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Abstract

The central thesis of this dissertation is that low knowledge control meth-
ods allow non-experts to achieve high quality results from optimization tech-
nology. This is achieved through the use of algorithm control methods
that automatically determine the best performing algorithms for a partic-
ular problem instance. We create and investigate mechanisms for algorithm
control that do not require detailed knowledge of the problem domain or al-
gorithm behaviour. These low knowledge control methods make decisions
based only on observations of algorithm performance. The strong perfor-
mance observed is not the primary result; it is that these results are possible
using simple general control methods that do not require significant effort
and expertise to implement.

We develop a framework for algorithm control methods and use it to
present an analysis of existing work and highlight some concerns regarding
the practical use of these control methods. In particular, we critique the use
of high knowledge models of algorithm behaviour for shifting the expertise
requirement from algorithm development to building models of algorithm
behaviour. Furthermore, such models are often brittle, so cannot cope with
change or be generalized to other problem domains or algorithms.

The investigation of our thesis applies low knowledge control methods
to scheduling algorithms, both search algorithms and large neighbourhood
search heuristics, and compares performance against optimal high knowledge
algorithm selection methods. We also present a tuning procedure for config-
uring control systems that combine multiple algorithms. The best perform-
ing low knowledge control methods perform well across all problem sets and
time limits and do not require significant effort or expertise to implement.

xi



Declaration

This dissertation is submitted to University College Cork, in accordance with

the requirements for the degree of Doctor of Philosophy in the Faculty of Sci-

ence. The research and thesis presented in this dissertation are entirely my

own work and have not been submitted to any other university or higher edu-

cation institution, or for any other academic award in this university. Where

use has been made of other people’s work, it has been fully acknowledged and

referenced. Parts of this work have appeared in the following publications

which have been subject to peer review.

1. Carchrae, T. & Beck, J.C., Principles for the Design of Large Neigh-

borhood Search. Journal of Mathematical Modelling and Algorithms,

8(3), 245-270, 2009

2. Carchrae, T. & Beck, J.C., Applying Machine Learning to Low Knowl-

edge Control of Optimization Algorithms. Computational Intelligence,

21(4), 372-387, 2005.

3. Carchrae, T.& Beck, J.C., Cost-based Large Neighborhood Search.

Workshop on the Combination of Metaheuristic and Local Search with

Constraint Programming Techniques, 2005.

4. Carchrae, T. & Beck, J.C. Low Knowledge Algorithm Control. Proceed-

ings of the Nineteenth National Conference on Artificial Intelligence,

2004.

The contents of this dissertation extensively elaborate upon previously

published work and mistakes (if any) are corrected.

xii



Dedication

This dissertation is dedicated to Duncan.

xiii



Acknowledgements

I am extremely grateful to Chris Beck for his guidance and support. I was very

fortunate to have such a dedicated and thorough supervisor. I would like to thank

Gene Freuder for providing the amazing environment of 4C. The quantity and

quality of researchers I was exposed to was overwhelming.

I would also like to thank Jim Bowen for making this come to be. I arrived at

the university in the same year (1993) as Jim and we met through his first year

computing course, where he was teaching first order predicate calculus to bewil-

dered undergraduates. He invited ‘bored’ students to contact him to work on more

interesting stuff; I was the only one. Together we dissected Dynamic Backtracking

(a not-so-gentle introduction to constraints) and Jim taught me the fundamentals

of CSPs. In the following years, Jim formed the Constraint Processing Group, won

a significant European research grant to apply constraints to design, and planted

the seed of what would become 4C. Some years later, Barry O’Sullivan contacted

me with the news of the inception of 4C. I left industry and came back to do my

PhD in what had become a world-class lab in constraints.

There are many people at 4C who helped either directly or indirectly. Eleanor

O’Riordan, thank you so much for helping me to submit my dissertation. James

Little, thank you for your help through the ACOMME project. Ken Brown, thank

you for being my internal examiner and your assistance through the examination

process. For the talks, discussions, and good times, I thank the many others.

I am grateful for the financial support of the government of Ireland for my

research, directly by IRCSET to the ACOMME project, and indirectly to SFI for

providing the facility and researchers of 4C.

Last and not least, thanks to my family for their love and support, and most

importantly, patience.

xiv



Chapter 1

Introduction

The central thesis of this dissertation is that low knowledge control methods

for optimization algorithms allow non-experts to achieve high quality results

from optimization technology. The primary motivation for our research is to

extend the reach of optimization technology by making it more accessible.

To this end, we are interested in methods that not only provide high quality

solutions, but do so without the requirement for significant effort and exper-

tise on the part of a practitioner who wants to use off-the-shelf methods to

solve a problem.

Traditional high knowledge approaches [21, 42, 68, 81, 83, 86, 94, 117] to the

algorithm selection and control problem have focused on building models

of problem structure and algorithm performance. While high knowledge

approaches have had success on specific classes of problems, they have not

succeeded in making optimization technology easier to use in general. The

use of such models has shifted the expertise requirement from algorithm

engineering to feature engineering and predictive model building. In contrast,

our methods make control decisions based on very general features that are

independent of the type of problem being solved and the algorithms that are

being employed. The low knowledge feature explored in this dissertation is

the improvement of solution quality over time, which we believe is useful in

many applications. Our empirical studies show that these control methods

achieve strong performance on a range of problems, including problems that

1



are far larger than typical academic benchmarks and more like those seen in

industry. The strong performance is not the primary result; it is that these

results are possible using simple general control methods that do not require

significant effort or expertise.

In particular, in this dissertation:

∙ We create and investigate mechanisms for algorithm control that do not

require detailed knowledge of the problem domain or of algorithm be-

haviour. These low knowledge control methods make decisions based

only on observations of algorithm performance. We claim these ap-

proaches reduce the engineering effort and required expertise to effec-

tively apply optimization algorithms.

∙ We compare a low knowledge control approach to idealized high knowl-

edge approaches in the domain of scheduling algorithms. We present

an analysis against the best possible high knowledge approaches and

observe competitive performance. Although such methods have been

shown to provide good performance, we claim they are impractical on

the basis that they shift expertise from analysis of algorithm perfor-

mance to an analysis of high knowledge models.

∙ We apply low knowledge control methods to a large neighbourhood

search configuration for solving industrial-sized scheduling problems.

The control mechanisms are applied to the selection of neighbourhood

heuristics during search. In addition, a tuning procedure for combining

neighbourhood heuristics is presented. The best performing control

methods perform well across all problem sets and time limits.

1.1 Motivation

This thesis is motivated by the observation that, often, modelling is easy but

solving is hard. In practice, modelling becomes hard because we want solving

to be easy and the two aspects of problem solving are certainly dependant on

each other [101]. Commercial libraries of problem solvers are sold under the
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premise that they will solve your model using state-of-the-art algorithms. In

some cases these work well, but in many cases they produce mediocre results,

and in other cases they fail to produce solutions at all. So, in practice, the

application of optimization technology requires the expertise to model the

problem and to configure the algorithms to produce high quality solutions.

The quality of the system is determined by the capability and experience of

these experts, as shown in the applied study of Le Pape et al. [65].

In this dissertation we do not address the modelling issue. Instead, we

address the issue of algorithm configuration, with the goal of producing a

system that comes closer to the promise of declarative programming that ‘the

user states the problem, the computer solves it’ [37]. The future, as we see

it, is one where toolkits of algorithms are available off-the-shelf. Algorithm

experts are used to build toolkits rather than configure them. Such toolkits

provide the raw components for an automated system to configure and apply.

What remains to be seen is if this configuration exercise can be performed

while reducing the reliance on an algorithm expert to effectively use this

technology.

The motivation for the work in this dissertation is as follows:

1. The success of optimization technology is hampered by lack

of experts - The primary driver for our research is that optimization

technology suffers from a bottleneck of available experts to implement

solutions [37, 38, 93]. Experts are required to gather requirements, cre-

ate a computational model of the problem, and then develop a system

to produce high quality solutions to the computational model. In this

dissertation, we address the challenge of reducing the expertise required

to develop a system that produces high quality solutions for a given

computational model.

2. Algorithm performance is often brittle - In many problem do-

mains, the world is constantly changing. Because of change, optimiza-

tion systems that perform well at first, may start to fail as the problems

they are solving change in subtle, or not so subtle ways. We are in-

terested in producing an optimization system that is able to adapt to
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changes in the world. Such behaviour represents a significant practical

cost savings, since it is not only expensive to repair a failing system;

costs are incurred, before (or if) the failure is noticed, when the deci-

sions produced by such a system are used in operations.

3. There is no dominating algorithm - There is a tendency in the

field of optimization to focus on average performance and claim that the

algorithm that is best on average is superior to all algorithms. This has

led to many papers claiming that, for a particular time limit, method

X is better than method Y on problem sets A, B and C. While such

results are useful as a measure of incremental improvement, there is an

implicit assumption that, eventually, a single algorithm will be devel-

oped that dominates all others on all problem sets. Perhaps this is the

case on particular problem instances, or even entire problem sets, and

maybe across time limits as well. However, as the range of problems

to be solved increases, the chance that a single method will dominate

decreases [115]. This is especially true when optimization methods

are applied to real world problems rather than academic benchmarks.

Most methods will exhibit strong performance on some problems at

some time limits. Therefore, in a fashion similar to boosting in machine

learning [39, 96], we are interested in control mechanisms to combine

ensembles of algorithms to produce a system that is ultimately more

robust, and performs better, than a single method that performs best

on average. This observation, in relation to optimization algorithms,

was first made in Leyton-Brown et al. [66] and we continue this direc-

tion of research.

1.2 Overview of Dissertation

This dissertation is structured as follows. First, we present a brief review

of the concepts of constraint programming and their application to job shop

scheduling. This gives the context for the algorithm control problem by in-

troducing classes of algorithms that require significant expertise to use effec-
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tively. In the next two chapters, we discuss the algorithm control problem

and point to failings of the existing approaches, with respect to the require-

ment of reducing expertise. We suggest a low knowledge approach to over-

come this problem. In the remaining chapters, we explore the application

of our approach and evaluate performance against idealized high knowledge

approaches.

Chapter 2 reviews constraint programming and how it can be applied to

solve optimization problems and, in particular, scheduling problems. We de-

fine the core concepts in constraint programming and a constraint model for

the job shop scheduling problem. We then discuss three general classes of al-

gorithms to solve constraint programming problems, which lays the ground-

work for later chapters where we present concrete examples of these algo-

rithms.

Chapter 3 presents a detailed review of algorithm control methods. First,

we present a framework to classify control mechanisms based on when they

make decisions and when they capture knowledge. Then we review control

methods from the literature and place them in the context of this framework.

We present a discussion on the benefits and limitations of each instantiation

of the framework.

Chapter 4 states our thesis: that a low knowledge approach is a practical

way to achieve the goal of expertise reduction. We present a discussion on

the benefits of high versus low knowledge control, and show that although

theoretically, a high knowledge approach is superior, in practical terms, it is

inferior since it is more prone to error, in addition to requiring significantly

more expertise and effort to implement.

Chapter 5 investigates the use of low knowledge control methods applied

to scheduling algorithms. We present three state-of-the-art scheduling algo-

rithms and evaluate the performance across time limits and problem sets. We

show that, without the effort or expertise of knowledge engineering, the low

knowledge control methods perform strongly when compared to optimal high

knowledge selection methods. An ablation study is performed to determine

the impact of the components of the best control method.

Chapter 6 investigates the use of low knowledge control methods ap-
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plied to large neighbourhood search. We present a large neighbourhood

search algorithm for scheduling and four neighbourhood heuristics and dis-

cuss the challenge of effectively configuring such a system. We introduce a

low knowledge method for tuning combinations of neighbourhood heuristics.

The neighbourhood heuristics and control methods are evaluated on medium

(400 activities) and large (1600 activities) scheduling problems, and then on

a set of standard benchmarks.

Chapter 7 concludes with a review of the contributions of the dissertation

and a discussion of areas for future work.

Appendix A presents detailed results on Taillard’s benchmark problems.

1.3 Summary of Contributions

The contributions of this dissertation are:

1. A framework that defines the structure of control methods through

knowledge capture and control decisions. This framework provides a

tool to categorize and understand the literature, resulting in an anal-

ysis of the benefits and shortcomings of on-line and off-line control

approaches.

2. The introduction of the idea of low knowledge algorithm control. We

propose the use of low knowledge control methods to directly address

the issue of the expertise required for the effective use of optimization

technology. We challenge the belief that more information leads to a

better reasoning system and propose that low knowledge control sys-

tems are both easier to implement and more robust to change.

3. The demonstration that low knowledge control methods can reduce

required expertise while achieving good performance. Several control

methods are presented and evaluated against optimal high knowledge

selection methods. Empirical results suggest that low knowledge ap-

proaches can perform as well or better than high knowledge approaches.

6



4. An extension of the algorithm selection problem [94] to the more gen-

eral problem of algorithm control, where algorithm selection is repeated

during search. The algorithm control approach allows the interleaving

of knowledge capture and decision making. We show that low knowl-

edge control methods are able to perform as well as high knowledge

selection methods when applied to scheduling algorithms.

5. An analysis of the impact of components of a low knowledge control

strategy through an ablation study. This analysis is executed by pro-

ducing variants of the control method that lack one of the components.

We show empirically that all of the components benefit performance.

6. The evaluation of low knowledge control applied to a large neighbour-

hood search to solve industrial sized scheduling problems. We present

a tuning method for optimizing the parameters of combined neighbour-

hood heuristics. Two novel neighbourhood heuristics are presented: a

general purpose large neighbourhood search heuristic based on solu-

tion cost impact and a heuristic that focuses scheduling effort on the

resources with the highest load.
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Chapter 2

Constraint-Based Scheduling

In this chapter, we present a review of constraint programming with an

emphasis on scheduling. In the first section, we describe the core concepts

of constraint programming. In the second section, we introduce the job shop

scheduling problem (JSP), which is the problem we will focus experiments

on in this dissertation. In the remaining sections of the chapter, we describe

three classes of general algorithms for constraint programming. Concrete

examples of these algorithms applied to the JSP appear in later chapters.

In the context of this dissertation, constraint programming is interesting

due to the fact that many different algorithms can be used to solve constraint

programming problems. The wide range of available algorithms leads to an

algorithm selection problem to determine the best algorithm, or combination

of algorithms, to solve a particular problem instance. The algorithm selection

problem is considered in Chapter 3.

2.1 Constraint Programming

Constraint programming [3, 30, 95, 106–108] is a problem solving framework

that separates the problem specification from the method of solving.

Constraint Program = Model + Search

The first component of a constraint program is the model, which specifies

the problem using variables and constraints. Each variable has a domain of
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possible values that can be assigned to the variable. Each constraint describes

a relationship that must hold among some subset of variables.

Constraint programs can be used to model satisfaction problems or op-

timization problems. A solution to a satisfaction problem is an assignment

to each of the decision variables such that all constraints are satisfied. So-

lutions to optimization problems must satisfy all constraints in addition to

minimizing or maximizing an objective. An optimal solution will have the

minimal (or maximal) value possible for the objective.

The second part of a constraint program is the search component. The

search component specifies how to explore the space of possible solutions.

Many search algorithms have been proposed, however most fall into two

categories, constructive and local search.

Constructive search algorithms [31, 57] build a solution by making a series

of decisions, such as variable 𝑣𝑖 is assigned the value 1. If these decisions

do not violate any constraints and all variables are assigned a value then a

solution has been found. Typically, each decision is recorded as a choice point.

If no further decisions can be made without causing a constraint violation,

then a previous choice must be changed either by backtracking and changing

a previous decision or by restarting search and making different decisions.

Constructive search algorithms are discussed in detail in Section 2.3.

Local search algorithms [48, 108] operate by modifying a complete assign-

ment to all variables. An initial complete assignment is produced by a fast

heuristic or from a previous solution to a similar problem. It is unlikely that

this initial solution will satisfy all the constraints so a process of iterative

improvement commences. During each iteration, a change is made to the

complete solution. This process is repeated until a termination condition is

met, such as all constraints are satisfied or a computational limit has been

reached. Local search algorithms are discussed in more detail in Section 2.4.

An interesting hybrid of constructive and local search, called large neigh-

bourhood search, is discussed in Section 2.5.

One of the appealing aspects of constraint programming is that the search

component can be specified independently of the constraint model. For the

purpose of this dissertation, we are interested in exploring the automated
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selection of algorithms to solve a constraint model. In this respect, the

separation of model and search is ideal since several algorithms can employed

to solve the same constraint model.

2.1.1 Applications

Constraint programming approaches have had success in many application

areas. The flexible modelling ability that is available with the constraint pro-

gramming approach produces optimization applications with more realistic

problem models than are available with, for example, standard mathemati-

cal programming approaches. There are reports in the literature of success

in areas such as manufacturing scheduling, logistics, circuit design, telecom-

munications network design, bio-informatics and product configuration [95].

What makes constraint programming a good fit for many applications is

the ability to preserve the logical structure of the problem being modelled.

The decisions to be made are typically discrete such as: what sequence should

these items be ordered in, what resource should be used, should a connec-

tion between two nodes exist, what options are compatible with the current

configuration, and so on. The structural relationships are modelled as con-

straints. For example, workers are allowed a lunch break 4 to 6 hours into

their shift, the circuit power capacity cannot exceed 5mW if component X

is used, the telecommunication link must have a bandwidth that exceeds a

minimum threshold, and so on. These features allow constraint program-

ming to represent many real-world problems in a natural way and make the

creation and maintenance of constraint models easier.

Because constraint models are declarative in nature, it is possible to com-

bine constraints to produce a model for a new application. This design philos-

ophy is the basis of commercial constraint programming tools that provide a

toolkit of ready-to-use constraints. It is also often relatively straightforward

to add new types of constraints to a model, however skill may be required to

implement them efficiently.

While constraint programming has a good ability to model many of the

constraints in a real-world problem, finding a solution once the problem has
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been modelled may not be trivial. For this reason, the number of successful

applications appears to be limited by the availability of constraint program-

ming experts to configure efficient constraint models and solvers. An open

challenge to the constraint community is to develop constraint programming

systems that are easier to use [93]. The central thesis explored in this dis-

sertation is that algorithm control methods will help to make these systems

easier to use.

2.1.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a model that expresses a problem

using variables and constraints. Variables are used to model decisions and

constraints are used to specify the relationship between variables through

allowed combinations of values. Every variable has a domain of values that

can be assigned to the variable. An assignment that does not violate any

constraints is said to satisfy the constraints. A solution to a CSP is found

when every variable is assigned and all the constraints are satisfied.

2.1.2.1 Definitions

A finite-domain constraint satisfaction problem (CSP) [3, 30, 95, 106–108] is

defined by a triple ⟨𝑉,𝐷,𝐶⟩. 𝑉 is a set of variables and 𝐷 is a set of domains,

where each domain, 𝐷𝑣𝑖 , is a set of possible values for each variable 𝑣𝑖 ∈ 𝑉

and 𝐶 is a set of constraints. An assignment is a tuple (𝑣𝑖, 𝑑𝑗) that indicates

that variable 𝑣𝑖 ∈ 𝑉 takes the value 𝑑𝑗 ∈ 𝐷𝑣𝑖 . A compound assignment 𝐴𝑊

is a set of assignments for the variables in set 𝑊 .

Each constraint 𝐶𝑊 ∈ 𝐶 specifies the allowed compound assignments

of a subset 𝑊 ⊆ 𝑉 of variables. If a compound assignment 𝐴𝑊 ′ contains

assignments for all variables 𝑊 in a constraint 𝐶𝑊 , this assignment satis-

fies the constraint if the projection 𝑃 (𝑊,𝐴𝑊 ′) ∈ 𝐶𝑊 , where 𝑃 (𝑊,𝐴𝑊 ′) =

{(𝑣𝑖, 𝑑𝑗) ∣ (𝑣𝑖, 𝑑𝑗) ∈ 𝐴𝑊 ′ , 𝑣𝑖 ∈ 𝑊}. A solution is a compound assignment

𝐴𝑉 that contains a labelling for all variables 𝑣𝑖 ∈ 𝑉 such that all of the

constraints are satisfied by 𝐴𝑉 .
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Cork

Kerry

Limerick

Clare

Waterford

Tipperary

Figure 2.1: Map of Munster and a corresponding graph representing a map
colouring CSP.

2.1.2.2 Example

In Figure 2.1, we show an example of a CSP in the form of a map colour-

ing problem for the province of Munster in the south of Ireland. The map

colouring problem consists of finding a colour for each county so that no

two counties that share borders have the same colour. A graph representing

the counties is shown on the right of Figure 2.1, where counties that share

borders are connected by an edge.

From this graph, we construct a CSP that is shown in Table 2.1. The

variables, 𝑉 , are the nodes, representing the colour of each county. The

domain of allowed values for each variable is the set of possible colours. The

constraints for the problem are defined by the edges in the graph, where

any nodes that are connected cannot take the same colour. To represent the

constraints in this problem we state that any two connected nodes cannot

share a colour, e.g. 𝐶𝐶𝑜𝑟𝑘,𝐾𝑒𝑟𝑟𝑦 where 𝐶𝑜𝑟𝑘 ∕= 𝐾𝑒𝑟𝑟𝑦. For compactness, we

represent this relationship using a not-equals constraint rather than listing

out the allowed pairs of value assignments.

For example, the compound assignments (𝐶𝑜𝑟𝑘,𝑅𝑒𝑑) and (𝐾𝑒𝑟𝑟𝑦,𝑅𝑒𝑑)

violates the constraint 𝐶𝐶𝑜𝑟𝑘,𝐾𝑒𝑟𝑟𝑦. An assignment that satisfies that con-

straint is (𝐶𝑜𝑟𝑘,𝑅𝑒𝑑) and (𝐾𝑒𝑟𝑟𝑦, 𝑌 𝑒𝑙𝑙𝑜𝑤). A solution to this problem is

an assignment for each variable that satisfies all of the constraints simulta-

neously. An example of a solution is shown in Figure 2.2.
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V Cork, Claire, Kerry, Limerick, Tipperary, Waterford

𝐷𝐶𝑜𝑟𝑘 Red, Blue, Yellow, White, Green
𝐷𝐶𝑙𝑎𝑖𝑟𝑒 Red, Blue, Yellow, White, Green
𝐷𝐾𝑒𝑟𝑟𝑦 Red, Blue, Yellow, White, Green
𝐷𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘 Red, Blue, Yellow, White, Green
𝐷𝑇𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦 Red, Blue, Yellow, White, Green
𝐷𝑊𝑎𝑡𝑒𝑟𝑓𝑜𝑟𝑑 Red, Blue, Yellow, White, Green

𝐶𝐶𝑜𝑟𝑘,𝐾𝑒𝑟𝑟𝑦 𝐶𝑜𝑟𝑘 ∕= 𝐾𝑒𝑟𝑟𝑦
𝐶𝐶𝑜𝑟𝑘,𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘 𝐶𝑜𝑟𝑘 ∕= 𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘
𝐶𝐶𝑜𝑟𝑘,𝑇 𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦 𝐶𝑜𝑟𝑘 ∕= 𝑇𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦
𝐶𝐶𝑜𝑟𝑘,𝑊𝑎𝑡𝑒𝑟𝑓𝑜𝑟𝑑 𝐶𝑜𝑟𝑘 ∕= 𝑊𝑎𝑡𝑒𝑟𝑓𝑜𝑟𝑑
𝐶𝐶𝑙𝑎𝑖𝑟𝑒,𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘 𝐶𝑙𝑎𝑖𝑟𝑒 ∕= 𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘
𝐶𝐶𝑙𝑎𝑖𝑟𝑒,𝑇 𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦 𝐶𝑙𝑎𝑖𝑟𝑒 ∕= 𝑇𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦
𝐶𝐾𝑒𝑟𝑟𝑦,𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘 𝐾𝑒𝑟𝑟𝑦 ∕= 𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘
𝐶𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘,𝑇 𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦 𝐿𝑖𝑚𝑒𝑟𝑖𝑐𝑘 ∕= 𝑇𝑖𝑝𝑝𝑟𝑒𝑟𝑎𝑟𝑦
𝐶𝑇𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦,𝑊𝑎𝑡𝑒𝑟𝑓𝑜𝑟𝑑 𝑇𝑖𝑝𝑝𝑒𝑟𝑎𝑟𝑦 ∕= 𝑊𝑎𝑡𝑒𝑟𝑓𝑜𝑟𝑑

Table 2.1: Example CSP.

Cork
=RED

Kerry
=YELLOW

Limerick
=GREEN

Clare
 =YELLOW

Waterford
=WHITE

Tipperary
=BLUE

Figure 2.2: Example solution to the map colouring CSP.
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2.1.3 Constraint Optimization

In many problems we wish to find a solution that not only satisfies all the

constraints, but is the best solution possible (or at least a very good one) ac-

cording to some objective. For example, creating a schedule that minimizes

delay, a product configuration that minimizes hardware costs, a vehicle route

that minimizes driving times and so on. A solution to a constraint optimiza-

tion problem (COP) must satisfy all constraints and minimize an objective.1

2.1.3.1 Definitions

A constraint optimization problem (COP) is defined by ⟨𝑉,𝐷,𝐶, 𝑓⟩, where
𝑉 , 𝐷, and 𝐶 are defined as in a constraint satisfaction problem and 𝑓(𝑠) → 𝑐

is a function that maps any solution 𝑠 to a value representing the quality 𝑐

of the solution. Let 𝑆 be the set of all solutions to a CSP. The aim of a COP

is to find the solution 𝑠 ∈ 𝑆 with the minimum value 𝑐∗ = 𝑚𝑖𝑛𝑠∈𝑆(𝑓(𝑠)).

In practical terms, it is often impossible to evaluate every solution 𝑠 ∈ 𝑆

and instead we return 𝑐′ = 𝑚𝑖𝑛𝑠∈𝑆′(𝑓(𝑠)) where 𝑆 ′ is the set of solutions

that have been explored. In some cases it is possible to find the optimal 𝑐∗

without evaluating all 𝑠 ∈ 𝑆, but in general this is not the case and 𝑐′ may

not equal 𝑐∗ but will be the best solution found during search.

2.1.3.2 Example

Consider the coloring example from Section 2.1.2.2 where instead of simply

finding a colouring that satisfies the constraints, we also wish to minimize

the number of colours used. The function 𝑓(𝑠) simply counts the number of

unique colours that have been assigned in a solution. We show two solutions

in Figure 2.3 with an optimal solution shown on the right.

1In this dissertation we will always speak of minimizing the objective. It is trivial to
convert an optimization problem into one that maximizes the objective. For example by
stating that the objective is 𝑚𝑎𝑥 = −𝑚𝑖𝑛, where 𝑚𝑖𝑛 is the value of the objective as a
minimization problem.
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Cork
=RED

Kerry
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Limerick
=GREEN

Clare
 =YELLOW

Waterford
=WHITE

Tipperary
=BLUE

Cork
=RED

Kerry
=BLUE

Limerick
=GREEN

Clare
 =RED

Waterford
=GREEN

Tipperary
=BLUE

The solution on the left has an objective value of 𝑓(𝑠) → 5 while the
solution on the right has a value of 𝑓(𝑠) → 3.

Figure 2.3: Two different solutions to the map colouring CSP.

2.1.4 Search

The second component of a constraint program is search. Search defines the

strategy used to find solutions to a constraint model. Recall that a solution

is an assignment of values to all variables so that no constraint is violated.

A search space defines the possible combination of assignments, and there-

fore potential solutions, that a search procedure can reach. Given a CSP, the

search space is the Cartesian product of the variables’ domains,𝐷𝑣1×...×𝐷𝑣𝑛 .

This represents every possible assignment of values to variables. The search

space therefore has a size of 𝑂(∣𝐷∣𝑛) where ∣𝐷∣ is the size of the maximum

domain size and 𝑛 is the number of variables.

A naive search procedure could simply generate all possible combinations

and evaluate them, stopping when a combination satisfies the constraints.

However, this clearly suffers as the search space is exponential with respect

to problem size. For example, a problem with only 10 variables, each with

10 domain values, could require at worst 1010 such evaluations. Presuming

that each evaluation takes 1 nanosecond, this is only 10 seconds. However,

for a problem with just twice as many variables, the number of evaluations

jumps to a staggering 1020 evaluations requiring approximately 3,000 years.

The development of search algorithms is therefore concerned with the

efficient exploration of very large search spaces. The search procedures pre-

sented in this dissertation make use of techniques such as heuristics and
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Job Activity 1 Activity 2 Activity 3
A A1 on R2 (87) A2 on R1 (125) A3 on R3 (100)
B B1 on R2 (100) B2 on R1 (62) B3 on R3 (112)
C C1 on R1 (75) C2 on R2 (75) C3 on R3 (62)

Each job has three activities that require different resources. Each ac-
tivity requires a resource for the duration as specified in parentheses.

Table 2.2: Example of a job shop scheduling problem with 3 jobs and 3
machines.

propagation to direct search towards promising areas of the search space. In

Sections 2.3, 2.4, and 2.5 three types of search methods are described that

find solutions to constraint models: constructive search, local search and

large neighbourhood search.

2.2 Job Shop Scheduling

We now introduce the job shop scheduling problem (JSP) which will be the

central focus of experiments in this dissertation. We show how the JSP can

be formulated as a CSP and a COP. In later chapters, we present constraint

programming algorithms that are designed to solve the JSP.

The JSP involves scheduling 𝑛 jobs across 𝑚 machines. Each job 𝑗 con-

sists of 𝑚 ordered activities, such that each activity is scheduled one after

another. For each job, every activity requires a unique machine for a spec-

ified duration, and the sequence of these requirements differs among jobs.

There are two types of constraints we must satisfy: precedence constraints

between activities in a job, and resource constraints which specify that two

activities may not overlap if they share the same resource.

We look at the objective of minimizing makespan: the total time required

from the start of the earliest scheduled activity to the finish of the latest

scheduled activity. Minimizing makespan in the JSP is NP-hard [41]. See

Blazewicz et al. [17] for a survey of the work on the JSP over the past 40

years.

An example of a JSP is shown in Table 2.2 and a solution is shown as
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The makespan of this schedule is 586, using the durations from Table
2.2.

Figure 2.4: Solution to a job shop scheduling problem shown as a Gantt
chart.

a Gantt chart in Figure 2.4. The table specifies the order of activities in

each job, the resource required by each activity and the duration of each

activity. For example, A1 on R2 (87) states that the first activity of job A

is on resource R2 with a duration of 87. Figure 2.4 shows a sample solution

to this JSP as a Gantt chart. Each activity is scheduled so that resource

constraints and job precedences are satisfied. The makespan of this solution

is 586, which is not an optimal solution.

2.2.1 Constraint Model

The variables and constraints required to model the JSP are start time vari-

ables, precedence constraints and unary resource constraints. Start time

variables represent the time at which an activity takes place. A precedence

constraint enforces the order of activities in each job. A unary resource con-

straint requires that each resource can only execute a single activity at a

time.

Each activity 𝑎𝑗,𝑖 (the 𝑖𝑡ℎ activity in job 𝑗) has an associated start time

variable, 𝑠𝑡𝑎𝑟𝑡𝑗,𝑖. For convenience we define the end time 𝑒𝑛𝑑𝑗,𝑖 to be equal

to 𝑠𝑡𝑎𝑟𝑡𝑗,𝑖 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑖 where 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑖 is a constant value indicating the

duration of activity 𝑎𝑗,𝑖. The domain of the start time variables is the interval

[𝑜𝑟𝑖𝑔𝑖𝑛..ℎ𝑜𝑟𝑖𝑧𝑜𝑛] where 𝑜𝑟𝑖𝑔𝑖𝑛 is the earliest time an activity can be started

and ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is the latest time an activity can be started. The range, or

domain size, of the start time variables is typically large.
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Precedence constraints define a precedence order of the form, 𝑥 ≤ 𝑦 where

𝑥 and 𝑦 are two start time variables. In the context of the JSP, precedence

constraints are used to model the order of activities in a job. For a job 𝑗

consisting of 𝑚 activities, there are 𝑚− 1 precedence constraints of the form

𝑒𝑛𝑑𝑗,𝑖 ≤ 𝑠𝑡𝑎𝑟𝑡𝑗,𝑖+1 for 𝑖 = 1..𝑚− 1.

Unary resource constraints specify that only a single activity can be pro-

cessed on a resource at a time. Logically, this can be seen as a set of disjunc-

tive precedence constraints (𝑒𝑛𝑑𝑗,𝑖 ≤ 𝑠𝑡𝑎𝑟𝑡𝑘,𝑙) or (𝑒𝑛𝑑𝑘,𝑙 ≤ 𝑠𝑡𝑎𝑟𝑡𝑗,𝑖) for every

pair of activities that require the same resource. In practice, resource con-

straints are often implemented using specialized propagators, such as edge-

finding which is described in Section 2.3.1.1.

2.3 Constructive Search

Constructive search procedures build up a partial solution by assigning each

variable, one after another, until all variables are assigned. The procedure

is as follows. Given an empty set of initial assignments, 𝐴 = {}, we select a

variable 𝑣𝑖 ∈ 𝑉 and a value 𝑑𝑗 ∈ 𝐷𝑣𝑖 . If the combination of the assignment of

(𝑣𝑖, 𝑑𝑗) and the assignments already in 𝐴 satisfy all of the constraints, then

we add the new assignment to 𝐴. We repeat this procedure until 𝐴 contains

assignments for all 𝑣𝑖 ∈ 𝑉 . If, given a set of assignments 𝐴, all of the values

in the domain of an unassigned variable cause a constraint violation, then no

value can be assigned. This condition is called a dead-end and requires that a

previous assignment must be changed, a process referred to as backtracking.

In the case that there are no previous assignments left to be changed, we can

infer that the problem has no solution.

An example of constructive search is shown in Figure 2.5. In this example,

search starts by assigning value 1 to variable 𝑋. Next, variable 𝑌 is assigned

the value 2, and finally variable 𝑍 is assigned the value 1. These three steps

lead to a solution, denoted by the square leaf node at the bottom of the tree.

In this example, the assignment order of variables is fixed.

The SetTimes [64, 97] and Texture [8, 9] algorithms that are presented in

Chapter 5 are examples of constructive search as applied to the JSP. These
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Figure 2.5: Example of constructive search exploring a search space.

algorithms represent the state-of-the-art for constructive search heuristics to

scheduling.

2.3.1 Propagation

Constraint propagation is a procedure that adds constraints based on log-

ical inference. The basic idea is that further information can be inferred

from an analysis of the current assignment and the constraints in a problem.

This information is used to reduce the area of search space that is explored.

The most common form of constraint propagation is arc-consistency [70, 110]

which can be seen as processing a single variable at a time against each con-

straint it is involved in. Stronger forms of consistency processing, such as

path [77] or 𝑘-consistency [33, 36], have been defined however they are seldom

used in practice due to efficiency reasons.

A constraint 𝐶𝑊 is arc-consistent if, for every variable 𝑣𝑖 ∈ 𝑊 and value

𝑑𝑗 ∈ 𝐷𝑣𝑖 there exists an assignment to the remaining variables in 𝑊 which

satisfies 𝐶𝑊 . That is, there exists at least one compound assignment 𝐴𝑊 ∈
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𝐶𝑊 , where (𝑣𝑖, 𝑑𝑗) ∈ 𝐴𝑊 . If no such assignment exists, then the value 𝑑𝑗 can

be removed from 𝐷𝑣𝑖 . A CSP is said to be arc-consistent if every constraint

is arc-consistent.

The following shows an example of arc-consistency on a binary constraint.

Consider two variables 𝑣1 and 𝑣2, each with the domain of {1, 2, 3} and the

constraint 𝑣1 > 𝑣2. We can immediately deduce that 𝑣1 can never take the

value 1, since there is no value smaller than 1 for 𝑣2 to take. We can also

deduce that 𝑣2 can never take the value 3, since there is no value greater

than 3 for 𝑣1. So, before search has even started we can reduce the variables’

domains to 𝐷𝑣1 = {2, 3} and 𝐷𝑣2 = {1, 2}.
While polynomial algorithms exist for enforcing arc-consistency on binary

constraints [70], enforcing generalized arc-consistency [75] in non-binary (or

so-called global) constraints has been shown to be intractable in general

[14]. However, many specialized algorithms with polynomial complexity have

been developed for specific non-binary constraints [12]. Determining the

appropriate effort to spend on consistency during search is an open research

area in constraint programming.

Constraint propagation can be performed both before and during search.

When constraint propagation is performed during search, the current assign-

ments are propagated. In the example above, when 𝑣1 is assigned the value

2 (which can be seen as adding a constraint that reduces the domain of 𝑣1

to 𝐷𝑣1 = {2}), propagation can determine that 𝑣2 must take the value 1.

However, this requires maintaining the domains at each search point, since

we need to restore the domains when backtracking.

2.3.1.1 Propagation of Scheduling Constraints

Two forms of propagation that useful for scheduling problems involve tem-

poral constraints and resource constraints. Temporal constraint propagation

is used to maintain the domains of the start time of variables based on prece-

dence constraints and resource constraint propagation deduces when activi-

ties can start based on the fact that they share a common resource.

Efficient polynomial algorithms exist for the propagation of start times
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using bound propagation. Precedence constraints 𝑥 ≤ 𝑦 can be represented2

using the general form 𝑑𝑚𝑖𝑛 ≤ 𝑥 − 𝑦 ≤ 𝑑𝑚𝑎𝑥. Such constraints can be

maintained by polynomial propagation algorithms using shortest or longest

path algorithms [32]. Incremental versions of these algorithms have been

proposed [23, 56].

Many types of propagation algorithms have been introduced for activities

that compete for resources in scheduling problems [7, 58]. The edge-finding

algorithm determines if an activity 𝐴 must start or end before a set 𝑆 of

other activities on a particular resource. If there is insufficient time available

on the resource, then the constraint can reduce the domain of the start time

variable.

We give an example of the condition for edge-finding algorithms below.

Given a set of activities 𝑆, let 𝑑𝑢𝑟𝑠𝑢𝑚(𝑆) represent the sum of minimal du-

rations of 𝑆, let 𝑒𝑛𝑑𝑚𝑎𝑥(𝑆) represent the largest of the latest start times of

𝑆, let 𝑠𝑡𝑎𝑟𝑡𝑚𝑖𝑛(𝑆) represent the smallest of the earliest start times in 𝑆.

𝑒𝑛𝑑𝑚𝑎𝑥(𝑆 ∪ {𝐴})− 𝑠𝑡𝑎𝑟𝑡𝑚𝑖𝑛(𝑆) < 𝑑𝑢𝑟𝑠𝑢𝑚(𝑆 ∪ {𝐴})
⇒

𝑒𝑛𝑑(𝐴) ≤ 𝑚𝑖𝑛𝑆′⊆𝑆(𝑒𝑛𝑑𝑚𝑎𝑥(𝑆
′)− 𝑑𝑢𝑟𝑠𝑢𝑚(𝑆

′))

(2.1)

If the condition in Equation 2.1 holds then the end time of activity 𝐴

can be reduced. An example where this condition holds is shown in Figure

2.6. Let 𝐴 = 𝐴4, with a duration of 2, and 𝑆 = {𝐴1, 𝐴2, 𝐴3}, each with a

duration of 3. The conditions of the Equation 2.1 are satisfied as 𝑒𝑛𝑑𝑚𝑎𝑥(𝑆∪
{𝐴}) = 16, 𝑠𝑡𝑎𝑟𝑡𝑚𝑖𝑛(𝑆) = 6 and 𝑑𝑢𝑟𝑠𝑢𝑚(𝑆 ∪ {𝐴}) = 11. The edge-finding

algorithm uses Equation 2.1 to compute a new upper bound on the end time

of 𝐴4 equal to 16− 9 = 7 with 𝑆 ′ = {𝐴1, 𝐴2, 𝐴3}.
Similar conditions allow the detection and propagation of the fact that a

given activity must end after all activities in 𝑆 (Last), cannot start before

all activities in 𝑆 (Not First) or cannot end after all activities in 𝑆 (Not

2A precedence constraint 𝑥 ≤ 𝑦 is a special case of the general form where 𝑑𝑚𝑖𝑛 = 0
and 𝑑𝑚𝑎𝑥 = ∞.
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Figure 2.6: Example of edge-finding propagation.
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Figure 2.7: Example of local search exploring a search space.

Last). See Baptiste et al. [7] for more details. Edge-finding algorithms

can be implemented to propagate on unary resource constraints involving 𝑛

activities with a total complexity in 𝑂(𝑛 log 𝑛) [109]. Edge-finding methods

also exist for cumulative resource constraints [72, 85] where resources may

process more than a single activity at a time.

2.4 Local Search

Local search [48, 108] is a class of search procedures that make changes to a

complete assignment to all variables. When search operates with a complete

assignment, more information is available regarding the overall quality of an

assignment, in particular if the assignment produces a feasible solution and,

in the case of optimization, the value of the objective function. This is an

advantage over constructive search where the outcome is not certain until all

variables are assigned.

In Figure 2.7 we show an example of local search. In this example,
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search starts on the leftmost leaf node, which corresponds to the assign-

ment {(𝑋, 1), (𝑌, 1), (𝑍, 1)}. Next, the assignment to 𝑋 is modified, moving

search to the assignment {(𝑋, 2), (𝑌, 1), (𝑍, 1)}. Finally, search changes the

assignment of 𝑋 and 𝑌 at the same time and settles on the assignment

{(𝑋, 1), (𝑌, 2), (𝑍, 1)}. The key thing to note is that search is always moving

from one complete assignment to another; the search tree is not used in lo-

cal search and is only shown in Figure 2.7 to make the connection with the

constructive search example.

A local search procedure takes a complete assignment to all variables and

iteratively changes it until a termination criteria is met. Unlike constructive

search, local search maintains an assignment for every variable during search.

A local search procedure starts with an initial solution 𝑠0, that is often pro-

duced by a fast construction heuristic or a random assignment. The initial

solution may violate constraints or have a poor objective value. Search then

starts an iterative procedure making change to the solution using a neigh-

bourhood heuristic that is guided by a metaheuristic. The neighbourhood

heuristic is a function that, given a solution, 𝑠𝑖, produces a set of neighbour-

ing solutions 𝑆. The metaheuristic then selects a single solution 𝑠𝑖+1 ∈ 𝑆.

The purpose of the metaheuristic is to guide changes in solutions toward a

globally optimal solution.

Local search algorithms are very competitive methods for solving com-

binatorial optimization problems. They are among the top performers in a

wide variety of problems [48]. A challenge in the application of local search is

the design of an efficient neighbourhood heuristic and an appropriate meta-

heuristic. In Chapter 5 we present the Tabu-TSAB algorithm for the JSP,

where more detail is provided on the mechanisms of a local search algorithm.

2.5 Large Neighbourhood Search

Large neighbourhood search (LNS) [99] is a framework that combines the

search power of constructive search and propagation with the scaling per-

formance of local search. As in local search, we modify an existing solution

to the problem. However, instead of making small changes to a solution, as
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Algorithm 1: Large Neighborhood Search.

1: N := variables in problem
2: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 := Initial solution
3: while Termination Condition = FALSE do
4: Using neighbourhood heuristic choose 𝑆 ⊆ 𝑁
5: Unassign 𝑆 in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
6: Lock the assignment in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 for all 𝑟 ∈ 𝑁∖𝑆
7: if Search finds improvement then
8: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 := Update solution
9: else
10: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 := Restore solution
11: end if
12: end while

is typical with local search move operators, we select a subset of variables

from the problem. Once variables are selected, we unassign them, lock the

remaining variables to take the values assigned in the current solution, and

then search for a better solution by reassigning only the selected variables.

For example, a typical local search move for a scheduling problem is to

swap the order of two activities, e.g. 𝐴𝑖 → 𝐴𝑗 becomes 𝐴𝑗 → 𝐴𝑖. In the

LNS framework, we remove the assignment to a subset of variables and then

search for an improved assignment. Since constructive search can efficiently

deal with more than two variables, many variables are typically selected when

searching for improvements. In local search, a neighbourhood is explicitly

defined by a set of possible moves while in LNS the neighbourhood is implic-

itly defined by the possible reassignments to the selected variables. Methods

that select sets of variables to search are called neighbourhood heuristics.

The central idea of LNS is very simple and presented in Algorithm 1.

Starting with a suboptimal solution to the entire problem, we select a subset

𝑆 of variables (the neighbourhood) and perform a search which only changes

the values of those variables; all other variables (𝑁∖𝑆) keep their assign-

ments. By focusing efforts on improving only a part of the solution, we re-

strict the size of the search space and intensify search to improve the current

solution. The key benefits are that we can exploit the strong propagation

techniques of constructive search while avoiding the weaknesses inherent in
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exploring a single search tree in a large problem space [45].

2.5.1 Search Methods

Once a part of the current solution has been selected by a neighbourhood

for improvement, a search method is used to explore that space. In the case

of LNS, any method that rebuilds from a partial solution is possible. In this

dissertation we use a constraint programming search method Texture that is

described in detail in Section 5.2.2. We note that for search to be effective

in LNS, it should find solutions quickly or give up. Although search can be

used to prove that no improving solution exists in a neighbourhood, such a

proof is expensive and the computational effort may be better used instead

to explore many more neighbourhoods.

2.5.2 Neighbourhood Heuristics for LNS

The choice of variables to search, the neighbourhood, is crucial to the per-

formance of LNS. We wish to select variables which are likely to reduce the

cost of the current solution but we are also concerned with the number of

variables in each search: selecting fewer variables results in a quicker search

but also reduces the likelihood that an improved solution exists within the

sub-space that is explored.

Formally, a neighbourhood heuristic is a function that returns an ordered

list of sets. Each set corresponds to a neighbourhood: a selection of variables

to explore. The order of the list is typically the order in which neighbour-

hoods are explored. Many neighbourhood heuristics make use of the current

solution and are reset when a new solution is found, thereby producing a new

list of neighbourhoods to explore based on the new solution. Other heuris-

tics, such as random selection, do not require any knowledge of the current

solution.

A purely random neighbourhood [43, 84] can be effective on some prob-

lems. However, random selection may not choose activities that are related

and instead relies on chance to select a subset of activities. It is possible that
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the selection will include extra activities, which can slow down search. De-

spite this disadvantage, the random approach has the benefit of being general

since it does not exploit any knowledge of the problem.

Scheduling specific neighbourhoods exploit the structure of the problem

to select activities. Examples of these neighbourhoods are the time window

neighbourhood that selects all activities whose current start times are in a

particular interval and the resource neighbourhood that selects all activities

on a set of resources. Further details of LNS neighbourhoods are given in

Chapter 6.

2.6 Summary

In this chapter we introduced the constraint programming approach to prob-

lem solving. We have defined a specific instance of a constraint problem, the

job shop scheduling problem, and presented a constraint model to represent

it. In the later chapters of this dissertation, we introduce specific algorithms

to find solutions to the job shop scheduling problem. As we will see, there

are many such methods available, and it is not always clear which algorithm

should be applied. In the next chapter, we present a deep review of control

methods that have been developed for the purpose of choosing the best al-

gorithm or set of algorithms. This review sets the context for the primary

contribution of this dissertation.
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Chapter 3

Algorithm Control Review

In situations where algorithm performance varies depending on the problem

instance being solved, it is unclear when to use a particular algorithm. In

this chapter, we discuss the idea of algorithm control, where we consider the

task of improving performance when solving a problem instance by choosing

the most effective algorithm(s).

3.1 Introduction

The purpose of an algorithm control system is to improve performance by

choosing the most effective algorithm(s). An algorithm control system is

comprised of a set of algorithms, methods to gather knowledge of algorithm

behaviour, and a control system that selects an algorithm and executes it. In

this chapter we introduce a framework to represent algorithm control systems

where each system is classified by how it gathers knowledge of algorithm

behaviours. After describing our framework, we present a review of existing

work and place it in our framework.

3.2 The Algorithm Selection Problem

The algorithm selection problem [94] is to determine the best performing

algorithm for a problem instance. Given a set of algorithms 𝐴 capable of

28



solving problems in the class 𝐾, let 𝑝(𝑎, 𝑘) be the performance of algorithm

𝑎 ∈ 𝐴 on a problem instance 𝑘 ∈ 𝐾 where higher values of 𝑝 indicate

better performance. The goal is to find a mapping 𝑆(𝑘) → 𝑎∗ such that the

performance of 𝑎∗ is the best that can be achieved, 𝑝(𝑎∗, 𝑘) ≥ 𝑝(𝑎, 𝑘)∣∀𝑎 ∈ 𝐴.

There are no restrictions on what constitutes an algorithm. The only

important characteristic of an algorithm is the availability of an accurate

performance measure for the algorithm when solving a particular problem

instance. Likewise, no restrictions are placed on the problem instances in

the class 𝐾.

The user of the system chooses the measure 𝑝(𝑎, 𝑘) of performance. For

example, in constraint satisfaction the user may choose to minimize the com-

putation time in order to find a solution. In optimization, the performance

criteria could be the quality of the solution or the speed at which the solution

improves. In a system with limited memory, the performance criteria could

be the amount of memory used.

Given unlimited computation time, it is trivial to solve the algorithm se-

lection problem: the optimal selection can be found by simply executing each

algorithm and then returning the best performer. However, in most cases,

computation time is one of the performance criteria to reduce. In many cases,

the purpose of algorithm selection is to simply maximize algorithm perfor-

mance rather than choose the best algorithm. The goal is to boost solving

performance when compared to using the same algorithm for all problem

instances.

3.3 Framework

In this section, we present a framework for analyzing algorithm control sys-

tems. While many algorithm control systems have been proposed, each uti-

lizes different algorithms, knowledge and control decisions. The purpose of

this framework is to enable a comparison among these systems, focusing on

the differences in how such systems gather knowledge and make control de-

cisions.

In our framework, an algorithm control system is characterized by two

29



Instance

Control System

Execution of Algorithm

On-line: Execution

Stop?

Finished

On-line 
Knowledge

YES

NO

Algorithms

On-line Learning System

Available Algorithms

Training 
Instances

Off-line 
Knowledge

Off-line: Training 

Off-line Learning System

Figure 3.1: Information and control flow of an algorithm control system.

aspects: when knowledge is gathered and how control decisions are made.

Gathering of knowledge relates to how the system learns information about

algorithm performance on problem instances. Knowledge is used to make

algorithm control decisions. Knowledge gathering may be done off-line during

a training phase, on-line while solving a problem, or a combination of both. A

control decision determines how to select and apply the available algorithms.

Control decisions can be made once or multiple times while solving a problem.

In Figure 3.1 we show the central components of our algorithm control

framework. An algorithm control system is an instantiation of some, or all,

of these components. On the left, we show the off-line components which al-

low knowledge to be gathered during a training phase. In the off-line training

phase, the system learns how algorithms perform on the training set of prob-

lem instances. We refer to information gained during the off-line training
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phase as off-line knowledge. On the right, we show the on-line components

responsible for selecting an algorithm. On-line knowledge can be gathered

at any point in the on-line process. What makes on-line knowledge unique

is that it is specific to the the problem instance being solved. The on-line

control system considers all of the available knowledge and decides which

algorithm to execute.

Below we list some instantiations of this framework. We start with the

minimal instantiation, no knowledge, followed by several examples which rely

on different components.

No Knowledge The system is presented with a set of algorithms and ran-

domly chooses one to apply to a given problem instance. No off-line

training is required and no on-line knowledge is used. The control sys-

tem makes a blind guess regarding which algorithm to use and executes

it once.

Off-line Knowledge Only A training set of problem instances is provided.

The system learns which algorithm performs best on the training set.

The off-line knowledge, in this case, is the best performing algorithm on

the training set. When the system is applied on-line, it makes the con-

trol decision using the off-line knowledge only; that is, it uses the same

choice of algorithm for all problem instances. Since the same off-line

knowledge is used for each decision, this decision has been determined

off-line.

On-line Knowledge Only No training phase is required in this case. Ini-

tially, the system chooses an algorithm randomly. After the algorithm

has been executed for a short time, the system measures the perfor-

mance of the selected algorithm. If the algorithm has performed well,

the system applies the algorithm again, otherwise the system randomly

selects a different algorithm to apply and repeats this process.

Off-line and On-line Knowledge In the training phase, the system mea-

sures each training problem instance to extract some feature values.

It then executes all available algorithms on each training instance. A

31



prediction model is built which correlates feature values with the best

performing algorithm. This model is the output of the training phase,

and embodies the off-line knowledge in this example. When the system

is used on-line, it extracts feature values from the problem instance. On

the basis of these feature values, the model predicts which algorithm

will perform best and the system chooses that algorithm.

In Section 3.3.1, we discuss the nuances of each type of knowledge and

the implications for algorithm control systems. In Section 3.3.2 we discuss

control decisions in more detail.

3.3.1 Gathering Knowledge

We characterize the gathering of knowledge based on off-line versus on-line

experience. Knowledge gathered off-line is collected during a pre-processing

phase while on-line knowledge is gathered only when the system is presented

with a particular problem instance. Since off-line knowledge is collected

before problem solving, significant processing time may be available to collect

it. The opposite is true for on-line knowledge. On-line knowledge is collected

only once the system has been presented with a problem instance, so the

effort taken to gather on-line knowledge must be considered as part of the

overall effort to solve the problem instance.

3.3.1.1 Off-Line Knowledge

Off-line knowledge is gathered by observing algorithm performance on a

training set of problem instances. The purpose of this phase is to learn typical

algorithm behaviour. For example, an analysis can be performed to gather

knowledge of mean algorithm performance. Each algorithm is executed on

each problem instance in the training set, and the mean performance of each

algorithm is computed.

There is an implicit assumption of the generality of off-line knowledge;

that performance on the training set will be similar to that on other problem

instances. Thus care must be taken to ensure that off-line knowledge is
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relevant to problems that are to be presented to the system later on. If

algorithm performance on new problem instances differs from that seen on

the training set problem instances, then off-line knowledge is unlikely to be

useful.

Significant processing time may be available to collect off-line knowledge,

hence accurate knowledge of algorithm performance can be gathered from

experience on the training set. This form of analysis is very common in

practice and can be particularly useful if one algorithm is found to dominate

all others. We will describe several systems which use off-line knowledge in

Section 3.4.

3.3.1.2 On-Line Knowledge

On-line knowledge is gathered only when a problem instance is presented to

the system. While off-line knowledge is general, on-line knowledge is highly

specific. By measuring the problem instance, knowledge is gathered that is

particular to the problem instance being solved.

An example of on-line knowledge is measuring the constraint density of

a particular constraint network. To measure constraint density, the actual

number of constraints in a network are counted and divided by the number

of possible constraints. Another example are texture measurements of Beck

& Fox [9], which are used to guide heuristic search. Indeed, much work in

heuristic search has focused on exploiting the structural knowledge of the

problem instance.

Since on-line knowledge is gathered only after a problem instance has been

presented for solving, the amount of time taken to perform measurements

should be taken into account when assessing the overall problem solving

performance. For this reason, most on-line measurements are relatively fast

to compute. A special case of gathering on-line knowledge is to run one of

the algorithms for a short time. The resulting performance can then be used

to make subsequent control decisions. We discuss this case in more detail in

Section 3.5.2.
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3.3.1.3 Combining Off-Line and On-Line Knowledge

Many algorithm control systems make use of both off-line and on-line knowl-

edge. The goal of combining the two types of knowledge is to create more

specific knowledge of the problem instance with a greater degree of accuracy.

A common example of this approach is when off-line knowledge is cor-

related with problem instance features. When the system is presented with

a problem instance on-line, it extracts the instance features. These features

can then be used to provide an estimate of algorithm performance using the

off-line knowledge.

For example, consider a simple feature such as the number of a variables

in a constraint satisfaction problem. Given two algorithms that are observed

during an off-line training phase, experience on the training set shows that if

the number of variables is small then the first algorithm is superior, otherwise

the second algorithm is superior. In the on-line phase, the control decision

is based on the off-line knowledge (which algorithm is superior for a given

number of variables) and the on-line knowledge (the number of variables in

the current instance).

A challenge in combining on-line and off-line knowledge is how to deter-

mine relevant features. There are at least two stages to this process. First,

possible features must be identified. Then the usefulness of features needs to

be evaluated. While the evaluation step may be automated to some degree,

it often requires significant time and expertise. However, the automatic iden-

tification of features remains a more challenging problem and often requires

manual effort and domain expertise. We will discuss these issues further in

Section 3.5.

3.3.2 Control Decisions

An algorithm control system is comprised of a decision making component

and an algorithm execution component, as shown in Figure 3.1. The algo-

rithm control process is executed as follows. The decision component con-

siders the available knowledge and determines which algorithm to apply.

In addition to selecting the algorithm, the decision includes a termination

34



condition which specifies when to stop executing the algorithm. The execu-

tion component applies the algorithm to the problem instance and monitors

progress, halting when the termination condition becomes true. The execu-

tion component can gather additional on-line knowledge from the results of

the algorithm execution. The system can then either stop or make another

decision and repeat this process.

For example, execute backtracking3 until it finds the first solution is a

control decision. In this example the algorithm is backtracking and the ter-

mination condition is find the first solution. The execution component then

applies backtracking to the problem instance until a solution is found. At this

point the system could make another control decision or terminate. Another

example of a control decision is execute branch and bound on an optimization

problem until 10 minutes have passed or the optimal solution is found. In

this case, the termination condition is a time limit or a proof of optimality.

The system can then make another control decision or terminate.

The details of how the decision component selects an algorithm and the

choice of termination condition are specific to the particular instantiation

of the framework. We give specific examples of control decision systems in

Sections 3.4, 3.5 and 3.5.

3.4 Off-line Knowledge Control Systems

In a purely off-line knowledge control system, control decisions are made

based only on off-line knowledge. In this section we describe three types of off-

line knowledge control systems: best overall algorithm, algorithm portfolios

and algorithm configurations. In all cases, these approaches determine the

single algorithm, the single portfolio, or the single algorithm configuration

that performs best on the set of training instances. Once the best approach

has been determined, it is then applied to all problem instances that are

encountered on-line.

3In this example, backtracking refers to a complete search configuration, e.g. back-
tracking with maintained arc consistency, the minimum domain variable heuristic and a
lexographical value heuristic
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Figure 3.2: Off-line knowledge control system.
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In Figure 3.2 we show the components of our framework that are instan-

tiated to support an off-line knowledge control system. The off-line training

phase gathers knowledge of algorithm behaviour based on experiences on a

training set of problem instances. Once the training phase is finished, the

system stops gathering knowledge. In the on-line execution phase, the sys-

tem bases all control decisions on the off-line knowledge. No knowledge is

acquired in the on-line phase.

One of the strengths of an off-line knowledge system is that all computa-

tion regarding selection has been performed prior to execution. This allows

the maximum time for the selected algorithm to be executed since the choice

of algorithm is predetermined. However, a fixed choice of algorithm can have

a negative effect if algorithm performance varies significantly among problem

instances, as is common for hard combinatorial problems.

3.4.1 Best Overall Algorithm

A common instantiation of the off-line algorithm control system is to choose

the algorithm which has the best overall performance on a training set. The

implementation of systems in practice, and indeed much experimental anal-

ysis of algorithms, has been dominated by this approach. The process of de-

termining the best performing algorithm typically proceeds as follows. Each

algorithm is executed on each training problem instance and the results of

all algorithms are compared using a measurement of performance. These

performance results constitute the off-line knowledge. The control decision

is based on these performance results. So, in an on-line context, the system

chooses the algorithm that had the best performance on the training set.

There are many ways to measure algorithm performance. While mean

performance is one of the most common measures used to determine algo-

rithm performance, median performance can be a useful measure in the case

that mean performance is skewed by a only few problem instances. Stan-

dard statistical tests like analysis of variance can be used to determine the

reliability of an algorithm and the range of expected behaviour. An algo-

rithm that performs with low variance will be predictable, which is often of
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great practical value to users. Typically, users expect low variance and high

performance, which we refer to as a robust algorithm.

Implicit in the approach of choosing the best overall algorithm is the

perhaps unrealistic search for a single algorithm that outperforms all others

on all instances. If such an algorithm exists, then a single choice of algorithm

is a sensible approach. However, for hard computational problems, it is

seldom the case that a single algorithm dominates all others. The choice

of best overall algorithm serves as a baseline for comparisons with more

advanced algorithm control systems. As we will see, it is often better to

adopt a more flexible approach.

3.4.2 Algorithm Portfolios

The use of the term portfolio comes from economics and relates to reducing

the risk of solving combinatorial problems by diversifying computational ‘in-

vestment’ among several algorithms [50]. In a similar manner to investing

in the stock market, the idea is to invest computation time in a set of algo-

rithms where at least one algorithm is likely to perform well. Rather than

investing all of the computation time in a single algorithm, a proportion of

the available time is invested in a set of algorithms. The set of algorithms

should have the property that the performance across problem instances is

uncorrelated, increasing the likelihood that at least one algorithm performs

well on each instance. The motivation is to decrease mean processing time

while minimizing variance.

Consider, for example, the scenario where one algorithm finishes in 1

second on half of a set of problem instances and takes 100 seconds on the

remaining half. Another algorithm has exactly the opposite behaviour, taking

100 seconds on the first half and 1 second on the remaining half. In this

case, a single choice of algorithm will yield an average performance of 50.5

seconds and a standard deviation of approximately 70 seconds. If instead,

the available processing time is split evenly between the two algorithms and

both algorithms are run in parallel, the combined solving performance is only

2 seconds with a standard deviation of 0 seconds.

38



In this section, we consider algorithm portfolios of the following form. A

portfolio refers to a set of algorithms while a portfolio algorithm is a propor-

tional allocation of computation time among the algorithms in a portfolio.

The portfolio algorithm is determined off-line based on the computational

cost profiles gathered by running each algorithm on a training set. When a

problem instance is encountered on-line, the portfolio algorithm executes the

algorithms, with some algorithms getting more time than others. The opti-

mal portfolio algorithm is one which maximizes average performance while

minimizing variance on the training set. We note that when applied on-line,

a portfolio algorithm is only optimal if the performance of each algorithm is

similar to performance on the training set. 4

Huberman et al. [50] were the first to use the algorithm portfolio ap-

proach. Their method of building a portfolio algorithm proceeds by com-

puting cost profiles for each algorithm, where a cost profile is a probability

distribution (of solution times) for an individual algorithm over the train-

ing instances. Once these distributions are available, an aggregate function

computes the probability distribution of any portfolio algorithm which uses

these algorithms. Through enumeration of possible portfolio algorithms, the

one that has the maximum average performance with minimum variance can

be determined.

For example, let 𝑡1 and 𝑡2 be random variables representing the solution

time of algorithms 𝑎1 and 𝑎2 respectively. Each algorithm has a probability

distribution, represented by 𝑝1(𝑡) and 𝑝2(𝑡), that they finish at a particular

time 𝑡. To construct a portfolio algorithm, both algorithms are executed in-

dependently on the same processor. Let 𝑓1 be the fraction of time allocated

to algorithm 𝑎1 and 𝑓2 = 1 − 𝑓1 be the proportion of time allocated algo-

rithm 𝑎2. Therefore, the solution time of the portfolio algorithm is a random

variable 𝑡𝑝 defined as:

4There are numerous examples in the literature [46, 67, 81] where authors refer to al-
gorithm portfolios where only a single algorithm is chosen from a collection of algorithms.
The choice of algorithm is made on-line, based on some observations of the problem in-
stance. We review some of this work in Section 3.5.
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𝑡𝑝 = min

(
𝑡1
𝑓1
,
𝑡2
𝑓2

)
(3.1)

The portfolio algorithm has a probability distribution 𝑝(𝑡) that it finishes

at a particular time 𝑡. This probability is given by the probability that both

algorithms 𝑎1 and 𝑎2 finish in time greater or equal to 𝑡 minus the probability

that both finish in time greater than 𝑡.

𝑝(𝑡) =

[ ∑
𝑡′≥𝑓1𝑡

𝑝1(𝑡
′)

][ ∑
𝑡′≥𝑓2𝑡

𝑝2(𝑡
′)

]
−

[ ∑
𝑡′>𝑓1𝑡

𝑝1(𝑡
′)

][ ∑
𝑡′>𝑓2𝑡

𝑝2(𝑡
′)

]
(3.2)

The probability distribution 𝑝(𝑡) can be used to compute the mean and

standard deviation for any values of 𝑓1 and 𝑓2. The mean represents the ex-

pected running time of the portfolio algorithm, while the standard deviation

represents the risk. To determine the optimal portfolio, values of 𝑓1 and 𝑓2

are enumerated. There will exist at least one preferred combination which

has better performance and/or lower variance than other combinations. This

is an optimal portfolio and corresponds to the notion of an efficient frontier

in economics. It is relatively straightforward to generalize Equation 3.2 to

the case of 𝑁 algorithms.

Gomes et al. [44] apply the portfolio algorithm approach to quasi-groups

with holes problem and logistics planning problems. Gomes generalizes the

work of Huberman to the parallel processor case. We note that the execution

of algorithms on parallel processors fits easily into the framework described in

Section 3.3. Petrik [91] provides a rigorous study of the theoretical aspects of

algorithm portfolios and some promising experimental results in applications

to SAT. Petrik provides two algorithms to compute portfolio algorithms, a

heuristic method that produces good portfolios and an exact (but worst-case

exponential) algorithm to find optimal portfolios.

The core idea of a portfolio algorithm is to run several algorithms concur-

rently. If each algorithm has a different probability and variance in finding

a solution at a given time, a portfolio that combines algorithms may be able

to increase algorithm performance while reducing variance. However, since
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probability distributions are based on a training set of problem instances,

portfolios will suffer if on-line problem instances differ from the training set.

3.4.3 Configuring Algorithms

To instantiate a particular algorithm so that it can be used, one must often

specify many parameters and components. For example, to build a constraint

programming search procedure, several components must be chosen such as

the search heuristics, propagators, and tree traversal algorithms. In addi-

tion, each of these components may take parameters, such as the number

of backtracks before a randomized restart is applied. Every combination of

components produces a unique algorithm, thereby resulting in an algorithm

selection problem with a very large number of possible algorithms. With so

many choices, it is typically impractical to evaluate all of them and a more

focused low-level approach is used instead.

The following systems have been presented to configure algorithms:

∙ The Multi-Tactic Analytic Compiler (MULTI-TAC) [74] searches through

combinations of algorithm schemas, heuristics and propagation levels.

∙ The Adaptive Constraint Engine (ACE) [34] learns weights for ‘advi-

sors’ which represent different heuristics and then makes decisions using

a voting scheme in the spirit of combining machine learning classifiers.

∙ Bain et al. [5] use genetic programming to develop novel heuristics by

combining primitive measures of problem instances with function trees

of numerical operators.

∙ The F-Race algorithm [15] evaluates possible algorithm configurations

and provides statistical guarantees about poorly performing configura-

tions and when to stop evaluating them. In this system, all possible

algorithm configurations are provided to the system for evaluation.

∙ The ParamILS procedure [53] uses iterated local search to explore the

space of parameter settings for any type of algorithm.
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All of these approaches take a similar form. A training set of problem

instances is presented, and an incomplete search of possible configurations is

performed, evaluating configurations by executing them on the training set.

Since there are too many configurations to perform a complete search, an

incomplete search is used. For example, MULTI-TAC uses a beam search

to extend the best known configurations. Eventually, the system should

converge on a configuration that performs well on the training set. It is

hoped, then, that this same configuration will perform well on new problem

instances of the same class.

Since many algorithm configurations must be evaluated, and each con-

figuration is evaluated by execution on the training set, these systems often

take a very long time to converge on a good configuration. Indeed, authors

will often make the argument that configuration can be a lengthy process

and, since it is off-line, it is reasonable for it to take a very long time. In

many cases, the work can be performed in parallel.

These algorithm configuration approaches are in fact an instance of find-

ing the best overall algorithm, as previously described in Section 3.4.1. They

key difference is that these approaches are searching a much larger space

of possible algorithms. Instead of testing every possible combination, some

form of intelligent guiding is applied so that only promising algorithms are

evaluated.

3.4.4 Conclusion

Control systems which use only off-line knowledge are very common in prac-

tice. We have shown three types of off-line knowledge control systems: best

overall algorithm, algorithm portfolios and algorithm configurations. In all

cases, these approaches choose the single algorithm, the single portfolio, or

the single algorithm configuration that performs best on the set of training

instances. This choice is then applied to all instances encountered on-line.

A feature of off-line algorithm control is that algorithm performance is

treated as a black box. That is, a problem instance is presented to an al-

gorithm and the only information that is collected is the algorithm’s perfor-
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mance on that instance. This is a strength of off-line algorithm control since

it does not need to be concerned with determining useful problem instance

features, and indeed, the black box nature of the approach makes an off-line

algorithm selection method more generally applicable.

However, this feature is also a shortcoming of off-line algorithm control.

During on-line execution, the same control decisions must be used on every

problem instance presented since no information is gathered about the prob-

lem instance being solved. In many cases it may be possible to do better

on a problem instance by using a control policy that considers the current

problem instance being solved.

Finally, we reiterate a major assumption of purely off-line knowledge ap-

proaches: that the training problem instances are similar to those encoun-

tered on-line. A system that performs very well on the training set instances

may perform poorly as the problem instances change. The best choice of

algorithm, portfolio, or configuration may change over time. While it is the

case that these new problem instances can be used to develop a new training

set and the off-line knowledge gathering phase can be restarted with the new

training set, it is not clear when this process should be repeated and there

may be a significant expense incurred while the system performs poorly.

3.5 Off-line and On-line Knowledge Control

Systems

In this section, we look at systems that combine off-line and on-line knowl-

edge. Recall that off-line knowledge can be very accurate, with respect to

the training instances, since significant time can be spent performing analy-

sis during an off-line training phase. However, when a new problem instance

is presented to a control system, it may not be clear what off-line knowledge,

if any, is relevant. On-line knowledge, extracted from the problem instance

that is being solved, provides a way of specializing control to make decisions

that are more specific to the problem instance.

Figure 3.1 from Section 3.3 shows the components required by this type
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Figure 3.3: Example of algorithm performance varying with problem size.

of system. An off-line training phases gathers knowledge based on a training

set. On-line knowledge is gathered from the problem instance that is being

solved. In the following sections, we review four research themes that combine

off-line and on-line knowledge.

3.5.1 Empirical Performance Models

Empirical performance models [66, 80, 81] approximate the performance of

an algorithm using features extracted from a problem instance. To build a

model, relevant features are identified and correlated with algorithm perfor-

mance. Empirical performance models are specific to the knowledge gathered

by executing a particular algorithm on a training set of problem instances.

Given a performance model for each algorithm, on-line control decisions are

made by extracting features from the problem instance and predicting the

performance of each algorithm . The algorithm that is predicted to have the

best performance is then selected.
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Consider the scenario where two algorithms have the following behaviour.

Algorithm 1 solves problems in 𝑡1 = 𝑛 × 15 seconds, where 𝑛 is the size of

the problem.5 Algorithm 2 solves problems in 𝑡2 = 𝑛2 seconds. The results

of running these algorithms are shown in Figure 3.3. For any problems with

𝑛 less than 15, Algorithm 2 is the best performer, otherwise Algorithm 1 is

best. In this example, the problem instance feature is size and the predicted

value is running time.

Complexity results for many algorithms are available but they are typ-

ically a worst-case analysis. While there has been some progress on the

analytical study of average-case performance [35], few results are available

for state of the art algorithms for hard combinatorial problems. A promis-

ing practical direction for predicting the performance of an algorithm given

a certain problem instance, is the work on empirical performance models.

Nudelman et al. [66, 80–82] use linear regression to approximate running

times by developing empirical performance models for several computation-

ally challenging problems such as SAT and the winner determination problem

for combinatorial auctions. To enable linear regression to be more effective,

significant effort is required to determine useful features. For example, the

authors suggest adding extra features that are derived from other features,

such as new features that are the pairwise products of other features. How-

ever, as the number of features grows, the performance of linear regression

deteriorates, so care must be taken to select useful features.

Once a set of useful features have been identified, an approximation func-

tion can predict an algorithm’s runtime on a new problem instance. When

a new problem instance is presented, the approximation function for each

algorithm is applied to the new instance to predict each algorithm’s running

time. The algorithm with the shortest predicted running time is then cho-

sen. The authors also apply this approach to the case of optimization with

a fixed running time. In this case, the prediction is the overall quality of

the solution, and they choose the algorithm with the best predicted solution

quality for the given time limit.

5For example, size might be the number of variables in a constraint satisfaction problem,
or the number of elements in a list to be sorted.
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The idea of creating an approximation function based on problem feature

values is the basis of much work in machine learning. Leyton-Brown et al.

[68] evaluated other machine learning approaches aside from linear regres-

sion, yet none yielded superior results and some methods took considerably

more computation time. Mitchell6 noted that while the choice of learning

algorithm is important, the choice of model (i.e., the features and value cho-

sen for approximation) is more important and will dictate the performance

of any machine learning method. In other words, the problem of feature en-

gineering is what makes empirical performance models challenging to apply

in practice.

3.5.2 Classifying Problem Instances

Rather than trying to compute an approximation function to predict run-

time, a classification approach tries to directly predict the algorithm that

will perform best on a problem instance based on previous experience on

similar problem instances. In this context, a class represents the set of prob-

lem instances that are best solved by a particular algorithm. Hence, there

exists a class for each algorithm. In this section, we discuss methods that

classify a problem instance: two case-based reasoning approaches, a decision

tree approach, and a simple classifier based on short (on-line) runs of each

algorithm.

Gebruers et al. [42] developed a case-based reasoning system to select

search strategies for constraint programming applied to the social golfers

problem, which is a special case of a timetabling problem. Problem instances

are classified using domain specific instance features. Further features are

generated by creating weighted ratios of instance features. The case-based

reasoning approach is compared against a decision tree built by the C4.5

algorithm with results showing that the case-based reasoning outperforms the

decision tree. Their results indicate that the case-based reasoning approach

outperforms the policy of using the single algorithm that was best on average

6Tom Mitchell, IJCAI-05 Tutorial on Representation And Learning In Robots And
Animals.
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over all problems.

Burke et al. [21] present a case-based reasoning system for selecting

metaheuristics for university course and exam timetabling problems. Domain

dependent features and ratios of features are employed in a similar fashion

to Gebruers et al. Burke et al. use a case-based reasoning system in two

contexts. In the first context, similar to Gebruers et al., a single algorithm

is selected and applied to a particular problem instance. In second context,

the selection is performed many times, a different algorithm is selected at

regular intervals during problem solving. When making multiple decisions,

features such as the number of unscheduled exams are included. The case-

based approach outperforms any single algorithm.

Both of these case-based reasoning approaches avoid the complexity of

trying to determine an accurate approximation of runtime and work directly

to determine the best algorithm from a case-base of similar problems. How-

ever, they suffer from the same problem as the approximation models in

Section 3.5.1: relevant features and appropriate weights are required for an

accurate measure of similarity.

Beck & Freuder [10] use a different approach applied to scheduling algo-

rithms. Rather than developing domain specific features and weights, the

only feature measured is algorithm performance over time. Performance in-

formation is collected from short on-line runs of the available algorithms on

the instance being solved. The only off-line training used in this case is to

determine the length 𝑡𝑠 of the short run. The method proceeds as follows.

Each algorithm has a short run for 𝑡𝑠 seconds and performance information

is gathered. After the short runs are complete, the performance is exam-

ined and an algorithm is selected. The selected algorithm is then allowed to

continue for the time remaining. Several rules for selecting an algorithm are

explored with the most promising one being to simply choose the algorithm

which has the best performance so far.

While this approach may seem simple-minded, it tackles the problem of

feature engineering. Since no complex features are used, the method remains

general and no engineering is required to apply it to new problem domains.

However, a limitation is that as the number of algorithms grows, the time
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spent executing short runs will require more of the available time. In practice,

that means this approach is suited to situations where the choice is made

from only a few algorithms.

3.5.3 Monitoring Search

Algorithms for hard computational problems are prone to exceptionally long

running times in certain cases. A monitoring approach detects when a search

algorithm has entered a long run and continuing search is unlikely to be

worthwhile. When this situation is identified the control method changes

the search strategy.

In many real world optimization problems, the size of the problem means

that the optimal solution cannot be found in a reasonable time. Instead, com-

putation time is traded off against the quality of the solutions found. Opti-

mization algorithms typically find many improved solutions at the beginning

of search, but as search progresses more time elapses between improvements.

In these cases, a decision must be made regarding the tradeoff in time spent

versus the improvement in solution quality. Larson & Sandholm [62] present

a method that uses performance profile trees to decide when is the best time

to stop search. In an off-line training mode, they build a performance profile

tree that encodes the probability that an algorithm will find an improved

solution given the past improvements it has made. On-line, improvements

in solution quality are observed and the performance profile tree indicates

whether it is worthwhile to continue search. Interestingly, this control system

performs very well with only the simple feature of improvement in quality of

solution. They report that the addition of domain specific features only gave

a marginal improvement.

Adaptive constraint satisfaction [18] uses a search monitor to determine

when to try the next algorithm in a prioritized list that is ordered with the

‘quickest first principle’. Based on their performance on a training set, the

algorithms are sorted by increasing median constraint checks, a measure of

effort. When a thrashing detector indicates that an algorithm is not mak-

ing progress, search is restarted using the next algorithm in the list. The
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thrashing detector is called the Monitor Search Level (MSL) and operates

by observing features of search node exploration when solving a problem in-

stance. While adaptive constraint satisfaction makes use of on-line features

through the MSL monitor, most of the learning has been performed off-line

on a training set. Both the statistical analysis, which produces the ranked

list of algorithms, and the tuning of the MSL parameters are performed off-

line. On-line, the monitor simply detects thrashing and switches to the next

algorithm on the list.

Combining a restart strategy with randomized search has proved to be

a very useful way of solving hard problems [45]. Randomized search with

restarts operates on the observation that in many problems a solution is

found in either a relatively short time or in an exponentially long time. By

restarting search after a short time has elapsed, the aim is to avoid a long run.

However, determining exactly when to restart search remains a challenging

question. Horvitz et al. [49] use an approach that measures problem instance

features during search to determine when to restart by predicting if search

will take a long or short time. In an off-line training mode, they use Bayesian

structure learning to infer predictive models from the training set results. A

heuristic search is performed over the possible models and a Bayesian score

is used to identify a model with the greatest ability to predict the training

data. Once this prediction model has been created, it is used on-line to

determine when to restart search. At each search node, they measure the

problem instance being solved and predict if the algorithm will have a short

or long running time. If the current search is predicted to take a long time,

then randomized search is restarted with a new random seed.

Monitoring the progress of search appears to be a promising research di-

rection. By observing how search progresses, more informed control decisions

can be made that are specific to the instance currently being solved. Instead

of trying to determine whether an algorithm will perform well before solving

a problem instance, a search monitor makes control decisions based on how

an algorithm actually performs. The fact that, in some cases, informed de-

cisions can be made without requiring problem specific features points to an

interesting opportunity to avoid the feature engineering issues discussed in
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Sections 3.5.1 and 3.5.2.

3.5.4 Control Policies

A control policy determines the best action to apply given the current state.

Actions relate to applying a particular algorithm, while states refer to the

possible types of problems and stages of problem solving. Using a representa-

tion of actions and states appears to be a natural way to view the algorithm

control problem. However, while actions are relatively straightforward in this

model, representing the state space within a reasonable memory limit proves

to be a more difficult challenge.

Lagoudakis & Littman [61] create a control policy for sorting algorithms.

The problem of sorting a list is modelled as a Markov decision process (MDP)

where the state space represents the number of elements in the list to be

sorted and actions are the application of available sorting algorithms. This

work is particularly interesting as multiple decisions are made. Since some

sorting algorithms are recursive in nature, control decisions can be made

multiple times. For example, merge sort splits a list in half requiring that each

half is sorted and then merged together. A different algorithm can then be

applied to each half of the list. The application of multiple algorithms adds an

interesting wrinkle to the typical MDP since, when splitting a list, two actions

must be executed creating two new states. A modification to the Q-learning

algorithm is proposed to support this departure from standard MDPs. The

MDP learning process consists of learning a reward function, 𝑅(𝑎, 𝑠) that

indicates the benefit of applying action 𝑎 in state 𝑠. Once the reward function

has been learned, during an off-line training phase, it be used to produce a

control policy for use on-line. The approach shows impressive performance,

indicating that the control policy outperforms any single algorithm.

While the application of MDP methods to algorithm control is an excit-

ing area of research, sorting lists is not a particularly interesting problem

domain. In a subsequent work, Lagoudakis & Littman [60] applied a simi-

lar approach to backtracking algorithms for SAT problems. In this case, the

actions are branching heuristics. The authors appear to have tried many
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different state representations based on features such as the number of vari-

ables, number of clauses, number of literals, minimum size of clauses, number

of minimum size clauses and ratio of variables to clauses. However, they note

that as more features are added to the state representation, the state space

grows exponentially making the learning task more challenging. After careful

analysis, they settled on using the number of variables as the state represen-

tation. Their results show that the control policy performs as well as the

best heuristics, but no better, and suggest that a better state representation

could improve this situation.

The application of control policies, such as techniques for MDPs, is an

appealing direction for future work. However, again we see the challenge

of determining useful problem features. While the work presented above

indicates the feasibility of MDP methods, it also demonstrates the problem

of compact state representations that are required before these methods can

be successfully applied to more complex problem domains.

3.5.5 Conclusion

We have presented a diverse collection of algorithm control systems that

make use of off-line and on-line knowledge. While strong performance has

been observed, it often comes with a price. Feature engineering appears to

be a significant part of many control systems that use both off-line and on-

line knowledge. Even though automated methods are available to evaluate

the relevance of features, many of the methods require a detailed problem

analysis to produce possible features in the first place. However, there are

a few exceptions that do not require significant feature engineering for new

problem domains. General features such as algorithm performance appear to

be far more reusable than problem specific features. We return to the issue

of feature engineering effort in Chapter 4.
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Figure 3.4: On-line knowledge control system.

3.6 On-line Knowledge Control Systems

In this section we review control systems that use on-line knowledge exclu-

sively. The components instantiated in this context are shown in Figure 3.4.

A purely on-line system requires no training phase and can be applied im-

mediately to new problem instances and has the benefit that knowledge is

specific to the problem instance being solved. There may be useful knowl-

edge that can be carried over from one problem instance to the next, but

a purely on-line system forgets all knowledge after each instance is solved.

As we have pointed out in the past sections, it is not trivial to know which

knowledge should be applied to a new problem instance.

It could be argued that no system is purely on-line, since some decisions
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will be made during an off-line phase, like deciding which components to add

to the system. To make our distinction clear, for a system to be considered

a purely on-line knowledge system, no training phase using a set of sample

problem instances is required. As we will show in the following systems, the

aim is to produce a system which is not based on any training, but rather it

adapts to solve the current problem instance in a purely on-line fashion.

3.6.1 On-line Reinforcement Learning

An on-line reinforcement learning system learns which underlying algorithms

are most effective on a problem as it is being solved. There are typically

two components in such a system: low-level heuristics that operate directly

on the problem being solved and a high-level control strategy that decides

which low-level heuristics to apply. We present three systems below that use

reinforcement learning to perform on-line learning of effective heuristics.

Nareyek [78] applies reinforcement learning in a constraint-based local

search system that learns effective heuristics for planning problems. Each

constraint in the planning problem has a set of heuristics that can be used

to modify the current solution. Heuristics are selected using a weighted

roulette wheel approach so that heuristics that have a higher weight are

more likely to be selected. When a heuristic is selected it attempts to im-

prove the solution. After the heuristic is applied, its weight value is updated

with a reward/penalty policy. The best policy discovered is to slowly in-

crease weights, for heuristics that perform well, and severely reduce weights

for heuristics that perform poorly. The system was tested on two planning

domains, Orc’s Quest and Logistics, and the reinforcement learning approach

outperformed an optimal off-line assignment of weight values. Experiments

are performed that show how different heuristics perform better at different

stages in search, hence a learning method that adapts based on the on-line

performance is superior to a fixed approach.

Burke et al. [20] also employ reinforcement learning to discover effective

heuristics for local search, in this case to solve timetabling problems. The

approach is called hyper-heuristics since it uses the ideas from metaheuristics
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to select underlying heuristics. In this case, they use a tabu-list to prohibit

the use of heuristics which have not performed well recently. The control

procedure also maintains a rank value for each heuristic that is increased if

the heuristic is able to make an improvement to the solution, and decreased

otherwise. The system selects the heuristic with the highest rank that is

not prohibited by the tabu-list. The authors compare the system to spe-

cialized solvers for nurse scheduling and exam scheduling and find that the

hyper-heuristic system is able to compete with specialized solvers. When the

problem structure is perturbed, the hyper-heuristic system outperforms the

specialized solvers indicating that hyper-heuristics has the beneficial prop-

erty of automatically adapting to problem variations.

Perron [88] uses reinforcement learning to bias the selection of search

heuristics in a large neighbourhood search [99] applied to network design

problems. Several heuristics with fast restart strategies are proposed, with

the observation that each tends to perform well on some problem instances,

but none outperforms all others on all instances. Heuristic selection is per-

formed with a weighted roulette wheel approach, as in Nareyek [78]. Weight

values are increased by 1 if an improved solution is found and decreased by

1 if no improvement is found after 20 attempts using that heuristic.

These variations of on-line reinforcement learning have proved to be both

effective in practice and reusable. None requires the use of complex features.

Instead, the sole feature employed is improvement in solution quality. The

use of a simple, general feature has a positive effect on reusability, but pro-

vides enough knowledge to allow a control system to learn which algorithms

are effective for solving the current problem instance. However, since a purely

on-line system retains no knowledge between runs, it must expend effort to

determine which algorithms are likely to be of use. This puts a practical limit

on the number of algorithms that can be used in an on-line system, if too

many algorithms are added then the system would expend significant effort

determining useful ones.

There is also the issue of exploration versus exploitation. In all of the cases

above, an algorithm that performs well is more likely to be selected, while an

algorithm that has never been tried is less likely to be selected. This can lead
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to the situation where an algorithm that makes a small improvement will be

exploited extensively and the system does not explore any other choices. Of

course, there is a cost in exploring alternatives since they may well prove to

be inferior, but if alternatives are not examined then the system can miss

the opportunity to select an algorithm with the best performance.

3.7 Summary

In this chapter, we have presented a review of the literature on algorithm

control and classified it according to how knowledge of algorithm behaviour

is gathered. We have shown the strengths and limitations of both off-line and

on-line knowledge gathering, including how these two types of knowledge can

be combined.

While our focus has been on knowledge gathering, it is clear that the

methods used to gather knowledge can have a profound impact on the control

system. An off-line knowledge control system, for instance, requires a training

set that is indicative of problem instances to be solved later by the system. An

on-line knowledge control system requires a limited number of algorithms to

choose among, but can be used without any training. A system that combines

off-line and on-line knowledge may be able to achieve better performance,

but will require problem instance features to determine when knowledge is

relevant to the problem instance being solved.

Our goal is to create systems that automatically configure themselves to

achieve good performance on new problem instances and classes. Therefore,

one of our prime criteria is that the systems should reduce the required hu-

man expertise to deploy them. From our review, we have seen that many

approaches have shifted the required expertise into the development of rel-

evant problem features. In the next chapter, we describe a low knowledge

approach where the goal is to reduce expertise by using simple, general prob-

lem features.
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Chapter 4

The Low Knowledge Approach

to Algorithm Control

In this chapter we discuss the issue of the expertise required to implement al-

gorithm control methods. In particular, we highlight the connection between

the knowledge required by a control method and the human expertise re-

quired to capture the knowledge. In this context, we build on the discussion

presented in Beck & Freuder [10] where low knowledge algorithm control was

introduced. Put simply, a low knowledge approach to algorithm control is a

practical way to reduce the expertise required to effectively use optimization

tools.

4.1 Introduction

The primary goal of the research in this dissertation is the development of

optimization tools that are easier to use. Many optimization methods have

been developed, with new ones continuing to appear, but it is often unclear

which methods will give the best performance when given a new problem

instance or a new set of algorithms.

We assume the following context. A library of optimization algorithms

that can solve a problem instance is available along with knowledge of the

problem instance and algorithms. The algorithm control problem is to de-

56



cide how best to select or control this set of algorithms to solve the problem

instance. The aim of the system is to reduce the expertise required by auto-

matically determining the best choice of algorithm(s).

Our thesis is that a low knowledge approach to algorithm control is a

practical way to reduce the expertise required to effectively use optimiza-

tion tools. The distinction between low and high knowledge (or knowledge-

intensive) approaches focuses on the number, specificity, and computational

complexity of the measurements that need to be made of a problem instance.

A low knowledge approach has very few, inexpensive metrics, applicable to

a wide range of algorithms and problem types.

When a high knowledge approach is applied to a new algorithm or prob-

lem type, expertise is required to generate sufficient knowledge in the form of

features, and to build a model that indicates how features relate to algorithm

performance. This model is then used to determine the best algorithm(s) to

use. We argue that high knowledge approaches have failed to achieve the goal

of expertise reduction as expertise has been shifted from algorithm building

into feature identification and model building. While methods exist to auto-

mate the process of model building to some degree [114], the identification

of useful problem features remains critical to the performance of high knowl-

edge approaches.

This chapter is organized as follows. In Section 4.2 we discuss the knowl-

edge requirement for a problem solving method to make good decisions. We

present two extreme approaches, high and low knowledge, and highlight con-

cerns regarding the practical implementation and effectiveness of these ap-

proaches. In Section 4.3 we discuss these ideas in relation to algorithm con-

trol and classify examples from the literature as high or low knowledge. We

show that low knowledge control methods are better suited to more problems

despite being easier to implement.

4.2 The Knowledge Requirement

Simon [100] observes that one of the most challenging parts of solving a

problem is identifying a model a computer can reason with. The problem
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is then solved using this model as a knowledge representation. We refer to

the information required by such a model as the knowledge requirement.

In the context of control, the purpose of knowledge is to allow the control

system to reason about the consequences of possible control decisions. A

typical approach to building such a model is to capture all of the information

required to get the best performance.

In this section, we focus our attention on the knowledge requirement when

implementing a control system. We are interested in evaluating a control

system not just on performance, but on how practical the control system is

to implement. Recall that the goal of our research is to reduce the expertise

required to use optimization tools. Hence, we are not only concerned with

performance, but also the level of expertise required to create and maintain

the knowledge required by a control system.

For the purpose of illustration, we use the example of controlling a heating

system in a building. The quality of a heating control system is evaluated on

how closely it matches the ambient temperature to the desired temperature.

We describe a high and low knowledge approach to this control problem and

then compare them.

4.2.1 High Knowledge

One extreme approach to the control problem is to create a complete model

of the world. For example, describing the molecular structure of materials,

the physical laws of heat transfer, weather systems, and so on. Clearly, this

is impractical and often impossible. However, it highlights the functional

requirement of the model to correctly capture the dynamics of the world.

In more realistic terms, a high knowledge model will contain all of the in-

formation, within reason, that is required to measure the impact of decisions.

The aim of the model builder is to produce the most accurate model possi-

ble. The high knowledge approach to model building captures the relevant

problem structure to create a model that serves as a proxy for the struc-

ture of the real world. Note that building such a model requires significant

expertise, insight and care.
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To illustrate this in the example of a heating system, a high knowledge

model of the building might contain the inside and outside temperature, wind

speed, rainfall, weather forecast, time of the year, when the heating system

was last on, conductive properties of the materials in the wall, whether doors

and windows are open or closed, the number of people and machines in the

building, and so on. All of this information is to be used to give the control

system a better understanding of the impact of turning on the heating system.

4.2.2 Low Knowledge

We now consider the other extreme approach in applying a control system,

to represent as little information about the problem structure as possible. In

this context we can use the world as the model. That is, the model becomes

measurements of the real world rather than an abstract representation of it.

This side steps the issue of capturing problem structure, as Brooks states [19]

The key observation is that the world is its own best model. It is

always exactly up to date. It always contains every detail there

is to be known. The trick is to sense it appropriately and often

enough.

In this context there is no high knowledge representation, there is simply

the real world. Decisions are made by sampling features from the world. A

low knowledge approach reasons by interacting with the world rather than

using a proxy model.

In the context of a heating system, the most obvious (and common) choice

is the ambient temperature as measured by a thermostat. This feature has an

interesting property; it is directly related to the performance of the system.

4.2.3 Comparison

As stated, the primary evaluation criteria of a knowledge representation ap-

proach is the ability to make good decisions. However, we wish to also com-

pare these systems on the level of expertise required to implement them and

the generality of their use.
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In the context of heating systems, the primary criteria is the ability to

match the ambient temperature with the desired temperature. It is often

presumed that a perfectly implemented high knowledge approach is able to

perform better since it has a more complete model of the world and is able to

make decisions that will avoid over or under heating the building. The low

knowledge system may be slow to react to a drop in temperature or exceed

the desired temperature since there may be a delay when the heating system

is turned on and off. In contrast, the high knowledge system might be able

to anticipate such delays and compensate in its decision making.

However, performance is effected through discrepancies between the model

and the real world. The total error is a function of these discrepancies: the

error in measuring each feature and the accuracy of the modelled relation-

ship between features. Therefore, a possible consequence of increasing the

number of features is that the system becomes more susceptible to errors.

While these discrepancy errors can be partially addressed with the use of fil-

tering methods and careful model design, the risk of error may increase when

adding more features to create a more complex model of the world.

Now consider the expertise required to implement these systems. It is

clear that the low knowledge approach is easier to implement. The require-

ment is simply the introduction of temperature sensors in the areas to be

heated and the design and implementation of a control policy based on these

sensors. The high knowledge approach on the other hand, requires all of

the detailed information described in the previous section. Some of this in-

formation, such as the conductive properties of the walls, may not even be

available except in the case of new buildings or unless significant effort is

spent in measurement. The knowledge requirement makes the high knowl-

edge system harder to implement and less general, since the configuration

needs to be customized for each building.

So, while a high knowledge system can theoretically have better perfor-

mance than a low knowledge system, we believe that in practice a low knowl-

edge system is likely to be easier to implement, have less error, and may be

able to outperform a high knowledge approach.
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4.2.4 Related Work

The extensive field of control theory [102] has traditionally addressed control

problems such as our heating example. The control models in this field are

representations of the world based on measures and differential equations

which are solved to determine optimal (with respect to the model rather

than reality) control policies. However, the expertise of feature detection is

still required to identify the measurements, in addition to the skill required

to identifying a suitable system of equations.

The famous ‘curse of dimensionality’ [13] points to another problem with

the use of numerous high knowledge features. Informally, the curse states

that as the number of features increases, the model space grows exponentially.

This has many consequences ranging from increasing the number of required

samples to train a system to the computational complexity of modelling

the possible states of the problem. Since adding relevant features not only

requires expertise, but also increases the computational complexity of the

model, this observation suggests a low knowledge approach with few features

will avoid these issues.

4.3 Knowledge in Algorithm Control

In this section, we review examples of algorithm control from the previous

chapter and analyze the type of knowledge that is used in each approach.

The aim here is to evaluate existing work not only in terms of performance,

but in terms of high or low knowledge requirements.

4.3.1 Knowledge Engineering Effort

Learning high knowledge problem features that are indicative of algorithm

performance requires a significant amount of expertise and/or trial and er-

ror. In practice, this is typically the expertise of a practitioner who knows

from experience which problem features are likely to impact algorithm per-

formance.
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Once a collection of features has been identified, a high knowledge model

can be built to predict algorithm performance. While there are methods to

help in model building, it is not entirely automatic. The Weka toolkit [114]

provides a suite of machine learning tools, but even still, determining the

correct subset of features and type of learning model is not trivial. Often,

the results of the model building exercise will be that the model does not

capture enough knowledge and therefore gives poor performance. Further

effort is then required to understand why and to derive new features until a

satisfactory model has been developed.

Significantly less effort is required for low knowledge algorithm control.

For the case of increasing performance, it can be simply a measure of algo-

rithm performance. The ‘model’ that produces this measure is the result of

running the algorithm. The question, however, is can this be done in a way

that remains computationally efficient.

4.3.2 High Knowledge Approaches

Here we present examples of algorithm control approaches that take a high

knowledge approach. While these approaches achieve improved performance,

we argue that the applicability is limited since they require significant exper-

tise to adapt to new problem domains and algorithms.

The work on building empirical performance models to predict the best

performing algorithm [68, 81, 83, 117] is fundamentally a high knowledge ap-

proach. The performance models take as input a set of high knowledge

features and predict either run times or performance ranking. While the

methodology is general and the authors suggest methods to reduce exper-

tise, performance models rely heavily on the availability of problem specific

features. The authors admit the performance of such a system is highly de-

pendent on the features chosen. That said, Xu et al. [117] claim they have

identified a general set of features for SAT problems and their system can be

applied ‘out of the box’ on new classes of SAT problem instances. While their

system requires a significant amount of computation time to train on a new

set of SAT problems, it can be done without human intervention therefore
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justifying the significant upfront investment of expertise. It remains unclear

if similar sets of general features exist for other problem domains.

In a similar vein, the work on case-based reasoning [21, 42] to select a

search algorithm is also highly dependent on the problem domain. For each

problem type, a new set of features must be presented. Gebruers et al. [42]

discuss the use of generic CSP features but unfortunately they do not appear

to use them in their experiments. These approaches are therefore tailored to

specific types of problem. While mechanisms for determining useful features

are suggested, the user is still required to determine the problem features for

new problem types.

Control methods using Markov Decision Processes (MDP) have been ap-

plied to sorting [61] and SAT [60] algorithms. The work on sorting uses a

single feature (the size of the list to be sorted) which, while simple, requires

the expert insight that size is a dominating factor in the performance of sort-

ing algorithms. The work on SAT explored the use of many high knowledge

features of SAT problems, yet the authors were unable to find a high knowl-

edge approach that outperformed the best SAT heuristic. More problematic

is the inability of MDP models to handle the state space explosion caused

when more features are added to the model.

4.3.3 Low Knowledge Approaches

We now discuss methods that employ a low knowledge approach to algorithm

control. With the exception of Beck & Freuder [10], the authors below present

their work in the context of improving solving performance and robustness.

Yet all of these methods meet the criteria of a low knowledge approach and

therefore require less expertise to implement.

In Beck & Freuder [10], the low knowledge approach is explicitly defined

and used in the context of classifying a problem instance to determine the

best performing algorithm. Unlike the classification approaches using empir-

ical models or case-based reasoning, the sole feature employed is the result

of running each algorithm on a problem instance for a short time. Many

simple rules to determine the best performing algorithm are presented and
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evaluated.

The work on algorithm portfolios [50, 91] performs an analysis of algo-

rithm performance on a training set of problem instances. From this perfor-

mance analysis, a portfolio is built to improve performance, either quality of

solution or runtime. Once a portfolio is built, it is executed on new problem

instances according to the amount of time allocated to each algorithm. The

method presumes no knowledge at all of the underlying algorithms or prob-

lem instances. The only measure required is one of algorithm performance.

The algorithm tuning work of Hutter et al. [53] is a low knowledge ap-

proach. The system is given as input a set of parameters to search and a

set of problem instances to train on. Different combinations of parameters

are explored by running them in order to find the combination with the best

performance. The authors claim it has been very successful in discovering

good parameter configurations in new domains without requiring any modi-

fications of their control method. Once again, the only metric the algorithm

is aware of is algorithm performance, which is be defined in a user specified

way.

The work applying reinforcement learning to search heuristics [20, 78,

88, 103] is interesting as it measures incremental improvements in solution

quality to determine effective heuristics during search. These methods can

be used on any system which has a set of heuristics. As the methods are

applied, a weight value for the method is increased or decreased depending on

the performance it achieves. The only metric the control algorithm is aware

of is the cost improvement in applying a method. These approaches have

the benefit of avoiding the use of a training set, which can be problematic if

unseen problem instances behave differently than those in the training set.

4.3.4 Summary

We have reviewed selected algorithm control approaches with a focus on the

knowledge requirement for each method. While high knowledge approaches

are successful once a suitable model has been found, they require a significant

amount of expertise to apply to a new problem domain. In contrast, the low
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knowledge methods presented have very few features that are independent

of the problem instances they are solving.

From the point of view of reducing expertise, it is clear that, on a new

problem, a low knowledge approach is easier to apply. What is unclear

is the benefit of a high knowledge versus a low knowledge approach. In

Chapter 5 we perform an explicit comparison of high versus low knowledge

on a challenging set of scheduling problems. In Chapter 6, we demonstrate

the suitability of the approach in a different control setting by applying it to

neighborhood selection in large neighborhood search.

4.4 Conclusion

Building on the work of Beck & Freuder [10], we have presented the distinc-

tion between high and low knowledge algorithm control and made the case

that this is a necessary direction in order to reduce the expertise required to

effectively use optimization tools. In the following chapters, we evaluate the

performance of these approaches.
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Chapter 5

Low Knowledge Control

Applied to Scheduling

Algorithms

In the previous chapter, we introduced the idea of low knowledge algorithm

control and claimed it satisfies the requirement of reducing expertise. In this

chapter, we evaluate the performance of algorithm control methods which

make decisions based only on low knowledge features. We compare this

against perfect high knowledge selection and show that a low knowledge

switching approach is able to perform just as well. This is a significant

contribution as it shows that increased performance can be achieved without

the expertise required to develop a complex high knowledge prediction model.

5.1 Introduction

In this chapter we investigate algorithm control techniques aimed at achieving

strong scheduling performance using off-the-shelf algorithms. The control

techniques explored do not require significant human expertise to apply, and

therefore increase the accessibility of these algorithms to non-expert users.

To achieve this goal, we use machine learning methods to implement low

knowledge algorithm control techniques. Rather than building knowledge-
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Figure 5.1: Predictive and switching algorithm control paradigms.

intensive models relating algorithm performance to problem features, we base

control decisions on changes in solution quality over time.

Given a time limit 𝑇 to find the best solution possible to a problem in-

stance, we investigate two control paradigms, shown in Figure 5.1. The first,

predictive, paradigm runs a set of algorithms during a prediction phase and

chooses one to run for the remainder of 𝑇 . Based on these short runs, we

decide which algorithm to continue running for the remaining time. We com-

pare a simple rule against a Bayesian classifier which attempts to correlate

algorithm performance trends from the prediction phase with the best per-

forming algorithm for that problem instance. Once it is trained, the Bayesian

classifier is used to predict the algorithm that is expected to be the best per-

former on new problem instances based only on performance in the prediction

phase.

In the second, switching, paradigm control decisions allocate computa-

tional resources to each algorithm over a series of iterations such that the

total run-time is 𝑇 . In an iteration, we run each algorithm, one after another,

passing the best known solution from one algorithm to the next. Thus, rather

than make a single decision about which algorithm to select for the remain-

ing run-time, we revisit our choice over and over. We apply a reinforcement-
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learning approach to allocate more run-time to algorithms that perform well.

The contribution of this chapter is the demonstration that a low knowl-

edge approach to algorithm control can achieve performance significantly

better than the best pure algorithm and as good as a perfect high knowledge

selection approach.

5.1.1 Scenario

We address the following computational problem. A problem instance is

presented to a scheduling system and that system has a fixed CPU time of 𝑇

seconds to return a solution. We assume that the system designer has been

given a set of pure algorithms, 𝐴, that are applicable to the given problem

and a set of problem instances (the learning set) at implementation time.

The problem instances in the learning set are representative of the problems

that will be later presented. The task is to determine how to apply the

algorithms in 𝐴 on each instance to achieve the best quality of solution.

We make some basic assumptions about the pure algorithms for which

our techniques are appropriate. First, after a brief start-up time (at most,

a few seconds) an algorithm is always able to return the best, complete

solution it has found so far. Second, we require that an algorithm is able

to take an external solution and search for solutions that are better. If an

algorithm has not found a better solution, when asked for its best solution,

the algorithm returns the external solution. We believe these assumptions

to be very general; many algorithms exhibit an anytime nature and are able

to improve on an existing solution.

5.1.2 Outline

The balance of this chapter is organized as follows. Section 5.2 introduces the

pure algorithms that are used in the experiments in this chapter. Section 5.3

describes the problem instances and evaluation criteria used to evaluate al-

gorithm performance. In Section 5.4, pure algorithms are run independently

and the need for algorithm control is shown. Section 5.5 presents a study
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on predicting algorithm performance and a low knowledge classifiers is com-

pared against a perfect high knowledge classifier. Section 5.6 introduces a

low knowledge switching strategy with performance equivalent to the perfect

high knowledge classifier. We follow with conclusions.

5.2 Pure Algorithms

Three pure algorithms are taken from the scheduling literature and imple-

mented in C++ using ILOG Scheduler 5.3 [98], a constraint programming

library. The algorithms described in this section were chosen from a set of

eight algorithms because they have generally comparable behavior on the

learning set. The other techniques performed much worse (sometimes by an

order of magnitude) on every problem.

We assume that these pure algorithms are able to find a sequence of

increasingly good solutions. As we are minimizing a cost function, an initial

solution (with a very high cost) is always easily available. Each algorithm

successively finds better solutions as it progresses either through local search

or branch-and-bound, terminating when it has either proved optimality or

exceeded a time limit. At any given time, each algorithm can return the best

complete solution that it has found so far.

5.2.1 SetTimes

The settimes algorithm configuration is an example of a constructive search

technique. It uses the SetTimes heuristic [64, 98], propagation (precedence

graph, disjunctive [63] and edge-finding [7]), and slice-based search [11], a

type of discrepancy-based search.

5.2.1.1 SetTimes Heuristic

The SetTimes heuristic [64], as implemented in ILOG Scheduler, sets the

start times of activities using the following logic:
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1. Let S be the set of selectable activities. Initialize S to the complete set

of activities to be scheduled.

2. If all the activities have a fixed start time then exit: a solution has been

found. Otherwise let S contain all activities that are ‘selectable’ and do

not have a fixed start time. See step 4b for the definition of selectable.

3. If the set S is not empty: (a) Select an activity from S which has the

minimal earliest start time. Use the minimal latest end time to break

ties. (b) Create a choice point (to allow backtracking) and fix the start

time of the selected activity to its earliest start time. Goto to step 2.

4. If the set S is empty: (a) Backtrack to the most recent choice point.

(b) Upon backtracking, mark the activity that was scheduled at the

considered choice point as ‘not selectable’ as long as its earliest start

time has not changed. Goto step 2.

After each decision in step 3b, the earliest start times and latest end

times of activities are updated by constraint propagation. The status ‘not

selectable’ in step 4b is also maintained by constraint propagation.

5.2.1.2 Slice-Based Search

Slice-Based Search [11, 54] performs depth first search on all nodes with paths

from the root that have up to some bounded number of discrepancies. Given

a bound of 𝑘, the 𝑖th iteration visits all leaf nodes with discrepancies between

(𝑖− 1)𝑘 and 𝑖𝑘− 1 inclusive. The bound, 𝑘, is referred to as the width of the

search.

A discrepancy is a deviation from the way the search tree is explored. For

example, with the SetTimes heuristic, the current search node may indicate

the selection and scheduling of 𝐴1 and a discrepancy is to not schedule 𝐴1

at that node, but rather schedule another activity.
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5.2.2 Texture

The second constructive search strategy we describe, texture, uses precedence

constraint posting and texture measurements [8, 9]. Search proceeds by se-

quencing pairs of activities that compete for the same resource. Texture

measurements are used to identify activity pairs that are critical, implying

that these pairs will be the hardest ones to schedule and therefore they should

be sequenced first. The same constraint propagation algorithms described in

Section 5.2.1 are used here. Bounded backtracking and randomization are

added to diversify search.

5.2.2.1 Texture Heuristic

The texture heuristic [8, 9] operates by interleaving texture measurements

with search. As search proceeds, texture measurements are updated based

on the current search state. The search heuristic makes choices based on the

current texture measurements.

A texture measurement is a measure of the current search state regarding

how likely a constraint is to be violated, called the probability of breakage.

In the context of scheduling, this is is applied to resource requirement con-

straints. Specifically, a texture measurement is an estimation of the prob-

ability that an activity will require resource 𝑟 at time 𝑡. Each such mea-

surement produces an individual demand curve which can be combined to

form an aggregate demand for a particular resource. The texture measure-

ment we use is included in ILOG Scheduler [98] and is an implementation of

the SumHeight measurement. The SumHeight measurement is a sum of the

individual activity demand curves on a resource.

Given a texture measurement, the search procedure operates as follows:

1. Compute texture measurements.

2. Find the critical resource 𝑅 and time point 𝑡 with the maximum texture

measurement.

3. Select two activities, 𝐴 and 𝐵, that rely the most on resource 𝑅 at time

𝑡. This can be determined from the individual texture measurement
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of each activity. Pairs of activities that already have a precedence

constraint between them are excluded from selection.

4. Add a choice point 𝐴 → 𝐵 or 𝐵 → 𝐴. The ordering that preserves the

most local slack between the activities is applied first.

5. Repeat until all activities are completely sequenced on each resource.

5.2.2.2 Randomization and Bounded Backtracking

In order to diversify search, randomization and bounded backtracking are

employed. Bounded backtracking ensures that search does not get ‘stuck’ in

a fruitless area of the search space. Randomization is required so that when

search restarts, it does not visit the same area of the search space.

The bound on backtracks follows the pattern of

𝐵𝑇 = {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 8, 16, . . .}

Formally, 𝐵𝑇𝑖 = ⌈2𝑘−2⌉ where 𝑘 = 𝑛− (𝑚(𝑚+ 1)/2) + 1, 𝑚 = ⌊(√8𝑛+ 1−
1)/2⌋ and 𝑛 = 𝑖 + 2. This was inspired by the optimal, zero-knowledge

pattern of Luby et al. [69] but is more aggressive in how it increases the

bound [116].

The randomization element is introduced in the selection of the critical

resource and time point. Instead of taking the resource and time point with

the maximal value, any such point within 10% of the maximal is considered

by random selection.

5.2.3 Tabu-TSAB

The algorithm configuration we refer to as tabu-tsab is a sophisticated local

search procedure for the job shop scheduling problem inspired by the work

of Nowicki & Smutnicki [79]. The neighborhood is based on swapping pairs

of adjacent activities on a subset of a critical path. An important aspect of

tabu-tsab is the use of an evolving set of the five best solutions found. Search

returns to one of these solutions and moves in a different direction after a

fixed number (1000 in our experiments) of iterations without improvement.
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Each node represents an activity. Solid arrows represent a job precedence
while dashed arrows represent an ordering on a resource.

Figure 5.2: Graph representing a solution to a JSP.

Activities on the critical path are shown with thick borders.

Figure 5.3: Gantt chart of the example JSP showing the critical path.

5.2.3.1 N5 Neighborhood

The tabu-tsab algorithm represents a solution using a precedence graph that

contains a total order for each resource. For a given solution, the makespan

is determined by the longest path in this graph, which is referred to as the

critical path. In order to improve the makespan, the length of this path must

be reduced.

In Figure 5.2 an example of a 3-job, 3-machine JSP is shown. The solid

arrows represent the job-based precedence constraints indicating the order of

the activities of each job. The dashed lines represent a current solution, in-

dicating the order of activities on each resource. For example, job A requires

resources in the order R2, R1 and then R3. The current solution indicates

that resource R2 has the activity ordering A1R2, B1R2, C2R2. In Figure
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5.3 a Gantt chart of this solution is shown with the activities on the criti-

cal path highlighted using thick borders. In general there can be multiple

critical paths, however in this example there is only one.

We now introduce some definitions that will be used in this section. A

move is defined as a modification of the current solution. In tabu-tsab this

corresponds to modifying a precedence constraint of the form 𝑣 = (𝑥, 𝑦). A

precedence constraint 𝑣 indicates that 𝑥 precedes 𝑦 in the current schedule.

A neighborhood is a set of moves that are possible given the current schedule.

The efficiency of the tabu-tsab procedure lies in the ability of the neigh-

borhood heuristic to focus on moves that are likely to improve the makespan

of the current schedule. On a randomly selected critical path, activities are

grouped into blocks on each resource. A block is a group of consecutively se-

quenced activities on a resource where all activities are on the critical path.

The moves considered are swapping of the first or last pair of activities in

each block, with two exceptions. In the first block in the critical path, only

the last pair of activities in that block are considered. Similarly, the move

for the last block on the critical path only considers swapping the first pair

of activities.

In Figure 5.3 the critical path is shown where the activities in blocks

are highlighted with thick borders. The critical path contains the following

blocks, 𝐵1 = (𝐴1𝑅2), 𝐵2 = (𝐴2𝑅1, 𝐵2𝑅1, 𝐶1𝑅1), 𝐵3 = (𝐶2𝑅2), 𝐵4 =

(𝐶3𝑅3, 𝐴3𝑅3). Blocks 𝐵1 and 𝐵3 do not contain valid moves since they

contain only single activities. The valid moves in this solution are swapping

the ordering of:

∙ 𝐴2𝑅1 and 𝐵2𝑅1 from block 𝐵2

∙ 𝐵2𝑅1 and 𝐶1𝑅1 from block 𝐵2

∙ 𝐶3𝑅3 and 𝐴3𝑅3 from block 𝐵4

5.2.3.2 Search Procedure

The tabu-tsab search operates using the following procedure. Given the

neighborhood of moves as defined in Section 5.2.3.1, moves are classified as
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unforbidden (U), forbidden but profitable (FP), and forbidden but nonprof-

itable (FN). Forbidden moves are moves that are currently stored in a tabu

list. Unforbidden moves are simply all the moves in the neighborhood except

the ones in the tabu list. The general idea is that search will take the best

move from set 𝑈 ∪ 𝐹𝑃 . In other words, search will evaluate each move and

select the one that produces the best makespan. Moves in the tabu list can

be taken, but only if they deliver the best makespan found so far. Moves not

in the tabu list (U) may increase the makespan, in which case the move with

the smallest increase is taken.

The tabu list is maintained as a first-in-first-out queue of moves of the

form 𝑣 = (𝑥, 𝑦). When the search procedure accepts a move, the inverse

move is added to the tabu list. As an example consider swapping the order

of activities 𝐵2𝑅1 and 𝐶1𝑅1 from the example in Figure 5.3. This produces

the move 𝑣 = (𝐶1𝑅1, 𝐵2𝑅1) indicating that 𝐶1𝑅1 precedes 𝐵2𝑅1. The

inverse move 𝑣 = (𝐵2𝑅1, 𝐶1𝑅1) is then added as the newest item in the

tabu list. If the tabu list is full, then the oldest move is removed from the

list. In the case that no improving moves are found and all moves are in

the tabu list, the oldest item in the tabu list will be removed until a move

becomes possible.

5.2.3.3 Backtracking in Local Search

Despite the use of a tabu list, there is still a chance that search will become

stuck in an area of the search space where it is unable to find an improved

solution. A common solution to this problem is to simply restart search from

the beginning using a new random seed. While this approach is general, it

wastes a significant amount of effort as search restarts from a poor quality

solution. tabu-tsab uses a less extreme strategy called Back Jump Tracking

where search is restarted from a previous state during search.

The rationale is that it is more efficient to start exploring part of the

search space from a point which contained a good quality solution. So, when

tabu-tsab finds an improved solution, it stores the solution, the tabu list, and

the next move that was taken. When search restarts, the move is added to
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the tabu list. This ensures that when a restart occurs at this search state,

a different search trajectory will be taken which will hopefully lead to a

different part of the search space.

5.2.3.4 Optimality Condition

There exist two cases where search can terminate because it has found the

optimal solution. The first case is that every activity on the critical path is

on the same machine, referred to as the resource bound. The second case

is that the critical path contains only the activities of a single job, referred

to as the job-based bound. The optimality condition is an interesting result

since local search methods often do not have the ability to prove optimality.

Empirical results in Nowicki & Smutnicki [79] report that tabu-tsab was often

able to find solutions where this criteria was met.

5.3 Experimental Details

In this section we describe the problem instances used in the experiments

and the criteria used to evaluate algorithm performance.

5.3.1 Problem Instances

The job shop scheduling problem (JSP) involves scheduling 𝑛 jobs across 𝑚

machines. Each job 𝑗 consists of 𝑚 ordered activities, such that each activity

is scheduled one after another. For each job, every activity requires a unique

machine for a specified duration, and the sequence of these requirements

differs among jobs. We look at the objective of minimizing makespan: the

total time required from the start of the earliest scheduled activity to the

finish of the latest scheduled activity. This problem is known to be NP-hard

[41]. For further details see Section 2.2.

Three sets of 20 × 20 job shop scheduling problems are used. A total of

100 problem instances in each set were generated and 60 problems per set

were arbitrarily identified as the learning set. The rest were placed in the

test set.
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The difference among the three problem sets is the way in which the

activity durations are generated.

∙ In the Rand set, durations are drawn randomly with uniform proba-

bility from the interval [1, 99].

∙ The MC set has activity durations drawn randomly from a normal

distribution. The mean and standard deviation are the same for the

activities on the same machine but different on different machines. The

durations are, therefore, machine-correlated (MC).

∙ In the JC set the durations are also drawn randomly from a normal

distribution. The means and standard deviations are the same for

activities in the same job but independent across jobs. Analogously to

the MC set, these problems are job-correlated (JC).

These problem structures have been studied for flow-shop scheduling

[111]. They were chosen based on the intuition that the different struc-

tures may differentially favor one pure algorithm and therefore the algorithms

would exhibit different relative performance on the different sets.

5.3.2 Software and Hardware

All algorithms were implemented in C++ using the ILOG Scheduler 5.3

library. Experiments were executed on a Pentium IV 1.8 Ghz CPU with

512MB of RAM running the Linux operating system.

5.3.3 Evaluation Criteria

Our primary evaluation criteria is mean relative error (MRE), a measure of

the mean extent to which an algorithm finds solutions worse than the best

known solutions. MRE is defined as follows:

MRE (𝑎,𝐾,𝑅) =
1

∣𝑅∣
1

∣𝐾∣
∑

𝑟∈𝑅,𝑘∈𝐾

𝑐(𝑎, 𝑘, 𝑟)− 𝑐∗(𝑘)
𝑐∗(𝑘)

(5.1)
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where 𝑅 is a set of independent runs with different random seeds, 𝐾 is a set

of problem instances, 𝑐(𝑎, 𝑘, 𝑟) is the lowest cost solution found by algorithm

𝑎 on problem instance 𝑘 during run 𝑟, and 𝑐∗(𝑘) is the lowest cost solution

found during our experiments for problem instance 𝑘.

For the learning set, 𝑐∗(𝑘) is the best performance of the pure algorithms.

For the test set, 𝑐∗(𝑘) is the best performance of the pure algorithms and the

switching techniques, which outperform the pure algorithms in some cases.

Due to the stochastic nature of the algorithms, we run each algorithm ten

times (∣𝑅∣ = 10) on every problem instance.

We also report the mean fraction of problems in each set for which the al-

gorithm found the best known solution, known as mean fraction best (MFB).7

MFB can show that an algorithm has good performance on some problem

instances even if it has poor performance on other instances, something that

is obscured with MRE.

MFB is defined as:

MFB(𝑎,𝐾,𝑅) =
1

∣𝑅∣
∑
𝑟∈𝑅

∣𝑏𝑒𝑠𝑡(𝑎,𝐾, 𝑟)∣
∣𝐾∣ (5.2)

where 𝑏𝑒𝑠𝑡(𝑎,𝐾, 𝑟) is the set of solutions for 𝑘 ∈ 𝐾 during run 𝑟 when

𝑐∗(𝑘) = 𝑐(𝑎, 𝑘, 𝑟).

5.4 Pure Algorithm Performance

In this section we evaluate the performance of the pure algorithms. We will

see from the results that there is a case for algorithm control on this problem

domain. The pure algorithms were run for 𝑇 = 1200 CPU seconds on the

learning set of problem instances. Table 5.1 displays the mean fraction of

problems in each subset and overall for which each algorithm found the best

solution (MFB) and Table 5.2 shows the mean relative error (MRE). The

lowest MRE value for each table is shown in bold font. Across all problems,

7MFB reports the mean fraction best of 10 runs on the same instance. In some cases
the best solution will not be found in all runs. This results in lower MFB scores than if
we had experimented with a single run of each algorithm.
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MC Rand JC All

settimes 0.03333 0 0.38333 0.13889
tabu-tsab 0.39833 0.19333 0.2 0.26389
texture 0.03833 0.06 0.87333 0.32389

Table 5.1: Mean fraction of problems in each learning problem set for which
the best solution was found by each pure algorithm.

MC Rand JC All

settimes 0.04243▲ 0.04210▲ 0.01152 0.03202▲
tabu-tsab 0.00740△ 0.01425 0.01308 0.01158
texture 0.02027 0.01608 0.00197△ 0.01277

△ indicates significantly better performance than all other pure techniques
▲ indicates significantly worse performance than all other pure techniques

Table 5.2: Mean relative error of solutions found by each pure algorithm on
the learning set.

the difference in MRE performance between texture and tabu-tsab is not

statistically significant.8 However, there are significant differences among

the problems sets: while tabu-tsab dominates in the machine-correlated (MC)

problem set, the results are more uniform for the random (Rand) problem

set and texture is superior in the job-correlated (JC) set.

These results demonstrate the opportunity to solve an algorithm selec-

tion problem as no one pure algorithm dominates. In practice, a common

approach is to simply choose the pure algorithm that is best on average on

the learning set (e.g., the algorithm with the lowest MRE) and run that al-

gorithm for all subsequent problem instances. Clearly, with no dominant

algorithm, such an off-line algorithm selection approach will not result in the

best performance possible on each problem instance. It is unclear, however,

that an on-line approach (either high knowledge or low knowledge) will be

better as some on-line computational time must be spent in selecting the

8All statistical results in this chapter are measured using a randomized paired t-test
[27] with a significance level of 𝑝 ≤ 0.005. To readers concerned with the issue of Type I
errors due to multiple comparisons, a Bonferonni adjustment implies that our results are
significant to 𝑝 ≤ 0.05, with at most 10 comparisons.

79



algorithm.

5.5 Prediction

On-line algorithm selection chooses an algorithm to run only after the prob-

lem instance has been presented to the system. In this case, the time to

make the selection must be taken into account. To quantify these times, let

𝑡𝑝 represent the prediction time and 𝑡𝑟 represent the subsequent time allo-

cated to run the chosen pure technique. It is required that the total run-time

𝑇 = 𝑡𝑝 + 𝑡𝑟.

In the prediction techniques investigated here, during the prediction phase

each pure algorithm, 𝑎 ∈ 𝐴, is run for a fixed number of CPU seconds, 𝑡, on

the problem instance. We require that 𝑡𝑝 = ∣𝐴∣ × 𝑡. The quality of solutions

found for each run is used to select the algorithm that will achieve the best

performance given the time remaining. This is the same low knowledge

prediction framework that was introduced in Beck & Freuder [10].

We assume that when a pure algorithm has been selected it does not have

to re-start: it can continue the search from where it left off in the prediction

phase. The total run-time for the selected algorithm is 𝑇𝑠 = 𝑡𝑟 + 𝑡. The

learning set is used to identify 𝑡∗, which is the value of 𝑡 that leads to the

best prediction performance.

5.5.1 Control Rule

Algorithm selection can be performed based on the application of a sim-

ple control rule. In Beck & Freuder [10], several control rules are investi-

gated that make a selection based on observations of the quality of solutions

found. Of these methods, choosing the method that found the best solution

so far dominated other approaches. We define this approach as 𝑝𝑐𝑜𝑠𝑡𝑚𝑖𝑛. Let

𝑐𝑝(𝑎, 𝑘) be the solution quality found by algorithm 𝑎 during the prediction

phase on problem instance 𝑘. The algorithm selected by 𝑝𝑐𝑜𝑠𝑡𝑚𝑖𝑛 is the one

which has the minimum value of 𝑐𝑝(𝑎, 𝑘). Ties are broken randomly.
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Three Bayesian classifiers are used together to predict the best algorithm at time
𝑇𝑠 = 1140. In this example the prediction time is 𝑡𝑝 = 90 seconds which means each
algorithm is run for 30 seconds during the prediction phase. The performance trends
of these 30 second runs are input as features to each classifier. Each classifier then
predicts the final performance for a specific algorithm.

Figure 5.4: Bayesian classifiers.

5.5.2 Bayesian Classifier

In an off-line training phase, a Bayesian classifier is constructed for each pure

algorithm given a predefined prediction time, 𝑡𝑝, for the purpose of predicting

the final performance of that algorithm at time 𝑇𝑠. In each classifier, for

every 10 seconds of prediction time, a feature variable is created with possible

values of “best” or “behind” for each pure algorithm. The value is assigned

depending on whether the algorithm has found the best solution out of all

the algorithms, 𝑎 ∈ 𝐴, at that time point. More than one algorithm may

have found the best solution at a particular time. Each classifier has a class

variable representing the final performance of the algorithm (i.e, at time 𝑇𝑠).

It also has the value “best” or “behind.” For the learning phase, feature and

class values are input. For the test phase, only feature values are given and

the classifier predicts the final performance of each algorithm.

For example, let 𝑇 = 1200, 𝑡𝑝 = 90, and ∣𝐴∣ = 3, as shown in Figure 5.4.

In this example we input nine feature variables: three for each algorithm

at 10, 20 and 30 seconds and the classifiers predict the final performance

for each algorithm at 𝑇𝑠 = 1140 seconds. The classifiers are trained using

the algorithm performance on the learning set. Once trained, the hybrid

algorithm executes each pure algorithm for 𝑡𝑝/∣𝐴∣ = 30 seconds to gather
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the input features. The classifiers then predict which of the algorithms will

be best at 1140 seconds, and the selected algorithm is run for the remaining

1110 seconds, continuing search from where it left off.

To determine the best value of 𝑡𝑝, the procedure is repeated by learning a

new set of Bayesian classifiers for values of 𝑡𝑝 ∈ {30, 60, 90, . . . 1200} providing
an assessment of hybrid algorithm performance for each prediction time. The

prediction time with the best performance is 𝑡∗. The Bayesian classifiers for

𝑡𝑝 = 𝑡∗ are then used on the test set.

In the case that more than one algorithm is predicted to be best, ties

are broken by choosing the algorithm with the best mean solution quality on

the learning set at time 𝑇 . Therefore the tie breaking order is (from highest

to lowest preference): tabu-tsab, texture, and then settimes. The Bayesian

classifiers are learned using WinMine 2.0 [26] with default parameters. We

refer to this techniques as Bayes.

5.5.3 Perfect Knowledge Classifiers

We can perform an a posteriori analysis of our data to compare our low

knowledge approach with the best performance that can be achieved with a

high knowledge classifier which seeks to select a pure algorithm for a given

problem instance. The best-all classifier chooses the pure algorithm that is

best, on average, over all problem instances. This algorithm is then applied

to every problem instance. The best-sub classifier chooses the pure algorithm

that is best, on average, for the problem set to which the test instance be-

longs. best-sub is the best result we can achieve with a high knowledge classi-

fier that infallibly and with zero CPU time can categorize instances into the

correct problem set. The best-instance classifier makes a stronger assump-

tion: that, with zero CPU time, the high knowledge classifier can always

choose the best pure algorithm for a given instance. No technique based on

choosing a pure algorithm for a given instance can perform better.
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5.5.4 Experiments: Prediction Control

For these experiments, once again the overall time limit, 𝑇 , is 1200 CPU

seconds. Each pure algorithm is run for 𝑇 seconds with results being logged

whenever a better solution is found. This design lets us process the results

to examine the effect of different settings for the prediction time, 𝑡𝑝, and

different values for 𝑇 ≤ 1200. As noted, the number of algorithms, ∣𝐴∣, is 3.
Recall that the learning set is used to build a set of Bayesian classifiers

for each possible prediction time and identify the one with the smallest mean

relative error (MRE). The best 𝑡𝑝 for the Bayesian classifiers was found to

be 270 seconds, meaning that each pure algorithm is run for 90 seconds and

then the Bayesian classifiers are used to select the pure algorithm to be run

for the subsequent 930 seconds. The same process was used to determine

the best prediction time for 𝑝𝑐𝑜𝑠𝑡𝑚𝑖𝑛. The best 𝑡𝑝 value for 𝑝𝑐𝑜𝑠𝑡𝑚𝑖𝑛 was 120

seconds, where each pure algorithm is run for 40 seconds.

Again we use the measure of MRE to compare algorithm performance,

this time on a test set of new problem instances. Recall that MRE is calcu-

lated by comparing how well an algorithm did on a problem instance 𝑘 against

the best-known solution, 𝑐∗(𝑘). The best-known solution is not necessarily

the optimal solution, but rather the best solution found during our experi-

ments. While no prediction technique can perform better than the best pure

technique, some of the switching techniques which we will present in Section

5.6.1 do perform better than the best pure technique on the test problem

set. This has the effect of increasing the MRE of the pure algorithms on the

test set. Similarly, the mean fraction of best solutions found decreases for

the pure algorithms. For example, best-instance indicates that pure methods

now find the best solutions on only 25.8% of all problem instances.

Table 5.3 and Table 5.4 present the results of the experiment and the sta-

tistical significance of the prediction and perfect classifier techniques com-

pared with the pure algorithms and with all prediction algorithms on the

test set. Only the best-instance perfect classifier finds an MRE significantly

different (lower) than either prediction technique. In other words, there are

no significant differences among the two on-line prediction variations, and
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MC Rand JC All

settimes 0 0 0.32500 0.10833
tabu-tsab 0.00750 0.00500 0.17500 0.06250
texture 0.01750 0.02250 0.72250 0.25420

Bayes 0.0175 0.01500 0.62500 0.21917
pcost𝑚𝑖𝑛 0.0150 0.00750 0.66750 0.23000

best-all 0.00750 0.00500 0.17500 0.06250
best-sub 0.00750 0.02250 0.72250 0.25000
best-instance 0.02500 0.02750 0.72250 0.25833

Table 5.3: Mean fraction of best solutions found by each prediction algorithm
on the test set.

MC Rand JC All

settimes 0.04602 0.05185 0.01684 0.03823
tabu-tsab 0.01985 0.02115 0.01574 0.01891
texture 0.02919 0.02056 0.00894 0.01956

Bayes 0.01918 0.01863 0.00737△ 0.01506△
pcost𝑚𝑖𝑛 0.02038 0.02110 0.00729△ 0.01626

best-all 0.01985 0.02115 0.01574 0.01891
best-sub 0.01985 0.02056 0.00894 0.01645
best-instance 0.01482□ 0.01498□ 0.00491□ 0.01157□

△ indicates significantly better performance than best-all
□ indicates significantly better performance than all prediction methods

Table 5.4: Mean relative error of solutions found by each prediction algorithm
on the test set.
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the best-sub classifier. This demonstrates that even a simple rule can be ap-

plied in a low knowledge context to achieve competitive performance. Both

prediction methods outperform best-all on the JC problem set, and Bayes

outperforms best-all when compared over all problem instances.

To explore the impact of different time limits, we performed a series of

experiments using the same design as above with 𝑇 ∈ {120, 240, . . . , 1200}.
For each time limit, the learning set was used to create a set of Bayesian

classifiers and to identify the optimal prediction time, 𝑡∗ for both Bayes

and 𝑝𝑐𝑜𝑠𝑡𝑚𝑖𝑛 individually (i.e. the same 𝑡∗ is not used for both prediction

methods). Table 5.5 presents the results. The best-all column is the MRE

of the best pure technique on the test set at each time limit. For 𝑇 ∈
{120, . . . , 960}, best-all is texture which achieves the lowest MRE of all pure

techniques. For 𝑇 ≥ 1080, best-all is tabu-tsab. There is no evidence of a

significant difference between either prediction method and best-sub for any

time limit with the exception of 𝑇 = 120, when they are both worse and

where Bayes is also worse than best-all. Interestingly, Bayes outperforms

best-all at most time limits after 480 seconds. We see that best-instance is

significantly better than all prediction techniques at all time limits.

We conclude that the results for 𝑇 = 1200 are applicable to other choices

for an overall time limit. The prediction approaches are no worse than a high

knowledge classifier that can identify the problem set, best-sub except at very

low time limits. The 𝑝𝑐𝑜𝑠𝑡𝑚𝑖𝑛 technique does not perform significantly worse

than Bayes, however Bayes outperforms best-all at many time limits.

5.5.5 Summary: Prediction Control

Our results demonstrate that a prediction-based low knowledge algorithm

selection technique can perform as well as choosing the best pure algorithm

(on average) based on a learning set and as well as a reasonable, though

idealized, high knowledge algorithm selection technique best-sub that is able

to infallibly classify problem instances into the correct underlying subset.

Performance is not as good as the optimal high knowledge approach best-

instance that is able to infallibly choose the pure algorithm that will lead to
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Algorithm

Time
Limit

Bayes pcost𝑚𝑖𝑛 best-all best-sub best-
instance

120 0.04065▲ 0.04086 0.03867 0.03665□ 0.03129□
240 0.02980 0.03151 0.03108 0.02911 0.02424□
360 0.02576 0.02664 0.02772 0.02586 0.02053□
480 0.02318△ 0.02378 0.02557 0.02337 0.01837□
600 0.02076△ 0.02160 0.02413 0.02191 0.01698□
720 0.01957 0.02030 0.02246 0.02027 0.01555□
840 0.01814△ 0.01928 0.02146 0.01900 0.01441□
960 0.01694△ 0.01815 0.02073 0.01798 0.01332□
1080 0.01582△ 0.01714 0.01975 0.01709 0.01222□
1200 0.01506△ 0.01626 0.01891 0.01645 0.01157□

△ indicates significantly better performance than best-all
□ indicates significantly better performance than all prediction methods
▲ indicates significantly worse performance than best-all

Table 5.5: Mean relative error of each prediction algorithm for different time
limits over all problem sets.

the best solution for each problem instance.

A simple rule choosing the algorithm that returned the best solution in

the prediction phase achieves good performance. The more sophisticated

prediction technique, based on learning Bayesian classifiers, does not per-

form significantly better than the simple rule. While these experiments do

not allow us to make general conclusions about the use of machine learning

techniques (or even Bayesian classifiers) within a predictive control paradigm,

they suggest that our simple learning model provides insufficient information

for the learning mechanism. It might be the case that further problem fea-

tures can be identified that can be used to build a more accurate prediction

model. However, given that our goal is to minimize the expertise necessary,

building more complicated models with additional problem features is not a

reasonable direction.

86



5.6 Continuous Control

Our second approach to algorithm selection generalizes the single decision of

the predictive paradigm to a control structure where the selection decision

can be made multiple times and, more generally, the decision is not one of

selection but of allocation of computational resources to the pure algorithms.

There are a number of ways that this paradigm could be instantiated. In

this section, we investigate running a series of iterations where the control

problem consists of deciding what portion of the iteration time is given to

each pure algorithm.

5.6.1 Switching

The switching paradigm allocates run-time to the pure algorithms during

search. In contrast to predictive selection, the allocation decision is made

multiple times. 𝑛 iterations are performed such that each iteration, 𝑖, has

a time limit of 𝑡𝑖 CPU seconds and
∑

1≤𝑖≤𝑛 𝑡𝑖 = 𝑇 . During each iteration,

the run-time of each pure algorithm, 𝑎 ∈ 𝐴, is determined using a weight,

𝑤𝑖(𝑎), which is learned as the search progresses. The weights for an iteration

are normalized to sum to 1 and therefore, 𝑤𝑖(𝑎) corresponds to the fraction

of time allocated to algorithm 𝑎. In other words, algorithm 𝑎 is run for

𝑡𝑖 × 𝑤𝑖(𝑎) seconds. For example, if algorithm 𝑎 has weight 𝑤𝑖(𝑎) = 0.2 and

𝑡𝑖 = 60 seconds, then 𝑎 is run for 12 seconds during iteration 𝑖. All weights

are initialized to 1/∣𝐴∣.
Weights are updated after each iteration by considering the current weight

and the performance of each algorithm during the last iteration. Performance

is measured in cost improvement per second, which allows us to compare

algorithms despite the differing run times. We normalize the cost improve-

ment per second to sum to 1 producing a performance value, 𝑝𝑖(𝑎). The

weights are then adjusted using a standard reinforcement learning formula:

𝑤𝑖+1(𝑎) = 𝑝𝑖(𝑎)× 𝛼+ 𝑤𝑖(𝑎)× (1− 𝛼). The 𝛼 value controls the influence of

the previous weight and the performance value. A diagram of the switching

approach is shown in Figure 5.5.
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Algorithm switching passes the best solution found from one algorithm to the next.
Each algorithm is run for a proportion of the iteration time 𝑡𝑖 based on the algo-
rithm’s weight value 𝑤𝑖(𝑎). At the end of an iteration, the performance, 𝑝𝑖(𝑎) of each
algorithm 𝑎 is used to adjust the weight values used in the next iteration. Here we
show two iterations.

Figure 5.5: Algorithm switching.

Sharing Solutions Unlike the predictive paradigm, switching shares in-

formation among algorithms. Each invocation of an algorithm begins with

the best solution found so far. However, different pure algorithms are able

to exploit this information differently. The constructive algorithms, texture

and settimes, only make use of the bound on the solution quality, searching

for a solution that is strictly better than the best solution found so far. Each

iteration of tabu-tsab, however, must begin with an initial solution. The best

solution found so far is used. Recall that at any given time, each algorithm

can return the best complete solution that it has found so far. If, in a given

time interval, no better solution has been found, the solution found in the

previous time interval is returned.

Algorithm Order We switch between algorithms ∣𝐴∣ − 1 times during

an iteration, running each algorithm exactly once. For each iteration, the

order in which the algorithms are run is randomly generated with uniform

probability. Learning a good order of algorithms is an interesting area for

future work.
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Learning Rate No weight updating is done until after the second itera-

tion, as it is very easy to find large improvements in solution quality in the

first iteration. Therefore learning is postponed until search becomes more

challenging. In all variations that use learning, we set the learning rate 𝛼 to

0.5. Experimenting with different values of 𝛼 is an interesting direction we

intend to pursue in our future work.

Iteration Times Two variations on iteration times are used here. In rl-

static, the length of each iteration does not vary: 𝑡𝑖 = 60, for all 𝑖. For rl-

double the time for the first two iterations is fixed until learning has started,

𝑡1, 𝑡2 = 60, and subsequently 𝑡𝑖+1 = 2 × 𝑡𝑖. The motivation for increasing

iteration times comes from the observation that the algorithms take more

time to find better solutions since the problems become harder as we minimize

the cost. Experimenting with different values of of 𝑡𝑖 and different growth

rates is another interesting direction we intend to pursue in future work.

Learning Set One distinct advantage of the switching approach is that it

does not rely on a learning set. All learning is done on-line, after the prob-

lem instance has been presented. The system does not require any off-line

configuration and so the switching technique is not dependent on the learn-

ing set being representative of the real problems that will be encountered.

However, a learning set may be useful for tuning the switching parameters

such as the learning rate 𝛼, the duration of iteration times, and the order-

ing of algorithms. Another possible use of the learning set is to filter out

algorithms that are not competitive at all with a particular problem class.9

5.6.2 Experiments: Algorithm Switching

Table 5.6 and Table 5.7 display the results on the three problem sets aver-

aged over ten independent runs, with 𝑇 = 1200. We use the same method to

compute MRE as described in Section 5.2. The two reinforcement learning

9As mentioned in Section 5.2, we performed this filtering by hand but this could easily
be automated.
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MC Rand JC All

settimes 0 0 0.325 0.10833
tabu-tsab 0.0075 0.005 0.175 0.0625
texture 0.0175 0.0225 0.7225 0.2542

Bayes 0.0175 0.015 0.625 0.21917
pcost𝑚𝑖𝑛 0.015 0.0075 0.6675 0.23

best-all 0.0075 0.005 0.175 0.0625
best-sub 0.0075 0.0225 0.7225 0.25
best-instance 0.025 0.0275 0.7225 0.25833

rl-double 0.0525 0.0575 0.7575 0.28917
rl-static 0.015 0.0075 0.76 0.26083

Table 5.6: Mean fraction of best solutions found by switching techniques on
the test set.

MC Rand JC All

settimes 0.04602 0.05185 0.01684 0.03823
tabu-tsab 0.01985 0.02115 0.01574 0.01891
texture 0.02919 0.02056 0.00894 0.01956

Bayes 0.01918 0.01863 0.00737 0.01506
pcost𝑚𝑖𝑛 0.02038 0.02110 0.00729 0.01626

best-test 0.01985 0.02115 0.01574 0.01891
best-sub 0.01985 0.02056 0.00894 0.01645
best-instance 0.01482 0.01498 0.00491 0.01157

rl-double 0.01419∘ 0.01407▽∘ 0.00417▽□ 0.01081▽∘
rl-static 0.02647♦ 0.02431▼ 0.00485△ 0.01854♦

△ indicates significantly better performance than best-all
▽ indicates significantly better performance than best-sub
□ indicates significantly better performance than all prediction methods
∘ indicates significantly better performance than all other control methods
▼ indicates significantly worse performance than best-sub
♦ indicates significantly worse performance than best-instance

Table 5.7: Mean relative error performance of switching techniques on the
test set.
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Algorithm

Time Limit rl-double rl-static nl-double nl-static no-com

120 0.03555♦△ 0.03401♦△ 0.03637♦ 0.03474♦ 0.05605 ▲∙
240 0.02698♦△ 0.02459▽∘ 0.02788♦△ 0.02696♦ 0.04399 ▲∙
360 0.02158▽ 0.02113▽ 0.02324♦△ 0.02379♦ 0.03867 ▲∙
480 0.01913▽ 0.01971▽ 0.02030♦▽ 0.02249♦ 0.03531 ▲∙
600 0.01680▽∘ 0.01898△ 0.01882♦▽ 0.02198♦ 0.03298 ▲∙
720 0.01467▽∘ 0.01870♦△ 0.01739♦▽ 0.02182♦ 0.03108 ▲∙
840 0.01339▽∘ 0.01860♦△ 0.01577▽ 0.02174♦ 0.02980 ▲∙
960 0.01251▽∘ 0.01857♦ 0.01462▽ 0.02171▼ 0.02876 ▲∙
1080 0.01156▽∘ 0.01856♦ 0.01386▽ 0.02168▼ 0.02772 ▲∙
1200 0.01081▽∘ 0.01854♦ 0.01319▽ 0.02165▼ 0.02682 ▲∙

△ indicates significantly better performance than best-all
▽ indicates significantly better performance than best-sub
□ indicates significantly better performance than all prediction methods
∘ indicates significantly better performance than all other control methods
▲ indicates significantly worse performance than best-all
▼ indicates significantly worse performance than best-sub
♦ indicates significantly worse performance than best-instance
∙ indicates significantly worse performance than all other control methods

Table 5.8: The mean relative error of variations of the switching algorithm
at different time limits.

algorithms achieve strong performance. The better one, rl-double, outper-

forms all other control algorithms in every problem set. An advantage of the

switching paradigm is that different pure algorithms can be used in different

parts of the search, and therefore, better performance can be achieved on a

problem instance than the best pure technique. In contrast, predictive se-

lection techniques cannot perform better than the best pure technique. The

doubling of the time in the iterations appears to be an important part of

the performance of rl-double. Nonetheless, rl-static is able to achieve perfor-

mance that is overall not significantly worse than the best pure technique.

As with the prediction techniques, we also varied the overall time limit.

Table 5.8 presents the results. The rl-static approach achieves significantly

lower MRE than best-sub for three time limits: 𝑇 ∈ {240, 360, 480} and

performs better than all other control algorithms at 𝑇 = 240. From 240 to
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600 seconds, no significant difference is observed when rl-static is compared

to best-instance. Finally, rl-double achieves MRE significantly lower than

best-sub for 𝑇 ≥ 360 with no evidence of a significant difference against best-

instance except when 𝑇 ≤ 240. For 𝑇 ≥ 600, rl-double achieves significantly

better performance than all other algorithms shown in Table 5.8. The strong

results of rl-double are compared to the high knowledge selection methods in

more detail in Table 5.9 and discussed at the end of this section.

To assess reinforcement learning, we run rl-static and rl-double with 𝛼 =

0, which disables reinforcement learning by ignoring the current performance

result and keeps the weights constant. Each pure algorithm receives an equal

portion of the iteration time, regardless of previous performance. We call

these “no-learning” variations, nl-static and nl-double. Results, also in Table

5.8, demonstrate that reinforcement learning has a strong impact. Although

the significant difference is not marked in the table, rl-static is significantly

better than nl-static for all 𝑇 , and rl-double is significantly better than nl-

double at all time limits except 𝑇 = 120. Interestingly, nl-double not only

achieves significantly better performance than best-sub on seven of the ten

time limits but also achieves a significantly lower MRE than all algorithms,

except rl-double, for 𝑇 = 840 and 𝑇 = 960.

To investigate the impact of communication among the algorithms, the

no-com technique is nl-double without sharing of the best known solution

among the algorithms; each algorithm is allowed to continue from where it

left off in the previous iteration.10 no-com performs worse than any other

technique at all time limits; communication between algorithms is clearly an

important factor for performance.

Turning to the comparison of the best switching algorithm to the perfect

knowledge classifiers, in Table 5.9 we present a very strong result. The rl-

double technique achieves a lower MRE than best-sub for 𝑇 ≥ 360. Further-

more, rl-double performs as well as best-instance for all time limits 𝑇 ≥ 360.

In other words, without complex model building our best low knowledge ap-

10Another way to see this is that no-com runs each pure technique independently for
𝑇
∣𝐴∣ seconds and returns the best solution found. This is often referred to as a parallel

portfolio of algorithms.
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Algorithm

Time Limit rl-double best-all best-sub best-instance

120 0.03555♦△ 0.03867 0.03665 0.03129
240 0.02698♦△ 0.03108 0.02911 0.02424
360 0.02158▽ 0.02772 0.02586 0.02053
480 0.01913▽ 0.02557 0.02337 0.01837
600 0.01680▽ 0.02413 0.02191 0.01698
720 0.01467▽ 0.02246 0.02027 0.01555
840 0.01339▽ 0.02146 0.01900 0.01441
960 0.01251▽ 0.02073 0.01798 0.01332
1080 0.01156▽ 0.01975 0.01709 0.01222
1200 0.01081▽ 0.01891 0.01645 0.01157

△ indicates significantly better performance than best-all
▽ indicates significantly better performance than best-sub
♦ indicates significantly worse performance than best-instance

Table 5.9: Mean relative error of the best switching algorithm against perfect
knowledge prediction for different time limits.

proach achieves performance that is as good as the best possible high knowl-

edge predictive classification approach.

5.6.3 Algorithm Switching Summary

The experiments in this section show that a low knowledge switching ap-

proach to algorithm control can achieve strong performance. Not only is the

strongest variation (rl-double) significantly better than the best pure tech-

nique (best-all) at all time limits and better than best-sub after 360 seconds,

rl-double achieves performance that is equivalent to best-instance, the opti-

mal high knowledge selection11 approach. The main components of rl-double

are: repeated control decisions during search, communication of the best so-

lution among the pure algorithms, the doubling of the iteration time, and

the reinforcement learning. Comparisons with variations that selectively re-

11We note that we have not shown that low knowledge switching outperforms high
knowledge switching. The analysis of high knowledge switching methods is an interesting
area for future work.
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move each of these components shows that they all contribute to the overall

performance.

The fact that we have created a technique that achieves significantly bet-

ter performance than the best pure technique, and performance equivalent

to an optimal high knowledge selection method, is not the main conclusion

to be drawn from these experiments. Rather, the importance of these results

stems from the fact that the technique does not depend on expertise, either

in terms of development of new pure scheduling algorithms, or in terms of

development of a detailed domain and algorithm model. A low knowledge

approach is able to achieve better performance without requiring the exper-

tise to develop a high knowledge model.

5.7 Conclusion

In this chapter we have shown that a low knowledge approach to algorithm

control can be used to form a system that consistently and significantly out-

performs the best pure algorithm. Machine learning techniques play an im-

portant role in this performance, however, even a simple-minded approach

that evenly distributes increasing run-time among the pure algorithms per-

forms very well.

Our motivation for investigating low knowledge algorithm control was to

reduce the expertise necessary to exploit optimization technology. Therefore,

the strong performance of our techniques should be evaluated not simply from

the perspective of an increment in solution quality, but from the perspective

that this increment has been achieved without additional expertise. We

neither invented a new pure algorithm nor developed a detailed model of

algorithm performance and problem instance features. In the next chapter

we will continue to evaluate the performance of a low knowledge approach in

a different context to see if similar gains in performance are attainable.
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Chapter 6

Low Knowledge Control for

Large Neighbourhood Search

This chapter explores the application of low knowledge control methods to

the algorithm framework of large neighbourhood search (LNS). The primary

focus of this chapter is the use of low knowledge control methods to deter-

mine the best performing algorithm components. Experiments are performed

on three sets of challenging job shop scheduling problems and strong perfor-

mance is observed across all problem sets and time limits. We believe these

control methods are a significant step towards producing a system that will

consistently produce high quality solutions and reduce the expertise required

to apply optimization technology.

6.1 Introduction

Large neighbourhood search (LNS) is a combination of constraint program-

ming and local search that has proved to be a very effective tool for solving

complex optimization problems. Constraint programming methods are used

to provide a general and reusable way to specify and enforce constraints on

neighbourhood solutions that are visited in a local search style that efficiently

explores the search space of optimization problems. However, the practice of

applying LNS to real world problems remains an art which requires a great
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deal of expertise: effective neighbourhood heuristics and their parameters

must be discovered for each problem class. In this chapter, we show how to

reduce the expertise requirement by using low knowledge control methods to

create a system that adjusts its behaviour to suit the problem instance being

solved.

A great deal of research over the last decade has produced constraint

programming algorithms that perform well on many small to medium sized

problems. The core strengths of constraint programming are strong inference

methods, heuristic search and a natural problem modelling approach. Infer-

ence is often able to reduce the search space and quickly detect infeasibility

while heuristics are used to guide search toward areas of the search space

that are likely to contain solutions. Constraints are specified declaratively in

a rich modelling language that is arguably more accessible to non-experts,

than say, models using only a linear programming approach. This appears

to have all of the elements of a perfect system to allow non-experts to use

optimization technology.

The trouble, however, is that standard constraint programming search

methods do not scale well. The typical approach to optimization is the use

of tree search with branch and bound. These tree search methods are often

ineffective at optimizing larger problem instances without significant tuning

and effort on the part of an expert in constraint programming. The sheer

complexity of many problems renders even the most advanced constraint

based search methods ineffective unless careful problem modelling and, often,

a decomposition strategy is applied.

In this chapter, we show how to apply constraint programming techniques

to large optimization problems while reducing required expertise. We achieve

this through a combination of large neighbourhood search and low knowledge

algorithm control methods. Our results show strong performance, however,

more impressive is the ability of the control methods to adapt to suit the

problem instance being solved. Robust solving performance is achieved across

all problem sets and time limits indicating that it is possible to reduce the

human expertise required to effectively apply optimization tools.
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6.1.1 Scenario

We address the following computational problem. A problem instance is

presented to a scheduling system and that system has a fixed CPU time of

𝑇 seconds to return a solution. We assume that the system designer has

been given a set of neighbourhood heuristics that are applicable to the given

problem and a set of problem instances (the learning set) at implementation

time and that these instances are representative of the problems that will be

later presented. The task is to determine how to apply the neighbourhood

heuristics, on each instance, to gain the best quality of solution. This problem

solving scenario is similar to the one described in Chapter 5 except in this

context we are applying neighbourhood heuristics inside an LNS algorithm

rather than choosing between search algorithms.

6.1.2 Outline

This chapter is organized as follows. In Section 6.2 we discuss previous

work on LNS, including the application of control mechanisms. In Section

6.3 we describe the large neighbourhood search framework, search methods

and neighbourhood heuristics. In Section 6.4, an overview of the algorithm

configuration process is described that is expanded in the later sections. In

Section 6.5 we describe some details of our experimental setup, including

the problem instances, hardware and software. In Section 6.6 we present

an algorithm tuning method to configure neighbourhood heuristics. In Sec-

tion 6.7 we evaluate the performance of individual neighbourhood heuristics

and show the need for algorithm control methods. In Section 6.8 we apply

combinations of neighbourhood heuristics and different control methods and

show robust and strong performance results. In Section 6.9 we evaluate these

methods on the Taillard set of benchmarks without tuning and again show

strong and robust solving. In Section 6.10 we discuss two control methods

for LNS that are very similar to our work. We conclude in Section 6.11.
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6.2 Previous Work

The main idea of large neighbourhood search (LNS) is to iteratively apply

search to a part of a problem (the large neighbourhood) while restricting the

remainder of the problem to the values in the current solution. Many papers

have appeared with algorithms that follow this approach. The first work in

the constraint programming community using the term large neighbourhood

search applied the idea to the problem of vehicle routing with time-windows

[99]. In the metaheuristics community, the same concepts have been intro-

duced as a type of variable neighbourhood search called variable neighbour-

hood decomposition search [47]. Other work in the constraint programming

community is now considered an instance of LNS. For example, Nuijten et

al. [84] show a random selection neighbourhood in the domain of job shop

scheduling. Scheduling algorithms such as the shifting-bottleneck procedure

[1] and the shuffling procedure [2] can be considered instances of LNS. The

i-Flat algorithm [24, 73] is also directly related. All of these approaches have

produced high quality results by applying heuristics to select a part of the

problem to focus search on.

While some approaches have adopted a purely random selection process

when determining the part of the problem to search, other work has focused

on building more involved neighbourhood heuristics for particular problem

domains. For example, neighbourhood heuristics have been developed for job

shop scheduling [6, 22], earliness/tardiness scheduling [29], network design

[25], and car assembly sequencing [89]. The work of Propagation Guided-

LNS [90] and Relaxation Induced Neighbourhood Search [29] are interesting

as these methods do not rely on domain specific problem structure but in-

stead use properties of the incumbent solution and the constraint network.

Although new neighbourhood heuristics often produce a performance gains,

the increasing number of heuristics adds complexity to the algorithm config-

uration process: neighbourhood heuristics need to be selected and, in many

cases, parameter values chosen for each neighbourhood.

We now turn to work that has applied algorithm control to LNS. Perron

& Shaw [89] apply a low knowledge learning strategy in an LNS framework.
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Algorithm 2: Large Neighbourhood Search for Scheduling

1: 𝑆 := Create initial solution
2: while Not optimal and time left do
3: 𝑁𝐻 := Select a subset of activities
4: 𝑆 ′ := Remove any information involving 𝑁𝐻 from 𝑆
5: if Search retaining 𝑆 ′ finds improvement then
6: 𝑆 := Update solution
7: end if
8: end while

However, this learning strategy is applied only to select a search algorithm

used to explore the neighbourhood, rather than the selection of a neighbour-

hood heuristic. Two recent low knowledge control methods for the selection

of neighbourhood heuristics are adaptive large neighbourhood search (ALNS)

[92] and self-adaptive large neighbourhood search (SA-LNS) [59]. We discuss

these methods in more detail and how they relate to our work in Section 6.10.

6.3 LNS for Scheduling

We now describe a specific implementation of the LNS algorithm for schedul-

ing, shown in Algorithm 2. In this implementation of LNS, the metaheuristic

employed is hill climbing, meaning the solution 𝑆 is only updated if we find

an improvement. Other types of metaheuristics have been used such as ran-

dom walk [24, 43] or simulated annealing [92]. The remaining components

required to instantiate LNS are the solution representation, neighbourhood

heuristics and search algorithms, which are described in the rest of this sec-

tion.

6.3.1 Solution Representation

For many scheduling problems, a solution can be derived from a total order-

ing of activities on each resource. This information is sufficient to compute

the start time range of each activity as well as the overall makespan of the

schedule [32]. A convenient data structure to represent this type of solution
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is a linked list. We define the following relations for the linked list. Let

𝑎𝑗 = 𝑛𝑒𝑥𝑡(𝑎𝑖) be the activity 𝑎𝑗 that immediately follows 𝑎𝑖 (on the same

resource) in the current solution. We define a special dummy activity, 𝑎𝑟𝑗 ,

to indicate the start of the linked list for resource 𝑟𝑗. For example, the first

activity 𝑎𝑖 scheduled on resource 𝑟𝑗, will have the relation 𝑎𝑖 = 𝑛𝑒𝑥𝑡(𝑎𝑟𝑗).

To remove the assignment of a particular activity 𝑎𝑖, we simply remove all

ordering information that refers to 𝑎𝑖. If there is an activity scheduled before

𝑎𝑖 on the resource, e.g., 𝑎𝑖 = 𝑛𝑒𝑥𝑡(𝑎𝑗) then we remove this relation from

the solution. Likewise, if there is a following activity 𝑎𝑘 on the resource,

e.g., 𝑎𝑘 = 𝑛𝑒𝑥𝑡(𝑎𝑖), then we also remove this relation. For example, if a

resource 𝑟𝑗 has the sequence (𝑎𝑟𝑗 , 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) and we remove 𝑎3 from

the solution, we create two sequences (𝑎𝑟𝑗 , 𝑎1, 𝑎2) and (𝑎4, 𝑎5). Removing the

special activity 𝑎𝑟𝑗 , representing the start of the list, is not allowed.

The approach of maintaining the sequence of activities by a linked list is

different than maintaining the sequence using precedence relations. A prece-

dence relation is an ordering between a pair of activities. For example, the

end time of 𝑎1 must precede the start time of 𝑎2. The precedence relations

approach is called precedence constraint posting [24] or a partial order sched-

ule [43]. In the above example using a linked list, there is only one possible

way to reschedule 𝑎3 to create a sequence that is different from the original

sequence: (𝑎𝑟𝑗 , 𝑎1, 𝑎2, 𝑎4, 𝑎5, 𝑎3). In contrast, if precedence relations are used

to retain the original order, it would be possible to insert 𝑎3 after any of the

activities in the sequence.

6.3.2 Search Algorithm

Once activities have been removed from the current solution, a search algo-

rithm is required to reschedule them. The choice of algorithm is not explored

here but is also an area where algorithm control can be applied. See Perron

[88] for an example of control being applied to choose the search algorithm.

Here, we use the Texture algorithm as described in Chapter 5. This choice

was made since Texture was the strongest performing constructive search al-

gorithm we tried. For further details on the Texture algorithm see Section
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The time window neighbourhood heuristic selects all activities whose earliest start time is
in the time window interval.

Figure 6.1: Time window neighbourhood heuristic.

5.2.2. The application of control methods to search algorithm selection is an

interesting area for future work.

6.3.3 Neighbourhood Heuristics

A neighbourhood heuristic is used to select activities from the current so-

lution. The goal of a neighbourhood heuristic is to select activities that,

if rescheduled, are likely to lead to an improvement in solution quality. In

this section, we describe the neighbourhood heuristics used in experiments in

this chapter. For neighbourhood heuristics that take parameters, we denote

these parameters with the notation 𝜋(𝑋) where 𝑋 represents the name of

the parameter.

6.3.3.1 Time Window Neighbourhood

The Time Window neighbourhood heuristic selects all the activities that are

scheduled to start in a particular time interval. We refer to the interval as a

time window. The heuristic returns a list of neighbourhoods by sliding the

time window forward across the schedule to include different intervals. Each

time window overlaps the preceding one. An example of the Time Window

neighbourhood heuristic is shown in Figure 6.1 where all of the activities

with start times in the shaded box are selected.

Let 𝑒𝑠𝑡(𝑎𝑖) represent the lower bound of the start time of activity 𝑎𝑖 given
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the current schedule 𝑆. The minimum start time in the schedule is defined

by

𝑒𝑠𝑡𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑒𝑠𝑡(𝑎𝑖)∣ 𝑎𝑖 ∈ 𝐴) (6.1)

and the maximum start time by

𝑒𝑠𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑒𝑠𝑡(𝑎𝑖)∣ 𝑎𝑖 ∈ 𝐴) (6.2)

This gives the total time range of the current solution, 𝑟𝑎𝑛𝑔𝑒 = 𝑒𝑠𝑡𝑚𝑎𝑥 −
𝑒𝑠𝑡𝑚𝑖𝑛. We divide 𝑟𝑎𝑛𝑔𝑒 into 𝜋(𝑊𝑡) windows, thus each window has the

interval length 𝐼 = ⌈𝑟𝑎𝑛𝑔𝑒/𝜋(𝑊𝑡)⌉. Each time window is defined by 𝑡𝑚𝑖𝑛

and 𝑡𝑚𝑎𝑥 such that 𝐼 = 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛. The neighbourhood heuristic returns a

list of selections ordered by increasing time intervals, starting with 𝑡𝑚𝑖𝑛 =

𝑒𝑠𝑡𝑚𝑖𝑛. Each neighbourhood consists of all activities whose start time is in

the interval 𝑡𝑚𝑖𝑛 to 𝑡𝑚𝑎𝑥.

Time Window = {𝑎𝑖 ∣ 𝑎𝑖 ∈ 𝐴, 𝑡𝑚𝑖𝑛 ≤ 𝑒𝑠𝑡(𝑎𝑖) ≤ 𝑡𝑚𝑎𝑥} (6.3)

For the next interval, we shift the window by a fraction 𝜋(𝑆𝑡) of the window

interval length 𝐼, which gives us 𝑠ℎ𝑖𝑓𝑡𝑡 = 𝜋(𝑆𝑡) × 𝐼. Thus, after selecting

the first interval, we add 𝑠ℎ𝑖𝑓𝑡𝑡 to both 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥. In the case that the

last window on 𝑟𝑎𝑛𝑔𝑒 extends past 𝑒𝑠𝑡𝑚𝑎𝑥, we set 𝑡𝑚𝑎𝑥 to the value of 𝑒𝑠𝑡𝑚𝑎𝑥

creating a smaller window for the last interval.

A similar time window neighbourhood is defined in Caseau et al. [22],

however that heuristic returns the intervals in a random order. In this dis-

sertation we visit the window neighbourhoods in a deterministic order of

increasing times.

6.3.3.2 Resource Load Neighbourhood

The Resource Load neighbourhood heuristic returns a neighbourhood deter-

mined from a subset of resources. Each neighbourhood consists of all of the

activities which are scheduled on the selected resources. Resources are se-

lected in order of decreasing resource load. Resource load is the sum of the

durations of all activities currently scheduled on a that resource. Formally,
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The Resource Load neighbourhood heuristic selects all activities on resources in the re-
source window.

Figure 6.2: Resource load neighbourhood heuristic.

𝑙𝑜𝑎𝑑(𝑅) =
∑

𝑎𝑖∈𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑅)

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑖) (6.4)

where 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑅) is the set of activities scheduled on resource 𝑅 and

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑖) specifies the duration of activity 𝑎𝑖.

The intuition for the Resource Load neighbourhood is that the most

loaded resources will have a greater chance of conflicts when being scheduled.

In a manner similar to the Time Window neighbourhood, a neighbourhood

consisting of a ‘window’ of several resources is selected from an ordered list

of resources, starting with the most loaded resource and working towards the

least loaded resource. We show an example of this in Figure 6.2 where all of

the activities on 𝑅4 and 𝑅5 are selected.

Let 𝑅 be a sorted list 𝑛 resources, where 𝑅1 is the resource with the

maximum load, and 𝑅𝑛 is the resource with the minimum load. Given a

ratio 𝜋(𝑊𝑟) of resources to select, 𝑟 = 𝜋(𝑊𝑟)× 𝑛 determines the number of

resources to select for each neighbourhood. Let 𝑟𝑚𝑖𝑛 be the starting resource

index of the window, and 𝑟𝑚𝑎𝑥 be the ending resource index of the window.

Hence in a neighbourhood, we select all activities on resources 𝑅𝑟𝑚𝑖𝑛
to 𝑅𝑟𝑚𝑎𝑥

from the sorted list of resources 𝑅. Given 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥

Resource Load = {𝑎𝑖 ∣ 𝑎𝑖 ∈ 𝐴, 𝑎𝑖 ∈ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑅𝑗), 𝑟𝑚𝑖𝑛 ≤ 𝑗 ≤ 𝑟𝑚𝑎𝑥} (6.5)

The first neighbourhood sets 𝑟𝑚𝑖𝑛 = 1 and 𝑟𝑚𝑎𝑥 = 𝑟. For successive neigh-

103



bourhoods, we add 𝜋(𝑆𝑟) to both 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥. Therefore 𝜋(𝑆𝑟) determines

how much the window slides on each successive call. We stop when 𝑟𝑚𝑎𝑥 = 𝑛.

6.3.3.3 Random Neighbourhood

The Random neighbourhood heuristic is perhaps the simplest to describe.

Each neighbourhood consists of a set of randomly chosen activities. Formally,

given a ratio 𝜋(𝑅) of activities to select from the set of all activities 𝐴, we

compute 𝑠 = 𝜋(𝑅) × ∣𝐴∣. Each time the heuristic is invoked, a random

sequence of activities 𝑟𝑎𝑛𝑑𝑠𝑒𝑞 is generated with each activity 𝑎𝑖 ∈ 𝐴 given

an index 𝑟𝑎𝑛𝑑𝑠𝑒𝑞(𝑎𝑖) in this ordering.

Random = {𝑎𝑖 ∣ 𝑎𝑖 ∈ 𝐴, 𝑟𝑎𝑛𝑑𝑠𝑒𝑞(𝑎𝑖) ≤ 𝑠} (6.6)

There is no fixed number of neighbourhoods because we continue to draw 𝑠

activities, with replacement, for as long as we wish. Many existing approaches

have used some element of randomization to select activities [6, 22, 29, 84, 89,

90, 99].

6.3.3.4 Cost-Based Neighbourhood

The central idea of the Cost-Based neighbourhood is that variables are ranked

based on their impact on the objective in the current solution. The first

neighbourhood consists of only the most highly ranked variables. Successive

neighbourhoods include variables of a lower rank, but keep the previously

selected variables as well. Hence, a Cost-Based neighbourhood starts with the

variables with the highest cost impact and successively adds less important

variables in every subsequent neighbourhood. The challenge is to determine

an effective ranking strategy which focuses search on the variables that are

contributing the most to the objective.

Given a ranking function 𝑟𝑎𝑛𝑘, a solution 𝑆, and a set of activities 𝐴,

the Cost-Based neighbourhood is defined as

Cost-Based = {𝑎𝑗 ∣ 𝑎𝑗 ∈ 𝐴, 𝑟𝑎𝑛𝑘(𝑎𝑗, 𝑆) ≤ 𝑖} (6.7)
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where 𝑟𝑎𝑛𝑘 produces a rank value for each activity and 𝑖 indicates the number

of successive calls to the neighbourhood on solution 𝑆. Let 𝑚𝑎𝑥𝑅𝑎𝑛𝑘 be

the maximum rank value and for each value 𝑟 ∈ 1..𝑚𝑎𝑥𝑅𝑎𝑛𝑘 there exists

at least one activity 𝑎𝑗 where 𝑟𝑎𝑛𝑘(𝑎𝑗, 𝑆) = 𝑟. That is, the rank values are

consecutive and there exists at least one activity per rank value, which implies

that the set of activities in each neighbourhood is distinct. Note that the

Cost-Based neighbourhood increases in size; each successive neighbourhood

is a superset of the previous one, eventually including all of the variables.

Since identifying variables that have the highest impact is difficult, in

general, a heuristic can be used as a proxy for this impact. For the task of

minimizing makespan in the job shop scheduling problem it is well known

that to improve a solution it is necessary to reorder some activities along

a critical path. A critical path is defined as a sequence of critical activities

that are connected by precedence constraints, either induced by a sequence of

activities on a resource in the current solution, or by the problem definition.

A critical activity 𝑎 has a slack value of 0 in the current solution, where slack

is computed by 𝑠𝑙𝑎𝑐𝑘(𝑎) = 𝑙𝑠𝑡(𝑎) − 𝑒𝑠𝑡(𝑎). In other words, slack represents

how much an activity may slide in the schedule before another activity must

move, with ‘critical’ denoting an activity which cannot move at all.

To compute the rank value from the measure of slack, the following pro-

cedure is applied. Activities are grouped into subsets containing activities of

the same slack value. These subsets are then sorted by slack value, the order

of the subsets indicating the rank value. For example, the subset containing

activities with the smallest slack value has the highest rank value (𝑟 = 1)

while the subset containing the activities with the highest slack value has the

rank value 𝑟 = 𝑚𝑎𝑥𝑅𝑎𝑛𝑘. The Cost-Based neighbourhood selects the activ-

ities in all subsets with rank values of 𝑖 or less, meaning that each selection

is a superset of the last.

The idea of using the critical path to perturb the schedule is standard

in many local search approaches [2, 79] as well as in other techniques such

as iFlat [24] and iFlatRelax [73]. Likewise, Caseau et al. [22] present a

large neighbourhood search scheme that selects fragments of the critical path,

however, as far as we know no one has explicitly proposed a method that

105



reschedules all of the tasks on the critical path within an LNS framework.

In the context of vehicle routing, Pisinger et al. [92] introduce a randomized

cost-based neighbourhood called worst removal that selects a fixed number

of activities within a given rank threshold.

6.3.3.5 Growing Neighbourhoods

The Cost-Based neighbourhood heuristic has an interesting property: the

initial neighbourhood contains a small number of selected activities and each

successive neighbourhood increases the number of selected activities. Even-

tually all of the activities are selected. This property avoids fixing a neigh-

bourhood parameter which is useful since the size of the selected subproblem

is free to change during search. Although we do not perform a detailed

study here, our intuition is that this allows neighbourhoods to adapt to each

problem instance and to adapt as search progresses. However, growing neigh-

bourhoods also carries the risk that the neighbourhoods will become so large

that they are too computationally expensive to search efficiently.

We now discuss how the other neighbourhood heuristics described pre-

viously can be modified so that they also have the property of growing in

size.

∙ For the Time Window neighbourhood, the size of neighbourhood can

grow by decreasing the number of time windows, 𝜋(𝑊𝑡), and thus in-

creasing the number of activities selected. After one full sweep across

the scheduling horizon, 𝜋(𝑊𝑡) is decreased until we reach 𝜋(𝑊𝑡) = 1

where we select all activities.

∙ The Resource Load neighbourhood is modified in a similar fashion. The

neighbourhood size grows by modifying 𝜋(𝑊𝑟) so that 𝑟, the number

of selected resources, increases by 1. This has the effect of increasing

the neighbourhood until all resources are considered, at which point all

activities are selected.

∙ In our experiments we did not explore growing when applied to Random

neighbourhoods. However, a policy suggested in Nuijten et al. [84] is
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to slowly increase 𝜋(𝑅) if no solutions are found after a number of

iterations.

In our experiments, all neighbourhoods revert to their initial parameter

settings when a new solution is found. We determine the initial parameter

settings using the method described in Section 6.6. A more sophisticated

form of adjusting the parameters of a neighbourhood is presented in the MI-

MAUSA method [71] that adjusts the neighbourhood size based on experi-

ence gained while solving the problem instance. SA-LNS [59] adapts param-

eters during search using reinforcement learning. See Section 6.10 for further

details on SA-LNS. Adaptively tuning parameters during search, such as the

neighbourhood size is an interesting area for future work.

6.3.4 Computational Limits

Two computational limits are applied to neighbourhood heuristics. The pur-

pose of these limits is to distribute computation effort among heuristics and

the search of neighbourhoods. The time slicing limit shares time among the

different heuristics while the neighbourhood search fail limit is applied to the

exploration of each neighbourhood thereby sharing effort while applying a

particular heuristic during a time slice. After the description of these limits,

we give an example and details of how these limits are set.

6.3.4.1 Neighbourhood Heuristic Time Slicing

The difference in computation time between neighbourhood heuristics can be

significant. Some heuristics may select small neighbourhoods which are very

fast to search while other heuristics select larger neighbourhoods that take

longer to search. This poses a problem when sharing computational resources

among different heuristics. We address this by applying each neighbourhood

for a fixed amount of time, referred to as a time slice. During a time slice, the

heuristic will continue to select neighbourhoods to search until the duration

of the time slice has elapsed.
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slice 1 - 𝑛ℎ𝑖 slice 2 - 𝑛ℎ𝑗𝑛𝑛 slice 3 - 𝑛ℎ𝑖

duration 1 second 1 second 1 second
𝑛ℎ𝑖1 𝑛ℎ𝑖2 𝑛ℎ𝑗1 𝑛ℎ𝑗2 𝑛ℎ𝑗3 𝑛ℎ𝑗4 𝑛ℎ𝑖3 𝑛ℎ𝑖4 𝑛ℎ𝑖5

fail limit 100 100 100 100 100 100 100 100 100

Table 6.1: Example of neighbourhood heuristic time slicing and neighbour-
hood search limit.

6.3.4.2 Neighbourhood Search Fail Limit

Recall that a neighbourhood heuristic will select a series of different neigh-

bourhoods to search. It is likely that some of these neighbourhoods may

require a large amount of computation time to either find an improved so-

lution or determine that no such improvement exists. For this reason, we

restrict search effort on a each neighbourhood by limiting the total number

of backtracks, or fails, which can occur. This allows each neighbourhood

heuristic to explore many different neighbourhoods, increasing the chance

that we find a neighbourhood that contains an improving move that can be

found with a reasonable search effort.

6.3.4.3 Example

An example of time slices and fail limits is shown in Table 6.1. In this ex-

ample, we alternate between two neighbourhood heuristics, 𝑛ℎ𝑖 and 𝑛ℎ𝑗𝑛𝑛𝑛.

Each neighbourhood heuristic is given a time slice of 1 second. During this 1

second slice, multiple neighbourhoods are searched, each with a failure limit

of 100. For example, 𝑛ℎ𝑖2 represents the second neighbourhood selected by

heuristic 𝑛ℎ𝑖 during time slice 1. The time taken to search each neighbour-

hood differs, which accounts for the different number of neighbourhoods seen

in each slice. Note that when we get to slice 3, we continue with the next

available neighbourhood, 𝑛ℎ𝑖3, of the heuristic 𝑛ℎ𝑖. In this example, no im-

proved solution has been found. In the case that an improved solution is

found, all neighbourhoods are reset and initialized to the new solution.
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6.3.4.4 Adapting Limits

The duration of the time slice is initially set to 1 second and the fail limit set

to 100. However, in the case that no improved solutions are found after 10

slices, we double these limits. The motivation for increasing limits is twofold.

For unknown problems, it is hard to determine an effective limit a priori.

The second motivation is the observation that as optimization successively

finds improved solutions, search becomes more difficult, indicating that a

fixed limit is not suitable. Increasing limits allows more effort to be spent

exploring neighbourhoods as search proceeds. Increasing time limits was an

important feature of the switching strategy in Chapter 5.

6.4 LNS Control Problem

It is clear that the configuration of an LNS algorithm is not a trivial exercise.

The components and parameters described in the previous section highlight

the complexity in applying these methods. In this section, we propose that

the configuration of LNS is an algorithm control problem that can be ad-

dressed by low knowledge control methods. In the following sections, we

perform a series of experiments that apply low knowledge control methods

to large neighbourhood search.

Parameter Tuning In Section 6.6 we present a method that tunes the pa-

rameters of large neighbourhood search. This method applies a set of

neighbourhood heuristics and parameters to a set of training problem

instances. The output of the method is a ranking of the effectiveness of

each parameter configuration. The best parameters obtained through

this process are then used in the experiments that follow.

Pure Neighbourhoods The performance of each neighbourhood heuristic

is evaluated in Section 6.7. We refer to an LNS configuration that uses

only a single heuristic as a pure algorithm. We show that the perfor-

mance of each neighbourhood heuristics varies over time, and across

problem instances. It appears that choosing a single neighbourhood
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does not give robust performance over time and that performance may

be improved through the use of an on-line control method.

Control Methods Control methods for LNS are introduced in Section 6.8.

These methods apply a set of neighbourhood heuristics to a problem

instance and adapt weights based on the observed performance. These

weights are used to bias selection or the allocation of computation time

among heuristics. Experiments show the benefit of the control methods

in providing robust performance and in some cases, synergy, where the

combined methods outperform pure algorithms on a problem instance.

Evaluation on New Instances The experiments in Section 6.9 apply our

methods to a set of challenging benchmark problem instances. In these

experiments we do not perform any parameter tuning. Instead, we use

the parameter settings from an earlier experiment on a different set of

problem instances. The results show that when the performance on

problem instances varies significantly from those seen in the training

set, the control methods are able to adapt to perform well across all

problem instances.

6.5 Experimental Details

In this section, we present the problem instances and evaluation criteria that

are used in the experiments in this chapter. We also discuss some details

required to perform the experiments.

6.5.1 Software and Hardware

All of the algorithms in this chapter were implemented in C++ using the

constraint programming toolkit, ILOG Scheduler 6.0. Experiments were ex-

ecuted on a Pentium IV 1.8 Ghz CPU with 512MB of RAM running the

Linux operating system.
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6.5.2 Problem Instances

We evaluate our ideas on three sets of job shop scheduling problems (JSPs).

We use two randomly generated problem sets for in-depth experiments and

then provide an analysis of our approach on a set of standard benchmark

problem instances that range in size. We generated our own problem in-

stances in order to have a larger sample of problems to run experiments on.

However, for comparison with other approaches we provide results on a stan-

dard benchmark, the Taillard JSP instances [104].

The first generated set, 20x20, consists of medium sized scheduling prob-

lems with 20 jobs and 20 machines, each instance containing 400 activities.

The second generated set, 40x40, contains larger problem instances with 40

jobs and 40 machines, each instance containing 1600 activities. The activ-

ity durations are drawn randomly with uniform probability from the interval

[1, 99]. The routing of each job is randomly assigned so that each job has

exactly one activity on each machine, but each job requires machines in a

random order. Each set consists of 100 problem instances, which are divided

into a training set of 60 instances and a test set of 40 instances.

We also consider Taillard’s set of standard job shop benchmarks [104].

Performance is evaluated on the problem instances ta11 to ta80, which rep-

resent problems ranging in size from 20 to 100 jobs and 15 to 20 machines. A

limitation of these problem sets is that there are only 10 instances available

of each problem size, so we use the benchmark problem set as a validation

of our approach rather than for our detailed study.

6.5.3 Evaluation Criteria

Our primary evaluation criteria is mean relative error (MRE), a measure of

the mean extent to which an algorithm finds solutions worse than the best

solutions found during our experiments. MRE is defined as follows:

MRE (𝑎,𝐾) =
1

∣𝐾∣
∑
𝑘∈𝐾

𝑐(𝑎, 𝑘)− 𝑐∗(𝑘)
𝑐∗(𝑘)

(6.8)

where 𝐾 is a set of problem instances, 𝑐(𝑎, 𝑘) is the lowest cost solution found
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by algorithm 𝑎 on problem instance 𝑘, and 𝑐∗(𝑘) is the lowest cost solution

found during our experiments for problem instance 𝑘.

We also report the fraction of problems in each set for which the algorithm

found the best known solution, referred to as fraction best (FB).

FB can show that an algorithm has good performance on some problem

instances even if it has poor performance on other instances, something that

is obscured with MRE.

FB is defined as:

FB(𝑎,𝐾) =
∣𝑏𝑒𝑠𝑡(𝑎,𝐾)∣

∣𝐾∣ (6.9)

where: 𝑏𝑒𝑠𝑡(𝑎,𝐾) is the set of solutions for 𝑘 ∈ 𝐾 where 𝑐∗(𝑘) = 𝑐(𝑎, 𝑘).

6.5.4 Best Algorithm

In addition to the performance results of the algorithms that are compared in

each experiment we define two further results, BestMRE and BestInstance.

The first result, BestMRE(A,t), is the result of the algorithm 𝑎 ∈ 𝐴 that

had the best mean performance (lowest MRE) on a problem set 𝐾 at time 𝑡.

This represents applying the best single algorithm at time 𝑡 to all instances in

𝐾. The second set of results, BestInstance(A,t), is the best result found on

each problem instance by any of the algorithms 𝑎 ∈ 𝐴. If a single algorithm

dominates all others then BestMRE will equal BestInstance. Conceptually,

BestInstance is akin to running all of the algorithms in parallel on each

instance and then taking the best result.

For example, BestMRE(P,t) are the results produced by algorithm 𝑎 ∈ 𝑃 ,

where 𝑃 is the set of pure algorithms and 𝑎 is the single algorithm that had

the lowest MRE at time limit 𝑡. BestMRE(P,t) is equivalent to the best-

all method from Section 5.5.3 in Chapter 5. Likewise, BestInstance(P,t)

represents the best result on each instance that was observed by any of the

pure algorithms 𝑎 ∈ 𝑃 . BestInstance(P,t) is the same as best-instance, as

defined in Section 5.5.3.
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6.5.5 Statistical Analysis Method

In this section, we describe the design of the statistical analysis used in the

experimental results sections of this chapter. Differences in performance over

time are compared between algorithms, against the best overall algorithm,

and against the best solution found by any algorithm. The analysis considers

observations at 30 time points across the runs of each algorithm. The result

of the analysis is a post-hoc confirmation of differences over time.

The analysis procedure is performed on each set of experiment data to

check the experiment null hypothesis that the mean performance observed

is equal, which is the ANOVA result. If the experiment null hypothesis is

rejected, we check each comparison null hypothesis using Tukey’s Honest Sig-

nificant Difference (HSD) test. A comparison null hypothesis determines the

evidence that a particular pair of the population means is equal. If a compar-

ison null hypothesis is rejected, we say that there is a significant difference

between that pair of algorithms. Since multiple pair-wise comparisons are

performed, the Tukey HSD test is used to reduce the occurrence of Type I

errors (evidence that a difference exists when there is none).

The following analysis is applied to each set of experiment data. The

factor, or independent variable, is the algorithm with each level representing

a specific algorithm 𝑎 ∈ 𝐴. The dependent variable is the algorithm perfor-

mance, measured in relative error (RE), observed by running the algorithm

on each problem instance in the data set 𝑘 ∈ 𝐾. Therefore, each data set

is analyzed by producing a single table containing two columns: 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

and 𝑅𝐸. The data from one of these tables is fitted to a linear model which

is passed to the ANOVA test to determine if there is evidence to reject the

experiment null hypothesis, or in other words that there is a significant dif-

ference in algorithm performance in the set 𝐴. The Tukey HSD test takes

the same input as ANOVA but is used to determine evidence of a significant

pair-wise difference between each of the algorithms in 𝐴, the rejection of the

comparison null hypothesis.

For a particular problem set 𝐾 and set of algorithms 𝐴, we perform this

procedure for a set of time points 𝑇𝑃 over the execution of the algorithms.
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Therefore, the analysis is performed a total of ∣𝑇𝑃 ∣ times for each set𝐾. This

analysis gives insight as to the performance difference over time. We refer

to these experiment data sets as 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑇𝑎𝑏𝑙𝑒(𝐴,𝐾, 𝑡) and the related

analysis as the 30 time points analysis, since ∣𝑇𝑃 ∣ = 30 in our experiments.

To determine the evidence of a significant difference in performance across

all time limits, we merge the tables from each time limit into a single table,

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑇𝑎𝑏𝑙𝑒(𝐴,𝐾), which is used in the all time points analysis.

In our tests, we use the condition that 𝑝 < 0.005 (or 𝛼 = 0.005) to de-

termine statistical significance. However, in some cases, we are performing

many comparisons between algorithms, specifically when we look at algo-

rithm performance at 30 time points. The Bonferroni adjusted 𝑝 value for

𝑛 = 30 such comparisons is approximated by 𝛼/𝑛 which is 0.00002. The for-

mula for the error rate in this experiment is 1 − (1 − 𝛼)𝑛 which is 0.13962,

or a 14% chance that we will incorrectly reject the null hypothesis and claim

there exists at least one significant difference when there is none.

However, we note the critique of Perneger [87] where a case is made

against these types of adjustments. In particular, we take the argument

that we are not concerned with the universal null hypothesis (for exam-

ple, that there is no difference in all 30 time points) and are instead con-

cerned with the differences at each time point. Further, to directly tackle

the criticism of inflated error, we perform a separate test using all time points

(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑇𝑎𝑏𝑙𝑒(𝐴,𝐾)) in single comparison test.

6.6 Parameter Tuning

In this section, we present a method for tuning the parameters of neighbour-

hood heuristics and the results of applying this method to two training sets

of problem instances. The results are used to determine the best parameter

combinations which are then used in the remainder of this chapter.
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Algorithm 3: Tuning evaluation procedure

1: 𝑆 := Create initial solution
2: while Not optimal and time left do
3: for all Π ∈ 𝑃 do
4: 𝑆Π := result of applying Π to 𝑆
5: Record performance of Π
6: end for
7: 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 := 𝑚𝑖𝑛(𝑐(𝑆Π)∣Π ∈ 𝑃 )
8: 𝐵𝑒𝑠𝑡𝑆 := selectRandom(𝑆Π∣𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝑐(𝑆Π),Π ∈ 𝑃 ))
9: if 𝑐(𝐵𝑒𝑠𝑡𝑆) < 𝑐(𝑆) then
10: 𝑆 := 𝐵𝑒𝑠𝑡𝑆
11: end if
12: end while

6.6.1 Tuning Procedure

We now present a procedure for evaluating neighbourhood heuristics shown

in Algorithm 3. The procedure takes as input a set of possible parameter

configurations 𝑃 and a problem instance. The procedure operates by apply-

ing every parameter configuration Π to every intermediate solution 𝑆 that is

found. A parameter configuration Π consists of a neighbourhood heuristic 𝑎

and a set of parameter values for each parameter 𝜋(𝑋) that is required by 𝑎.

The result of running each parameter configuration is recorded for analysis,

and the best improving solution found by any of the parameter combinations

is taken to be the next intermediate solution. In the case of ties, we ran-

domly select one of the best solutions. If no improved solution is found, then

we do not update 𝑆.

The result of this procedure is a history of performance for each neigh-

bourhood heuristic on a problem instance. The procedure is applied to each

problem instance in the training set and the information generated is then

analyzed to determine the best performing parameter configurations. We

present a simple analysis procedure in Section 6.6.3 and the resulting param-

eter configurations in Section 6.6.4.

Existing algorithm tuning mechanisms [16, 51, 53] operate by executing

each parameter configuration independently on each problem instance. Al-
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though these approaches can be used to tune heuristics for LNS, there is a

serious shortcoming in evaluating each configuration in isolation, since we

are interested in a system that will combine heuristics. In our procedure,

we apply each heuristic configuration at every control point during search.

We believe that our tuning procedure is superior in this context because all

parameter configurations are evaluated together over the course of execution

on a single problem instance.

There are clear improvements to this procedure that are not explored in

this chapter. For example, evaluating every possible parameter configuration

is expensive. We are interested in applying approaches that focus evaluation

on the most promising configurations [53]. Furthermore, it would be inter-

esting to learn synergies between configurations, for example, to detect if

certain configurations work better when applied in a particular order. Inves-

tigations of tuning mechanisms for combinations of heuristics is a promising

area for future work.

6.6.2 Parameter Configurations

The following parameters are explored for each neighbourhood heuristic. The

window size for the Time Window and Resource Load neighbourhood heuris-

tics must be determined, including how much to overlap these windows. The

Random neighbourhood heuristic requires a ratio of activities to select given

the problem size. While we could also optimize the parameters of the search

procedure from Section 6.3.2 we do not explore that here.

A total of 21 different configurations were applied. Each configuration is

applied for a limited amount of time using the slicing approach described in

Section 6.3.4. For the Time Window neighbourhood heuristic, we tried time

window values 𝜋(𝑊𝑡) of 2 to 20 in steps of 2 and used a single window overlap

ratio of 𝜋(𝑆𝑡) = 50%. The Resource Load heuristic requires a parameter

𝜋(𝑊𝑟) to specify the ratio of resources to select in a subproblem. We tried the

following values for 𝜋(𝑊𝑟) of 5%, 25%, 45%, 65% and 85%. The single overlap

value of 𝜋(𝑆𝑟) = 1 was used, indicating that 1 resource will be added and 1

resource will be removed as subsequent neighbourhoods are visited. Finally,
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the Random neighbourhood heuristic requires a parameter 𝜋(𝑅) specifying

how many activities to select. We tried values of 𝜋(𝑅) = 5%, 25%, 45%, 65%

and 85%. We also included the Cost-Based neighbourhood heuristic in these

experiments which takes no parameters.

6.6.3 Analysis of Results

The results of running the tuning procedure are shown in Table 6.2 and 6.3.

Each tuning run was applied to 60 problem instances from the training set

for a duration of 30 minutes on each instance. With 21 parameter configu-

rations, 30 minutes is equivalent to running each configuration for approxi-

mately 85 seconds on every instance. The average improvement in solution

quality (an absolute value in time units rather than a relative error) is shown

along with the probability of each neighbourhood heuristic making an im-

provement. The probability is computed simply by taking the number of

times an improvement was found divided by the number of times that neigh-

bourhood heuristic was tried. We multiply the probability of improvement

by the average improvement value to compute the utility of each neighbour-

hood heuristic.

We note that the above analysis of performance is only one of many pos-

sible approaches. For example, it would be interesting to analyze the results

of each parameter configuration over time. This would give insight into how

the best parameter configurations change at different stages in search. Such

information could be exploited to develop set of parameter configurations

that change as search progresses.

6.6.4 Best Parameters

The best parameters configurations change depending on the problem set.

For the medium problem set, the best configurations are Time Window with

𝜋(𝑊𝑡) = 2 windows, Resource Load with 𝜋(𝑊𝑟) = 65% resources and Ran-

dom with 𝜋(𝑅) = 45% of the activities, and then finally, the Cost-Based

neighbourhood heuristic. For the larger problems we see a different pic-

ture. Now the Cost-Based neighbourhood heuristic is the best configuration,
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in terms of average improvement and probability of improvement. Next is

Time Window with 𝜋(𝑊𝑡) = 8, 10, and 12 windows. We choose only the best

parameter setting of 𝜋(𝑊𝑡) = 8. The next best neighbourhood heuristic is

the Resource Load neighbourhood heuristic with a setting of 𝜋(𝑊𝑟) = 25%.

Finally, we have Random, with a setting of 𝜋(𝑅) = 25%.

6.7 Pure Neighbourhood LNS

In this section we evaluate the performance of each neighbourhood heuristic

independently. We refer to an LNS configuration that uses only a single

heuristic as a pure neighbourhood heuristic algorithm. The results show

strong performance but the best heuristic differs depending on the time limit

and problem set. Since no single method dominates, this result indicates

that algorithm control methods may boost performance by choosing the best

performing neighbourhood(s) for each problem instance.

6.7.1 Experiments

Using the parameter settings determined in Section 6.6, we ran each of the

neighbourhood heuristics independently on the 40 problem instances from

each test set. For the medium sized 20x20 problems, we used an overall time

limit of 10 minutes. For the large 40x40 problems, we used a time limit of

20 minutes. For comparison, we include the results of applying the search

method, Texture, without the large neighbourhood search procedure.

We show the mean relative error (MRE) results in Figure 6.3 and Figure

6.4. In the top of the each figure, we show the MRE against the best solution

found overall, which gives an indication of how fast each algorithm converges.

On the bottom, we show MRE(𝑡) which is the mean relative error against

the best solution found at each time 𝑡. MRE(𝑡) is useful to see how far away

each algorithm is from the best solutions found at each time limit 𝑡.

On the 20x20 problem set, the best performing neighbourhood heuris-

tics are Time Window and Resource Load. Initially Time Window leads,

but is overtaken by Resource Load mid way through the run. The Random
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(b) Mean relative error (MRE(𝑡)) against the best solution found at time 𝑡.

Figure 6.3: Pure neighbourhood heuristics run independently on the 20x20
problem set.
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(b) Mean relative error (MRE(𝑡)) against the best solution found at time 𝑡.

Figure 6.4: Pure neighbourhood heuristics run independently on the 40x40
problem set.
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(b) 40x40 problem set.

Figure 6.5: Best solutions found by pure neighbourhood heuristics.
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neighbourhood heuristic performs worse, but not as badly as the Cost-Based

neighbourhood which is far worse than all other heuristics. On the 40x40

problem set, the picture is different. Here the Cost-Based neighbourhood

heuristic is a very strong performer at the start of search. At around 300

seconds the Random neighbourhood heuristic takes the leads until the Time

Window neighbourhood heuristic overtakes it at 800 seconds. The Resource

Load neighbourhood heuristic performs worse than the other neighbourhood

heuristics on this problem set. The Texture method performs worse than any

neighbourhood heuristics, far worse than the best performers. On the 40x40

set, the Texture method is hardly able to improve the solution quality at all.

We do not include Texture in any further analysis.

In Figure 6.5 we show the fraction of best solutions found over time

by each neighbourhood heuristic. This gives a different perspective that

allows us to see if some heuristics perform well in some cases but poorly in

others. On the 20x20 results we can see that, out of the pure neighbourhood

heuristics, Resource Load and Time Window find a reasonable number of the

best solutions. On the 40x40 results, we again see that two neighbourhood

heuristics dominate the discovery of best solutions, Cost-Based and Time

Window and again at either end of the time scale. In both problem sets, the

number of best solutions found in the middle of the run drops. Recall that

the best solution may be found by an algorithm from later experiments in

this chapter, which is why the results in Figure 6.5 do not sum to 100%.

To determine the statistical significance of these results as they vary over

time, we performed the analysis as described in Section 6.5.5. The analysis

was performed at 30 time points through the run; every 20 seconds on the

20x20 set and every 40 seconds on the 40x40 set. We compared the ∣𝑃 ∣ = 4

pure neighbourhood heuristics and BestInstance(P,t) for a total of 5 factors.

We also included BestMRE(P,T) and BestMRE(P,t) however this does not

introduce any additional factors as these results are already contained in

the result for the pure algorithms. Each set of results contains 𝑛 = 40

performance measurements for each factor. We refer to this analysis as the

30 time points analysis. For each problem set we show a summary of the

significant differences (𝑝 ≤ 0.005) over the 30 time points.
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The following tables are used to summarize the results of the 30 time

points analysis:

∙ Table 6.4(a) shows the a comparison against the best pure algorithm at

the end of each run (time 𝑇 ), referred to as BestMRE(P,T). This com-

parison evaluates how well each neighbourhood heuristic does against

applying a single heuristic across all problem instances over all time

limits. BestMRE(P,T) is the typical approach used when selecting the

best algorithm for a fixed time limit 𝑇 .

∙ Table 6.4(b) shows the results of comparing against the single best,

by MRE(𝑡), pure method at each time point, which we refer to as

BestMRE(P,t). In this comparison each neighbourhood heuristic is

compared against the best single method, for each time limit, across

all problem instances. Unlike BestMRE(P,T), the algorithm that is

BestMRE(P,t) changes depending on the value of 𝑡.

∙ Table 6.4(c) shows the difference between each heuristic and BestIn-

stance(P,t), the best solution found by any of the neighbourhoods on

each problem instance. No pure neighbourhood can perform better

than BestInstance(P,t).

In each of these tables we show a count of time points for which there was

evidence of a significant difference for a neighbourhood heuristic, denoted by

W (worse) and B (better). We also show when a heuristic was the same,

denoted by S (same), which means the comparison was actually against the

same data set, which occurs in the case of BestMRE. In the case that there

is no evidence of a difference in performance,12 this is represented with the

symbol ‘?’.

We now discuss the results shown in these tables. In Table 6.4(a), we see

that BestMRE(P,T) was Resource Load on the 20x20 set and Time Window

on the 40x40 set, as indicated by 𝑆 = 30. On the 20x20 set, Random and

12In statistical testing, not rejecting the null hypothesis implies that the two means may
be the same, but is not conclusive. For this reason, we state this as ‘no evidence of a
significant difference’.
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Table 6.4: Count of significant differences over 30 time points for pure neigh-
borhood heuristics and BestMRE and BestInstance of pure neighborhood
heuristics.

(a) BestMRE(P,T) compared to pure neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

Random 27 0 1 2 9 0 10 11
Resource Load 0 30 0 0 27 0 0 3
Cost-Based 29 0 0 1 13 0 11 6
Time Window 0 0 2 28 0 30 0 0

(b) BestMRE(P,t) compared to pure neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

Random 29 0 0 1 15 10 0 5
Resource Load 2 15 0 13 30 0 0 0
Cost-Based 30 0 0 0 18 8 0 4
Time Window 0 15 0 15 15 12 0 3

(c) BestInstance(P,t) compared to pure neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

Random 30 0 0 0 16 0 0 14
Resource Load 5 0 0 25 30 0 0 0
Cost-Based 30 0 0 0 20 0 0 10
Time Window 0 0 0 30 16 0 0 14

W/S/B/? denotes significantly Worse, Same, significantly Better and ? no
evidence of a significant difference.
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Cost-Based perform worse than BestMRE(P,T) on nearly all of the time

points, while Time Window performs better on 2 time points and there

is no evidence of a significant difference on the remaining 28 time points.

On the 40x40 problem set, the results are more mixed, with Resource Load

performing the worst on 27 of the time points. The other heuristics, Random

and Cost-Based, perform better and worse on roughly a third of the time

points respectively. Similar results are shown in Table 6.4(b), where we

compare each neighbourhood heuristic against BestMRE(P,t). These tables

make it clear how often each algorithm had the best MRE. On the 20x20 set

Resource Load and Time Window are both the best at 𝑆 = 15 time points

each. On the 40x40 set, the best performance is split among Random, Cost-

Based and Time Window. Table 6.4(c) shows a comparison against the best

solution found by any heuristic on each problem instance. On the 20x20

set, there is no evidence that solutions found by the Time Window heuristic

are worse. Resource Load also performs strongly with evidence that worse

solutions are found on only 5 time points. Meanwhile, Random and Cost-

Based perform significantly worse on all time points. On the 40x40 set,

Resource Load is worse on all time points, Cost-Based is worse on 20 time

points, and Random and Time Window are both worse on 16 time points.

For the remaining time points, there is no evidence of a significant difference.

To determine the mean difference over the entire run, we merge the results

from the 30 time points into a single result set for each algorithm containing

𝑛 = 30× 40 = 1200 measurements. In this analysis there are 6 factors: the 4

pure neighbourhood heuristics, BestInstance(P,t) and BestMRE(P,t). There

is one more factor in this analysis since BestMRE(P,t) can change at each

time point and this required the creation of a new data set. We refer to this

analysis as the all time points analysis. For each problem set we show a table

of the pair-wise difference in MRE and the statistical significance (𝑝 value)

of the difference between algorithms.

The results of this comparison between pure neighbourhood heuristics is

shown in Tables 6.5(a) and 6.5(b). On the 20x20 problem set, Time Window

performs better than all other heuristics, with Resource Load following a

close second, then Random and finally Cost-Based which performs worse
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Table 6.5: Mean difference over all time points for pure neighborhood heuris-
tics.

(a) 20x20 problem set.

Random Resource Load Cost-Based Time Window

Random 0.01254 -0.01774 0.01533
(0.00000) (0.00000) (0.00000)

Resource Load -0.01254 -0.03028 0.00279
(0.00000) (0.00000) (0.00006)

Cost-Based 0.01774 0.03028 0.03307
(0.00000) (0.00000) (0.00000)

Time Window -0.01533 -0.00279 -0.03307
(0.00000) (0.00006) (0.00000)

(b) 40x40 problem set.

Random Resource Load Cost-Based Time Window

Random -0.01884 -0.00558 0.00004
(0.00000) (0.00000) (0.99998)

Resource Load 0.01884 0.01326 0.01888
(0.00000) (0.00000) (0.00000)

Cost-Based 0.00558 -0.01326 0.00562
(0.00000) (0.00000) (0.00000)

Time Window -0.00004 -0.01888 -0.00562
(0.99998) (0.00000) (0.00000)

Significant differences (𝑝 ≤ 0.005) are shown in bold and 𝑝 values are shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.
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Table 6.6: Mean difference over all time points for pure neighborhood heuris-
tics against BestMRE and BestInstance of pure neighborhood heuristics.

(a) 20x20 problem set.

BestMRE(P,T) BestMRE(P,t) BestInstance(P,t)

Random 0.01254 0.01633 0.02034
(0.00000) (0.00000) (0.00000)

Resource Load 0.00000 0.00380 0.00780
(1.00000) (0.00000) (0.00000)

Cost-Based 0.03028 0.03407 0.03808
(0.00000) (0.00000) (0.00000)

Time Window -0.00279 0.00101 0.00501
(0.00005) (0.61551) (0.00000)

(b) 40x40 problem set.

BestMRE(P,T) BestMRE(P,t) BestInstance(P,t)

Random 0.00004 0.00952 0.01144
(1.00000) (0.00000) (0.00000)

Resource Load 0.01888 0.02836 0.03028
(0.00000) (0.00000) (0.00000)

Cost-Based 0.00562 0.01510 0.01702
(0.00001) (0.00000) (0.00000)

Time Window 0.00000 0.00948 0.01140
(1.00000) (0.00000) (0.00000)

Significant differences (𝑝 ≤ 0.005) are shown in bold and 𝑝 values are shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.

129



than all other heuristics. On the 40x40 problem set both Time Window

and Random outperform the other two pure heuristics, with no evidence of

difference between them. Finally, Cost-Based outperforms Resource Load.

In Tables 6.6(a) and 6.6(b) we compare performance differences against

BestMRE and BestInstance over all time points. On the 20x20 set, we see the

best performing heuristics, Resource Load and Time Window, are very close

(less than 1%) to the performance of BestMRE and BestInstance. Random

and Cost-Based perform worse, and are 2% and 3.8% worse than BestInstance

respectively. On the 40x40 set, the best performing neighbourhoods are Time

Window and Random, which are 1.1% worse than BestInstance. Cost-Based

is 1.7% worse than BestInstance while Resource Load performs the worst at

3% worse.

6.7.2 Discussion

On both problem sets, all of the neighbourhood heuristics outperform the

state-of-the art tree search algorithm, Texture. The performance improve-

ment on the 40x40 problems is even more dramatic than the 20x20 prob-

lems. The search algorithm is barely able to improve the solution at all on

the larger problem instances. This type of result has led people to believe

that constraint based search methods do not scale, and indeed, it seems that

in the case of optimization, a single tree search is not an effective method on

large problems. However, when we apply large neighbourhood search, the

same search method performs well when neighbourhood heuristics focus and

restrict search effort.

The best performing neighbourhood heuristic changes depending on the

problem set, and indeed, even depending on the amount of time allowed

for processing. On the 20x20 problems, the Resource Load neighbourhood

heuristic eventually outperforms all of the other neighbourhood heuristics,

except at the start when the Time Window neighbourhood heuristic per-

forms best. Although it is obscured on the 20x20 graph, the Cost-Based

neighbourhood heuristic is actually the strongest performer at the very be-

ginning, however it is quickly overtaken. This behaviour is repeated on the
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40x40 problems, although here it is the case that the Cost-Based neighbour-

hood heuristic outperforms other neighbourhood heuristics for a longer time.

In our parameter tuning experiment in Section 6.6, we showed that the

Cost-Based neighbourhood heuristic consistently produced the best average

improvement of all heuristics. However, as the performance on the 20x20

problems shows, it starts to stagnate quite quickly. Unlike other neighbour-

hood heuristics, the Cost-Based neighbourhood heuristic is intensifying, as

it focuses search effort on high impact variables. It is interesting to compare

the Cost-Based neighbourhood against the other neighbourhood heuristics,

which are inherently diversifying. The diversifying neighbourhoods are slower

to make improvements than the Cost-Based neighbourhood, as is clearly ev-

ident in the results on 40x40 problem set in Figure 6.4.

The results of the pure neighbourhood experiment demonstrate the need

for algorithm control. The best performing neighbourhood heuristics vary

significantly across time limits and problem sets. The aim of our work is

to achieve the best performance at any time limit across any problem set.

A robust control method will exhibit performance that is not significantly

worse than the best pure method at any time limit on any problem set. In

the next section, we perform experiments that explore the application of

control methods to see if this can be achieved.

6.8 Combined Neighbourhood LNS

It seems reasonable that with several neighbourhoods to choose from, overall

performance can be boosted by applying machine learning to choose the best

performing neighbourhood heuristics. Simply alternating, often randomly,

between different neighbourhood heuristics appears to be a promising ap-

proach and has been used extensively in much of the work on LNS [22, 90].

In this section we explore this approach and extend it with the application of

low knowledge learning methods to determine the best performing heuristics.
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6.8.1 Control Methods

We explore two learning methodologies here. The first method, adaptive

runtime, allocates running time based on the performance, over time, of each

neighbourhood heuristic. We investigate the use of allocating both a fixed

amount of time as well as increasing the amount of time allocated after each

iteration. The second method, adaptive probability, selects a neighbourhood

heuristic to run for a short time. We evaluate the effectiveness of selection

using either performance biased probabilities or uniform probability.

6.8.1.1 Adaptive Runtime

The adaptive runtime method allocates runtime based on past performance.

This is the same switching approach used in Section 5.6.1 in Chapter 5. At

each iteration 𝑖 of the control algorithm, 𝑡𝑖 seconds are divided among each

neighbourhood heuristic. In the adaptive runtime procedure, the weight

𝑤𝑖(𝑎) determines the proportion of time to allocate to the neighbourhood

heuristic 𝑎 at iteration 𝑖. Let 𝑡𝑖(𝑎) = 𝑡𝑖 ×𝑤𝑖(𝑎) represent the time allocation

for neighbourhood heuristic 𝑎 at iteration 𝑖.

Weights are updated after each iteration using the formula

𝑤𝑖+1(𝑎) = 𝑛𝑜𝑟𝑚(𝑝𝑖(𝑎))× 𝛼+ 𝑤𝑖(𝑎)× (1− 𝛼) (6.10)

where 𝛼 is the learning rate and 𝑛𝑜𝑟𝑚(𝑝𝑖(𝑎)) is the normalized performance

over time realized by applying neighbourhood heuristic 𝑎 in the last iteration.

In the case that no improvement is found by any neighbourhood heuristic,

𝑛𝑜𝑟𝑚(𝑝𝑖(𝑎)) = 0, otherwise normalized performance is defined as

𝑛𝑜𝑟𝑚(𝑝𝑖(𝑎)) =
𝑝𝑖(𝑎)∑
𝑘∈𝐴 𝑝𝑖(𝑘)

(6.11)

where 𝑝𝑖(𝑎) = 𝑖𝑚𝑝𝑖(𝑎)/𝑡𝑖(𝑎) is the improvement over time, 𝑖𝑚𝑝𝑖(𝑎) is the

improvement in solution quality achieved by neighbourhood heuristic 𝑎 at

iteration 𝑖, and 𝐴 is the set of all neighbourhood heuristics. Normalization

is applied so that performance values for all neighbourhood heuristics sum

to 1. By normalizing performance, algorithms are compared on their relative
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strength in the current iteration. The learning rate 𝛼 can be any value from

0..1. Higher values of 𝛼 update the weight values more rapidly. We use a

learning rate of 𝛼 = 0.5.

We explore two variants of this approach. The first AdaptR-double dou-

bles the amount of time 𝑡𝑖 available at each iteration, starting from an initial

value of 1 second. The second approach AdaptR-static has a constant time

of 𝑡𝑖 = 10 seconds. All weights are initialized to equal values. The adaptive

runtime methods adjust the failure limit after 10 iterations with no improve-

ments, as described in Section 6.3.4.

6.8.1.2 Adaptive Probability

The second method, which is applied for the first time in this chapter, is

adaptive probability. Instead of allocating longer time slices to the neigh-

bourhood heuristics that perform well, we increase the likelihood of running

them. In this context, the normalized value of the weight 𝑤(𝑎) is the proba-

bility of selecting neighbourhood heuristic 𝑎 as the next heuristic to run. In

each iteration, a neighbourhood heuristic is selected and applied for one time

slice. The weight for the neighbourhood heuristic is then updated based on

the observed performance.

Since some neighbourhood heuristics may not be run as frequently as

others, a different weight updating scheme is employed that takes into ac-

count the number of times each heuristic has been run. To implement this

weight updating scheme, we define a step dependent discounted average. Let

𝑖 be an index representing the 𝑖𝑡ℎ time that a neighbourhood heuristic 𝑎 has

been applied on a problem instance. Let 𝑖𝑚𝑝𝑖(𝑎) be the improvement made

the 𝑖𝑡ℎ time the neighbourhood heuristic 𝑎 was applied.13 A discount is ap-

plied to create a bias toward more recent improvements. That is, for each

improvement 𝑖𝑚𝑝𝑖(𝑎) we compute a discount of

𝑑𝑖(𝑎) =
1

(𝑟𝑢𝑛𝑠(𝑎)− 𝑖) + 1
(6.12)

13Since all heuristics are run for the same duration, we do not compute the performance
over time value 𝑝 = 𝑖𝑚𝑝𝑖(𝑎)/𝑡𝑖,𝑎.
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where 𝑟𝑢𝑛𝑠(𝑎) is the number of times neighbourhood heuristic 𝑎 has been

applied so far. The weight 𝑤(𝑎) for a neighbourhood heuristic 𝑎 is then

defined by the mean discounted improvement

𝑤(𝑎) =
1

𝑟𝑢𝑛𝑠(𝑎)

∑
𝑖∈(1..𝑟𝑢𝑛𝑠(𝑎))

𝑖𝑚𝑝𝑖(𝑎)× 𝑑𝑖(𝑎) (6.13)

To infer the probability of selecting a neighbourhood heuristic, weight values

are normalized so that the sum of all weights is 1. These weights are used

with a biased roulette wheel to select the next heuristic to apply.

In this chapter we refer to this method as AdaptP. We also include a

method, RandP, which operates in the same manner but does not alter the

weights, hence with uniform probability it randomly chooses a neighbourhood

heuristic to apply.

6.8.1.3 Comparison of Weight Learning Systems

In this section, we describe the differences between the AdaptR and AdaptP

weight learning mechanisms. AdaptR employs normalization and is more

aggressive in how fast it ‘forgets’ past performance. Meanwhile, AdaptP does

not use normalization and the influence of past performance does not decay

as quickly.

Normalization allows the comparison of the relative strength of each al-

gorithm over time. For example, consider the situation where algorithm 𝐴

makes a very large improvement the first time it is applied, but then makes

no further improvements on successive applications. Meanwhile, algorithm

𝐵 makes a modest improvement every time it is applied. Without normal-

ization, algorithm 𝐴 would have a higher weight value over time despite only

making an improvement on the first application. With normalization, al-

gorithm 𝐵 would more rapidly gain a higher weight value, since on every

application except the first it has outperformed 𝐴, albeit with smaller im-

provements.

It is not evident whether it is best to compare relative or absolute per-

formance measures of each algorithm. While relative performance can be
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Figure 6.6: Weight decay of AdaptP and AdaptR mechanisms.

determined when applying AdaptR, since all algorithms are run in each iter-

ation, when applying AdaptP the algorithms are not always run as frequently

as each other. Some form of normalization could still be applied to AdaptP,

e.g., comparing relative performance in different time intervals of the run,

however, we do not explore this in this chapter.

We now turn to the mechanism that regulates how quickly a weight value

adapts. Let 𝑖𝑚𝑝𝑖 represent the improvement by heuristic 𝑎 the 𝑖𝑡ℎ time the

heuristic was applied and let 𝑟𝑢𝑛𝑠 be the total number of times the heuristic

has been applied. The influence of 𝑖𝑚𝑝𝑖 on the current weight value for

AdaptR is

𝛼(𝑟𝑢𝑛𝑠−𝑖) (6.14)

while the influence of 𝑖𝑚𝑝𝑖 on the current weight value for AdaptP is

1

(𝑟𝑢𝑛𝑠− 𝑖) + 1
(6.15)
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As the number of applications of a heuristic grows, AdaptR decays at an

exponential rate while AdaptP decays at a rate which is a reciprocal of the

number of applications. In Figure 6.6 we show a graph of the impact of

past performance measures on the current weight value for AdaptR (with

𝛼 = 0.5) and AdaptP. On the X axis, the number of steps back in time is

shown, with 0 indicating the current step. On the 𝑌 axis, we show the impact

that the measurement has on the current weight value. We see that AdaptR

has a more aggressive decay rate, while AdaptP decays at a far slower rate.

Although the value of 𝛼 can be adjusted to slow the decay rate of AdaptR,

the decay rate remains exponential whereas the decay rate of AdaptP is a

reciprocal.

The impact of the weight decay mechanism will likely have a significant

impact on the performance of each weight system. The AdaptR weight mech-

anism will adapt faster as performance changes over time, but may tend to

be ‘greedy’ and focus effort on the most recent best performers. Conversely,

the AdaptP mechanism will retain past performance knowledge for a longer

time, but may be slower to react to changes. It is unclear which strategy is

better, and likely depends on the characteristics of the algorithms and prob-

lems. A detailed study of the impact of these mechanisms is an interesting

direction for future work.

6.8.2 Experiments

We evaluate the combined neighbourhood heuristics using the same time

limits and test sets that were applied to the pure neighbourhoods in Section

6.7. We take the same parameter settings for each pure neighbourhood but

combine them using the methods described in Section 6.8.1.

In Figure 6.7 and Figure 6.8 we display the mean relative error (MRE)

results of running the combined neighbourhoods. For comparison, we also

show BestMRE(P,t) which is the best performing pure neighbourhood at

each time limit 𝑡. Recall that BestMRE(P,t) is the pure neighbourhood with

the minimum MRE(𝑡) for each time point, therefore each point may represent

the results of a different pure neighbourhood. We note that BestMRE(P,t) is
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(b) Mean relative error (MRE(𝑡)) against the best solution found at time 𝑡.

Figure 6.7: Combined neighbourhood heuristics run on the 20x20 problem
set.
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(b) Mean relative error (MRE(𝑡)) against the best solution found at time 𝑡.

Figure 6.8: Combined neighbourhood heuristics run on the 40x40 problem
set.
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Figure 6.9: Best solutions found by combined neighbourhood heuristics.
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the best performance that can be achieved by applying a single pure method.

On the 20x20 problem set all of the combined methods perform well. As

Figure 6.7(b) shows, after a minute of run time, all of the combined methods

(except AdaptR-double) find solutions within 1% of the best known solu-

tion at each time point 𝑡. AdaptR-double appears slower to converge but

eventually joins the other combined methods after two minutes. Although

the gap is slight, AdaptP appears to perform better than the other meth-

ods at all time limits and outperforms BestMRE(P,t) after only a minute.

AdaptR-static also slightly outperforms BestMRE(P,t) but does not perform

as well as AdaptP. RandP appears to perform as well as AdaptR-double and

BestMRE(P,t) for times after 200 seconds. Recall that BestMRE(P,t) is the

best pure algorithm at each time point. In this problem set, BestMRE(P,t)

is Time Window until 300 seconds, after which it is Resource Load.

On the 40x40 problem set the gap between BestMRE(P,t) and the com-

bined neighbourhoods grows. From 200 seconds to 700 seconds, all combined

neighbourhoods perform better than BestMRE(P,t). BestMRE(P,t) per-

forms better at the very start and end of the runs. On this set, BestMRE(P,t)

is Cost-Based from 0 to 260, then Random until 780 seconds, then Time

Window for the remaining time points. For the most part there is little dif-

ference between the combined methods, until after 500 to 600 seconds, after

which the gap between them starts to grow. AdaptR-double performs the

worst at this point, with AdaptR-static following closely. RandP maintains

performance that is only slightly worse than AdaptP across most of the run.

However, AdaptP appears to perform better than the other combined meth-

ods except for at the very start, where AdaptR-double performs best.

Figure 6.9 presents the number of best solutions found by the combined

methods. On the 20x20 problem set, after a short startup time, all of the

combined methods find a reasonable number of the best solutions, ranging 15

to 25 percent. AdaptR-static and AdaptP find slightly more better solutions

than the other methods. On the 40x40 problem set, AdaptR-double starts off

finding nearly 50% of the best solutions, but performs worse later in the run.

All of the combined methods do well until 600 seconds, after which all of

them, with the exception of AdaptP, find fewer of the best solutions. AdaptP
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continues to find over 25% of the best solutions at the end of the run.

To analyse the differences in performance over time, we repeat the statis-

tical analysis described in Section 6.5.5 with the combined methods. We per-

formed this analysis procedure twice: once to compare performance against

the pure methods and once to compare performance among the combined

methods. Recall that a comparison is made for each of the 30 time points.

Each comparison has 𝑛 = 40 samples, the result of running each algorithm

on 40 problem instances. We refer to this as the 30 time point analysis.

We also perform an all points analysis where we combine the results from

each of the 30 time points into a single data set where each method has

𝑛 = 40 × 30 = 1200 samples. When comparing against the pure meth-

ods 𝑃 there are 7 factors: ∣𝐶∣ = 4 combined neighbourhood heuristics,

BestMRE(P,T), BestMRE(P,t) and BestInstance(P,t). When comparing

among combined methods 𝐶 there are 5 factors: ∣𝐶∣ = 4 combined neighbour-

hood heuristics and BestInstance(C,t). Although the comparison among the

combined methods includes BestMRE(C,T) and BestMRE(C,t), this does

not introduce 2 additional factors since these results are derived from the

analysis of the 4 combined methods.

First we look at the difference over the 30 time points. In Table 6.7(a)

we show the difference between the combined methods and BestMRE(P,T),

the pure method with the best MRE at the last time point. We see that, on

all 30 time points on the 20x20 problem set, the combined methods never

perform worse and sometimes perform better than BestMRE(P,T). The best

performing method is AdaptP which outperforms BestMRE(P,T) on 10 time

points, while the other methods outperform on only a few time points. On the

40x40 set, three of the combined methods perform worse at some time points,

however AdaptP does not perform significantly worse at any time point. All

of the combined methods perform better on more than half of the time points

in the 40x40 set. In Table 6.7(b) we compare the combined methods against

BestMRE(P,t), the pure method with the best MRE at each time point. On

the 20x20 set, only AdaptR-double performs worse at two time points, but

no combined method performs better than BestMRE(P,t). On the 40x40

set, AdaptR-static and AdaptR-double perform worse on 8 time points, and
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Table 6.7: Count of significant differences over 30 time points for combined
neighborhood heuristics against BestMRE and BestInstance of pure neigh-
borhood heuristics.

(a) BestMRE(P,T) compared to combined neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

AdaptR-d 0 0 1 29 8 0 16 6
AdaptR-s 0 0 5 25 7 0 18 5
AdaptP 0 0 10 20 0 0 20 10
RandP 0 0 2 28 3 0 19 8

(b) BestMRE(P,t) compared to combined neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

AdaptR-d 2 0 0 28 8 0 4 18
AdaptR-s 0 0 0 30 8 0 15 7
AdaptP 0 0 0 30 0 0 14 16
RandP 0 0 0 30 4 0 10 16

(c) BestInstance(P,t) compared to combined neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

AdaptR-d 6 0 0 24 9 0 2 19
AdaptR-s 0 0 0 30 8 0 3 19
AdaptP 0 0 0 30 0 0 6 24
RandP 0 0 0 30 5 0 0 25

W/S/B/? denotes significantly Worse, Same, significantly Better and ? no
evidence of a significant difference.
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RandP performs worse on 4 time points. AdaptP does not perform worse

on any time limit. All of the combined methods perform better at some

time points, with AdaptR-static and AdaptP performing better on 15 and

14 time points respectively. Table 6.7(c) shows a comparison against the

best solution found on each instance by any pure method, BestInstance(P,t).

On the 20x20 set, there is no evidence of a difference between the combined

methods and BestInstance(P,t), with the exception of AdaptR-double which

performs worse at 6 time points. On the 40x40 set, the results are more

varied. AdaptR-double and AdaptR-static perform worse on 9 and 8 points

respectively, and better on 2 and 3 time points. RandP performs worse at

5 time points, and never better. Finally, AdaptP performs better on 6 time

points and never performs worse than BestInstance(P,t).

To evaluate the mean difference in performance over the entire run, we

look at the all points comparison between the combined and pure meth-

ods. Table 6.8(a) shows the mean difference on the 20x20 problem set. We

see that there is evidence that all combined methods perform better than

BestMRE(P,T). Comparing BestMRE(P,t), there is evidence of only one

combined method, AdaptP, outperforming BestMRE(P,t) and no evidence

of a difference in performance against the other combined methods. Com-

paring against BestInstance(P,t), we see that all combined methods perform

worse with the exception of AdaptP, where there is no evidence of difference.

Table 6.8(b) shows the all points comparison on the 40x40 problem set. Here

we see an identical picture in terms of the significant differences when com-

paring both BestMRE measures, although the relative difference in MRE is

larger. When we compare against BestInstance(P,t) we see that there is no

evidence of a difference in performance against any of the combined meth-

ods on the 40x40 set. This concludes the comparison between the combined

methods and the pure methods.

We now show a comparison of the combined methods against each other.

The comparison between combined methods and BestMRE(C,T) is shown in

Table 6.9(a). The method with the best MRE at time 𝑇 was AdaptP on both

problem sets. On the 20x20 set, AdaptR-double performs worse on 4 time

points, while for all other time points and combined methods, there is no
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Table 6.8: Mean difference over all time points for combined neighborhood
heuristics against BestMRE and BestInstance of pure neighborhood heuris-
tics.

(a) 20x20 problem set.

BestMRE(P,T) BestMRE(P,t) BestInstance(P,t)

AdaptR-double -0.00210 0.00170 0.00571
(0.00051) (0.01133) (0.00000)

AdaptR-static -0.00428 -0.00048 0.00352
(0.00000) (0.95999) (0.00000)

AdaptP -0.00621 -0.00242 0.00159
(0.00000) (0.00003) (0.02354)

RandP -0.00285 0.00095 0.00496
(0.00000) (0.47121) (0.00000)

(b) 40x40 problem set.

BestMRE(P,T) BestMRE(P,t) BestInstance(P,t)

AdaptR-double -0.00840 0.00108 0.00300
(0.00000) (0.94447) (0.06012)

AdaptR-static -0.01055 -0.00107 0.00084
(0.00000) (0.94659) (0.98399)

AdaptP -0.01438 -0.00490 -0.00298
(0.00000) (0.00005) (0.06269)

RandP -0.01179 -0.00231 -0.00039
(0.00000) (0.28489) (0.99978)

Significant differences (𝑝 ≤ 0.005) are shown in bold and 𝑝 values are shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.
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Table 6.9: Count of significant differences over 30 time points for combined
neighborhood heuristics against BestMRE and BestInstance of combined
neighbourhood heuristics.

(a) BestMRE(C,T) compared to combined neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

AdaptR-d 4 0 0 26 15 0 0 15
AdaptR-s 0 0 0 30 10 0 0 20
AdaptP 0 30 0 0 0 30 0 0
RandP 0 0 0 30 0 0 0 30

(b) BestMRE(C,t) compared to combined neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

AdaptR-d 4 0 0 26 15 4 0 11
AdaptR-s 0 0 0 30 10 7 0 13
AdaptP 0 29 0 1 0 19 0 11
RandP 0 1 0 29 0 0 0 30

(c) BestInstance(C,t) compared to combined neighborhood heuristics.

20x20 40x40
W S B ? W S B ?

AdaptR-d 30 0 0 0 22 0 0 8
AdaptR-s 29 0 0 1 17 0 0 13
AdaptP 25 0 0 5 7 0 0 23
RandP 29 0 0 1 17 0 0 13

W/S/B/? denotes significantly Worse, Same, significantly Better and ? no
evidence of a significant difference.
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evidence of a difference against BestMRE(C,T). On the 40x40 set, AdaptR-

double and AdaptR-static perform worse on 15 and 10 points respectively,

while again we see no evidence of difference for any other time limits. In

particular, we see that there is no evidence of a difference in performance

between BestMRE(C,T) and RandP on either problem set. Table 6.9(b)

shows the comparison against BestMRE(C,t), the best combined method at

each time point. In the 20x20 set, we see that AdaptP was the best method

on 29 time points, while RandP was best on one time point. On the 40x40

set, AdaptP was best on 19 time points, with AdaptR-double and AdaptR-

static performing best on 4 and 7 points respectively. In terms of combined

methods performing worse, we see exactly the same results as shown in Ta-

ble 6.9(a). Since we are comparing combined methods against the best com-

bined method at each time point, no method can perform significantly better

than BestMRE(C,t). Table 6.9(c) compares the combined methods against

BestInstance(C,t), the best solution found by any combined method. On

the 20x20 set, we see that all of the combined methods perform worse than

BestInstance(C,t) at most of the time points. This indicates that the best

solutions are not always found by the same combined method at each point.

On the 40x40 set, the performance is not as varied. AdaptR-double per-

forms worse at 22 time points, and AdaptR-static and RandP perform worse

at 17 time points. AdaptP performs worse on only 7 time points. As with

BestMRE(C,t), it is impossible for a combined method to perform better

than BestInstance(C,t).

Tables 6.10(a) and 6.10(b) show the all time points comparison among

the combined neighbourhoods. On the 20x20 set, AdaptP performs better

than all other neighbourhood heuristics. AdaptR-static is second best, but

only performs significantly better than AdaptR-double. RandP is not signifi-

cantly better than any method, but not significantly worse than any method

except AdaptP. Finally, AdaptR-double has the worst performance. On the

40x40 set AdaptP is again the best performer, however, it does not perform

significantly better than RandP. RandP is the second best performer, but

only significantly better than AdaptR-double. AdaptR-static is only signif-

icantly worse than AdaptP, but not better than any method. Once again,
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Table 6.10: Mean difference over all time points for combined neighborhood
heuristics.

(a) 20x20 problem set.

AdaptR-double AdaptR-static AdaptP RandP

AdaptR-double 0.00218 0.00412 0.00075
(0.00002) (0.00000) (0.37833)

AdaptR-static -0.00218 0.00193 -0.00144
(0.00002) (0.00022) (0.01152)

AdaptP -0.00412 -0.00193 -0.00337
(0.00000) (0.00022) (0.00000)

RandP -0.00075 0.00144 0.00337
(0.37833) (0.01152) (0.00000)

(b) 40x40 problem set.

AdaptR-double AdaptR-static AdaptP RandP

AdaptR-double 0.00216 0.00598 0.00339
(0.10926) (0.00000) (0.00225)

AdaptR-static -0.00216 0.00383 0.00123
(0.10926) (0.00038) (0.56922)

AdaptP -0.00598 -0.00383 -0.00259
(0.00000) (0.00038) (0.03423)

RandP -0.00339 -0.00123 0.00259
(0.00225) (0.56922) (0.03423)

Significant differences (𝑝 ≤ 0.005) are shown in bold and 𝑝 values are shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.
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AdaptR-double performs worst. We note that while there is evidence of a

significant difference, the observed difference is less than 0.5% in all cases.

We show an all points comparison of combined methods against the

BestMRE and BestInstance(C,t) in Tables 6.11(a) and 6.11(b). On the 20x20

set, all methods except for AdaptP perform worse than BestMRE. In the 30

point comparison against BestMRE, we did not see evidence that these meth-

ods performed worse. This is perhaps due to the increase in sample size in

the all points comparison.14 However, we note that despite the evidence of

a significant difference, the observed difference in MRE is relatively small,

less than 0.5%. On the 20x20 set, all methods perform worse than BestIn-

stance(C,t), confirming again the variance of best performance on the 20x20

set. On the 40x40 set, we see a similar picture comparing against BestMRE,

although this time RandP is not significantly worse than BestMRE(C,T)

and while it is significantly worse than BestMRE(C,t), there is only barely

evidence of this difference (𝑝 = 0.004 < 0.005). We see that all methods per-

form worse than BestInstance(C,t) when the performance is compared over

all time points.

6.8.3 Discussion

In combining different neighbourhood heuristics we hope to achieve two

things: robustness and synergy. Robustness refers to the ability to achieve

strong performance, no matter what problem set or processing time is avail-

able. Robust solving is a shortcoming of many optimization techniques, and

to achieve robust solving implies that we can reduce the requirement for hu-

man effort and expertise in applying these methods. For instance, with a

number of pure neighbourhood heuristics to choose from, each of which per-

forms differently depending on the time available, the problem set and often

the problem instance, we would need human expertise and experimentation

to find the best one. A robust technique obtains good performance across all

problem sets and time limits. Synergy refers to a combination of neighbour-

14Recall that for each method there are 40 samples at each point in the 30 point com-
parison, while there are 30× 40 = 1200 samples in the all points comparison.
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Table 6.11: Mean difference over all time points for combined neighborhood
heuristics against BestMRE and BestInstance of combined neighbourhood
heuristics.

(a) 20x20 problem set.

BestMRE(C,T) BestMRE(C,t) BestInstance(C,t)

AdaptR-double 0.00412 0.00419 0.01081
(0.00000) (0.00000) (0.00000)

AdaptR-static 0.00193 0.00201 0.00863
(0.00029) (0.00013) (0.00000)

AdaptP 0.00000 0.00008 0.00670
(1.00000) (1.00000) (0.00000)

RandP 0.00337 0.00345 0.01006
(0.00000) (0.00000) (0.00000)

(b) 40x40 problem set.

BestMRE(C,T) BestMRE(C,t) BestInstance(C,t)

AdaptR-double 0.00598 0.00697 0.01073
(0.00000) (0.00000) (0.00000)

AdaptR-static 0.00383 0.00481 0.00858
(0.00165) (0.00002) (0.00000)

AdaptP -0.00000 0.00098 0.00475
(1.00000) (0.95173) (0.00002)

RandP 0.00259 0.00358 0.00734
(0.10790) (0.00450) (0.00000)
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hood heuristics outperforming a single neighbourhood heuristic. In Chapter

5 we observed a synergistic effect when combining different search algorithms.

On the both problem sets, we clearly achieve robustness. The distance

of each combined method to the best known solution at each time, MRE(t)

in Figures 6.7(b) and 6.8(b), is relatively similar across all times unlike the

MRE(t) values of the pure methods, shown in 6.3(b) and 6.4(b). While

some pure methods perform better at times, they perform worse at others

and the variance in MRE(t) is high. The combined methods with the best

performance do not exhibit this variance in behaviour and stay within 1% of

the best known solution at time 𝑡 for all time points after 60 seconds.

In terms of synergy, the combined methods produce MRE values lower

than the pure methods. While this difference is not significant on the 20x20

set, it is significant on the 40x40 problem set, where combined methods out-

perform the best pure method at many time points. The best performing

combined method AdaptP has performance better or equal to the best pure

method at all time points. The version without learning, RandP, also per-

forms well, but lags behind AdaptP in solution quality. The adaptive run-

time methods, AdaptR-static and AdaptR-double, perform well but start to

degrade over time on the large problem instances. Either the policy of com-

mitting to run each neighbourhood every iteration or the weight learning

scheme is to blame.

We believe that as the variance in performance of the available neigh-

bourhoods grows, we will see the gap between the learning and non-learning

methods grow. Since the four neighbourhood heuristics that were applied all

perform relatively well, good performance can be achieved simply by alternat-

ing between them. In the next section, we investigate the effects of unknown

problem instances that vary in size and apply neighbourhood heuristics with-

out performing parameter tuning.

6.9 Evaluation on Taillard Benchmarks

We performed experiments on a subset of Taillard’s job shop benchmarks

[104]. The problem instances selected are known as TA-11 to TA-80 and
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range in size from 20 to 100 jobs and 15 to 20 machines. In this experiment,

we did not tune the neighbourhood heuristics for this problem set. Instead

we used the same parameter settings that were applied to the 20x20 problem

set. This provides insight on the performance of the control methods when

applied to problems from an unknown problem domain.

For those interested in the specific results on each instance, for comparison

against the state-of-the-art, we attach detailed results on these benchmarks

in Appendix A.

6.9.1 Experiments

In Figure 6.10, we show the results, in terms of MRE,15 of running the

pure neighbourhood heuristics and the Texture algorithm. The difference

in performance between the heuristics is greater here than in the previous

experiments. In particular, the Random heuristic performs far worse than

the other heuristics, even worse than Texture. For the other pure heuristics

the MRE(t) performance, as shown in Figure 6.10(b) varies between 1% and

4%. In terms of best solutions found, Cost-Based and Resource Load appear

to be the strongest performers with a crossover at around 200 seconds, as

shown in Figure 6.11(a).

The combined neighbourhood heuristics perform well on this problem

set, as shown in Figure 6.12. In terms of MRE, every combined method

performs better than the pure neighbourhoods, except at the very start of

the runs. AdaptP and AdaptR-static are the best performers of the combined

neighbourhood heuristics, producing the best solutions across all time limits.

RandP starts off lagging behind the other neighbourhood heuristics, although

AdaptR-double produces a comparable MRE result after 300 seconds.

Three statistical analyses were performed using the procedure from Sec-

tion 6.5.5 using the following factors. The analysis of the set of pure neigh-

bourhoods involved 5 factors: the ∣𝑃 ∣ = 4 pure neighbourhoods and BestIn-

15In this section we present MRE against the best solution found during our experiments
rather than the best known upper bounds [105]. Our best upper bounds are on average
3% worse. A detailed comparison against the best known solutions is shown in Appendix
A.
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(a) Mean relative error against the best solution over all time limits.
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(b) Mean relative error (MRE(𝑡)) against the best solution found at time 𝑡.

Figure 6.10: Pure neighbourhood heuristics run on Taillard’s problem set.
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(b) Combined NHs.

Figure 6.11: Best solutions found on Taillard’s problem set.
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(a) Mean relative error against the best solution over all time limits.
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(b) Mean relative error (MRE(𝑡)) against the best solution found at time 𝑡.

Figure 6.12: Combined neighbourhood heuristics run on Taillard’s problem
set.
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stance(P,t). The analysis comparing pure and combined neighbourhoods

had 7 factors: ∣𝐶∣ = 4 combined methods and 3 factors for BestMRE(P,T),

BestMRE(P,t), and BestInstance(P,t). The analysis comparing the combined

methods had 5 factors: ∣𝐶∣ = 4 and BestInstance(C,t).

In Table 6.12(a) we show the difference between each pure neighbourhood

against BestMRE(P,T), the best pure neighbourhood at the last time point

𝑇 . On Taillard’s problem set, BestMRE(P,T) was Resource Load. We see

that Random performed worse at 28 points and Time Window performed

worse at 1 point. No evidence of a difference was found for any other points

or methods. Table 6.12(b) shows the difference between each pure neighbour-

hood against BestMRE(P,t), the best pure neighbourhood at each time point.

The best pure neighbourhoods are Resource Load and Cost-Based which are

BestMRE(P,t) at 21 and 9 points respectively. Time Window remains worse

at only 1 time point and Random performs worse on all time points. Table

6.12(c) compares against BestInstance(P,t), the best solution found by any

pure method. Here we see Resource Load is the strongest performer with

worse performance at 7 time points. In a distant second place is Cost-Based,

which is worse at 21 points, followed by Time Window at 26 points and then

Random, which is worse at all points. Table 6.13(a) shows the all points

analysis between the pure methods. Resource Load and Cost-Based are the

best performers and are significantly better than the other two pure neigh-

bourhoods. Time Window performs significantly better than Random, and

Random performs worse than all other heuristics. Table 6.13(b) shows the

comparison against BestMRE and BestInstance(P,t). Here we see that even

though Resource Load and Cost-Based perform well against BestMRE, they

are more than 2% worse than BestInstance(P,t), which is nearly twice the

difference in performance that was observed in Section 6.7 where the pure

neighbourhood heuristics were tuned for the problem set.

We now turn to the analysis of combined methods compared to the pure

methods. Table 6.14(a) shows the difference between combined neighbour-

hoods and BestMRE(P,T). We see that all combined methods perform bet-

ter than the best pure neighbourhood at many time points. The best per-

formance is seen by AdaptP at 29 time points, followed by AdaptR-double
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Table 6.12: Count of significant differences over 30 time points for pure neigh-
borhood heuristics against BestMRE and BestInstance of pure neighborhood
heuristics.

(a) BestMRE(P,T) compared to pure neighborhood heuristics.

Taillard
W S B ?

Random 28 0 0 2
Resource Load 0 30 0 0
Cost-Based 0 0 0 30
Time Window 1 0 0 29

(b) BestMRE(P,t) compared to pure neighborhood heuristics.

Taillard
W S B ?

Random 30 0 0 0
Resource Load 0 21 0 9
Cost-Based 0 9 0 21
Time Window 1 0 0 29

(c) BestInstance(P,t) compared to pure neighborhood heuristics.

Taillard
W S B ?

Random 30 0 0 0
Resource Load 7 0 0 23
Cost-Based 21 0 0 9
Time Window 26 0 0 4

W/S/B/? denotes significantly Worse, Same, significantly Better and ? no
evidence of a significant difference.
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Table 6.13: Mean difference over all time points for pure neighborhood
heuristics on Taillard’s benchmarks.

(a) Among pure neighborhood heuristics

Random Resource Load Cost-Based Time Window

Random 0.05587 0.05249 0.04357
(0.00000) (0.00000) (0.00000)

Resource Load -0.05587 -0.00338 -0.01231
(0.00000) (0.07452) (0.00000)

Cost-Based -0.05249 0.00338 -0.00893
(0.00000) (0.07452) (0.00000)

Time Window -0.04357 0.01231 0.00893
(0.00000) (0.00000) (0.00000)

(b) BestMRE and BestInstance of pure neighborhood heuristics

BestMRE(P,T) BestMRE(P,t) BestInstance(P,t)

Random 0.05587 0.05879 0.07655
(0.00000) (0.00000) (0.00000)

Resource Load 0.00000 0.00292 0.02067
(1.00000) (0.22643) (0.00000)

Cost-Based 0.00338 0.00630 0.02405
(0.09619) (0.00001) (0.00000)

Time Window 0.01231 0.01522 0.03298
(0.00000) (0.00000) (0.00000)

Significant differences (𝑝 ≤ 0.005) are shown in bold and 𝑝 values are shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.
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Table 6.14: Count of significant differences over 30 time points for combined
neighborhood heuristics against BestMRE and BestInstance of pure neigh-
borhood heuristics.

(a) BestMRE(P,T) compared to combined neighborhood heuristics.

Taillard
W S B ?

AdaptR-d 0 0 28 2
AdaptR-s 0 0 28 2
AdaptP 0 0 29 1
RandP 0 0 16 14

(b) BestMRE(P,t) compared to combined neighborhood heuristics.

Taillard
W S B ?

AdaptR-d 0 0 25 5
AdaptR-s 0 0 27 3
AdaptP 0 0 26 4
RandP 0 0 17 13

(c) BestInstance(P,t) compared to combined neighborhood heuristics.

Taillard
W S B ?

AdaptR-d 0 0 0 30
AdaptR-s 0 0 0 30
AdaptP 0 0 0 30
RandP 2 0 0 28

W/S/B/? denotes significantly Worse, Same, significantly Better and ? no
evidence of a significant difference.
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Table 6.15: Mean difference over all time points for combined neighborhood
heuristics. on the Taillard problem set.

BestMRE(P,T) BestMRE(P,t) BestInstance(P,t)

AdaptR-double -0.01513 -0.01222 0.00554
(0.00000) (0.00000) (0.00000)

AdaptR-static -0.01975 -0.01684 0.00092
(0.00000) (0.00000) (0.94687)

AdaptP -0.02030 -0.01738 0.00038
(0.00000) (0.00000) (0.99957)

RandP -0.01281 -0.00990 0.00786
(0.00000) (0.00000) (0.00000)

Significant differences (𝑝 ≤ 0.005) are marked in bold and 𝑝 value is shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.

and AdaptR-static at 28 time points. RandP only performs better on 16

time points. There is no evidence that combined methods perform worse

than BestMRE(P,T) at any time point. Table 6.14(a) comparing against

BestMRE(P,t) shows a similar picture, with the best performance seen by

AdaptR-static at 27 time points, followed by AdaptP at 26 time points, and

then AdaptR-double at 25 time points. RandP only performs better on 17

time points. Table 6.14(c) shows a the comparison against BestInstance(P,t).

We no longer see evidence of the combined methods outperform the pure

methods, in fact the only evidence of a significant difference is RandP per-

forming worse on 2 time points. For the rest of the time points, there is no ev-

idence of a difference between the combined methods and BestInstance(P,t),

the best solution found by any pure method. Table 6.15 shows the results

of the all points analysis. We see that all combined methods are better

than BestMRE(P,T) and BestMRE(P,t), while AdaptR-double and RandP

are significantly worse than BestInstance(P,t).

We now turn to the analysis of difference among the combined heuris-

tics. Table 6.16(a) shows the comparison against BestMRE(C,T), which is

AdaptP on this problem set. We see that the only evidence of a difference

is RandP which performs worse on 6 time points. Table 6.16(a) shows the
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Table 6.16: Count of significant differences over 30 time points for com-
bined neighborhood heuristicsagainst BestMRE and BestInstance of com-
bined neighbourhood heuristics.

(a) BestMRE(C,T) compared to combined neighborhood heuristics.

Taillard
W S B ?

AdaptR-d 0 0 0 30
AdaptR-s 0 0 0 30
AdaptP 0 30 0 0
RandP 6 0 0 24

(b) BestMRE(C,t) compared to combined neighborhood heuristics.

Taillard
W S B ?

AdaptR-d 0 0 0 30
AdaptR-s 0 6 0 24
AdaptP 0 24 0 6
RandP 6 0 0 24

(c) BestInstance(C,t) compared to combined neighborhood heuristics.

Taillard
W S B ?

AdaptR-d 23 0 0 7
AdaptR-s 9 0 0 21
AdaptP 4 0 0 26
RandP 27 0 0 3

W/S/B/? denotes significantly Worse, Same, significantly Better and ? no
evidence of a significant difference.
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Table 6.17: Mean difference over all time points for combined neighborhood
heuristicson Taillard’s benchmarks.

(a) Among combined neighborhood heuristics

AdaptR-double AdaptR-static AdaptP RandP

AdaptR-double 0.00462 0.00517 -0.00232
(0.00000) (0.00000) (0.01819)

AdaptR-static -0.00462 0.00054 -0.00694
(0.00000) (0.90240) (0.00000)

AdaptP -0.00517 -0.00054 -0.00749
(0.00000) (0.90240) (0.00000)

RandP 0.00232 0.00694 0.00749
(0.01819) (0.00000) (0.00000)

(b) BestMRE and BestInstance of combined neighbourhood heuristics

BestMRE(C,T) BestMRE(C,t) BestInstance(C,t)

AdaptR-double 0.00517 0.00535 0.01143
(0.00000) (0.00000) (0.00000)

AdaptR-static 0.00054 0.00073 0.00681
(0.99194) (0.96380) (0.00000)

AdaptP 0.00000 0.00018 0.00627
(1.00000) (0.99998) (0.00000)

RandP 0.00749 0.00767 0.01375
(0.00000) (0.00000) (0.00000)

Significant differences (𝑝 ≤ 0.005) are shown in bold and 𝑝 values are shown in ().
Negative values indicate the algorithm in the row performs better than the algorithm
in the column.
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comparison against BestMRE(C,t), and we see the same results for AdaptR-

double and RandP. AdaptR-static was better at time 6 points and AdaptP

was better for the other 25 time points. Table 6.16(c) shows the compari-

son against BestInstance(C,t), the best solution found on each instance by a

combined method. Here we see that the best performance is AdaptP which

is only worse on 4 time points followed by AdaptR-static, which is worse on

9 only points. The other methods, AdaptR-double and RandP, perform far

worse, having significantly worse performance on 23 and 27 time points re-

spectively. Table 6.17(a) shows the results of the all points analysis. Again,

we see the strongest performers are AdaptR-static and AdaptP, which have no

evidence difference in performance between each other but are better than

the AdaptR-double and RandP. The worst performers, AdaptR-double and

RandP also have no evidence of a difference in performance between each

other. Table 6.17(b) shows a comparison of combined methods against the

best performing combined methods across all time points. We see that al-

though there is evidence of a difference between BestInstance(C,t), the best

performing methods AdaptR-static and AdaptP are less than 0.7% worse.

The worst performing combined method, RandP has performance that is

1.4% worse, twice that of the best performers.

6.9.2 Discussion

The results on Taillard’s problem instances are interesting from several per-

spectives. We used these instances to validate our approach and the results

show that the combined methods with learning are able to outperform the

other methods, in terms of MRE, for all time limits. Comparing the results of

the combined learning methods, we see a performance increase over the indi-

vidual neighbourhood heuristics. Comparing the combined methods to each

other, we see that the best learning schemes provide a significant advantage

to randomly alternating between neighbourhoods.

Recall that we did not tune the pure neighbourhood heuristics to solve

Taillard’s benchmarks. The greater disparity in performance of the pure

heuristics against the combined methods shows that learning may provide a
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greater benefit when it is used in situations where the pure methods cannot be

tuned beforehand, or if the problem set has significant variation in difficult or

problem size. These results provide evidence that combining neighbourhood

heuristics with learning provides a greater benefit when applied to unseen

problem domains.

Although not shown in our presentation of results, we compared our ap-

proach to the best known upper bounds [105]. We are on average no worse

than 3% from the best known solutions despite only giving our method 10

minutes to solve these instances.

6.10 Adaptive Large Neighbourhood Search

We now discuss the approaches called adaptive large neighbourhood search

(ALNS) [92] and self-adaptive LNS (SA-LNS) [59] which have a strong simi-

larity to the work presented in this chapter. Both of these approaches are in-

stantiations of the adaptive probability (AdaptP) algorithm with the adaptive

runtime (AdaptR) weight updating scheme. That is, heuristics are selected

with a roulette wheel approach and weights are updated using Equation 6.10

from Section 6.8.1.1.

The authors of ALNS present a thorough study of their approach on

many classes of vehicle routing problems. An interesting variation of the ex-

periments presented in the ALNS work is the use of simulated annealing as

the acceptance criteria in the master LNS algorithm. In ALNS, weights are

updated after 100 iterations (similar to a time slice). During each iteration,

the current weights are used to repeatedly select and then apply a neigh-

bourhood. After a M iterations, weights are reset to their initial values. The

performance measure is simply the improvement in solution quality. No nor-

malization of performance values is applied, although the authors mention

this may be useful if some algorithms are more expensive than others.

Laboire & Godard present the SA-LNS algorithm [59] with results on

a wide range of single mode scheduling problems. As in our experiments,

SA-LNS applies weight learning after each application of a neighbourhood

heuristic, using the same performance measure as AdaptR (improvement /
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Figure 6.13: Comparison of SA-LNS to our methods.

time spent) but without normalization. The master LNS algorithm uses

hill climbing as the acceptance criteria. A novel feature of SA-LNS work is

applying the same weight scheme to parameters. A discrete set of parameter

values are provided and weights are learnt for each parameter value. In this

manner, they repeat a process of selecting a heuristic followed by selecting

a parameter setting. Unfortunately, no details on the number of parameter

combinations used are given in the paper.

The results of the ALNS and SA-LNS experiments are very interesting.

Robust and competitive performance on a diverse range of benchmarks is

observed. Indeed, in many cases the best known bound on benchmark in-

stances are improved. It is worth noting that the latest version of ILOG’s

commercial optimization product OPL now recommend SA-LNS as a robust

search method for optimizing scheduling problems [55].

We now present an brief comparison of our work to SA-LNS on a subset of

problems that were solved by both approaches. This subset consists of 12 of
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Taillard’s problem instances16 and a comparison of MRE17 is shown in Figure

6.13. As can be seen, our method produced better quality solutions than SA-

LNS. While it is difficult to compare CPU times on different hardware,18 our

results were obtained using 600 seconds, whereas theirs report a CPU time

of 1320 to 1680 seconds. To draw stronger conclusions on the strengths of

each approach, a more detailed study is required.

We note the timing of the development of these similar approaches. The

experiments in this chapter were completed in December 2005 culminating in

a submission to the Journal of Mathematical Modelling and Algorithms on

15 January 2006 and published on-line on 7 January 2009. SA-LNS appeared

in a paper at the MISTA conference on 28 August 2007. We became aware of

ALNS through a reference in the SA-LNS paper. Although the ALNS paper

was published in 2007, the article states that a technical report of the work

was available on the authors website in October 2005.

6.11 Conclusion

In this chapter, we have presented several low knowledge techniques to apply

large neighbourhood search to optimization problems. Each of the methods

presented can be applied without knowledge of the underlying algorithms or

the problem domain. The inputs required are a set of algorithms, a space

of parameters, and if available, a sample of problem instances. While the

expertise to develop algorithms remains, we believe that algorithm develop-

ment is not the critical issue since commercial software exists that provide

such algorithms in the form of toolkits. The critical issue is, given such a

toolkit, how does a non-expert use it. The methods presented in this chapter

deal with the effective utilization of such a toolkit. We believe these control

methods are a significant step towards producing a system that will consis-

16SA-LNS results are from http://wikix.ilog.fr/wiki/bin/view/Scheduler/SA-LNS.
17MRE is computed here using the best known upper bounds shown in Appendix A.
18SA-LNS experiments were run on a Dell Latitude D620 laptop, 2 GHz CPU with

2GB RAM, with an implementation on top of ILOG CP 1.1. This is in comparison to
our implementation on a Pentium IV 1.8 Ghz CPU with 512MB of RAM using the older
version of ILOG Scheduler 6.0.
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tently produce high quality solutions and reduce the expertise required to

apply optimization technology.
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Chapter 7

Conclusions and Future Work

7.1 Contributions

The primary contributions of this dissertation are methods to make opti-

mization technology easier to use. Our central thesis is that a practical and

effective way to achieve ease-of-use is through the application of low knowl-

edge algorithm control methods. We have presented several such control

methods, applied them in different contexts and shown strong performance.

The performance is not the primary achievement; it is that this performance

is possible using simple and general control methods. These mechanisms

can be applied to many different types of optimization algorithms and can

therefore make optimization technology more accessible to people without

the technical expertise that is currently required.

In summary, the contributions of this dissertation are:

∙ The introduction of simple and general low knowledge algorithm control

methods and the demonstration that they perform well on scheduling

problems.

∙ A framework for algorithm control and an analysis of the literature on

algorithm control methods.

∙ The extension of the algorithm selection problem to the more general

problem of algorithm control.

167



∙ A low knowledge control system applied to large neighbourhood search

and the application of this system to very large scheduling problems.

7.1.1 Low Knowledge Algorithm Control

The central thesis of this dissertation is that a low knowledge approach to

algorithm control supports the goal of reducing the required expertise to ef-

fectively apply optimization technology. We have challenged the belief that

more information will lead to a better reasoning system and proposed that

low knowledge control systems are both easier to implement and more ro-

bust to change. We highlighted the challenges and limitations of using a

high knowledge approach to create a model of the world in order to reason

about decisions. The engineering of high knowledge models is in itself a task

that requires significant expertise and effort and therefore does not address

the ease-of-use goal. Worse still, high knowledge models are specific to the

problem domains for which they are developed. This specificity reduces the

ability to reuse a model and carries a risk of over-fitting when problem in-

stances vary from those considered during model building.

We demonstrated that low knowledge control methods perform well even

though they do not have high knowledge models of the world. Several control

methods were presented and evaluated against optimal high knowledge selec-

tion methods. The high knowledge methods used were purely theoretical in

that they never make errors and take no CPU time to compute. Despite the

unfair advantage we gave the high knowledge methods, our empirical results

suggest that low knowledge approaches perform well: the low knowledge se-

lection methods performed as well as a high knowledge classifier that could

determine the best algorithm for a problem set. When we applied low knowl-

edge control methods that alternated between algorithms, performance was

at least as good as the high knowledge selection method that could identify

the best algorithm for each problem instance, and in many cases, the low

knowledge switching control method actually outperformed the high knowl-

edge selection method. These results provide evidence that despite being

easier to implement, low knowledge approaches can perform as well as high
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knowledge approaches.

Our empirical investigation applied control methods to state-of-the-art

scheduling algorithms for minimizing makespan on the job shop scheduling

problem. The problem instances ranged in size from 20x20 (400 activities)

to 40x40 (1600 activities). The larger problem instances extend the limits of

the size of problems that are typically considered in academic research and

are more representative of the size seen in industrial applications. We applied

control methods in two contexts: choosing among solvers and choosing among

large neighbourhood heuristics.

7.1.2 Analysis of Control Algorithms

We developed a framework to define the structure of control methods through

knowledge capture and control decisions. The framework provided a tool

to categorize and understand the literature, resulting in an analysis of the

benefits and shortcomings of on-line and off-line control approaches. From

this analysis, we gained the insight that a control method that makes on-

line control decisions, during the course of search, has several benefits. First,

it is not committed to making only a single decision. Repeated decision

making allows the control mechanism to be more robust to mistakes; control

decisions can changed if they do not perform well. Second, it reduces the

need to capture all of the information to reason about performance before

we make our decision. The information gathered while executing a decision

is extremely valuable to making future decisions.

7.1.3 Algorithm Control Problem

We extended the definition of the algorithm selection problem [94] to the more

general problem of algorithm control, where algorithm selection is repeated

during execution. The algorithm control approach allows the interleaving

of knowledge capture and decision making. We showed that low knowledge

control methods are able to perform as well as high knowledge selection

methods when applied to scheduling algorithms.
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7.1.4 Control Applied to Large Neighbourhood Search

We presented a scheduling system to solve industrial sized scheduling prob-

lems that is based on low knowledge control and large neighbourhood search.

Several mechanisms allow this system to automatically configure itself to

achieve strong performance. This configuration takes place in two phases:

during an off-line training phase and during an on-line execution phase. The

system performed strongly on all problems we tested, including problems

with 1600 activities and some challenging academic benchmarks.

In the off-line training phase, a tuning procedure determines the best

parameter settings for the components of the system. The tuning procedure

executes many control decisions at each point of search to determine the

best performing components and parameters. We applied this procedure to

the neighbourhood heuristics, although other aspects of the system can also

be tuned, such as search algorithms. A novel feature of our tuning method

is that the evaluation mechanism executes all components together, rather

than tuning each heuristic in isolation.

When the system is applied to new problem instances in execution mode,

control methods determine the best performing heuristics, allowing the sys-

tem to adapt to each problem instance and exploit the heuristics that perform

best at each stage of search. The best performing control method was based

on reinforcement learning and roulette wheel selection.

The resulting system represents a ‘black-box’ scheduling system that pro-

vides a framework to automatically exploit any new neighbourhood heuristics

or search algorithms that are added. We believe this system framework can

be easily applied to other problem domains. The algorithm designer simply

produces components and measurements of performance. The user of such a

system then produces problem instances and the system will automatically

adapt to achieve the best performance.
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7.2 Future Work

The work in this dissertation represents an advance in applying machine

learning methods to optimization technology. Our approach has been guided

by the goal of making optimization technology easier to use. In doing so,

we found that many of the existing approaches in machine learning are,

quite simply, inappropriate since they are very difficult to apply, and once

developed, become very specific to the problem they solve. We have identified

some simple guidelines for machine learning methods to support the goal of

generality and ease of use. In this section, we describe these guidelines and

point to possible future research directions and application areas.

Our control mechanisms operate with a simple, low knowledge, view of

the world that is based only on observations of performance. By taking

this perspective, we avoid the problem of producing a complex model for

reasoning about the world and replace it with an approach that reasons

based on the observation of actions.

The broad areas of future research, then, are:

∙ To understand the problem areas where control can be applied (or not)

and the types of algorithms that are suitable for control.

∙ To discover effective mechanisms of control. This research area includes

investigating types of control decisions, learning mechanisms, search

space exploration, parallel execution, action sequencing, and execution

monitoring.

∙ To understand how to configure control systems. This area includes

choosing the algorithms, tuning algorithms for combination, and de-

termining the best control method.

∙ To develop new component algorithms. This area is concerned with

developing algorithms that are explicitly designed to be combined with

other algorithms.
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7.2.1 Application Areas

The low knowledge control approach is very general: it can be applied to

many types of algorithms and problems. To apply the approach requires a

measure of performance, a collection of algorithms to choose among, and the

ability to execute these algorithms through control decisions. In this section,

we describe these requirements and then follow with some suggestions on

interesting application areas.

To apply the algorithm control methods described in this dissertation,

there are three requirements: a measure of algorithm performance, anytime

behavior, and the ability to share solutions among other algorithms. The

first two requirements are mandatory but the last requirement, of sharing

solutions, is only required if algorithm switching methods are used.

1. A measure of performance is required for the control methods to

make decisions based on how well each algorithm is performing. The

performance measure should have a direct impact on the aim of the

control system.

2. The anytime behavior requirement is that, at any time, an algorithm

can be halted and will return the best solution it has found so far.

3. The ability of an algorithm to improve a solution found by another

algorithm is a requirement of the most successful control methods we

discovered.

In considering whether a class of algorithms can meet these requirements,

it is interesting to consider the level at which algorithm control is applied. It

can be applied at a high level, as a wrapper around an entire search procedure,

or at a low level, on the heuristics and other components of a single search

procedure.

We are interested in the application of algorithm control to constraint

satisfaction and other areas where there are many algorithms and no clear

way to identify the best algorithm to apply. A challenge with constraint sat-

isfaction is the difficulty in identifying a good measure of performance before
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the problem is solved [4, 40, 68, 86, 117]. A second challenge is the ability to

share (partial) solutions among algorithms. Sharing solutions appears easier

with local search based methods or when control methods are applied inside

a constructive search algorithm (e.g., to choice point heuristics or propaga-

tion algorithms). Other areas of interest are mixed integer programming [28]

and other types of heuristic search algorithms, such as those used in vehicle

routing [92].

7.2.2 Control Mechanisms

Algorithm control is an instance of the general problem of action selection,

which has long been one of fundamental challenges in AI. Put simply, action

selection is the process of choosing what to do, given some knowledge and

observations regarding the current state of the world, in order to achieve a

goal (or set of goals). The primary driver for research in this area has been

robotics, and more recently, AI for characters in video games. Both of these

domains require decisions to be made rapidly and in environments with a

large degree of uncertainty and change, not unlike the domain of algorithm

control.

The AI planning community has typically addressed the action selection

problem by generating a sequence of actions (a plan) to achieve goals, and in

an execution context, replanning by updating the sequence of actions based

on observations. This type of reasoning is fundamentally high knowledge,

and the planning community continues to struggle with the ability to not

only represent the world, but to be able to reason as more and more complex

models are developed. A very different approach is the subsumption architec-

ture [19] which is a low knowledge approach to control. Rather than creating

complex models of the world and the way it operates, a subsumption archi-

tecture creates simple layers that are concerned with a single goal, such as

avoiding obstacles, and uses sensors to observe the state of the world. These

simple layers are then assembled in a hierarchy, which produces a system to

achieve the overall system goals. From a practical standpoint, the subsump-

tion architecture approach has been far more successful than AI planning;
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more than three million floor-vacuuming robots based on this design have

been sold.

The control methods in this dissertation have been developed with the

single goal of maximizing algorithm performance. The sensors in our systems

have been measures of algorithm performance and the actions are the appli-

cation of algorithms. In this dissertation, we have only explored a limited

number of possible configurations for algorithm control. The following lists

some interesting directions to extend our work:

Exploration of Search Space In our work, each algorithm is always asked

to improve the best known solution, a strategy known as the hill-

climbing metaheuristic. Other metaheuristics, such as simulated an-

nealing and tabu search, have been applied in an algorithm control

context [92, 103] but no study has been performed to compare meta-

heuristics in such a context. Solution pools are another interesting idea

that could be used in the context of algorithm control [112].

Parallel Processing Our control methods so far have operated in a serial

fashion and have not considered parallel processing. When multiple

control decisions are executed at the same time, the risk of committing

to the wrong decision decreases [50] and the knowledge gained regarding

algorithm performance increases, since more algorithms are evaluated.

It is interesting to consider policies for parallel execution and for sharing

information among algorithms.

Ordering of Algorithms We have only attempted to learn how to com-

bine effective algorithms rather than considering the order in which

algorithms are applied. Investigating the impact of algorithm ordering

and developing efficient mechanisms to learn and store this information

could lead to the discovery of complementary interactions between al-

gorithms.

Execution Monitoring The investigation of mechanisms that monitor al-

gorithm performance during execution may provide better control as

compared to running each algorithm for a fixed time. It is interesting to

174



consider work such as deliberation control [62] and other mechanisms

to determine when to stop an algorithm.

Learning Mechanism We have explored the application of two different

weight learning mechanisms, but there are many areas that warrant

further investigation such as the learning rate, exploration/exploitation

mechanisms, and learning different weights for each stage of search. Of

interest is the application of other learning mechanisms, aside from

reinforcement learning, to low knowledge algorithm control.

7.2.3 Configuring Control Systems

The aim of configuring an algorithm control system is to produce an on-

line control system which not only maximizes algorithm performance, but

produces a robust system that is able to perform very well on all instances

and time limits. The configuration process can be computationally expensive,

within reason, since it is performed off-line. However, a requirement of the

configuration process is that it is easy to apply without expert knowledge,

since the goal of our work is to make algorithms easier to use.

Consider the desirable properties of an optimization system that is com-

prised of many algorithms. The system should provide robust solving perfor-

mance, performing well on every problem instance it is applied to and across

all time limits. Each of the algorithms that makes up the system should

assist in this performance, either by directly improving the quality of the

solution, or assisting other algorithms in improving the quality of the solu-

tion (for example, through diversification). Each of these algorithms should

have a unique contribution towards this performance, in that it excels on a

particular type of problem or stage of search.

At first, it may appear as if this configuration process is very similar

to portfolio optimization. Each algorithm has a risk/reward ratio that is

an indicator of the algorithm’s computational cost/performance. The opti-

mal algorithm portfolio, then, is one that maximizes the expected value, by

picking the right algorithms. Unfortunately, portfolio optimization considers

each algorithm to be independent which is clearly not the case when solu-
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tions are shared among algorithms. If one algorithm produces solutions that

are very difficult for another algorithm to improve, then the combined sys-

tem will perform poorly. Without a deep analytical and empirical analysis

of these interactions it is difficult to determine this a priori. As more algo-

rithms are added, the number of possible interactions increases quadratically.

To perform a complete analysis requires inspecting every interaction, at each

control point, on every problem instance, which is clearly impractical.

Despite these challenges, automatic configuration approaches, such as pa-

rameter tuning [15, 52] can be applied to determine a configuration of algo-

rithm components. The parameters to be tuned are the parameters of the

control system and the set of algorithms to be used, and each individual

algorithm’s parameters. While these tuning methods are ideal from the per-

spective of being low knowledge, they are extremely computationally expen-

sive. The evaluation mechanism requires that each configuration is applied

to sample problem instances. The work of Hutter et al. [52] attempts to

limit evaluations of unpromising configurations, however the time taken to

search the parameter space can clearly become very expensive.

The simple tuning procedure we presented in Chapter 6 is a first step

towards building a mechanism to configure algorithm control systems. The

procedure applies each possible algorithm19 at every control decision. One

of the next steps in this research direction is to discover more effective ways

of choosing algorithms; we simply took the best parameter configuration

for each distinct heuristic, based on a measure of utility. It is interesting to

examine algorithm performance over time, by evaluating performing over the

entire run, thus learning the best configuration for different stages of search.

Another direction is to apply the ideas of FocusedParamILS [52] to limit the

evaluation of unpromising parameter configurations, which could speed up

this procedure.

19Note that in our experiment each algorithm had a range of parameter settings, thus
each parameter configuration represents an algorithm, for a total of 21 such algorithms.
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7.2.4 Developing Algorithms for Algorithm Control

In this section, we discuss designing algorithms that are specifically for use

in an algorithm control system. Algorithm design for control systems is an

interesting research area as it is a departure from the winner-takes-all school

of algorithm development. In the thinking of algorithm control, we want

to develop specialized algorithms that excel in one area, or complementary

algorithms which interact well with each other, rather than a single algorithm

that dominates all others. A common pattern in computer science research

is to create hybrids from combinations of existing algorithms to produce an

algorithm that performs better than its components. This is the synergy

benefit that we hope to gain when combining algorithms with algorithm

control, albeit, we wish each hybrid to be realized automatically and that a

‘unique’ hybrid is learned for each problem instance as we solve it.

An interesting area then, is to take successful algorithms and deconstruct

them into their components [113]. Given a set of building block algorithms,

the algorithms can be combined again in different ways to produce new al-

gorithms. Collections of such algorithmic building blocks are offered in com-

mercial toolkits such as Comet [108]. Decomposing an algorithm into parts is

similar to the suggestion of exposing parameters for algorithm tuning [52, 76].

The notable difference in our suggestion is that, unlike tuning which produces

a single static configuration before execution, we suggest producing a collec-

tion of building blocks that can be dynamically applied during execution

using on-line algorithm control.

The benefit of applying on-line algorithm control is that the configuration

process is concerned only with which algorithm to include and the control

policy, rather than exploring rigid parameter combinations of building block

configurations. When the control system is applied to problem instances,

it will apply the available algorithms which we believe will produce a more

robust system that performs better across all instances and time limits.
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7.3 Conclusion

The central thesis of this dissertation is that low knowledge control methods

for optimization algorithms allow non-experts to achieve high quality results

from optimization technology. The primary motivation for our research is to

extend the reach of optimization technology by making it more accessible. To

this end, we have presented methods that not only provide high quality solu-

tions, but do so without the requirement for significant effort and expertise

by a practitioner who wants to use off-the-shelf methods to solve a problem.

It is of note that our control methods provide robust solving performance,

both across problem instances and across time limits.

In particular, in this dissertation:

∙ We created and investigated mechanisms for algorithm control that

do not require detailed knowledge of the problem domain or algorithm

behaviour. These low knowledge control methods make decisions based

only on observations of algorithm performance. This approach lowers

the expertise required to employ these control mechanisms since no

knowledge engineering effort is required to apply control methods to

new algorithms or problem domains.

∙ We compared low knowledge control approaches to idealized high knowl-

edge approaches in the domain of scheduling. We presented an analy-

sis against the best possible high knowledge approaches and observed

strong performance. Although high knowledge methods have been

shown to provide good performance, they fail to make these algorithms

easier to use since they shift expertise from analysis of algorithm per-

formance to an analysis of high knowledge models.

∙ We applied low knowledge control methods to a large neighbourhood

search configuration for solving industrial-sized scheduling problems.

The control mechanisms were applied to the selection of neighbourhood

heuristics during search. In addition, a tuning procedure for neigh-

bourhood heuristics was presented that considers interactions between

178



neighborhoods. Strong performance was observed across all problem

sets and time limits.

179



Appendix A

Detailed Results on Taillard’s

JSP Instances
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Abbreviation Description
TA Problem Instance
UB Best known upper-bound [105]

ARd AdaptR-double (Combined NH)
ARs AdaptR-static (Combined NH)
AP AdaptP (Combined NH)
RP RandP (Combined NH)
RN Random NH
RS Resource NH
CB Cost-Based NH
TW Time Window NH
BT Texture with bounded backtracking

Bold indicates the best found solution by our methods

Table A.1: Legend for Results in Appendix A.

TA UB ARd ARs AP RP RN RS CB TW BT
11 1359 1398 1403 1387 1391 1434 1396 1439 1408 1430
12 1367 1386 1377 1367 1371 1409 1377 1412 1387 1430
13 1342 1365 1359 1359 1363 1412 1353 1451 1384 1406
14 1345 1345 1347 1345 1345 1345 1345 1380 1386 1396
15 1339 1385 1369 1399 1377 1411 1394 1422 1389 1468
16 1360 1377 1381 1370 1386 1403 1377 1409 1403 1457
17 1462 1493 1511 1523 1532 1516 1506 1521 1530 1530
18 1396 1438 1426 1428 1423 1470 1415 1483 1457 1491
19 1335 1383 1373 1377 1377 1388 1383 1420 1387 1418
20 1348 1363 1361 1380 1373 1364 1362 1463 1387 1411

Table A.2: Taillard 20x15

TA UB ARd ARs AP RP RN RS CB TW BT
21 1644 1683 1681 1692 1713 1721 1722 1777 1691 1736
22 1600 1644 1642 1664 1633 1677 1656 1671 1651 1683
23 1557 1592 1576 1597 1593 1645 1618 1638 1607 1647
24 1646 1681 1676 1693 1674 1710 1688 1751 1680 1712
25 1595 1635 1643 1653 1632 1650 1605 1681 1654 1716
26 1645 1684 1676 1655 1690 1729 1678 1750 1692 1743
27 1680 1724 1732 1703 1713 1783 1727 1801 1753 1793
28 1603 1626 1631 1654 1637 1674 1617 1701 1629 1698
29 1625 1645 1651 1652 1648 1659 1639 1678 1676 1699
30 1584 1642 1631 1628 1627 1669 1619 1682 1641 1683

Table A.3: Taillard 20x20
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TA UB ARd ARs AP RP RN RS CB TW BT
31 1764 1826 1780 1775 1788 2112 1768 1945 1816 1963
32 1795 1853 1855 1855 1884 2060 1833 1905 1883 2068
33 1791 1921 1853 1860 1843 2126 1876 1923 1906 2098
34 1829 1897 1900 1881 1879 2052 1877 1982 1918 2047
35 2007 2007 2007 2010 2007 2080 2007 2047 2007 2044
36 1819 1847 1828 1842 1851 2190 1856 1918 1870 2034
37 1771 1831 1834 1823 1834 2018 1799 1865 1887 1995
38 1673 1715 1712 1702 1743 1823 1705 1762 1827 1893
39 1795 1837 1814 1833 1814 1956 1822 1957 1896 1990
40 1674 1759 1718 1720 1734 2141 1755 1828 1736 1918

Table A.4: Taillard 30x15

TA UB ARd ARs AP RP RN RS CB TW BT
41 2018 2139 2120 2072 2082 2484 2077 2323 2165 2364
42 1949 2012 2047 2025 2029 2228 2005 2136 2081 2185
43 1858 1972 1923 1908 1944 2210 1962 2002 1970 2175
44 1983 2116 2082 2061 2080 2373 2075 2139 2114 2274
45 2000 2094 2063 2083 2054 2399 2037 2151 2113 2263
46 2015 2131 2080 2108 2120 2411 2094 2292 2156 2359
47 1903 1982 1957 1944 1950 2013 1967 2060 2053 2174
48 1949 2034 2034 2057 2007 2103 2005 2127 2085 2217
49 1967 2107 2096 2035 2034 2297 2051 2112 2129 2249
50 1926 2031 2058 2014 2014 2078 2001 2069 2104 2214

Table A.5: Taillard 30x20

TA UB ARd ARs AP RP RN RS CB TW BT
51 2760 2901 2795 2760 2765 3420 2851 2928 3120 3138
52 2756 2771 2756 2756 2776 3278 2929 2821 2886 3122
53 2717 2740 2717 2717 2717 3034 2717 2717 2843 3012
54 2839 2839 2839 2839 2839 3135 2839 2869 3135 3106
55 2679 2730 2701 2679 2707 3119 2828 2711 3119 3114
56 2781 2781 2781 2781 2781 3038 2781 2781 2959 3038
57 2943 2943 2943 2943 2943 3232 2953 3018 3023 3231
58 2885 2885 2885 2885 2885 3314 2973 2885 2991 3286
59 2655 2745 2655 2659 2669 3083 2789 2697 2965 3065
60 2723 2800 2723 2723 2743 2978 2733 2739 2975 2978

Table A.6: Taillard 50x15
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TA UB ARd ARs AP RP RN RS CB TW BT
61 2868 2984 2987 2995 3008 3335 3188 2970 3132 3321
62 2869 3074 3045 3076 3053 3341 3155 3063 3324 3341
63 2755 2850 2838 2845 2876 3172 2997 2878 3118 3170
64 2702 2755 2811 2784 2811 3172 2959 2831 2997 3171
65 2725 2974 2970 2845 2890 3365 3030 3035 3075 3313
66 2845 2968 2989 2966 2966 3240 3104 3073 3208 3238
67 2825 2906 2933 2920 2941 3247 3051 2963 3123 3242
68 2784 2878 2904 2857 2818 3052 2934 2885 2994 3052
69 3071 3218 3233 3169 3136 3481 3336 3145 3481 3432
70 2995 3225 3207 3150 3132 3443 3309 3163 3285 3440

Table A.7: Taillard 50x20

TA UB ARd ARs AP RP RN RS CB TW BT
71 5464 5650 5702 5709 5796 5817 5817 5687 5817 5817
72 5181 5204 5277 5312 5403 5414 5412 5247 5414 5414
73 5568 5707 5869 5752 6020 6058 6053 5756 6058 6058
74 5339 5339 5442 5389 5518 5568 5563 5373 5568 5568
75 5392 5748 5806 5812 5921 5957 5952 5714 5957 5957
76 5342 5535 5579 5761 5809 5963 5958 5524 5763 5963
77 5436 5461 5585 5517 5697 5767 5765 5496 5767 5767
78 5394 5553 5592 5641 5669 5733 5729 5509 5733 5733
79 5358 5374 5415 5401 5513 5563 5563 5382 5563 5563
80 5183 5271 5328 5310 5399 5434 5431 5303 5434 5434

Table A.8: Taillard 100x20
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