints is particularly effective - a sin-
gle global constraint connects together many nodes of the constraint graph, so
many of the variables get directly affected.

Local consistency

Constraints are propagated using specific algorithms. Depending on the algorithm
adopted, propagation makes the problem achieve a certain level of consistency.
Typically, considering a constraint graph representation of CSPs, only domains
concerning nodes within a limited path (e.g. one edge) from each other are main-
tained consistent. For this reason we talk about local consistency. A lot of work
has been done to define and compare different types of local consistency [31], for
binary and (partially) for non-binary CSPs.

Arc-consistency (AC) [14] concerns binary constraints. A binary constraint
C(X1, X2) is AC if and only if for every value forX1 there is a consistent value (or
support) for X2 and vice versa. A problem is AC if and only if every constraint is
AC. For example, if we consider the domainsD1 = {1, .., 6}, and D2 = {2, .., 4},
then the constraint C(X1, X2): X1 < X2 is not arc consistent. In fact, for X1

equal to 4, 5, or 6, there is no value for X2 satisfying the constraint. Constraint
propagation would make the problem AC by reducing the domain of X1 to D1 =

{1, .., 3}.
(i, j)-consistency [39] is a more general type of consistency for binary CSPs.

A problem is (i, j)-consistent if and only if any consistent instantiation of i vari-
ables can be consistently extended to any other j variables. Note that a problem
is AC if and only if it is (1, 1)-consistent. Further, a problem is strongly (i, j)-
consistent if and only if it is (k, j)-consistent for any k = 1..i.

Path-consistency (PC) [69] is a sub-class of (i, j)-consistency. A problem
is PC if and only if it is (2, 1)-consistent. Further, a problem is strongly-path-

consistent (strongly-PC) if and only if it is AC and PC. A problem is path-inverse-

consistent (PIC) if and only if it is (1, 2)-consistent.

Generalized-arc-consistency (GAC) [70] generalizes the concept of AC to

30

non-binary CSPs. A constraint is GAC if, for every value for each variable there
exists a tuple of values for all the other variables in the scope of the constraint that
satisfies the constraint. A problem is GAC if all its constraints are GAC.

In [31] a concept of consistency tightness was defined. A-consistency is tighter
than B-consistency (written “A ≥ B”) if and only if any A-consistent problem
is also B-consistent. Also, A > B ⇐⇒ (A ≥ B) ∧ ¬(B ≥ A). The authors
showed that some types of consistency are not comparable, but they proved the
following relations: strongly-PC > PIC > GAC.

One of the most popular local consistency algorithms is AC-3 [65] [66], which
transforms a CSP into its arc-consistent equivalent in O(ed3), with e number of
constraints, and d maximum domain size. A more recent version is AC-2001
[17], which extends AC-3 with auxiliary data structures used to record consistency
checks, and achieves a time complexity bound of O(ed2). Many other algorithms
have been introduced over the past years, though an extensive survey is beyond
the scope of this dissertation.

3.1.3 Search

One way to search for a solution is to exhaustively explore the search space, trying
all possible combinations of values. The exhaustive approach is however expen-
sive to perform, and for problems of larger size the approach becomes unrealistic.
The standard methods for solving a CSP (X,D,C) are based on (chronological)
backtracking search interleaved with constraint propagation.

Backtracking search and constraint propagation

The solution process proceeds by selecting a variable then choosing a value to
assign to it. After each assignment, it propagates the constraints by removing in-
consistent values from the domains of future (or unassigned) variables. If none of
the future domains are empty then search continues by selecting another variable;
otherwise it backtracks, selects another value from the domain of the current vari-
able and continues; if no other values are possible, it backtracks to the previous
variable. The solving procedure returns as soon as either the first feasible solution
is found, or the search has finished finding no feasible solution.

31

Constraint propagation is very useful to reduce the search effort. However,
the balance between level of consistency maintained during search and amount
of search involved is very important - tighter levels of consistency can eliminate
more inconsistent solutions, but are generally more expensive to maintain. Two
popular algorithms for maintaining local consistency in binary CSPs are MAC
(maintaining arc-consistency) and FC (forward checking). MAC, introduced in
[84], combines backtracking search and AC enforcement. FC is a restricted ver-
sion of MAC. Specifically, FC enforces AC only over those constraints involving
the current variable and one future (or unassigned) variable. Versions of forward
checking for non-binary CSPs are discussed in [15].

In chronological backtracking (CBT), variables are instantiated in chronolog-
ical order (say X1, then X2, .., then Xk, according to the ordering heuristic), and
when backtracking is required variables are reconsidered one by one in the re-
verse order (i.e. Xk, thenXk−1, .., thenX1). A different version of backtracking is
called back-jumping (BJ). This performs backtracking still in the (reverse) original
order, but by steps of more variables. Specifically, BJ jumps back from Xk to the
first variableXh<k which can lead to a solution - if some reasoning has proven that
any re-instantiation of the intermediate variables (Xk−1, Xk−2, .., Xh+1) would
lead to failure. BJ is then a form of backward checking. A particular version of
BJ is conflict-directed BJ (CBJ), where the back-jumps are established by measur-
ing conflicts among variables. CBJ and hybrid versions of FC-CBJ are discussed
in [77]. For hard problems it has been shown that MAC is better than FC (or
CBJ-FC) [16].

Variable and value ordering heuristics

Characterizing the solving method requires selecting the type of constraint prop-
agation to be used after each tentative value to variable assignment, but also the
variable and value ordering heuristics - the order in which variables and values
are assigned during search. The variable and value ordering heuristics define the
structure of the search tree. Different ordering heuristics can produce trees of
significantly different sizes [59], and for which the same type of choice points

32

(vari = valj) can appear shallower or deeper in the search paths.

As the subtree below each choice point is reduced by constraint propagation,
and as the amount of pruning can be significantly different for different choice
points, the selection of the ordering heuristics can then have a significant impact
on the effort required to explore the search tree for a solution. For example, if
the search makes a bad choice (or mistake) at the top of the search tree, it can
waste a lot of effort exploring sub-trees that have no solution. In [59], the behav-
ior of standard variable ordering heuristics over insoluble sub-trees is compared
to optimal refutations, with the advice that some knowledge on how refutations
distribute may be relevant to improve the search.

Variable ordering heuristics and value ordering heuristics can be static, i.e.
orderings are fixed before the search starts, and typically they are chosen to reflect
some natural structure of the problem, or dynamic, i.e. the next pair (variable,
value) is decided online during search, so the choice depends also on the current
state of the search.

The standard variable ordering heuristic is dynamic, and is based on the so-
called fail first principle [86] [87] [6] [8], stating that we should choose the vari-
able with the tightest constraints. The aim is to assign values to variables that are
most likely to cause failure as early as possible, rather than later in the search.
This is normally implemented by choosing the variable with the smallest remain-
ing domain [53], or the smallest ratio of domain size to the number of constraints
acting on the variable, i.e. to the variable’s degree of connectivity, representing
the CSP as a graph, with variables as nodes and constraints as edges [16]. Other
dynamic variable ordering heuristics are Brelaz (Bz) and Kappa (K) (both exam-
ined in [45]). Bz [23] chooses the variable with the smallest domain size and tie
breaks on the variable with greatest future degree, while K is based on the concept
of constrainedness [46], branching on the most constrained variable, which then
gives the least constrained subproblem.

A dynamic and adaptive variable ordering heuristics has also been considered
in [21]. The heuristic selects the next variable to be assigned picking the one
which has provoked the highest number of failures since the search started. The
heuristic resulted the best over several abstract and concrete problems.

Strategies aiming to succeed first have also been investigated, e.g. in [7] where

33

different variable ordering heuristics showed different search efforts, depending
on the level of promise.

An example of variable ordering specific for scheduling problems is based on
time-contention [4]. For example, consider a scheduling problem with a set of
tasks to be scheduled on a set of resources: the variables are the start times of the
activities, the values are the times to assign, and constraints forbid that pairs of
tasks overlapping in time share the same resource. The variable ordering based on
contention finds an activity that depends most on the most contended time.

Even the choice of a value ordering heuristic represents an important aspect
in setting up a good search algorithm. Among the most effective for many CSPs
is the look-ahead (or min-conflicts) value heuristic [41], which chooses the value
that rules out the fewest choices for the neighboring variables in the constraint
graph. The general idea for value ordering heuristics (e.g. min-conflicts), is to
select first the values which are most likely to be successful. However, in some
cases, e.g. when all values of each variable must be tried at some point, the fail-
first principle (e.g. max-conflicts) may be preferred [86].

Standard backtracking versus discrepancy based search

As noted above, chronological backtracking (CBT) is the standard way to explore
the search tree. When the subtree below the current assignment is infeasible,
the infeasibility may be due to an assignment that occurred earlier in the path
coming from the root. Then backtracking occurs, and the most recent assignment
of value to variable is retracted. Unfortunately, CBT will exhaustively explore the
entire subtree below the wrong assignment before retracting it. Figure 3.1 shows
a simple example, where the current assignment (Z = 0) is found inconsistent
with the previous assignments (X = 0) and (Y = 0). The real mistake was the
assignment (X = 0), but CBT will retract the value 0 fromX only after completing
the exploration of the entire subtree below (X = 0).

The computational (or search) waste can be considerable if the wrong assign-
ment is far higher in the search tree. If the ordering heuristic is expected to make
few mistakes, then this waste can be reduced by adopting a discrepancy based
search [5]. The convention is that the left direction in the search tree represents

34

0 1

0 01 1

0 01 1 0 01 1

Variables: X [0,1] �

Y [0,1] �

Z [0,1] �

Constraint: X × (1 - Z) > 0

Figure 3.1: Search tree with inconsistency found at the end of the first path ex-
plored using CBT.

the heuristic decision. Then, considering the exploration of a search tree from the
root node to a solution node, each time we take a right move we go against the
heuristic, and we have a discrepancy.

Different versions of discrepancy based search have been developed. Limited

discrepancy search (LDS) [54] explores the search paths by increasing limit of
discrepancy (d), i.e. starting with d = 0, then considering d ≤ 1, then d ≤ 2,
etc. LDS is redundant in the fact that the i-th iteration revisits search paths with
fewer discrepancies that have been visited in precedent iterations. Improved-LDS

(ILDS) [63] starts with d = 0, and then searches over paths with d = 1, then d = 2,
etc. This eliminates the redundancy of LDS. Depth-bounded discrepancy search

(DDS) [94] is based on the assumptions that mistakes are more likely near the top
of the search tree than further down. As a pre-iteration, DDS explores the heuristic
path (d = 0). Then, the first iteration explores paths on which discrepancies occur
within depth 0, the second iteration explores paths on which discrepancies occur
within depth 1, etc. CBT, LDS, ILDS, and DDS, are all complete search methods,
i.e. they eventually explore the entire search tree.

Figure 3.2 represents the same search tree of Figure 3.1. The tree has 8 leaves,
i.e. 8 potential solutions. The first line below the tree shows the number of dis-
crepancies occurring in each path root-leaf. The next lines below represent the
order leaves are visited, by CBT, ILDS, and DDS respectively. Back to the exam-
ple of Figure 3.1, note that possible valid solutions are leaf 5 and 7. Then, for the
problem represented in that figure, CBT would find a solution (leaf 5) at the fifth
path root-leaf explored, ILDS at the fourth path, and DDS at the second path.

35

1 2 3 5 4 6 7 8

d:

CBT:

ILDS:

DDS:

1 2 3 4 5 6 7 8

1 5 3 7 2 4 6 8

0 1 1 2 1 2 2 3

Figure 3.2: Search tree, discrepancy, and order of exploration using CBT, ILDS,
and DDS.

Randomized restarts search

For an instance of a CSP, a single run with a single ordering heuristic can get
trapped in the wrong area of the search tree, even if the heuristic is the best on
average. Further, if we choose a single randomized heuristic - where tie breaking
and value ordering are randomized - and resolve several times the same problem
instance, both very long runs and very short runs can occur more frequently than
expected [51]. This phenomenon is called heavy-tailed [27], and is characterized
by a high variance in search behavior of randomized ordering heuristics. In [51] it
is shown how the variance can be considerably reduced by using the randomized

restarts strategy (RR) - for a single ordering heuristic, if no result has been found
by a given (and short) time limit, the search is started again. Tie breaking and
value ordering are done randomly, and so each restart explores a different path.
RR works particularly well on certain problems, including quasi-group with holes.
Similarly, algorithm portfolios [48] is another randomized restarts method, that
searches by interleaving a set of randomized algorithms.

Iterative deepening search

Iterative deepening (ID) is a search technique for general search problems - in
Section 4.6 we will develop a search technique based on ID for Constraint Sat-
isfaction Problems. ID is not normally applied to CSPs, where all solutions are

36

at the same depth of the tree. But, in general search problems, solutions could
appear at any depths, some requiring a considerably deeper and more expensive
search than others. Using depth-first search, we may get stuck into a deep area
of the search tree where the most expensive solutions are, thus requiring a long
time before returning, or perhaps failing to solve, if we are not given enough time.
The idea is to search to depth one, and if this first search completes in less than
the amount of time allocated then search again to depth two, and if we still have
time then search to depth three, and so on, until the time runs out. This procedure
looks first for cheaper solutions. ID was introduced in the middle 1970s [64]. The
algorithm explores each branch of the search tree to a certain depth, and then in-
creases the depth limit and restarts the search from scratch, repeating this process
until either the first solution is found, i.e. the shallowest in the search tree, or the
search completes the exploration of the entire tree proving there is no solution.

3.1.4 CSP solubility and phase transition

As discussed previously in the chapter, CSPs are classified in terms of size (n×m),
tightness (t), and density (d). Consider, for simplicity, binary CSPs composed by
a set of n variables, each with an initial domain ofm values. The average difficulty
of solving a randomly generated problem - i.e. a binary CSP where randomly
chosen pairs of variables are connected with randomly generated constraints - can
be related to the quadruple 〈n,m, d, t〉.

For example, consider instances of a binary CSP defined by the quadruple
(n = n0, m = m0, d = d0, t), where the only variable is t. A value t=0 means
that no pair of values is disallowed by any of the binary constraints, so any combi-
nation of n values taken from the initial domains is a valid solution. As opposite,
when all constraints disallow all possible pairs of values we have the maximum
possible tightness t = tmax, i.e. all pairs of constrained variables have all pairs of
values disallowed, so there cannot be any valid solution left. Problems are easier
to solve near 0 and tmax, and they get harder as t gets away from the two extremes,
with a peak of complexity located somewhere in between. For small t, problems
are easier because constraints are too loose, so they are more likely to allow a so-
lution, while for t approaching tmax, problems are easier because constraints are

37

too tight, so they are more likely to allow no solution. In general, for t = 0 100%
of instances are satisfiable, and the percentage decreases as t increases from 0 to
tmax. The location of the solubility transition coincides (over t) with the location
of the complexity peak. The sharpness of the transition, the value of the peak, and
the location of transition and peak, depend on the other parameters, i.e. n, m, and
d. For example, for greater values of density the transition to infeasibility (along
with the hardness peak) happens earlier, as more constraints means less chances
for a tuple to represent a solution.

When there is a rapid change from all problems having a solution to no prob-
lem having a solution, this phenomenon is called phase transition [95]. Phase
transition has been seen in many abstract NP-complete problems such as 3-SAT,
quasi group completion, number partitioning, graph coloring, Latin square, and
also in some real problems like job shop scheduling, and sport scheduling.

3.1.5 Extending the representation to improve solving

As defined at the beginning of the chapter, modelling a CSP problem means (i)
choosing the representation, and (ii) choosing the solving method. A single prob-
lem can be modelled in many different ways, either in terms of representation or
in terms of the solving process. Representing and solving problems can be diffi-
cult to do effectively. In the previous sections we have seen how a lot of work has
been done in order to make the solving part more effective, the main issue being
to find the best balance of constraint propagation and search. CP requires skills
also in problem representation, and knowledge on how solving algorithms interact
with representations. In particular, the efficiency of search and constraint propa-
gation can be improved by extending the basic CSP representation with implied

constraints, dual modelling, and symmetry breaker constraints.

Implied constraints

The set of constraints in a basic CSP representation are explicitly stated by the
problem. Implied (or redundant) constraints [28] [88] are instead constraints that
can be derived from existing constraints. They do not forbid any solution allowed

38

by the basic CSP, so they can be added to the model to enforce a stronger propa-
gation during search.

Dual modelling

Often, a problem allows several different CSP representations, depending on which
are the decision variables, and on which are the possible values to be assigned.
For example, two possible (and dual) representations for a scheduling problem
are: (i) tasks are variables and resources are values; (ii) resources are variables
and values are sets of tasks to be assigned to them. Models based on different
CSP representations can have different performances, so a developer should study
and compare more versions before implementing the final solution. Further, two
representations can often be combined together to achieve better performances.
The operation of combination is called channelling [56].

Dual modelling has been studied in [56] over permutation and injection prob-
lems, i.e. problems where the number of variables is, respectively, equal to or
smaller than the number of values. Note that permutation problems are partic-
ularly straight forward to accept dual representations, in fact we only need to
exchange variables with values. For example, given three variables, {E, F,G},
with domains DE = DF = {H, I} and DG = {H, J}, assigning all different
values to the variables is a permutation problem. The primal CSP 〈Xp,Dp,Cp〉 is:
Xp = {E, F,G};Dp = {DE, DF , DG}; and Cp = {(E 6= F)∧ (E 6= G)∧ (F 6=
G)}. The dual CSP 〈Xd,Dd,Cd〉 is: Xd = {H, I, J}; Dd = {DH , DI, DJ}, with
DH = {E, F,G}, DI = {E, F}, DJ = {G}; and Cd = {(H 6= I) ∧ (H 6=
J) ∧ (I 6= J)}.

In [56], the authors compare models based on a primal, a dual, and a combined

representation. The latter contains both the primal and dual sets of variables, and
uses channelling constraints to link the two sets - to maintain consistency. They
show that the primal and the dual models are often outperformed by the combined
version. In the combined model, the constraints over either the primal or the
dual variables are redundant, i.e. they can be removed without changing the set
of solutions, however results showed that they are useful implied constraints to
improve constraint propagation.

39

Symmetry breaker constraints

A CSP can often allow more solutions that are equivalent, i.e. for the actual prob-
lem, choosing one rather than another makes no difference. A pair of equivalent
solutions (say S1 and S2) often exhibit some form of symmetry, i.e. S2 = f(S1),
where f is a 1-1 function such that S is a solution if and only if f(S) is a solu-
tion. Symmetries make the search space large and redundant, wasting consider-
able time during search to explore equivalent assignments. Search effort could be
drastically reduced if we could explore only one representative for each group of
symmetrical assignments.

Example - Given a CSP containing a pair of variables (X1, X2), assigning ei-
ther (X1 = v1, X2 = v2) or (X1 = v2, X2 = v1) can sometimes be equivalent. For
example, consider a problem of restaurant table allocation, where X1 and X2 are
two bookings for 7 o’clock for two parties of size 2, and v1 and v2 are two tables of
capacity 2. In general, symmetrical assignments can involve tuples of more vari-
ables (X1, X2, .., Xn). Given the assignment (X1 = v1, X2 = v2, .., Xn = vn),
there are a maximum of n! symmetries - we have the maximum when all permu-
tations of values 〈v1, v2, .., vn〉 over (X1, X2, .., Xn) are valid and equivalent. For
example we can have 10 bookings of size 2 at 7 o’clock (vars) and 10 suitable
tables (vals), which allows up to 10! symmetrical assignments.

Symmetry breaker constraints (SBCs) [78] are designed to prune the search
space so that, ideally, only one tuple (or partial assignment) from each set of
equivalent tuples is considered.

For example, when two variables have identical characteristics, it is pointless
to differentiate them ([83], page 37). It is better to model the variables group-
ing and managing them by type. Similarly ([83], page 151), when two or more
constrained variables with identical domains, subject to the same constraints, and
being position independent, can be ordered, SBCs can be added to allow only one
permutation of the ordering, thus greatly reducing the size of the search tree. For
the restaurant example above, with (n=10) identical bookings, a possible sym-
metry breaker would be Xi < Xj for i < j, which would forbid all equivalent
permutations but (X1 = v1, X2 = v2, .., Xn = vn) - with a considerable reduction
in search space, and saving in search effort.

40

Another variation is represented by SBC for the case where a set of variables
can take indistinguishable values [44]. For example, in scheduling for restaurant
tables, again representing dinners as variables and tables as values, two tables can
be identical (e.g. both of capacity two, and both cannot be joined with others),
therefore they represent indistinguishable values for any variable assignment.

3.1.6 Constraint optimization problems

CSPs are constraint satisfaction problems, i.e. they are solved by calculating and
returning the first solution which satisfies the problem’s constraints. Sometimes,
however, the same problem can have more possible solutions where some are bet-
ter than others, according to certain evaluation criteria. A Constraint Optimization

Problem (COP) is a CSP extended to calculate and return the best of the possible
solutions.

COPs(X,D,C, f) are defined as CSPs(X,D,C) extended with an objec-

tive function f , which maps every possible solution to a numerical value. If S
is the set of tuples representing the possible solutions, then f : S → numerical

value. A solution to a COP is then an assignment of values to all the variables
which satisfies all the constraints, and with the best (max or min) objective value.

Solving COPs using branch and bound

One way to solve COPs is to search, going through all possible solutions, and
keeping record of the one with the best objective value. An exhaustive search is
often too expensive, with a considerable amount of time wasted exploring solu-
tions which do not improve the current best one.

Branch and bound (B&B) is a more efficient approach. B&B constrains the
objective value for the next solution to improve over the current best solution.
The objective function can be expressed as an auxiliary constrained variable (say
f = XObj). If the problem is found with no solutions the algorithm returns. Other-
wise, any solution found is used as lower bound for the objective of the next solu-
tion. The algorithm proceeds by incrementally assigning values to variables, and
after each assignment the lower bound propagates like all the other constraints. If
an extension to the current partial assignment reduces the upper bound of XObj

41

below the current best value, then search can backtrack. The constraint on XObj

prunes all the subtrees descending from partial assignments that cannot produce
any improvement, thus saving a considerable amount of search effort.

Anytime algorithms

In the real world, problems usually require solutions to be available within limited
time, e.g. to meet a deadline. The time to find the final (and optimal) solution of
an optimization problem could then be unacceptable. Anytime algorithms [93] are
algorithms that can return solutions of increasing quality at any time over time,
eventually reaching the optimal. Algorithms based on B&B are straightforward
to provide anytime solutions - in the procedure described above, the current best
solution is always available. Good anytime algorithms should however exhibit a
proper anytime profile, i.e. an increase in quality sharper for earlier times, less
sharp as time goes by, and asymptotically null. If the improvement is poor even
for the early times, or if the increase levels off too quickly, then the benefit of the
anytime solutions may not be worthwhile.

3.1.7 Local search

Many real life applications concern hard and large problems whose search space
can be too big to allow a complete search in practical time. As we saw above,
one way to tackle hard (optimization) problems is by using anytime algorithms
[93], which return solutions of increasing quality over time. However, if these
algorithm are still based on a complete and systematic search, the complexity of
the problem may not allow a proper anytime profile.

Local search (LS) represents a different approach for solving computationally
hard problems, either of satisfaction or of optimization. Standard LS starts by
generating a candidate solution, based on heuristics or randomly, which can be
infeasible, sub-optimal, or incomplete. The method then iteratively applies minor
changes to the initial solution, aiming to improve it, i.e. to achieve a feasible,
optimal, or complete solution.

There are different LS approaches, where the difference is characterized by the
criterion by which changes are applied, by the type of improvements sought, and

42

by the type of reaction performed when search gets stuck in a local unsatisfactory
point. Among the most popular algorithms based on LS we mention hill-climbing
(HC), genetic algorithms (GA), tabu search (TS), and simulated annealing (SA).
An overview to these and other approaches can be found in [58].

HC attempts to maximize an objective function f : local changes are accepted
only if they make the value of f increase, and the process continues until a (local)
maximum is reached. GA maintains a set of solutions, and the procedure finds
improved solutions by imitating the natural evolution process: solutions are com-
bined or mutated to change the current set, and those of poor quality are penalized
or eliminated. TS maintains a tabu list of partial or complete solutions, i.e. visited
search paths which cannot be revisited, and explores the solution space by chang-
ing the initial solution, aiming to move to a better solution. SA explores the search
space by generating neighboring solutions of the current solution, and accepting
the new solutions probabilistically, depending on the quality achieved, and on a
parameter called temperature (used to modify the search process).

Any pure LS method cannot guarantee a feasible, optimal, or complete solu-
tion. The main problem of LS algorithms is that they can get stuck in points of
unsatisfiability - e.g. local optimum, if we are solving an optimization problem.
The common strategy adopted to escape from these points is based on randomiz-
ing the search process, i.e. performing random moves around the current solution.
Combined to that, each LS method has its own tactic to further protect the search
from local stagnation. For example, when the improvement process deteriorates:
HC can make perturbation to the current zone of search by temporarily allowing
down-hill movements; GA can make perturbations by changing the cross-over,
mutation, or penalization functions; TS exploits its tabu list to avoid repeating the
same paths; and SA varies the temperature parameter, thus increasing the prob-
ability of acceptance for poorer solutions, and therefore allowing to visit more
neighbors in the search space.

Local and complete search can be combined within a constraint programming
framework to get the benefit from the three sides [58]. First, both types of search
get the benefit of constraint propagation, which prunes the search space after each
decision point. Second, local search can be used when a sub-optimal solution is
needed within a limited time. Third, solution optimality can be available when

43

wanted if we allow local search to switch to complete methods.

3.1.8 Variations to standard CSPs

Often, in reality, some constraints are not strict, some are simply preferences and
can be violated, some are more important than others, and some are uncertain.
One limitation of standard CSPs is that they cannot express preferences or un-
certainty among constraints: constraints are either required or ignored (i.e. not
included). Basic CSPs have been extended in several ways to allow a better rep-
resentation of the real world.

Partial CSPs (or PCSPs) [40] allows constraints to be violated, aiming to min-
imize the number of violations. Weighted CSPs (WCSPs) [40] extend PCSPs by
assigning a weight to each tuple and then minimizing the weighted number of vi-
olations. Max CSPs [75] are WCSPs where tuples can have weights of value 0
or 1, so the aim becomes to find a solution with the minimum number of violated
tuples.

Another popular version, designed to handle preferences, is called Fuzzy CSPs
(FCSPs) [82]. Here, each tuple is assigned a ranked degree of satisfaction (or
membership function) normalized between 0 and 1. The goal is then to maximize
a combination of the satisfaction degrees of all tuples in a solution - e.g. typically
the aim is to maximize the minimum degree over all the constraints. FCSPs lend
themselves well to many real problems, where it is difficult to precisely elicit
numerical data in terms of constraints, probabilities, costs, objectives, etc.

Mixed CSPs [37] are an attempt to model uncertainty. The set of variables
is split into controllable decision variables and non-controllable parameters. The
solver can assign a value only to the controllable variables, while the values of pa-
rameters depend on external sources and are not known in advance. A complete
assignment of the parameters is called a world, while a complete assignment of
the decision variables is called decision. If the values of all the parameters are
revealed before the decision deadline we have full observability. In this situation,
solving a Mixed CSP means computing an approximate (conditional) decision,
i.e. a decision that associates different assignments of values to different possible
worlds. If none of the parameters are revealed before the decision deadline we

44

have no observability. In this situation, solving a Mixed CSP means computing
a pure (unconditional) decision, i.e. a decision that assigns values to all the de-
cision variables aiming to satisfy as many worlds as possible. As defined in [92]
[72], a problem is: strongly controllable, if there exists a single decision that is a
valid solution for any possible world; weakly controllable, if there exists a deci-
sion for each possible world; and dynamically controllable, if, assuming the world
is partially unknown at decision time, there exists a partial decision based on the
observation of the known part of the world that is ensured to extend to a complete
decision (and solution) whatever parameters remain to be revealed. Strong con-
trollability is suitable in case of no observability, weak controllability in case of
full observability, and dynamic controllability in case of partial observability. In
particular, dynamic controllability suits well dynamic application domains such
as planning or scheduling, for which the solution is built incrementally, over time,
as the uncontrollable parameters reveal their values.

In [18] semiring and valued CSPs are introduced as general frameworks, which
allow to represent different types of CSP variations, among them (standard) CSPs,
PCSPs, WCSPs, Max-CSPs, Fuzzy-CSPs, and Mixed-CSPs.

3.1.9 Dynamic problems: modelling changes and uncertainty

Dynamic problems are problems that change while they are being solved, or as the
solution is being executed. Many potential applications of constraint program-
ming turn out to be dynamic problems [24], for example, dynamic scheduling
[29]. In scheduling, a machine may break down, or a scheduled action may be
delayed due to the late arrival of supplies. In general, a dynamic problem needs to
be solved online, i.e. partial solutions must be generated and executed to accom-
modate the changes, before the complete problem is known.

In constraint programming terms, the problem is to decide which values to
assign to variables before all the variables and constraints are known. Further, if
we have some knowledge of the possible future developments of the problem, we
should try to use that knowledge to make our initial assignments. Many techniques
from the literature are relevant to tackle different aspects of dynamic problem
solving. The main contributions are presented next.

45

Probabilistic and stochastic CSPs

Probabilistic CSPs [36] (PrCSPs) and Stochastic CSPs [67] (StCSPs) extend Mixed
CSPs by modelling the probability distribution of the possible values each uncon-
trollable variable (or parameter) can take.

PrCSPs solve the decision problem by maximizing the probability over all the
parameters. For example, consider the problem with two decision variables X1

and X2, and two parameters P1 and P2, all with domain {0,1}, and the constraint
X1 +X2 + P1 + P2 = 3. There are four possible assignments, i.e. the pair (X1, X2)

can take values (0,0), (0,1), (1,0), and (1,1). Consider the probability distributions
over the values of P1: {0 : 0.2, 1 : 0.8} and P2 : {0 : 0.6, 1 : 0.4}. Then, the four
possible realizations for the pair of parameters 〈P1, P2〉 have probability: {(0,0)
: 0.12, (0,1) : 0.08, (1,0) : 0.48, (1,1) : 0.32}. Assignment (X1, X2) = (0,0) has
probability 0 to satisfy the constraint, (X1, X2) = (0,1) has 0.32, (X1, X2) = (1,0)
has 0.48, and (X1, X2) = (1,1) has 0.56 (i.e. 0.08+0.48), so the latter assignment
would be the best decision.

While PrCSPs maximizes probability, StCSPs look for solutions with a com-
bined probability greater than a certain threshold θ. Further, while PrCSPs rea-
son on probabilities over a single stage, StCSPs extend the reasoning to multiple
stages. Specifically, the problem is solved by deciding the values to the control-
lable variables in the first stage, then the values of a first set of uncontrollable
variables are revealed, then deciding the values of the controllable variables in the
next stage, then the values of the next set of uncontrollable variables are revealed,
and so on.

Both PrCSPs and StCSPs are suitable for problems which allow an accu-
rate model of probability. Considering the problem of restaurant table alloca-
tion (Chapter 2), future knowledge is often approximative or unavailable - most
restaurants do not store any form of data necessary to elaborate good probability
distributions on table demand (i.e. nature and number of new requests, cancel-
lations, and booking changes) and delays (i.e. late/early arrivals, and expected
dinner durations). Further, modelling using StCSPs involves multiple stages, with
assignments to variables on one stage depending on previous assignment of vari-
ables in the previous stage. This is quite unrealistic for the restaurant problem,

46

e.g. the duration of a dinner early in the night is hard to relate to the duration of
another dinner later in the night. In general, the restaurant problem is dynamic,
has many sources of uncertainty, and requires online decisions. Representing this
type of problems using PrCSPs, and (especially) StCSPs, can be too complex and
expensive to do effectively, requiring the generation of a probability tree of very
large size, and perhaps an online redefinition of the tree each time an unexpected
change happens.

Branching CSPs

Another approach used to tackle problems where we have some model of future
changes is Branching CSP (BrCSP) [38]. BrCSPs model problems that grow over
time, and for which new decision variables arrive as the current set is being as-
signed. To assign a newly arrived variable, the BrCSP approach searches and
propagates constraints over a tree of possible futures (probabilistic tree). Each
path in the tree is a possible and distinct sequence of arrivals (future decision vari-
ables), and each variable in a sequence has a probability of arrival which depends
on the previous variables in the sequence. When a variable arrives it can be as-
signed a value or it can be rejected. There is a specific utility associated to the
assignment of each variable, while rejected variables provide no utility. A solu-
tion to a BrCSP is then an assignment of values to variables which maximizes the
utility over the probabilistic tree, where the utility of each assignment is weighted
by the associated probability.

BrCSPs are suitable to model problems whose future development can be rep-
resented using probabilistic trees, e.g. a scheduling problem where the arrival of
a task later in time can be related to the arrival of a task arrived earlier. For the
restaurant allocation problem we do not have such type of relations, as parties are
essentially independent variables (although there may be some overall booking
patterns).

Sampling methods

Even when we have a precise knowledge of the future distribution of a prob-
lem, maximizing the expected utility over the entire tree of possible futures may

47

require unrealistic time. Bent and Van Hentenryck [10] [11] [12] [26] propose
approximate methods based on sampling a number of future developments and on
optimizing the current decision over the samples. Given enough time, the set of
samples can still be extended until all the future combinations can be explored and
evaluated.

A first version is based on expectation [26]. The current variable to be de-
cided (X) is assigned, in turn, each possible value in its domain (DX). For each
assignment, the problem is solved over the set of future samples, and the expected
utility of each solution is counted. The value showing the greatest utility over all
the samples is then the final decision.

A second version is based on consensus [11] [12]. Here, the problem is im-
mediately solved over the set of future samples. Then, considering the current
variable to be decided (X), the value that was assigned most to X over all the
solutions is finally taken. If m is the number of values in the domain of X , and n
is the number of samples, then expectation performs m × n optimizations, while
consensus does only n, i.e. the latter is cheaper but also less accurate.

A third version is based on regret [10], and is a compromise between the pre-
vious two. Given a decision X = a, the regret of not using another available
decision X = b is defined as the difference in objective value between the so-
lution obtained with X = a and the alternative solution with X = b. Here, the
problem is immediately solved over each sample (as for consensus), but for each
sample solution, all the alternative decisions are evaluated in terms of regret. The
procedure finally selects the decision which minimizes regret over all the sam-
ples. This third version performs the same number of optimizations as consensus,
however the extra work to compute regrets improves the solution quality.

Sampling has proven to be a successful approach for different dynamic prob-
lem domains, for example packet communication scheduling [10] [11] [26], dy-
namic vehicle routing [10] [12], and on-line multi-choice knapsack (or holiday
reservation scheduling) [9]. In these cases, the type of stochastic variable to con-
sider concerns the arrival of future packets, for packet scheduling, of future cus-
tomer orders, for vehicle routing, and of future items, for the knapsack problem
(or of future requests for holiday packages, in reservation scheduling).

Sampling could also be applied to tackle the restaurant table allocation prob-

48

lem. For example, it could be used to decide, at each point during a dinner ses-
sion, the best seating plan, that is the allocation of the current set of parties which
maximizes the chances to accommodate future parties, i.e. to satisfy future meal
requests. In this case, the stochastic variable would be the arrival of future meal
requests (or table demand).

Assuming we have a way for generating good samples (e.g. based on past
booking sheets), the problem may require a large number of samples, in order to
get a significant estimate of utility. Even if we choose the cheaper version based on
consensus, the amount of time required to evaluate the samples may represent an
issue. The complexity of the resolution increases with the number of samples, but
also with the sample size. For example, for a restaurant with a target turnover of
100 parties, samples of up to 100 parties may be necessary, for which optimization
might become too complex to do effectively. Provided we can be fast enough to
perform optimization, sampling could represent a valuable approach for restaurant
table management.

Dynamic CSPs

Dynamic CSPs [34] model a sequence of changes as a sequence of CSPs. Each
CSP is obtained by adding or removing constraints to the previous CSP. The aim
may be to minimize the effort to find new solutions, or to minimize the distance
between successive solutions - large differences between successive solutions are
often undesirable in real world problems.

The approach in [85] consists of recording nogoods during search, for reuse
in future solutions. In [91], the authors present an algorithm which tries to ac-
commodate each change by performing local changes starting from the solution
to the preceding CSP in the sequence. Specifically, the set of decision variables
are partitioned into three subsets: in the first variables have fixed assignments; in
the second they have assignments which can be modified; and in the third they
are unassigned. When the algorithm starts, all variables are in the second set, and
each variable is assigned the same value taken in the previous solution (before the
change). If the initial assignments can accommodate the change then we do not
need to search, as no constraint is violated. Otherwise, at least one variable in the

49

scope of each violated constraint is selected and moved to the set of unassigned
(the selection is heuristic). To repair the conflict, unassigned variables are then
recursively reassigned different values from their domains. If a reassignment to a
variable does not satisfy all the constraints, the new value is fixed and the variable
is moved to the set of fixed. In this case, search proceeds moving more variables
from the assigned to the unassigned set, so that the problem is made consistent
with the current fixed assignments, and then (again, recursively) selecting and re-
assigning another variable in the unassigned set. If search proves that the problem
has no solution for a certain value given to a fixed variable, it backtracks and tries
with another value.

Depending on the heuristic order in which variables are unassigned, reas-
signed, and fixed, the same problem instance may produce different solutions.
This technique does not guarantee optimal stability, i.e. the new solution may not
be the nearest possible to the preceding one. Considering the problem of restau-
rant table allocation, it is possible that, for example, to accommodate a delay, local

changes would return a solution which requires the reallocation of a considerable
number of tables, even though there was another possible solution with only a few
changes. Restaurant staff and customers may get annoyed and confused when sev-
eral seating disruptions occurs, especially if this requires many reconfigurations
of tables.

Two approaches which appear more suitable in order to control stability in the
restaurant problem are [74] and [79]. Petcu et al [74] propose special stability
constraints, which must be satisfied in order for the solution to be stable. Al-
ternatively, Ran et al [79] search for optimally stable solutions. Representing a
dynamic CSP as a sequence of CSPs, the latter approach looks for a solution to
the current CSP that has the minimum number of different assignments compared
to the solution of the CSP immediately before in the sequence. The authors de-
scribe a repair-based algorithm with arc-consistency (RBAC) which combines lo-
cal search (based on iterative deepening) with constraint propagation. Specifically,
RBAC starts with the original solution and iteratively checks whether reassigning
one variable, two variables, etc., is sufficient to solve the new problem.

The RBAC algorithm is efficient to find the minimal change solution for prob-
lems with unary constraints, however the performance deteriorates for problems

50

with constraints of greater arity. In [79], the same authors propose two new al-
gorithms for near optimal solutions. The first, BS, performs binary search, vary-
ing the limit on the number of variables that can change value (i.e. the search
depth), and applying max-conflict variable ordering selection, and min-conflict
value ordering selection. The second, RS, is based on depth first search, setting
the depth limit to the total number of variables (max depth) or to the depth of the
best solution found so far (called search-depth adaptation), and combines search
restart with a randomized variable selection. Both BS and RS limit the number
of backtracks over each search step. Results show how the two algorithms repre-
sent a reasonable trade off between efficiency and solution optimality. In general,
the best performance is achieved using RS, setting a large number of restarts, a
moderate limit on the number of backtracks between restarts, min-conflict value
ordering selection, and search-depth adaptation.

Temporal robustness in scheduling problems

Some approaches aim to prevent instability by providing robust solutions, i.e. so-
lutions that are likely to remain solutions when changes occur, or that can be
modified with little disruption. In [30] robust solutions to scheduling problems
are achieved by adding slack to activity durations. The authors consider three ver-
sions. In the first, the duration of each task ti.dur is extended to ti.dur+slack(ti),
i.e. the end of the task is right shifted. In the second, each task maintains its orig-
inal duration, but constraints are modified to require specific slack after each task
in the schedule. The third case is similar to the second, with the difference that
now we have focused slack, depending on the temporal location. For example,
[22] shows the benefit of penalizing early idle times (which are early slack) in
dynamic job shop scheduling.

Using slack to protect schedules from disruptions could be effective also for
scheduling restaurant tables. For example, a restaurant may find itself systemati-
cally late in providing food on time to all the customers during the peak hour (say
9 o’clock). Several tables are then freed later than expected, and this causes seat-
ing plan disruptions, and delays for future diners. As we do not known in advance
which tables are going to be late, a simple solution to reduce disruptions (and

51

delays) could be, for example, to add some slack on a subset of tables at around
9 o’clock. Figure 3.3 shows a small seating plan with 3 tables, 6 parties, and a
slack time (deliberately) inserted on table T3 in correspondence of 9 o’clock. The
vertical (dashed) line represents the current time, where party P2 is expected to
finish. Thanks to the slack time on table T3, if P2 stays longer than expected the
delay can be absorbed with a minimum disruption (and with no extra delay), by
swapping P5 with P4.

T1

T2

T3

P3

P1

P2

P5

P4

9:00 p.m.

P6

slack

Figure 3.3: Example of temporal robustness increased using slack for the table
allocation problem - if P2 finishes late, P5 and P4 can swap without introducing
any more delay.

The main issue in arranging slack protections would be to find out how much
slack to add, and where. Customer behavior and restaurant performance are the
main causes of delays. The high level of uncertainty governing these two factors
may not allow an accurate and effective choice of slack times, and over-estimates
can lead to a considerable waste in table usage and profit.

An alternative approach to tackle problems of scheduling with uncertain du-
rations is represented by Just In Case scheduling (JICS) [35]. JICS attempts to
anticipate likely changes in task durations that could cause schedule breakage by
pre-computing contingent schedules. Specifically, JICS identifies the most likely
breakage point in an initial schedule, computes an alternative schedule from that
point on (accommodating the breakage), and given more time, repeats the pro-
cess, computing further alternative schedules accommodating the next most likely
breakages. Note that the set of contingent schedules is built so that it can at the
same time manage breakages and preserve resource usage, whereas the introduc-
tion of slack handles breakages but degrades resource usage. The main issue in

52

JICS regards the uncertainty of the breakages. For example, in restaurant table al-
location, unexpected events which can cause seating plan disruptions (and delays)
are very frequent and uncertain.

Consider a seating plan, where each party has a size and a start time, and
is assigned a dinner slot of a certain (expected) duration on a table of suitable
capacity. Each party can generate 3 types of unexpected events that can potentially
create conflicts in the seating plan: (i) the party may arrive in a larger group than
the size of the booking, so the assigned table may no longer be suitable; (ii) the
party may arrive late, so there may be a clash with the next party planned on the
same table; (iii) the party may occupy the table for longer than expected, so again,
there can be a conflict with a following party. Considering that each party can
have any of the three changes (in size, start, and duration), the combinations of
possible breakages over a dinner session makes the implementation of contingent
schedules unrealistic.

Super solutions

A more general framework for solution robustness, which can be applied to any
problem domain involving changes, is represented by Super solutions (SS) [55].
SSs are solutions that guarantee a limited number of repairs in case of changes.
Formally, a solution is (a, b)-SS if for any a variables which lose their values
(called the break set) there is a reassignment of at most b other variables (repair

set) which repairs the solution. A variation to (a, b)-SS is represented by (α, β)-
SS [57]. An (α, β)-SS is a solution which guarantees that for each combination of
assignments to variables with a total probability α of being lost, the solution can
be repaired by reassigning any subset of variables at a total repair cost less than β.

In (a, b)-SS, the value b characterizes the stability associated to the super solu-
tion, i.e. a smaller size of the repair set means that the solution can accommodate
any change of size a by rearranging fewer variables, so maintaining a higher sta-
bility. The problem of finding (a, b)-SS is NP-complete for any fixed a. In [55],
the authors focus on algorithms to calculate (1, 0)-SS, i.e. solutions for which
any single change can be repaired without reallocating any other variable, thus
allowing the maximum stability. When there is no (1, 0)-SS, the choice is then to

53

maximize the number of variables which can be repaired with no changes. For
example, a (1, 0)-SS for the restaurant allocation problem can be a seating plan
which allows any party to finish late (e.g. by 15 minutes) without the need to
reallocate any other party - i.e. there must be a slack of at least 15 minutes after
each dinner slot. If no such solution exists, then we may search for one with the
maximum number of dinner slots followed by a 15 minute slack.

In the example above, a (1, 0)-SS protects from single delays of 15 minutes
over any dinner duration. However, changes are very frequent and diverse in
the real situation. The same dinner can undergo multiple and profound changes,
for example a party of 8 may turn up at 6.30 p.m., even though their booking
was made for 6 people at 6 o’clock, and then the same party may occupy the
table for 3 hours, even though the expected duration was 2 hours. Therefore, the
super solution approach may become too complex if we have to represent all the
possible forms of changes. Further, if SS0 is an (a, b) super solution and S0 is any
non-super solution to the same initial problem instance P0, then SS0 may have
more chances than S0 to repair the first change C1. However, assuming both SS0

and S0 allow a repair for C1, the super solution approach does not guarantee that
the solution obtained after repairing SS0 is not now poorer in robustness than the
solution obtained repairing S0. In other words, the current version of (a, b)-SSs
may not be suitable to model problems like the restaurant one, which requires to
accommodate chains of changes.

Ideally, to control robustness over chains of changes, a restaurant should aim
for an initial seating plan which represents a recursive form of SS (RSS), e.g. we
can call it (a, b)n-SS. A (a, b)n-SS would be a solution that, for any a variables that
lose their values, can guarantee a new solution through a repair of size b, where
the new solution is then (a, b)(n−1)-SS. The value n represents the number of con-
secutive breakages to the (a, b)n-SS for which a repair is guaranteed. Typically, in
the restaurant problem, changes happen one by one during the night, so we could
use the relatively cheaper form (1, b)n-SS. This idea of RSS, even considering a =
1 and n small, appears however unrealistic to implement, in terms of complexity.
Further, we expect that RSS would degrade the restaurant load, protecting each
party using consistent slack times and perhaps leaving some tables unoccupied.

54

3.2 Description of scheduling

Scheduling is the process of allocating tasks to resources over time. Each schedul-
ing problem that may be considered has got its own configuration in terms of task
and resource characteristics, and metrics of performance [76] [3].

Each task is typically defined by: a release time, the time by which it becomes
ready to start the execution; a due time, the time by which the execution must
be completed; a start time, the actual time by which the execution starts; an end

time, the actual time by which the execution is completed; a duration, the time
required to execute, where duration = (end - start) if the execution cannot be in-
terrupted; and a value, which usually reflects a ranked priority, importance, profit,
or cost. Different tasks may have different subsets of resources where they can be
processed. Tasks can be individuals and independent from each other, otherwise
they could come as ordered packages.

The resources can be one or more, some may process only a single task at
a time, others may process more tasks simultaneously. The resources can be all
identical, otherwise the may have different capacities, or each task could take time
dependent on each resource.

In decision problems, the responsibility of a scheduler is determining whether
a schedule exists, i.e. whether all tasks can be allocated such that all timing con-
straints and resource constraints are satisfied. Often time constraints cannot be
all satisfied, e.g. we may need to reject some tasks, or to allow some tasks to
complete late. What happens when timing constraints are not met depends on the
type of application. For example, an online system that controls a nuclear power
plant, of course cannot afford to miss timing constraints of the critical tasks. In
restaurant allocation, instead, a violation of a time constraint can be caused by a
dinner lasting longer than expected and causing an overlap with the next dinner
scheduled on the same table, the effect being that some future diners will have
to wait before getting seated. In general, in optimization problems, the scheduler
must maximize some performance based on objective functions, which are usually
a balance of value, completion time, or lateness.

55

3.2.1 Dynamic scheduling

When the set of tasks to be allocated changes as the solution is being executed we
have dynamic or online scheduling [47]. Many real world scheduling problems
turn out to be dynamic, for example:

• manufacturing scheduling - new orders arrive, and must be integrated into
existing schedules;

• hospital scheduling - new patients arrive in a more or less random fashion,
with problems of different importance and urgency, and must be assigned
to beds, theaters and staff;

• delivery scheduling - new orders arrive at random times, and must be as-
signed to couriers;

• reservation scheduling (e.g. car rental, holiday booking, or restaurant table
allocation) - new requests arrive at random times and must be committed to
resources, where each request concerns an activity (e.g. rental, holiday, or
dinner) which is typically assigned a fixed start time and duration.

The real world is governed by uncertainty not only on the arrival distribution
of future tasks, but there may be no complete knowledge also on the current set
of tasks to be executed: resources are not available when required, current tasks
get modified or cancelled, some take longer than expected to complete, others
cannot start on time. For example, in restaurant table allocation (Chapter 2), tables
are resources and dinners are tasks, and common (unexpected) changes can be
new bookings, or new parties arriving without a booking, but also late or early
arrivals, dinners lasting longer or shorter than expected, cancellations, or booking
modifications. In general, the aim is to provide a certain level of service, despite
the changes. In particular, the problems may have different objectives, including
ensuring every task can be carried out, minimizing delay, minimizing reallocation,
or maximizing importance.

A large variety of scheduling problems has been formally classified and de-
fined in the literature. An excellent overview on scheduling applications can be

56

found in [76], while [29] provides a survey of techniques for scheduling with un-
certainty.

3.2.2 Solving dynamic scheduling

In static scheduling, the complete set of tasks to be scheduled is known in advance.
In dynamic scheduling, the set of known tasks changes over time - new tasks may
arrive, others may get cancelled, others may change either start time, duration, or
resource requirement - so the scheduler has to react each time a change happens,
without knowing the future changes, and the final number and nature of tasks.
Due to the presence of uncertainty, no strategy can guarantee an optimal solu-
tion for the dynamic problem [89]. For example, determining a non-preemptive
schedule, that does not permit the removal of tasks from a resource as a higher
priority task arrives, is an NP-hard problem even on a single resource when tasks
can have arbitrary release times [42]. In [71], they studied multi-resource online
scheduling problems, noting that with such problems no algorithm is optimal and
can guarantee all tasks without prior knowledge of tasks arrival, processing, and
due times. This knowledge is not available in dynamic systems, so it is neces-
sary to resort to approximate algorithms (or heuristics) to construct the schedules.
Heuristic strategies can be more or less complex, but do not involve a complete
analysis of the problem. Many systems focus on the use of heuristic strategies
which assign priorities to tasks. The aim is typically related to the objective func-
tions listed above. For example, very simple and popular heuristics for dynamic
scheduling are FCFS (i.e. first come first served) and EDF (earliest deadline first)
[89]. Both FCFS and EDF are cheap and greedy attempts to optimize a function
of task value and “earliness” (or delay). More complex heuristic strategies will be
discussed below.

Solution stability

In dynamic scheduling, stability is another popular objective that often needs to
be balanced along with value and delays. Consider the example where we are
in a train station, waiting for our train (e.g. a regional) to arrive at the assigned
platform, but then the speaker announces a change in platform, and perhaps a

57

delay, for the departure. This change may have been caused by another train (e.g.
a Eurostar) with a higher priority and value being late. The decision on whether to
delay some lower priority trains to let the Eurostar recover, and in case, on which
trains to delay and for how much, is a matter of maximizing value, minimizing
delays, but also maximizing (or ensuring) stability. In fact, the best decision for
value and delays may require the reallocation of the departure platform of many
trains. This, however, may not be acceptable or reasonable. More passengers
having to move from one to a new platform means that more people get annoyed,
and more risk to miss the train because they have not noticed the change in time.
Further, the flows of people crossing the station and triggered by the change may
cause unpleasant and unsafe situations, as well as further delays.

Case study example: metrics for restaurant table allocation

Value, delay, and stability objectives are very relevant also to restaurant table man-
agement. In this dissertation we have studied the problem of restaurant table al-
location (RTA) as a scheduling problem with tables as resources and parties (or
dinners) as tasks. RTA is dynamic, as the set of parties changes over time - new
parties may arrive, others may get cancelled, others may change start time, du-
ration, or size (i.e. table requirement) - so we need to reschedule each time a
change happens, without knowing the future changes. Typically, the restaurant
profit is proportional to the turnover of people (or total covers). Each party size
then represents the value of the party, and when a new party cannot be scheduled
it is rejected, gaining no value.

Possible metrics for RTA could then be based on:

1. value, for which the best scheduler is one that maximizes the total value of
scheduled tasks over the considered time period (i.e. a dining session);

2. robustness, for which the best scheduler is one that, over the dining session,
accommodates more changes (e.g. delays in party start time or duration)
without delaying other parties, or minimizes delay, e.g. the sum of waiting
times over all parties;

58

3. stability, for which the best scheduler is one that minimizes the number
of table reallocations required to accommodate changes, over the dining
session - in fact, frequent table reconfigurations or reallocations of pending
dinners can create confusion and noise for both customers and staff.

Ultimately, restaurants must trade off among value, robustness (or delay), and sta-
bility. Note that, heuristic strategies purely based on any one of the three metrics
may be unreasonable, i.e.:

1. maximizing value would try to fit in as many people as possible, but this
increases the risk of both delays and seating plan instability;

2. maximizing robustness would accommodate changes, aiming for a seating
plan reallocation that minimizes delays (according to some metric), but this
may require many seating disruptions and may as well degrade resource
usage and therefore potential value - e.g. moving many parties, and many
of small size into oversized tables;

3. minimizing instability would react to changes looking for minimal reallo-
cation, which may not be optimal in terms of both value and delay - in fact,
in the order, a local reallocation does not guarantee optimal (or even good)
resource usage or minimum (or even acceptable) delays.

Reactive and proactive scheduling

Dynamic scheduling under uncertainty can be approached using either proactive
or reactive scheduling models [29].

Proactive scheduling models (PSMs) predict future changes by reasoning about
statistical knowledge of uncertainty, and so they compute robust schedules, which
are more likely to remain valid after a sequence of changes, or which require
cheap repairs in case some violations may happen. The computation can be quite
expensive, depending on the level of statistical reasoning. Therefore, PSMs (typ-
ically) operate off-line, sometime before the schedule execution time, and with a
good amount of time available for computation.

PSMs can spend a lot of effort to provide robustness in absorbing uncertainty.
However, in many practical situations, the environment can be quite unstable, and

59

the frequent changes require fast reactions. Further, even when the environment
changes less rapidly, PSMs cannot always take into consideration all sources of
uncertainty, so unpredicted events can still cause schedule breakage, which re-
quires a real-time repair. Because of these issues, many practical cases rely on
cheaper and faster scheduling models (called reactive) or on a combination of a
proactive phase (off-line) followed by a reactive one (on-line).

Reactive scheduling models (RSMs) are perhaps less clever, but generally
cheaper and faster than PSMs, as they do not reason about possible future devel-
opments of the problem. RSMs may either regenerate a completely new schedule
each time an unexpected event happens (e.g. [25]), or they may simply reuse the
solution before the change as a starting point for a new solution (e.g. [91]). RSMs
operate on-line, at execution time, when the information about the state of the
scheduling problem is up to date, but the time available to solve can be short.

Different approaches for modelling changes and uncertainty in (generic) dy-
namic problems have been presented in Section 3.1.9, where we have seen (in
particular) how they can also be applied to the specific problem domain of dy-
namic scheduling. Some of such methods can be regarded as proactive, others as
reactive, and all focus on optimizing a combination of some metrics of quality,
robustness, and stability.

For instance, the CSP based models of Probabilistic [36], Stochastic [67], and
Branching[38] CSPs are proactive approaches founded on probabilistic models of
the uncertainty. Their focus is more on maximizing some intrinsic quality of the
problem rather than robustness or stability. The methods based on sampling [10]
[11] [10] [12] [26], such as expectation, consensus, and regret, are a hybrid be-
tween reactive and proactive approaches - they react to changes making decisions
online, but their decision is based on proactive sampling of possible future devel-
opments. Again, the scope these techniques have been tested for concerns maxi-
mizing quality. Dynamic CSPs [34] have also been tackled using reactive methods
[91] [79] [74], where solutions are reused, and there is no reasoning on possible
futures. The main objective is a balance of quality and stability. The methods
have been applied for example to on-line satellite scheduling [91]. Adding slack

protections to schedules [30] is proactive, as it takes into account uncertainty in
task duration when forming the initial schedule. Similarly, just-in-case scheduling

60

(JICS) [35] is also proactive, building contingent schedules to accommodate the
most likely temporal breakages. Both the methods aim for schedule robustness,
and JICS also for quality. Finally, super solutions (SS) [55] are again a proactive
method, which guarantees a limited number of repairs in case a number of vari-
ables may break. In this case, the breaks can be more general than just temporal,
e.g. they can be caused by a task completing late, but also by a task changing the
resource requirement - e.g. in the restaurant problem, when there is a six-seater
table booked for a party of 6 people, but then the party arrives in a group of 8
people. The main characteristic of SS is robustness and stability.

3.2.3 Scheduling jobs with fixed start and end times

Scheduling jobs with fixed start and end times (SFSE) [2] is a subclass of job
shop scheduling [42], and represents the base for our scheduling model for the
restaurant table allocation problem. Specifically, in SFSE each job Ji is a single
task, has a value vi, a fixed start time si, and a fixed end time ei (i.e. there is no
slack).† In SFSE there are no precedence constraints between jobs, the only tim-
ing constraints being those to respect the start and end times, while the resource
constraints depend on the type of resources, i.e. they ensure that jobs go into al-
lowed machines.

SFSE with identical machines

In [2], the authors consider a first simplified subproblem where all m machines
are identical, with each machine being able to execute each job. The problem is
then to find a subset of jobs that allows a feasible schedule, and that maximizes
the value of jobs to be scheduled. They reformulate the problem in terms of m-
coloring over interval graphs.

†The problem can also be regarded as the “Reservations without Slack” problem [76].

61

m-coloring on interval graphs - An interval graph (IG) is the intersection graph
G(V,E) of a set of intervals over the real line - i.e. each vertex in V is an interval
over the real line, and each edge in E connects vertexes corresponding to inter-
vals overlapping in time. A coloring of a graph G is a function f : V → N such
that f (v) 6= f (w) whenever (v, w) ∈ E. An m-coloring is a coloring f such that
f (v) ≤ m for every v ∈ V . The m-coloring (or vertex-coloring) problem takes as
input a graph G and a natural number m, and consists in deciding whether G is
m-colorable or not. The m-coloring problem is polynomially solvable for many
classes of graph, e.g. IG [52].

In [2], the authors represent each job as an interval whose end points are spec-
ified by the start and end times of the job. Each interval has a value (that of the
corresponding job), and any interval can take any color from a common set of
m (representing the set of machines, where each machine can execute each job).
The objective is a variation of classical m-coloring, and consists in maximizing
the value of the subset of intervals legally colored. The problem is still polyno-
mial. They describe an algorithm that runs in O(nlogn), with n number of jobs.

SFSE with identical machines and preassigned jobs

A subclass of SFSE with identical machines considers that a subset of jobs are pre-
assigned, i.e. the problem consists in completing a partial schedule. This problem
arises, for example, when an existing schedule has to be reviewed, where some
jobs have already started execution and cannot be reallocated (or preempted). The
problem can be modelled as a precoloring extension problem on interval graphs.

Precoloring extension on interval graphs - The precoloring extension problem
[20] is a more general case of m-coloring, where a vertex subset is colored, and
the goal is to extend this partial coloring to a validm-coloring of the whole graph.
The problem takes as input a graph G(V ,E), a subset W ⊆ V , a coloring f ′ of
W , and a natural number m, and consists in deciding whether or not G admits an
m-coloring f such that f (v) = f ′(v) for every v ∈ W . The precoloring extension
problem on IG is NP-complete [68].

62

SFSE with non-identical machines

In [2], SFSE is extended to the case in which machines are no longer identical,
and each job Ji is associated a specific subset of machines MJi ⊆M where it can
be processed (i.e. different jobs can have different job-machine mapping). The
number of jobs which can be processed feasibly is reduced compared to the case
with identical machines. The authors show the new problem is NP-complete by
using a reduction from 3-SAT, and it remains NP-complete even if all jobs have
equal value and we are asked to determine whether all can be scheduled. The NP-
completeness can also be proved considering that SFSE with non-identical ma-
chines is again representable using interval graphs, with each interval now taking
the color from a subset of m. In the literature, this problem is called list-coloring

on interval graphs.

List-coloring on interval graphs - The list-coloring problem generalizes the ver-
sion m-coloring by allowing a specific set (or list) of available colors for each
vertex. Given a graph G and a finite list L(v) ⊆ N for each vertex v ∈ V , the
list-coloring problem ask for a list-coloring of G, i.e. a coloring f such that f (v)
∈ L(v) for every v ∈ V . The list-coloring problem is NP-complete for many types
of graph, e.g. IG [20]. In particular, note that the precoloring extension problem
is a special case of list-coloring - with each uncolored vertex allowing the full list
of m colors, and each precolored vertex having a list of a single element, i.e. the
preassigned value. The NP-completeness of the precoloring extension on IG then
implies that list-coloring on IG is also NP-complete.

SFSE with machines ordered by capacity

In SFSE with non-identical machines, each job Ji could be associated to any
generic subset of machines MJi ⊆ M . For example, considering a set of m =
5 machines M = {M1, M2, .., M5}, two jobs Ja and Jb could have (respectively)
a job-machine mapping MJa = {M1, M4, M5}, and MJb = {M2, M3, M4, M5}.
Thus, jobs could have a subset of machines containing holes. In the example,
MJa has a hole between M1 and M4. Further, any two jobs Ja and Jb could have
job-machine mappings such that (MJa \ MJb 6= ∅) ∧ (MJb \ MJa 6= ∅), i.e. one

63

job could be processed into some machines which cannot be used for the other job
and vice versa. For instance, in the example, M1 appears only in MJa , while M2

and M3 are only in MJb .

Machines are often categorized by capacities, so that if a job can be processed
by a machine of a certain capacity then any other machine with equal or greater
capacity can also process the job. Let the set of machines M = {M1, M2, .., Mm}
be ordered by decreasing capacity. Note that, given m machines, we can always
find a permutation {h1, h2, ..., hm} of {1, 2, .., m} such that {Mh1 ,Mh2, ...,Mhm}
is ordered by capacity. Then, SFSE with machines ordered by capacity is a partic-
ular case of SFSE with non-identical machines, where any job-machine mapping
MJa is such that Mi ∈ MJa ⇐⇒ Mj ∈ MJa , ∀ j < i. Now, job-machine map-
pings allow no holes, and further, any two jobs Ja and Jb have mappings such that
(MJa ⊆MJb) ∨ (MJb ⊆MJa). This means that, either both jobs can be processed
by the same set of machines, or one of the jobs has a set of machines which prop-
erly contains the set of machines of the other job, i.e. jobs are ranked. The new
problem of finding a feasible schedule under ordered machines can be modelled
as µ-coloring on interval graphs.

µ-coloring on interval graphs - The µ-coloring problem [19] is a particular case
of list-coloring. Given a graph G and a function µ : V → N, G is µ-colorable if
there exists a coloring f of G such that f (v) ≤ µ(v) for every v ∈ V . In [20] it is
shown that µ-coloring on interval graphs is NP-complete. The proof is based on
the NP-completeness of the coloring problem on circular-arc graphs [43].

To represent the scheduling problem as µ-coloring on IG, each job Ji is attached
a value µ(Ji) = maxj {Mj ∈ MJi}. Note that µ(Ji) is sufficient to represent the
set of allowed machines for Ji, i.e.:

MJi = {Mj : j ≤ µ(Ji)}

The interval graph is then µ-colorable if there exists a coloring of all intervals (or
jobs) such that f (Ji)≤Mµ(Ji), ∀ i = 1, .., n. As µ-coloring on IGs is NP-complete,
so is SFSE with ordered machines.

64

SFSE with machines ranked by job size

We saw before how µ-coloring models SFSE with machines ordered by capaci-
ties, so that if a job can be processed by a machine of a certain capacity then any
other machine with equal or greater capacity can also process the job. In real ap-
plications, the value of a job typically reflects an order size (e.g. number of pieces
involved in the production of the order). By default, small jobs may not be al-
lowed to execute on high capacity machines, as the cost of running a big machine
may not be profitable on a small job, and further, this could waste the potential to
execute a future order of greater size and value. Then, we give each job Ji a range
(without holes) of machines from the set M={M1, .., Mm} (ordered by decreas-
ing capacity) where the job is allowed to execute. Jobs of same size are given the
same range, and for increasing sizes the range shifts towards higher capacities.
The new problem can be modelled using (γ,µ)-coloring on interval graphs.

(γ,µ)-coloring on interval graphs - (γ,µ)-coloring [20] is a generalized case of
µ-coloring. Given a graph G and functions γ, µ : V → N such that γ(v) ≤ µ(v)
for every v ∈ V , G is (γ,µ)-colorable if there exists a coloring f of G such that
γ(v) ≤ f (v) ≤ µ(v) for every v ∈ V . As µ-coloring is NP-complete, so is (γ,µ)-
coloring.

To represent the scheduling problem as (γ,µ)-coloring on IG, each job Ji is at-
tached values γ(Ji) = minj {Mj ∈ MJi} and µ(Ji) = maxj {Mj ∈ MJi}. The
values γ(Ji) and µ(Ji) are sufficient to represent the set of allowed machines for
Ji, i.e.:

MJi = {Mj : γ(Ji) ≤ j ≤ µ(Ji)}.

Note that, for any two jobs Ja and Jb, the logic expression (MJa ⊆MJb) ∨ (MJb ⊆
MJa) is no longer true, i.e. one job could be processed by some machines which
cannot be used for the other job and vice versa.

The interval graph is then (γ,µ)-colorable if there exists a coloring of all inter-
vals (or jobs) such that Mγ(Ji) ≤ f (Ji) ≤Mµ(Ji), ∀ i = 1, .., n. As (γ,µ)-coloring
on IGs is NP-complete, so is SFSE with machines ranked by job size.

65

Summary: hierarchy over SFSE versions

In the previous pages we have introduced five versions of SFSE:

1. with identical machines (SFSE−IM);

2. with identical machines and preassigned jobs SFSE−IM−PJ;

3. with machines ordered by capacity (SFSE−OC);

4. with machines ranked by job size (SFSE−RJS);

5. with non-identical machines (SFSE−NIM).

We saw how the five versions can all be represented using interval graphs IG(V ,E),
and, in the order, can be solved in terms of:

1. m-coloring;

2. precoloring extension;

3. µ-coloring;

4. (γ,µ)-coloring;

5. list-coloring.

The problem of m-coloring on IG is a special case of precoloring extension with
no preassigned vertex, and of µ-coloring with µ(v) = m for every vertex v in V .
The problem of precoloring extension on IG is a special case of (γ, µ)-coloring,
with γ(w) = µ(w) for every preassigned vertex w ∈ W ⊆ V , and with γ(v) =
1 and µ(v) = m for every other vertex v ∈ V \W . The problem of µ-coloring
on IG is a special case of (γ, µ)-coloring with γ(v) = 1 for every vertex v in V .
Finally, the problem of (γ, µ)-coloring on IG is a special case of list-coloring with
γ(v)..µ(v) not allowed to contain holes for every vertex v in V .

In conclusion [20], coloring (on IG) and correspondent scheduling problems of
type (1) are in P, while coloring (on IG) and correspondent scheduling problems
of type (2), (3), (4), and (5), are in NP-complete.

66

3.2.4 Scheduling for restaurant table allocation

The problem of restaurant table allocation (RTA), which is at the center of this
dissertation, has been modelled as scheduling jobs with fixed start and end times

(SFSE), where jobs represent parties (or dinners) and resources represent tables.
The 5 versions of SFSE discussed in Section 3.2.3 take the following meaning
within the problem domain of RTA:

1. SFSE−IM models restaurants with all identical tables, e.g. 20 tables all of
capacity 4. Perhaps not many restaurants allows such a simple model.

2. SFSE−IM−PJ models restaurants with all identical tables, and such that
some parties have preassigned (or fixed) allocation. During floor manage-
ment, for example, a schedule (or seating plan) must be reviewed after a
dinner lasting longer than expected clashes with the next dinner planned on
the same table, however parties who are already dining have a fixed table
and so cannot be reallocated.

3. SFSE−OC models restaurants with tables of different capacity, e.g. 20 tables,
8 two-seater, 6 four-seater, 4 six-seater, and 2 eight-seater. Further, there is
full-nesting [13], i.e. any party of size s can go into any table of capacity s
or more. In the example, a party of 2 can use any table of capacity 2 to 8.

4. SFSE−RJS models restaurants with tables of different capacities. However,
there is partial-nesting [13], i.e. parties of size s can only go into tables of
capacity in the range s..s+δ(s), where δ(s) is the maximum number of table
seats which are allowed to remain unused - to guarantee a certain level of
table occupancy. For example, a party of 2 might be restricted to use any
table of capacity 2 to 3, even though the restaurant has larger tables.

5. SFSE−NIM models restaurants with generic non-identical tables. Each party
will still have a set of possible tables (depending on the allowed level of
nesting), but the set can now contain holes, e.g. to represent preferences.
For example, a restaurant may have 3 four-seater tables {T1, T2, T3}, 2 five-
seater {T4, T5}, and 1 six-seater {T6}, where T1, T4, and T6 are special
tables (e.g. booths). The restaurant may need to allocate a very important

67

party (VIP) of size 4 with a preference for a booth. The case can be tackled
considering the VIP party having the set of possible tables with holes {T1,
T4, T6}.

The basic model designed in this dissertation is based on SFSE−OC, i.e. the model
with tables ordered by capacity, supporting full-nesting, and representable using
µ-coloring on interval graphs (details will be presented in Chapter 4).

3.3 Restaurant revenue management

Revenue management is at the core of any business. The general goal is to choose
the best configuration of resources, and to make the best use of them, ensuring
that the margin is maximized so that the income is greater.

The growth of information systems has boosted the business of many compa-
nies in the last decades. Large size firms in sectors such as manufacturing, retail,
transport, telecommunication, or financial, can now develop decision strategies
(e.g. for resource planning, resource allocation, and resource pricing), based on
complex optimization models. Sectors involving businesses of smaller size, like
the restaurant industry, have not been as ready to invest into the use of informatics.
Research in restaurant revenue management has stepped up only in recent years,
but its application remains quite sporadic.

3.3.1 State of the art

Revenue management (RM), as reported in [62], is the “application of information
systems and pricing strategies to allocate the right capacity to the right customer
at the right place at the right time”. The authors analyze several issues which must
be taken into consideration in order to achieve effectiveness for the specific case
of restaurant revenue management (RRM).

Traditionally, the goal of many restaurateurs has been to maximize seat oc-

cupancy, aiming to use the full capacity of each table and to minimize the time
between meals. However, seat occupancy can be influenced by other factors like
kitchen size, menu items, and staffing level. The kitchen size may limit the number
of meals that can be prepared at the same time. The preparation and consumption

68

of different menu items can take different times, so even menu design can affect
the total expected number of meals. Table usage is also dependent on the service
level, i.e. the quantity and skills of staff operating over time. For example, a short-
age of staff may delay the flow of dinners over the dining session, and therefore
reduce the final turnover.

Even with the maximum seat occupancy, the revenue may not be optimal.
For example, it may be better to have 60% occupancy and an average cheque per
person of EUR 35 than a 100% occupancy with an average of EUR 15 per person.
The average cheque has been the most important factor for some restaurateurs,
but again, an evaluation based on this measure is still approximate. In a cheque of
EUR 15 there may be a margin of profit of 10, while in a cheque of EUR 35 the
margin may be 15, e.g. because the food is more expensive, or more difficult to
prepare, thus requiring an expensive master chef. Similarly, cheque (and margin)
must be related to the duration of the meal. A party of two spending EUR 50 with
a margin of 20, but occupying the table for 3 hours, is perhaps equivalent to two
parties of two spending EUR 25 with a margin of 10 each, and occupying the table
for 1.30 hours.

Kimes et al [62] model restaurant tables over time as perishable inventory - if
some table seats are not being used for some periods, that part of inventory per-
ishes. The authors introduce a time-based revenue performance measure, named
revenue per available seat hour (RevPASH). RevPASH expresses a better estimate
of the different aspects (discussed above) that contribute to restaurant efficiency.

Given a time period T over a dinner session, RevPASH can be defined as follow:

RevPASH(T) =
Revenue(T)

Number of Available Seats (T)× T ,

where Revenue(T) is a function of price of the menu items sold during T , and of
ingredients, kitchen, and service costs to make and provide the items.

Maximizing RevPASH has been identified as the real goal for restaurateurs. The
optimization of RevPASH can be split into two main branches: demand based

pricing (or menu engineering) and duration management.

69

Pricing management

Traditional pricing policies are cost based, i.e. menu items are priced in order to
achieve a certain margin, which is defined as price minus cost of the ingredients.
In demand based pricing [62], the first objective is to improve seat occupancy
during off-peak hours by offering discounts or specials. This allows good value
meals for the customer who has time flexibility, or who is reluctant to pay the full
price, while those who are not price sensitive can pay more and buy their dinner
at peak time. A combination of cost and demand based pricing is represented
by menu engineering (ME). In ME, menu items are divided into four classes,
depending on margin (m, or price minus cost) and demand (d, or volume of items
sold), i.e.: (1) m high and d high; (2) m low and d high; (3) m high and d low;
(4) m low and d low. In the first two cases the demand is high so the restaurant
can try to increase the price. In the third case the margin is high but the demand
is low, so the restaurant can try to reduce the price.

Duration management

In duration management [62] the main issues concern reducing the uncertainty on
customer arrival time and on meal duration, and the time between meals.

Arrival times can be forecasted with some approximation based on experience
or using historical data (if available). Otherwise, some restaurants reduce uncer-
tainty by selling only fixed times, e.g. 12 p.m., 2 p.m., 4 p.m., .., 10 p.m., but this
requires making sure each dinner is over in 2 hours.

Restaurants taking reservations have a better knowledge on the set of parties
which are going to arrive, but the drawback is that reserved tables have to be kept
unavailable until the party arrives, and often, parties are late or do not show up at
all. Restaurants not taking reservations manage arrivals in queues. The knowledge
on how parties are distributed by number, time, and size, is limited to the current
queue. The advantage is that the manager knows exactly who is available to start,
so tables are never kept idle when a party is waiting at the door.

Uncertainty in arrivals can be better managed if the table mix is optimized
for the standard party mix of the restaurant. Consider two table mixes for the
same restaurant floor, both allowing the same number of seats, one with more but

70

smaller tables, and the other with fewer but larger tables. We assume tables cannot
be joined with each other. If the demand is mainly composed of small parties,
the table mix with smaller tables will be able to accommodate more people than
the table mix with larger tables. Vice versa, if the demand is mainly of large
parties, the mix with larger tables can accommodate more people than the mix
with smaller tables.

Even the waiting time of parties in the queue, and therefore the time between
meals, would be reduced with a better table mix. Consider a first example where
the expected party mix is mainly composed of twos. Consider a 4-seater table cur-
rently occupied by a couple, and another party of two waiting for that same table
to become available. This second party could have been served immediately if the
table mix included a pair of 2-seater tables rather than that 4-seater. Analogously,
consider the opposite case with party mixes of larger average size. Consider a pair
of 2-seater tables currently free, and a party of 4 waiting for a 4-seater to become
available. This party could have been accommodated immediately if the table mix
included a 4-seater rather than the two 2-seater tables.

The duration of a dinner is a function of customer behavior but also of restau-
rant behavior. It is important for the restaurant to avoid low profit time on tables.
Making the dinner cycle more time effective can be achieved through improv-
ing menu design, service procedures, staffing level, and communication between
kitchen and floor. Menu items which take too long in preparation or consumption
should not be included in the menu. Service procedures can be improved by tight-
ening operations like greeting, seating, taking and delivering orders, table bussing,
and bill delivery. Speeding up service procedures may require staff training, and
also increasing the number of staff. The cost of paying the training and the salary
for the extra labor has to be balanced with the revenue coming from the increase
in meals being served. Finally, some restaurants have already introduced table
management systems based on hand-sets which allow instant communication be-
tween kitchen and floor staff - e.g. saving the physical time required by waiters to
walk to the kitchen to notify new orders.

71

Implementing restaurant revenue management

In [61] a five-step procedure has been suggested for implementing revenue man-
agement in restaurants. The approach involves: (1) establishing the baseline, i.e.
retrieving data distributions about average cheque, seat occupancy, party arrivals,
meal times, RevPASH, and party mix; (2) understanding the drivers, i.e. analyz-
ing the causes affecting meal times and RevPASH; (3) developing a strategy, e.g.
improving meal durations, table mix, menu design, service efficiency, or customer
arrival management; (4) implementing the changes, e.g. investing in training or
technology, or reviewing menu, table mix, or staffing level; (5) monitoring out-
comes, i.e. evaluating the changes in terms of revenue, operation, and customer
satisfaction.

In [62] the 5-step revenue management strategy is implemented in a real restau-
rant with 230 seats and with no reservations. The applied strategy purely involves
duration management, while the complementary approach concerning demand

based pricing (as discussed in the previous pages) was not considered, i.e. the
original menu and prices were preserved. They show how the restaurant revenue
was increased by focusing on increasing seat occupancy, and on reducing meal
duration (in mean and variance). In particular, the revenue management strategy
consisted in introducing a table mix (based on [90]) more suitable for the standard
party mix of the restaurant, and in making the service process more efficient, es-
pecially in payments and table bussing. The reduction of meal duration (mean and
deviation) was tackled by reviewing the hosting procedures, investing in focused
training to staff, buying a table management system, buzzers to notify when tables
become ready, and faster credit card processing tools, and hiring extra personnel
where required. The costs of implementation were shown to be covered in one
year, and the increase in yearly profit was estimated to be 5%.

Optimal restaurant table configuration

Above we have discussed the importance of using a table mix suitable for the
standard party mix of the restaurant. However, the party mix can be unknown,
e.g. for a brand new restaurant, or can be quite variable depending on the day,
or on the time of the day. Uncertainty in party mix can be managed with more

72

flexibility if we have a set of combinable tables, as the combinability allows more
options in serving different mixes of parties. In particular, when party mixes vary
over time, combinability allows multiple restaurant configurations, which can be
changed by day, or even during the same dining session. The gain in flexibility
has to be balanced with the drawback that any group of combinable tables rarely
become available all at the same time, so those which are freed first have to be
hold for as long as all the other tables in the group remain unavailable.

In [90] simulation is used to determine the best restaurant configuration, i.e.
the best mix of combinable and non-combinable (or dedicated) tables. Results
show that combinable tables have a benefit for small restaurants (represented with
50 seats), while for large restaurants (represented with 200 seats) it is better a table
mix purely composed by dedicated tables. Results also suggest how revenue could
be increased by changing the restaurant configuration day by day, according to the
expected party mix - provided this will not annoy the customer or create confusion
for the staff.

The simulation model in [90] considers a restaurant with no reservations,
where tables are distributed over 4 different capacities (i.e. 2, 4, 6, 8), parties ar-
rive and get seated according to the rule that any table becoming free is assigned
to the largest waiting party - thus penalizing small parties (especially singletons) -
and tables can be combined only to serve parties of size 5 to 8 (8 is the maximum
party size). This brings to a total of some 8000 different table mixes. As pointed
out by the author, different settings - e.g. more table sizes, a seating rule based on
the fairer and common first-come-first-serve principle (FCFS), or a different rule
to decide which size of party can use combinable tables - may change the problem
size and the results.

The main issue for trying different settings is the fact that for restaurants of
larger size (i.e. more than 200 seats), or with more than four table sizes, the enu-
meration of all possible table mixes becomes intractable. The restaurant we are
going to model in this thesis has about 100 seats, but tables are required to cover
sizes from 2 to 30 (according to the standard party mix), which makes a com-
plete table mix optimization perhaps impractical. In [90], a faster optimization
algorithm is one of the issues the author left for future analysis.

73

Open issue in booking and seating optimization

Restaurants can manage customer arrivals through methods like overbooking or
forecasting. In traditional systems, the restaurant manager handles booking and
seating decisions “simply” based on his experience. The use of on-line computer-
ized reservation and table management systems has recently started to grow also
for the restaurant business [73] [60]. However, current solutions do not support
any advanced form of booking or seating optimization. For instance, quoting [62],
in current on-line systems restaurant managers “must decide on the number of ta-
bles to allocate to each time slot and determine the interval between reservations”,
and “little research exists on the optimal number of tables to allocate to each time
slot”. The research discussed in this dissertation aims to cover this gap, i.e. to
show how artificial intelligence can be used to support on-line optimization, in
both booking and floor management.

Optimization based models

To our knowledge, the most relevant work on developing optimization models
for restaurant table management is presented in [13]. The general problem is to
decide whether to accept or reject parties as they arrive, and which table to allocate
to each accepted party, maximizing the revenue (represented by the number of
people eating over a dining period), while controlling the average time parties
have to wait before getting seated, as well as the degree of fairness violation (i.e.
fairness being represented by the FCFS principle). The model assumes that every
party can be seated at any time within a maximum waiting period - which is fixed
to 1 hour for parties with reservation, and to half an hour for walk-ins - but parties
are allowed to leave the queue only at the end (i.e. not earlier nor later) of that
period. The authors start by presenting optimization models which do not consider
reservations, and then incorporate reservations.

For the case with no reservations, tests have been dimensioned over a real
restaurant of small size, with 9 tables and a total of 38 seats. Customer arrivals
have been modelled as a non-homogeneous Poisson process - with rate λ(arrival
time, party size) - as the real distribution was unknown. They compare three dif-
ferent levels of nesting, i.e. allowing parties of size s to use only tables of size s′=s

74

(no-nesting), s ≤ s′ ≤ s+1 (1-up-nesting), or s′ ≥ s (full-nesting). Using nesting,
the issue is on whether to assign a party to an oversized table, or to reject the party
and wait for one of more suitable size but whose arrival is uncertain. Simulation
results indicate that nesting is good for small restaurant loads - the version using
no-nesting saves the large tables for large parties, but this does not payoff due to
the low number of arrivals. For larger loads the benefit of nesting decreases, as
there is a much higher probability of a party of the right size arriving (later), and
so we lose if we put a small party at the table. Overall, the optimization models
are shown to outperform other comparison methods (e.g. FCFS) for low, medium,
and particularly for high restaurant loads. The best optimization method, which is
based on approximated dynamic programming (ADP), achieves a higher revenue
than FCFS, serving about the same number of parties (but a more profitable set),
and maintaining (in some cases decreasing) the average waiting time.

For the case with reservations, tests have been carried out using real data from
a real restaurant with 27 tables and 86 seats, and assuming no-nesting (for sim-
plicity). Table demand was generated using the real distribution, and tests were
repeated over a lower (90 people) and higher (120 people) restaurant load. For
both loads the performance achieved using optimization was 3.5 % to 8.9 % bet-
ter than FCFS in terms of revenue, with comparable waiting time.

In all the experiments, without or with reservations, the optimization models
were set with constraints to guarantee the FCFS fairness rule over parties with
same size. However, this still allows unfair situations with parties of larger size
being served before smaller parties which are in front of them in the queue. For
example, a party of 4 may get quite annoyed seeing a party of 6 behind them
being called first. Further, in the experiments tackling reservations no nesting has
been allowed. This is quite restrictive, e.g. preventing parties of 4 from using
tables for 8 can be a possible policy, however tables for 6 (at least) are generally
allowed to seat fours. Results should be evaluated over a (more standard) seating
policy based on some level of nesting. Finally, as pointed out by the authors, the
optimization models have so far represented restaurants with non combinable (or
dedicated) tables, and the extension to consider combinability is stated as future
research.

75

3.4 Discussion

In the first part of this chapter, we gave an introduction to constraint programming
and the standard solving procedure (tree search interleaved with constraint propa-
gation), and presented the relevant techniques available from the literature to solve
dynamic problems with uncertainty. In the next paragraphs, we will briefly revise
the reasons why we have not chosen the existing approaches to tackle Restaurant
Table Management (RTM).

Probabilistic [36] and Stochastic [67] CSPs are suitable for problems which
have an accurate probability model for changes, which is unrealistic for RTM.
Further, computing a model and maintaining it up to date in such a dynamic envi-
ronment might be too expensive to do effectively.

Branching CSPs [38] model problems whose future development can be rep-
resented using probabilistic trees, where one event (node) depends on other events
(nodes) earlier in the tree. In RTM most events appear to be independent.

Sampling methods [10] [11] [12] [26] could be applied to tackle RTM, e.g.
to decide, at each point during a dinner session, the seating plan that maximizes
the chances to accommodate future meal requests. However, the computation of
samples of sufficient size and in sufficient number to effectively optimize RTM
might again be too complex to do it in practical time.

In RTM, frequent table reallocations and reconfigurations cause confusion and
can annoy both staff and customers. The approach based on Local Changes [91] is
not suitable for RTM, e.g. to accommodate a delay, Local Changes could return a
solution which requires the reallocation of a considerable number of tables, even
though there was another possible solution with only a few changes. In our study
on solution stability for RTM, we will develop a search algorithm for Optimally
Stable Solutions, similar to [79].

We also argued against the usability of Slack Times [30] to protect schedules
from disruptions and delays. An accurate and effective choice of slack times is
not easy to obtain, considering that disruptions and delays are caused by highly
uncertain factors like customer behavior and restaurant performance. Restaurant
profit and table usage may deteriorate if slack times are not positioned in the
correct place and in the correct quantity.

76

Just In Case scheduling [35] pre-computes contingent schedules to anticipate
likely changes and breakages. In RTM, the possible combinations of changes
and breakages that can occur over an evening session are huge, so implementing
contingent schedules would not be of practical use.

The fact that changes are very frequent and diverse in RTM makes the im-
plementation of Super Solutions (SS) [55] complex to do effectively. Further, SS
may not be suitable to model problems which requires us to accommodate chains
of changes (like RTM).

In the second part of this chapter, we described the problem of scheduling,
focusing on scheduling jobs with fixed start and end time (SFSE), and provid-
ing representations for restaurant table allocation. We finally discussed restau-
rant revenue management in general, including pricing, menu, and meal duration
management, a work on table mix optimization, and an optimization model for
handling queues in table management.

The next chapter begins the central part of the dissertation, and concerns the
development and testing of our initial (constraint) model of the problem. The
problem will be represented as a version of SFSE.

77

Chapter 4

Modelling and solving the static
decision problem

4.1 Introduction

In this chapter we discuss our basic model for tackling the restaurant problem. We
present a solution that deals with booking and floor management together. Specif-
ically, we consider table management as a sequence of static decision problems
linked by changes. Each time a change happens, e.g. a new request, a book-
ing arriving early or late, or a dinner lasting shorter or longer than expected, we
reformulate and solve a new static problem.

In the next section we represent table management as a scheduling problem,
with tables as resources and parties as tasks with fixed start and end times. We
then introduce an initial (basic) CSP representation of the static problem. We ex-
tend the original representation with some pre-solving checks and additional con-
straints designed for improving the efficiency through enforcing extra constraint
propagation. We present a study concerning the design of search algorithms,
again, finalized to produce a more efficient search. We conclude by showing the
benefit achieved on both representation and search algorithms from comparing the
solution we finally achieved to the original, and to others recommended by the lit-
erature. We test our model on the original scheduling problem with 23 tables (i.e.
as in the Eco restaurant), we then scale to a bigger problem size (i.e. on an hypo-

78

thetical restaurant of 100 tables), and we finally generalize our search algorithm
and apply it to a different problem class (i.e. on quasi-groups of order 20).

The aim of this chapter, with respect to our thesis, is to show how constraint
programming can be used to model and solve the static decision problem, and how
careful modelling can improve the efficiency of solving. Our current interest is to
demonstrate how our model can provide answers in reasonable time to be usable
in a restaurant, while in the next chapter we will investigate whether we can also
give good quality solutions (or table plans). In table management, either booking
or floor phase, decisions have to be taken in real time. As a general guide, we
expect a manager to take an average of 10 to 20 seconds to decide on where to
allocate a new booking, or on how to reallocate a seating plan after a change.

4.2 The scheduling problem

We model table management as a scheduling problem, viewing tables as resources,
and parties as tasks. Each party has a fixed start and end time, and a size. Each
party must be allocated to a table (or set of tables), such that the table is large
enough for the party, and such that no two parties that overlap in time are allocated
to the same table. Each party must be seated without interruption on the table.
The problem is to determine whether or not a set of parties can be seated, and to
provide a feasible seating plan if there is one. Figure 4.1 (top) shows a problem
instance with four parties (left) and a possible allocation (right). Note that P2 is
allocated into T2 and T3, since the problem allows T3 to be joined onto T2 to give
a capacity of 6.

Any change generates a new instance, e.g. with an extra element in the set of
parties, if the change regards a booking request, or with a different start or end
time for one of the original elements, in case of a late (or early) arrival (or finish).
Figure 4.1 (left) represents a chain of 3 static instances linked by 2 changes (i.e. a
new booking and a late finish). On the right we see possible seating plans for the
3 instances - in the second and third case, the changes in table occupancy from
the previous plan are highlighted in gray. More specifically, on the top we see the
initial problem at time 0, with 4 parties (left) and a possible allocation (right). In
the middle we assume we are at time 1, i.e. P1 is already occupying table T1, P2

79

is on tables T2 and T3, and there is a new booking request (P5). Again, we have
the second instance with the extra party (left), and a possible allocation (right).
Finally, we assume we are at time 2, i.e. P2 has just freed T2 and T3, P3 is on
T4, however P1 is not ready to free T1 as expected. At the bottom we see the new
problem, and a possible reallocation.

Party Size Start End Table
P1 2 0 2 ?

P2 4 0 2 ?

P3 3 1 3 ?

P4 2 2 4 ?

Table[size] 0 1 2 3
T1[2] P1 P1 P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

P1 2 0 3 T1

P2 4 0 2 T2,3

P3 3 1 3 ?

P4 2 2 4 ?

P5 2 2 4 ?

Table[size] 0 1 2 3
T1[2] P1 P1 P4 P4

T2[3] P2 P2 P5 P5

T3[3] P2 P2

T4[4] P3 P3

P1 2 0 3 T1

P2 4 0 2 T2,3

P3 3 1 3 T4

P4 2 2 4 ?

P5 2 2 4 ?

Table[size] 0 1 2 3
T1[2] P1 P1 P1

T2[3] P2 P2 P5 P5

T3[3] P2 P2 P4 P4

T4[4] P3 P3

Figure 4.1: Sequence of changes: time 0 (top), initial booking sheet with 4 parties
and possible seating plan; time 1 (middle), new booking request P5 for time 2,
and possible allocation into the current plan; time 2 (bottom), late finish of party
P1, and possible seating reallocation.

80

4.2.1 Managing infeasibility

If there is no way to accommodate a change by rearranging the seating plan, re-
allocating everybody, but maintaining their original time slots (i.e. start time and
duration), the problem is found to be infeasible, and the static model simply re-
ports that there is no schedule which can seat the new set of parties. In the real
application, depending on the type of change, further steps may be considered or
even necessary. Figure 4.2 reports two use cases which explain how our solution
could be utilized in the real application, to provide assistance to the restaurant
in managing feasible and infeasible changes. Typically, left, when infeasibility
is caused by a new booking request, the restaurant can go further and suggest
possible alternatives to the customer. Another case, right, is when infeasibility
is caused by a change in table usage - for example, such change can be a party
arriving late or a dinner that is longer than expected. This forces the restaurant
to rearrange the seating plan, e.g. delaying some of the bookings which have not
yet been seated. Chapter 6 discusses more details about what we can do in these
situations in our application.

������� ����	
� ����� ��

� ����	
�����
�����

�������

�����

��
����

����

�����
	��	��

��
���������

�����
������
������
����

�����
������

�����
�������

���	������

�������
������

�������
�����	� �

������ 	
	����

Figure 4.2: Use cases: (left) booking phase; (right) floor phase.

81

4.3 Basic CSP representation

In this section we introduce a basic constraint representation of the problem.

4.3.1 Scheduling using single tables

Our first model does not consider table configurations, i.e. parties can only be
accommodated into single tables. Figure 4.3 displays an example. With single
tables, and despite having fixed start and end times, our scheduling problem is
NP-complete [20] (discussed in Section 3.2). Note that, the problem can also be
regarded as the ”Reservations without Slack” problem (feasibility version) [76].

Party Size Start End Table
P1 2 0 2 ?
P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?
P5 2 2 4 ?

Table[size] 0 1 2 3
T1[2] P1 P1 P4 P4

T2[3] P3 P3

T3[3] P5 P5

T4[4] P2 P2

Figure 4.3: Problem instance (top); and a possible seating plan with no table
configuration (bottom).

We want to ensure we can provide an effective solution to this simplified prob-
lem. In the next chapter the model will be extended to also represent multiple join-
ing of tables. Note that, as from our discussion in Chapter 2, by allowing different
and dynamic restaurant layouts the number of possible allocations increases and
the search space explodes with the number of possible configurations.

82

Modelling using µ-coloring on interval graphs

The basic model designed in this thesis is based on SFSE−OC (Section 3.2), i.e.
scheduling with fixed start and end times and with tables ordered by capacity.
SFSE−OC is representable using µ-coloring on interval graphs. For clarity, in
the next example we discuss the µ-coloring problem representation of the simple
scheduling instance of Figure 4.3.

Example - Consider a set of 4 tables {T1, T2, T3, T4} of capacity {2, 3, 3, 4}, and a
set of 5 parties {P1, P2, P3, P4, P5} of size {2, 4, 3, 2, 2} (as shown in Figure 4.3).
Figure 4.4 (top) shows the 5 parties with fixed start and end times represented as
a set of intervals over the real time-line. For each party, there is a set of tables
that can accommodate the party. In particular, if a party can be accommodated
by table Ti then it can also be accommodated by any other table of capacity at
least Ti.capacity, i.e. by any other Tj with j > i. Figure 4.4 (middle) repre-
sents the correspondent problem instance of µ-coloring on interval graphs (we
use the notation Ti = i). The graph has 5 nodes represented by parties P1, P2,
P3, P4, P5. If two intervals intersect each other over the real line then the cor-
respondent nodes are connected (and must be assigned different values). There
are two cliques, which correspond to the intersections at times t1 and t2 in Fig-
ure 4.4 (top). We use a µ function µ(Pi) = minj{Tj can accommodate Pi},
i.e. (µ(P1), µ(P2), µ(P3), µ(P4), µ(P5)) = (1, 4, 2, 1, 1). Note that µ(Pi) is suf-
ficient to represent the set of allowed tables for Pi, which is {Tj : j ≥ µ(Pi)}.
The coloring function f : Pi → N maps each node to a color (represented by
a number). The problem is µ-colorable if there exists a coloring f such that
f(Pi) ≥ µ(Pi) ∀ i ∈ {1, 2, 3, 4, 5}. Figure 4.4 (bottom) shows a possible so-
lution.

4.3.2 CSP representation

To represent the scheduling problem as a CSP, we model the parties as decision
variables, and the tables as the values to be assigned.

83

P4 � 1

P1 � 1

P2 � 4

P3 � 2

P5 � 1

P1

P2

P3

P4

P5

{ T1 ,T2 ,T3 ,T4 }

{ T4 }

{ T1 ,T2 ,T3 ,T4 }

{ T1 ,T2 ,T3 ,T4 }

0 1 2 3 4 time

{ T2 ,T3 ,T4 }

P1 ∈∈∈∈ { T1 ,T2 ,T3 ,T4 }

P2 ∈∈∈∈ { T4 }

P3 ∈∈∈∈ { T2 ,T3 ,T4 }

P4 ∈∈∈∈ { T1 ,T2 ,T3 ,T4 }

P5 ∈∈∈∈ { T1 ,T2 ,T3 ,T4 }

P4 = 1

P1 = 1

P2 = 4
P3 = 2

P5 = 3

P1 = T1

P2 = T4

P3 = T2

P4 = T1

P5 = T3

t1 t2

Figure 4.4: An example of µ-coloring on interval graphs representing an instance
of SFSE−OC for restaurant table allocation: set of intervals over the real line (top);
problem instance (middle); possible solution (bottom).

84

Decision variables

We assume a set (or booking sheet) of N parties, P = {P1, P2, .., PN}. Each
party Pi is represented by a quadruple Pi = 〈Pi.size, Pi.start, Pi.end, Pi.table〉,
where Pi.size is the size of the party, Pi.start is the dinner start time, Pi.end is the
expected end time, and Pi.table is the table to be assigned, which also represents
our decision variable. Therefore, our set of variables is:

X = { P1.table, P2.table, .., PN .table } .

Possible values

We assume a set (or restaurant) of M tables T = {T1, T2, .., TM}, where each
table Ti has a capacity Ti.capacity. Our set of possible values is:

Y = { T1, T2, .., TM } .

Initial domains

Each decision variable Pi.table can take values in a subset of Y , i.e. its initial
domain is defined as Di = {Tj | Tj.capacity >= Pi.size}. The set of initial
domains is:

D = {D1, D2, .., DN } .

Constraints

Our basic model is made by the two types of constraints: a no-overlapping con-
straint (C1t), which ensures that all parties overlapping in time use different tables;
and a capacity constraint on adjacent tables (C2khij), which represents those cases
where two adjacent tables cannot be fully occupied at the same time, e.g. if the
space is not enough to fit all the chairs. We now explain C1t and C2khij in detail.

Lets assume R = {0, 1, .., T} be the range of possible start times. For each
time t in R, we consider the set of parties overlapping in t, Xt = {Pi.table |
Pi.start ≤ t < Pi.end}. Then we can formally express:

85

∀t ∈ R, C1t = alldifferent{Xt} .

Note that, there can be two distinct times {t1, t2} ∈ R, for which Xt1 contains or
is equal to Xt2 . For our overlapping constraint, we need to consider only a subset
RI ⊆ R, such that there is no pair of times {t1, t2} ∈ RI , t2 6= t1, for which Xt1

contains or is equal to Xt2 . Formally, RI ⊂ R is defined so that:

∀t1 ∈ RI , ¬∃t2 ∈ RI , t2 6= t1, s.t. (Xt1 ⊆ Xt2) ∨ (Xt2 ⊆ Xt1) .

We can obtain RI with the following step:

RI = { t1 ∈ R | ¬∃ t2 ∈ R \ {t1}, (Xt1 ⊂ Xt2) ∨ ((t2 < t1) ∧ (Xt2 = Xt1)) } .

RI contains only those t1 ∈ R for which Xt1 is not properly contained by any
other Xt2 , with t2 ∈ R, i.e. we only consider the times having dominant sets.
Further, if any Xt2 is equal to any Xt1 , with t2 > t1, RI excludes t2, i.e. we
include only the first time in case two (or more) have the same set. Figure 4.5
shows 5 parties, and the elements in Xt over time. The set of possible start times
is R = {0, .., 7}, while, applying the condition above, the set of times relevant
for the overlapping constraint would be RI = {0, 4}. Note that the overlapping
constraint would be redundant if applied on any other time.

P3

P1

P5

P4

0 1 2 3 4 5 6 7

P2

P1,2 P1,2 P3 P3,4 P3,4,5 P4,5 P5 �

t :

X t :

Figure 4.5: Example showing the set of overlapping parties over time.

86

Constraint C1t then becomes:

∀t ∈ RI , C1t = alldifferent{Xt} .

Let A be the set of pairs (k, h), such that Tk and Th are adjacent tables, i.e.:

A = { (k, h) ∈ (1..M, 1..M) | k 6= h, adjacent(Tk, Th) } .

Let B be the set of quadruples (k, h, sk, sh), such that (k, h) ∈ A, and such that
the pair of tables (Tk, Th) cannot fit a pair of parties of sizes (sk, sh) at the same
time, i.e.:

B = { (k, h, sk, sh) | (k, h) ∈ A, si ≤ Ti.capacity, ¬fit ((Tk, Th), (sk, sh)) } .

Given B, the general procedure to define constraint C2khij is then:

∀ (k, h, i, j), s.t.

(i, j) ∈ (1..N, 1..N), i < j ,

(k, h, Pi.size, Pj .size) ∈ B ,

∃ t ∈ RI , s.t. (Pi.table ∈ Xt) ∧ (Pj.table ∈ Xt) ,

C2khij = (Pi.table 6= Tk) ∨ (Pj.table 6= Th) .

The procedure considers any pair of adjacent tables (Tk, Th) and any pair of par-
ties (Pi, Pj) such that, the quadruple (k, h, Pi.size, Pj.size) appears in the set B,
and there exists a t in RI where Pi and Pj overlap. C2khij forbids the pair of
assignments (Pi.table = Tk) and (Pj.table = Th).

Notation

For convenience, from now on we may use Pi to refer to the decision variable
Pi.table.

87

Final CSP

The set of variables, the set of possible values, the initial domains, and the con-
straints are summarized in Figure 4.6, in which we use the new notation.

Variables : X = { P1, P2, .., PN }

Values : Y = { T1, T2, .., TM }

Domains : D = { D1, D2, .., DN }
Di = { Tj | Tj.capacity >= Pi.size }

Constraints : ∀ t ∈ RI ,
Xt = { Pi | Pi.start ≤ t < Pi.end } ,
C1t = alldifferent{Xt}

A = {(k, h) ∈ (1..M, 1..M) | k 6= h, adjacent(Tk, Th)}
B = {(k, h, sk, sh) |

(k, h) ∈ A, si ≤ Ti.capacity, ¬fit ((Tk, Th), (sk, sh))}

∀ (k, h, i, j) ,
(i, j) ∈ (1..N, 1..N), i < j ,
(k, h, Pi.size, Pj.size) ∈ B ,
C2khij = (Pi 6= Tk) ∨ (Pj 6= Th)

Figure 4.6: CSP representation: variables, values, domains, and constraints.

Example

Given a restaurant description (i.e. T,A,B) and a booking sheet (P), we have
now all the information we need to define the corresponding CSP(X,D,C). Fig-
ure 4.7 shows the resulting constraint model for the simple problem of Figure 4.3.

88

Booking sheet and restaurant description - The booking sheet P is represented
by Figure 4.3 (top). For the restaurant description (T,A,B), T can be retrieved in
Figure 4.3 (bottom). In this example, we assume A = {(1, 2), (2, 3), (3, 4)} (i.e.
tables with consecutive numbers are adjacent), and B = {(3, 4, 3, 4)} (i.e. tables
T3 and T4 cannot simultaneously use their maximum capacity).

CSP - The variables P1, P2, P3, P4, and P5 can take values from the domains
D1, D2, D3, D4, and D5 respectively. Note that the time range is R = {0, 1, 2, 3},
while the set of times used by our constraints is RI = {1, 2}. Constraints C11

(defined in t = 1) and C12 (defined in t = 2) ensure that all parties overlapping in
time use different tables. C23432 (defined in t = 1) ensures T3 and T4 are not both
fully occupied at the same time (which could only happen if they are assigned P3

and P2 respectively).

Variables : P1, P2, P3, P4, P5

Domains : D1 = {T1, T2, T3, T4}
D2 = {T4}
D3 = {T2, T3, T4}
D4 = {T1, T2, T3, T4}
D5 = {T1, T2, T3, T4}

Constraints : C11 =alldifferent(P1, P2, P3)
C12 =alldifferent(P3, P4, P5)
C23432 = (P3 6= T3) ∨ (P2 6= T4)

Figure 4.7: CSP representation for the example of Figure 4.3.

4.4 Additional checks and constraints

Using the basic CSP model presented above†, in some initial tests some problem
instances were taking too long to solve - some were still unsolved after several
†Coded in Ilog Solver 5.3

89

hours. This was not acceptable if we aim to have a practical and effective solution
for table management. Therefore, as a first step to improve the efficiency, we in-
troduced two types of pre-solving checks and one type of additional constraint for
symmetry breaking. These are not necessary to solve the problem itself (C1t and
C2khij are sufficient for it), however they are designed to speed up the resolution
process. Specifically, the pre-solving checks are introduced to spot infeasibility
before starting the search process, while the additional constraints are aimed to
prune the search space.

4.4.1 Pre-solving checks

Let RC be the maximum capacity of the restaurant, i.e.:

RC =
∑

i=1..M

{ Ti.capacity } .

The number of covers seated at any time t must not exceed RC. Similarly, the
number of parties seated at any time t must not exceed the number of tables M .

Let maxNC be the maximum number of covers at any time t, i.e.:

maxNC = max
t∈RI

∑

i=1..N, Pi.table ∈ Xt
Pi.size .

Let maxNP be the maximum number of parties at any time t, i.e.:

maxNP = max
t∈RI

∑

i=1..N, Pi.table ∈ Xt
1 .

We can then define the following pre-solving checks:

C3 = maxNC ≤ RC ,

C4 = maxNP ≤M .

Lets consider a small restaurant with 2 four-seater and one six-seater tables (i.e.
M = 3). If the number of parties at a time t is 2, but the parties are both of size

90

6, then C4 is not able to spot the infeasibility. C4 only compares the maximum
number of parties overlapping in time to the total number of tables. We extend C4

to distinguish among categories of parties (by size lower bound) and of tables (by
capacity lower bound). Back to our example, the new version will find that there
are too many parties of size six (or more) compared to the number of tables which
can serve six (or more).

Let maxNPs be the maximum number of parties of size at least s overlapping
at any time, i.e.:

maxNPs = max
t∈R

∑

i=1..N, Pi.size≥s, Pi.table ∈ Xt
1 .

Let Mc be the number of tables of capacity at least c, i.e.:

Mc =
∑

i=1..M, Ti.capacity≥c
1 .

Let minPS and maxPS be the minimum and maximum party size, i.e.:

minPS = min
i=1..N

{Pi.size} , maxPS = max
i=1..N

{Pi.size} .

At any time t, the number of overlapping parties of size at least i must not exceed
the number of tables of capacity at least i, for all possible i ∈ {minPS, ..,maxPS}.

Therefore, we can formally express this as:

∀ i ∈ {minPS..maxPS} , C4i = maxNPi ≤ Mi .

Note that C4 is a specific case of C4i , i.e. the case with minPS = maxPS = 1.

4.4.2 A symmetry breaker constraint

We assume that any two parties Pi and Pj which have same size, start time, and
end time, are equivalent - i.e. if they are assigned Pi to table Tk and Pj to table
Th, then they can also be assigned Pi to table Th and Pj to table Tk.

91

Let E be the set of all pairs of equivalent parties, i.e.:

E = {(Pi, Pj) | i 6= j, (Pi.size, Pi.start, Pi.end) = (Pj.size, Pj.start, Pj.end)}

We then define the symmetry breaker constraint:

C5ij = Pi < Pj, ∀ (Pi, Pj) ∈ E, i < j .

4.4.3 Example

Figure 4.8 shows our additional checks and constraints for the problem of Fig-
ure 4.3. C3 ensures that the number of seats (RC = 12) is not less than the max-
imum number of diners seated at the same time (maxNC = 9, which happens
at time t = 1). C4 ensures that the number of usable tables (M = 4) is not less
than the maximum number of parties overlapping in time (maxNP = 3, which
happens at t = 1 and t = 2). C42 (as the original C4) compares the maximum
number of overlapping parties of size two or more to the total number of tables
of size two or more; C43 compares the maximum number of overlapping parties
of size three or more to the total number of tables of capacity three or more; and
C44 compares the maximum number of overlapping parties of size four or more
to the total number of tables of capacity four or more. Note that, if for example
P1, P2, and P3 were of size 4 the problem of Figure 4.3 would not be feasible as
there is only one table for four. However, neither C3, nor the original C4 would
spot the infeasibility, while C44 would find (maxNP4 = 3) ≤ (M4 = 1), which
is false. For this example, C3, C4, and C4i are always true, but are shown here
for illustration. Finally, C5 breaks a symmetry in the problem, and ensures that
an ordering is forced between pairs of equivalent parties (E = {(P4, P5)}). In the
solution of Figure 4.3 (bottom) we have in fact P4 = 1 < P5 = 3.

Note that C3 and C4 represent a first feasibility check that the solver performs
before starting the search. If any of them is violated then the problem is infeasible,
then there is no need to continue with the search. C5ij makes sure the search
considers only one assignment over any set of symmetrical assignments. This
constraint is expected to save a lot of search effort compared to the initial model,

92

i.e. avoiding going through all equivalent assignments of values to variables, and
therefore repeating many “symmetrical mistakes”.

C3 = maxNC ≤ RC (maxNC = 9, RC = 12)

C4 = maxNP ≤M (maxNP = 3, M = 4)

C42 = maxNP2 ≤ M2 (maxNP2 = 3, M2 = 4)

C43 = maxNP3 ≤ M3 (maxNP3 = 2, M3 = 3)

C44 = maxNP4 ≤ M4 (maxNP4 = 1, M4 = 1)

C545 = P4 < P5

Figure 4.8: Additional checks and constraints for the example of Figure 4.3.

Example of symmetrical solutions - In Figure 4.9 we can see two solutions
both valid but symmetric. Unless there is a preference, it is equivalent to consider
one or the other allocation for parties P4 and P5. C545 ensures only one symmetric
solution is allowed, in this case the one at the bottom.

Table[size] 0 1 2 3
T1[2] P1 P1 P5 P5

T2[3] P3 P3

T3[3] P4 P4

T4[4] P2 P2

Table[size] 0 1 2 3
T1[2] P1 P1 P4 P4

T2[3] P3 P3

T3[3] P5 P5

T4[4] P2 P2

Figure 4.9: Two equivalent or symmetric seating plans: P4 > P5 (top) ; P4 < P5

(bottom).

93

4.5 CSP of the restaurant Eco with single tables

The specifics of the restaurant Eco were described in Section 2.3. In Eco, the
range of possible start times on a dinner session is {4:00 p.m., 4:15 p.m., .., 10:00
p.m.}, i.e. 6:15 hours divided into 25 15-minute units, which we normalize to
R = { 0, 1, .., 24 }. Now we take the booking sheet represented in Figure 4.10 as
example, and we define the corresponding CSP(X,D,C).

Party Size Start End
P1 5 1 5
P2 2 1 5
P3 3 2 6
P4 2 2 8
P5 5 3 8
P6 4 4 11
P7 4 4 10
P8 4 4 9
P9 4 4 8
P10 3 4 9
P11 2 4 12
P12 3 5 12
P13 5 6 10
P14 4 6 13
P15 4 6 12
P16 2 6 11
P17 2 6 10
P18 5 7 12
P19 3 7 12
P20 2 7 13
P21 6 8 16
P22 3 8 16
P23 3 8 14
P24 3 8 13
P25 2 8 16
P26 2 8 15
P27 2 8 13
P28 5 9 13
P29 3 9 17
P30 3 9 15
P31 2 9 14
P32 4 10 17
P33 3 11 19

Party Size Start End
P34 6 12 17
P35 4 12 18
P36 3 12 16
P37 2 12 20
P38 3 13 21
P39 2 13 22
P40 2 13 21
P41 2 13 19
P42 3 14 20
P43 2 14 22
P44 2 15 25
P45 5 16 25
P46 4 17 26
P47 4 17 25
P48 3 17 26
P49 3 17 26
P50 2 17 27
P51 2 17 26
P52 2 17 24
P53 4 19 26
P54 4 19 25
P55 3 19 29
P56 3 19 28
P57 2 20 28
P58 6 21 29
P59 6 21 27
P60 4 21 29
P61 2 21 26
P62 4 22 31
P63 2 22 28
P64 5 23 30
P65 4 23 29

Figure 4.10: Representation of a booking sheet of 65 parties - for convenience,
parties have been listed in increasing order of start time.

94

Our set of decision variables is:

X = { P1, P2, .., P65 } .

The set of possible values is:

Y = { T1, T2, .., T12, T14, .., T24(orWT) } .

Note that, in the restaurant Eco there is no table T13, and we use T24 to represent
the window table WT .

The set of initial domains is:

D = { D1, D2, .., D65 } ,

Di = { Tj | Tj.capacity >= Pi.size } .

Depending on the party size, each decision variable has an initial domain as rep-
resented in Table 4.1.

Table 4.1: Domains in Eco.

Party size Initial domains
1 T1, T2, .., T12, T14, .., T24

2 T1, T2, .., T12, T14, .., T24

3 T1, T2, T3, T6, T9, T10, T11, T14, T15, T16, T17, T24

4 T1, T2, T6, T9, T10, T11, T14, T15, T16, T17, T24

5 T1, T2, T6, T11, T14, T15, T16, T24

6 T1, T2, T6, T14, T15, T16, T24

7 T16, T24

8 T24

There are 17 constraints C1t , defined for t in the subset of possible start times:

RI = {4, 5, 7, .., 17, 19, 20, 21, 23} .

95

Then, {0, 1, 2, 3, 6} /∈ RI , because X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ X4, and X6 ⊂ X7.
Similarly, {18, 22, 24} /∈ RI , as X18 ⊂ X17, X22 ⊂ X23, and X24 ⊂ X23.

We now characterize constraint C2khij .

In Eco, any pair of parties of size 5 or 6 cannot simultaneously occupy either
the pair of tables T1 and T14, or the pair T2 and T15, i.e.:

B = { (1, 14, 5, 5), (14, 1, 5, 5), (2, 15, 5, 5), (15, 2, 5, 5)

(1, 14, 5, 6), (14, 1, 5, 6), (2, 15, 5, 6), (15, 2, 5, 6)

(1, 14, 6, 5), (14, 1, 6, 5), (2, 15, 6, 5), (15, 2, 6, 5)

(1, 14, 6, 6), (14, 1, 6, 6), (2, 15, 6, 6), (15, 2, 6, 6) } .

The number of constraints C2khij depends on the number of parties of size 5 or 6
which overlap in time.

For example, for the pair of parties (P1, P5) we have the 4 constraints:

C2 1 14 1 5 = (P1, P5) 6= (1, 14) ,

C2 2 15 1 5 = (P1, P5) 6= (2, 15) ,

C2 14 1 1 5 = (P1, P5) 6= (14, 1) ,

C2 15 2 1 5 = (P1, P5) 6= (2, 15) .

Further, in our example there are 18 pairs (i, j) of parties (Pi, Pj) of this type, i.e.:

(i, j) ∈ { (1, 5), (5, 13), (5, 18), (13, 18), (13, 21), (13, 28)

(18, 21), (18, 28), (21, 28), (21, 34), (28, 34), (34, 45)

(45, 58), (45, 59), (45, 64), (58, 59), (58, 64), (59, 64) } .

Thus, as for each pair (i, j) there are 4 constraints { C2 1 14 i j
, C2 14 1 i j

, C2 2 15 i j
,

and C2 15 2 i j
}, the total number of C2 k h i j

is 72.

96

Finally, we redefine the additional checks and constraints C3, C4i , and C5.

The maximum capacity of the restaurant Eco using single tables is RC = 83.
Further, the maximum number of covers at any time in the booking problem is:

maxNC =
∑

i=1..N, Pi.table ∈ X23

Pi.size = 76 .

Therefore:
C3 = maxNC ≤ RC .

The number of tables in the restaurant Eco is 23, all 23 can accommodate at least
2 or more, 12 can accommodate at least 3, 11 at least 4, 8 at least 5, 7 at least 6, 2
at least 7, and 1 can seat 8 (i.e. maxTC = 8). Then, as the sizes of the parties in
our booking sheet ranges from 2 to 6, we have:

C42 = maxNP2 ≤M2 (M2 = 23) ,

C43 = maxNP3 ≤M3 (M3 = 12) ,

C44 = maxNP4 ≤M4 (M4 = 11) ,

C45 = maxNP5 ≤M5 (M5 = 8) ,

C46 = maxNP6 ≤M6 (M6 = 7) .

To conclude, C5ij is defined on the set of equivalent parties, which in our example
is composed by only a single pair E = {(P48, P49)}, i.e.:

C5 48 49 = P48 < P49 .

4.6 Multiple heuristics and time-slicing

Table management is a real-time problem - neither the booker nor the floor man-
ager can wait for an exhaustive search before replying to a customer. Therefore,
we impose a time limit on each search, and if no seating plan is found within that
limit, we report no solution. Even with the time limit, though, solvers can give
widely varying results depending on the particular search heuristic used.

97

4.6.1 Initial tests on single heuristics

Initial tests showed that search based on a single heuristic may solve some in-
stances quickly, but can be too slow on others, exceeding the time limit. Different
heuristics tried over the same set of instances showed different partitions between
hard and easy instances. However, there were very few instances that none of the
heuristics could solve. Table 4.2 shows a representative example of our initial re-
sults, reporting the run-time of 3 different heuristics over 4 problem instances. For
this example, the time limit we imposed on each solution process was 40 seconds.
As we can see, none of the heuristics can solve each of the instances within the
time limit, but for each instance there is at least one heuristic which can solve it.

Table 4.2: r-time for different heuristics over the same set of instances.

heuristic instance 1 instance 2 instance 3 instance 4
h1 0.07sec > 40sec 0.05sec > 40sec

h2 > 40sec > 40sec > 40sec 0.21sec

h3 0.04sec 0.16sec 0.65sec > 40sec

4.6.2 Using multiple heuristics

We devised a restart approach with multiple different ordering heuristics, and an
increasing time limit for each set of restarts. The aim is to exploit the variance
among the orderings to get a more robust procedure, which may be slower on
some problems, but avoid the significant deterioration on others. Now we de-
scribe the details of this multi-heuristic algorithm (MH), and later in the chapter
we will demonstrate the benefit, in terms of efficiency and robustness, of the ap-
proach. The pseudocode for the algorithm is shown in Figure 4.11.

Solve(heuristic(i),limit) takes heuristic i (composed of a variable and a value
ordering), and applies standard search up to a time limit. If it finds a solution,
or proves there is no solution, it returns true; otherwise it hits the time limit and
returns false.

98

Increase(i,limit) is the time limit function, and we have considered the two
versions below: (a) increases limit by δ each time i is incremented (i.e. linearly);
(b) increases limit by one order of magnitude every n loops (e.g. n = 10).

a) linear : increase(i, limit) = limit + δ

b) magnitude : if (i == n) increase(i, limit) = limit ∗ 10

else increase(i, limit) = limit

MH thus tries each ordering in turn for a limited time, restarting the search after
each one, and gradually increasing the time limit if no result was found. This
is similar to the way iterative deepening [64] explores each branch to a certain
depth, and then increases the depth limit, and is similar to randomized restarts
[51], except we use a set of systematic ordering heuristics.

while Solve(heuristic(i), limit) == false

limit = Increase(i, limit)

if (i == n) then i = 1

else i = i+ 1

Figure 4.11: Multiple-heuristic algorithm.

4.6.3 Properties

Proposition 4.6.3.1. MH is complete.

Proof. The CSP backtracking search space is finite, each ordering heuristic is
systematic, and limit increases indefinitely, so eventually one of the heuristics will
be given enough time to complete the search.

Proposition 4.6.3.2. MH has a performance guarantee. For either of the time

limit functions, magnitude or linear, if any one of the heuristics is deterministic

then MH has a guaranteed upper bound on the ratio of the time it takes to solve

compared to the time that heuristic takes to solve.

99

Proof. Let {h1, h2, .., hH} be the ordered set of heuristics used by the multiple
heuristics algorithm, i.e. hH is the last heuristic tried in each round of restarts. As
at least one of the H heuristics is deterministic, we can assume hH is determinis-
tic. We call tH and tMH the time to solve for hH and MH respectively. Then, we
have to study the upper bound of the performance ratio PR = tMH / tH .

A typical set for our experiments was H = 33 and limit0 = 0.01sec, where
limit0 is the initial value taken by limit.

Magnitude limit function

Lets assume we are using MH with a limit function of type magnitude.

If hH can solve within limit0, i.e.:

0 < tH ≤ limit0 ,

then MH can solve within the first round of restarts:

0 < tMH ≤ limit0 ×H ,

and therefore, with limit0 = 0.01sec and H = 33, we obtain:

0 < tMH ≤ 0.33 sec .

Otherwise, let k ≥ 1 be an integer such that:

limit0 × 10k−1 < tH ≤ limit0 × 10k .

MH contains hH , therefore MH would succeed to solve during the (k + 1)th round
of restarts at the latest, i.e. as other heuristics in MH could solve in earlier rounds.

For example, if:
limit0 < tH ≤ limit0 × 10 ,

100

then MH can solve within the second round, when limit = limit0 × 10.

H is the cardinality of the set of heuristics, hence:

tMH ≤ limit0 ×H + limit0 × 10×H + ... + limit0 × 10k ×H =

= limit0 ×H × (100 + 101 + ...+ 10k) =

= limit0 ×H ×
∑

n=0..k

10n .

The last factor is the geometric (or exponential) series, for which we known that:

∑

n=0..k

10n =
10k+1 − 1

10− 1
≤ 10

9
× 10k , i.e.

∑

n=0..k

10n = O(10k) .

Then we can write:

tMH < limit0 ×H ×
10

9
× 10k .

To define the upper bound of the performance ratio PR, we assume that:

th = limit0 × 10k−1 + ε , with ε small .

Thus, the upper bound can be defined as:

PR =
tMH

tH
<
limit0 ×H × 10

9
× 10k

limit0 × 10k−1
, i.e.

PR < H × 102

9
(e.g. PR < 367 for H = 33) .

Linear limit function

Lets now assume we are using MH with a limit function of type linear. A typical

101

set for our experiments based on the linear function is δ = limit0 = 0.01sec.

If hH can solve within limit0, i.e.:

0 < tH ≤ limit0 ,

then MH can solve within the first round of restarts:

0 < tMH ≤
∑

i=0..H−1

(limit0 + (δ × i)) ,

0 < tMH ≤ (H × limit0) + δ ×
∑

i=0..H−1

i .

The arithmetic series gives:

∑

i=1..N

i =
(N + 1)× (N)

2
.

Then we obtain:

0 < tMH ≤ (H × limit0) + δ × H × (H − 1)

2
,

0 < tMH ≤ H ×
(
limit0 +

δ × (H − 1)

2

)
,

and therefore, with limit0 = δ = 0.01sec and H = 33, we obtain:

0 < tMH ≤ H × limit0
(

1 +
H − 1

2

)
,

0 < tMH ≤ 33× 0.01× 17 ,

0 < tMH ≤ 5.61 sec .

In general, let k ≥ 0 be an integer such that:

limit0 + δ × (kH − 1) < tH ≤ limit0 + δ × ((k + 1)H − 1) .

MH contains hH , therefore MH would succeed to solve during the (k + 1)th round

102

of restarts at the latest, i.e. as other heuristics in MH could solve in earlier rounds.

For example, if

limit0 + δ × (H − 1) < tH ≤ limit0 + δ × (2H − 1) ,

then MH can solve within the second round of restarts.

H is the cardinality of the set of heuristics, hence:

tMH ≤ limit0 + δ + 2δ + ... + (H − 1)δ +

+Hδ + (H + 1)δ + (H + 2)δ + ...+ (2H − 1)δ +

...

+(k − 1)Hδ + (k − 1)(H + 1)δ + (k − 1)(H + 2)δ + ... + (kH − 1)δ ,

i.e.:
tMH ≤ limit0 + δ × (1 + 2 + ... + (kH − 1)) =

= limit0 + δ ×
∑

n=1..kH−1

n .

The arithmetic series gives:

∑

n=1..N

n =
(N + 1)×N

2
.

Then:
tMH ≤ limit0 + δ × kH × (kH − 1)

2
.

To define the upper bound of the performance ratio, we assume that:

th = limit0 + δ × (kH − 1) + ε , with ε small .

Thus, the upper bound can be defined as:

PR =
tMH

tH
<
limit0 + δ × kH×(kH−1)

2

limit0 + δ × (kH − 1)
, i.e.

103

PR =
tMH

tH
<
kH

2
with limit0 small , (e.g. PR <

k × 33

2
forH = 33) .

4.6.4 MH configuration

In total, we selected 11 different variable ordering heuristics, and 3 different value
orderings, giving a total of H = 33 different heuristic combinations.

Variable orderings - We utilized the list of variable (or party) orderings rep-
resented in Table 4.3. H1 and H2 are two standard versions of min-size domain.
For example, in Figure 4.12 P2 has the smallest domain (or set) of suitable tables
D2 = {T4}, therefore H1 and H2 would assign this party first. In case of ties,
H1 selects randomly while H2 picks the first party in lexicographical order. In
the example, P1 and P4 have the same domain size, thus H2 would assign P1

first. H3 toH10 are static orderings created from sorting the set of parties by start
time and size. For example, H10 sorts by decreasing party size, breaking ties by
decreasing start time - i.e. it would chronologically assign P2, P3, P4, and finally
P1. Finally,H11 involves a measure of resource contention [4] among parties, i.e.
it sorts by counting, for each party, the number of other parties which overlaps in
time. Thus, in Figure 4.12, party P3 would count 3 (overlapping with P1, P2, and
P4), P1 and P2 would count 2, and P4 would count 1, so P3 would be tried first.

Value orderings - We utilized the list of value (or table) orderings represented
in Table 4.4, including three static orders. The first two choose among tables with
the smallest or highest (suitable) capacity first. The third consists of a random
table order - i.e. we use the numerical order of tables (T1, T2, .., etc.). Note that in
the example of Figure 4.12 the capacity of the four tables increases with the table
number, therefore W1 and W3 represent the same order. However, this is not the
case for the problem based on the Eco restaurant, where the list of tables T1, T2,
.., T24 is not ordered by increasing capacity.

MH versions - We combined both lists of variable and value heuristics to-
gether, implementing four MH versions: MH(11×3), MH(11×1), MH(1×3), and
MH(1×1). All haveH1 and W1 as first variable and value heuristics. MH(11×3)
is the full version, using the 11 variable orderings and the 3 value orderings com-

104

Table 4.3: List of variable (or party) ordering heuristics.

Heuristic id Ordering Tie breaking
H1 min-size domain random
H2 min-size domain lexicographic
H3 increasing start time increasing size
H4 increasing start time decreasing size
H5 decreasing start time increasing size
H6 decreasing start time decreasing size
H7 increasing size increasing start time
H8 increasing size decreasing start time
H9 decreasing size increasing start time
H10 decreasing size decreasing start time
H11 most overlapping in time lexicographical

Table 4.4: List of value (or table) ordering heuristics.

Heuristic id Ordering Tie breaking
W1 increasing capacity lexicographic
W2 decreasing capacity lexicographic
W3 arbitrary fixed order

Party Size Start End
P1 2 0 2
P2 4 0 2
P3 3 1 3
P4 2 2 4

Table[size] 0 1 2 3
T1[2] P1 P1 P4 P4

T2[3] P3 P3

T3[3]

T4[4] P2 P2

Figure 4.12: Problem instance (top); and a possible seating plan (bottom).

105

bined in the 33 possibilities. MH(11×1) uses the 11 variable orderings combined
with the first value ordering. MH(1×3) uses the first variable ordering combined
with the 3 value orderings. Finally, MH(1×1) is the single heuristic version, based
on the combination of H1 and W1.

4.6.5 Evaluation metrics: efficiency and robustness

Our current problem is a feasibility problem, i.e. we want to answer questions
like (i) given the current booking sheet, can we fit a new booking of 4 people at
6 p.m., even if this would require reallocating all the other parties? or (ii) when
a dinner lasts longer than expected, can we reallocate all future parties without
delaying anybody? Note that, at the moment we do not care about how good a
seating plan is, i.e. in (i) and (ii) we consider any reallocation, for example even
those that would assign many six-seater tables to parties of two people.

Efficiency

For our feasibility problem, efficiency is an important metric for evaluating how
good the CSP-solving procedure is. For example, given a problem instance of
type (i) or (ii), a solution available in half an hour is not practically worthwhile (or
usable). For simplicity, we can classify a solving process as efficient if the time
before returning is between 10 to 20 seconds - of course, the quicker the response
becomes available the better.

Robustness

The second important metric is robustness, which can be regarded as efficiency
averaged (or distributed) over different problem instances. A solver which solves
most problem instances in reasonable time has to be preferred to one which can
solve some instances very quickly (perhaps much more quickly than the first
solver) but can be too slow for many others. The first solver represents a more
robust solving procedure.

106

4.6.6 Experiments

We want to test our final model and see whether it can represent in practice an effi-
cient and robust solution. Specifically, we want to test the benefit of the additional
constraints and the performance of the time-sliced multi-heuristic approach. The
questions we want to answer are:

(i) how do pre-solving checks, additional constraints, and MH speed up the
search, i.e. how do extra checks and constraints save the search from un-
necessarily exploring wrong portions of the search tree, and how does MH
improve over using any of its heuristic components singularly?

(ii) is MH more robust than the standard default ordering heuristic, i.e. does it
report a result within acceptable time limits in more cases across a range of
problems?

(iii) does MH avoid a significant increase in run time, i.e. is the overhead of
restarting the search, and repeating some search paths, significant?

(iv) how does MH compare to the randomized restart method, i.e. is its perfor-
mance due to the restart mechanism, or to the multiple heuristics?

To answer these questions, we have tested the approach on two problem classes:
on our restaurant scheduling problem, with single tables and with fixed start and
end times, and on quasi-groups with holes (QWH). All implementations are coded
in C++ using Ilog Solver 6.0, and run on a Pentium 2.6 GHz processor under
Linux.

For a first answer to question (i) we test over the original scheduling problem
of 23 tables. We consider a model based on MH search, and compare between the
versions with and without additional constraints. Then we consider a model using
the additional constraints, and compare between versions using single heuristics
and a version using MH.

For the last three questions, we extend our tests over a larger scheduling prob-
lem concerning a restaurant of 100 tables, and then over the class of QWH prob-
lems. We compare a model based on MH against models using the recommended
heuristics. For instance, for (ii) and (iii) we compare MH against the min-size

107

domain (msd) variable ordering heuristic (with lexicographic tie breaking), and
for (iv) we compare against the same variable ordering heuristic but with random
tie breaks, and random value ordering†.

4.6.7 Test dimensioned upon the restaurant Eco

We generate random booking sheets. The size (or number of parties) of the book-
ing sheets ranges from 10 to 100 in single steps, for a total of 91 different sizes.
Start times are distributed from 4 p.m. to 10 p.m. over 25 time units of 15 min-
utes each - the interval has been normalized to take integer values in the range
[0..24]. We consider different start time distributions (over this interval). We also
consider constant (6 time units), uniform (4 to 8 time units), or realistic (2 to 10
time units) distributions of dinner durations. Finally, the party size is generated
from a uniform distribution [1..8], where 8 is the maximum party size a single
table can accommodate. We perform tests over 1000 instances for each possible
size of booking sheet, for a total of 91000 problems for each distribution of start
time and duration.

Limit function and time limit - The search algorithm based on MH performs a
first and quick run over the set of heuristics, switching heuristic every 0.02 second,
and then a second run, switching every 0.5 seconds. We impose the time-limit for
each run to 17 seconds, after that the problem is regarded as unsolved. The time-
limit was tuned to 17 seconds to allow the multi-heuristic algorithm to complete
the two runs over the 33 combinations of variable and value orderings. It also
represents a reasonable time window for a practical use in a restaurant.

Evaluating the additional checks and constraints

Figure 4.13 compares the mean running time of a model using the essential con-
straints, CSP(X, D, C1, C2), to the same model extended with the additional (or
implied) checks and constraints, CSP(X, D, C1, C2, C3, C4, C5). The two models
†We use the min-domain heuristic for randomized-restarts as opposed to other heuristics (e.g.

Brelaz) because min-domain is the ordering heuristic recommended by Ilog, which provides it as
a default function. The Ilog function that implements min-domain was also used by Gomes et. al.
[49] [50] in their original work on randomizing restarts to solve a class of scheduling problems.

108

combine the (basic or extended) constraint representations with a search based on
multiple heuristics. The left hand axis has log scale resolution.

Solvability - The dashed curve from top left to bottom right represent the
solvability, i.e. the percentage of instances which have been found feasible (note
that each point in the graph is an average over 1000 instances). As the number
of parties per booking sheet increases, the solvability decreases. We can see that
all instances with more than 82 parties allow no solution, while about 50% of
instances with 60 parties are feasible.

Essential constraints - We can see that the run-time for the version without
implied constraints increases significantly as the problem grows in size. In par-
ticular, for booking sheets of more than 75 parties, i.e. where the solvability is
approaching zero, the time gets to 17 seconds. In other words, after that point the
model cannot solve any instance within the time limit. This curve profile means
that without the additional checks and constraints, when a problem is infeasible
the model needs to entirely explore a large search tree in order to prove no solution
exists. For the size of our problem this exploration cannot be done in reasonable
time, i.e. within the 17 seconds.

Additional checks and constraints - The model extended with the implied
checks and constraints performs much better, with the mean run-time never ex-
ceeding a small fraction of a second. The benefit of the model extension can be
explained in terms of help to immediately spot infeasibility, and in terms of search
effort reduction. For instance, all those instances which exceeds the restaurant ca-
pacity (i.e. 83 covers, 23 parties of 2 or more, 12 parties of 3 or more, .., 1 party
of 8 or more) violate some of the pre-solving checks, therefore for them no search
is required to prove no solution exists. Further, the symmetry constraint reduces
the size of the search tree. Therefore, even in case of infeasible instances which
do not violate the capacity pre-checks, the search effort necessary to go through
all possible allocations is much more contained.

Multiple versus single heuristics

Figure 4.14 compares the performance of models adopting a search based on a
single heuristic to a model adopting a search based on multiple heuristics. All

109

 0.001

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

problem size [N]

mean r-time - SCHEDULING{Eco(M=23), N10..100} - MH(11x3) magnitude - limit(0.02s,0.5s)

CSP(X,D,C1,C2) [Left Y-axis]
CSP(X,D,C1,C2,C3,C4,C5) [Left Y-axis]

time-limit line (tmax=17s) [Left Y-axis]
solvability [Right Y-axis]

Figure 4.13: Comparison of CSP(X, D, C1, C2) (model with basic constraints)
against CSP(X, D, C1, C2, C3, C4, C5) (model extended with additional checks
and constraints). Each point is an average over 1000 instances. Note log-scale on
left hand axis. The solvability curve refers to the right hand axis. All instances
with more than 82 parties were found infeasible.

models use the extended constraint representation including the additional checks
and constraints. Again, each point in the graph is an average over 1000 instances.

Single heuristics - We can see that the run-time is different for different
heuristics. The worst performance comes from using a random variable order-
ing and a value ordering which is the lexicographical order of the tables in the
Eco restaurant. The peak of difficulty for such heuristic is located around 55 to 60
parties, where the time is about 9 seconds on average. The second worst heuristic
is based on selecting parties by decreasing start time (breaking ties by decreasing
size), and on assigning tables by decreasing capacity. A better performance comes
from the third heuristic, which chooses the parties by increasing time (breaking
ties by decreasing size) and assigns tables by increasing capacity. We expect that
this improvement is mostly due to the value ordering. In fact, the previous heuris-

110

tic considers a party of two allocated into a table for 6 before trying it into a
smaller table, and this strategy is more likely to waste time exploring many un-
successful paths of the search tree before eventually reaching a valid solution.
Finally, the best performance using a single heuristic comes from the min-size
domain heuristic, which is the ordering recommended by the constraint program-
ming community. Such heuristic selects the next party choosing the one with the
minimum domain (or number of suitable tables) left. The ordering given by this
heuristic is dynamic, i.e. the domains are recomputed after each value (or table)
assignment has been propagated through all the remaining variables. The peak
of difficulty is significantly reduced compared to the first (and worst) heuristic -
it went from around 9 to around 0.9 seconds (i.e. one order of magnitude less).
The peak has also shifted closer to the infeasible zone - moving from around 55
to around 70 parties.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

problem size [N]

mean r-time - SCHEDULING{Eco(M=23), N10..100, unif start[0..24], duration[6]} - tmax 17s - limit(0.02s,0.5s)

MH(11x3) magnitude
SH(msd)

SH(itds/is)
SH(dtds/ds)
SH(rnd/eco)

Figure 4.14: Benefit of using multiple rather than single heuristics.

Multiple heuristics - The curve concerning our multiple heuristics algorithm
is the one at the bottom. Using this search method we obtain another significant

111

improvement, with a peak of difficulty now reduced to less than 0.3 seconds,
which means we improved another 66% compared to the performance of the min-
size domain heuristic. Note that the difficult instances are located around the end
of the transition from complete solvability to complete insolvability, i.e. where
most of them are infeasible.

Constant versus uniform dinner duration

We consider a first test assuming all dinners have a constant duration of six 15-
minute units (i.e. 1:30 hours), and a second test where duration have been gener-
ated randomly from a uniform distribution in the range [4..8], i.e. from 1:00 hour
to 2:00 hours. Figure 4.15 compares the results obtained. Both tests have been
performed using the model extended with the additional checks and constraints,
and based on MH. As we can see, the two curves are similar, perhaps the one with
constant durations is less noisy, however both peaks are only slightly over two
tenths of a second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

problem size [N]

SCHEDULING{Eco(M=23), N10..100, cnst vs unif duration} - MH(11x3) magn. - tmax 17s - limit(0.02s,0.5s)

mean r-time, constant duration, d = 6
mean r-time, uniform duration, d in 4..8

solvability, constant duration, d = 6
solvability, uniform duration, d in 4..8

Figure 4.15: Results on constant or uniform dinner durations.

112

Realistic start times and dinner durations

We now consider a test where start times and dinner durations are distributed more
realistically (Figure 4.16 and 4.17). For example, in a standard evening, dinners
may last longer in the period from 7 o’clock to 9:30 p.m. - earlier people tend to
seat for a quicker meal, while later people arrive knowing the kitchen is going to
close soon. Even the pattern for the start times can be non-uniform, e.g. there can
be a peak of bookings at around 6 o’clock and another at around 8:30 p.m., and in
between there can be a hole because many people may go to the theater.

Figure 4.16: Realistic distribution of start times.

Figure 4.17: Realistic distribution of dinner durations. The curve shows the mean
duration over time. For each point in the curve, durations are uniform within the
range (or maximum deviation) represented.

113

Figure 4.16 shows the start time frequency, scaled between 0 and 10, over time.
In Figure 4.17, the curve represents the mean duration over time. For each point
in the curve, the maximum deviation from the mean is half an hour. Durations
are uniform within the range (or maximum deviation) represented - e.g. dinners
starting at 4 p.m. have durations uniformly distributed between half an hour and
1:30 hours, while at around 8 p.m. the duration ranges uniformly from 1:30 hours
to 2:30 hours.

Figure 4.18 shows the performance of our model over problems with start time
and duration distributed as in Figure 4.16 and 4.17. The party size is generated
uniformly in the range 1 to 8. We can see that the model is again very efficient over
the entire horizontal axis, with a peak of 0.2 seconds located at around 50 parties
per problem. Comparing to the previous distributions the solvability transition
(curve from top left to bottom right) happens earlier, which means that with a less
even distribution the restaurant can allocate fewer parties on average. Note that
the difficult instances are still located around the end of the transition, i.e. where
most of them are infeasible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

problem size [N]

mean r-time - SCHEDULING{Eco(M=23), N10..100, realistic start/duration} - tmax 17s - limit(0.02s,0.5s)

MH(11x3) magnitude

Figure 4.18: Results on realistic start times and dinner durations.

114

First conclusions

Using the final model configuration, i.e. extending the basic model with the ad-
ditional checks and constraints, and with the multiple heuristics search, we have
significantly improved the performance and we are now able to solve the static
problem efficiently. Instances representing a full booking sheet of 60 parties (or
200 covers) can be solved in a small fraction of a second on average. Note that
the real problems are typically smaller than this, either because we build the plan
incrementally, or when we react to changes, some diners have already started and
cannot be moved.

4.6.8 Tests scaled on a restaurant of 100 tables

In this section, we want to test whether our model can provide efficient solutions
also to restaurants of larger size. We consider one set of test problems, 〈 100, 10,
N 〉, with 100 restaurant tables uniformly distributed over 10 possible capacities
[1..10]. We varied the number of parties, N, from 130 to 200 (in single steps),
and for each one we generated 500 random problems, choosing start times in
[0..40], durations in [17..25] and size in [1..10], all uniformly at random. For each
instance, we impose a maximum time of 41 seconds, which allows time slices
of 0.01, 0.1, and 1 second for 33 possible heuristics, including the overhead on
initializing the problem.

Comparing to the standard recommended heuristic (msd)

The table at the top of Figure 4.19 shows the number of times MH(1×1) (or min
size domain) and MH(11×3) hit the time limit, while the graph at the bottom
reports the mean run time of the 4 versions MH(11×3), MH(11×1), MH(1×3),
and MH(1×1). MH in its full version MH(11×3) consistently outperforms and
improves msd. It is more robust - it hits the time limit on fewer occasions. It also
has a lower mean run time across the range. We can also observe that, as we start
introducing more than one value heuristic, i.e. MH(1×3), we obtain a first clear
improvement. There is benefit also by including more than one variable heuristic,
i.e. MH(11×1). Note that passing from MH(1×1) to MH(11×1) the majority of

115

the variable heuristics we add to the dynamic msd are all static. Things get better
again when combining all the variable heuristics with all the value heuristics, i.e.
MH(11×3). Recall that the line on the graph from top left to bottom right shows
solubility, and relates to the right hand axis - e.g. almost 50% of size 150 problems
have a solution. The hardness peak is where most problems have no solution.

failure frequency [%]
Size [N] min size domain MH magnitude

130 10 4
140 22 12
150 62 16
160 58 32
170 82 40
180 28 22
190 2 0
200 0 0

 0

 1

 2

 3

 4

 5

 130 140 150 160 170 180 190 200
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

Size [N]

mean r-time - SCHEDULING {M100K10, N130..200, s0..40, d17..25} - tmax 41s - limit[0]=0.01s

MH(1x1) or msd
MH(1x3) magnitude
MH(11x1) magnitude
MH(11x3) magnitude

Figure 4.19: Comparing MH against msd: frequency of failure to solve within
tmax (top); mean r-time (bottom).

116

On other tests we also saw that excluding msd from the full version MH(11×3)
has a small effect on performance. Figure 4.20 reports the comparison. Specifi-
cally, we compared against MH(10×3) where we utilized the list of variable or-
derings represented in Table 4.5, combined with the original list of value orderings
represented in Table 4.4. Note that Table 4.5 is obtained from the original list in
Table 4.3, by excludingH1 andH2, i.e. the two versions of min-size domain, and
by including a fixed random variable ordering (H12).

Table 4.5: New set of variable ordering heuristics without msd.

Heuristic id Ordering Tie breaking
H3 increasing start time increasing size
H4 increasing start time decreasing size
H5 decreasing start time increasing size
H6 decreasing start time decreasing size
H7 increasing size increasing start time
H8 increasing size decreasing start time
H9 decreasing size increasing start time
H10 decreasing size decreasing start time
H11 most overlapping in time lexicographical
H12 fixed random ordering -

Comparing to randomized-restarts on min domain

We compare MH(11×3) against the randomized restart approach (RR) introduced
in Chapter 3. We implement RR using msd as variable ordering heuristic (with
randomized tie-breaking), and using a random value ordering heuristic. RR is
generally used with time limits that increase with each restart, so we implement
MH with the same time policy as standard RR, and RR with an order of magni-
tude time increased every n = 33 restarts, for comparison. The two deepening
mechanisms, linear and magnitude, were discussed in Section 4.6.

In Figure 4.21, MH clearly improves on RR at the peak of difficulty, which
is located in the region where approximately 90% of instances have no solution.
The gap is present for both time-slicing versions, i.e. increasing linearly every
single restart (MH-linear vs. RR-linear), and increasing by an order of magnitude

117

failure frequency [%]
Size [N] MH magnitude MH magnitude

no msd with msd
130 6 4
140 15 12
150 23 16
160 32 32
170 49 40
180 22 22
190 0 0
200 0 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 130 140 150 160 170 180 190 200
 0

 25

 50

 75

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

problem size [parties]

mean r-time - SCHEDULING {M100K10, N130..200, s0..40, d17..25} - tmax 41s - limit[0]=0.01s

MH(11x3) magnitude, with msd
MH(10x3) magnitude, without msd

Figure 4.20: MH with and without msd: frequency of failure to solve within tmax
(top) mean r-time (bottom).

118

every loop (MH-magnitude vs. RR-magnitude). There is actually only a slight
difference between the two time-slicing versions, with the magnitude mechanism
better on average.

failure frequency [%]
Size [N] RR magnitude MH magnitude

130 2 4
140 14 12
150 18 16
160 42 32
170 62 40
180 32 22
190 0 0
200 0 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 130 140 150 160 170 180 190 200
 0

 25

 50

 75

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

problem size [parties]

mean r-time - SCHEDULING {M100K10, N130..200, s0..40, d17..25} - tmax 41s - limit[0]=0.01s

RR linear
RR magnitude
MH(11x3) linear
MH(11x3) magnitude

Figure 4.21: Comparing MH against RR: frequency of failure to solve within tmax
(top); mean r-time (bottom).

119

4.6.9 Tests on quasi-group with holes (QWH)

A quasi-group of order N is a Latin Square of N by N cells. The solution of a
Latin Square requires an allocation to each cell of a number from 1 to N , so that
all the elements appearing on each row are different and all the elements appearing
on each column are also different. A quasi-group with holes (QWH) [1] [51] is a
solved Latin Square from which some allocations are deleted. The problem is to
find an allocation which completes the Latin Square.

CSP representation - In our CSP model, we represent the empty cells as vari-
ables, and the numbers as the values to be assigned. We use the global constraint
all-different to ensure each row and column has allocations that are all different.
In Figure 4.22 we represent: a problem instance of QWH(N = 4) with H = 13

holes (top); the remaining domains (center); and a possible solution (bottom).

1 2
2

1 3,4 2 3,4
3,4 2 1,3,4 1,3,4

2,3,4 1,3,4 1,3,4 1,2,3,4
2,3,4 1,3,4 1,3,4 1,2,3,4

1 3 2 4
3 2 4 1
2 4 1 3
4 1 3 2

Figure 4.22: QWH: an instance (top), remaining domains (middle), and a solution
(bottom).

120

Variable orderings - We utilized the list of variable orderings represented in
Table 4.6. H1 and H2 are two standard versions of min-size domain. H3 to H10

are static orderings created from sorting the cells by column and row.

Value orderings - We utilized the list of value orderings represented in Ta-
ble 4.7, which includes three orders, two static and one dynamic. W1 (W2) sim-
ply chooses smallest (biggest) numbers first. W3 involves a measure of conflict
among numbers: if variable X is chosen, W3 looks the number frequency in the
domains of all the unassigned variables in the same row and column as X . Know-
ing that all numbers must appear once in the column and once in the row W3

choose the number that appears least in domains of the other unassigned variables
in the row and column. Thus, in the example of Figure 4.22 above, assuming the
bottom-right variable is chosen first, value 1 would count 4, 2 would count 2, 3
and 4 would count 6, so W3 would choose value 2 first.

Table 4.6: List of variable ordering heuristics.

Heuristic id Ordering Tie breaking
H1 min size domain random
H2 min size domain lexicographic
H3 increasing column increasing row
H4 increasing column decreasing row
H5 decreasing column increasing row
H6 decreasing column decreasing row
H7 increasing row increasing column
H8 increasing row decreasing column
H9 decreasing row increasing column

H10 decreasing row decreasing column

Table 4.7: List of value ordering heuristics.

Heuristic id Ordering Tie breaking
W1 min number first lexicographic
W2 max number first lexicographic
W3 least (x, y)-conflicted number lexicographic

121

MH version - We combined the lists of variable and value heuristics, imple-
menting MH(10×3), where the first combination tried by MH is (H1×W1).

Test setting

Experiments regarded balanced QWH problems of order N = 20. We used the
Gomes generator [1] and generated 10 balanced instances for problems with H
holes, and did it for a series of different H around the difficulty peak. On each
instance, each algorithm had a limited time length t-max of 200 seconds to solve,
after that we considered the run as failed.

Comparing to the standard recommended heuristic (msd)

In Figure 4.23, we again show robustness and run time, this time for balanced
QWH of order 20. MH(10×3) consistently outperforms min-size domain both in
terms of robustness and run time. The graphs show two versions of MH(10×3),
one with linear time-limit increase, and one with the order of magnitude increase
every 30 restarts. All problems have solutions.

Comparing to randomized-restarts on min domain

Randomized restarts (RR, introduced in Chapter 3) is regarded to be the best
method for QWH [51]. We compare MH(10×3) with RR on QWH, in analogy
to what we have done on scheduling. Specifically, we implement RR using msd
as variable ordering heuristic (with randomized tie-breaking), and using a ran-
dom value ordering heuristic. For both MH and RR, we again implement the two
versions of time-slicing, linear and magnitude, as introduced in Section 4.6.

In Figure 4.24, RR is better than MH almost everywhere, regardless of which
time slicing mechanism we use. MH performs slightly better with time slices
increased by a magnitude every loop of restarts, for which version we report the
statistic on the frequency of failure.

122

failure frequency [%]
Size [N] min size domain MH magnitude

150 0 0
170 70 20
190 100 50
210 60 20
230 70 0
250 60 0
270 30 0
290 20 0

 0

 50

 100

 150

 200

 250

 140 160 180 200 220 240 260 280 300

tim
e

[s
ec

]

size [H]

mean r-time - QWH { N20, H140..300 (step 10) } - 10 instances per size H - tmax 200s - limit[0] = 0.01s

msd
MH(10x3) linear

MH(10x3) magnitude

Figure 4.23: Comparing MH against msd on QWH: frequency of failure to solve
within tmax (top); mean r-time (bottom).

123

failure frequency [%]
Size [N] RR magnitude MH magnitude

150 0 0
160 0 0
170 30 20
180 40 50
190 20 50
200 10 30
210 0 20
220 10 0

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 140 160 180 200 220 240 260

tim
e

[s
ec

]

size [H]

mean r-time - QWH { N20, H140..260 (step 10) } - 10 instances per size H - tmax 200s - limit[0] = 0.01s

MH(10x3) linear
MH(10x3) magnitude

RR(msd) linear
RR(msd) magnitude

Figure 4.24: Comparing MH against RR on QWH: frequency of failure to solve
within tmax (top); mean r-time (bottom).

124

4.6.10 Discussion

Results have shown that MH is clearly better than msd and RR on our scheduling
problem class, whose hard instances are located where the solubility is only 10%
(Figures 4.19, 4.20, 4.21). On the other hand, MH was still better than msd but
poorer than RR on QWH (Figures 4.23, 4.24), whose problem instances are in-
stead all feasible by definition. Thus, the indication is that MH may perform better
on those problems which have no solution. For such problems, the solver has to
explore the entire search tree - this is always necessary, in order to prove there is
no consistent and complete assignment of values to the set of decision variables.

Unlike RR, MH performs a restarting mechanism over a fixed set of variable
and value ordering heuristics. Further, the set of heuristics have been designed ac-
cording to some patterns of the problem. For example, on the scheduling problem
we sort the parties (variables) by size and time, and the tables (values) by capacity.
Furthermore, for what concerns both the variable and value order selections, MH
explores the search space through symmetric paths. In fact, there are heuristics se-
lecting variables in opposite or orthogonal orders - e.g. by increasing rather than
by decreasing party size, and breaking ties by increasing rather than by decreas-
ing start time (i.e. using the same or the opposite tie-breaking policy). And there
are also heuristics selecting values in opposite orders - i.e. by increasing and by
decreasing table capacity.

Note that, the RR version we have used in our tests does not record the no-

good assignments. In the long run, the randomization process can then end up
repeating some search paths which have already been proved unsuccessful in pre-
vious restarts. We could compare with an extended RR version which caches the
no-good states, so that the correspondent paths are considered only once, or we
could also extend MH to store no-goods. However, caching partial assignments
requires extra memory and run time. In fact, no-goods are going to be numerous
and heavy to store, and the expense may be an issue already for the size of our
original problem.

125

4.7 Chapter summary

We have represented table management as a scheduling problem with fixed start
and end times. We have developed a model to represent and solve the problem
using single tables (i.e. assuming that tables cannot be joined together). We have
designed pre-solving checks and additional constraints, and developed a search
approach based on multiple heuristics, aiming to improve search efficiency and
robustness. We have tested the final model on two problem classes, restaurant
scheduling and quasi-group with holes.

We have shown the benefit of both additional constraints and multiple heuris-
tics search on the original scheduling problem dimensioned upon the Eco restau-
rant. Results have been confirmed over different distributions of bookings. Specif-
ically, we considered uniform and realistic start times, as well as constant, uni-
form, and realistic dinner durations. For the original problem we can find a seat-
ing plan for a full booking sheet (e.g. 60 parties, or 200 covers) in less than 0.3
seconds on average.

We have tested over a larger scheduling problem, considering an hypothetical
restaurant with 100 tables, and finally, over (balanced) quasi-groups with holes of
order 20. We have shown that our model is more robust than the standard recom-
mended heuristic, with significantly fewer failures to solve within the time limit.
Further, the use of multiple heuristics does not degrade the run time (or efficiency)
- in fact, on average it improves the run time. We have also compared to random-
ized restarts, the leading method for one of our problem classes (QWH) and which
uses a similar restart policy. We have shown that the multi heuristic approach is
poorer in run time and robustness on QWH, but better on our scheduling problem
class.

We can conclude that the additional constraints and the multiple heuristics
enhanced our initial model. We can now solve the static decision problem in
very reasonable time. We achieved a robust and efficient solution to our schedul-
ing problem, even scaling to sizes larger than the original. Further, MH is also
competitive in solving QWH, and can possibly represent an effective method for
constraint solving in general.

126

Chapter 5

Modelling table configurations and
seating plan flexibility

5.1 Introduction

In Chapter 4 we developed a constraint model to solve the static decision problem
based on scheduling with single (or non-combinable) tables. We now discuss
how the model has been extended to tackle many of the real features of restaurant
table management. Specifically, the new model represents table configurations,
allowing multiple joining and separation of tables in the same evening. Further,
we use two different approaches for modelling the flexibility of seating plans to
accommodate future meal requests.

The first approach, based on explicit constraints, is important in order to en-
sure and to maintain seating plans of acceptable quality. We introduce specific
constraints to quickly detect (and reject) any booking request whose allocation in
the current seating plan would considerably deteriorate the restaurant usage and
capacity. For instance, we implement a constraint to avoid large unusable time
slots between meals, e.g. a one hour slot between the end of one meal and the
start of the next meal in the same table is a waste, if we consider a standard dinner
duration of two hours. Similarly, we implement a constraint to avoid seating small
parties into over-sized tables, e.g. selling a six seater table to a party of two people
is also a waste, if we are expecting more parties of size three or more to arrive.

127

The second approach, based on optimizing an objective function, is important
in order to improve a given seating allocation, say after a change in table usage
(e.g. a delay), or after the accommodation of a new booking. The improvement
is again based on flexibility, i.e. the aim is to achieve seating plans potentially
more flexible to accommodate future meal requests. We describe three flexibility
measures and extend them to use some knowledge about the future table demand,
based on booking patterns.

The ultimate goal of this chapter is to develop a solution which can provide
good quality seating plans in reasonable time. In order to achieve that, we design
some implied constraints to speed up the search process with more constraint
propagation. Further, we present a study concerning the design and selection
of search algorithms for anytime solutions, finalized to produce a more efficient
search and a more practical solution to the optimization process.

With respect to our thesis, this chapter shows how constraint programming
can be used to model and solve the new, more realistic, static decision problem,
and how careful modelling can improve the efficiency. Further, we use simple
examples to give first evidence on how constraint programming can be used for
flexible and dynamic reconfiguration of tables - to provide good advice on which
tables have to be joined and when in order to get a more flexible seating plan.
Finally, when we model future knowledge, we provide more examples to motivate
how constraint programming can be used to managing uncertainty to build flexible
solutions.

5.2 Representing table configurations

The CSP representation for the problem with single tables was discussed in Sec-
tion 4.3 and Section 4.4. We now extend the model to represent table configura-
tions.

5.2.1 Example

Figure 5.1 shows a problem instance with five parties (top) and a possible alloca-
tion (bottom). Note that P2 is allocated into T2 and T3, since the example considers

128

that T3 can be joined onto T2 to serve from 4 to 7 people.

Party Size Start End Table
P1 2 0 2 ?
P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?
P5 2 2 4 ?

Table[size] 0 1 2 3
T1[2] P1 P1 P4 P4

T2[3] P2 P2 P5 P5

T3[3] P2 P2

T4[4] P3 P3

Figure 5.1: Problem instance (top); seating plan with table configuration (bottom).

5.2.2 CSP model with table configurations

In our constraint model, the variables are the parties, the possible values represent
the tables at which they are seated, and the constraints enforce limits on party size,
simultaneous use, etc.. If tables can be combined, then domains and constraints
need to be modified, so that it is possible to assign a party to a combined table,
while ensuring that another party cannot simultaneously be seated at one of the
consituent tables.

Decision variables and possible values

To represent table configurations, we leave the domains unchanged, but we change
the constraints - if a party of large size is assigned to conjoined tables i and j, then
in the solution we assign the party to table i, and activate a constraint which stops
table j being simultaneously assigned to any other party.

129

The set of decision variables and the set of possible values are:

X = {P1, P2, .., PN} , with N number of parties ;
Y = {T1, T2, .., TM} , with M number of tables .

Initial domains and constraints

Let J be the set of all groups of tables which can be joined:

J = {(Tm1 , .., Tmj) | 1 ≤ m1 < .. < mj ≤ M, (Tm1 , .., Tmj) can join} .

For each group (Tm1 , Tm2 , .., Tmj) ∈ J , let the minimum party size and the maxi-
mum party size for which that group can be used be (respectively):

(Tm1 , .., Tmj).minPS , and (Tm1 , .., Tmj).maxPS .

In particular, for j = 1 we obtain the case of single tables:

(Tm1).minPS = 1 , and (Tm1).maxPS = Tm1 .capacity .

Note that we consider groups with tables ordered by increasing number. Therefore
no group is the permutation of another, i.e. all groups are distinct sets of tables.

For the Eco restaurant, considering the set of tables ordered by the actual ta-
ble number, there is no group of tables {Tm1 , Tm2 , Tm3}, m1 < m2 < m3, such
that Tm1 can be combined either with Tm2 or with Tm3 . More generally, for many
restaurants there exists a numbering of the set of tables (e.g. for Eco is the actual
table numbers) such that the following condition is valid.

Condition - For each table Tm1 , m1 = 1..M , and for each party size PS,
there is at most one group of tables (Tm1 , Tm2 , .., Tmj) ∈ J , 1 ≤ j ≤M , such that
(Tm1 , Tm2 , .., Tmj).minPS ≤ PS ≤ (Tm1 , Tm2 , .., Tmj).maxPS.

130

For example, in Eco, the group of tables (T17, T18, T19) can be combined,
(T17, T18, T19).minPS = 8, (T17, T18, T19).maxPS = 11, and there is no other
group of tables starting with table T17 that can be used to accommodate any size
in the range 8 to 11.

The condition is valid for many restaurants, and it is necessary for our con-
straint model of table configurations (the description continues next) to be appli-
cable. However, the condition rules out, for example, the case where we have
four 2-seater tables (TA, TB, TC , TD) arranged in a square, and we want to seat 4
people: we could combine TATB or TBTC or TCTD or TDTA, and any number-
ing scheme is going to violate the condition. Figure 5.2 shows an example with
A = 1, B = 2, C = 3, D = 4. Note that T1 can join with either T2 or T4 to seat
the four people, so the condition does not hold.

In general, for any restaurant for which the graphical representation of the
possible table combinations forms a graph with one or more cycles (e.g. as in
Figure 5.2), the condition does not hold. Our model would need to be modified to
cope with “cyclic” table combinations, although this will have to be the subject of
future work.

T 1 [2]

T 4 [2] T 3 [2]

T 2 [2]

T 1 - 4 [4]

T 1 - 2 [4]

T 2 - 3 [4]

T 3 - 4 [4]

Figure 5.2: Group of four tables of capacity 2, arranged in a square, where each
pair of adjacent is combinable and has capacity 4. The graph of possible combi-
nations forms a cycle.

131

Continuing with our CSP model, to represent the assignment of an entire group
of tables (Tm1 , .., Tmj) ∈ J to a party Pn, we simply assign Pn = Tm1 , and we
make all the values in the set (i.e. Tm1 , Tm2 , .., Tmj) unavailable for any other
variable correspondent to a party overlapping with Pn. For example, in Figure 5.1,
as party P2 occupies tables T2 and T3, we assign the value T2 to the variable P2

and we exclude the values T2 and T3 from the domains of parties P1 and P3.

More formally, we call Tm.maxGCap the maximum capacity of any config-
urable group of tables where Tm is the first table. The initial domain of each
decision variable Pi is then defined as:

Di = { Tj | Tj.maxGCap ≥ Pi.size } .

Occupancy constraint - Figure 5.3 shows the procedure which defines the
new occupancy constraintsC1mambn1n2

. Specifically, for any group of configurable
tables, (Tm1 , Tm2 , .., Tmj) ∈ J , and for any party Pn1 for which the group is of
suitable capacity, C1mambn1n2

ensures the party occupies the group of tables (i.e.
the value Tm1 is assigned to the variable Pn1) if and only if all tables {Tm2 , .., Tmj}
remain unoccupied (i.e. any other variable Pn2 correspondent to a party overlap-
ping with Pn1 is not assigned any value in {Tm2 , .., Tmj}).

∀ (Tm1 , Tm2 , .., Tmj) ∈ J, j ≥ 2

∀ (n1 = 1..N, n2 = 1..N), n1 6= n2, ∃ t ∈ RI s.t. Pn1 ∈ Xt ∧ Pn2 ∈ Xt

(Tm1 , Tm2 , .., Tmj).minPS ≤ Pn1 .size ≤ (Tm1 , Tm2 , .., Tmj).maxPS

∀ (ma = m1, mb = m2..mj) s.t. Tmb ∈ Dn2

C1mambn1n2
= (Pn1 6= Tma) ∨ (Pn2 6= Tmb)

Figure 5.3: Occupancy constraint.

C1mambn1n2
checks all the necessary conditions to avoid overlapping but one,

i.e. Pn1 = Tm1 ⇒ Pn2 6= Tm1 . We could simply include m1 into the range of mb

in order to ensure that such condition is also verified. However, note that the case
is already covered by the original constraintC1t - which, being a global constraint,

132

is expected to propagate the condition more effectively.

Both constraints C1t and C2khij maintain the original form:

∀ t ∈ RI ,
C1t = alldifferent{Xt} ;

∀ (k, h, i, j) s.t.
(i, j) ∈ (1..N, 1..N), i < j

(k, h, Pi.size, Pj.size) ∈ B ,
C2khij = (Pi 6= Tk) ∨ (Pj 6= Th) .

Pre-solving check C3 is:

C3 = maxNC ≤ RC ,

where maxNC is the maximum number of covers at any time t (as defined in
Section 4.4) and RC is the capacity of the restaurant, which in the new model
becomes the capacity of the restaurant configuration which can seat the largest
number of people.

Formally, a restaurant configuration RCONF is a partition of the set of all ta-
bles into configurable groups. Then, we can define RCONF ⊆ J as a subset of
distinct groups of tables in J such that each table T1, T2, ..., TM appears in one and
exactly one group.

The number of people a restaurant configuration can seat is:

RCONF .capacity =
∑

(Tm1 ,Tm2 ,..,Tmj)∈RCONF

(Tm1 , Tm2 , .., Tmj).maxPS .

Then, RC can be defined as:

RC = max
RCONF⊆J

RCONF .capacity .

133

Pre-solving check C4i has the form:

∀ i ∈ {minPS..maxPS}, C4i = maxNPi ≤Mi .

where the only difference from the original version is thatMi is now the maximum
number of distinct groups of tables which can serve a party of at least i people.

Mi = max
RCONF⊆J

∑

(Tm1 ,..,Tmj)∈RCONF , (Tm1 ,..,Tmj).minPS≤i≤(Tm1 ,..,Tmj).maxPS

1 .

Finally, the symmetry breaker C5ij has the original form:

C5ij = Pi < Pj, ∀ (Pi, Pj) ∈ E, i < j .

Example

Figure 5.4 shows the resulting constraint model for the simple problem of Fig-
ure 5.1. As we assume tables T2 and T3 can be joined, with (T2, T3).minPS = 4

and (T2, T3).maxPS = 7, then T2.maxGCap = 7 and T3.maxGCap = 3. There
are two possible restaurant configurations, i.e. RCONF1 = {(T1), (T2), (T3), (T4)},
and RCONF2 = {(T1), (T2, T3), (T4)}. The variables P1, P2, P3, P4, and P5 can
take values from the domains D1, D2, D3, D4, and D5 respectively. Note that
D2 contains the value T2, to represent the possibility for P2 to use the configura-
tion (T2, T3). The time range is R = {0, 1, 2, 3}, while the set of times that are
relevant for our constraints is RI = {1, 2}. Constraints C11 (defined in t = 1),
C12 3 2 1 , and C12 3 2 3 , ensure that parties P1, P2, and P3 occupy different tables.
Constraint C12 (defined for t = 2) is sufficient to ensure that P3, P4, and P5 oc-
cupy different tables. As the presence of table configurations has no influence on
constraints C2khij and C5ij (discussed in Section 4.4), we assume B = E = ∅. C3

is true, in fact maxNP = 9, which happens at t = 1, while RC = 13, which
is the number of people that can be accommodated using RCONF2 . Finally, C42 ,
C43 , and C44 are also true, as, in the order, the parties of size at least 2, 3, or 4 are
fewer than the groups of tables which can simultaneously serve at least 2, 3, or 4
people (respectively). In particular, note that M4 = 2 is due to RCONF2 , which
can simultaneously accommodate two parties of 4, one in configuration (T2, T3)

134

and one in table T4.

X : P1, P2, P3, P4, P5

D : D1 = {T1, T2, T3, T4}, D2 = {T2, T4}, D3 = {T2, T3, T4},
D4 = {T1, T2, T3, T4}, D5 = {T1, T2, T3, T4}

C : C11 = alldifferent(P1, P2, P3)
C12 3 2 1 = (P2 6= T2) ∨ (P1 6= T3)
C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)
C12 = alldifferent(P3, P4, P5)
C3 = maxNC ≤ RC,

maxNC = P1.size + P2.size + P3.size = 9, RC = 13
C42 = maxNP2 ≤M2, maxNP2 = 3, M2 = 4
C43 = maxNP3 ≤M3, maxNP2 = 2, M2 = 3
C44 = maxNP4 ≤M4, maxNP2 = 1, M2 = 2

Figure 5.4: CSP representation for the example of Figure 5.1.

5.3 Modelling Eco with table configurations

We now define the CSP model with table configurations for the restaurant Eco.
We focus on the parts which differs from the model with single tables, i.e. initial
domains Di, occupancy constraints C1mambn1n2

, and pre-solving checks C3 and
C4i . X , Y , C1t , C2khij , and C5ij remain unvaried.

5.3.1 Initial domains

Considering the new model with table configurations, the initial domains for the
restaurant Eco are now larger. Specifically, depending on the party size, each
decision variable has an initial domain as represented in Table 5.1. For clarity,
domains have been split between those considering only single tables (second
column) and those considering only groups of more than one table (third column).

135

Table 5.1: Domains in Eco: considering only single tables (second column); and
considering only combined tables (third column).

Party size Initial domains Initial domains
[people] (only single tables) (only combined tables)

1 T1, T2, .., T12, T14, .., T24 ∅
2 T1, T2, .., T12, T14, .., T24 ∅
3 T1, T2, T3, T6, T9, T10, T11, T14 T18, T19, T21, T22

T15, T16, T17, T24

4 T1, T2, T6, T9, T10, T11, T14 T18, T19, T21, T22

T15, T16, T17, T24

5 T1, T2, T6, T11, T14, T15, T16, T24 T17, T18, T21, T22

6 T1, T2, T6, T14, T15, T16, T24 T17, T18, T21

7 T16, T24 T1, T5, T17, T18, T21

8 T24 T1, T5, T14, T15, T17, T18, T21

9 ∅ T1, T5, T14, T15, T17, T21

10 ∅ T1, T14, T15, T17, T21

11 ∅ T1, T14, T15, T17

12 ∅ T1, T14, T17

13..16 ∅ T14, T17

17..30 ∅ T14

The third column shows, for example, how the new model allows 3 more pos-
sible solutions to accommodate a party of 6, compared to the model for single
tables. In fact, a party of such size can go into tables T17, T18 (represented by
value T17), or into T18, T19, T20 (represented by value T18), or into T21, T22, T23

(represented by value T21). The new model can now seat parties of sizes larger
than 8, and up to 30. In total, as discussed in Section 2.3, there are 16 possi-
ble table configurations which can be combined to allow 386 different restaurant
layouts. Obviously, inefficient table allocations are not included in the combined
table allocations, e.g. we do not seat a party of size 1 at a combined table.

5.3.2 Occupancy constraints

The number of occupancy constraints depends on the booking sheet. For example,
for any party Pn1 of 6 people, and for any party Pn2 overlapping in time with Pn1

136

we have the five constraints:

C117 18 n1 n2
= (Pn1 6= T17) ∨ (Pn2 6= T18) ,

C118 19 n1 n2
= (Pn1 6= T18) ∨ (Pn2 6= T19) ,

C118 20 n1 n2
= (Pn1 6= T18) ∨ (Pn2 6= T20) ,

C121 22 n1 n2
= (Pn1 6= T21) ∨ (Pn2 6= T22) ,

C121 23 n1 n2
= (Pn1 6= T21) ∨ (Pn2 6= T23) .

Recall that the alldifferent constraint C1t covers the case (Pn1 6= Tm) ∨ (Pn2 6=
Tm), with m = 17, 18, 21.

5.3.3 Restaurant capacity and pre-solving checks

The capacity of the restaurant Eco using single tables is 83. If we allow table con-
figurations the maximum capacity achievable is 96, and the correspondent restau-
rant configuration is:

RCONF = { (T1, T14), T2, T3, T4, (T5, T6), T7, T8, T9, T10, T11

T12, (T15, T16), (T17, T18, T19, T20), (T21, T22, T23), T24 } .

Therefore, C3 becomes:

C3 = maxNC ≤ RC (RC = 96) .

Table 5.2 combines the second and third columns of Table 5.1, to show the
number of parties Eco can simultaneously accommodate for each party size. The
second last column reports the sum of the possible ways to accommodate using
either single tables or table configurations. The last column counts only the num-
ber of distinct tables and configurations, i.e. tables and configurations which can
be adopted simultaneously. For example, Eco has 7 tables plus 3 table configura-
tions which can serve 6 people, for a total of 10 possible ways of accommodation.
However, 2 of the 3 table configurations, (T17, T18) and (T18, T19, T20), cannot
be adopted simultaneously. Therefore, the maximum number of parties of size 6

137

eating at the same time is 9. We use the last column to implement our second
pre-solving check, i.e.:

C4s = maxNPs ≤ Ms ∀ s = 1..30 .

Table 5.2: Number of tables and configurations in Eco, categorized by party size.

Party size [s] single tables table configurations total distinct [Ms]

1 23 0 23 23
2 23 0 23 23
3 12 4 16 14
4 11 4 15 13
5 8 4 12 10
6 7 3 10 9
7 2 5 7 6
8 1 7 8 6
9 0 6 6 5

10 0 5 5 4
11 0 4 4 3
12 0 3 3 2

13..16 0 2 2 2
17..30 0 1 1 1

5.4 Additional constraints

With the introduction of table configurations the problem becomes harder. Testing
the current model on problem instances dimensioned upon the restaurant Eco we
found that most instances were unacceptably long to solve. Therefore we designed
two new constraints, aiming to improve search efficiency: a capacity constraint,
and a new symmetry breaker.

5.4.1 Capacity constraint

The procedure to generate the new capacity constraint C6t is shown in Figure 5.5.
The constraint ensures that, at any time t ∈ RI , the number of usable tables UTNt

138

is not less than the number of parties NPt. The upper bound number of usable
tables is initialized to M minusNPt (number of parties present at time t), as each
of the parties is going to use at least 1 table. That number is then decreased by
(j − 1) each time j tables are joined, to represent the extra j − 1 tables which are
used. Note that, unlike C4i which is a simple check performed before starting the
search, C6t is a real constraint, i.e. it propagates during search.

∀ t ∈ RI

UTNt = new constrained variable (Nb. usable tables)
UTNt.domain = {−M, ..,−1, 0, 1, ..,M}
UTNt.max = M −NPt , (NPt Nb. parties in Xt)

∀ i = 1..N, Pi ∈ Xt

j = 2..M, (Tm1 , Tm2 , .., Tmj) ∈ J
(Tm1 , .., Tmj).minPS ≤ Pi.size ≤ (Tm1 , .., Tmj).maxPS

UTNt.max− = (j − 1)× (Pi == Tm1)

C6t = UNTt ≥ 0

Figure 5.5: Procedure to generate the new capacity constraint.

Figure 5.6 shows a feasible problem instance with five overlapping parties
(top) and a partial allocation during search involving the first four and performed
without constraint C6t (bottom). The example considers that T2 (T4) can be joined
onto T1 (T3) to serve 3 people. We assume that search allocated parties P1, P2,
P3, and P4 one by one in the order. Note that this search path has now reached
a dead end because there is no room for the next party P5 in the partial seating
plan. The infeasibility of the current search path can be spotted much earlier
using constraint C6t . In fact, right after the search allocates P1 into T1 and T2,
C6t would forbid P2 from being allocated into T3 and T4, as this would give the
inconsistency C6t : 6− 5− (2− 1)− (2− 1) 6≥ 0. This example shows how C6t

can save the search from going deeper along the wrong subtree.

5.4.2 A symmetry breaker on identical tables

Figure 5.7 represents a symmetry breaker constraint C7ma mb
on identical tables,

by which we mean those tables of same capacity and which cannot be joined with

139

Party Size Start End Table
P1 3 0 2 ?
P2 3 1 3 ?
P3 2 1 3 ?
P4 2 0 2 ?
P5 2 1 3 ?

Table[size] 0 1 2 3
T1[2] P1 P1

T2[2] P1 P1

T3[2] P2 P2

T4[2] P2 P2

T5[3] P3 P3

T6[3] P4 P4

Figure 5.6: Problem instance (top); partial allocation during search (bottom).

others. The constraint posts an order among any two identical tables. For instance,
considering the allocation of any two identical tables, if we exclude any particular
preference, there is no difference for both the restaurant and the customer point of
view between allocating more parties in one rather than in the other table. There-
fore, for any pair of such tables (Tma, Tmb), ma < mb, we only allow allocations
where the number of parties in Tma (NPma) is greater or equal than the number
of parties in Tmb (NPmb).

∀m ∈ 1..M
NPm = new constrained variable (Nb. parties in Tm)
NPm.domain = {0, 1, .., N}
∀i = 1..N, NPm+ = (Pi == Tm)

∀ma = 1..M, mb = 1..M, mb > ma

Tma , Tmb singles
Tma .capacity = Tmb .capacity

C7 ma mb
= NPma ≥ NPmb

Figure 5.7: Procedure to generate the symmetry breaker for single tables of equal
capacity.

140

Figure 5.8 shows two symmetrical seating plans for the same set of parties.
Note again that, if we exclude any particular preference, there is no difference
for either the restaurant or the customer between the allocations. With constraint
C71 2 defined using the procedure of Figure 5.7, only the allocation displayed at
the top would be considered by the search process. C7ma mb

prunes the search
space, forbidding symmetrical allocations on single tables of equal capacity like
T1 and T2. In particular, this avoids repeating symmetrical mistakes during search
- i.e. exploring wrong symmetrical paths of the search tree.

Table[size] 0 1 2 3
T1[4] P1[3] P1[3] P3[4] P3[4]

T2[4] P2[3] P2[3]

Table[size] 0 1 2 3
T1[4] P2[3] P2[3]

T2[4] P1[3] P1[3] P3[4] P3[4]

Figure 5.8: Symmetrical allocations: (top) accepted; (bottom) rejected.

In the restaurant Eco there is a group of 5 identical tables of capacity 2, i.e.
T4, T5, T7, T8, and T12, and a group of 2 identical tables of capacity 4, i.e. T9 and
T10 (described in Section 2.3). The correspondent set of constraints is described
in Figure 5.9.

C7 4 5 = NP4 ≥ NP5

C7 5 7 = NP5 ≥ NP7

C7 7 8 = NP7 ≥ NP8

C7 8 12 = NP8 ≥ NP12

C7 9 10 = NP9 ≥ NP10

Figure 5.9: Symmetry breaker for identical tables in Eco.

141

5.4.3 Evaluating the effect of the new constraints

To evaluate the effect of the new constraints, we performed an experiment similar
to those discussed in Section 4.6 for the model with single tables. Specifically,
we considered the set of 23 tables of the restaurant Eco, and generated random
booking sheets. The size of the booking sheets ranges from 5 to 100 parties in
steps of 5, for a total of 20 different sizes. Start times are uniformly distributed
from 4 p.m. to 10 p.m. over 25 time units of 15 minutes. We also consider a uni-
form (4 to 8 time units) distribution of dinner durations, and a distribution of party
sizes in the range [1..8] (with average 3.84, as estimated for the restaurant Eco).
We perform tests over 100 instances for each possible size of booking sheet, for
a total of 2000 problems. We adopted the search algorithm based on MH(11×3),
magnitude version. We impose the time-limit for each run to 17 seconds (as in the
experiments of Section 4.6.7), after that the problem is regarded as unsolved.

Figure 5.10 compares the model using the original constraints, CSP(X, D, C1,
C2, C3, C4, C5), to the same model extended with the two additional constraints,
C6 and C7. We consider three extensions, one with C6, one with C7, and one with
both. The table at the top of the figure displays the number of instances that were
still unsolved after the time limit, while the graph at the bottom shows the mean
running time to solve. Further, in the graph, the curve from top left to bottom
right represents the solvability, i.e. the percentage of instances which are feasible.
As the number of parties per booking sheet increases, the solvability decreases.
In particular, all instances with fewer than 35 parties have solution, all those with
more than 75 parties allow no solution, while about 50% of instances with 60
parties are feasible.

Considering the version without the additional constraints, the frequency of
failure is unacceptable, with up to 52% of instances still unsolved after 17 sec-
onds (Figure 5.10 top). Further, we can see that the corresponding run-time in-
creases significantly as the problem grows in size, with a peak at 70 parties. After
that, the booking sheets become too crowded, and so more instances are likely
to be infeasible because they exceed the restaurant capacity. In such cases, our
pre-solving checks on the maximum numbers of people (C3) and parties (C4) are
violated, so the problems are found infeasible, and the solution process can be

142

stopped without performing any search. This explains the decrease in both run-
time and failures after 70 parties - more details on the benefit of C3 and C4 were
presented in Chapter 4.

The model extended with the new capacity constraint (C6) performs signifi-
cantly better, with the curve of mean run-time showing a peak of only 0.63 sec-
onds at 65 parties, and with all instances solved within the time limit.

Symmetry constraints reduce the size of the search tree, so, in general, they
make the search process more efficient (Chapter 3). The result concerning our
model extended with the symmetry breaker on identical tables (C7) was quite
unexpected. Even though we have only two small sets of identical tables (Fig-
ure 5.9), i.e. we were not demanding any large improvement, we can observe how,
for the model with C7, both run time and failure frequency are actually slightly
worse compared to the results concerning the model with the original constraints.
This suggests that the effort in terms of time for generating and propagating C7

might be greater than the time we save by searching over a solution space of
smaller size, i.e. the one reduced by C7.

A more speculative explanation is that the symmetry breaker may work against
our multiple heuristic procedure. In fact, one benefit of MH is that it explores
the search space through multiple searches, each following a distinct direction.
Combined with C7, which forces each search to follow only a subset of possible
directions, this synergy among the set of heuristics may become less effective.

Finally, the version including both C6 and C7 has a slightly worse performance
than the case with only C6, which confirms that the real benefit comes from C6.
Our model for the next part of the dissertation will be based on C1, C2, C3, C4,
C5, and C6.

5.5 Constraints on poor table assignments

Common heuristic guidelines utilized by restaurants are: (i) avoid allocations with
long dead-zones; and (ii) avoid allocations with over-sized tables. To ensure so-
lutions of acceptable quality, we designed new constraints based on these two
guidelines.

143

failure frequency [%]
Size [N] C1,..,C5 C1,..,C5,C6 C1,..,C5,C7 C1,..,C5,C6,C7

10 0 0 0 0
20 0 0 0 0
30 0 0 0 0
40 0 0 0 0
50 4 0 4 0
55 10 0 10 0
60 21 0 23 0
70 52 0 54 1
80 28 0 28 0
90 8 0 8 0
100 1 0 1 0

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

Size [N]

mean r-time{Eco(M=23), N5..100} - MH magnitude - tmax 17s

CSP(X,D,{C1,..,C5}) [Left Y-axis]
CSP(X,D,{C1,..,C5,C6}) [Left Y-axis]
CSP(X,D,{C1,..,C5,C7}) [Left Y-axis]

CSP(X,D,{C1,..,C5,C6,C7}) [Left Y-axis]
solvability [Right Y-axis]

Figure 5.10: Evaluating the additional constraints: frequency of failure to solve
within tmax (top); mean r-time (bottom). The basic version of CSP includes con-
straints C1 to C5 (Chapter 4). We compare it against versions extended with C6

(capacity constraint), with C7 (symmetry breaker), or with both C6 and C7. In the
graph, the curve from top-left to bottom-right (solvability) is the percentage of
instances with a feasible solution. Each point in the graph is an average over 100
instances.

144

5.5.1 Long dead-zones constraint

If there is a party with a reservation from 5 to 7, and a second party with a reserva-
tion from 8 to 10, then the booker does not allocate the two parties into the same
table. Otherwise, from 7 to 8 the table is going to be idle and unusable to serve
other parties. Idle and unusable times (dead-zones) can be short, i.e. 15-30 min-
utes, or long, i.e. more than 30 minutes but less than the standard dinner duration
(typically 2 hours). For bookings, a dead-zone of 15-30 minutes cannot be judged
a priori - it may reveal to be either a waste in table usage, if the first dinner fin-
ishes on time, or a useful slack time to absorb delays, in case the first dinner is late.
Dead-zones longer that 30 minutes are instead very likely to significantly deteri-
orate the reservation potential of a dinner session - so they are generally avoided,
unless the manager has a strong preference for a particular customer. A formal
representation of the long dead-zone constraint, C8na nb

, is shown in Figure 5.11
(top). The constraint ensures that no pair of parties allocated into the same table
generates a dead-zone between 30 and 120 minutes.

5.5.2 Over-sized tables constraint

Generally, unless it is Valentine’s Day, or unless the booker has a strong preference
for a particular customer, a booking for 2 people is always allocated into a table
of capacity two or (at most) three. Otherwise, using a 4-seater or larger table the
restaurant would waste a significant amount of reservation potential. A formal
representation of the over-sized tables constraint, C9n m , is shown in Figure 5.11
(bottom). The constraint ensures that no party of size 1 or 2 is allocated into a
4-seater or larger table.

5.5.3 Efficiency with the constraints on poor table assignments

To evaluate the effect of constraints C8 and C9, we repeated the same type of ex-
periment previously used for the evaluation of constraints C6 and C7. Specifically,
we now compare the model CSP(X, D, C1, C2, C3, C4, C5, C6), to the same model
extended with: (i) C8; (ii) C9; and (iii) both C8 and C9. Figure 5.12 shows the
results, again, in terms of failures to solve within the time limit (top), and the

145

∀ na = 1..N, nb = 1..N, na 6= nb, 30′ < (Pnb .start − Pna .end) < 120′

j = 1..M, (Tm1 , Tm2 , .., Tmj) ∈ J
(Tm1 , .., Tmj).minPS ≤ Pna .size ≤ (Tm1 , .., Tmj).maxPS

C8m1 .. mj na nb
= (Pna 6= Tm1) ∨ (Pnb /∈ {Tm1 , Tm2 , .., Tmj})

∀ n = 1..N, Pn.size ∈ {1, 2}, m = 1..M, Tm.capacity ≥ 4

C9n m = (Pn 6= Tm)

Figure 5.11: Procedures to generate: (top) the constraint on long dead-zones in the
range 30 to 120 minutes; (bottom) the constraint on over-sized tables for parties
of size 1 and 2.

mean run-time to solve (bottom). We can see that the version without C8 and C9

has the best run-time and failure frequency. When we include the constraints on
long dead-zones the performance gets worse for problems of size up to 50. In
particular, for problems with 50 parties we have a peak of 2.08 seconds in the
graph, and 3% of failures to solve before the time limit. Instead, if we include
the constraint on over-sized tables there is a peak of run-time of 5.52 seconds
in correspondence of problems with size 55, with a considerable increase in the
number of failures (reaching 30% at 55 parties). Finally, considering the version
that includes both C8 and C9, for problems of size up to 50 both run-time and
failure frequency show a further increase compared to the previous version with
C9, while the performance is the same after 50 parties.

Adopting the restrictions on poor table allocations is important in order to
build booking sheets and seating plans that guarantee the potential to accommo-
date an acceptable number of covers - an initial set of parties “poorly” allocated
can irreversibly reduce the capacity of the restaurant. Instead, once the restaurant
is getting close to full occupancy, and we are expecting only a few more table re-
quests, any extra party is a bonus for the restaurant. For example, if the restaurant
has only one four-seater table left, and gets only one more request of size two, the

146

best solution would be to accept the party, and allocate it to the over-sized table. In
general, when booking sheets and seating plans are crowded, and we are getting
close to the reservation target, restaurants can gain extra flexibility by ignoring
any restriction on dead-zone and over-sized table allocations.

The solution we adopt hybridizes the model without restrictions on poor table
allocations, and the model with both the constraints on long dead-zone and over-
sized table allocations. For our case study, the Eco restaurant has a reservation
target of around 185 covers, and an average party size of 3.84, which means that
the target is reached after 45-50 parties. Thus, for problems of size up to 40 we
use CSP(X, D, C1, .., C6, C8, C9), i.e. we include both the restrictions C8 and C9,
while for problems with more that 40 parties we use the model CSP(X, D, C1, ..,
C6), i.e. we ignore the restrictions. If we consider Figure 5.12, the hybrid model
would coincide with the upper line for N≤ 40, and with the lower line for N> 40.
The hybrid model would be efficient over the entire range of problem sizes, with
a peak of run-time of 1.34 seconds, and a peak of failure frequency of 5%, both
at 40 parties. Further, the performance would be significantly better for smaller
problem sizes (see curve concerning the model with C8 and C9), and especially
for larger problem sizes (curve concerning the model without C8 and C9).

Finally, Figure 5.13 shows how the introduction of constraints C8 and (espe-
cially) C9 reduces the number of instances with a solution. This again supports our
decision to use the restrictions on poor table allocations only until the restaurant
has reached a certain level of occupancy - for the hybrid model, after 40 parties
the solvability curve would shift from the one concerning CSP(X, D, C1, .., C6,
C8, C9) to that concerning CSP(X, D, C1, .., C6), with a considerable increase in
the number of solutions that becomes acceptable, i.e. in flexibility to accept the
final table requests (and the final extra covers).

5.6 Flexibility and optimization

In Chapter 4, we described a satisfaction problem: i.e. the model does not con-
sider optimization, but simply returns the first allocation it finds, or reports failure.
However, there are likely to be many possible seating plans, and some will be sig-
nificantly better than others in terms of efficient use of the tables, and thus in their

147

failure frequency [%]
Size [N] C1,..,C6 C1,..,C6,C8 C1,..,C6,C9 C1,..,C6,C8,C9

10 0 0 0 0
20 0 0 0 0
30 0 0 2 2
40 0 0 5 5
50 0 3 8 13
55 0 0 30 30
60 0 0 27 27
70 0 0 3 3
80 0 0 0 0
90 0 0 0 0
100 0 0 0 0

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100
 0

 2

 4

 6

 8

 10

tim
e

[s
ec

]

Size [N]

mean r-time{Eco(M=23), N5..100} - MH magnitude - tmax 17s

CSP(X,D,{C1,..,C5,C6})
CSP(X,D,{C1,..,C5,C6,C8})
CSP(X,D,{C1,..,C5,C6,C9})

CSP(X,D,{C1,..,C5,C6,C8,C9})

Figure 5.12: Evaluating the constraints on poor table allocations: frequency of
failure to solve within tmax (top); mean r-time (bottom). We compare the version
of CSP including constraints C1 to C6 against versions extended with C8 (dead
zone constraint), with C9 (oversized table constraint), or with both C8 and C9.

148

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80
 0

 20

 40

 60

 80

 100

%
 s

ol
ut

io
n

Size [N]

solvability{Eco(M=23), N5..100} - MH magnitude - tmax 17s

CSP(X,D,{C1,..,C5,C6})
CSP(X,D,{C1,..,C5,C6,C8})
CSP(X,D,{C1,..,C5,C6,C9})

CSP(X,D,{C1,..,C5,C6,C8,C9})

Figure 5.13: Graph showing how the introduction of the constraints on poor table
allocations, C8 and C9, affects the solvability curve.

149

ability to accept future bookings. In this section, we describe some measures to
estimate the quality of a solution, and the algorithms which use the measures to
search for seating plans of increasing quality.

Ultimately, seating plans should be assessed by the final number of covers
achieved. Therefore, whether we are in the booking phase or in the floor manage-
ment phase, we should maintain a seating plan aimed at maximizing the covers.
Thus, after each change, we should be searching for:

argmaxseating plan[current covers + expected future covers] .

As the number of current covers is known and constant, we focus on the expected

future covers. We do not have well-founded distributions of the new requests we
can expect, and so our measure of expected covers must be an approximation.
Thus we introduce a heuristic measure, flexibility, and search for:

argmaxseating plan[flexibility] .

For each problem instance, we then perform an anytime branch-and-bound search,
optimizing for flexibility.

5.6.1 Constraint implementation of flexibility

In this section, we extend the constraint model to represent a measure of flexibility.
Specifically, we map a seating allocation (or plan) to a grid of distances, and then
use the map to measure the flexibility of the allocation. Later in the section, we
will introduce three different measures of flexibility.

Grid of distances

Figure 5.14 shows an example of seating plan allocating three parties (top), and
the corresponding grid of distances G (bottom), for a restaurant with 3 tables and
time horizon 9. The value assigned to each square G[i][t] in the grid indicates the
number of squares (or distance) from time t before table Ti becomes unavailable.
In particular, G[i][t] = 0 indicates that table Ti is occupied at time t.

150

Tables 1 2 3 4 5 6 7 8 9
T1 P1 P1 P1

T2 P1 P1 P1 P3 P3 P3

T3 P2 P2 P2

G 1 2 3 4 5 6 7 8 9
1 0 0 0 6 5 4 3 2 1

2 0 0 0 3 2 1 0 0 0

3 1 0 0 0 5 4 3 2 1

Figure 5.14: Example of seating plan with three parties (top); and corresponding
grid of distances (bottom).

Computing G

Let M be the number of tables, and T be the time horizon discretized in T time
units. Given a seating plan, we superimpose a gridG of sizeM ×T over the plan.
Each square is a constrained variable whose initial domain ranges between 0 and
T − i, with i column of the grid where the square is located. T − i represents the
distance to the last time unit. Then, the procedure to generate the map is repre-
sented in Figure 5.15. Specifically, we first consider each party Pn in turn, and, in

∀ n ∈ 1..N, j = 1..M, (Tm1 , .., Tmj) ∈ J
(Tm1 , .., Tmj).minPS ≤ Pn.size ≤ (Tm1 , .., Tmj).maxPS

CMAPa : Pn = Tm1 → G[m1, ..,mj][Pn.start, .., Pn.end] = 0

∀ m ∈ 1..M, t ∈ 2..T,

CMAPb : G[m][t]−G[m][t− 1] ≤ 1

Figure 5.15: Procedure for mapping seating allocations into grids of distances.

turn, we consider each table (or group of tables) (Tm1 , .., Tmj) in the set of pos-
sible J . For each pair 〈Pn, (Tm1 , .., Tmj)〉 such that the capacity of (Tm1 , .., Tmj)

is suitable for the size of Pn, CMAPa ensures that if the party is accommodated
into (Tm1 , .., Tmj) (i.e. the variable Pn is assigned the value Tm1), all the grid
squares corresponding to tables Tm1 , Tm2 , .., Tmj , over the columns from Pn.start

151

to Pn.end, are given a value 0, to represent the occupancy.

The second constraint CMAPb is necessary to work out, for each slot (table,
time) in the grid, the number of time units available before the table becomes
occupied (or unavailable). For each table m and time t, CMAPb ensures that the
difference between the variable G[m][t] and the precedent variable G[m][t− 1] is
at most 1. Doing this, for example, an occupancy of table m at time 4, mapped
to G[m][4] = 0 by CMAPa, would change the domains of time 1, 2, and 3, from
G[m][1] = [0..9], G[m][2] = [0..8], and G[m][3] = [0..7] to G[m][1] = [0..3],
G[m][2] = [0..2], and G[m][3] = [0..1]. In general, after CMAPb , the maximum
value of each square on each table represents the (horizontal) distance from the
square to the first unavailable square on the same table.

In Figure 5.16, the grid at the top represents the initial domains of the squares
for an empty seating plan. During search, as we know, tables are assigned to
parties according to some ordering heuristics. After each assignment, constraints
CMAPa and CMAPb propagate over G. The second grid shows the effect of con-
straint CMAPa on the domains corresponding to the occupied slots - each square
in grey indicates that a party is occupying the table at that time unit. The third
grid shows the effect of constraint CMAPb. The maximum value of each slot (ta-

ble, time) now represents the number of squares (or distance) before the table
becomes unavailable.

Finally, after the search reaches a solution we perform the following step:

G[m][t].min = G[m][t].max , ∀ m = 1..M, t = 1..T .

The last grid in Figure 5.16 shows the final version of the allocation map, which
assigns the exact distance value to each cell in G.

Flexibility measures

We developed a first measure of flexibility based on the number of usable start

times for future requests:

flexibility US = |US| , US = {(m, t) : G[m, t] ≥ d} ,

152

Table 1 2 3 4 5 6 7 8 9
T1 0..9 0..8 0..7 0..6 0..5 0..4 0..3 0..2 0..1
T2 0..9 0..8 0..7 0..6 0..5 0..4 0..3 0..2 0..1
T3 0..9 0..8 0..7 0..6 0..5 0..4 0..3 0..2 0..1

Table 1 2 3 4 5 6 7 8 9
T1 0 0 0 0..6 0..5 0..4 0..3 0..2 0..1

T2 0 0 0 0..6 0..5 0..4 0 0 0

T3 0..8 0 0 0 0..5 0..4 0..3 0..2 0..1

Table 1 2 3 4 5 6 7 8 9
T1 0 0 0 0..6 0..5 0..4 0..3 0..2 0..1

T2 0 0 0 0..3 0..2 0..1 0 0 0

T3 0..1 0 0 0 0..5 0..4 0..3 0..2 0..1

Table 1 2 3 4 5 6 7 8 9
T1 0 0 0 6 5 4 3 2 1

T2 0 0 0 3 2 1 0 0 0

T3 1 0 0 0 5 4 3 2 1

Figure 5.16: Example of seating map: initial domains (top); mapping the occu-
pancy (second top); rearranging the domains of distances (second bottom); final
map, assigning the exact distance to the domain of each cell (bottom).

flexibility WUS =
∑

(m,t)∈US
Tm.capacity .

Considering the map of distances G, squares with numbers less than a stan-
dard dinner duration d are ignored, as they do not represent usable start times.
Tm.capacity is the capacity of table Tm and represents the weight of our measure.

In the restaurant Eco neither booker nor floor manager perform any specific
optimization. However, they base their decisions on a (vague) policy, which can be
interpreted as another measure of flexibility. The aim of the policy is to maintain
a seating plan which minimizes dead-zones - where, for each table, a dead-zone
can be defined as the time length, between the occupancies of consecutive parties,
which is not sufficiently long for accommodating any future request. We then

153

developed a second measure of flexibility as follows:

flexibility DZ = −|DZ| , DZ = {(m, t) : 0 < G[m, t] < d} ,

f lexibility WDZ = −
∑

(m,t)∈DZ
Tm.capacity .

Now, squares with numbers more than a standard dinner duration d or squares
which are not between two consecutive parties are ignored, as they are not dead-
zones.

To evaluate the quality of a seating plan, another measure of flexibility can be
designed looking at the number of seatings (or parties) each table can potentially
serve. For example, in the restaurant Eco the aim is to achieve three seatings per
table at the end of the night. To count the number of seatings, we consider only
those squares in G with values equal to whole number multiples of a standard
dinner duration d, and ignore the remaining cells. We compute the flexibility
based on seatings as follows:

flexibility NS = |NS| , NS = {(m, t) : ∃k ∈ N+, G[m, t] = k × d} ,

f lexibility WNS =
∑

(m,t)∈NS
Tm.capacity .

As an illustration, Figure 5.17 shows a restaurant with 2 tables, T1 of capac-
ity 3 and T2 of capacity 7, and the map of 2 possible seating plans for 3 parties:
P1 (size 3, start 6, end 9), P2 (size 7, start 2, end 5), P3 (size 2, start 2, end 5).
The evening is divided into 8 time units (i.e. T = 8), and we assume the stan-
dard dinner duration is d = 3. The grid cells show the number of time units
available. Then, considering the three flexibility measures, we obtain the fol-
lowing estimates: flexibilityWUS (top) = (2 × 3) = 6; flexibilityWUS (bottom)
= (2 × 7) = 14; flexibilityWDZ (top) = −(1 × 7) = −7; flexibilityWDZ (bot-
tom) = −(1 × 3) = −3; flexibilityWNS (top) = (1 × 3) = 3; and flexibilityWNS

(bottom) = (1× 7) = 7. Thus, all the flexibility measures prefer the second seat-
ing plan. Note that, the corresponding versions with no weights on table capacity
would not distinguish between the two plans: flexibilityUS (top) = flexibilityUS
(bottom) = 2; flexibilityDZ (top) = flexibilityDZ (bottom) = 1; and flexibilityNS

154

(top) = flexibilityNS (bottom) = 1.

Table[size] 1 2 3 4 5 6 7 8
T1[3] 1 P3 P3 P3 4 3 2 1
T2[7] 1 P2 P2 P2 1 P1 P1 P1

Table[size] 1 2 3 4 5 6 7 8
T1[3] 1 P3 P3 P3 1 P1 P1 P1

T2[7] 1 P2 P2 P2 4 3 2 1

Figure 5.17: Flexibility map for two possible allocations.

5.6.2 Using future knowledge

Depending on the distribution of future requests, by size and time, the preference
over different possible seating plans can change.

Example

Figure 5.18 shows a restaurant with three tables, T1 of size 2, T2 of size 2, T3 of
size 3, and two possible seating plans for 4 parties, P1 (size 2, start 1, end 4), P2

(size 3, start 3, end 6), P3 (size 2, start 6, end 9), P4 (size 2, start 1, end 4). We
assume no group of tables can be joined. If we know we are likely to receive a
request of size 3 for time 6, then we should prefer the first plan. If we are more
likely to receive two requests, both of size 2 and for time 4 or 5, then we should
prefer the second plan.

Flexibility with future knowledge

The three measures of flexibility, introduced in the previous section, have been
extended to reason about future knowledge. Specifically, if Pmt is the probability
associated to a request of size Tm.capacity for a dinner starting at time t, the new

155

Table[size] 1 2 3 4 5 6 7 8
T1[2] P1 P1 P1 2 1 P3 P3 P3

T2[2] P4 P4 P4 5 4 3 2 1
T3[3] 2 1 P2 P2 P2 3 2 1

Table[size] 1 2 3 4 5 6 7 8
T1[2] P1 P1 P1 5 4 3 2 1
T2[2] P4 P4 P4 5 4 3 2 1
T3[3] 2 1 P2 P2 P2 P3 P3 P3

Figure 5.18: Flexibility map for two possible allocations.

measures are:
flex WUS =

∑

(m,t)∈US
Tm.capacity × Pmt ,

f lex WDZ = −
∑

(m,t)∈DZ
Tm.capacity × Pmt ,

f lex WNS =
∑

(m,t)∈NS
Tm.capacity × Pmt .

Back to the example of Figure 5.18, considering all requests equally likely, e.g.
Pmt = 1 for all m = 1..M and t = 1..T , using our measure based on usable start
times we would obtain flexWUS (top) = 3× 2 + 1× 3 = 9, and flexWUS (bottom)
= 3× 2 + 3× 2 = 12, i.e. the preferred plan is the one at the bottom. Assuming
P3 6 = 1 (i.e. we are sure to receive a request for 3 people for time 6), P2 4 = 0.5,
P2 6 = 0.5, and Pm t = 0 for any other pair (m, t), we obtain instead: flexWUS

(top) = 2× 2× 0.5 + 1× 3× 1 = 5, and flexWUS (bottom) = 4× 2× 0.5 = 4,
i.e. the preferred plan becomes the one at the top.

Booking patterns

The data model we are going to use is based on the expected number of booking
requests per party size and time. Specifically, we consider B booking sheets from
the past, and count the number of occurrences of each type of booking, by party

156

size and start time. For each m = 1..M , t = 1..T , our estimate for Pmt is then:

Pmt =
1

B

∑

b=1..B, nb=1..Nb, Pnb .size=Tm.capacity, Pnb .start=t

1 .

The pattern of requests varies, e.g. depending on the season, on the occasion
(Christmas, Valentine’s Day, etc), or on the day of the week, we can have dif-
ferent distributions of parties by size and time. The most evident case concerns
Valentine’s Day, where most of the parties are couples. Our model should then
compute a different Pmt for each category (i.e. season, special occasion, day of
the week, etc). For example, it should use booking sheets of past Valentine’s Days
to generate the estimates of table demand for the next Valentine’s Day.

Getting the data is often difficult - many restaurants do not take reservations,
and others do not store the booking sheets. Further, even though past booking
sheets often represent the best data available for estimating table demand, they
keep a record only of the accepted requests, so we do not know the number and
nature of those others that could not be satisfied. More accurate estimates for the
terms Pmt should be based on all the requests, accepted and rejected. In order to
do that, booking systems should be changed so that the complete information on
all the requests can be retrieved.

Flexibility and booking patterns for Eco

As a first attempt at using estimates of future requests, we implemented a sim-
plified version of Pmt, weighting only the distributions by time (and not by party
size). Pt is then the probability estimate of a request of any size for time t:

Pt =
1

B

∑

b=1..B, nb=1..Nb, Pnb .start=t

1 .

Thus, we obtain:

flex WUS =
∑

(m,t)∈US
Tm.capacity × Pt ,

157

flex WDZ = −
∑

(m,t)∈DZ
Tm.capacity × Pt ,

f lex WNS =
∑

(m,t)∈NS
Tm.capacity × Pt .

We considered 21 booking sheets (three weeks) provided by the restaurant
Eco. We divided them into two categories, (i) Sundays, and (ii) any other days
of the week. We computed the estimates Pt, scaling the frequency of requests
over time down to weights in the range 0 to 4, and obtaining the distributions of
Table 5.3. For example (second and second last columns), considering booking
requests for a Sunday, we can read that the frequency of 4 o’clock bookings is
four times the frequency of booking requests for 9:30 p.m., while, for another
day, we can expect two bookings for 9:30 p.m. for every booking for 4 o’clock.
For simplicity, here we only report the values by steps of 30 minutes, i.e. for even
time units 0, 2, .., 24. Note that, the peak of table load (or demand) on Sundays is
between 4 and 7 o’clock, while on another day it ranges between 6 and 9 o’clock.

Table 5.3: Booking distribution in Eco, for Sundays or for any other day.

clock 400 430 500 530 600 630 700 730 800 830 900 930 1000
time-unit 0 2 4 6 8 10 12 14 16 18 20 22 24
Sundays 4 4 4 4 4 4 4 3 2 2 1 1 0

other days 1 1 2 2 4 4 4 4 4 4 4 2 1

5.7 Anytime algorithm

In this section, we combine the constraint model with an anytime algorithm based
on our measures of flexibility. The aim is to provide reasonably flexible solutions
in acceptable time. The basic algorithm is represented in Figure 5.19.

The procedure takes as input the (new) CSP model, generated from the restau-
rant description and from the set of bookings, and an initial solution (or seat-
ing plan). The new CSP model contains G (with domains DG, and constraints
CMAPa,b), and the constrained variable flexibility (as implemented in Section 5.5).

158

INPUT: CSP = (X,D,C1, C2, .., C9) ∪ (G,DG, CMAPa,b, flexibility)
currentSolution = initialSolution

CFLEX = flexibility > currentSolution.flex

while Solver.improve(CSP ∪ CFLEX , SA) == true
currentSolution = Solver.getSolution()
CFLEX = flexibility > currentSolution.flex

return currentSolution

Figure 5.19: Basic algorithm for anytime solutions.

Then we use the flexibility measure of the initial solution as lower bound for
the next solution in the improvement process - we impose a constraint CFLEX
on the constrained variable flexibility. The flexibility value currentSolution.flex

is computed using the map of distances (e.g. Figure 5.16). In the while loop,
Solver.improve(.) considers the constraint model CSP and starts the solution pro-
cess, propagating the satisfaction, mapping, and flexibility constraints over the
search tree, and adopting a search algorithm SA (see next). The search looks for
a new seating plan of increased flexibility. If a better plan is found the current
solution is updated, and so is the constraint on the flexibility lower bound. The
loop is repeated until no further improvement is possible, i.e. assuming no time
limit, until we reach an optimal seating plan. Note that the current (best) solution
is available at any time during the solution process.

5.7.1 Selecting the search algorithm

We designed four versions of search algorithms for anytime solutions, i.e.:

SA1 = MH based, search state reset before new improvement search ,
SA2 = MH based, search state resumed before new improvement search ,
SA3 = SH based, search state reset before new improvement search ,
SA4 = SH based, search state resumed at new improvement search .

159

Versions SA1 and SA2 considers a search based on our multiple heuristic algo-
rithm (i.e. MH magnitude, discussed in Chapter 4). Version SA3 and SA4 con-
sider instead a search based on a single ordering heuristic (i.e. SH , composed
by min-size-domain as variable ordering, and by min-table-capacity as value or-
dering). For SA1 and SA3, the search restarts from the root of the search tree at
each loop of improvement. SA2 and SA4, instead, continue from the state left
in the last loop (i.e. from the leaf of the search tree corresponding to the current
solution).

5.7.2 Objective

Apart from selecting the algorithm with the best anytime performance, the cur-
rent objective is to show that, given a set of parties and an initial seating plan,
we can provide, in reasonable time, new plans with a significant increase in flex-
ibility - according to a certain measure of flexibility. Note that the measures we
designed in Section 5.5 represent only estimates of flexibility, and therefore, af-
ter each improvement loop, we cannot say whether the potential to accommodate
future parties has really increased. This matter, i.e. assessing the accuracy of the
flexibility measures, will be discussed in Chapter 6, where we simulate and solve
the dynamic problem.

5.7.3 Experiments

As just discussed, selecting one rather than another flexibility measure is not so
significant for the purpose of the current tests. Therefore, here we use the measure
based on usable start times, setting flexibility = flexibilityWUS. Further, we assume
a uniform distribution of future requests, i.e. we set Pt = 1 for any time t.

We considered a restaurant description representing the Eco restaurant, i.e. the
23 tables of capacity ranging from 2 to 8, and the 16 possible table configurations
(described in Chapter 2). We tested the 3 versions of anytime algorithms over a
set of problem instances. Each instance is a list of parties, each with a size, a fixed
start time, and a fixed duration. We generated instances of size 1 to 50 parties, one
instance for each size. Further, in the order, party size, start time, and duration
are uniformly distributed in the ranges 1 to 8, 0 to 24 (which we correspond to

160

the range 4:00 p.m. to 10:00 p.m. discretized in 15 minutes units), and 5 to 10
(corresponding to the range 1:15 hours to 2:30 hours). Note that, with an average
of 4.5 people per party, a set of 50 parties gives an average of 225 covers, which
would require the full capacity of the restaurant Eco.

For each set of parties, the initial plans are pre-computed by solving the satis-
faction problem - for doing this we used our original solver based on the multiple
heuristic algorithm (discussed in Chapter 4). Then we run each anytime algorithm
for 5 minutes (300 sec) over each instance, recording the flexibility value of the
variable currentSolution at fixed intervals of time, i.e. at the seconds 1, 2, 3, 4, 5,
10, 15, 45, 60, 300.

5.7.4 Results

Figure 5.20 shows the performance profile of the four algorithms, i.e. the flexibil-
ity improvement over time (from 1 second to 5 minutes, in log scale) with respect
to the flexibility of the initial seating plan. The graphs are the average over all the
problem instances, i.e. for all sizes from 1 to 50 parties.

We can see that in the first 3 seconds the two versions based on a single or-
dering heuristic (SA3, 4) are slightly better than the versions using our multiple
heuristic algorithm (SA1, 2). As an explanation, in the initial phase of the im-
provement process we expect that improvements are easier to find, therefore is
may be better to use the single (and recommended) ordering heuristic adopted by
SA3, 4.

On the other end, as we found in our experiments in Chapter 4, MH appears to
outperform the other methods when we are asked to explore the complete search
space, i.e. when problems are mostly infeasible (as in that case), or when we
have to perform a deeper or full optimization (as we do here). In fact, back to
Figure 5.20, if we can allow more time for the improvement process SA1 and SA2

outperform both SA3 and SA4. The benefit gets more significant after 10 seconds
(∼ +5% compared to the other versions), and the overall improvement on the
initial solution after 5 minutes is around 9%. Note how SA1 gets slightly better
than SA2 between 5 and 11 seconds, but then the two performances converge
again, and after 30 seconds they overlap.

161

 100

 102

 104

 106

 108

 110

 1 10 100 1000

im
pr

ov
em

en
t [

%
 in

iti
al

 s
ol

ut
io

n]

time [sec]

improvement over time [average in range N = 1..50] - size 1..8 - start 0..24 - dur 5..10 - tmax 300 sec

SA_1
SA_2
SA_3
SA_4

Figure 5.20: Anytime algorithm, performance profile of versions SA1, SA2, SA3,
SA4, with instances of size 1 to 50 parties. Horizontal axis in logarithmic scale.

Finally, version SA4 is slightly better on average than SA3. This indicates that,
for a search based on a single heuristic it is advisable to start each improvement
search from the state reached in the previous loop. The difference, though, is not
significant.

Figure 5.20 is an average over instances of size in the range 1 to 50. In general,
instances with a very few parties or instances regarding a very crowded booking
sheet are the easiest to solve, whether the problem is of satisfaction or of opti-
mization. The results presented in Figure 5.21 are an average over the subset of
instances of size 21 to 40, i.e. they focus on the harder region. In this case, SA1

and SA2 are always better than SA3 and SA4. The final improvement is again
around 9%, compared to the other two algorithms, whose performance is poorer
in this region (∼ 2.5% of improvement over the first solution, compared to ∼ 4%

of improvement obtained averaging over all the problem sizes 1 to 50). This again
confirms that for harder problems a search based on MH is more efficient. Finally,

162

considering the two versions based on MH (SA1, 2), we can observe that the ver-
sion restarting the search after each improvement (SA1) shows an overall slightly
better performance compared to the version resuming the search after each im-
provement (SA2).

 100

 102

 104

 106

 108

 110

 1 10 100 1000

im
pr

ov
em

en
t [

%
 in

iti
al

 s
ol

ut
io

n]

time [sec]

improvement over time [average in range N = 21..40] - size 1..8 - start 0..24 - dur 5..10 - tmax 300 sec

SA_1
SA_2
SA_3
SA_4

Figure 5.21: Anytime algorithm, performance profile of versions SA1, SA2, SA3,
SA4, with instances of size 21 to 40 parties. Horizontal axis in logarithmic scale.

5.8 Chapter summary

In this chapter we modified the basic restaurant scheduling problem with single
tables to include table configurations and seating plan optimization.

We introduced new constraints to represent table configurations, extending the
original model, and discussing the new representation for the specific case of the
restaurant Eco. Testing our initial model we realized that the new problem involv-
ing table configurations was practically intractable for the size of the restaurant

163

Eco. We therefore designed new constraints to prune the search space. In par-
ticular, adding a new constraint on table capacity we achieved a very efficient
solution.

We also introduced constraints to control poor table allocations, i.e.: (i) a
constraint to avoid long dead-zones between consecutive allocations; and (ii) a
constraint to forbid allocations of twos into four seater or larger tables.

We then presented our model for optimization, which is based on measur-
ing seating plan flexibility. Flexibility has also been expressed using constraints.
Specifically, we map party allocations into a grid of distances, and express flexi-
bility using the distance of each grid slot (table, time) to the next unavailable slot
on that table. Given the standard dinner duration d (e.g. 2 hours), we proposed
three versions of flexibility based on counting: (i) usable start times, i.e. dis-
tances longer than d; (ii) dead-zones, i.e. distances shorter than d regarding slots
located between consecutive parties; and (iii) number of seatings, i.e. distances
multiple of d. The three measures have been extended to weight the distances
by the expectation of future table demand over time. In particular, we presented
an example of expectation for the case Eco, where weights are based on booking
patterns retrieved from past booking sheets.

The constraint model was then combined with an anytime optimization algo-
rithm. Specifically, we designed and compared four versions of algorithms, two
using our multiple heuristic search (MH), and two based on a single heuristic.
We tested the four versions over problem instances ranging from almost empty
to full booking sheets. For each instance, we analyzed the anytime profile of the
improvement achieved by each algorithm over an initial seating plan. The overall
best performance concerns the versions using MH, which shows an improvement
of ∼ 5% after 10 seconds, and of ∼ 9% after 5 minutes, with results regard-
ing an average over all the instances. Excluding from the average the instances
concerning almost empty or very crowded booking sheets, which can be easy to
solve, the versions based on MH were again outstanding, with an improvement
of more than 6% in 10 seconds, and of ∼ 9% in 5 minutes. The versions based
on a single heuristic search showed a poorer profile everywhere, apart from the
case concerning the interval 0 to 10 seconds and including all (i.e. both easy and
hard) instances. The two versions based on MH showed similar performances,

164

with the version restarting the search after each improvement slightly better than
the version resuming the search after each improvement.

In conclusion, after careful modelling we have achieved an efficient represen-
tation for the new problem with table configurations, and an optimization model
with a good anytime profile, i.e. with a reasonable improvement/time ratio.

165

Chapter 6

Solving the dynamic problem

6.1 Introduction

In Chapter 4, we developed a constraint model to solve a static decision problem
based on scheduling with single tables. In Chapter 5, we extended the model
to solve a static optimization problem based on scheduling with reconfigurable
tables. While in both the previous chapters we tested our techniques on static
problems, the aim of this chapter is to show how the same methods can cope with
the dynamic problem.

Section 6.2 introduces the dynamic problem, characterizing the process of
booking and floor management over time. In Section 6.3, we present our allo-
cation methods, and implement also two versions simulating traditional methods
currently adopted in restaurants. Section 6.4 describes an algorithm for solution
(or seating plan) stability, which constrains the number of changes during the first
phase of search. In Section 6.5, we present the experiments and discuss the re-
sults. Specifically, we evaluate our solutions over booking simulations, comparing
to the traditional booking policies, and comparing versions with and without opti-
mization. To represent the situation where customers do not have a preference for
a specific booking time, we perform new experiments allowing diner’s start time
flexibility. We evaluate the different flexibility measures described in Chapter 5,
including our model of future knowledge. We also test our models on the floor
management phase, evaluating flexibility and robustness in managing uncertainty

166

on table demand (walk-ins) and on delays (dinners lasting longer than expected,
and late arrivals). Finally, Section 6.6 reports a summary of the chapter.

The results we are going to present show how the CP based model we have
achieved represents an effective solution for restaurant table management. For
instance, based on booking and floor simulations, and assuming dinners cannot be
delayed to accommodate unexpected changes (e.g. to fit extra parties), we show
how our solution significantly outperforms the traditional allocation method. The
improvement over current systems comes from:

• not committing any table to any party at reservation time, so our solution is
more robust (or flexible) for the accommodation of future changes, and in
particular for managing the uncertainty on table demand and on delays;

• performing optimization, i.e. we can provide more flexible assignments of
parties to tables (in both booking allocation and floor allocation);

• exploiting diners’ start time flexibility (i.e. when customers have no specific
preference for the time to consume their dinner), again, to preserve more
flexible seating plans;

• enhancing uncertainty management, by including some reasoning on future
knowledge into our flexibility estimates.

We will show how all these points contribute to a significant increase in the num-
ber of customers the restaurant can accommodate.

6.2 The dynamic problem

As described in Chapter 2, restaurant table management is a dynamic problem
with two distinct phases: booking and floor management. In both phases, frequent
and uncertain changes (e.g. new booking requests, delays, etc.) occur over time,
and instant decisions have to be taken in order to accommodate the changes.

167

6.2.1 Possible changes during the booking phase

The booking phase precedes the dinner session, and the main changes during
booking can be:

c1 new booking requests;

c2 booking changes (i.e. customers phoning up, asking to change the size or
the time of a previous reservation);

c3 cancellations.

The booking phase starts with an empty booking sheet, where the booker is
going to allocate table slots to each (accepted) booking request. When a request
(c1) cannot be accommodated on the current booking sheet, either he can persuade
the customer to accept another time, or the request must be declined. Similarly,
when there is a booking change in size or time (c2), he checks whether the booking
sheet can accommodate the change, and if not the request gets declined. Finally,
when there is a cancellation (c3), he simply erases the booking from the booking
sheet. Note that c2 can be regarded as a combination of c3 followed by c1, i.e. we
can first cancel the original booking and then input a new booking request with
the new size/time details. The booker needs to be reasonably quick to find out
whether or not a booking request can be accommodated (e.g. the customer cannot
be held for one hour on the phone). In practice, the booker spends around 10 to
20 seconds to process each request.

6.2.2 Possible changes during floor management

In floor management, changes happen during dinner time, and most of them have
immediate effect on the current state of the restaurant. In this phase, c1, c2, and c3

are still possible changes, along with:

c4 walk-ins (parties arriving without reservation);

c5 no-shows (parties with reservation who did not turn up);

c6 parties arriving later or earlier than expected;

168

c7 dinners lasting longer or shorter than expected;

c8 parties turning up with more or fewer people than the table size that was
booked;

c9 parties that arrive believing a booking has been made when none has been
recorded;

c10 table preferences or parties who do not like the (pre)assigned table.

In floor management, the evening starts with a partially completed booking
sheet. The customers have been given definite times, and the aim is to modify the
seating plan when changes happen. Walk-ins (c4) and preferences (c10), similarly
to booking requests (c1) or booking changes (c2), can be accepted or declined
depending on the table availability on the current seating plan. No-shows (c5) are
managed similarly to cancellations (c3), i.e. reservations expire if the customer
does not turn up within a time limit. In Eco, for example, the floor manager
assumes that parties with reservation can arrive late by up to 30 minutes, after
that he deletes the reservation. For the remaining types of changes (c5, c6, c7, c8,
c9), it may be infeasible to accommodate them without delaying any party in the
current seating plan. The manager has to adapt the current plan to accommodate
the change - which usually means that some future parties has to be reallocated or
delayed. Similarly to the booker in the booking phase, the floor manager needs to
respond quickly to accommodate changes as they happen over time - in practice,
10 to 20 seconds is again a reasonable time to process each change.

6.2.3 Modelling the booking phase using dynamic scheduling

We now present the dynamic problem concerning the booking phase, showing
how we solve it, and in particular how the CSP model varies over time - we trans-
late the changes from the restaurant description (i.e. c1, c2, c3) to the CSP model
description.

Figure 6.1 shows an example of dynamic problem for the booking phase. On
the left we represent the sequence of static instances (each containing the change
that generated it), and on the right the corresponding seating plans. The problem

169

starts with an empty list of bookings (top-left), and an empty seating plan (top-
right). Then we have the following sequence of 7 changes: new request (P1, ac-
cepted); new request (P2, accepted); new request (P3, accepted); booking change
(P2.size, accepted); new request (P4, accepted); cancellation (P1); new request
(P5, declined, no suitable table available).

Table 6.1 shows how our CSP model changes according to the sequence repre-
sented in Figure 6.1. For each change CHn (n = 1..7), the corresponding model
is CSPn = (Xn, Dn, Cn). We can observe how: new bookings (c1) introduce new
variables and domains, and augment the number and the scope of constraints;
booking changes (c2) require changes in the constraint description; and cancella-
tions (c3) remove variables and domains, and reduce the number and the scope of
the constraints.

6.2.4 Modelling the floor phase using dynamic scheduling

We now present the dynamic problem concerning the floor phase. Again, we show
how we solve the problem, and how the CSP model varies as changes happen -
now changes can be of type c1, c2, .., c9.

Figure 6.2 shows an example of dynamic problem for the floor phase. On the
left there is the sequence of static instances, and on the right the seating plans.
The problem starts with a partial list of bookings (top-left) and an initial seating
plan (top-right), provided by the preceding booking phase (Figure 6.1). The time
line t during the floor phase (here t = 0, 1, 2, 3, 4) is represented by the double
vertical line on the seating plans. Note that allocations become fixed from the
moment parties get seated, so when a change happens only the future dinners can
be reallocated in order to solve the new problem instance. In this example there
are 6 changes: walk-in (time 0, P6, accepted); walk-in (time 1, P7, declined, no
suitable table available); late arrival (time 1, P3.start, P3.end, accepted); late
finish (time 2, P6.end, accepted); no-show (time 2, P4); arrival with change in
size (time 2, P3.size, accepted).

Table 6.2 shows how the CSP model varies according to the dynamics repre-
sented in Figure 6.2. For each change CHn (n = 1..6), the corresponding model
is CSP′n = (X ′n, D′n, C ′n). We can observe how: walk-ins (c4) introduce new

170

Party Size Start End Table

P1 2 0 3 ?

P1 2 0 2 ?
P2 2 0 2 ?

P1 2 0 2 ?
P2 2 0 2 ?
P3 3 1 3 ?

P1 2 0 2 ?
P2 4 0 2 ?
P3 3 1 3 ?

P1 2 0 2 ?
P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?
P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?

P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?
P5 4 0 2 ?

Table[size] 0 1 2 3
T1[2]
T2[3]
T3[3]
T4[4]

T1[2] P1 P1

T2[3]
T3[3]
T4[4]

T1[2] P1 P1

T2[3] P2 P2

T3[3]
T4[4]

T1[2] P1 P1

T2[3] P2 P2

T3[3] P3 P3

T4[4]

T1[2] P1 P1

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P1 P1 P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

Figure 6.1: Example of dynamic problem on the booking phase: sequence of static
instances (left); possible seating plans (right).

171

Table 6.1: CSP representation for the example of Figure 6.1. Note: (RC, M2,M3,
M4) = (12, 4, 3, 2).

i Xi Di Ci

1 P1 D1 = {T1, T2, T3, T4} C3 = maxNC ≤ RC, maxNC = P1.size = 2
C42 = maxNP ≤M2,maxNP2 = 1
C91 4 = (P1 6= T4)

2 P1 D1 = {T1, T2, T3, T4} C11 = alldiff(P1, P2)
P2 D2 = {T1, T2, T3, T4} C3 = maxNC ≤ RC,

maxNC = P1.size+ P2.size = 4
C42 = maxNP2 ≤M2, maxNP2 = 2, M2 = 4
C51 2 = P1 < P2, C91 4 = (P1 6= T4), C92 4 = (P2 6= T4)

3 P1 D1 = {T1, T2, T3, T4} C11 = alldiff(P1, P2, P3)
P2 D2 = {T1, T2, T3, T4} C3 = maxNC ≤ RC,
P3 D3 = {T2, T3, T4} maxNC = P1.size+ P2.size+ P3.size = 7

C42 = maxNP2 ≤M2, maxNP2 = 3
C43 = maxNP3 ≤M3, maxNP3 = 1
C51 2 = P1 < P2, C91 4 = (P1 6= T4), C92 4 = (P2 6= T4)

4 P1 D1 = {T1, T2, T3, T4} C11 = alldiff(P1, P2, P3)
P2 (size=4) D2 = {T2, T4} C12 3 2 1 = (P2 6= T2) ∨ (P1 6= T3)
P3 D3 = {T2, T3, T4} C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)

C23 4 3 2 = (P3 6= T3) ∨ (P2 6= T4)
C3 = maxNC ≤ RC,

maxNC = P1.size+ P2.size+ P3.size = 9
C42 = maxNP2 ≤M2, maxNP2 = 3
C43 = maxNP3 ≤M3, maxNP3 = 2
C44 = maxNP4 ≤M4, maxNP4 = 1
C61 = 4− 3− (P2 == T2) ≥ 0, C91 4 = (P1 6= T4)

5 P1 D1 = {T1, T2, T3, T4} C11 = alldiff(P1, P2, P3), C12 = alldiff(P3 , P4)
P2 D2 = {T2, T4} C12 3 2 1 = (P2 6= T2) ∨ (P1 6= T3)
P3 D3 = {T2, T3, T4} C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)
P4 D4 = {T1, T2, T3, T4} C23 4 3 2 = (P3 6= T3) ∨ (P2 6= T4)

C3 = maxNC ≤ RC,
maxNC = P1.size+ P2.size+ P3.size = 9

C42 = maxNP2 ≤M2, maxNP2 = 3
C43 = maxNP3 ≤M3, maxNP3 = 2
C44 = maxNP4 ≤M4, maxNP4 = 1
C61 = 4− 3− (P2 == T2) ≥ 0
C91 4 = (P1 6= T4), C94 4 = (P4 6= T4)

6 P2 D2 = {T2, T4} C11 = alldiff(P2, P3), C12 = alldiff(P3 , P4)
P3 D3 = {T2, T3, T4} C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)
P4 D4 = {T1, T2, T3, T4} C23 4 3 2 = (P3 6= T3) ∨ (P2 6= T4)

C3 = maxNC ≤ RC,
maxNC = P2.size+ P3.size = 7

C42 = maxNP2 ≤M2, maxNP2 = 2
C43 = maxNP3 ≤M3, maxNP3 = 2
C44 = maxNP4 ≤M4, maxNP4 = 1
C61 = 4− 2− (P2 == T2) ≥ 0, C94 4 = (P4 6= T4)

7 P2 D2 = {T2, T4} C11 = alldiff(P2, P3, P5), C12 = alldiff(P3 , P4)
P3 D3 = {T2, T3, T4} C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)
P4 D4 = {T1, T2, T3, T4} C15 3 2 3 = (P5 6= T2) ∨ (P3 6= T3)
P5 D5 = {T2, T4} C23 4 3 2 = (P3 6= T3) ∨ (P2 6= T4)

C23 4 3 2 = (P3 6= T3) ∨ (P5 6= T4)
C3 = maxNC ≤ RC,

maxNC = P2.size+ P3.size+ P5.size = 11
C42 = maxNP2 ≤M2, maxNP2 = 3
C43 = maxNP3 ≤M3, maxNP3 = 3
C44 = maxNP4 ≤M4, maxNP4 = 2
C61 = 4− 3− (P2 == T2)− (P5 == T2) ≥ 0
C94 4 = (P4 6= T4)

172

variables and domains, and augment the number and the scope of constraints; no-
shows (c5) remove variables and domains, and reduce the number and the scope
of constraints; late arrivals (c6), late finishes (c7), and changes in size (c8) require
changes in the constraint description. This example does not comprise changes of
type c9, as they would have the same representation and effect than walk-ins. Note
that the allocations of parties P2 and P6 become fixed at time t = 0, to represent
that the customers have been seated and have started their meal. Similarly, party
P3 arrives and gets seated (and fixed) at time t = 2.

Apart from the second walk-in (P7) that was rejected, the other changes were
all found feasible, i.e. for each change we found a new seating plan accommo-
dating the change without delaying any meal. However, note that other changes
could have been infeasible. For example, if party P3 (size 3, start 1) arrived on
time rather than at time 2, and in a group of 5 rather than 2 people, no solution
would have been possible without introducing any delay.

Unavoidable delays can be triggered by changes such as a late arrival (c6), a
late finish (c7), an increase in size (c8), or an unexpected booking (c9). These
four types of changes can be critical, i.e. they can often disrupt other diners, and
create a financial loss for the restaurant, but the manager must accommodate them
even though they depend solely on customer behavior. For our example, the floor
manager could ask party P3 (size 5, start 1) to wait until time 2, when party P2

is expected to free both tables T2 and T3 (which joined can serve the 5 people).
Further, when P6 becomes a late finish, party P4 (size 2) would then be required
to go into table T4 (size 4), violating the constraint on oversized tables C94,4 . Note
that, in the example of Figure 6.2, P4 is finally a no-show, so the actual allocation
would not violate the constraint.

Our current model notifies the user whether or not a change can be accommo-
dated without delays, and provides a possible seating plan if one exists. However,
the model does not consider an automatic introduction of delays to manage criti-
cal changes when they are infeasible (which can only happen in the floor phase,
and for changes of type c6, c7, c8, and c9).

173

Party Size Start End Table
P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?

P2 4 0 2 ?
P3 3 1 3 ?
P4 2 2 4 ?
P6 2 0 2 ?
P2 4 0 2 T2, 3

P3(4) 3(2) 1(2) 3(4) ?(?)
P6 2 0 2 T1

P7 2 1 3 ?
P2 4 0 2 T2, 3

P3 3 2 4 ?
P4 2 2 4 ?
P6 2 0 2 T1

P2 4 0 2 T2, 3

P3 3 2 4 ?
P4 2 2 4 ?
P6 2 0 3 T1

P2 4 0 2 T2, 3

P3 3 2 4 ?
P6 2 0 3 T1

P2 4 0 2 T2, 3

P3 2 2 4 ?
P6 2 0 3 T1

Table[sz] 0 1 2 3
T1[2] P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P6 P6 P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P6 P6 P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P6 P6 P4 P4

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P6 P6 P6

T2[3] P2 P2 P4 P4

T3[3] P2 P2

T4[4] P3 P3

T1[2] P6 P6 P6

T2[3] P2 P2

T3[3] P2 P2

T4[4] P3 P3

T1[2] P6 P6 P6

T2[3] P2 P2 P3 P3

T3[3] P2 P2

T4[4]

Figure 6.2: Example of dynamic problem on the floor phase: sequence of static
instances (left); possible seating plans (right).

174

Table 6.2: CSP representation for the example of Figure 6.2. Note: (RC, M2,M3,
M4) = (12, 4, 3, 2).

i X′i D′i C′i

1 P2 D2 = {T2, T4} C11 = alldiff(P2 , P3, P6), C12 = alldiff(P3 , P4)
P3 D3 = {T2, T3, T4} C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)
P4 D4 = {T1, T2, T3, T4} C12 6 2 3 = (P2 6= T2) ∨ (P6 6= T3)
P5 D5 = {T2, T4} C23 4 3 2 = (P3 6= T3) ∨ (P2 6= T4)
P6 D6 = {T1, T2, T3, T4} C3 = maxNC ≤ RC,

maxNC = P2.size+ P3.size+ P6.size = 9
C4i = maxNPi ≤Mi,
maxNP2 = 3, maxNP3 = 2, maxNP4 = 1
C61 = 4− 3− (P2 == T2) ≥ 0
C94 4 = (P4 6= T4), C96 4 = (P6 6= T4)

2 P2 = T2 D2 = {T2, T4} C11 = alldiff(P2 , P3, P6, P7),
P3 D3 = {T2, T3, T4} C12 = alldiff(P3 , P4, P7)
P4 D4 = {T1, T2, T3, T4} C12 3 2 3 = (P2 6= T2) ∨ (P3 6= T3)
P5 D5 = {T2, T4} C12 6 2 3 = (P2 6= T2) ∨ (P6 6= T3)
P6 = T1 D6 = {T1, T2, T3, T4} C12 7 2 3 = (P2 6= T2) ∨ (P7 6= T3)
P7 D7 = {T1, T2, T3, T4} C23 4 3 2 = (P3 6= T3) ∨ (P2 6= T4)

C3 = maxNC ≤ RC,
maxNC = P2.size+ P3.size+ P6.size+ P7.size = 11
C4i = maxNPi ≤Mi,
maxNP2 = 4, maxNP3 = 2, maxNP4 = 1
C61 = 4− 4− (P2 == T2) ≥ 0
C94 4 = (P4 6= T4), C96 4 = (P6 6= T4)
C97 4 = (P7 6= T4)

3 P2 = T2 D2 = {T2, T4} C11 = alldiff(P2 , P6), C12 = alldiff(P3, P4)
P3 (start=2, end=4) D3 = {T2, T3, T4} C12 6 2 3 = (P2 6= T2) ∨ (P6 6= T3)
P4 D4 = {T1, T2, T3, T4} C3 = maxNC ≤ RC,
P5 D5 = {T2, T4} maxNC = P2.size+ P6.size = 6
P6 = T1 D6 = {T1, T2, T3, T4} C4i = maxNPi ≤Mi,

maxNP2 = 2, maxNP3 = 1, maxNP4 = 1
C61 = 4− 2− (P2 == T2) ≥ 0
C94 4 = (P4 6= T4), C96 4 = (P6 6= T4)

4 P2 = T2 D2 = {T2, T4} C11 = alldiff(P2 , P6), C12 = alldiff(P3, P4, P6)
P3 D3 = {T2, T3, T4} C12 6 2 3 = (P2 6= T2) ∨ (P6 6= T3)
P4 D4 = {T1, T2, T3, T4} C3 = maxNC ≤ RC,
P5 D5 = {T2, T4} maxNC = P3.size+ P4.size+ P6.size = 7
P6 = T1 (end=3) D6 = {T1, T2, T3, T4} C4i = maxNPi ≤Mi,

maxNP2 = 3, maxNP3 = 1, maxNP4 = 1
C61 = 4− 2− (P2 == T2) ≥ 0
C94 4 = (P4 6= T4), C96 4 = (P6 6= T4)

5 P2 = T2 D2 = {T2, T4} C11 = alldiff(P2 , P6), C12 = alldiff(P3, P6)
P3 D3 = {T2, T3, T4} C12 6 2 3 = (P2 6= T2) ∨ (P6 6= T3)
P5 D5 = {T2, T4} C3 = maxNC ≤ RC,
P6 = T1 D6 = {T1, T2, T3, T4} maxNC = P2.size+ P6.size = 6

C4i = maxNPi ≤Mi,
maxNP2 = 2, maxNP3 = 1, maxNP4 = 1
C61 = 4− 2− (P2 == T2) ≥ 0
C96 4 = (P6 6= T4)

6 P2 = T2 D2 = {T2, T4} C11 = alldiff(P2 , P6), C12 = alldiff(P3, P6)
P3 (size=2) D3 = {T1, T2, T3, T4} C12 6 2 3 = (P2 6= T2) ∨ (P6 6= T3)
P5 D5 = {T2, T4} C3 = maxNC ≤ RC,
P6 = T1 D6 = {T1, T2, T3, T4} maxNC = P2.size+ P6.size = 6

C4i = maxNPi ≤Mi,
maxNP2 = 3, maxNP3 = 1, maxNP4 = 1
C61 = 4− 2− (P2 == T2) ≥ 0
C93 4 = (P3 6= T4), C96 4 = (P6 6= T4)

175

6.3 Solution process

Figure 6.3 represents the solution process over a general sequence of changes,
for either booking or floor management. SP0 is the initial seating plan. SPN

(N = 1, 2, 3, ..) corresponds to the seating plan updated after solving the problem
instance generated by change CHN , which occurs at time tN . Note that, when
change CHN occurs, all allocations of parties which have been seated at any time
t < tN cannot be changed. In our model, if CHN is found feasible then SPN
contains (or accommodates) the change; otherwise, CHN is rejected, and the pre-
ceding seating plan is restored, i.e. SPN = SPN−1.

For simplicity, we represent a dinner session with a time window 0 .. T ,
i.e. 0 and T are the first and last available time to serve a meal. Restaurant
table management starts with a booking phase, anticipating the dinner session,
followed by a floor management phase, covering the entire dinner session. Then,
any change CHN can occur at any time tN < 0 in the booking phase, and at any
time 0 ≤ tN ≤ T in the floor management phase.

CH 1 (t 1)

SOLVE
SP1

SOLVE
SP2 SPN-1

SOLVE
SPN

CH 2 (t 2) CH N (t N)

SP0

Figure 6.3: Diagram representing the solution process of the dynamic problem: to
each change CHN corresponds a new problem instance.

6.3.1 Solvers

During the solution process, seating plans are updated according to the decisions
taken by a solver (“SOLVE” blocks in Figure 6.3). We implemented two versions
of solver based on the modelling we have done in the previous chapters (we name
them SOLV ER1 and SOLV ER2), and two other versions imitating the tradi-
tional allocation methods adopted in restaurants (which we name SOLV ER3 and

176

SOLV ER4). Specifically, to search whether (and how) a change CHN can be
accommodated into a given seating plan SPN :

• SOLV ER1, 2 can re-allocate anyone in SPN who has not sat down;

• SOLV ER3, 4 cannot re-allocate anybody in SPN .

For SOLV ER1,2, all parties which are planned to be seated at any time t in the
future (between tN and T) have not been committed to their original table. In
particular, during the booking phase all parties are free for reallocation, as tN < 0.
For SOLV ER3,4, all parties are instead committed to their original table.†

All solvers are based on our constraint satisfaction model of the problem
(Chapter 4 and 5). SOLV ER1 and SOLV ER3 stop after the first solution is
found (or the problem is found infeasible). SOLV ER2 and SOLV ER4 extend
the first two versions by performing optimization - i.e. after the first solution is
found, they try to search alternative and more flexible seating plans, based on our
optimization model (Chapter 5).

Later in the chapter all these versions will be tested and compared over sim-
ulated booking and floor management sessions. We expect that the ability of
SOLV ER1,2 to perform reallocations is going to allow more flexibility for the
accommodation of new requests, and also more robustness in absorbing changes
(e.g. delays) without introducing other delays. Further, starting from (and main-
taining) a more flexible seating plan (SOLV ER2,4) is also expected to be im-
portant in order to maximize the reservation potential - by increasing the chances
to accept future bookings or walk-ins. Flexibility can also be seen as a form of
robustness, i.e. a more flexible seating plan should improve the ability of the
restaurant to absorb changes without causing delays or disruptions.

†In fact, current booking systems are based on paper, i.e. reservations are taken by writing
party names into table slots in a booking sheet. After a reservation has been written into a table the
allocation is rarely changed - it is inconvenient to do the operation on paper, and simultaneously
reallocating even a few reservations can be too complex, especially on a crowded booking sheet.

177

6.4 Seating plan stability constraining the number
of changes

Before moving to the experiments, we now describe a final tuning on the search
algorithms utilized for solving the dynamic scheduling problem. The constraint
satisfaction and optimization models described in the previous chapters do not
consider the number of table reallocations from one seating plan to the next - their
aim is to find any (improving) plan. During the floor management phase, however,
too many changes cause confusion in the restaurant, making it difficult for staff to
understand and evaluate each solution. Frequent changes in table configurations
can cause disturbance also to the customers who are eating - if the tables near
where they got seated have been moved several times. Therefore, table manage-
ment should, when possible, try to maintain the stability of the plan, and should
prefer new plans with few changes.

We extended the previous models, so that when changes occur, we search
for new solutions in two phases: first, we search in the neighbourhood of the
preceding solution, placing a limit on the number of changes allowed; second, if
no acceptable plan is found in the first phase, we allow all allocations to float, and
we search for any new solution. The pseudocode is shown in Figure 6.4.

solution = original
discrepancy = 0

while ((timer < timeout1) && (discrepancy < discrepancyMAX))
if Solver.solve(CSP, MH, timeout1, original, discrepancy) == true

solution = Solver.getSolution()
return solution

else discrepancy += 1

if Solver.solve(CSP, MH, timeout2, original, any) == true
solution = Solver.getSolution()

return solution

Figure 6.4: Basic algorithm for stable solutions.

178

The maximum number of allowed changes from the original solution is rep-
resented by the variable discrepancy. The initial discrepancy limit is set to 0: i.e.
we first check if the new change can be integrated into the original solution with-
out any further changes. If not, the discrepancy limit is incremented until either a
solution is found, or the limit reaches discrepancyMax. In the latter case, a final
search is carried out for a new solution with no limit on the maximum number of
changes. The solve procedure is extended to include the discrepancy limit, which
is posted as a constraint CDISCREPANCY on the decision variables, i.e. the set of
parties P1, P2, .., PN :

CDISCREPANCY :

discrepancy.old <
∑

n=1..N (Pn 6= original.getV alue(Pn)) ≤ discrepancy

The constraint restricts the number of changes to be greater than the discrepancy
value at the previous loop, i.e. discrepancy.old.† A similar procedure is applied
when searching for flexible solutions - the parameters discrepancyMax, timeout1,
and timeout2, allow stability to be traded for flexibility.

6.5 Objective

We want to evaluate our solutions (i.e. SOLV ER1,2) over simulated booking and
floor management sessions, comparing to our imitations of the traditional alloca-
tion method adopted in the restaurants (i.e. SOLV ER3,4). Our higher level goal
is to verify that our techniques are efficient for a practical use in a real restaurant,
and provide more flexible and robust solutions than traditional approaches - so
they can effectively represent an improvement in the ability to solve the dynamic
problem. In relation to this, we are going to present a number of experiments
focusing on the following questions:

• Does the fact that parties are free for reallocation until the time they get
seated allow more flexibility to manage future table demand and delays? In
particular, does this freedom allow us to seat more covers by the end of the

†In this case discrepancy is incremented by 1 at each loop, so discrepacy.old = discrepancy-1;
however, the discrepancy count could also be increased in higher steps.

179

night, reducing the number of meal requests which get turned down, or to
minimize the cases where the propagation of a current delay causes more
delays over future meals?

• Does our solution provide more flexible seating plans? In particular, by
using flexibility do we get more covers by the end of the night?

• How does our solution make use of diners’ start time flexibility, i.e. can the
optimization model be used to sell more flexible times when the customer
has no specific preference? In particular, if we use the flexibility model over
start times, do we get more covers at the end of the night?

• Does the reasoning on future knowledge included into our model improve
seating plan flexibility? Again, does it allow us to seat more people by the
end of the night?

The booking and floor sessions we simulate are analogous to the examples previ-
ously discussed, but are dimensioned over a real size restaurant. For simplicity,
we will represent booking sessions with sequences of booking requests, and floor
sessions with sequences of walk-in requests, late finishes, or late arrivals.

6.6 Booking simulation

We represent an instance of a single booking session as a set of 100 booking re-
quests (or parties) arriving one by one over time. Therefore, to simulate a booking
session we generate an ordered set of booking requests - each request is assigned
a distinct identification number id, ranging from 1 to 100, to reflect the arrival
order. We consider requests for parties of size in the range 1 to 8, using a realistic
distribution retrieved from real data collected in the restaurant Eco (i.e. from past
booking sheets). Specifically, considering the 8 possible sizes in increasing order,
the frequency we assign to each is respectively 1%, 43%, 15%, 14%, 12%, 9%,
6%, 5%. Start times are generated in the range 0 to 24 (i.e. 4 p.m. to 10 p.m.
discretized in 15-minute units). In the restaurant Eco the standard dinner duration
is estimated to 2 hours, which means that the general policy applied by the booker

180

is to reserve a two hour slot to each booking. For particularly large parties din-
ing at peak times he may assign longer durations, and for small parties dining off
peak he may give a shorter slot. Considering a first approximation of the standard
booking process, for each generated party we generate (and assume) a duration in
the range 7 to 9 (i.e. 1.45 hours to 2.15 hours, discretized in 15-minutes units),
with average 8 (i.e. 2:00 hours).

For our experiments, we generate and tests groups of 30 booking sessions
each, to represent a month of booking management. We test SOLV ER1, 2 (our
solutions) and SOLV ER3, 4 (our simulations of traditional solutions) using the
diagram discussed in Section 6.2, Figure 6.3. For instance, we consider each set
of 100 booking requests as a list of changes CH1, CH2, .., CH100. We start from
an empty seating plan SP0 = ∅, and process the changes in the order. For each
request, we let the solver run for a time of 10 seconds - which is a reasonable time
to evaluate the efficiency for a practical use in a real restaurant. If no solution is
found within 10 seconds the current request gets rejected and the preceding seat-
ing plan is restored. SOLV ER1 and SOLV ER3 only search for a first feasible
solution. SOLV ER2 and SOLV ER4 also perform optimization, so, if they find a
first feasible solution before the 10 seconds, they use the remaining time to search
for better solutions.

6.6.1 Results on standard booking

Table 6.3 and Figure 6.5 show the results of the first experiments, concerning a
standard booking simulation (as described above). The table reports the average
number of covers reached after 60 requests, the number of times (over the 30
booking sessions) the reservation target was achieved within 60 requests, and the
average number of requests to achieve the reservation target. The graph repre-
sents the mean number of accepted covers over number of requests. Each point
is an average over the 30 booking sessions. The two lower curves represents the
traditional way to take bookings, while the two on the top are our solutions. The
horizontal line at 180 covers is the target, i.e. the restaurant is happy about an
evening session if the final turnover of people is above 180.

As we can see, both our solutions reach the target after an average of ∼ 57

181

Table 6.3: Comparing the four solvers on the reservation target.

SOLV ER1 SOLV ER2 SOLV ER3 SOLV ER4

mean Nb of covers
achieved after 182.6 182.9 170.9 173.4

60 requests
Nb of times

achieved 20/30 21/30 7/30 10/30
180 covers (67%) (70%) (23%) (33%)

after 60 requests
mean Nb of requests

to reach 57.5 57.5 67.5 67.5
180 covers

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 10 20 30 40 50 60 70 80 90 100

ac
ce

pt
an

ce
 [c

ov
er

s]

time [requests]

average over 30 b-sheets, 100rqst per sheet, unif {st[4..10], dd[1:45..2:15]}, real ps[1..8], tmax 10s, neg 0%

SOLVER 1
SOLVER 2
SOLVER 3
SOLVER 4

Figure 6.5: Tests on standard booking: mean number of covers over number
of requests, comparing SOLV ER1, SOLV ER2, SOLV ER3, and SOLV ER4.
Reservation target is 180 covers.

182

requests, while the other solutions require ∼ 67. From the restaurant point of
view, this means that, on average, if for one night the restaurant receives only 57
requests, then our solver would achieve the target, while the traditional allocation
method would still be ∼ 7% below. From the customer point of view, this also
means that using our solver we have turned down fewer requests, so the restaurant
gets fewer disappointed customers. SOLV ER1 and SOLV ER2 are also more
robust, as they achieve the target in more cases if we fix the maximum number
of requests to 60 - i.e. 67% and 70% (in the order), against 23% and 33% of
SOLV ER3 and SOLV ER4.

Comparing the basic version, SOLV ER1, to the one extended to perform
optimization, SOLV ER2, the performance is similar, with the second version
slightly better on average. This similarity was expected, as during the booking
phase all the reservations already taken can always be reallocated in order to fit
a new request, so there is no commitment of tables to parties to be decided and
optimized. The fact that SOLV ER2 is slightly better suggests that there is a
benefit from having a good solution to start with, at each request. In fact, our
algorithms starts the search from the neighbourhood of the preceding solution
(i.e. the one before the new request arrives), gradually increasing the number
of allowed changes. We then expect that, especially as the problem gets larger
(and harder), the more flexible the preceding solution is, the more likely we are to
find a new solution accommodating the new request (assuming one exists) within
the 10 seconds available. Note that the search space is the same for SOLV ER1

and SOLV ER2, so there would be no difference between using one or the other
assuming we had no limit in the search time.

A similar comparison holds between the traditional version SOLV ER3 and
its extension with optimization SOLV ER4, with the second slightly better. In
this case, all allocations of tables to parties are fixed at reservation time. It appears
there is (again) a slight benefit from performing optimization, i.e. picking a more
rather than a less flexible allocation for each request when it arrives.

Figure 6.6 shows the profile of the flexibility measure over time for the four
solvers. We observe how in the first part SOLV ER4 and especially SOLV ER2

preserve a higher level of flexibility, compared to SOLV ER1 and SOLV ER3.
From the results in Figure 6.5, both SOLV ER1 and SOLV ER2 are able to satisfy

183

more requests compared to the other solvers, therefore for them the restaurant
gets crowded earlier - in particular, after 55-60 requests the increase in number of
people allocated is always around 10. A more crowded restaurant means that the
flexibility to accept future requests is reduced. This explains the fact that in the
second part both the curves of flexibility for SOLV ER1 and SOLV ER2 appear
below the curves of the traditional solvers, SOLV ER3 and SOLVER4. The
effect is particularly evident for SOLV ER1, i.e. our version with no flexibility
optimization.

 0

 500

 1000

 1500

 2000

 2500

 10 20 30 40 50 60 70 80 90 100

fle
xi

bi
lit

y
[w

ei
gh

te
d-

us
ab

le
-s

ta
rt-

tim
es

]

time [requests]

average over 30 b-sheets, 100rqst per sheet, unif {st[4..10], dd[1:45..2:15]}, real ps[1..8], tmax 10s, neg 0%

SOLVER 1
SOLVER 2
SOLVER 3
SOLVER 4

Figure 6.6: Tests on standard booking: flexibility profile over number of requests,
for SOLV ER1, SOLV ER2, SOLV ER3, and SOLV ER4.

6.6.2 Results on booking with diner’s start time flexibility

Sometimes, customers do not have a real preference over a specific booking time,
i.e. they are flexible about the time to consume their dinner. In other cases, book-
ing requests for a specific time slot cannot be accommodated because the restau-
rant is fully booked at that time - so the booker can offer alternative time slots.

184

In both cases, the booker can look at the current list of bookings and propose the
possible times available to the customer.

We now test whether our flexibility-based optimization can be used to help the
booker negotiate start times, i.e. suggesting booking times that would maintain
more flexible seating plans, for a higher reservation potential, and therefore for a
higher final turnover. We repeat the tests over the same 30 booking sessions of 100
requests, using the same distribution over party sizes, start times, and dinner du-
rations as in the previous experiment. This time, however, if starti is the original
start time (or booking time) that we generate for each request RQi (i = 1..100),
we assume that those bookings which we represent as customers who are flexible
(or available for negotiation) can have a start time equal to any among the three
possibilities starti, starti + 1 hour, and starti - 1 hour (for simplicity, we consid-
ered only alternative times on the hour). So, to represent for example a customer
who would like a table for sometime around 7 o’clock, we will consider 6 o’clock,
7 o’clock, and 8’ o’clock as possible start times, and then the solver will optimize
and pick the time which preserves a more flexible solution for future requests.

For this experiment we compare three versions of SOLV ER2, which is the
best solver resulted from the experiment presented in the previous section. The
part of optimization performed by SOLV ER2 is based on measuring weighted
usable start times, i.e. we set the flexibility measure to flexibilityWUS. For the first
of the three versions we assume no start time flexibility (or negotiation). For the
second version, we assume one customer out of five (i.e. 20%, selected randomly)
is available to accept any of the three possible booking times. Similarly, for the
third version we assume all customers (i.e. 100%) would accept any of the three
possible start times. This last version may not represent a realistic case, but is
used here to give a better understanding of the effect (and the potential benefit)
of supporting negotiation. For each new request RQi, we run SOLV ER2 for 10
seconds (as usual), setting the start time ofRQi equal to the original request starti,
and, if the RQi is selected for negotiation, we repeat the 10 second run two more
times, one with starti + 1 hour and one with starti - 1 hour.

Figure 6.7 (top) shows the results of this experiment, again, in terms of mean
number of accepted covers over number of requests. As we can see, if for each re-
quest we allow the solver to choose among alternative times (from the set of three

185

possible, and based on our flexibility measure), the number of requests necessary
to get to the reservation target of 180 covers is significantly reduced. For instance,
assuming 100% of customers are willing to change their start time by one hour,
the resulting mean number of requests to achieve the target is reduced to∼ 47, i.e.
10 fewer than the case with 0% negotiation (and 20 fewer than the performance
of the traditional solver SOLV ER4). Even though in reality not all customers
are so flexible on the start time, this result shows how the restaurant could make
a large improvement by adopting negotiation as a systematic strategy. Assuming
for example the total number of requests for the night is 57, then we can see that
with 0% negotiation the restaurant has bookings for 180 covers, while allowing
100% negotiation it has bookings for more than 200 covers, i.e. the increase is
greater than 10%. Encouraging the customer to choose dinner slots which bet-
ter preserve flexibility for future requests can significantly increase the number of
people which can be accommodated.

The intermediate case, with 20% of bookings available for negotiation, repre-
sents a good approximation of what really happens in the restaurants.† Comparing
this case against the case with 0% negotiation we can still observe a significant
impact of allowing some spontaneous (rather than systematic) negotiation. For
instance, with a 20% negotiation frequency the reservation target is achieved after
an average of 53 requests, 4 (i.e. ∼ 7%) fewer than if we take bookings without
negotiation.

Figure 6.7 (bottom) shows the flexibility profile over time (or over number of
requests) for the three levels of negotiation. By allowing negotiation the solver is
able to decide which is the best start time for each request in order to preserve a
higher flexibility for future requests. In the first part of the graph the increase in
flexibility gained by allowing negotiation is clear, and proportional to the level of
negotiation. In the second part the three curves of flexibility are more levelled.
This is due to the fact that a versions with a higher level of negotiation has been
allocating more parties - so the restaurant occupancy is more crowded and as a
consequence the flexibility drops.

†In fact, in the mornings and afternoons I spent at the reservation office of the restaurant Eco, I
estimated that about one phone call out of 5 regards either a customer asking for a table for a time
already fully booked, or a customer asking which times are still available to get a table.

186

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 10 20 30 40 50 60 70 80 90 100

ac
ce

pt
an

ce
 [c

ov
er

s]

time [requests]

average over 30 b-sheets, 100rqst per sheet, unif {st[4..10], dd[1:45..2:15]}, real ps[1..8], tmax 10s

SOLVER 2, neg 0%
SOLVER 2, neg 20%

SOLVER 2, neg 100%

 0

 500

 1000

 1500

 2000

 2500

 10 20 30 40 50 60 70 80 90 100

fle
xi

bi
lit

y
[w

ei
gh

te
d-

us
ab

le
-s

ta
rt-

tim
es

]

time [requests]

average over 30 b-sheets, 100rqst per sheet, unif {st[4..10], dd[1:45..2:15]}, real ps[1..8], tmax 10s

SOLVER 2, neg 0%
SOLVER 2, neg 20%

SOLVER 2, neg 100%

Figure 6.7: Tests on booking with negotiation. Mean number of covers over num-
ber of requests (top). Flexibility profile over number of requests (bottom). Com-
paring SOLV ER2 for different levels of negotiation.

187

6.6.3 Results on booking for different flexibility measures

In Section 5.5, we implemented three flexibility measures: flexibilityWUS, based
on usable start times; flexibilityWDZ, based on dead zones; and flexibilityWNS,
based on the potential number of seatings. All measures weight each table slot
by the table capacity. So far, in our tests we have only considered optimization
based on flexibilityWUS. We now want to compare the three flexibility measures.
Thus, we test three versions of SOLV ER2: the first maximizes usable start times;
the second minimizes dead-zones; and the third maximizes the potential number
of seatings. Results are reported in Figure 6.8. The problems we tested are the
same as in the previous experiments, i.e. 30 booking sheets of 100 requests each,
with same distribution over party sizes, start times, and durations. Comparing the
number of accepted covers achieved by flexibilityWUS to the number concerning
the other two measures we can see a very little difference: flexibilityWUS appears
overall slightly better, with a peak of improvement of ∼ 1 cover in the range 60
to 70 requests, followed by flexibilityWNS, and then by flexibilityWDZ. How-
ever, considering a typical turnover of 180-200 covers, the improvement is not
significant. We can conclude that the three measures have a similar performance,
particularly in the range 0 to 40 requests, and after 80 requests.

6.6.4 Results on booking using future knowledge

In the previous experiments, we tested booking sessions with start times uniformly
distributed in the range 0 to 24, i.e. from 4 p.m. to 10 p.m. For our flexibility
measure (i.e. flexibilityWUS), this means that all possible start times were equally
likely and therefore were given the same weight in the count of flexibility. In order
to evaluate how our flexibility estimates model future knowledge and how our
optimization algorithm makes use of it, we now consider booking sessions with
start times distributed according to specific patterns. Specifically, we generate 30
booking sessions of 100 requests each, with start times taken from a distribution
based on a booking pattern for a Sunday session at the Eco restaurant. We then
feed the distribution into our measure - so the measure gives different weights to
different booking times according to that pattern (as described in Section 5.5).

Figure 6.9 (top) compares the performance of SOLV ER2 considering four

188

-2

-1.5

-1

-0.5

 0

 0.5

 1

 10 20 30 40 50 60 70 80 90 100

ac
ce

pt
an

ce
(.)

 -
ac

ce
pt

an
ce

(m
ax

U
S

) [
co

ve
rs

]

time [requests]

average over 30 b-sheets, 100rqst per sheet, unif {st[4..10], dd[1:45..2:15]}, real ps[1..8], tmax 10s, neg 0%

minDZ
maxNS

Figure 6.8: Tests on standard booking: mean number of covers over number of
requests, comparing SOLV ER2 over the different measures of flexibility.

different versions: (i) with no negotiation, and assuming an incorrect (i.e. uni-
form) booking pattern; (ii) with no negotiation, and with the correct (i.e. Sunday)
booking pattern; (iii) with 20% negotiation, and with the incorrect (i.e. uniform)
booking pattern; and (iv) with 20% negotiation, and with the correct (i.e. Sunday)
booking pattern. For comparison we also report the performance of SOLV ER4

(with no negotiation and no booking pattern). We can observe how version (i)
and (ii) are almost overlapping with each other, i.e. there is little benefit from
using the correct booking pattern rather than a uniform weighting into the flexi-
bility computation. However, comparing the corresponding versions (iii) and (iv),
both allowing some booking negotiation, we can observe how the version using
the correct pattern is now noticeably better than the one using uniform weights -
Figure 6.9 (bottom) shows a zoom over the second half of the curves, where we
estimate an improvement of ∼ 1%. This represents a small improvement, but it
suggests that, if we allow negotiation then the use of a correct booking pattern can
effectively make some difference.

189

Finally, note that each version achieves the target of 180 covers later compared
to the previous experiments on uniform bookings. In fact, as bookings are now
not distributed uniformly (i.e. according to our Sunday pattern, bookings are more
concentrated between 4 p.m. and 7 p.m.), because of the contention between 4
p.m. and 7 p.m. more reservations must be turned down, and so it takes more
reservations to meet the target.

This is our first attempt at including future knowledge, and the issue needs to
be further investigated (e.g. computing better flexibility estimates). For example,
table slots should be weighted not simply by start time distribution but instead
by the combined distribution of party size and start time. In that case, the new
booking pattern would be a two dimensional surface (i.e. f(size, time), which can
again be retrieved from past booking sheets).

6.7 Floor management simulation on walk-ins

To represent an instance of a single floor management session we use an ordered
set of 70 booking requests (or parties), similarly to the simulation performed for
the booking phase. In this case, we assume we are at the beginning of the dinner
session, the first 40 parties in the set are customers who have reserved on the day
before, while the last 30 are parties who are going to walk in during the night and
request a table (40 and 30 are realistic numbers). The last 30 parties are ordered
by increasing start time, to simulate the real situation - with walk-ins arriving in
chronological order. Considering the diagram presented in Figure 6.3, the initial
seating plan SP0 now contains the first 40 parties, and the next seating plans will
then come from solving the sequence of 30 instances generated by the sequence of
30 walk-ins. As usual, we represent the sequence of walk-in requests as changes
CH1, CH2, ..., CH30. The main difference from the booking phase is that now,
when a walk-inCHi arrives at time ti during the dinner session, none of the parties
who have started their meal can be reallocated.

Figure 6.10 (top) shows the results achieved by the four solvers, again in terms
of accepted covers over number of requests (now walk-ins). The 40 parties that
are already in the initial seating plan before the first walk-in turns up contribute
to an initial load of about 150 covers. Therefore, the new target for our dinner

190

 0

 30

 60

 90

 120

 150

 180

 210

 240

 10 20 30 40 50 60 70 80 90 100

ac
ce

pt
an

ce
 [c

ov
er

s]

time [requests]

average over 30 b-sheets, 100rqst per sheet, Sunday st[4..10], unif dd[1:45..2:15], real ps[1..8], tmax 10s

SOLVER 2 neg 20% Sunday pattern
SOLVER 2 neg 20% Uniform pattern

SOLVER 2 neg 0% Sunday pattern
SOLVER 2 neg 0% Uniform pattern
SOLVER 4 neg 0% Uniform pattern

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 50 55 60 65 70 75 80 85 90 95 100

ac
ce

pt
an

ce
 [c

ov
er

s]

time [requests]

average over 30 b-sheets, 100rqst per sheet, Sunday st[4..10], unif dd[1:45..2:15], real ps[1..8], tmax 10s

SOLVER 2 neg 20% Sunday pattern
SOLVER 2 neg 20% Uniform pattern

SOLVER 2 neg 0% Sunday pattern
SOLVER 2 neg 0% Uniform pattern
SOLVER 4 neg 0% Uniform pattern

Figure 6.9: Tests on standard booking: mean number of parties over number of
requests, comparing SOLV ER2 with and without using future knowledge.

191

session is to achieve 30 extra covers (represented by the horizontal line), which
would get us to the original target of 180 covers overall. From the graphs we
can see how SOLV ER1 and SOLV ER2 significantly outperform the traditional
methods SOLV ER3 and SOLV ER4, similar to what we found in the tests for
the booking phase. Note that the difference in performance increases rapidly at
the beginning, where there is more freedom for reallocations, while later, when
fewer parties can be reallocated, the gap is almost constant. The first two solvers
reach the target after ∼ 16 walk-ins, while the second two require ∼ 26, i.e. 10
more. If for example the restaurant receives only 16 walk-ins in one night, then
our solutions would be on target, while the others would only have accepted ∼ 22

extra covers - which is only ∼ 72% of the target (and of the performance by
SOLV ER1 and SOLV ER2).

Figure 6.10 (bottom) zooms over the second half of the graphs. No significant
difference is shown between SOLV ER3 and SOLV ER4. SOLV ER2 shows
some improvement over SOLV ER1 in the second half of the graph. Ultimately,
considering the entire dinner session and the number of extra covers after 30 walk-
ins, SOLV ER2 is∼ 1.5% better than SOLV ER1, and∼ 26% better than the two
solvers based on traditional methods.

Finally, Figure 6.11 shows the flexibility profile over time for the four solvers.
Comparing the 4 versions of solver we can see how SOLV ER1 and especially
SOLV ER2 maintain a higher flexibility compared to the others. The increase
is partially due to the fact that our solutions do not fix parties to tables until the
moment parties get seated, and partially to the optimization based on flexibility
(for SOLV ER2). As the time passes the 4 curves decreases until they finally
converge. Note how during floor management flexibility decreases much more
quickly than during booking. Now, in fact, the chances to accommodate future
requests decreases with the time, and so the flexibility is affected. For example,
considering a dinner session from 4 p.m. to 10 p.m. as possible start times, then
at 4 p.m. there are 6 hours (i.e. 25 15-minute time slots) available to start a meal,
while at 10 p.m. there is only one last chance (or start time) available.

192

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30

ac
ce

pt
an

ce
 [c

ov
er

s]

time [requests]

mean of 30 b-sheets, 40 bookings + 30 walkins, Saturday st[4..10], unif dd[1:45..2:15], real ps[1..8], tmax 10s

SOLVER 2
SOLVER 1
SOLVER 4
SOLVER 3

 20

 25

 30

 35

 40

 45

 50

 16 18 20 22 24 26 28 30

ac
ce

pt
an

ce
 [c

ov
er

s]

time [requests]

mean of 30 b-sheets, 40 bookings + 30 walkins, Saturday st[4..10], unif dd[1:45..2:15], real ps[1..8], tmax 10s

SOLVER 2
SOLVER 1
SOLVER 4
SOLVER 3

Figure 6.10: Tests on floor management: mean number of parties over number of
walk-ins, comparing SOLV ER1, SOLV ER2, SOLV ER3, and SOLV ER4.

193

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30

fle
xi

bi
lit

y
[w

ei
gh

te
d-

us
ab

le
-s

ta
rt-

tim
es

]

time [requests]

mean of 30 b-sheets, 40 bookings + 30 walkins, Saturday st[4..10], unif dd[1:45..2:15], real ps[1..8], tmax 10s

SOLVER 2
SOLVER 1
SOLVER 4
SOLVER 3

Figure 6.11: Tests on floor management: flexibility profile over number of walk-
ins, comparing SOLV ER1, SOLV ER2, SOLV ER3, and SOLV ER4.

194

6.8 Floor management simulation on delays

We now test our system in terms of robustness to manage delays during floor
management, i.e. the question we aim to address is:

• can we accommodate a delay without delaying other parties?

In particular, we want to evaluate the benefit coming from the fact that our system
can automatically reconfigure the plan. The experiment we perform considers a
set of M initial seating plans, each allocating N parties. The set of initial plans
was generated in the following steps:†

i generate a scheduling problem Si of N parties;

ii solve Si, i.e. use our constraint satisfaction model (Chapter 4 and 5) to see
whether Si is feasible or not;

iii if Si is feasible then record the plan SPi provided by the model;

iv repeat (i), (ii), and (iii), until a set of M seating plans are collected.

The scheduling problems (and the seating plans) we generate have parties with
start times uniformly distributed in the range 0 to 24 (i.e. 4 p.m. to 10 p.m. dis-
cretized in 15 minute units), and durations uniform in 6 to 10 (i.e. 90 to 150
minutes, again with a resolution of 15 minute units). The party size ranges be-
tween 1 and 8 with the %-frequency of each respectively 1, 43, 15, 14, 12, 9, 6,
and 5.

6.8.1 Test on late finish

When the booker or the floor manager allocates parties to tables, they assign din-
ner slots by considering the standard dinner duration, which is typically around 2
hours. However, different customers have different behaviors, and even the same
customer can stay longer or shorter depending on the occasion (e.g. business din-
ner, family dinner, anniversary, etc.). Dinner durations are thus uncertain. In this
section we consider meals finishing later (rather than earlier) than expected, i.e.
†Note that we are not optimizing the initial seating plans.

195

we focus on those cases where duration uncertainty can disrupt a seating plan, and
can cause delays for future dinners.

Given D, a delay in dinner duration (e.g. 15 minutes), the question we address in
this test becomes:

when a current party of diners stays (D) longer than expected, can we main-

tain a feasible seating plan by reallocating future diners, without introduc-

ing other delays, and guaranteeing the same time slots currently allocated

to the other parties?

The time interval where delays can potentially cause disruptions (i.e. reallocations
or further delays on future parties) is between 4 p.m. and 10 p.m., therefore we
concentrate our test over this window. Specifically, for each set of parties repre-
senting our initial seating plans SPi (i = 1..M), and for each party Pj (j = 1..N)
in SPi such that Pj.end ≤ 10 p.m., we perform the following test:

a fix the allocations in SPi for time t < Pj.end;

b set Pj.end = Pj.end+D;

c resolve the scheduling problem Si.

For each pair (SPi, Pj) we record the following values:

• Nb of instances where the delay was accommodated with 0 changes;

• Nb of instances where the delay was accommodated with 1 change;

• Nb of instances where the delay was accommodated with≥ 2 changes (with
mean, std. deviation, and max number of changes);

• Nb of instances where the delay could not be accommodated (without de-
laying other parties).

196

6.8.2 Late finish with a restaurant load of 80%

We performed a first series of tests with M = 30 seating plans (to represent
a month of simulation), and each plan with N = 50 parties (which provides a
restaurant load of about 150 covers, i.e. 80% of the target of 180 covers). This
gives total of 1500 parties over the 30 seating plans, while the number of parties
with end time before 10 p.m. is 1023. Therefore we simulated 1023 instances of
single delays. We repeated the experiments for different delays in dinner duration
D ∈ {1, 2, 3, 4, 6, 12}, to represent delays of 15, 30, 45, 60, 90, and 180 minutes.

Results are reported in Table 6.4. The first column represents the delay in
15 minute units. The second is the number of instances (a fraction of the 1023)
for which the delay was accommodated without changing the original plan. The
third is the number for which the delay was accommodated by reallocating only
a single party (i.e. the party following in the same table of the late finish). The
fourth is the number for which multiple reallocations were necessary to accom-
modate the delay. The fifth and six are the mean (with standard deviation σ) and
maximum number of changes performed over those instances requiring at least 2
reallocations. The final column shows the number of delay instances which were
found infeasible, i.e. for which no reallocation was possible without delaying
other parties. All the percentage values in the table refer to the total number of
delay instances, i.e. 1023. The values of the second columns are particularly high.
This is partially due to the fact that parties who are seated last in a table can fin-
ish late without any other party being delayed. Further, as the current restaurant
load is 80%, the seating plans are not too dense, which is expected to increase the
number of delays accommodated with minimum (i.e. 0 or 1) changes.

Current procedures would mostly cope with reallocations with zero or one
changes, while instances which require multiple changes would be considered in-
feasible (as they are too hard to compute). So, at the moment, when a multiple
reallocation without delays exists, the floor manager cannot find it, and there-
fore he has to delay future dinners and make people wait. From the results we
can observe how our system can provide complex reallocations which absorb
delays and maintain feasible seating plans in more cases. For instance, consid-
ering a delay of 15 minutes, current systems would have to introduce delays in

197

14.0% + 2.5% = 16.5% of the cases, while using our system we would only need
to delay some future dinners in 2.5% of the cases. For a delay of 15 minutes, and
considering only instances requiring two or more changes, the mean number of
changes was 3.3 (with standard deviation 4.1), while the maximum number for a
single instance was 30. These values give us an index of the complexity of the
operations that were performed.

Table 6.4: Late finishes. Results over 30 seating plans of 50 parties - i.e. for each
delay value D we test 1023 delay instances.

Delay D Nb 0 CHs Nb 1 CHs Nb 2+ CHs mean (σ) max Nb infeasibles
1 630 224 143 3.3 30 26

(15min) 61.6% 21.9% 14.0% (4.1) 2.5%
2 400 373 207 3.8 33 43

(30min) 39.1% 36.5% 20.2% (5.1) 4.2%
3 269 460 233 4.0 29 61

(45min) 26.3% 45.0% 22.8% (5.6) 6.0%
4 269 459 223 4.2 29 72

(60min) 26.3% 44.9% 21.8% (5.5) 7.0%
6 269 459 212 4.6 34 83

(90min) 26.3% 44.9% 20.7% (5.9) 8.1%
12 190 361 365 4.7 33 107

(120min) 18.6% 35.3% 35.7% (6.3) 10.5%

As we increase the delay, we can observe that the percentage of instances re-
quiring 0 changes significantly decreases, then stabilizes to 26.3%, and finally
goes down to 18.6% for D = 120 minutes. This very long delay is perhaps not
realistic, but the 18.6% of instances solved with 0 changes gives us an estimate of
the percentage of parties (with end time before 10 p.m.) who are seated last in a
table, i.e. who can always be late finish without delaying other parties. The per-
centage of instances requiring 1 and those requiring 2 or more changes increase
as the delay goes from 15 to 30 to 45 minutes, and they get stable for delays of
60 and 90 minutes. Note how the final delay of 120 minutes makes the instances
requiring 1 change decrease (to 35.3%), while those requiring multiple realloca-
tions significantly increase (to 35.7%). For the latter instances, the mean number
of changes also rises from 3.3 to 4.7 (and the deviation from 4.1 to 6.3) as the
delay value moves from 15 to 120 minutes. The maximum number of changes is

198

always around 30. Finally, as expected, the number of infeasible instances gets
larger for larger delays.

6.8.3 Late finish with a restaurant load of 100%

We performed a second round of tests, still with M = 30 seating plans, but now
with N = 60 parties (which provides a restaurant load of approximately 180
covers, i.e. 100% of the restaurant turnover target). This gives total of 1800 parties
over the 30 seating plans, while the number of parties with end time before 10 p.m.
is 1267. Therefore we simulated 1267 instances of single delays. Similarly to the
previous test, we repeated the experiments with D = 1, 2, 3, 4, 6, and 12 (15
minute units).

Results are reported in Table 6.5. Considering a delay of 15 minutes, current
systems would have to introduce delays in 12.4% + 4.6% = 17% of the cases,
while with our system we would need to delay some future dinners in only 4.6%

of the cases. For a delay of 15 minutes, and considering only instances requiring
two or more changes, the mean number of changes was 3.5 (with standard devi-
ation 4.8), while the maximum number for a single instance was 31. This again
indicates how complex are the operations which were performed.

Table 6.5: Late finishes. Results over 30 seating plans of 60 parties - i.e. for each
delay value D we test 1267 delay instances.

Delay D Nb 0 CHs Nb 1 CHs Nb 2+ CHs mean (σ) max Nb infeasibles
1 733 319 157 3.5 31 58

(15min) 57.9% 25.2% 12.4% (4.8) 4.6%
2 487 464 212 3.8 32 104

(30min) 38.4% 36.6% 16.7% (5.2) 8.2%
3 366 527 232 4.2 32 142

(45min) 28.9% 41.6% 18.3% (5.6) 11.2%
4 273 579 251 4.8 36 164

(60min) 21.5% 45.7% 19.8% (7.1) 12.9%
6 200 611 248 6.3 44 208

(90min) 15.8% 48.2% 19.6% (8.4) 16.4%
12 136 374 476 5.6 48 281

(120min) 10.7% 29.5% 37.6% (8.4) 22.2%

199

The values of the second column (instances solved with 0 reallocations) de-
creases monotonically as the delay increases, and generally, compared Table 6.4
the numbers are now lower. This can be explained considering that the new seat-
ing plans are more dense (180 rather than 150 covers on average), which make the
restaurant less flexible to accept delays with minimum changes. Further, with a
delay of 120 minutes the instances with 0 changes decreases from 18.6% to 10.7%
- now the number of parties is 60, so for the same number of tables (23) the per-
centage of parties seating last in a table is smaller. The percentage of instances
requiring 1 change increases up to 48.2% as the delay goes from 15 to 90 minutes,
but the number drops to 29.5% for a delay of 120 minutes. The instances requiring
multiple changes increase almost monotonically over the 5 steps of delays, even-
tually getting to 37.6%. This tells us how the complexity of the operations gets
harder when delays increase, and especially when the seating plans get crowded.
For instances requiring multiple changes, the mean number of changes rises from
3.5 to 5.6 (and the deviation from 4.8 to 8.4) for increasing delay values. Simi-
larly, the maximum number of changes goes from 31 to 48. Notice how the mean
and maximum values are greater compared to those of Table 6.4 - in fact, seating
plans have now 60 rather than 50 parties, which allows more reallocations. Fi-
nally, the number of infeasible instances is also higher with instances of 60 rather
than 50 parties. Again, as expected, the number of infeasibles increases as the
delay gets larger.

6.8.4 Test on late arrivals

Often, customers arrive late without giving any notice - a typical delay can be
anything up to 30 minutes, after which the manager would normally consider the
booking a no-show. Other times, instead, customers phone up advising the restau-
rant of the late arrival - the delay can be 15 or 30 minutes, but in some cases also
over one hour. Further, another regular occurrence is when the customer and the
booker have recorded different times for the booking.

200

Given D, a delay in party arrival (e.g. 15 minutes), the question we address in
this test is:

when a party arrives (D) later than expected, can we maintain a feasible

seating plan by reallocating future diners, without introducing other de-

lays, and guaranteeing the same time slots currently allocated to the other

parties?

Similarly to what we have done for the previous case on delays in dinner duration,
for each seating plan SPi (i = 1..M), and for each party Pj (j = 1..N) in SPi
such that Pj.end ≤ 10 p.m., we now perform the following test:

a fix the allocations in SPi for time t < Pj.start;

b set (Pj.start, Pj.end) = (Pj.start+D,Pj.end +D);

c resolve the scheduling problem Si.

Note that, the time interval where a late arrival can cause disruptions is different
(i.e. earlier) compared to the case of a late finish: with a dinner session where
customers get seated between 4 p.m. and 10 p.m., and with a minimum dinner
duration of 1:30 hours, disruptions can be caused by late arrivals in the range 4:00
p.m. to 8:30 p.m., and by late finishes in the range 5:30 p.m. to 10:00 p.m.. Then,
generally, a late arrival occurs at an earlier time compared to a late finish, so the
time window where parties can be reallocated is larger.

6.8.5 Late arrival with restaurant loads of 80% and 100%

We again performed two rounds of tests, both with M = 30 seating plans, one
with N = 50 parties and one with N = 60 parties (which provides a restaurant
load of about 150 and 180 covers in the order, i.e. 80% and 100% of the restaurant
turnover target). We repeated the test for delaysD ∈ {1, 2, 4, 6} 15 minutes units,
to represent parties arriving late by 15, 30, 60, and 90 minutes. Table 6.6 and
Table 6.7 report the results. The values (and percentages) in the tables are relative
to the total number of delay instances, i.e. 1023 for the test with lower restaurant
load, and 1267 for the test with higher load - we used the same two sets of initial
seating plans generated for the previous tests on late finish.

201

Table 6.6: Late arrivals. Results over 30 seating plans of 50 parties - i.e. for each
delay value D we test 1023 delay instances.

Delay D Nb 0 CHs Nb 1 CHs Nb 2+ CHs mean (σ) max Nb infeasibles
1 496 286 218 9.07 49 23

(15min) 48.5% 28.0% 21.3% (14.5) 2.2%
2 269 413 309 8.23 50 32

(30min) 28.5% 40.4% 30.2% (14.4) 3.1%
4 177 479 290 12.92 48 77

(60min) 17.3% 46.8% 28.3% (18.8) 7.5%
6 198 467 275 12.63 48 83

(90min) 19.4% 45.6% 26.9% (16.3) 8.1%

Table 6.7: Late arrivals. Results over 30 seating plans of 60 parties - i.e. for each
delay value D we test 1267 delay instances.

Delay D Nb 0 CHs Nb 1 CHs Nb 2+ CHs mean (σ) max Nb infeasibles
1 732 396 98 7.50 55 41

(15min) 57.8% 31.3% 7.7% (13.3) 3.2%
2 486 566 145 7.42 55 70

(30min) 38.4% 44.7% 11.4% (12.8) 5.5%
4 272 671 218 8.59 57 106

(60min) 21.5% 53.0% 17.2% (14.2) 8.4%
6 200 668 235 10.97 59 164

(90min) 15.8% 52.7% 18.5% (15.8) 12.9%

As expected, the infeasible instances increase for increasing delays, and the
number is greater for more crowded seating plans, i.e. passing from 50 parties
(Table 6.6) to 60 parties (Table 6.7). For seating plans with 50 parties, the per-
centage of instances requiring two or more changes is quite high even for a short
delay of 15 minutes (21.3%), and it goes up to approximately 27-30% for longer
delays. For example, for a delay of 15 minutes, current systems would consider
21.3% + 2.2% = 23.5% of late arrival instances as infeasible, for which the floor
manager would need to delay some future dinners in order to fit everybody in.
Using our system, instead, the restaurant would need to introduce delays only in
2.2% of the cases. For the remaining 21.3%, in fact, delays are not necessary,
as our system can find feasible reallocations which accommodate the late arrivals
while preserving the original start times and durations of all the other meals. For

202

seating plans with 60 parties, the percentage of instances requiring two or more
changes is generally lower but still relevant, going from 7.7% for a delay of 15
minutes to 18.5% for a delay of 90 minutes.

The mean, standard deviation, and maximum number of changes required for
the accommodation of late arrivals give us an indication of the complexity of the
reallocations performed by the system. Table 6.6 shows a mean from 8.23 to
12.63 changes and deviation from 14.4 to 18.8 (column 5), and a maximum from
48 to 50 (column 6), while Table 6.7 shows a mean from 7.42 to 10.97 changes,
a deviation from 7.42 to 10.97, and a maximum from 55 to 59. Note that, for any
restaurant load (80% or 100%) and delay (D ∈ {1, 2, 4, 6}), the mean, deviation,
and max number of changes in the case of instances requiring multiple reallo-
cations are significantly higher compared to the results discussed in the previous
experiments for delays in dinner durations. This is explained considering that the
fraction of parties which can be reallocated is now generally larger. In fact, for
example, a late arrival can happen at time 4:00 p.m., in which case all parties,
starting in the entire time window from 4:00 p.m. to 10:00 p.m., are free for real-
location. Instead, considering a standard dinner duration of 2 hours, a late finish
can happen at time 6:00 (at the earliest), in which case parties are free for reallo-
cation only in the time window from 6:00 p.m. to 10:00 p.m., i.e. parties starting
before 6:00 p.m. are already seated (and therefore fixed). Thus, on average, a
delay in dinner duration allows fewer options to reallocate future parties. Note,
instead, how the maximum number of changes for a delay in arrival time reaches
approximately 50 in Table 6.6 and approximately 60 in Table 6.7, i.e. the system
can effectively reallocate entire seating plans to accommodate late arrivals.

Finally, with 50 parties (Table 6.6), for values of delay from D = 15 to 30

to 60 minutes, the percentage of instances requiring 0 changes decreases from
48.5% to 17.3% (re-increasing to 19.4% for D = 90 minutes), while the number
requiring 1 change increases from 28.0% to 46.8% (re-decreasing to 45.6% for
D = 90 minutes). With 60 parties (Table 6.7), for increasing delays the percentage
of instances requiring 0 changes decreases monotonically from 57.8% to 15.8%,
while the number requiring 1 change increases almost monotonically from 31.3%
to 52.7%. As already pointed out for the case of delays in dinner duration, note
that all parties who are allocated last in a table can be delayed without modifying

203

the original seating plan. This explains the fact that the percentage of late arrivals
requiring zero changes (second columns) can be higher than expected even for a
crowded restaurant.

6.9 Chapter summary

In this chapter we have shown how our constraint based techniques can cope with
the dynamic problem. We first introduced the dynamic problem for booking and
floor management based on scheduling. We then presented our allocation methods
(for satisfaction and optimization) and implemented also two versions simulating
traditional methods currently adopted in restaurants. We extended our search al-
gorithm to consider solution (or seating plan) stability. We finally presented the
experimental results, showing how our solutions outperform the traditional allo-
cation systems, on both booking and floor simulations.

A first contribution to the ability to solve the dynamic problem comes from the
fact that our solutions got rid of the (unnecessary) commitment of parties to tables
before the actual seating time. Results showed that without such commitment
there is a consistent improvement in the number of customers the restaurant can
accept, and, in terms of robustness to absorb delays, we consistently reduce the
cases where delays (either late finishes or late arrivals) require some future dinners
to be delayed.

A second contribution concerns our flexibility based optimization, i.e. the fact
that the solutions we provide are designed to be flexible for the future. Results
showed there is a further improvement by performing optimization online, after
each change. Optimization makes a difference when we are asked to decide where
to fix some parties (i.e. during the floor phase, when parties get seated over time).
Further, as our algorithm searches first in the neighbourhood of the preceding
seating plan, results on the booking phase (i.e. when no allocation is fixed) suggest
that the search for the accommodation of a new request takes advantage if the
preceding plan is more flexible to accept future requests with minimum changes.

A further test was carried out to investigate the potential benefit of using opti-
mization to exploit customer’s start time flexibility, i.e. when some customers are
flexible over the time to consume their dinner. Results showed that there is a sig-

204

nificant improvement in the number of customers the restaurant can accommodate
if optimization is used to guide start time negotiation.

We then evaluated and compared three versions of our optimization model
based on three flexibility measures, i.e. maximizing usable start times, minimizing
dead zones, and maximizing the number of potential seatings. Results showed that
the three models have very similar performances, and that the three measures are
all reasonably accurate in representing the real flexibility.

Ultimately, we evaluated the ability of our model to represent and make use
of future knowledge. We performed a final experiment with parties distributed
according to a pattern for a Sunday session at the Eco restaurant. Results showed
that the improvement coming from using the correct pattern is negligible if we
assume all customers have no flexibility over start times. With some flexibility
over start times, instead, the benefit of using a correct booking pattern becomes
clearly noticeable - i.e. our model of future knowledge becomes more effective
when we can select the most flexible time among different alternatives.

205

Chapter 7

Restaurant trials

7.1 Introduction

In the previous chapters, we first described the problem of restaurant table man-
agement, we then presented our constraint satisfaction and optimization models
of the problem (based on scheduling), and finally, we tested our solutions using
computer simulations. In this chapter, we complete the evaluation of our solutions,
presenting the results of a six month trial in the restaurant Eco. In the first part,
we describe the software prototype which was used by the restaurant management
and staff during the trial, focusing on the main features which have been imple-
mented, and on the different types of advice they can provide in real time.† In the
second part, we present the outcome of the evaluation, discussing a questionnaire
which was completed out by the general manager of the restaurant.

The evaluation in the restaurant Eco was carried out to verify the results achieved
in simulation, and in general, to assess the validity of our research in the real en-
vironment. Specifically, the aim of the trial was to see whether the software:

• models the restaurant adequately;

• provides acceptable/flexible seating plans in reasonable time;

†All features described in this chapter are provided by the constraint models presented in the
previous chapters. The GUI that was used to allow the restaurant staff to interact with the models
was specified by the author, but was implemented by James Lupton. GUI examples are used
throughout this chapter to make the presentation clearer.

206

• can join and separate tables correctly;

• reports quickly whether or not a request can be accepted;

• recommends sensible alternative times for a booking;

• provides useful advice when a seating plan has to be reconfigured.

7.2 The prototype

The models and algorithms described in the previous chapters have been imple-
mented using Ilog Solver 6.0. Access to the models is provided by a graphical
user interface, which also presents other relevant information regarding the state
of the restaurant or booking sheet, and allows the user (booker or floor manager)
to control the table allocation process, switching between manual operation, basic
solving, optimizing for flexibility, or maintaining stability.

A screen shot of the interface is shown in Figure 7.1, displaying one possible
seating plan on one evening in May 2006. The list on the left side displays in
alphabetical order the parties (with time, name and table) which are allocated on
the plan. New booking requests are processed by editing a form, and selecting
time, party size, and expected duration. The user has the option to specify or
forbid a table for the new party; otherwise the system will use any suitable table.

7.2.1 Adding a new request

Figure 7.2 represents the seating plan accommodating the new request (Keane).
The solution was returned in 0.04 seconds. It also shows the total covers, the
covers partitioned in three periods, the total parties, the number of parties seated
at oversized tables, and the number of changes from the previous plan. Note that
O’Grady at 5:30, Buckley at 6:00, O’Driscoll at 7:00 and Counihan at 9:30 are all
seated at conjoined tables. The user can switch from the schedule view to a table
map, shown in Figure 7.4.

207

Figure 7.1: User interface, displaying a seating plan and a new booking request.

7.2.2 Making a preference

By default, the system does not allocate parties of 2 into four-seater or larger ta-
bles, but the user can override this and specify a preference for a more comfortable
table. In Figure 7.3, party Keane has been moved to table 11, which is for 5 peo-
ple. The operation required 3 changes from the previous table allocation, and was
performed in 0.23 seconds. The names of parties with preferences are displayed
with a suffix “+”.

7.2.3 Availability enquiry

During booking, availability requests are common - e.g. “when can you seat a
party of 4?”. The user can process such request using the same booking form, by
selecting “not specified” in the Time box. Figure 7.6 shows the current seating plan
(top) and the answer provided by the system for a request for 4 people (bottom).
The message also groups the available times by the available duration. This is
important information, since the booker may be able to sell the table for one hour

208

Figure 7.2: Seating plan with the new request accommodated into table 4.

Figure 7.3: New seating plan after imposing a preference for party Keane.

209

Figure 7.4: User interface, displaying a table map of the new seating plan with
party Keane.

at 7 o’clock if the customer is only asking for a quick main course.

The pseudocode for the procedure which provides this information is shown in
Figure 7.5. The list of parties in the seating plan is represented by {P1, P2, .., Pn},
while Pn+1 is added to compute the availability request. The procedure checks
the availability for a dinner of the specified size (new request’s size), resolving the
problem for each possible start time - it starts by assigning the standard dinner
duration (e.g. 2 hours for a party of four), and repeats the search with reduced
durations for those start times where the standard dinner length cannot be accom-
modated. We set a timeout of 1 second for each combination of start time and
duration, which allows us to obtain the availability message in a reasonable time
(less than 10 seconds on average). Note that a dinner slot of two hours is reported
to be available at 6 o’clock, even though in the current seating plan no table can
accommodate 4 people for two hours at that time - i.e. our system guarantees that
there is an alternative seating plan with such a table slot available.

210

CSP (X,D,C) : X = {P1, P2, .., Pn} ∪ Pn+1,

Pn+1 = 〈sizen+1, startn+1, durationn+1〉

sizen+1 = new request′s size;

for startn+1 = 4 : 00 p.m. ... 10 : 00 p.m. (step 30′)

for durationn+1 = stdDuration ... stdDuration− 1hour (step 30′)

if Solve(CSP, timeout) == true

AV AILABILITY [sizen+1] [startn+1] [durationn+1] = 1;

break;

Figure 7.5: Procedure for computing availability by start time and duration.

Figure 7.6: Computing the possible start times (and durations) available for a
dinner for 4 people.

211

7.2.4 Adding a new request which cannot fit in the current plan

Figure 7.7 (top) represents the current seating plan with a new request (party
Meane, 2 people, 9 o’clock), and Figure 7.7 (bottom) shows a reallocation that
the system found in less than 5 seconds - the new plan accommodates the party
Meane in table 8, which is a two seater. Note that the party could not fit in the
original seating plan. The system performed a complex operation, as the number
of changes necessary to find the new plan was 43, with only 9 parties (highlighted
with white stars) preserving the original table.

7.2.5 Improving seating plan flexibility

Figure 7.8 (top) highlights how the current seating plan is perhaps poor in quality.
We can observe a party of size 3 (Crowley) accommodated in a table for 6 (T6),
and there are several time intervals (cross hatched squares) which are dead-zones,
i.e. tables are idle but the intervals are too short to accommodate future requests.
Figure 7.8 (bottom) represents a first step in a search for a more flexible allocation.
The new plan has been obtained pressing the Improve button (Figure 7.1). Note
that there has been only one change from the previous plan, with party Crowley

moved from table 6 (6-seater) to table 9 (4-seater). Based on flexibilityWUS (de-
fined in Chapter 5), and on a standard dinner duration of 2 hours (or 8 units of 15
minutes), the increase in the flexibility estimate is 16, i.e. 8 time units × 2 table
size saved. This may allow an extra 2-hour dinner (8 time units) for two people.
In fact, note that the new seating plan could accept a party of size 6 at 6 o’clock
(in table 6), while the old plan could only accept a party of size 4 at 6 o’clock (in
table 9). The run time to obtain the change is 0.16 sec.

The user can repeat the improvement process to find more flexible seating
plans. Figure 7.9 (top) shows the plan obtained after four iterations, and (bot-
tom) the plan obtained unlocking party Keane from table 11 (and after three more
iterations). In both steps, we can observe the effect of our flexibility measure,
which by increasing the number of usable start times makes better use of tables,
and reduces the unusable zones (empty squares) in between parties. The increase
in the flexibility estimate over Figure 7.8 (top) is 68 and 96 for Figure 7.9 (top)

212

Figure 7.7: New seating plan with party Meane accommodated.

213

and (bottom), in the order. This can be regarded as 3 and 5.5 times the (2 hour
× 2 people) improvement obtained from the first step of Figure 7.8 (bottom). In
particular, note how the number of unusable squares (dead-zones) in the final plan
is only 3 - there were 13 in the initial plan of Figure 7.8 (top). The run time from
Figure 7.8 (bottom) to Figure 7.9 (top) was 8.1 seconds, and from Figure 7.9 (top)
to (bottom) was 1.01 seconds.

7.2.6 Providing availability by flexibility

When a booking request cannot be satisfied because the restaurant is fully booked
for the requested time, or when the customer is flexible over the time to consume
his dinner, the system can be used to calculate what are the remaining dinner slots
available (as discussed in Figure 7.5 and Figure 7.6). The system can actually help
the booker to negotiate more flexible time slots by measuring (and displaying) the
flexibility associated to each available start time and dinner duration.

The procedure in Figure 7.10 computes the available dinner slots (start time,
duration) for a given new request’s size, as in Figure 7.5. However, each time a
dinner slot is found available, the system now records the correspondent seating
plan (including the new “virtual” request) and spends an interval of time timeout2

to look for improved seating plans. Each time an improvement is found, the seat-
ing plan is updated and so is the flexibility value. At the end of timeout2 the value
of flexibility associated to the current party size, start time, and duration represents
our (best) estimate of flexibility for the correspondent dinner slot.

Figure 7.11 (top) is a message returned by the application, showing the flexi-
bility of the available dinner slots for a booking request for 4 people for the seating
plan of Figure 7.9 (top). The values of flexibility are computed using our measure
based on usable start times (i.e. flexibilityWUS). The messages can be read as in
the following example:

〈 start1 flex1 start2 flex2 start3 flex3 [dur1]...start4 flex4 [dur2]...start5 flex5 [dur3] 〉.

Figure 7.11 (bottom) is the correspondent message for the plan of Figure 7.9
(bottom). Note how the second message reports higher flexibility values for every

214

Figure 7.8: First improvement: seating plan showing dead zones and poor table
usage (top); party Crowley moved into a more suitable table (bottom).

215

Figure 7.9: Improvement after several steps, with party Keane fixed (top), unfixed
(bottom).

216

dinner slot. In fact, in the second case the procedure was executed over a more
flexible plan - the plan in Figure 7.9 (bottom) was achieved after unlocking party
Keane from table 11, and after performing a sequence of improvements.

The flexibility associated to dinner slots is important information, as the user
can try to sell slots which can preserve more flexible seating plans. For example, in
the messages of Figure 7.11, 4:30 appears better than 5:00, 6:00 is more flexible
than 5:30 or 6:30, and 10 o’clock is always the most flexible time - in fact, the
kitchen closes shortly after 10:00, so a dinner at 10 o’clock does not interact with
the flexibility to accommodate future dinners.

CSP (X,D,C) : X = {P1, P2, .., Pn} ∪ Pn+1,

Pn+1 = 〈sizen+1, startn+1, durationn+1〉

sizen+1 = new request′s size;

for startn+1 = 4 : 00 p.m. ... 10 : 00 p.m. (step 30′)

for durationn+1 = stdDuration ... stdDuration− 1hour (step 30′)

if Solve(CSP, timeout1) == true

AV AILABILITY [sizen+1] [startn+1] [durationn+1] = 1;

Solution.update();

FLEX [sizen+1] [startn+1] [durationn+1] = Solution.flex;

while Improve(CSP, timeout2, Solution) == true

Solution.update();

FLEX [sizen+1] [startn+1] [durationn+1] = Solution.flex;

break;

Figure 7.10: Procedure for computing flexibility by available start time and dinner
duration, for a booking request of a given size.

Figure 7.11: Flexibility for the possible time slots available for a dinner for 4
people for Figure 7.8 (top) and for Figure 7.9 (bottom).

217

7.2.7 Floor management

Figure 7.12 shows an instant during the floor management phase. The current
time is represented by the vertical line at 5:30 p.m. Party Keane (table 4) was due
to finish, but is going to be late, creating a conflict with the next party Fennell. In
this case, the user can edit Keane, extending the duration from 1:30hrs to 1:45hrs,
and ask the system to search for a reallocation that avoids the conflict.

Figure 7.12: An instant during floor management, with a late finish (Keane, T4).

7.2.8 Reaction to changes, stability and optimization

Figure 7.13 (top) represents a first reallocation, while on the bottom we see a seat-
ing plan after four improvement iterations. The first reallocation was performed
in less than 0.1 seconds and required only one change (party Fennell has been
moved to table 3). However, the new plan looks poor, as the operation introduced
5 unusable squares in table 4. In Figure 7.13 (bottom) we can again observe the
benefit of the improvement, with fewer unusable zones, and more possibilities to
seat extra parties.

218

Figure 7.13: Reallocation after a late finish (top); improvement after four itera-
tions (bottom).

219

Table 7.1 shows the number of changes, the flexibility improvement, and the
run time accumulated over the four iterations. Specifically, the iterations have
improved the flexibility estimates by steps of 4, 5, 4, and 26, for a total of 39, or
∼ 2.5 (2 hour× 2 people) dinners. In particular, note how the number of unusable
squares (dead zones) passes from 14 to just 4. The number of changes from the
initial allocation was 2, 1, 3, and 36; the last iteration gave a large improvement
but required a large change in the seating plan.

Table 7.1: Performance over 4 improvement steps for the example of Figure 7.13.

iteration 1 2 3 4
changes 2 3 6 42
improvement [flexWUS] +4 +9 +13 +39
r-time [sec] 1.1 1.3 2.8 10.6

By default, the timeout for each improvement step is set to 10 seconds, parti-
tioned in 7 seconds for search with limited discrepancy (or local) and 3 seconds
for unlimited (or global) search. These limits are configurable by the user (e.g.
floor manager), who can then trade off between flexibility and stability. For our
example, we can observe how the first three iterations are based on pure local
search - the run-times are below 3 seconds and there is a contained number of
changes. This allows to maintain stability with respect to the original seating
plan. Instead, the final step involves a global search (the iteration lasted 7.8 sec-
onds). The improvement is consistent, though it requires many disruptions from
the original plan.

7.3 Trial and evaluation

The research prototype software discussed above was in trial in the restaurant Eco
from March to September 2006. The main aim of the trial was to test our research
in the field, to determine whether our constraint-based solution can support a prac-
tical restaurant management tool. Over the trial period, the application had been
used by different users from the restaurant staff, such as bookers and floor man-
agers, either with junior or senior experience. The software was utilized in parallel

220

to the standard allocation system (i.e. online, but shadowing the usual allocation
process).†

7.3.1 Questionnaire overview

At the end of the trial period, E. Fleming (general manager) completed a question-
naire, which we report in Appendix A. In the next part we go through the main
points covered in the questions. The questionnaire was designed to get YES or NO

answers, in order to get clear what points have been achieved.

Representing restaurant and table allocations

The first 4 questions were to determine how constraint programming can be used
to represent restaurant and table allocations. The manager confirms that the soft-
ware models the restaurant adequately - e.g. the original tables that can be joined
together, and any restrictions that stop tables from being used in a particular way
(for example, cannot seat 5 people on table 2 at the same time as 6 people on table
15). Further, the software allows the representation of table allocations adequately
- e.g. it describes parties and time slots in a useful way.

Efficiency and quality of the first solutions

Questions 5 to 8 focused on the efficiency and quality of the solutions returned by
our constraint satisfaction model (i.e. considering only the first solution returned
after each change, and without performing optimization). The manager confirms
that the software provides acceptable allocations of parties to tables - i.e. ignoring
any issue of flexibility, future arrivals or seating plan preferences, the suggested
seating plans are always possible. Further, seating plans are provided in reason-
able time, confirming our experimental results on the efficiency and robustness of
our solutions presented in Chapter 4.

†Our solver was in fact licensed only for research purposes, and not for business use.

221

Using table configurations

Questions 9 to 11 regarded the representation and use of table configurations. In
particular, the manager states that the software joins table correctly (e.g. if there
is a large party, or if there are too many parties of size 6 to seat on 6-seater tables).
Further, the software correctly manages multiple joining and separation of tables
in the same evening (e.g. two parties of two, followed by a party of 4, followed
by two parties of two, all on the same 2-seater tables).

Efficiency and quality of the optimized solutions

Questions 12 to 19 are to assess our constraint optimization model based on mea-
suring flexibility. For instance, the manager appreciates how the software pro-
poses flexible seating plans (e.g. how it avoids placing parties on tables that un-
necessarily limit the options to seat new arrivals), and how the response happens
in good time. Note how this supports our experimental results discussed on Chap-
ter 5 and 6, where we tested the efficiency and quality of our allocation methods.
In particular, the manager says that the software provides advice which allows
him to maintain a flexible seating plan, it also gives useful advice on how flexible
is the current assignment, or on which table to place a booking.

Booking feasibility and negotiation

Questions 20 to 22 concern the efficiency of our software to find whether a book-
ing request is feasible or not, and the support it provides for negotiating alternative
booking times in case the original request is infeasible. The manager replied that
the response for assessing feasibility is quick, and also that the software recom-
mends sensible alternative times for a booking.

Using future knowledge

Questions 23 to 25 focused on evaluating our attempt to model future knowledge,
i.e. to use different booking patterns for counting flexibility on different days
of the week. The manager observed how the software makes use of information
about how likely are different patterns of bookings, e.g. Saturday evening and

222

Sunday evening have different patterns, and the system gives an appropriate ad-
vice for each one.

Table 7.2 (discussed in Chapter 5) represents booking patterns in the Eco
restaurant for Sundays and for Saturdays (or any other days but Sundays). Specif-
ically, the table displays weights (scaled in the range 0 to 4) which represent the
distribution of booking requests over the evening session. Note that, for example,
the peak of table load (or demand) on Sundays is between 4 and 7 o’clock, while
on another day it ranges between 6 and 9 o’clock.

By default the system considers all times from 4 p.m. to 10 p.m. equally
likely (i.e. we give a weight of value 1 to each possible time). The user can en-
able/disable the real booking patterns displayed in Table 7.2 through a submenu
of the GUI. Figure 7.14 represents a simple example with real patterns enabled,
where the system suggests different seating plans depending on the day. Specifi-
cally, Figure 7.14 (top) represents a Saturday, so the correspondent plan was ob-
tained by optimizing (using the Improve button) with the Saturday pattern . Sim-
ilarly, Figure 7.14 (bottom) represents a Sunday and the correspondent plan was
obtained with the Sunday pattern.

Managing delays, stability, and infeasibility in floor management

Questions 26 to 31 evaluate the support provided by our software in managing
delays (feasible or infeasible), in maintaining stable seating plans when delays or
other changes require to disrupt the current plan, and in providing advice when a
party (walk-in or booking) cannot be seated.

The manager stated that the software provides useful advice when a seating
plan has to be reconfigured. For example, if a party is late in arriving, or if a dinner
takes longer than expected, and this causes a conflict with the dinner following
on the same table, the system can often find a seating plan reallocation which
preserves start times and durations of all the future dinners, so that no party gets
delayed.

Further, when a seating plan has to be reconfigured, the software manages to
keep most of the plan as it was. This allows to maintain stability, i.e. to avoid fre-
quent table reallocations and, in particular, frequent reconfiguration of the restau-

223

Table 7.2: Distribution of bookings over time in Eco, for Sundays and Saturdays.

clock 400 430 500 530 600 630 700 730 800 830 900 930 1000
time-unit 0 2 4 6 8 10 12 14 16 18 20 22 24
Sundays 4 4 4 4 4 4 4 3 2 2 1 1 0

Saturdays 1 1 2 2 4 4 4 4 4 4 4 2 1

Figure 7.14: Allocation optimized for a Saturday (top); for a Sunday (bottom).

224

rant layout, which can be quite annoying for both customer and staff.

The manager also stated that the software does not help to seat in the cases
when the software finds that there is no solution, e.g. when a party cannot be
seated without delaying or cancelling other bookings. In the real restaurant, in-
stead, they would delay people and fit everybody in. This is the only negative
answer to the questionnaire, and was expected, since our research did not develop
any policy on managing delays - which will be part of our future research.

Finally, the manager said that the software gives useful advice when a party
(walk-in or booking) cannot be seated. It does this through the availability func-
tion, which provides the list of alternative times still available.

Graphical user interface

The final questions 32 to 34 focused on the graphical interface. In the question-
naire we did not concentrate on the information advice given by the program in-
terface, though we have included these questions about the interface at the end.
The current GUI has been developed at a basic level, with the only scope to allow
the evaluation of our research. As expected, the main comment on the GUI was
that it needs to be improved, i.e. more user friendly.

7.4 Chapter summary

In this chapter we presented the application software prototype which had been in
trial in the restaurant Eco for six months from March 2006. The solver engine was
developed in C++, using Ilog Solver 6.0, and based on the knowledge acquired
from the management and staff from Eco. The GUI was specified by the author,
and implemented in Java 1.5 by James Lupton (software engineer). The system
was running in Linux (Fedora) on a laptop with a 1.6 GHz Pentium processor.

The aim of the trial was to assess our study and research on modelling and
solving the restaurant table management problem. At the end of the trial we pre-
pared a questionnaire for the restaurant, which was then completed by E. Flem-
ming (general manager of Eco). A copy is reported in Appendix A.

225

The replies we obtained let us conclude that our system represents a practical
solution to support and improve table management for real restaurants. In partic-
ular, inexperienced users can now take bookings, we turn down fewer requests in
booking, we maximize table usage, we support the booker with availability data,
which can be used to guide negotiation, and we support the reaction to unplanned
events, maintaining feasible, flexible, and stable seating plans.

226

Chapter 8

Future work

8.1 Search algorithm

In this thesis, we have modelled table management as a constraint satisfaction
problem. In particular, we have developed a search approach based on multiple
heuristics and time slicing (MH, Chapter 4), which we have demonstrated im-
proves search efficiency and robustness for solving the table management problem
compared to other recommended approaches. The different ordering heuristics
and the different time limits were not tuned, but were generated by inspection of
the problem characteristics, so better performance should be achievable. Future
work should then focus on optimizing the set of heuristics, the order heuristics
are selected within the same set, and the sequence of time limits. Further, in the
current version, each restart resets the search process to the root of the search tree.
More improvement may be obtained by extending the model to cache the search
state of each ordering heuristic after each round of restarts, so that the heuris-
tics can then resume it on the successive round. However, caching requires extra
memory for storing the partial path achieved by each heuristic, and would also in-
troduce an overhead in run time for maintaining each state. This may become too
expensive for large problems. Future research should investigate whether, when,
and to what extent, savings in search outweigh the overhead of caching. Finally,
we also intend to investigate whether MH does perform better on insoluble prob-
lems (as indicated by the scheduling results in Chapter 4).

227

8.2 Table mix

Our constraint model supports table configurations, i.e. it models tables that can
be joined together to serve larger parties. The model has been applied to the
restaurant Eco, which has a specific table mix of 23 tables, each with a certain ca-
pacity and combinability. Although Eco is satisfied by the flexibility of the current
table mix, a different mix of table sizes and combinability may increase the num-
ber of people the restaurant can accommodate. Future research should focus on
table mix optimization, e.g. using Thompson’s simulator [90]. Thompson’s sim-
ulator generates optimal table mixes for restaurants with single (non-combinable)
tables. We should extend the simulator to optimize table mix by both table sizes
and combinability. We should then evaluate the results on the Eco restaurant,
comparing the performance achieved using the current table mix (i.e. the results
presented in this dissertation) to the performance achieved using an optimal table
mix.

8.3 Flexibility

In Chapter 5, we presented our constraint model for seating plan optimization
which is based on measuring (and maximizing) seating plan flexibility. We de-
signed three different measures, based on usable-start-times, dead-zones, and on
potential number-of-seatings. Better performance might be achievable using some
combination of these three measures, which have been tested only singularly so
far. For example, considering the first measure, there may be a pair of feasible
seating plans, both measuring the same value of usable-start-times, but with dif-
ferent dead-zone values. The seating plan with lower dead-zone value should then
be selected, but the current measure cannot distinguish between the two plans.
A first extension could be to maximize usable-start-times, breaking ties by mini-
mum dead-zone (and/or by maximum number-of-seatings). Otherwise, the overall
objective could be to maximize a linear combination of the three measures.

Flexibility has been weighted by the expectation of future table demand over
time, where weights are based on booking patterns retrieved from past booking
sheets. However, booking sheet data represents the history of the final table allo-

228

cations. There is a clear need for better estimates of table demand - e.g. recording
a period of table requests, regardless of whether the (potential) customers are ac-
tually accepted or rejected.

Further, our current measures weight a slot in a table Tb at a generic time t by
the table capacity and by the expected number of bookings (of any size) arriving at
time t. Future work will consider flexibility measures which weight the same table
slot by the expected number of bookings arriving at time t and of size suitable for
the table. For example, if on a Sunday there is a dinner slot available from 7 p.m.
on a two seater table then our current measures weights that slot by the expected
number of bookings of any size at 7 p.m. on a Sunday. In a future version, for the
same dinner slot the weight should consider the expected number of bookings of
size 2 at 7 p.m. (again, based on the Sunday’s pattern).

Finally, among the optimization methods from the literature, we should inves-
tigate how sampling (Chapter 2) can be applied to the restaurant problem. A first
attempt would be to decide which table to allocate to the next party waiting in the
queue based on consensus [10]. For example, consider a party Pi with a reserva-
tion for 7 o’clock. When Pi arrives and has to be seated, the current seating plan
comprises parties that arrived and got seated earlier, i.e. whose table allocation
is then fixed, and parties that have a reservation for later times, i.e. whose table
allocation is only provisional. Some unknown table requests (walk-ins or new
bookings) are also expected to arrive later in the dining session. The aim is to
decide the table where to seat Pi (now) so that each party in the current seating
plan is guaranteed a table, and the maximum number of future table requests can
be satisfied. In order to do that, we can resolve the allocation of the list of parties
in the current seating plan extended with different samples of future arrivals, and
then select the table where Pi appears most over the seating plans that solved the
extended problems.

8.4 Managing critical changes

In this thesis, we defined the restaurant problem assuming that dinners are as-
signed fixed start and end times, i.e. time slots of specific durations that cannot
be delayed. Future work concerns improving the solving algorithms for the cases

229

where a (critical) change allows no feasible reallocation. For example, a change
like a dinner lasting longer than expected can cause the current allocation to be-
come infeasible, i.e. the booking time and expected dinner duration of all the other
parties cannot be preserved. In this case, the current version simply replies that
there is no possible reallocation, while, in the real case, the floor manager must fit
everybody in and make future diners wait.

Our current model can be used to notify the user when such types of changes
are infeasible (i.e. critical), but then the user has to manually insert the delays into
the model in order to resume a feasible seating plan. The system could be made
more helpful, supporting the automatic management of critical changes. For ex-
ample, a future version could model what are the standard policies to manage
delays (e.g. seat first the party that has been waiting most), and further investi-
gation may aim to improve the current approaches (e.g. provide allocations that
minimize the delays for future parties).

8.5 Supporting robustness

The frequency of critical changes can be reduced by increasing seating plan ro-
bustness. A first approach could be based on the addition of temporal protections
(or slack times) to dinner slots [30] (Chapter 2), so that critical changes (espe-
cially delays) are more likely to be absorbed without delaying future parties. An-
other approach could be computing some form of (a, b)-super solutions [55] (also
Chapter 2). For example, a first attempt could be to look at a as the number of
parties simultaneously changing either size, start time, or duration, and at b as the
maximum number of other parties requiring a delay in start time in order to ac-
commodate any a changes. Changes generally happen one by one, so we can set
a = 1. The goal, in terms of robustness, could be to maintain seating plans that
maximize the number of single changes repairable with zero delays in start time
(i.e. with no increase in waiting time). Asking for high robustness may degrade
the flexibility of seating plans, reducing the potential number of people that can
be accommodated. In practice, the overall objective function should then balance
robustness with flexibility.

230

8.6 Supporting stability

When accommodating a new change (e.g. a new booking, or a delay) on the
current seating plan, our system allows a trade off between flexibility to satisfy
future requests, and stability to control the number of plan disruptions. Specifi-
cally (Chapter 7), the search process performs a first phase, looking for solutions
similar to the original seating plan, and then moves to a second phase of global
search, in case no stable solutions exist.

Instability could be partially prevented using (again) temporal protections [30]
to dinners, or (a, b)-super solutions [55] (Chapter 2). For the latter, as for the pre-
ceding case on critical changes, we could look at a = 1 as the number of parties
simultaneously changing either size, start time, or duration. In this case, the value
b is the maximum number of other parties requiring a change in table allocation
(rather than a delay in start time) in order to accommodate any a changes. The
goal, in terms of stability, could be to maintain seating plans that maximize the
number of single changes repairable with zero table reallocations. Ultimately, for
a practical use, the overall objective should balance stability with both flexibil-
ity and robustness, e.g. maximizing the potential number of people that can be
accommodated, while limiting delays and table reallocations.

A further step would be to extend the stability model to weight table realloca-
tions by type. For example, reallocations which require moving tables around, can
further annoy the customer, and can also require extra effort and time for the set
up. Therefore, seating plan disruptions that change the restaurant layout should
be penalized more compared to disruptions that maintain the same layout.

231

Chapter 9

Conclusions

THESIS:

Constraint programming can be used as a tool to support, enhance, and auto-

mate uncertain and highly dynamic restaurant table management.

Specifically, constraint programming can be used:

• to model table management, and careful modelling can improve efficiency;

• to model and solve the underlying static decision problem;

• to model table (re)configurations and seating plan flexibility;

• for complex or stable seating plan reallocations;

• to model knowledge on future demand to build more flexible seating plans;

• to exploit diner’s start time flexibility to preserve seating plan flexibility;

• to improve robustness in managing uncertainty (on demand and changes).

232

In this dissertation, we presented a solution based on constraint programming
for enhancing restaurant table management. The solution was designed using
information from a real restaurant (Eco), was tested using computer simulations,
and a software prototype was finally evaluated with trials at the restaurant. The
contributions we have provided in this dissertation, supported by both simulation
and real results, are a strong support to our thesis.

9.1 Summary of contributions

We conclude this chapter with a summary of the main contributions provided,
chapter by chapter, in this dissertation.

9.1.1 Representing restaurant table management

Restaurant table management (Chapter 2) is a complex and dynamic problem:
restaurants must manage reservations and unexpected events in real-time, making
good use of resources, and providing good service to customers. In this disser-
tation, we represented the dynamic table management problem as a sequence of
static problems linked by changes. We modelled the underlying static problem as
a subclass of scheduling with fixed start and end times. This subclass of schedul-
ing is representable using µ-coloring on interval graphs, which is an NP-complete
problem (Chapter 3).

9.1.2 Modelling and solving the static decision problem

In Chapter 4, we presented the basic constraint model used to solve the underlying
static decision problem. The goal was to provide efficient and robust solutions
over distributions of static instances.

Careful modelling can improve efficiency - The goal was achieved through
the design of specialized constraints, and the development of a search approach
based on multiple heuristics and time slicing (MH). For the original problem,
dimensioned upon the Eco restaurant, we can find seating plans accommodating
full booking sheets of 200 covers in few tenths of a second on average.

233

9.1.3 Modelling combinable tables and seating plan flexibility

Chapter 5 extended the model to represent table configurations and to perform
seating plan optimization. The new model optimizes solutions based on measures
of flexibility, advising which tables have to be allocated or joined, and when, in
order to get seating plans that are more flexible for accepting future table demand.

Careful modelling can improve efficiency - Through the design of new specific
constraints, and of anytime algorithms which can provide sensible solution im-
provements in acceptable time, we achieved a good balance between optimization
and search efficiency, i.e. a reasonable ratio improvement/time.

9.1.4 Managing uncertainty on table demand and changes

In Chapter 6, we tested our models on the dynamic problem, through computer
simulations of booking and floor management sessions.

Maintaining stable seating plans - We first extended our search algorithm to
consider solution stability. The algorithm performs a first phase constraining the
search to a few changes, i.e. exploring the neighborhood of the previous solution,
and switching to search with unlimited changes only if necessary.

Providing complex reallocations to improve turnover and reduce delays - An
important contribution to the ability to solve the dynamic problem concerns the
fact that our model can provide complex seating plan reallocations, requiring
many changes, which allows more options to accommodate future table requests
(bookings or walk-ins), and more options to accommodate changes (e.g. delays)
without delaying other parties.

Providing flexible seating plans to improve turnover - Another important con-
tribution to the ability to solve the dynamic problem concerns our flexibility based
optimization, i.e. the fact that the solutions we provide are designed to be flexible
for the accommodation of future table requests. When we performed optimization
online - i.e. each time a new table request was allocated - results on both floor and
booking simulations showed a further improvement in the final number of people
accepted.

Exploiting diner’s start time flexibility to improve turnover - We found a po-
tential benefit of using our optimization model to exploit customer’s start time

234

flexibility, i.e. when some customers are flexible over the time to consume their
dinner. For instance, we assumed some customers were available to accept any
among three different booking times (t, and t + or - 1 hour), and when accommo-
dating those customers we selected the time for which the seating plan preserved
higher flexibility to accept future booking requests. Doing this, the final number
of people allocated was considerably higher, and the reservation target of 180 cov-
ers was reached with significantly fewer booking requests, compared to the case
with no flexibility over start times.

Accurate measures of flexibility - We evaluated three versions of our optimiza-
tion model based on three flexibility measures designed in Chapter 5. The three
versions are based, in the order, on maximizing usable start times, minimizing
dead zones, and maximizing the number of potential seatings. Results showed the
three optimization models have similar and good performances, which indicates
that the measures are all accurate in representing the real flexibility.

Modelling future knowledge to increase flexibility and turnover - A further im-
provement was achieved from our first attempt to make use of booking patterns,
i.e. from weighting seating plan flexibility by the expected distribution of future
table demand. The results were noticeably improved when we assumed some
booking requests with flexible start times.

9.1.5 An interactive tool for restaurant table management

In Chapter 7, we described the implemented research prototype software.
Supporting, enhancing, and automating current systems - The software inte-

grates allocation and optimization facilities - the user can interact with the system,
controlling table allocation, while receiving advice from the underlying models.
The software had been in trial at the restaurant for six months and a question-
naire was completed by the general manager. The questionnaire was intended to
validate the results achieved in simulation, i.e. to assess the applicability of our
research to the real restaurant industry. The evaluation was positive. Specifically,
the replies to the questionnaire report that the software models the restaurant ad-
equately, provides acceptable seating plans in reasonable time, can join and sep-
arate tables correctly, proposes flexible seating plans in reasonable time, reports

235

quickly whether or not a booking request can be accepted, recommends sensible
alternative times for a booking, and provides useful advice when a seating plan
has to be reconfigured.

9.2 Final discussion

Restaurant Table Management (RTM), like many real world problems, is dynamic
and uncertain. Several solving techniques have been introduced in the past to
tackle different issues in dynamic problem solving (see Background, Chapter 3).
The main goals involve: (i) providing quick reactions to changes; (ii) optimizing
plans by reasoning on possible future developments of the problem; (iii) main-
taining stable solutions; (iv) providing solutions that are robust in accommodating
changes at little cost.

In Chapter 3, we presented the state of the art in dynamic problem solving,
and we observed how the different approaches tend to focus mainly on one single
goal at a time. For example, Probabilistic [36], Stochastic [67], and Branching
[38] CSPs, as well as the Sampling methods [10] [11] [12] [26], mainly focus on
(ii); Local Changes [91], and the works by Ran et. al. [79] and by Petcu et. al.
[74] on optimally stable solutions, focus on (iii); finally, the works on Slack Times
[30] and Just In Case scheduling [35], and the Super Solutions framework [55],
focus more on (iv). In RTM, however, multiple goals often need to be achieved in
a single solution - e.g. table reallocations must be performed in reasonable time,
and solutions might require a balance between maintaining seating plan stability
and maximizing the flexibility to accommodate future bookings.

Further, many of the techniques described above are purely proactive, i.e. their
decisions are based on accurate models of the future. But the future is hardly
predictable in a restaurant environment. Furthermore, given the high and uncertain
dynamism of the problem, maintaining an up to date model of the future could be
practically infeasible.

In this dissertation, we proposed a solution that is a balance between a reactive

and proactive approach. The solution guarantees robust real-time reactions to
changes, but we can also control stability, and perform time-efficient seating plan
optimization in face of uncertainty. Optimization is based on a constraint model

236

for flexible table allocations. Our flexibility model is a cheaper and more heuristic
based model, compared to the existing methods, but it represents an efficient and
effective solution to maximize resource usage with respect to the future.

In conclusion, with our research we achieved a practical solution for enhanc-
ing restaurant table management. The research is valuable for restaurateurs, but
also for the constraint programming community. Restaurant table management
has no history in the literature of constraint programming. We believe that this
dissertation represents a good and already advanced baseline for tackling an in-
teresting and novel, dynamic and highly uncertain problem. The constraint based
model proposed in this thesis represents a successful case of research applied to
a real-world problem. The model integrates reaction efficiency, optimization, sta-
bility, and robustness, which are four major goals concerning dynamic problem
solving.

9.3 Conclusions generalized

In Restaurant Table Management (RTM), there are limited resources (tables), and
we must manage customer reservations and customer usage of those resources.
Although the current system is developed for RTM, the underlying techniques are
general, and could be applied to many other reservation systems in the service
sector. Hotels, car rental agencies, and call centers are only a few categories of
service providers that, like restaurants, have to manage the allocation of a variety
of customers to multiple reconfigurable resources of different capacity. In all
these problems, customer demand and customer usage of resources is uncertain.
The service provider does not know how many reservation requests will be made,
nor how strictly the customer will stick to the agreed reservation. The service
provider aims to maximize the use of its resources in the long term, which involves
a trade-off between short term utilization of the resource and long-term customer
satisfaction.

We envisage that the research proposed in this dissertation can be used to
manage this generalized class of service allocation problems. For example, as
in RTM, several service providers are faced with two main problems: (i) how to
decide quickly whether a requested service reservation or required change in re-

237

source usage is feasible; (ii) how to decide whether a requested service reservation
or required change in resource usage is desirable.

Our algorithms provide a fast method of checking the feasibility of changes,
and propose a new acceptable allocation whenever a change can be accommo-
dated. This allows the service providers to quickly reconfigure the resource allo-
cation plan when a customer changes the resource usage (e.g. a car rental agency
may have a client requesting a car upgrade, or an extension of the rental period),
or when a customer requests a new service (e.g. a new rental request for a 7-seater
car for a week). Further, our algorithms optimize the response to a requested
change, where the response may be to reject the change and suggest alternatives,
or to accept the change and provide a new optimized plan.

In conclusion, to our knowledge, the solution proposed in this dissertation is
the first which allows automated real-time reconfiguration of reservation plans
in the service sector, and which offers optimized reservation plans. In scientific
terms, our use of constraint programming algorithms for optimized reconfigura-
tion in the face of uncertainty is also novel.

238

Appendix A

239

240

241

242

243

244

245

Bibliography

[1] D. Achlioptas, C.P. Gomes, H. Kautz, and B. Selman. Generating satisfi-
able problem instances. In Proceedings of the 17th National Conference on

Artificial Intelligence (AAAI-00), pages 256–261, Austin, TX, USA, 2000.
AAAI Press / The MIT Press.

[2] E.M. Arkin and E.B. Silverberg. Scheduling jobs with fixed start and end
times. Discrete Applied Mathematics, 18:1–8, 1987.

[3] P. Baptiste, P. Laborie, C. Le Pape, and W. Nuijten. Constraint-Based

Scheduling and Planning, chapter 22, pages 761–760. Handbook of con-
straint programming. Elsevier, (eds. Rossi, F., van Beek, P. and Walsh, T.),
2006.

[4] J.C. Beck and M.S. Fox. Dynamic problem structure analysis as a basis for
constraint-directed scheduling heuristics. Artificial Intelligence, 117(1):31–
38, 2000.

[5] J.C. Beck and L. Perron. Discrepancy bounded depth first search. In Pro-

ceedings of 2nd International Workshop on Integration of AI and OR Tech-

nologies for Combinatorial Optimization Problems (CP-AI-OR-00), pages
7–17, Paderborn, Germany, 2000.

[6] J.C. Beck, P. Prosser, and R.J. Wallace. Failing first: An update. In Proceed-

ings of the 16th European Conference on Artificial Intelligence (ECAI-04),

Short Paper, pages 959–960, Valencia, Spain, 2004.

[7] J.C. Beck, P. Prosser, and R.J. Wallace. Variable ordering heuristics show
promise. In Proceedings of the 10th International Conference on Principles

246

and Practice of Constraint Programming (CP-04), pages 711–715, Toronto,
Canada, 2004.

[8] J.C. Beck, P. Prosser, and R.J. Wallace. Trying again to fail-first. In Recent

Advances in Constraints. Lecture Notes in Artificial Intelligence. Paper from

the Joint Annual Workshop of ERCIM/CoLogNet on Constraint Solving and

Constraint Logic Programming (CSCLP-04), pages 41–55, volume 3419,
Springer, Berlin, 2005.

[9] T. Benoist, E. Bourreau, Y. Caseau, and B. Rotterbourg. Towards stochas-
tic constraint programming: A study of on-line multi-choice knapsack with
deadlines. In Proceeding of the 7th International Conference on Principles

and Practice of Constraint Programming (CP-01), pages 61–76, Paphos,
Cyprus, 2001.

[10] R. Bent and P. Van Hentenryck. Regrets only! Online stochastic optimization
under time constraints. In Proceedings of the 19th National Conference on

Artificial Intelligence (AAAI-04), pages 501–506, San Jose, California, 2004.

[11] R. Bent and P. Van Hentenryck. The value of consensus in online stochastic
scheduling. In Proceedings of the Fourteenth International Conference on

Automated Planning and Scheduling (ICAPS-04), pages 219–226, Whistler,
British Columbia, Canada, 2004.

[12] Russell W. Bent and Pascal Van Hentenryck. Scenario-based planning for
partially dynamic vehicle routing with stochastic customers. Operations Re-

search, 52(6):977–987, 2004.

[13] D. Bertsimas and R. Shioda. Restaurant revenue management. Operations

Research, 51(3):473–486, 2003.

[14] C. Bessière. Arc-consistency and arc-consistency again. Artificial Intelli-

gence., 65(1):179–190, 1994.

[15] C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward check-
ing for non-binary constraint satisfaction. In Proceedings of the 5th Inter-

247

national Conference on Principles and Practice of Constraint Programming

(CP-99), pages 88–102, Alexandria, VA, USA, 1999.

[16] C. Bessière and J.-C. Régin. MAC and combined heuristics: Two reasons to
forsake FC (and CBJ?) on hard problems. In Proceedings of the 2nd Inter-

national Conference on Principles and Practice of Constraint Programming

(CP-96), pages 61–75, Cambridge, Massachusetts, USA, 1996.

[17] C. Bessière and J.-C. Régin. Refining the basic constraint propagation algo-
rithm. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence (IJCAI-01), pages 309–315, Seattle, Washington, USA, 2001.

[18] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfail-
lie. Semiring-based CSPs and valued CSPs: Frameworks, properties, and
comparison. Constraints, 4(3):275–316, 1999.

[19] F. Bonomo and M. Cecowski. Between coloring and list-coloring: µ-
coloring. Electronic Notes in Discrete Mathematics, 19:117–123, 2005.

[20] F. Bonomo, G. Durán, and J. Marenco. Exploring the complexity boundary
between coloring and list-coloring. Electronic Notes in Discrete Mathemat-

ics, 25:41–47, 2006.

[21] F. Boussemmart, F. Hemery, C. Lecoutre, and L. Sais. Boosting system-
atic search by weighting constraints. In Proceedings of the 16th European

Conference on Artificial Intelligence (ECAI-04), pages 146–150, Valencia,
Spain, 2004.

[22] J. Branke and D.C. Mattfeld. Anticipatory scheduling for dynamic job shop
problems. In Workshop Proceedings on Online Planning and Scheduling (in

AIPS-02), pages 3–10, Toulouse, France, 2002.

[23] D. Brélaz. New methods to color the vertices of a graph. Communications

of the Internationally Acknowledged Premier Magazine of the Computing

Field (ACM), 22(4):251–256, 1979.

248

[24] K.N. Brown and I. Miguel. Uncertainty and Change, chapter 21, pages
731–760. Handbook of constraint programming. Elsevier, (eds. Rossi, F.,
van Beek, P. and Walsh, T.), 2006.

[25] A. Cesta and R. Rasconi. Execution monitoring and schedule revision for
O-Oscar: A preliminary report. In Workshop Proceedings on Online-03:

International Workshop on Online Constraint Solving - Handling Change

and Uncertainty (in CP-03), pages 9–23, Kinsale, Ireland, 2003.

[26] H.S. Chang, R. Givan, and E.K.P. Chong. On-line scheduling via sampling.
In Proceedings of the 5th International Conference on Artificial Intelligence

Planning Systems (AIPS-00), pages 62–71, Breckenridge, CO, USA, 2000.

[27] H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior
in combinatorial search. In Proceedings of the 7th International Conference

on Principles and Practice of Constraint Programming (CP-01), pages 408–
422, Paphos, Cyprus, 2001.

[28] B.M.W. Cheng, J.H.M. Lee, and J.C.K. Wu. Speeding up constraint prop-
agation by redundant modeling. In Proceedings of the 2nd International

Conference on Principles and Practice of Constraint Programming (CP-96),
pages 91–103, Cambridge, Massachusetts, USA, 1996.

[29] A.C. Davenport and J.C. Beck. A survey of techniques for schedul-
ing with uncertainty. In unpublished manuscript, available from
<http://tidel.mie.utoronto.ca/publications.php>, 2000.

[30] A.C. Davenport, C. Gefflot, and J.C. Beck. Slack-based techniques for robust
schedules. In Proceedings of the 6th European Conference on Planning

(ECP-01), pages 7–18, Toledo, Spain, 2001.

[31] R. Debruyne and C. Bessière. Some practicable filtering techniques for the
constraint satisfaction problem. In Proceedings of the 15th International

Joint Conference on Artificial Intelligence (IJCAI-97), volume 1, pages 412–
417, Nagoya, Japan, 1997. Morgan Kaufmann.

249

[32] Designed and constructed by: Numt.com. “Eco restaurant homepage”.
<http://www.eco.ie>, (June 2007).

[33] R. Detcher. Constraint processing. Morgan Kaufman, 2003.

[34] R. Detcher and A. Detcher. Belief maintenance in dynamic constraint net-
works. In Proceedings of the 7th National Conference on Artificial Intelli-

gence (AAAI-88), pages 37–42, Saint Paul, Minnesota, 1988.

[35] M. Drummond, J. Bresina, and K. Swanson. Just-in-case scheduling. In Pro-

ceedings of the 12th National Conference on Artificial Intelligence (AAAI-

94), pages 1098–1104, Seattle, Washington, 1994.

[36] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfac-
tion framework for decision under uncertainty. In Proceedings of the 11th In-

ternational Conference on Uncertainty in Artificial Intelligence, pages 167–
174, Montreal, Canada, 1995.

[37] H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: A frame-
work for decision problems under incomplete knowledge. In Proceedings

of the 13th National Conference on Artificial Intelligence (AAAI-96), pages
175–180, Portland, OR, USA, 1996.

[38] D.W. Fowler and K.N. Brown. Branching constraint satisfaction problems
and markov decision problems compared. Annals of Operations Research,
118(1-4):85–100, 2003.

[39] E.C. Freuder. A sufficient condition for backtrack-bounded search. Journal

of the Association for Computing Machinery, 32(4):755–761, 1985.

[40] E.C. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intel-

ligence, 58:21–70, 1992.

[41] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfac-
tion problems. In Proceedings of the 14th International Joint Conference on

Artificial Intelligence (IJCAI-95), pages 572–578, Montreal, Canada, 1995.

250

[42] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the

theory of NP-completeness. W.H. Freeman and Company, New York, 1979.

[43] M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The com-
plexity of coloring circular arcs and chords. Society for Industrial and

Applied Mathematics (SIAM) Journal on Algebraic and Discrete Methods,
1(2):216–227, 1980.

[44] I.P. Gent. A symmetry breaking constraint for indistinguishable values.
In Proceedings of SymCon’01, the CP’01 Workshop on Symmetry in Con-

straints, pages 469–473, Paphos, Cyprus, 2001.

[45] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. An empirical
study of dynamic variable ordering heuristics for the constraint satisfaction
problem. Division of Artificial Intelligence Technical Report 96-05, Univer-
sity of Leeds, 1996.

[46] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of
search. In Proceedings of the 13th National Conference on Artificial Intelli-

gence (AAAI-96), pages 246–252, Portland, OR, USA, 1996.

[47] L. Getoor, G. Ottosson, M. Fromherz, and B. Carlson. Effective redundant
constraints for online scheduling. In Proceedings of the 14th National Con-

ference on Artificial Intelligence (AAAI-97), pages 302–307, Providence,
Rhode Island, 1997. AAAI Press / MIT Press.

[48] C.P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126(1-2):43–62, 2001.

[49] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search
through randomization. In Proceedings of the 15th National Conference

on Artificial Intelligence (AAAI-98), pages 431–437, Madison, Wisconsin,
USA, 1998.

[50] C.P. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization in
backtrack search: Exploiting heavy-tailed profiles for solving hard schedul-
ing problems. In Proceedings of the 4th International Conference on Ar-

251

tificial Intelligence Planning Systems (AIPS-98), pages 208–213, Carnegie
Mellon University, Pittsburgh Pennsylvania, USA, 1998.

[51] C.P. Gomes and D.B. Shmoys. Approximations and randomization to boost
CSP techniques. Annals of Operations Research, 130:117–141, 2004.

[52] M. Grotschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169–197,
1981.

[53] M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[54] W.D. Harvey. Nonsystematic backtracking search. Phd thesis, Stanford uni-
versity, Department of computer science, 1995.

[55] E. Hebrard, B. Hnich, and T. Walsh. Robust solutions for constraint satis-
faction and optimization. In Proceedings of the 16th European Conference

on Artificial Intelligence (ECAI-04), pages 186–190, Valencia, Spain, 2004.

[56] B. Hnich, B.M. Smith, and T. Walsh. Dual modelling of permutation and
injection problems. Journal of Artificial Intelligence Research, 21:357–391,
2004.

[57] A. Holland and B. O’Sullivan. Weighted super solutions for constraint pro-
grams. In Proceedings of the 20th National Conference on Artificial Intelli-

gence (AAAI-05), pages 378–383, Pittsburgh, Pennsylvania, 2005.

[58] H.H. Hoos and E. Tsang. Local search methods, chapter 5, pages 135–167.
Handbook of constraint programming. Elsevier, (eds. Rossi, F., van Beek, P.
and Walsh, T.), 2006.

[59] T. Hulubei and B. O’Sullivan. Optimal refutations for constraint satisfac-
tion problems. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI-05), pages 163–168, Edinburgh, Scotland,
2005.

[60] iSeatz.com. “iSeatz homepage”. <http://www.iseatz.com>, (June 2007).

252

[61] S. Kimes. Implementing restaurant revenue management. Cornell Hotel and

Restaurant Administration Quarterly, 34(3):16–21, 1999.

[62] S. Kimes. Restaurant revenue management. Cornell Hospitality Report 4(2),
Center for Hospitality Research at Cornell University, 2004.

[63] R. Korf. Improved limited discrepancy search. In Proceedings of the 13th

National Conference on Artificial Intelligence (AAAI-96), pages 286–291,
Portland, OR, USA, 1996.

[64] R.E. Korf. Depth-first iterative deepening: An optimal admissible tree
search. Artificial Intelligence, 27:97–109, 1985.

[65] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-

gence, 8(1):99–118, 1977.

[66] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Artificial

Intelligence, 25(1):65–74, 1985.

[67] S. Manandhar, A. Tarim, and T. Walsh. Scenario-based stochastic constraint
programming. In Proceedings of the 18th International Joint Conference on

Artificial Intelligence (IJCAI-03), pages 257–262, Acapulco, Mexico, 2003.

[68] D. Marx. Precoloring extension on unit interval graphs. Discrete Applied

Mathematics, 154(6):995–1002, 2006.

[69] R. Mohr and T. Henderson. Arc and path consistency revisited. Artificial

Intelligence, 28:225–233, 1986.

[70] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of the

8th European Conference on Artificial Intelligence (ECAI-88), pages 651–
656, Munich, Germany, 1988.

[71] A.K. Mok and M.L. Dertouzos. Multiprocessor scheduling in a hard real-
time environment. In Proceedings of the 7th IEEE Texas Conference on

Computing Systems, pages 5–1–5–12, Houston, Texas, 1978.

253

[72] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with tem-
poral uncertainty. In Proceedings of the 17th International Joint Conference

on Artificial Intelligence (IJCAI-01), pages 494–502, Seattle, Washington,
USA, 2001.

[73] OpenTable. “Open Table homepage”. <http://www.opentable.com>, (June
2007).

[74] A. Petcu and B. Faltings. Optimal solution stability in continuous-time
optimization. In Proceedings of the 6th International Workshop on Dis-

tributed Constraint Reasoning (DCR-05), pages 207–221, Edinburgh, Scot-
land, 2005.

[75] T. Petit, J.C. Régin, and C. Bessière. Range-based algorithm for max-csp.
In Proceedings of the 8th International Conference on Principles and Prac-

tice of Constraint Programming (CP-02), pages 280–294, Ithaca, NY, USA,
2002.

[76] M.L. Pinedo. Planning and scheduling in manufacturing and services.
Springer Series in Operations Research. Springer, 2005.

[77] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-

putational Intelligence, 9(3):268–299, 1993.

[78] J.F. Puget. On the satisfiability of symmetrical constrained satisfaction prob-
lems. In Proceedings of the 7th International Symposium on Methodologies

for Intelligent Systems (ISMIS-93), pages 350–361, Trondheim, Norway,
1993.

[79] Y. Ran, N. Roos, and J. Van Den Herik. Approaches to find near-minimal
change solution for dynamic CSPs. In Proceedings of the 4th International

Workshop on Integration of AI and OR Techniques in Constraint Program-

ming for Combinatorial Optimization Problems (in CP-AI-OR-02), pages
373–387, Le Croisic, France, 2002.

254

[80] J.-C. Régin. A filtering algorithm for constraints of difference in csps.
In Proceedings of the 12th National Conference on Artificial Intelligence

(AAAI-94), pages 362–367, Seattle, Washington, 1994.

[81] F. Rossi, P. van Beek, and T. Walsh. Handbook of constraint programming.
Elsevier, 2006.

[82] Z. Ruttkay. Fuzzy constraint satisfaction. In Proceedings of the 1st IEEE

Conference on Evolutionary Computing, pages 542–547, Orlando, Florida,
USA, 1994.

[83] ILOG SA. Ilog solver 5.3 user’s manual. 2003.

[84] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint
satisfaction. In Proceedings of the 11th European Conference on Artifi-

cial Intelligence (ECAI-94), pages 125–129, Amsterdam, The Netherlands,
1994.

[85] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic con-
straint satisfaction problems. International Journal on Artificial Intelligence

Tools (IJAIT-94), 3(2):187–207, 1994.

[86] B.M. Smith. Succeed first or fail-first: A case study in variable and value or-
dering heuristics. In Proceedings of the 4th International Conference on Par-

allel Computing Technologies (PaCT-97), pages 321–330, Yaroslavl, Russia,
1997.

[87] B.M. Smith and S.A. Grant. Trying harder to fail first. In Proceedings of 13th

European Conference on Artificial Intelligence (ECAI-98), pages 249–253,
Brighton, UK, 1998.

[88] B.M. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and im-
plied constraints to model non-binary problems. In Proceedings of the 16th

National Conference on Artificial Intelligence (AAAI-00), pages 182–187,
Austin, Texas, 2000.

[89] J.A. Stankovic, M.R. Spuri, K. Ramamritham, and G.C. Buttazzo. Deadline

scheduling for real-time systems. Kluwer Academic Publisher Boston, 1998.

255

[90] G.M. Thompson. Dedicated or combinable? A simulation to determine
optimal restaurant table configuration. Cornell Hospitality Report, Center
for Hospitality Research at Cornell University, 2003.

[91] G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfac-
tion problems. In Proceedings of the 12th National Conference on Artificial

Intelligence (AAAI-94), pages 307–312, Seattle, Washington, 1994.

[92] T. Vidal and H. Fargier. Handling contingency in temporal constraint net-
works: From consistency to controllabilities. Journal of Experimental and

Theoretical Artificial Intelligence (JETAI), (1):23–45, 1999.

[93] R.J. Wallace and E.C. Freuder. Anytime algorithms for constraint satisfac-
tion and sat problems. Association for Computing Machinery (ACM) Special

Interest Group on Artificial Intelligence (SIGART) Bulletin, 7(2):7–10, 1996.

[94] T. Walsh. Depth-bounded discrepancy search. In Proceedings of the 15th

International Joint Conference on Artificial Intelligence (IJCAI-97), pages
1388–1395, Nagoya, Japan, 1997.

[95] T. Walsh. Search in a small world. In Proceedings of the 16th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-99), pages 1172–
1177, Stockholm, Sweden, 1999.

256

