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Abstract
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Solution Guided Multi-Point Constructive Search (SGMPCS) is a constructive search tech-
nique inspired by local search algorithms that guide search from multiple viewpoints. SGM-
PCS consists of a series of resource-limited backtracking searches: each starting from an empty
solution or guided by one of a set of high quality, elite solutions encountered earlier. The thesis
of this dissertation is that SGMPCS works, in part, because of two factors: the benefit of revis-
iting the areas near good solutions, and through the exploitation of heavy-tails. We provide a
detailed analysis of the various parameters of SGMPCS on a variety of constraint satisfaction
problems. We show evidence of heavy-tailed distributions for only the sets of problems where
SGMPCS performs well. We show how performance is correlated with how well the evaluation
of guiding solutions predicts actual distance to a solution. Finally, we explore various static
cost models of SGMPCS performance.
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Chapter 1

Introduction

Solution Guided Multi-Point Constructive Search (SGMPCS) is a complete, constructive search
technique that has been shown to out-perform standard constructive search techniques on a
number of constraint optimization and constraint satisfaction problems. The central thesis of
this dissertation is that, as first speculated by Beck [7], there are at least two, non-mutually
exclusive factors that influence SGMPCS performance: the exploitation of heavy-tails and the
impact of revisiting elite solutions. The body of this dissertation consists of empirical investi-
gations toward gaining a greater understanding of SGMPCS behaviour, focusing on these two
factors.

In particular, in this dissertation:

• We perform a systematic investigation on how the various parameters of SGMPCS affect
performance in solving three satisfaction problems.

• We investigate if and when heavy-tailed distributions appear in job-shop scheduling op-
timization, and their relation to SGMPCS performance.

• We investigate the impact of the evaluation function used by SGMPCS through fitness-
distance correlation analysis.

• We evaluate static cost models of SGMPCS, which attempt to predict performance from
static search space features of an instance.

1.1 Motivations
This dissertation is focused on gaining a better understanding of SGMPCS performance. As
such, its motivations are the past performance SGMPCS, and previous empirical studies of
SGMPCS, heavy-tails, and descriptive models of algorithm behaviour.

1. Past Performance and Studies of SGMPCS: While previous results [4, 5] indicate that
SGMPCS can significantly out-perform both standard chronological backtracking and
randomized restart on optimization and satisfaction problems, the one existing systematic
study of the parameters of SGMPCS [6] only addressed optimization problems. Beck [6]
showed that SGMPCS significantly out-performs randomized restart and chronological

1



CHAPTER 1. INTRODUCTION 2

backtracking on two different types of job-shop scheduling problem. Yet, one of the best
parameter settings found (i.e., maintaining only one elite solution) calls into question
the exploitation of multiple viewpoints as the motivation for SGMPCS. One goal of this
dissertation is to perform a similar systematic study of SGMPCS parameter values for
constraint satisfaction.

2. Heavy-Tailed Distributions in Constructive Search: The studies of Gomes et al. [29]
found that constructive search can exhibit tremendous variability in the cost of finding a
solution, with distributions in search cost that can be characterized as heavy-tailed. These
empirical studies led to a randomized rapid restart technique that can greatly improve
performance of constructive search algorithms. As SGMPCS can itself be considered a
randomized restart algorithm, one goal of this dissertation is to show theoretically and
empirically that SGMPCS can also exploit heavy-tailed distributions.

3. Descriptive Models of Algorithm Behaviour A descriptive model of algorithm be-
haviour is a tool used to understand why an algorithm performs as it does on a particular
class or instance of a problem. There has been considerable work over the past 15 years
in developing models of problem hardness [21, 61] as well as work that has focused
more directly on modeling the behaviour of specific algorithms or algorithm styles. This
dissertation employs various descriptive models of SGMPCS performance as a means to
better understand how and when it outperforms other techniques.

1.2 Outline
The outline of this dissertation is as follows:

In Chapter 2, we first define constraint satisfaction and optimization problems and the two
main categories of algorithms to solve them. We then introduce Solution Guided Multi-Point
Constructive Search, and various other algorithms that influenced its development or share
common features. We then give an overview of empirical research into search algorithms and
search spaces.

In Chapter 3, we vary the primary parameters of the SGMPCS algorithm in a detailed set
of experiments on three satisfaction problems: quasigroup-with-holes, magic square, and a
satisfaction version of the multi-dimensional knapsack problem. The results confirm previ-
ous results in comparing SGMPCS with randomized restart and chronological backtracking
on quasigroup-with-holes and indicate that maintaining more than one elite solution leads to
stronger performance. Interestingly, experiments on magic square and a multi-dimensional
knapsack problems show performance that is about the same as randomized restart.

In Chapter 4, we review past research on heavy-tailed distributions in backtracking search
including how to find the distributions and how to theoretically and empirically boost perfor-
mance with a rapid-restart strategy. We argue that SGMPCS should theoretically also benefit
the same way. Empirical investigations are then performed to confirm the theoretical argu-
ment: using job-shop scheduling optimization problems, we show that SGMPCS performance
improves over basic backtracking at precisely the same sizes of problem at which heavy-tailed
distributions appear in backtracking search.
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In Chapter 5, we return to the interesting results of the multi-dimensional knapsack prob-
lems of Chapter 3 to investigate the conjecture that SGMPCS performance, unlike that of
randomized restart and chronological backtracking, is partially affected by the quality of the
heuristic that is used to select the guiding partial solutions. This conjecture is explored by
developing a descriptive model of SGMPCS performance using fitness-distance analysis. It
is demonstrated that SGMPCS search performance is partially dependent upon the correla-
tion between the heuristic evaluation of the guiding solutions and their distance to the nearest
satisfying solution

In Chapter 6, we explore how SGMPCS performance may be related to other search space
features by an evaluation of various static cost models used previously by Watson et al. [70]
on job-shop scheduling problems and tabu search.

Chapter 7 concludes this dissertation with a summary of contributions and suggestions for
further work.

1.3 Summary of Contributions
The contributions of this dissertation are as follows:

• We perform the first systematic application of SGMPCS search to constraint satisfaction
problems confirming good results on quasigroup-with-holes problems, and otherwise
interesting results on two other satisfaction problems.

• We show that the distribution in run-times of the backtracking search on JSP instances
can be heavy-tailed. We also show that SGMPCS and randomized restart techniques
perform better at the same instance sizes in which heavy tails start to appear. Guided
runs used by SGMPCS were also shown to exhibit heavy tails.

• Empirical results, both in an artificial context and using three different heuristic evalua-
tion functions, demonstrate that the correlation between the heuristic evaluation of a state
and its proximity to the satisfying solution has a strong impact on search performance of
SGMPCS.

• We are able to take search space features, which were previously only used in analyz-
ing local search procedures, and show interesting relations between them and SGMPCS
performance. Surprising relations with the performance of standard chronological back-
tracking and randomized restart were also found.



Chapter 2

Literature Review

In this chapter, we first define constraint satisfaction and optimization problems and the two
main categories of algorithms to solve them. We then introduce Solution Guided Multi-Point
Constructive Search, and other algorithms that influenced its development or share common
features. We then give an overview of empirical research into search algorithms and search
spaces.

2.1 Constraint Satisfaction and Optimization Problems
Many interesting and important problems in Artificial Intelligence, from industrial scheduling
and routing to protein folding [8, 17, 2], can be modeled and solved as Constraint Satisfaction
or Optimization Problems. In a Constraint Satisfaction Problem (CSP), the goal is to assign
values to a set of variables in such a way that a set of constraints between them hold. Constraint
Optimization Problems (COP) have the added task of finding an optimal satisfying assignment
of the variables. Formally, a CSP can be represented as a three-tuple (V, D, C), where V is a set
of variables V = {v1, v2, · · · , vn} each with corresponding domains from D = {D1, · · · , Dn}.
C is a set of m constraints, C = {c1, · · · , cm} where each ci defines, over some subset of V ,
(vi, · · · , vj), the acceptable combination of assignments to these variables from the Cartesian
product Di × · · ·Dj . The goal of a CSP is to find an assignment to all variables α = {〈v1 =
x1〉, 〈v2 = x2〉 · · · 〈vn = xn〉} that satisfies all constraints. A constraint optimization problem
is a tuple (V, D, C, f), where (V, C, D) is a CSP and f is a function which maps solutions to
the CSP to a numeric value. The goal of a COP is to find a solution to the CSP with an optimal
(minimal or maximal) value for f [18].

Algorithms for solving constraint optimization and satisfaction problems can be divided
into two main groups [36]: constructive or systematic search which systematically searches
through the space of all solutions and local search methods which work from a full assignment
of variables and then make small, local, repairs to move towards a closer to optimal or satisfying
solution.

In constructive search, the search space of all possible solutions is systematically and com-
pletely explored. This is usually accomplished through an incremental adding of decisions to a
partial solution until a full solution is constructed or a conflict is detected. Once a conflict is de-
tected, decisions are removed (backtracking), and others are asserted in a systematic way that

4
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ensures every possible combination of values to variables is implicitly or explicitly explored.
One main problem encountered in constructive search is that wrong decisions made early in the
procedure may cause the algorithm to fruitlessly keep searching in a branch of the search tree
where no solution can occur, repeatedly finding the same conflicts (thrashing). Improvements
to constructive search can be categorized in two main areas, look-ahead and look-back tech-
niques. Look-ahead techniques attempt to improve the area yet to be explored through filtering
techniques that can prune areas of the search space which can be proved to have no solution
[44, 55], and heuristics that order which value or variable to assign next [31]. Look-back tech-
niques attempt to exploit the area already searched by jumping back to the cause of a dead-end
[63], or learning the reason for the current conflict and adding it as a new constraint [23]. For
a survey of the systematic constraint satisfaction techniques see Kumar [39] or Dechter [18].

Local search techniques are free from the structural confines of constructive search, with
the freedom of making any move which can lead to a better solution. But with this freedom,
one usually loses the completeness of constructive search. There is also no guarantee that a
local search procedure will ever find a solution in a finite amount of time. In situations where
there are no solutions, local search would just keep searching forever. Local search algorithms
are also at risk of becoming stuck in local optima. Local optima are sub-optimal states of the
search space to which improving moves can move to, and no improving moves can leave. Local
search techniques use a variety of meta-heuristics in order to avoid and escape from these local
optima. A good overview of the variety of local search algorithms is provided by Hoos and
Stüzle [36].

2.1.1 Job-Shop Scheduling
In this section, we provide an example of a constraint optimization problem, job-shop schedul-
ing, and how it can be solved with both constructive and local search algorithms.

An n × m job-shop scheduling problem (JSP) contains n jobs each composed of m com-
pletely ordered activities. Each activity, ai, has a predefined duration, di, and a resource, ri,
that it must have unique use of during its duration. There are also m resources and each activ-
ity in a job requires a different resource. The processing of activity on a machine is called an
operation, and denoted oij for an activity of job i running on machine j.

A solution s to a JSP instance specifies, for each machine, the ordering which the activities
of each job are processed by that machine. This ordering also implicitly defines the earliest
start time est(x) and earliest completion time ect(x) for each operation x [70]. The usual goal
of JSP optimization is to find a solution with a minimal makespan. The makespan Cmax(s) of
a solution s is the maximum earliest completion time of any operation.

A solution feature used by many search techniques is the critical path. A critical path
is a sequence of operations of a solution which defines its makespan. Specifically, a critical
path of a solution s is a sequence of operations o1, o2, · · · , ol such that (1) est(o1) = 0, (2)
ect(ol) = Cmax, and (3) est(oi) = ect(oi−1) for 1 ≥ i ≥ l, where ect(o0) = 0 [70]. A solution
may have more than one critical path. The related term critical block refers to a subsequence of
operations on a critical path which all run on the same machine. Figure 2.1 displays a solution
to a 10 × 10 JSP with its sole critical path, composed of seven critical blocks, highlighted.

To solve a JSP with constructive search, a partial solution can be built up by using the
orderings of activities on each resource as the decision variables, and assigning values to them
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Figure 2.1: A 10×10 JSP example with the critical path highlighted by the thick borders. JiAp

represents pth operation of job i.

one at a time. Decision variables refer to variables that define the search space a constructive
algorithm explores; a full, satisfying, assignment to these variables defines a solution to the
problem. Between asserting assignments to these variables, look ahead techniques can be used
to find new start time constraints and orderings that are implied by the current partial solution.
These new constraints can then lead, or propagate, to the implication of more constraints. A
variety of advanced look-ahead, or propagation techniques as they are called, exist for job-
shop scheduling [51, 41, 42]. If the propagation techniques ever remove all possible values
from the domain of a variable, or a constraint becomes unsatisfied, a fail occurs. At this time, a
decision—usually the last one made—is removed, along with all propagated constraints caused
by it, and another decision is asserted. Once a solution—a full instantiation of the variables
that satisfies all constraints—is found, the bounds on when the last activity can end are set to
one less than the makespan of the solution found and search continues. Eventually a solution
with the optimal makespan will be found, and the bounds will be set to one less than this.
The constructive search algorithm can then exhaustively explore the search space with this
added constraint and prove that no solution with such a low makespan exists, and that the best
makespan found so far is optimal.

In local search algorithms for job-shop scheduling optimization, search begins with a ran-
domized ordering of activities on each resource that obeys all ordering and resource constraints
on the activities. Such a random solution is very likely to have a sub-optimal makespan. Then
with each iteration, a move, or repair, is made by altering this ordering. A usual technique
[65, 49] is to take two activities on a critical block, as described earlier, and invert their order.
One state-of-the-art local search algorithms for the JSP, TSAB [49], is described in depth in
Section 2.3.3.2.
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2.2 Solution Guided Multi Point Constructive Search
The topic of this dissertation, Solution Guided Multi Point Constructive Search (SGMPCS), is
a recent CSP solving algorithm which attempts to incorporate ideas and methods from local
search within a constructive search framework. SGMPCS consists of a sequence of many
resource limited, randomized backtracking search iterations. Within each iteration a pool of
the best solutions encountered so far during the search is maintained. With every iteration, a
solution may be taken from this elite pool and used to guide the search. The initial studies of
SGMPCS [5, 6, 7] have found it to outperform standard backtracking and randomized restart
(see Section 2.3.1) on both job shop scheduling optimization and the quasi-group with holes
completion constraint satisfaction problem.

Pseudocode for the basic SGMPCS algorithm is shown in Algorithm 1. The algorithm
initializes a set, e, of elite solutions and then enters a while-loop. In each iteration, with
probability p, search is started from an empty solution (line 5) or from a randomly selected
elite solution (line 10). In the former case, if the best partial solution found during the search,
s, is better than the worst elite solution, s replaces the worst elite solution. In the latter case, s
replaces the starting elite solution, r, if s is better than r. Each individual search is limited by a
fail bound: a maximum number of fails that can be incurred. The entire process ends when the
problem is solved, proved insoluble within one of the iterations, or when some overall bound
on the computational resources (e.g., CPU time, number of fails) is reached.

Elite Solution Initialization The elite solutions can be initialized by any search technique.
The search effort is limited by a maximum number of fails for each run. As elite set diversity
has been found to be important to metaheuristics [68], independent initialization runs are done
to ensure that the initial solutions are diverse.

Limiting Search Each individual search is bounded by an evolving fail bound: a single
search (lines 5 and 10) will terminate, returning the best solution encountered, after it has
failed the corresponding number of times. How this bound grows over time to make the search
complete depends on the fail sequence used (see Section 3.1).

Searching From An Empty Solution With some probability, p, search is started from an
empty solution (line 5). Searching from an empty solution simply means using any standard
constructive search with a randomized heuristic and a bound on the number of fails. Initially
the p parameter was used in hopes of helping to diversify the search process, but was later
shown to do the opposite (see Section 2.2.2). The probability of starting from scratch can still
be seen as a way to parameterize the extent to which SGMPCS is guided by elite solutions as
opposed to simply being a randomized restart method.

Setting Bounds on the Cost Function To exploit constraint propagation an upper bound of
the cost function must be set at each iteration. Beck [6] defines two possible techniques: local
and global bounding. In global bounding, the upper bound on search is always set to one less
than the lowest cost found so far. For local bounding, the bound depends on whether search
is being guided by an elite solution. When search is started from an empty solution, the upper
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Algorithm 1: MPCS: Multi-Point Constructive Search
MPCS():

1 initialize elite solution set e
2 while termination criteria unmet do
3 if rand[0, 1) < p then
4 set fail limit, b
5 s := search(∅, b)
6 if s is better than worst(e) then
7 replace worst(e) with s

else
8 r := randomly chosen element of e
9 set fail limit, b

10 s := search(r, b)
11 if s is better than r then
12 replace r with s

bound on the cost function is set to one less than the cost of the worst current elite solution.
When being guided by a solution, the upper bound is set to one less than the cost of the guiding
solution.

2.2.1 Searching from a Solution
To start constructive search from an elite solution, a search tree is created using any variable
ordering heuristic and specifying that the value assigned to a variable is the one in the elite
solution, provided it is still in the domain of the variable. Otherwise, any other value ordering
heuristic can be used to choose a value. Formally, given a constraint satisfaction problem with
n variables, a solution, s, is a set of variable assignments, {〈V1 = x1〉, 〈V2 = x2〉, . . . , 〈Vm =
xm〉}, m ≤ n. When m = n, the solution is complete, but possibly infeasible; when m < n,
s is a partial solution. A search tree is created by asserting a series of choice points of the
form: 〈Vi = x〉 ∨ 〈Vi 6= x〉 where Vi is a variable and x the value that is assigned to Vi. The
variable ordering heuristic has complete freedom to choose a variable, Vi, to be assigned. If
〈Vi = xi〉 ∈ s and xi ∈ dom(Vi), the choice point is made with x = xi. Otherwise any value
ordering heuristic can be used to choose x ∈ dom(Vi).

2.2.2 Adapting Elite Solutions to Satisfaction Problems
In an optimization context, a solution can be defined as a complete, feasible assignment of all
variables. Solutions were compared based on their corresponding objective value or cost. To
adapt SGMPCS for satisfaction, the need for a complete assignment is relaxed and solutions
are compared based on the number of assigned variables.

The solution, s, returned from a single search is the partial solution with the most assigned
variables encountered during the search. Either this is a complete solution satisfying all con-
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straints and so search terminates, or it is a dead-end. Clearly the partial solution encountered
with the greatest number of assigned variables must be either a complete solution or a dead-
end. When a dead-end is encountered, no attempt is made to further assign variables: as soon as
there is a domain wipe-out, the cost of the partial solution is evaluated by counting the number
of unassigned variables and then search backtracks, provided the resource limit on the search
has not been reached. There are two main reasons for using this evaluation of partial solutions.
Firstly, it is a very simple method that should be tried before anything more complex. The sec-
ond is the intuition that partial solutions with more assignments are closer to being a complete
assignment and are therefore should be preferred

2.2.3 SGMPCS as Local Search
While the core search technique in SGMPCS is heuristic tree search, there are two ways in
which SGMPCS can be viewed as a hybrid of constructive and local search. First, SGMPCS is
based on a fundamental idea of local search: the use of sub-optimal solutions to guide search.
In fact, as mentioned in [7], one of the main motivations for SGMPCS was the local search
algorithm TSAB [49] (see Section 2.3.3.2) which maintains multiple viewpoints, in the form
of sub-optimal solutions, to guide search. Second, and more crucially, a single iteration of
SGMPCS starting from an elite solution is an implicit search over a neighborhood of that
solution. Given a variable ordering and a resource limit, a chronological backtracking tree
search is only able to search through a small subtree before the resource bound is reached.
That subtree is, implicitly, a neighborhood of the starting solution. If a better solution is found
in that neighborhood, it is accepted and inserted into the elite set where it will be later used
as a starting solution for a new neighborhood search. If a better solution is not found in the
neighborhood, a subsequent search with the same starting solution but a different variable
ordering and/or resource limit will investigate a different neighborhood of that elite solution.
From this perspective, heuristic tree search is used to implement the evaluation of neighboring
solutions.

2.2.4 Past Empirical Studies of SGMPCS
Past studies have empirically studied the performance of SGMPCS on job shop scheduling
problems [7, 6]. One interesting finding from [6] was that SGMPCS with smaller elite sets per-
formed better on JSP optimization, with an elite set of one performing the best. This brought
into question one of the main motivations of SGMPCS, that of maintaining multiple view-
points during search. Low probabilities of starting from an empty solution (p) were also found
to perform better. In a later empirical study [7], it was found that the p value was having
the opposite than expected effect on elite pool diversity. Because of the differing replacement
rules, repeatedly starting from scratch had the effect of filling the elite pool with similar solu-
tions. Further experiments controlling for different expected diversity levels found SGMPCS
performed best with replacement rules that reduced the diversity of the elite set. This trend of
better performance for lower diversity goes against intuitions and experience in local search
[71].
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2.3 Related Algorithms
2.3.1 Randomized Restart Search
SGMPCS is similar to the randomized restart techniques proposed by Gomes et al. [26] in
which a randomized backtracking search is stopped if a solution is not found within a certain
resource limit and then restarted with a new random seed. This technique came out of studies
of heavy-tailed distributions in the run-time of backtracking search (see Section 2.4.2 for an
overview of the empirical studies into heavy tails). By stopping search at a given limit, one
avoids the non-trivial probability that the given stochastic run will be extremely long. Also,
by using a small limit on search, one can exploit a related phenomena of heavy left hand tails:
the non-trivial probability of the next stochastic run being very quick. Randomized restart
search has been shown to be able to outperform standard chronological backtracking on various
constraint satisfaction problems [26]. Randomized restarts have also been implemented in
SAT solvers to boost performance on many practical problems such as planning and hardware
verification [48].

Luby et al. [43] showed that the optimal restart limit for these type of restart algorithms
is the value r that optimizes Equation 2.1. E(r) is the expected run-time of such a restart
technique with a fixed restart limit r, where q(t) is the probability the next run will take less
than t units of time (or units of search cost, when another measure of search effort is being
used). To obtain this value, complete information of the run-time distribution of the randomized
search is needed.

E(r) =
r −

∑

t<r q(t)

q(r)
(2.1)

For the situation where there is no information of this distribution, Luby et al. also formulates
a universal sequence Suniv of limits which is only a log factor away from the true optimal
fixed limit, and only a constant factor away from any other universal sequence. The universal
sequence proceeds as follows:

Suniv = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, · · ·)

Formally, Suniv = (t1, t2, t3, · · · ), where

ti =

{

2k−1 if i = 2k − 1;
ti−2k−1+1, if 2k−1 ≤ i ≤ 2k − 1.

(2.2)

2.3.2 Constructive Search in the Area of Good Solutions
A number of other algorithms implement a similar form of iterative randomized construction
of solutions combined with some way of using the solutions found in past iterations to help
guide search.

2.3.2.1 Adaptive Probing

The Adaptive Probing algorithm of Ruml [56] consists of repeated probes into the search space.
Each probe consist of constructing a solution using a randomized heuristic which is also a func-
tion of a weight attributed to each decision. At the end of a probe, the weights for each decision
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are updated under the assumption that the cost of the solution is based on an additive model
of all decisions, or components, that made up that solution. As it was applied to satisfaction
problems, Adaptive Probing used the same technique as SGMPCS of using the number of
unassigned variables when a conflict was detected as the cost of the dead-end. Pseudocode for
Adaptive Probing is shown in Algorithm 2. Search starts by first giving equal weight to all
solution components. With each iteration, a new solution s is constructed using a randomized
heuristic that is biased by the weights w. The weights are then updated based on the solution
quality of s and the cycle repeats. Ruml [56] found that this algorithm can be competitive with
systematic techniques, and can outperform them in the case where the heuristic makes many
mistakes. We mention some further empirical studies involving Adaptive Probing in Section
2.4.3.

Algorithm 2: Adaptive Probing [56]
AP():

1 initialize weights w
2 while termination criteria unmet do
3 s:= construct(w)
4 w:= adaptWeights(s,w)

2.3.2.2 Ant Colony Optimization

The development of the ant colony optimization (ACO) algorithm was inspired by the collec-
tive behaviour of ants which can find the shortest path to a food source through the use of
distributed local communication in the form of pheromone trails [20]. In ACO, a population
of artificial ants are created, and each independently, and stochastically, builds a solution to the
problem. After each ant finds a solution they deposit pheromone trails along the components
of their solution (the amount of pheromone usually depends on the quality of solution found).
When the next wave of ants search, the randomized choices they take in building a solution are
influenced by the pheromone deposited earlier. To keep the search process from stagnating,
pheromone evaporation is employed so that the pheromone deposited on each component de-
creases with time. Reduced to its basic form, ACO can be seen to be quite similar to Adaptive
Probing [36]. The difference being that with each step a population of k new solutions is gen-
erated. These k solutions are then taken together to update the weights used in the randomized
heuristic.

As shown in Algorithm 3, the weights, or trails, τ , are first initialized to some base level.
sp denotes the population of solutions: the results of each ant’s search. With each iteration,
each ant creates a new solution based in part by the current trails τ . The trails are then updated
based on the solutions found by each ant, and reduced due to evaporation, and the cycle repeats.
ACO was first applied to the Traveling Salesperson Problem, and while results were somewhat
promising, it is outperformed by other state-of-the-art techniques. One area where more recent
Ant Colony algorithms are prominent is in dynamic problems. A dynamic problem is one
which can change while solving it, such as telecommunications routing [19].
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Algorithm 3: Ant Colony Optimization algorithm.
ACO():

1 initialize trails τ
2 sp := {}
3 while termination criteria unmet do
4 sp:= constructPopulation(τ )
5 w:= updateTrails(sp,τ )

2.3.2.3 Large Neighborhood Search

Large Neighborhood Search (LNS) [53, 59] is another search algorithm which combines con-
structive and local search techniques to find optimal, or high quality solutions to constraint
optimization problems. LNS tries to iteratively find a better solution than it currently has by
freezing a set of variables to the values they had in the last best solution and applying construc-
tive search to the rest of the problem with an updated optimization bound and resource limit
on search. Pseudocode for the basic architecture of LNS appears in Algorithm 4. At line 1, a
solution s is found through a standard constructive search technique, then a while loop is en-
tered to attempt to improve the quality of the solution. With each iteration, a neighborhood N
is selected. This represents the variables that will be searched through to find a better solution.
At line 4, a new solution s′, is found by freezing the values of variables not in N to their values
in the last solution s, and applying constructive search on the rest. The best solution so far, s,
is updated, and the cycle continues until a solution of adequate quality is found, or some other
termination criteria are met.

A difficult problem in LNS is choosing the large neighborhood to search through at each
iteration. While there are more generic methods for defining these neighborhoods at each
iteration [53], most implementations use problem specific methods [59]. Randomly chosen
neighborhoods have been found to not to perform well [59]. If SGMPCS always guides from
an elite solution (p = 0), and has an elite size of 1, it can be seen as quite similar to LNS with
random neighborhoods. In SGMPCS, the variables high in the tree will be fixed to the value in
the guiding solution. If |e| = 1, the guiding solution will always be the last best solution found,
as in LNS. The variables which the randomized variable ordering places at the bottom of the
search tree defines the neighborhood SGMPCS searches through at that iteration. SGMPCS
typically uses a fail sequence that grows with time in order to be complete. An analogous
increasing in the size of the neighborhoods is not typically used in LNS.

Algorithm 4: Large Neighborhood Search [53].
LNS():

1 initialize initial solution s
2 while termination criteria unmet do
3 Select Neighborhood N
4 s′ = Constructive Search, Freezing variables /∈ N to values in s
5 if s′ is better than s then
6 s = s′
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2.3.3 Multiple Viewpoints
Other than ant colony optimization, most population-based techniques have been used in local
search. Two examples of this are genetic algorithms and the tabu search algorithm TSAB which
was one of the main inspirations for SGMPCS [7].

2.3.3.1 Genetic Algorithms

In genetic algorithms (GAs), search proceeds through a population of solutions that evolve over
time [34, 24]. A genetic algorithm (pseudocode shown in Algorithm 5) starts by generating an
initial random set of candidate solutions. Each member of the population is then evaluated
and assigned a cost, or as the inverse is called in GA, a fitness. Some subset of the population
with the highest fitness then reproduce. This is accomplished through cross-over operators that
combine components of two solutions together into a new solution, and by mutation which
takes a solution and randomly changes some of its components. After reproduction the older
generation dies—in some algorithms letting higher fitness members survive—and are removed
from the population. Pseudocode for GA is shown in Algorithm 5. At line 1, a population of
candidate solutions sp is generated through some randomized means. At line 3, fitness values
are assigned to each solution through some evaluation function. At line 4, new solutions sp′ are
generated by mutating and recombining the fitter solutions from sp. At line 5, older and less
fit solutions are removed from the population and the process continues until some termination
criteria are met.

Many cross-over techniques exist for combining old solutions into new ones. The most
common is the one-point crossover [36]. In this technique, as in most, solutions are represented
as strings of components. In the one point cross over, two solutions are split into four at some
random point on each solution, and recombined by swapping parts into two new solutions. One
problem with most cross-over techniques is ensuring that the new recombined solutions are still
well-formed. This can necessitate problem specific cross-over operators, or local search repair
[46].

Algorithm 5: Genetic Algorithm.
GA():

1 initialize initial population sp
2 while termination criteria unmet do
3 assignFitness(sp)
4 sp′ := reproduceFit(sp)
5 sp := sp′ + surviving(sp)

2.3.3.2 TSAB

Taboo Search Algorithm with Back Jump Tracking (TSAB) is a tabu search algorithm for job-
shop optimization by Nowicki and Smutnicki [49]. In traditional tabu search, as local search
progresses by making local moves that improve the quality of a solution, a tabu list is used as
a type of short-term memory to keep track of the recent history of the search. The tabu list
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consists either of a list of the recent moves or states the search has recently made or visited,
or as some collection of attributes of the recent few moves or states. When choosing the next
move from the neighborhood of the current solution, any moves or states which match with the
tabu list are forbidden. An aspiration criterion lets the algorithm overrule the tabu list if, for
example, a forbidden move results in a solution with a cost lower than ever previously found.
TSAB adds a long-term memory device to tabu search in the form of a list S of the best maxl
solutions found so far. The solutions in S are referred to as elite solutions, and S is referred to
as the elite set. When the tabu search procedure goes for a certain number of iterations without
finding a better solution, search is restarted around one of the solutions in S. The tabu list is
also updated at this time so the same moves away from that old position made earlier are not
repeated.

Pseudocode of TSAB is shown in Algorithm 6. The algorithm first initializes an empty elite
set S, and tabu list T . An initial solution π is then generated. Search then progresses through
two nested while loops. The inner loop (line 3) performs standard tabu search where search
continuously moves to the best of the valid neighbors of π. The valid neighbors N are defined
by the current solution π, the aspiration criterion a, and the tabu list T (line 6). As tabu search
proceeds, the elite set S of the best solutions found so far, and the tabu list T of tabu recent
moves/attributes are kept up-to-date. Once the tabu search has been found to stagnate—more
than maxiter iterations without finding a better solution—search is restarted around one of the
elite solutions in S (line 12). This is accomplished by setting π to this solution, and resetting T
to its state when this solution was found with the original move made away from it also made
tabu. The cycle then repeats until some final termination criteria are met.

TSAB was one of the best algorithms for solving job-shop scheduling problems. Subse-
quent techniques, that build on TSAB through more complex manipulations on the elite set,
have resulted in even better algorithms [50].

Algorithm 6: Taboo Search Algorithm with Back Jump Tracking [49].
TSAB():

1 S:= {} ; T := {}
2 initialize solution π
3 while termination criteria unmet do
4 iter = 0
5 while iter++ < maxiter do
6 N = validNeighbours(π,T ,a)
7 π = Best(N )
8 update T
9 if π is a new best solution then

10 iter =0
11 update S

12 Resume search around a solution in S
reseting T and π appropriately
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2.4 Empirical Analysis of Search Algorithms
Empirical analysis of search algorithms refers to the study of these algorithms through the
use of reproducible computational experiments. From experiments, hypotheses about how and
why an algorithm behaves the way it does can be made, and tested empirically through further
experiments. The true value of empirical analysis in study of search algorithms may not have
been always realized. Usually empirical results only appear near the end of papers to confirm
what was already proved by the theory. Yet as argued by Hooker [35], as algorithms become
more complex with many interacting components, empirical research of search algorithms
becomes as necessary as it is to the study of any other complex system. In the next section, we
provide an overview of various empirical studies applied to search algorithms for constraint
satisfaction and optimization.

2.4.1 Problem Difficulty
One main topic of empirical research into satisfaction problems is in attempts to explain the
wide variability in search cost for algorithms to solve randomly generated problem instances.
One earlier finding was the easy-hard-easy pattern in search costs [47, 12, 21] as randomly
generated instances go from being under-constrained to being over-constrained. In random
instances with few constraints, each instances in this under-constrained area is most likely to
be solvable. As more constraints are added randomly generated over-constrained instances
become almost all unsolvable. Search cost for under-constrained problem is low since assign-
ing almost any values to the variables is likely to be a solution. Search cost is also low for
over-constrained instances since search can make use of all the constraints to quickly prove
there is no solution. Where problems are the hardest is where they transition from being al-
most all solvable to almost all unsolvable. Cheeseman et al. [12] were able to observe this
phase transition, and the associated easy-hard-easy pattern by adjusting one of the parame-
ters in the instance generators for Hamiltonian circuit and graph coloring problems. Mitchel
et al. [47] investigated this pattern in 3-SAT problems, satisfiability problems which consist
of a conjunction of disjunctive clauses where each clause has three literals. By changing the
clause to variable ratio (c/v) in randomly generated problems, a phase transition from nearing
100% satisfiable to 100% unsatisfiable is produced. The instances that were the hardest for a
Davis-Putnam [16] systematic search algorithm to solve occurred where 50% of the problems
are satisfiable, with a c/v ratio of near 4.3. Gent et al. [21] developed a more generic param-
eter κ to measure this constrainedness, where 〈Sol〉 is average number of solutions in a given
population of instances, and N is the number of bits needed to define the problem.

κ = 1 −
log2(〈Sol〉)

N
(2.3)

κ is bounded by the range [0,∞). An ensemble of instances—by definition κ refers to an
ensemble of instances—is under-constrained when κ < 1, and over-constrained when κ > 1.
The phase transition, and critically constrained region, occurs near κ ≈ 1. There has been a
considerable amount of research into finding and explaining this phase transition [33, 61, 66,
72].
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One motivation for past work on constrainedness was to find a way to consistently generate
hard random instances [47, 72]. Some of the earlier benchmarks used to test various algorithms
were found to be trivially solvable. By generating instances in the critically constrained region,
there is more assurance that the problems will be consistently hard for most algorithms. Beyond
just creating good random problem generators, constrainedness and phase transition research
gives us a better understanding of the big picture of what makes hard problems hard. This
research has also lead to new search techniques, such as the minimize κ heuristic [21].

2.4.2 Heavy Tails
While most hard problems occur at the phase transition, some past studies [62, 22] have found
that the under-constrained area contained some instances which were also exceptionally hard.
Gomes et al. [26] used a partially randomized backtracking algorithm to solve these exact
same instances. They found that with some random seeds, search took an exceptionally long
time. Yet, with other random seeds, search became easy again. The original search algorithm
just happened to make enough unlucky early decisions to make it take a long time to solve.
As proposed by Gomes et al. [26], the cost of solving an instance can be measured as the
distribution of search costs over all possible runs of a randomized algorithm. In certain cases,
the distribution of search cost can be modeled by a distribution where all moments are infinite,
which they refer to as a heavy-tailed distribution. For more information on the definition of
heavy tails, how it is measured, and how a rapid restart technique removes them see Section 4.2.

Williams et al. [73] relate this heavy-tailed phenomenon with the back-door variables of
an instance. The back door variables of an instance are a set of variables that once assigned
make the rest of the problem solvable by a polynomial time algorithm. Randomized restart
search can be seen as repeatedly trying to find this back-door set. Their theoretical model of
backtracking search shows that the lower bounds on search cost can be modeled as a heavy
tailed distribution when the back-door set is of a small enough size.

A later empirical investigation by Gomes et al [29] found some interesting results on where
and why heavy-tailed behaviour occurs. For one, they found that heavy-tailed distributions dis-
appear in randomly generated problems near the phase transition where all stochastic runs seem
to become homogeneously hard for backtracking search. They were also able relate heavy tails
to the thrashing behaviour of backtracking search by showing a correlation and mathematically
proving a relation between the distribution of the depths of inconsistent sub-trees experienced
during search and the appearance heavy-tails: exponentially distributed inconsistent sub-tree
depth, along with exponential growth of the search tree as tree depth increases implies heavy
tailed distributions in runtime.

2.4.3 Search Space Features of Local Search
A variety of empirical work has also been done in attempting to understand and explain local
search behaviour by correlating performance with a variety of search space features such as:
fitness-distance correlation [64], number of local optima [74], backbone size [52] and backbone
fragility [60].

Local search primarily proceeds by making local moves to solutions that the algorithm
evaluates to be better. So one would expect the performance of local search at finding optimal
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solutions would depend on how well this evaluation function does in predicting the true dis-
tance of the solution to an optimal solution. If moves to a locally better solution, also tends
to move the search closer to the globally optimal solution, then search performance should be
very strong. Because the first work investigating the correlation between the evaluated cost of
a solution and its distance to an optimal solution was done in the area of genetic algorithms,
it is given the term fitness-distance correlation (FDC). Early investigations on genetic algo-
rithms found that FDC values could generally predict whether an instance would be easy or
hard for GA to solve [64, 15]. Watson and Beck [10] investigated the relation between FDC
and search performance for Adaptive Probing (AP) and Ant Colony Optimization (ACO). In an
idealized problem where expected FDC values were controlled, they were able to see a strong
effect of FDC on AP and ACO performance. Yet on the real job-shop scheduling problem, the
correlation between the FDC of an instance and ACO search cost was weak.

Given only satisfiable instances, the easy-hard-easy pattern mentioned earlier can still be
seen in constructive search algorithms. This pattern can be attributed to an algorithm’s ability to
use the many constraints in the over-constrained instances to find dead-ends early, and quickly
prune down the search tree to the areas where a solution occurs. What may be surprising is
that this easy-hard-easy pattern can also be seen with local search algorithms on satisfiable
instances [74, 60]. Past empirical studies have looked into how different search space features
correlate with local search cost in order to understand this pattern and to help gain deeper un-
derstanding of local search behaviour. Yokoo [74] sought to explain the diminishing search
cost in the over-constrained region through the observed reduction in the number of local min-
ima. Local minima are rarer in the over-constrained region, so a hill climbing procedure should
have a higher likelihood of starting at a point that can reach a solution. Parkes [52] correlated
problem difficulty with the backbone size of an instance in Boolean satisfiability problems.
The backbone size of an instance is the proportion of variables that always have the same value
in all solutions to the instance. When the backbone is large, all solutions will naturally form
one cluster in the search space, making it hard for a local search procedure to find any solu-
tions quickly. Singer et al. [60] introduced the concept of backbone fragility for SAT problems,
which refers to how much smaller the backbone becomes as a clauses are removed from the
problem instance. They relate this backbone fragility to the quasi-solution area of an instance,
where a quasi-solution is defined as a solution to the original problem instance with 5 of its
100 clauses removed. Singer et al. propose that backbone fragility can be seen as a measure
of how attractive the quasi-solution area is, since instances with small backbones are easy to
solve. From its definition, backbone-fragility also measures the distance of this quasi-solution
area to true solutions.

Watson et al. [70] performed a study correlating a variety of the search space features
with the search cost of tabu search on job-shop scheduling optimization. They found the best
predictor of performance was the average distance of a local optima to its nearest optimal
solution. In later work [67], Watson showed that an even better predictor was the average
distance between solutions encountered during search and optimal solutions. This led to an
even more accurate dynamic model of tabu search as a random walk through a smaller subspace
of a problem’s search space induced by the algorithm’s meta-heuristics. We return to Watson’s
search space features in Chapter 6.
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2.5 Conclusion
The aim of this dissertation is to better understand SGMPCS behaviour and performance.
Partly from the various algorithms and empirical analysis that influenced its development, Beck
[7] hypothesized three main factors that influence the performance of SGMPCS: the benefit of
maintaining a diverse set of multiple viewpoints, the benefit of guiding search in the area of
past good solutions, and the exploitation of heavy tails in randomized backtracking. In the
remainder of this dissertation, we investigate the last two of these claims through empirical
analyses of SGMPCS.



Chapter 3

An Empirical Study of Multi-Point
Constructive Search for Constraint
Satisfaction

As described in Chapter 2, Solution Guided Multi-Point Constructive Search (SGMPCS) is a
recent constructive search algorithm for constraint optimization and satisfaction that borrows
techniques from local search of maintaining multiple viewpoints and revisiting the space of
good solutions. While previous results [4, 5] indicate that SGMPCS can significantly out-
perform both standard chronological backtracking and randomized restart on optimization and
satisfaction problems, the one existing systematic study of the parameters of SGMPCS [6] only
addressed optimization problems. Beck [6] showed that SGMPCS significantly out-performs
randomized restart and chronological backtracking on two different types of job-shop schedul-
ing problem. Yet, one of the best parameter settings found (i.e., maintaining only one elite solu-
tion) calls into question the exploitation of multiple viewpoints as the motivation for SGMPCS.
The purpose of this chapter is to perform a similar systematic study of SGMPCS parameter val-
ues for constraint satisfaction.

In this chapter, we vary the primary parameters of the SGMPCS algorithm in a detailed
set of experiments on three satisfaction problems: quasigroup-with-holes, magic square, and
a satisfaction version of the multi-dimensional knapsack problem. The results confirm pre-
vious results in comparing SGMPCS with randomized restart and chronological backtracking
on quasigroup-with-holes and indicate that maintaining more than one elite solution leads to
stronger performance. Interestingly, experiments on magic square and a multi-dimensional
knapsack problems show performance that is about the same as randomized restart. Both
SGMPCS and randomized restart are significantly better than chronological backtracking for
the magic square problems but significantly worse on the multi-dimensional knapsack prob-
lems. Further experimentation, changing the way that the elite solutions are compared by
using the original multi-dimensional knapsack optimization function, shows that in solving the
satisfaction problem with this extra information, SGMPCS exhibits a substantial increase in
problem solving performance, and out-performs both chronological backtracking and random-
ized restart.

In the next section, we present the parameter space that will be investigated. We then turn
to the empirical studies, varying the parameters on each of the three satisfaction problems.

19
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Finally, we discuss our results and their implications in terms of developing an understanding
of why and how SGMPCS works.

3.1 SGMPCS Parameter Space
There are a number of parameter values that must be specified in order to implement the SGM-
PCS algorithm. The main purpose of this chapter is to examine how the choice of each param-
eter value impacts performance on CSPs.

The Proportion of Searches from an Empty Solution The p parameter controls the proba-
bility of searching from an empty solution versus searching from one of the elite solutions. In
this chapter, we study p = {0, 0.25, 0.5, 0.75, 1}. Note that p = 1 is equivalent to randomized
restart as it always searches from an empty solution.

Elite Set Size Previous studies of SGMPCS for satisfaction problems [4, 5] used an elite
set size of 8. However, results for optimization problems point to an elite set size of 1 as
performing best. In this chapter, we experiment with elite sizes of {1, 4, 8, 12, 16, 20}.

Backtrack Method For a single search, we have a choice as to how the tree search should be
performed. That is, with each iteration of guided or non-guided search, we do not necessarily
have to use chronological backtracking to explore the tree. In particular, we experiment with
using chronological backtracking or limited discrepancy search (LDS) [32]. In both cases, the
search is limited by the fail bound as described below.

Fail Sequence The resource bound sets the number of fails allowed for each search. We look
at three different ways of setting and increasing this bound where, for each method, the fail
limit is independent of the choice to search from an empty solution or from an elite solution:

• Luby - the fail bound sequence follows the optimal sequence when there is no knowledge
about the solution distribution: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, ... [43].

• Geometric (Geo) - the fail bound is initialized to 1 and reset to 1 when a new best solution
is found. When a search fails to find a new best solution, the bound is doubled. In the
satisfaction context, a new best solution is a solution with more assigned variables than
any solution previously encountered.

• Polynomial (Poly) - the fail bound is initialized to 32 and reset to 32 whenever a new best
solution is found. Whenever a search fails to find a new best solution, the bound grows
polynomially: 32 is added to the fail limit. The value 32 was chosen to give a reasonable
increase in the fail limit on each iteration.



CHAPTER 3. EMPIRICAL STUDY FOR CONSTRAINT SATISFACTION 21

Initialization Fail Bound There are two parameters associated with the initialization of the
elite set: we need to decide how many solutions should be initially produced and we need
to decide how much effort we should spend on producing each initial solution. It has been
previously shown that generating |e| initial solutions (i.e., one for each element of the elite set)
can skew results that examine the impact of changing |e| [6]. Therefore, we always create 20
initial solutions and then select the |e| best for the initial elite set. The resource bound is simply
the number of fails we allow to find each initial solution. The following initialization fail limits
are tested in this chapter: 1,10,100,1000,10000.

3.2 Empirical Study
In the following experiments, a fully crossed experimental design is not implemented, as the
focus is on how each parameter setting individually affects performance. For all but one of
the experiments, one parameter is varied while the others are set to their default values. Based
on preliminary experimentation and previous studies the values shown in Table 3.1 are used as
defaults.

Fail Seq. |e| p Init. Fail Bound Backtrack Method
poly 8 0.5 1000 chron

Table 3.1: Default parameter values for the experiments.

3.2.1 Problems
The experiments are performed on three different satisfaction problems: quasigroup-with-
holes, magic square, and multi-dimensional knapsack. These problems were chosen because
benchmark sets exist and randomized restart shows an interesting pattern of performance: per-
forming well on quasigroup problems [30] and poorly on multi-dimensional knapsack [54].
Magic square problems are similar in form to quasigroup-with-holes and so may present an in-
teresting variation. We focus on problems with interesting performance of randomized restart
because of the similarity between randomized restart and SGMPCS. SGMPCS can be inter-
preted as a form of guided randomized restart and so one of the questions we are interested in
is if SGMPCS is simply exploiting the heavy-tails phenomenon like randomized restart [30].

More specifically, the problems we use are as follows:

• Quasigroup-with-Holes Completion Problem An n × n quasigroup-with-holes (QWH)
completion problem is a matrix where each row and each column is required to be a
permutation of the integers 1, ..., n and where some of the matrix elements are filled in
and others are empty. Finding a complete quasigroup requires that all the empty cells
(“holes”) are filled with consistent values. This problem is modeled by all-different
constraints with extended propagation [55] placed on each row and column. Two sets of
problem instances are used. (i) 100 order-30 instances divided into ten subsets according
to the number of holes: m ∈ {315, 320, .., 360}. These instances are created using an
existing generator [1] and were used previously to study SGMPCS [4]. (ii) A set of
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existing benchmark instances [30, 54]. In all QWH experiments, each instance is solved
ten times with different random seeds and a fail limit of 2,000,000 fails for each run.

• Magic Square An n × n magic square is a matrix of the numbers 1, .., n2 whose rows,
columns, and diagonals all sum to S = n×(n+1)

2
. These problems are modeled with one

all-different constraint and by constraining the sum of each row, column, and diagonal to
be S. For n = {10, .., 15} results were averaged over 20 independent runs with different
random seeds and a limit of 10,000,000 fails.

• Multi-Dimensional Knapsack Given a knapsack with m dimensions such that each di-
mension has capacity, c1, . . . , cm, a multi-dimensional knapsack problem requires the
selection of a subset of the n objects such that the profit, P =

∑n
i=1 xipi, is maximized

and the m dimension constraints,
∑n

i=1 xirij ≤ cj for j = 1, . . . , m, are respected. Each
object, i, has a individual profit, pi, and a size for each dimension, rij . This problem can
be posed as a satisfaction problem by constraining P to be equal to the known optimal
value [54]. Two sets of six problems are used from the operations research library1 which
have 15 to 50 variables and 2 to 30 dimensions. For each problem, results were averaged
over 20 independent runs with different random seeds and a limit of 10,000,000 fails.

3.2.2 Experimental Details
Each of the problem types and search methods used a minimum domain variable ordering
with randomization on ties. When variables are binary, as in the multi-dimensional knapsack
problem, the variable ordering is completetly random. The value ordering for each problem
and technique, when not being guided by an elite solution, is also random. All algorithms were
implemented in ILOG Solver 6.0 and run on a 2.8GHz Pentium 4 with 512Mb RAM running
either Fedora Core 2 or Red Hat Enterprise 4.

3.2.3 Quasigroup-with-Holes Experiments
Our first set of experiments uses the set of order-30 QWH problems to examine the impact of
various parameter settings. We then examine the performance of a number of the best settings
found on the second set of benchmark problem instances.

3.2.3.1 Initial QWH Experiments

The Probability of Searching from an Empty Solution The p parameter is the probability
that search will be done from an empty solution (i.e., a standard restart) vs. being guided with
an elite solution. Figure 3.1 shows that the effort to solve the QWH problems monotonically
increases with increasing p. The best result is achieved by always guiding the search with an
elite solution (p = 0) while the worst performance is to always search from an empty solution
(p = 1). These results agree somewhat with the scheduling results [6] where it was shown
that p = 0.25 delivered the best performance with monotonically decreasing performance for
p ≥ 0.5 and with p = 0 performing worse than p = 0.25.

1http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/mknapinfo.html
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Figure 3.1: Mean number of fails to solve order-30 QWH problems in each subset for varying
p-values.

Elite Set Size The results for varying |e|, the number of elite solutions maintained, are shown
in Figure 3.2. In contrast to previous results on scheduling problems [6], with QWH an elite
size of one is worse than any of the other sizes, especially at m = {325, 330}. The best perfor-
mance is achieved by |e| = 4 or |e| = 8. However there appear to be only small differences for
all |e| > 1.

The Interaction Between |e| and p Maintaining more than one elite solution and starting
from scratch with some probability were both included in SGMPCS to add diversity to the
search process. To examine possible interactions between the size of the elite set and the
probability of searching from an empty solution, a full cross of these two parameters is done.
Figure 3.3 shows the mean results of all 1000 runs over all 100 problems for a given setting
of p and |e|. The results again demonstrate that a lower probability of starting from an empty
solution performs better, and a elite size of 1 performs poorly. While no clear evidence of
an interaction exists between settings of these two parameters, the combination |e| = 8 and
p = 0 does perform the best. As mentioned in Section 2.2.4, it was found in [7] that higher
p values, contrary to expectations, actually decreased diversity of the elite set. So both the
poor performance of |e| = 1 and the better performance of lower p values support the need
for diversity in the search. Yet this is contrary to the same study on scheduling optimization
problems [7] which found techniques that further reduced diversity performed better.



CHAPTER 3. EMPIRICAL STUDY FOR CONSTRAINT SATISFACTION 24

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 315  320  325  330  335  340  345  350  355  360

M
ea

n 
Nu

m
be

r o
f F

ai
ls

Number of holes

1
4
8

12
16
20

Figure 3.2: Mean number of fails to solve order-30 QWH problems in each subset for varying
values of |e|.
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Backtrack Method Next, we examine the impact of using chronological backtracking or
LDS for each individual search. Figure 3.4 shows that, in terms of the number of fails, LDS
results in better performance.

However, as shown in Figure 3.5, LDS takes significantly longer to solve the problems even
though it incurs fewer fails.2 Our intuitive explanation for these results rests on the behaviour
of LDS. In chronological backtracking, much of the search is at the bottom of the search tree.
Therefore, a single fail will tend to result in few additional choice points. In contrast, a single
fail in LDS will more often result in a large “jump” requiring many additional choice points.
The computational effort of the choice points high in the tree is not amortized over as many
fails. Apparently, on these QWH problems, while LDS finds a solution in fewer fails, the
improvement is not sufficient to make up for the greater computational time per fail.

Fail Sequence Figures 3.6 and 3.7 show the results of running SGMPCS with each fail se-
quence in terms of mean number of fails and mean solve time, respectively. As was observed
with LDS, the time per fail is much higher in the Luby fail sequence. While the Luby sequence
results in the lowest number of fails, it also exhibits some of the highest run-times. We believe
this can be attributed to the relatively slow growth of the Luby sequence: it has a relatively
large number of low fail limits which result in more complete restarts that the other techniques.
The geometric sequence shows poor performance in both measures.

2For all our other experimental results, unless specifically mentioned, the relative performance of methods
based on the mean number of fails is identical to the comparison based on mean run-time.
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Figure 3.4: Mean number of fails to solve order-30 QWH problems for both backtracking
methods.
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Figure 3.5: Mean time to solve order-30 QWH problems for both backtracking methods.
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Figure 3.6: Mean number of fails to solve order-30 QWH problems in each subset for each fail
sequence.
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Figure 3.7: Mean time to solve order-30 QWH problems in each subset for each fail sequence.
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Figure 3.8: Mean number of fails to solve order-30 QWH problems for varying initialization
bounds.

Initialization Bound Finally, the five different bounds on the initialization of the elite set
are examined: 1, 10, 100, 1000, 10000. Figure 3.8 shows that initialization bounds other than
10,000 have little effect on overall performance. With an initialization limit of 10,000, the
200,000 fails used to build the elite set are about equal to the total number of fails needed to
find a solution when smaller initialization limits are used.

Summary Overall, these experiments indicate that, for the QWH problem, the following
parameter values perform best: |e| = 8, p = 0, chronological backtracking, the polynomial fail
sequence, and an initialization fail bound of 100.
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3.2.3.2 Benchmark QWH Experiments

Using the best parameter settings from the QWH experiments above, we apply SGMPCS to an
existing set of QWH benchmarks and compare the performance with standard chronological
backtracking (chron), randomized restart (restart), and results from the literature. In all algo-
rithms, the same randomized minimum domain variable ordering and random value ordering
are used. The restart algorithm follows the same polynomial fail sequence as the SGMPCS
methods and initializes and maintains a set of elite solutions. However, it always searches
from an empty solution (i.e., it is equivalent of SGMPCS with p = 1). Therefore, it has a small
run-time overhead to maintain the elite set as compared with standard randomized restart. This
overhead does not effect the number of fails.

Each problem was run 10 times for each algorithm. The percentage of runs that were able
to find a solution in the 2,000,000 fail limit, the mean number of fails to find a solution, and
the mean solve time in seconds are reported in Table 3.2. Bold entries indicate the best result
(either lowest mean number of fails or lowest mean run-time) for each problem instance. When
a run failed to find a solution, the fail limit is used in calculating the mean.

chron restart SGMPCS-best
order holes %sol fails time %sol fails time %sol fails time

30 316 100 6458 3.1 100 679 0.6 100 289 0.2
30 320 100 325 0.2 100 327 0.3 100 267 0.2
33 381 0 2000000 1244.7 0 2000000 1726.7 0 2000000 1376.2
35 405 40 1566506 979.0 50 1740792 1458.7 100 185383 130.4
40 1600 100 1 2.8 100 0 2.9 100 0 2.9
40 528 0 2000000 1469.9 0 2000000 1684.4 40 1675930 1335.1
40 544 0 2000000 1461.7 0 2000000 1671.9 80 693720 558.9
40 560 0 2000000 1359.2 0 2000000 1614.2 100 132751 109.3
50 2500 100 5 8.6 100 8 8.6 100 5 8.7
50 2000 100 12 3.6 100 3 3.6 100 12 3.6
50 825 0 2000000 2125.9 0 2000000 2619.3 0 2000000 2515.6
60 3600 100 2 21.2 100 21 23.3 100 11 21.5
60 1440 0 2000000 2047.6 60 1367260 2126.6 100 51251 121.7
60 1620 20 1627363 1574.1 80 1043824 1695.6 100 63185 169.4
60 1692 80 824779 748.3 100 82952 218.4 100 13758 70.2
60 1728 100 303789 259.5 100 35235 125.3 100 11019 65.5
60 1764 80 682079 646.3 100 26566 102.1 100 4669 40.3
60 1800 80 765919 665.6 100 25139 88.8 100 5174 45.3
70 4900 100 147 46.0 100 33 55.2 100 31 46.7
70 2450 40 1415351 1695.5 100 714045 2023.9 100 50557 331.1
70 2940 100 38578 45.7 100 3300 115.9 100 1390 77.1
70 3430 100 838 10.9 100 495 59.3 100 190 26.0
90 8100 100 154 157.4 100 168 367.9 100 289 593.4

100 10000 100 5429 275.1 100 441 1553.4 100 839 2437.5

Table 3.2: QWH benchmark comparison with other search algorithms.

chron restart SGMPCS-best
# best fails 3 3 18
# best time 10 2 14

# 100% solved 12 16 20

Table 3.3: Summary Statistics for Table 3.2.
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SGMPCS Impact-based
order holes %sol choice pts. choice pts.

18 120 100 11 2
30 316 100 358 31
30 320 100 310 278
33 381 0 - -
35 405 100 192720 752779
40 528 40 1738612 -
40 544 80 739356 -
40 560 100 161053 289686
50 2000 100 1737 1735
50 825 0 - -
60 1440 100 154308 -
60 1620 100 199879 56050
60 1692 100 84941 164048
60 1728 100 76625 2333
60 1764 100 47068 48485
60 1800 100 50487 1934
70 2450 100 246042 43831
70 2940 100 36737 3732
70 3430 100 7581 3073

Table 3.4: QWH comparison with Impact Based Search [54].

The pattern of bold entries in Table 3.2 is summarized in Table 3.3. SGMPCS achieves the
lowest mean number of fails in 18 problem instances and the lowest run-time for 14. Further-
more, on 20 of the instances, all 10 runs of the algorithm found a solution within the global fail
limit.

Table 3.4 compares our results with previous [54] results on the same benchmark instances
using impact-based heuristics combined with restarts. Shown are the number of choice points
reported by impact-based search along with the percentage of successful runs and mean num-
ber of choice points for SGMPCS. A direct comparison is complicated by the fact that [54]
limited the search to 1500 seconds where ours was limited by 2,000,000 fails. While there
are several instances where the impact-based heuristic beats SGMPCS (as shown by the bold
entries), SGMPCS clearly beats it on some of the hardest problems, and is able to reliably
solve at least two more instances. However, SGMPCS incurs fewer choice points in only 6
of the 19 instances versus 10 of 19 for the impact-based heuristic. Given that impact-based
heuristics could be used as a variable and value ordering heuristic within SGMPCS, it would
be interesting to look at combining these approaches.

3.2.4 Magic Square Experiments
In this section, the same experiments performed on the QWH problems are done on the appar-
ently similar magic square problem.
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The Probability of Searching from an Empty Solution Results for varying the probability
of starting from an empty solution are shown in Figure 3.9. Unlike on the QWH problems,
SGMPCS does not out-perform randomized restart (i.e., p = 1) on the magic square problems.
In fact, p = 1 results in the best performance while p = 0, the best setting on the QWH
problems, performs worst.
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Figure 3.9: Mean number of fails to solve magic square problems with varying values for p.

Elite Set Size As seen in Figure 3.10, varying the elite set size has little effect on the perfor-
mance of SGMPCS on the magic square problems. All results are worse than p = 1 from the
previous experiment which never uses the elite set to guide search.

Backtrack Method Using LDS on the magic square instances led to extremely bad perfor-
mance. On the order-10 instance, no solutions were found on any run using a global limit of
10,000,000 fails. As a result, we do not display the results here.

Fail Sequence Figures 3.11 and 3.12 show the results of SGMPCS on magic square using
the three fail sequences. The differing result in terms of fails and time observed for the QWH
problems are magnified here. Unlike the QWH results, the polynomial sequence is slightly
better than Luby in terms of fails as seen in Figure 3.11. In terms of overall search time, the
Luby sequence is orders of magnitude worse than the polynomial limit as seen in the log scale
Figure 3.12. Overall, the polynomial sequence is the best performer.

Initialization Bound The results for varying the fail bound used to initialize the elite set
are shown in Figure 3.13. There seems to be no effect of varying the fail bound. While an
initialization limit of 1 appears better at order 15, the results are affected by 15% of the runs
hitting the 10,000,000 global limit, and the difference is insignificant.
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Figure 3.10: Mean number of fails to solve magic square problems with varying elite sizes.

Comparison with Other Techniques Figure 3.14 displays the comparison of SGMPCS with
the best settings found in the QWH (SGMPCS:qwh) and magic square (SGMPCS:magic) ex-
periments with the other search algorithms. For SGMPCS:magic the following parameters are
used: |e| = 8, p = 0.75,3 and the backtrack method is chronological. Restart and the SGMPCS
variations are all better than chronological search but SGMPCS performs slightly worse than
restart.

Given the QWH results and the similarity in form between QWH and magic square prob-
lems, the fact that there seems to be no benefit from guiding search with elite solutions is
intriguing. We return to these results in Section 3.3.

3The second best p is used since p = 1 is equivalent to randomized restart.
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Figure 3.11: Mean number of fails to solve magic square problems with each fail sequence.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10  11  12  13  14  15

M
ea

n 
Ru

n-
tim

e 
(s

ec
s)

Square Size

geo
luby
poly

Figure 3.12: Mean time to solve magic square problems with each fail sequence.
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Figure 3.13: Mean number of fails to solve magic square problems with varying initialization
bounds.
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3.2.5 Multi-Dimensional Knapsack Experiments
3.2.5.1 Initial Experiments

We performed an identical set of experiments as above to evaluate the different parameter
settings on SGMPCS performance on the multi-dimensional knapsack problems. Most of the
parameters have no discernible effect. The two exceptions, shown in Tables 3.5 and 3.6, are the
backtracking method, where chronological backtracking is better, and the fail sequence, where
the geometric fail limit shows a clear pattern of the best performance.

The best settings for SGMPCS on the knapsack problems—the geometric fail limit along
with the other default settings—are used in a final comparison with the other search techniques
and SGMPCS with the best settings found from the QWH experiments. As seen in Table 3.7,
both SGMPCS and randomized restart perform poorly in comparison to basic chronological
search. SGMPCS is far from state-of-the art on these problems, significantly better perfor-
mance than all of these results is reported by Refalo [54] using impact-based heuristics. The
best SGMPCS settings (other than p = 1) perform about the same as restart.

Given that chronological backtracking achieves the best results on these problems, there is
a relatively straightforward interpretation of the results of the parameter settings on SGMPCS.
The geometric fail limit grows the fastest of all fail sequences tested. It appears that the fail
bound simply grows until a single chronological search can be done. In other words, the use of
restarts and elite solutions is simply a distraction.

chron lds
%sol fails time %sol fails time

mknap1-0 100 0 0.0 100 1 0.0
mknap1-2 100 23 0.0 100 46 0.0
mknap1-3 100 660 0.1 100 1287 0.1
mknap1-4 100 48219 4.4 100 98633 15.6
mknap1-5 80 4156366 287.7 60 5661855 800.5
mknap1-6 0 10000000 857.8 0 10000000 2422.0

mknap2-PB1 100 32621 1.8 100 40384 3.9
mknap2-PB2 95 3419627 186.5 75 5050786 933.5
mknap2-PB4 100 40711 1.7 100 65314 8.0
mknap2-PB5 100 10813 0.9 100 21824 5.4
mknap2-PB6 100 31013 11.0 100 43158 48.9
mknap2-PB7 85 4446171 1361.1 75 5815284 5442.2

Table 3.5: Multi-dimensional knapsack results for both backtracking methods.

geo luby poly
%sol fails time %sol fails time %sol fails time

mknap1-0 100 1 0.0 100 1 0.0 100 0 0.0
mknap1-2 100 22 0.0 100 29 0.0 100 23 0.0
mknap1-3 100 465 0.0 100 448 0.0 100 660 0.1
mknap1-4 100 27401 2.5 100 57524 8.6 100 48219 4.4
mknap1-5 90 4293937 288.2 65 5912766 759.7 80 4156366 287.7
mknap1-6 0 10000000 850.7 5 9946401 1770.6 0 10000000 857.8

mknap2-PB1 100 26625 1.5 100 36670 3.2 100 32621 1.8
mknap2-PB2 100 3018792 162.7 95 3811687 417.0 95 3419627 186.5
mknap2-PB4 100 27860 1.2 100 38678 2.6 100 40711 1.7
mknap2-PB5 100 11776 1.0 100 7378 0.6 100 10813 0.9
mknap2-PB6 100 20590 7.4 100 33980 19.9 100 31013 11.0
mknap2-PB7 100 1542933 596.8 75 4619805 2730.6 85 4446171 1361.1

Table 3.6: Multi-dimensional knapsack results with varying fail-sequences.
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chron restart SGMPCS-qwh best SGMPCS-knap best
%sol fails time %sol fails time %sol fails time %sol fails time

mknap1-0 100 1 0.0 100 1 0.0 100 1 0.0 100 1 0.0
mknap1-2 100 26 0.0 100 18 0.0 100 24 0.0 100 26 0.0
mknap1-3 100 363 0.0 100 510 0.0 100 724 0.1 100 571 0.0
mknap1-4 100 15551 1.1 100 32601 3.0 100 30939 3.1 100 32305 2.9
mknap1-5 100 2862059 148.3 75 5500578 400.2 85 5035286 376.6 100 3341859 229.9
mknap1-6 0 10000000 660.6 0 10000000 913.2 0 10000000 938.5 0 10000000 856.2

mknap2-PB1 100 15200 0.7 100 26568 1.6 100 34679 2.0 100 26324 1.5
mknap2-PB2 100 3087894 124.7 80 5705325 326.1 100 1914350 105.7 95 2969530 159.2
mknap2-PB4 100 11870 0.4 100 25608 1.2 100 27202 1.2 100 16382 0.7
mknap2-PB5 100 6138 0.4 100 10924 0.9 100 14836 1.3 100 16920 1.4
mknap2-PB6 100 11789 3.3 100 33030 11.1 100 29635 10.4 100 25017 8.9
mknap2-PB7 100 1469050 344.1 100 2128190 584.1 75 4543196 1310.6 100 2295825 659.5

Table 3.7: Comparison of multi-dimensional knapsack results for different algorithms and best
SGMPCS parameter settings.

3.2.5.2 Multi-Dimensional Knapsack Optimization

It appears that the multi-dimensional knapsack problems create a particular challenge for SGM-
PCS. Detailed traces of the SGMPCS runs show that early in the search all the elite solutions
have an objective value of 0: all of the variables are assigned but the solution does not satisfy
all constraints. The propagation of the linear constraints tends not to result in domain wipe-outs
but rather fully assigned variables that break one or more constraints. In a subsequent set of
experiments, we modified our objective to be the sum of the number of assigned variables and
the number of satisfied constraints. This change did not improve the problem solving perfor-
mance. Analysis indicated that, in many situations, though not always, the elite solutions were
quickly populated with solutions that assigned all variables and only broke one constraint: the
overall cost constraint:

∑n
i=1 xipi = C.4 The poor performance, therefore, appears to be based

on poor heuristic guidance. The number of assigned variables and the number of satisfied con-
straints does not appear to be a useful way to compare elite solutions because there seem to
be many solutions with the same value of these measures. Under such conditions, the elite set
quickly stagnates to the first |e| solutions found that only break the cost constraint.

To investigate this intuition, we modify the satisfaction model of multi-dimensional knap-
sack to include cost information. We believe this will provide a better way to discriminate
among potential elite solutions. The change in the model is to remove the constraint requiring
that the profit be equal to a previously known optimal value and to replace it with an opti-
mization function of the form: f(x) = C −

∑n
i=1 xipi, where C is the previously known

optimal cost, x is the vector of decision variables, and the initial bounds on the value of f(x)
are [0, C]. We then solve the problem to minimize f(x). Note that this model is a hybrid
satisfaction/optimization model because different feasible solutions have different costs but we
know that f(x) = 0 is a globally satisfying solution and, as a result, there is no need to prove
optimality once such a solution is found. The constraint propagation from this model is weaker
than from Refalo’s satisfaction model because the constraint on the profit is looser. To be clear,
the main purpose of this change is not to find a useful way to solve multi-dimensional knap-
sack problems. Rather, the main purpose is to learn more about the behaviour of SGMPCS by

4Recall that we made the multi-dimensional knapsack a satisfaction problem, following Refalo [54], by re-
quiring that the cost be equal to the (previously known) optimal cost, C.
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investigating how this change affects performance.
To apply SGMPCS to our new multi-dimensional knapsack model, there are two changes.

First, solutions are complete solutions (i.e., when m = n, see Section 2.2.2) and they are
compared based of their cost, with smaller cost being preferred. Second, when performing an
individual search, to exploit constraint propagation, we must specify the upper bound of the
the cost function. Here, we use the local bounding method introduced in Beck [6]:5

• When search is started from an empty solution, the upper bound on the cost function is
set to one less than the cost of the worst current elite solution.

• When search is started from an elite solution, the upper bound on the cost function is set
to one less than the cost of the starting elite solution.

The variable and value ordering heuristics and other experimental details used above are main-
tained.

Table 3.8 displays the results of the three optimizing algorithms on the same twelve multi-
dimensional knapsack problems. Table 3.9 presents the number of problem instances for which
each algorithm clearly performed better either in the satisfaction model or the optimization
model based on the mean number of fails and the mean run-time. For example, chron incurred
lower mean fails on 10 of the instances when modeled as a satisfaction rather than as an opti-
mization problem. Similarly, chron incurred a lower run-time on 5 of the instances when they
were modeled as satisfaction problems.

Both chron and restart perform better on the satisfaction model. This can likely be at-
tributed to the stronger propagation from the cost constraint. In contrast, in its optimization
form, SGMPCS performs remarkably well. SGMPCS was able to find a solution with the op-
timal cost for mknap1-6 in an average of 28 seconds, a feat it was unable to accomplish in its
10,000,000 fail limit (in an average of 857.8 seconds) when posed as a satisfaction problem.
SGMPCS performs better in the optimization model on 5 instances, in terms of the number
fails and on 6 instances based on run-time. As nothing else was modified, this improvement
must be attributed to the stronger heuristic guidance produced by the cost-based comparison
of elite solutions. Overall, SGMPCS on the optimization model solves 5 instances better (in
terms of both fails and run-time) than any other technique tested here on any model.

3.3 Discussion
The primary goals of this chapter were to apply Solution Guided Multi-Point Constructive
Search to a selection of constraint satisfaction problems and to systematically investigate the
impact of the various parameter settings. As the extensive experiments on the quasigroup-
with-holes problems indicate, SGMPCS is able to significantly out-perform both randomized
restart and chronological backtracking on constraint satisfaction problems. While the best
parameter values tended to agree with those found on scheduling problems [6] (i.e., low |e|
value, low p value), the QWH results demonstrate that maintaining more than one elite solution

5Experiments with the global bounding method did not exhibit significant differences from using the local
bound.
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chron restart SGMPCS-poly
%opt fails time %opt fails time %opt fails time

mknap1-0 100 1 0.0 100 0 0.0 100 1 0.0
mknap1-2 100 55 0.0 100 60 0.0 100 46 0.0
mknap1-3 100 708 0.0 100 1150 0.1 100 994 0.1
mknap1-4 100 29632 2.1 100 51098 3.8 100 27927 2.1
mknap1-5 100 3986153 211.7 80 14681817 789.0 100 159198 8.7
mknap1-6 0 22938204 1500.0 0 21945243 1501.0 100 407050 27.9

mknap2-PB1 100 20236 0.9 100 46467 2.1 100 32189 1.5
mknap2-PB2 100 3931370 164.5 100 7531632 316.5 100 89037 4.1
mknap2-PB4 100 20615 0.7 100 32111 1.0 100 30167 1.0
mknap2-PB5 100 8339 0.5 100 34797 2.3 100 22061 1.5
mknap2-PB6 100 23496 6.6 100 33351 10.1 100 26730 7.6
mknap2-PB7 100 2294518 532.0 55 4808054 1140.1 100 89958 21.2

Table 3.8: Multi-dimensional knapsack optimization results for three optimization algorithms.

# fails run-time
SAT OPT SAT OPT

chron 10 0 5 0
restart 10 1 2 0

SGMPCS 5 5 0 6

Table 3.9: The number of multi-dimensional knapsack problem instances (out of 12) where
an algorithm performed better on the the satisfaction model (SAT) or the optimization model
(OPT) based on mean number of fails and mean run-time.

can contribute to improved performance. This is an important finding as the scheduling results
found very good performance with |e| = 1, calling into question the intuition that the observed
performance gains could be due to exploiting multiple viewpoints. The QWH results are a
proof of concept for SGMPCS on constraint satisfaction problems. Further work is necessary
to understand why QWH problems benefit from a larger elite size and scheduling problems do
not.

When the empirical results for the magic square are considered, our conclusions are more
nuanced and interesting. The significant change in the relative performance of randomized
restart and SGMPCS when moving from the QWH to the magic square problems is particularly
interesting given the similarities in the problems. What is it about the differences between the
problems that lead to strong SGMPCS performance on QWH and weak performance on magic
square? We hope that answering this question will lead us to an understanding of the problem
characteristics that influence SGMPCS performance and ultimately to an understanding of the
reasons for SGMPCS performance. We believe it would be interesting to generate some magic-
square-with-holes problems to determine if the phase transition behaviour of QWH is seen and
to evaluate the performance of randomized restart and SGMPCS.

The multi-dimensional knapsack experiments also provide interesting results. While SGM-
PCS performed poorly on the satisfaction model, redefining the elite solution cost and adding
a cost function to the model allowed SGMPCS to perform very well. Both chronological
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backtracking and restart perform worse on the optimization model than they did with the satis-
faction model. These results support our intuition that the criteria for comparing elite solutions
is critical for the performance of SGMPCS.

We believe that SGMPCS will perform well when there is a “path” of good solutions such
that given one solution, a better solution can be found within a small number of backtracks for
some variable ordering. Revisiting solutions with different variable orderings, essentially de-
fines the neighbourhoods SGMPCS moves between. This model of SGMPCS search suggests
that we may be able to adapt the fitness-distance analysis tools developed in local search [36]
to SGMPCS. On problems where SGMPCS performs well, we expect to observe a strong cor-
relation between the distance between solutions and the quality difference between solutions:
solutions of similar quality will tend to be close to each other in the search tree. We explore
such models of search behaviour in Chapters 5 and 6.

3.4 Conclusion
This chapter is the first systematic application of Solution Guided Multi-Point Constructive
Search to constraint satisfaction problems. Our empirical results demonstrate that SGMPCS
can perform significantly better than chronological backtracking and randomized restart on
constraint satisfaction problems. In particular, our experiments with quasigroup-with-holes
problems showed that a relatively small elite pool and a zero probability of searching from
an empty solution lead to such strong results. In general, our results are in agreement with
previous studies on optimization problems in the scheduling domain, however the results rein-
force the intuition that exploiting multiple viewpoints can be of substantial benefit in heuristic
search.

The types of problems that we experimented with reveal an interesting pattern. SGM-
PCS significantly out-performs chronological backtracking on the quasigroup-with-holes and
magic square problems but significantly under-performed on the multi-dimensional knapsack
problems. Similarly, SGMPCS out-performed randomized restart on the quasigroup problems,
performed slightly worse on the magic square problems, and performed about the same on the
multi-dimensional knapsack problems. Evaluating the elite solutions by their cost instead of
the number of assigned variables results in orders of magnitude speed-up for SGMPCS on the
multi-dimensional knapsack problems.

In the next chapter, we investigate one main factor which we believe influences this varying
behaviour of SGMPCS: the exploitation of heavy-tailed behaviour in backtracking search.



Chapter 4

Heavy Tails in Solution Guided
Multi-Point Constructive Search

4.1 Introduction

It has been shown that constructive search algorithms can be improved through a randomized
restart technique which exploits the heavy-tailed nature of a randomized algorithm’s run-time
distribution [26]. By demonstrating that SGMPCS can take advantage of these heavy tails
in the same way, we can incorporate all work on heavy tails in backtracking search into our
understanding of SGMPCS.

In this chapter, we review past research on heavy-tailed distributions in backtracking search
including how to find the distributions and how to theoretically and empirically boost perfor-
mance with a rapid-restart strategy. We argue that SGMPCS should theoretically also benefit
the same way. Empirical investigations are then performed to confirm the theoretical argu-
ment: using job-shop scheduling optimization problems we show that SGMPCS performance
improves over basic backtracking at precisely the same sizes of problem at which heavy-tailed
distributions appear in backtracking search.

4.2 Background

Given a single problem instance and a backtracking algorithm with some degree of random-
ness, the cost of a single random run of the algorithm can be highly variable. Sometimes a
solution is found quickly, while with other random seeds, the time to find a solution is so
high that it becomes practically unsolvable. Past studies have found these distributions to have
heavy tails [26, 25, 27]. More specifically, the probability that the cost of the next stochas-
tic run (random variable X) is greater than some value x can be modeled by a Pareto-Levy
Distribution:

Pr{X > x} ∼ Cx−α, x > 0

40
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The parameter C is some positive scaling factor and α, the index of stability, determines which
of the moments are infinite.1 When α < 1, all moments are infinite, when 1 ≤ α < 2 the mean
is finite, but the variance and all higher moments are infinite, and so on.

Heavy tails can be checked visually by plotting 1 − F (x), where F (x) is the percent of
runs complete after a search cost of x, on a log-log scale plot. For heavy tails, the decay on
this chart should appear close to linear with the slope giving an estimation of α. For non-heavy
tails, the decay will appear more than linear, or fit a very steep line where none of the lower
moments are infinite.

As shown theoretically and empirically by Gomes et al. [26], if randomized backtracking
algorithm is repeatedly restarted after some resource limit, the expected run-time of such a
rapid randomized restart search will no longer be heavy-tailed. Shown in Equation 4.1 is the
expected tail of the runtime distribution of a randomized restart strategy, the probability that
the random variable representing the cost of this strategy S will be greater than some cost s.
A is the random variable representing the original randomized backtracking search, and c is
the fixed restart cut-off used. The form Equation 4.1 follows an exponential distribution, so we
expect heavy tails to be eliminated (exponential distributions have finite mean and variance).

P [S > s] = (1 − p)bs/cc P [A > s mod c] (4.1)

Instead of a fixed limit, the sequence of limits at each successive restart can increase to give
a complete search procedure (the limit will eventually be large enough to exhaust the whole
tree). As discussed in Chapter 2, Luby et al. [43] have formulated a universal sequence of
limits that is optimal given no prior information of the original distribution, and only a log
factor away from the optimal fixed cut-off computed from complete information of the search
cost distribution.

Much research has been done on when and how these heavy-tailed distributions come about
(see Chapter 2 for a more detailed overview). Williams [73] has shown how they are related to
the idea of back-door variables. A related paper has shown a theoretical model of backtracking
search which predicts heavy-tailed behaviour when search is unbalanced [13]. Gomes [28]
correlates heavy tails with thrashing behaviour in inconsistent subtrees.

By arguing that SGMPCS uses a randomized backtracking search that should experience
heavy tails, and a restart strategy that removes them, we can inherit all of this research into our
understanding of SGMPCS.

4.3 SGMPCS as a Randomized Restart Model
When the probability of starting a non-guided iteration in SGMPCS is 1, the algorithm becomes
identical to randomized restart. If the underlying randomized backtracking search has heavy
tails, each run will sample from it, and as discussed in Section 4.2, heavy tails will be eliminated
and performance will benefit over standard chronological search. The question then becomes:

1Of course constructive search is complete, the size of the full search space is finite, so none of the moments
can actually be infinite. Yet, some of the runs will take so long as to be practically infinite, in that we will never
wait until they are finished. The distributions are actually “truncated heavy tails” [27]. The infinite model works
well for the range of search costs investigated here.



CHAPTER 4. HEAVY TAILS IN SGMPCS 42

when SGMPCS is guided by elite solutions, will heavy tails still be eliminated? The main
difference is that instead of sampling from the distribution of backtracking runs, SGMPCS will
be sampling from a distribution of guided runs. If we let G be a random variable representing
this distribution, the number of backtracks needed for the next guided run, we get a similar
formula for the probability mass of the tail as Equation 4.1, with p = P [G ≤ c], and a final term
of P [G > c mod s]. As long as P [G ≤ c] > 0, the distribution will still have an exponential
form, and SGMPCS should still eliminate heavy tails, getting a similar performance advantage
over basic backtracking as randomized restart does. Hence, this guided distribution, G, does
not even have to be heavy-tailed for SGMPCS to perform better than chronological search. It
suffices that the original backtracking distribution, A, is heavy-tailed for SGMPCS to perform
better than chronological search. Yet, if G is heavy-tailed, then a rapid restart technique is just
as necessary in SGMPCS as it is for randomized restart.

In the following sections, we attempt to empirically confirm the theoretical argument made
here. In Experiment 1, we find problem instances—we will focus on job-shop scheduling
optimization—in which the search cost distribution of chronological backtracking search is
heavy-tailed. Secondly, we examine how search performance of SGMPCS and a randomized
restart algorithm changes as the instances start to exhibit heavy-tailed distributions. Finally in
Experiment 3, we examine the distribution of guided runs.

4.4 Experiment 1: Heavy Tails in Job-Shop Scheduling
In our first experiment, we attempt to find heavy-tailed behaviour in backtracking search on
instances of the job-shop scheduling problem.

4.4.1 The Job-Shop Scheduling Problem
As described in Section 2.1.1 an n×m job-shop scheduling problem (JSP) contains n jobs each
composed of m completely ordered activities. Each activity, ai, has a predefined duration,
di, and a resource, ri, that it must have unique use of during its duration. There are also
m resources and each activity in a job requires a different resource. A solution to the JSP is a
sequence of activities on each resource such that the makespan, the time between the maximum
end time of all activities and the minimum start time of all activities, is minimized.

All job-shop problems experimented with here are square, in that the number of jobs is
equal to the number of resources n = m. Ten problems of each order (13x13,14x14,15x15,16x16)
are generated using an existing generator [69]. The routings of the jobs through the machines
are randomly generated and the activity durations are independently and randomly drawn from
[1, 99].

4.4.2 Experimental Details
For all algorithms, texture-based heuristics [9] are used to identify a resource and time point
with maximum competition among the activities. This resource and time point are then used
to choose a pair of unordered activities, branching on the two possible orders. The heuristic is
randomized by specifying that the resource and time point is chosen with uniform probability
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from the top 10% most critical resources and time points. The standard constraint propagation
techniques for scheduling [51, 41, 42] are also used in all experiments and algorithms.

All algorithms were implemented in ILOG Scheduler 6.2 and run on a 2GHz Dual Core
AMD Opteron 270 with 2GB RAM running Red Hat Enterprise Linux 4.

4.4.3 Measuring Run-Time Distributions of Chronological Search
To determine the run-time distribution of search cost in our job-shop scheduling problems each
problem instance is run 1000 times with different random seeds. Due the size of the problems
of interest, we only measure the search until a near optimal (4% from optimal) solution is
found. Given an optimal makespan, C∗, we only search for a makespan, C = 1.04 ∗ C∗.
This goal of 4% from optimal was chosen to allow most runs to finish within the 10,000,000
choice point limit, but small enough that the improved performance of randomized restart and
SGMPCS can be seen in the graph of mean relative error over time at the largest problem size
(see Fig 4.2). A similar technique has been used in investigating heavy tails in optimization
problems [25].

Ideally no global limit would be put on each overall search cost. But considering how
many runs were needed, and that given the size of the problems certain runs could take days,
a high limit of 10,000,000 choice points is used. Although this affects the strength of the
statistics (some extreme values expected by heavy-tailed distributions would be missed), a
modified maximum likelihood estimate of the index of stability has already been used for such
a case [26].

4.4.4 Generating Random Solutions
A random solution is generated at the start of each run in order to set the initial upper-bound,
and for guiding the solutions in Experiment 3. These are generated through a schedule-or-
postpone [58] technique that attempts to assign start times to all activities. At each step it
chooses randomly from all activities which can be scheduled next and assigns the activity its
earliest start time. An activity can be scheduled next if the preceding activity in its job has
been assigned (or if it is the first activity), and if the activity has not been by postponed. An
activity becomes postponed if assigning it its earliest start time leads to a failure. It stays
postponed until this earliest start time is removed due to the propagation that is applied after
each assignment.

4.4.5 Results
Displayed in Figure 4.1 are log-log survival functions for a selection of instances of each order.
The y-value corresponds (log scale) the the proportion of the 1000 runs that still could not find
a good solution (within 4% of optimal) after creating x (log-scale) choice points. The overlaid
line is the fitted Pareto distribution of the tail using a modified maximum likelihood estimate
of α formulated in Gomes et. al [26]. Estimates of α for each instance are shown in Table 4.1.
For heavy tails, we would expect the log-log plot of the tail to be linear, and have and α value
that is associated with all infinite moments α < 1. From the graphs and figures, we see that
heavy-tailed behaviour starts to emerge by size 16.
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Figure 4.1: Log-Log plot of the survival function of backtracking search to find 4% of optimal
for two random JSP instances for sizes, from top to bottom, 13, 14, 15, 16. Also plotted, is the
fitted Pareto distribution of the tail with the estimated parameter α.
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4.5 Experiment 2: Comparing Algorithms
Having identified sizes of the JSP in which heavy-tailed distributions can be observed, we now
compare search performance for three algorithms.

4.5.1 Experimental Details
The same ten job-shop scheduling instances for each size between 13 and 16 from the first
experiment are used again here.

Three algorithms are tested:

• Standard chronological backtracking (Chron): Similar to the runs from the last experi-
ment except the heuristic is not randomized, and the texture heuristic is used in the value
ordering. Since it is not randomized, one run is performed for each instance.

• Randomized Restart (Restart): A randomized restart algorithm using the randomized
texture heuristic from Experiment 1. The fail limit is polynomial with a step of 32 (see
Section 3.1). Each instance is run 10 times. As in SGMPCS, on each successive restart,
the best solution found so far is used as the new upper bound on the makespan.

• Solution Guided Multi-Point Constructive Search (SGMPCS): To simplify the algorithm,
and from good performance found in [6] the following parameters are used: |e| = 1,
p = 0.25, initialization limit : 100, fail sequence: polynomial with a step of 32. The same
randomized texture heuristic as in randomized restart is used, except, when guiding from
a solution, the activity ordering in the guiding solution is always asserted. Each instance
is run 10 times.

A time limit of 1500 seconds is put on all runs, giving enough time for all algorithms to find
a 4% from optimal solution. All other experimental details (hardware, software, propagators)
are identical to Experiment 1.

4.5.2 Results
Displayed in Figure 4.2 are, for each problem size, the mean relative errors (MRE) relative to
the known optimal solution at 10 second intervals. The MRE is the mean of the relative error
of each 10 problems at a given size n:

MRE(a, Kn, R, t) =
1

|R||Kn|

∑

r∈R

∑

k∈Kn

c(a, k, r, t) − c∗(k)

c∗(k)
(4.2)

where Kn is the set of problem instances of size n, R is the set of independent runs with
different random seeds on these instances, c(a, k, r, t) is the makespan found by algorithm a
on problem k, on run r, after t seconds.

While standard chronological search performs much better on the smaller problems, by
order 16, it becomes the worst in terms of average performance. Table 4.1 displays the average
number of choice points to find a 4% of optimal solution (what we used to measure heavy tails),
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along with the estimated α value from Experiment 1. Chronological search can still perform
best on some larger instances, but it is also highly variable between instances, which we would
expect from heavy tails. Also from the table we can see, in contrast to graphs in Figure 4.2, that
simple restart always performs better than SGMPCS. This may seem contradictory, but what
was plotted in Figure 4.2 was the mean relative error at a set time (about half the runs will have
a larger relative error at this time). In contrast, Table 4.1 measures the mean cost of each run to
get to this 4% relative error.
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Figure 4.2: Mean relative error of best solutions found over time for JSP problems of sizes
13 (top left), 14 (top right), 15 (bottom left), and 16 (bottom right). The y-axis of size 16 is
different from the others since the chronological line would not appear otherwise.

The graph in Figure 4.3 attempts to show how average performance relative to chronolog-
ical search changes as the distributions become heavy-tailed, measured through the average
estimate of α. Plotted on the x-axis are the means of the 10 α values for each size. On the
y-axis is average performance relative to chronological search for each size n:

R̄n =
(Ān − C̄n)

C̄n

(4.3)

where Ān is the mean number of choice points to find a 4% of optimal solution on problems
of size n for either SGMPCS or Restart, and C̄n is the mean performance for standard chrono-
logical search on the same problems. It can be observed that as the α value approaches 1
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from above, the performance scores for SGMPCS and restart both become negative signifying
improved mean performance relative to chronological search.

Chron Restart SGMPCS
size ᾱ mean sd mean sd mean sd
13 3.46 1532 447 2694 1889 11081 2120
14 2.02 3939 3327 4365 1479 18364 25374
15 1.35 21292 35336 8050 7349 20934 8185
16 1.09 92694 127361 17062 11551 19585 3553

Table 4.1: Mean and standard deviation of the number of choice points to to find a 4% from op-
timal solution to JSP instances of varying size along with mean α values of their tails measured
in Experiment 1.
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Figure 4.3: Mean relative performance from randomized restart and SGMPCS for problem
sizes of changing average α estimates.

4.6 Experiment 3: Finding Run-Time Distributions of Guided
Search

We have seen that heavy-tailed behaviour can occur in JSP instances and that randomized
restart and SGMPCS can both benefit from these search cost distributions. The purpose of
our final experiment to look at how SGMPCS may change this underlying distribution. The
main question is whether this distribution is still heavy-tailed. Even if the guided distribution is
heavy-tailed, the extremely long guided runs will still always be avoided because of the restarts
SGMPCS uses, and the overall search cost distribution of SGMPCS will not be heavy-tailed. If
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the guided distribution is not heavy-tailed, then perhaps there is a way to guide from solutions
without the need of restarts. The purpose of this experiment is to see if a rapid restart technique
is critical for the performance of SGMPCS (i.e., to avoid to long runs).

4.6.1 Experimental Details
In Experiment 1, we found the distribution of all possible runs a randomized restart search
may encounter. This was done by taking an instance and running it multiple times with a very
high limit on the search and a different random seed each time. In the case of SGMPCS, the
population of all possible individual runs is characterized by the various random seeds as well
as all possible sub-optimal guiding solutions. Therefore, to determine the distribution of search
cost for guided runs each problem instance is run 1000 times with both a new random seed and
a new randomly generated guiding solution. The random solution is generated in the same way
as Experiment 1, but is now used for both setting an upper bound and guiding the run. The
same randomized texture heuristic is used, but instead of randomly choosing an ordering for the
pair of activities, the ordering in the guiding solution is asserted. Only the ten instances of size
16 are run for these experiments. All other experimental details are identical to Experiment 1.

4.6.2 Results
The log-log plots of the survival function over all instances are shown in Fig. 4.4, where the
y-axis represents the proportion of runs over all instances of size 16 that have found a 4%
from optimal solution after x choice points have been created. From the plots, we can see the
search cost distributions for guided and non-guided runs both exhibit heavy tails, except that
in the guided case, the heavy tails occur sooner and are less steep. The maximum likelihood
estimates of the α parameter are 0.728 and 0.547 for the randomized and guided distributions
respectively, confirming both infinite means and variances. Plots focusing on the left-hand tail
show little evidence of heavy tails as seen in Fig. 4.5, with α estimates for the left hand Pareto
distribution of 5.09 and 4.17 for the random and guided distributions respectively.

Heavy tails over multiple instances is of little use to randomized restart or SGMPCS trying
to solve a single instance. As shown in Table 4.2 and Fig. 4.6 the results when broken down
per instance are more varied, but still tend to confirm heavy tails for both cases. The column
labeled ‘all’ represents fitting a distribution of all runs over all problems, as shown in Fig 4.4.
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non-guided guided
instance α α

all 0.728 0.547
0 0.586 1.00
1 0.61 0.755
2 0.676 0.579
3 0.532 1.62
4 1.14 1.78
5 0.483 0.718
6 0.714 1.43
7 0.658 3.42
8 0.239 0.194
9 0.582 1.09

Table 4.2: Estimates of α for guided and non-guided runs on ten 16x16 JSP instances.
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Figure 4.4: Right hand heavy tail plots of guided and non-guided (random) backtracking search
on ten 16x16 JSP instances.
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Figure 4.5: Left hand plots of guided and random backtracking search on ten 16x16 JSP in-
stances.

4.7 Discussion
The aim of this chapter was to explore how heavy-tailed distributions in randomized backtrack-
ing search cost could help explain SGMPCS behaviour. We have shown that heavy-tailed be-
haviour can occur in job-shop scheduling optimization. As expected, the average performance
of SGMPCS and randomized restart search both start to improve over standard chronological
search at the size of problems where heavy-tailed behaviour appears. Finally we found the
distribution of guided runs used by SGMPCS would also be heavy-tailed, suggesting a rapid
restart strategy is just a necessary for SGMPCS as it is for the standard randomized restart
algorithm.

4.7.1 Limitations
While we believe we have proved our case, various points regarding our study’s limitations
can be raised. These include experimental details added due to time constraints, complexities
added by studying optimization, and our simplified definition of all guided runs.

Our study may have been weakened by two details added due to time constraints: only
searching to a suboptimal solution and censoring measurements at 10,000,000 choice points.
This limit censored less than 5% of all 10,000 guided runs on the largest size problem. Less
than 2% of all non-guided runs on the size 16 instances were censored. Regarding searching to
a suboptimal solution, a previous paper by Gomes and Selman [25] employ a similar technique
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in studying heavy tails in optimization. In retrospect, we should have chosen a percent to which
the mean performance of SGMPCS clearly outperforms restart.

Restart techniques in optimization add extra benefits as well as complications to modeling
their performance. At each restart, more is known about the bounds on the optimization func-
tion as the upper bound is reduced to the best found on the last iteration. Starting at the top of
the search tree, this lower upper bound can by itself help find a better solution sooner through
increased propagation. In satisfaction, there is nothing to optimize so each restart is the same
as the last.2 In contrast, the distribution of run-times that a restart technique samples from is
likely to change as the bounds become more constrained.

How we defined the distribution of guided runs may also be a bit simplistic. A randomized
run is defined over every possible guiding solution. Yet, as we have seen in SGMPCS, a single
elite solution may remain in the elite set for a large portion of the overall search time. As well,
not just any solution can be guiding solution, only better quality solutions are allowed into the
elite set. Regarding the comparison of distributions for guided and non-guided runs, we may
ask how different these heuristics really are? Either values are randomly chosen once at the
start of search when the guiding solution is generated, or dynamically chosen at each choice
point. This may alone explain for the differing results. When guided by a randomly generated
solution, the same possibly bad decision will be made whenever search comes to a particular
variable whereas in the random heuristic it has another chance each time. These heavier tails
for guided runs may perhaps be explained by the formal model of heavy tails of Chen et al.
[13]: the static random variable ordering when guiding by a solution leads the search tree to be
more unbalanced, and hence more likely to exhibit heavy tails.

4.8 Conclusion
These experiments have confirmed that the distribution in run-times of the backtracking search
on JSP instances can be heavy-tailed. It was shown that SGMPCS and randomized restart
techniques perform better at the same instance sizes in which heavy tails start to appear. Guided
runs used by SGMPCS were also shown to exhibit heavy tails.

While the tails for guided runs were heavier, this only means that using a rapid restart tech-
nique is even more necessary when guiding from a solution. The smaller probability mass on
the left hand side, suggests that SGMPCS does not benefit more than the standard restarting
technique from exploiting heavy tails. While the heavy tailed distribution explains why SGM-
PCS and randomized restart perform better than basic backtracking, we have not yet explained
why SGMPCS can perform better than randomized restart.

One main claim of our thesis is that SGMPCS can perform better than restart by the benefit
of being guided by good solutions. In the next chapter, this is investigated through a fitness-
distance correlation study on the multi-dimensional knapsack satisfaction problem.

2This does not account for techniques which combine restarts with no good learning [3].
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Figure 4.6: Log-log plot of the survival functions of backtracking search to find a 4% of op-
timal solution, Left guided by a random solution and Right using a random variable ordering
for randomly generated order 16 JSP instances 0,1,3 and 6. Also plotted is the fitted Pareto
distribution of the tail with the estimated parameter α.



Chapter 5

Fitness-Distance Correlations in Solution
Guided Multi-Point Constructive Search

According to our thesis, two factors have an impact on the performance of SGMPCS: the
exploitation of heavy-tails, and the impact of revisiting elite solutions. In an attempt to explain
the poor performance of SGMPCS on the multi-dimensional knapsack satisfaction problems
of Chapter 3, in this chapter, we build a descriptive model of SGMPCS performance based on
this second premise.

The core of the chapter is the investigation of the conjecture that SGMPCS performance,
unlike that of randomized restart and chronological backtracking, is partially affected by the
quality of the heuristic that is used to select the guiding partial solutions. When we artificially
control the quality of the heuristic evaluation, we observe substantial performance differences.
We then investigate two new heuristics for the multi-dimensional knapsack problem. The better
heuristic results in significant gain in search performance and, more importantly, the observed
performance differences among the three heuristics are consistent with the descriptive model.
Approximately 44% of the variation in search performance can be accounted for by the quality
of the heuristic.

In the next section, we discuss the goal of this chapter: to develop a descriptive model of
SGMPCS based on fitness-distance correlation. Then, in Section 5.2, we revisit and discuss
the initial empirical studies, demonstrating the poor performance of SGMPCS. Section 5.3
develops our descriptive model of SGMPCS performance. Section 5.3.4 proposes two new
heuristic evaluation functions and empirically evaluates them. We discuss the implications and
limitations of our study in Section 5.4.

5.1 Descriptive Models of Algorithm Behaviour
As discussed in Chapter 2, a descriptive model of algorithm behaviour is a tool used to under-
stand why an algorithm performs as it does on a particular class or instance of a problem. There
has been considerable work over the past 15 years in developing models of problem hardness
[21, 61] as well as work that has focused more directly on modeling the behaviour of specific
algorithms or algorithm styles. The work on heavy-tailed phenomenon [29, 38] models the
dynamic behaviour of constructive search algorithms while local search has been addressed in

53
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a number of models–see [36] for a detailed overview.
In this chapter, we develop a static cost model with the goal of correlating problem in-

stance features to algorithm performance. Our primary interest is to understand why SGMPCS
outperforms or fails to outperform, other constructive search techniques. Specifically, we fo-
cus on multi-dimensional knapsack satisfaction problems, which as shown in Chapter 3, are
solved just as poorly by SGMPCS as by randomized restart search. The approach we adopt is
fitness-distance analysis [36], an a posteriori approach traditionally applied to local search al-
gorithms. Local search algorithms move through the search space based on an evaluation of the
quality of (suboptimal) “solutions” in the neighbourhood of the current solution. Neighbouring
solutions are evaluated and, typically, the lowest cost solution is selected to be the next solu-
tion. In fitness-distance analysis, the quality of a solution (i.e., its fitness) is compared against
its distance to the nearest optimal solution. Distance is measured as the minimum number of
steps it would take to move from the solution in question to the nearest optimal solution. In
problem instances where the search space and neighbourhood function induce a high fitness-
distance correlation (FDC), the standard behaviour of moving to a solution with higher fitness
will therefore tend to move the search closer to an optimal solution.

Standard constructive search techniques such as chronological backtracking, limited dis-
crepancy search, and randomized restart do not exploit the fitness of sub-optimal solutions that
are found during search. Even when there is a notion of sub-optimality, as in optimization
problems, these techniques do not attempt to search in the “neighbourhood” of high quality
solutions. There are, however, some algorithms that are based on constructive search such as
ant colony optimization [20] and adaptive probing [57] that have been shown to be sensitive to
FDC on optimization problems [10].

We test the hypothesis that SGMPCS is sensitive to fitness-distance correlation and that,
therefore, its search performance can be partially understood by the FDC of a problem instance.

5.2 Initial Experiment
In this section, we present the details and results of our initial experiments of re-running the
benchmark multi-dimensional knapsack problems of Chapter 3 with new default parameters
and newer hardware and software. These results will be used as the basis of comparison for
further experiments.

5.2.1 Experimental Details
We compare three search techniques: chronological backtracking (chron), randomized restart
(restart) [29], and SGMPCS. In all algorithms the variable ordering is random. The value
ordering for each algorithm, when not being guided by an elite solution, is also random. Any
restart-based technique needs some randomization. The use of purely random variable and
value ordering serves to simplify the experimental set-up.

Restart follows the same fail sequence as SGMPCS (see below) and initializes and main-
tains a set of elite solutions. However, it always searches from an empty solution (i.e., it is
equivalent of SGMPCS with p = 1). Therefore, it has a small run-time overhead to maintain
the elite set as compared with standard randomized restart.
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All algorithms were implemented in ILOG Solver 6.3 and run on a 2GHz Dual Core AMD
Opteron 270 with 2GB RAM running Red Hat Enterprise Linux 4.

Parameter Values for SGMPCS Chapter 3 examined the impact of different parameter set-
tings. Here, we are interested in SGMPCS performance in general, and, therefore, adopt the
parameters listed in Table 5.1 for all experiments. These parameters were chosen based the
experiments of Chapter 3 that showed little performance variation for SGMPCS for different
settings on multi-dimensional knapsack problems. Since we do not want the fail limit used
to depend on the evaluation function—the original default polynomial sequence reset when a
new best solution was found—we use the Luby fail sequence for these experiments. Due to
the poor performance, in terms of run-time, of the original Luby sequence we follow [37] and
multiply each limit by a constant, in our case 32 (i.e. 32, 32, 64, 32, 32, 64, 128, 32, ...).

Fail Seq. |e| p Init. Fail Bound Backtrack Method
luby32 8 0.5 1 chron

Table 5.1: Default parameter values for the experiments.

Problem Instances The same two sets of six problems from the operations research library1

are used as in Chapter 3. The instances range from 15 to 50 variables and 2 to 30 dimensions.
For each problem instance, results are averaged over 1000 independent runs with different

random seeds and a limit of 10,000,000 fails per run. For each run of each problem instance,
we search for a satisfying solution.

Heuristic Evaluation for SGMPCS Following the idea of trying simple approaches before
more complex ones, our initial heuristic evaluation, as was used in Chapter 3, is the number of
unassigned variables. As described in Section 2.2.2, our elite solution candidates are dead-ends
that either have one or more variables with an empty domain or break a constraint. When the
solver encounters a dead-end, we simply count the number of unassigned variables and use
that as the heuristic evaluation: the fewer unassigned variables, the better the dead-end. We
make no attempt at a dead-end to assign any of the unassigned variables that have non-empty
domains. We refer to this heuristic evaluation as H1. This is the exact same heuristic used in
Chapter 3.

5.2.2 Results
Table 5.2 compares the performance of chronological backtracking, randomized restart, and
SGMPCS as defined above. Both SGMPCS and randomized restart perform poorly when
compared to chronological backtracking. There does not seem to be a large difference between
the performance of SGMPCS and randomized restart.

1http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/mknapinfo.html
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chron restart SGMPCS-H1

%sol fails time %sol fails time %sol fails time
mknap1-0 100 1 0.0 100 2 0.0 100 3 0.0
mknap1-2 100 26 0.0 100 42 0.0 100 41 0.0
mknap1-3 100 523 0.0 100 1062 0.0 100 924 0.0
mknap1-4 100 15123 0.4 100 54635 1.5 100 44260 1.2
mknap1-5 100 3271555 67.2 54.5 6885489 167.2 70.8 5573573 137.0
mknap1-6 0.2 9990291 279.9 0.0 10000000 337.2 0.8 9958245 340.9

mknap2-PB1 100 15223 0.3 100 42651 0.8 100 28770 0.6
mknap2-PB2 100 3088092 54.1 80.3 4970049 102.0 88.1 3741187 77.8
mknap2-PB4 100 10167 0.1 100 38474 0.5 100 28406 0.4
mknap2-PB5 100 7011 0.1 100 16178 0.4 100 15077 0.3
mknap2-PB6 100 16050 1.9 100 28964 3.8 100 25954 3.4
mknap2-PB7 100 1472499 138.7 76.0 5374900 551.4 85.9 4113704 423.6

Table 5.2: Comparison of multi-dimensional knapsack results for chronological backtracking
(chron), randomized restart (restart) and SGMPCS using the H1 heuristic evaluation function.

5.3 Building a Descriptive Model
In this section, we develop a descriptive model of SGMPCS performance based on the fitness-
distance correlation. We first define the measure of distance used and then present a deeper
analysis of the SGMPCS results in the above table. We then build on the methodology of Beck
& Watson [10] to create an artificial heuristic evaluation function that allows us to completely
control the fitness-distance correlation of the problem instances. Experiments with this artifi-
cial heuristic demonstrate a strong interaction between FDC and search performance. Finally,
we develop two new heuristic evaluation functions and examine their performance.

5.3.1 A Measure of Distance
A complete solution to a multi-dimensional knapsack problem can be represented by a binary
vector (x1, ..., xn) of the decision variables. The representation lends itself to using the Ham-
ming distance as a measure of the distance between two (complete) assignments. This is the
standard definition in fitness-distance analysis of local search algorithms.2

Our elite solutions are dead-ends and so may not be complete assignments (see Section
2.2.2). Therefore, we must adapt the Hamming distance to account for unassigned variables.
A given dead-end with m assigned variables, m < n, represents a set of 2n−m points in the
search space with varying distances from the nearest satisfying solution. If we assume a single
satisfying solution to a problem instance (see below), then the distribution of distances for
the sub-vector of unassigned variables follows a binomial distribution with a minimum sub-
distance of 0 and maximum sub-distance of n − m. The mean of this distribution is n−m

2
. We

therefore calculate the distance from a dead-end to the satisfying solution as the mean distance

2SGMPCS does not move in the search space with the freedom of local search as it is constrained by a search
tree. It may be the case, therefore, that a different definition of distance that takes into account the search tree may
be more appropriate. We leave the investigation of such a distance function for future work.
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of the points represented by the dead-end: the Hamming distance for the assigned variables
plus one-half the number of unassigned variables. More formally, for a given elite solution
candidate S = (x1, ..., xm) and a satisfying solution S∗ = (x∗

1, ..., x
∗
n), m ≤ n, the distance is

calculated as follows:

D(S, S∗) =
∑

1≤i≤m

|xi − x∗
i | +

n − m

2
(5.1)

The normalized distance is ND(S, S∗) = D(S,S∗)
n

.

5.3.2 Analysis of the Initial Experiments
As in Chapter 3, traces of SGMPCS-H1 runs show that early in the search all the elite solutions
have a heuristic evaluation of 0: all of the variables are assigned but the solution does not
satisfy all constraints. The propagation tends not to result in domain wipe-outs but rather full
assignments that break one or more constraints. The uniformity of the heuristic evaluation
suggests that our simple heuristic evaluation is too coarse to provide useful guidance.

To quantify this observation, we calculate the heuristic evaluation and distance of each
elite solution encountered during the search. In order to do this, we must first find all satisfying
solutions to each instance. We did this using a small modification to the chronological back-
tracking algorithm. To our surprise, each instance has a single satisfying solution, justifying
our definition of D above.

Figure 5.1 presents plots of the distance vs. the fitness for two of the problem instances. The
plots for the other problem instances are almost identical. It is clear, that the heuristic evalua-
tion provides almost no real heuristic information. These data were gathered by instrumenting
the SGMPCS solver to record the fitness and distance from the known satisfying solution of
each new entry to the elite set.

5.3.3 Manipulating the Fitness-Distance Correlation
Figure 5.1 is consistent with our conjecture that fitness-distance correlation may have a role
in a descriptive model of SGMPCS performance. It provides, however, rather weak support:
the absence of an FDC accompanies poor performance. A stronger test of the conjecture is to
directly manipulate the FDC and observe the performance of SGMPCS. To do this, we adopt
the technique introduced in [10] to artificially set the heuristic evaluation based on knowledge
of the distance to the satisfying solution.

Let D(S, S∗) be defined as in Equation (5.1). We define the heuristic evaluation of the
satisfying solution, S∗, to be h(S∗) = 0. We set the heuristic evaluation, hFDC+(S), of an
elite solution S under perfect FDC equal to D(S, S∗). Similarly, we set the heuristic evaluation
hFDC−(S) of an elite solution with perfect negative FDC to be (n − D(S, S∗)). To generate
instances with intermediate FDC, we interpolate between these two extremes as follows:

h(S) =







0 if S = S∗

dα × hFDC+(S) + (1 − α) × RAND(S)e if S 6= S∗ ∧ β = 0
dα × hFDC−(S) + (1 − α) × RAND(S)e if S 6= S∗ ∧ β = 1

(5.2)
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Figure 5.1: Plots of the heuristic evaluation (fitness) of each elite solution vs. its normalized
distance from the unique satisfying solution for two of the multi-dimensional knapsack prob-
lem instances: Left: mknap1-5; Right: mknap2-PB7. A small noise component is added to the
fitness and distance for purposes of visibility in the plot–this noise is not present in the data.

where α ∈ [0, 1], β ∈ {0, 1}, and RAND(S) ∈ [0, n]; the latter value is uniformly generated
from the interval, using the bit vector S as the random seed. The random component is added
to achieve more realism in our model, while still manipulating the FDC. Clearly, when α = 0,
the heuristic evaluation is purely random. While α determines the strength of the FDC, β is a
two-valued parameter governing its direction: β = 0 and β = 1 induce positive and negative
FDC, respectively.

The only difference with our initial experiments is that the heuristic evaluation is changed to
Equation (5.2). For a single instance and each pair of values for α and β, we solve the instance
1000 times with different random seeds. Following Watson [67] we compare FDC against
the log of search cost, in our case, the log of the number of fails to find a satisfying solution.
Since our problems are of various sizes, the log of the mean number of fails of instance p with
α = a, β = b, F̄p,a,b, is normalized with the log of the search cost of chron on the same problem
(Cp) as follows:

Np,a,b =
log(F̄p,a,b) − log(Cp)

log(Cp)

For each problem and setting of α and β, FDC values are measured by collecting every
unique elite solution over the 1000 iterations and taking the correlation between the evaluation
function for each entry and its distance to the one known satisfying solution as defined in
Equation 5.1.

Figure 5.2 shows the plot of FDC against normalized log of search cost for each problem
instance and setting of α and β. The graph does not contain results for mknap1-0 and mknap1-
2. As shown in Table 5.2, these are easily solved during the initialization phase of SGMPCS
and so display no correlation with FDC. There is considerable noise for high negative values of
FDC due to the fact that SGMPCS could not find a solution on a number of problem instances
with high negative FDC, within the fail limit.

As seen in Figure 5.2, all problems show a downward linear trend in normalized log of
search cost as the FDC increases. Where the data points cross the zero-line, signifies the FDC
needed for SGMPCS to perform better than (chron) (in term of number of choice points). These
results show, at least in this artificial setting, that fitness-distance correlation has a significant
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Figure 5.2: A scatter-plot of the measured fitness-distance correlation versus the normalized
log of search cost for the artificial heuristic evaluation in Equation (5.2). The low positive
values of search cost for high negative FDC stem from problem instances (and settings of α
and β) for which SGMPCS could not find a solution. The graph does not contain the results
for problem instances mknap1-0 and mknap1-2 as they are trivially solved.

impact on SGMPCS performance.

5.3.4 Toward Better Heuristic Evaluations

Figures 5.1 and 5.2 show that one possible explanation for the poor performance of SGMPCS-
H1 is the low fitness-distance correlation. The results of the experiment that manipulated the
FDC demonstrated that the performance of SGMPCS is sensitive to the FDC, at least in an
artificial setting. In this section, we develop two new heuristic evaluation functions. Our goal
is to demonstrate that, in a non-artificial setting, the FDC induced by the heuristic evaluation
function has an impact on the search performance of SGMPCS.

The intuition behind both of the new heuristic evaluation functions is to include additional
knowledge about the quality of the solution. In particular, we wish to create a finer heuristic
evaluation that is able to better distinguish among the elite solutions (i.e., we would like fewer
of the elite solutions to have a heuristic evaluation of zero than with the H1 function). Our
main goal in proposing these heuristics is to evaluate the relationship between FDC and search
performance. We expect that these heuristics will result in a different FDC and wish to test if
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this leads to a difference in performance.3

• H2- Recall (Section 3.2.1) that our CSP model of the multi-dimensional knapsack as-
sumed that the value of the most profitable knapsack, P ∗, is known. This knowledge
is used in the constraint, P = P ∗, but not otherwise exploited above. Here, we define
H2 = |P ∗ − P |.

• H3- Some preliminary experiments showed that even with H2, the elite pool often stag-
nated on a set of elite solutions with a zero heuristic evaluation that break one or more
constraints. Therefore, in order to further refine the heuristic evaluation, we choose to
use the number of broken constraints as a tie-breaker: H3 = H2 + |V | where |V | is the
number of constraints violated by the (partial) assignment.

It should be noted that the only difference among the H1, H2, and H3 models is the heuristic
evaluation function. In particular, the constraint model is identical in all three models. We
now solve each of the problem instances 1000 times (with different random seeds) with each
heuristic evaluation function. The other experimental details are the same as in Section 5.3.3.

5.3.4.1 Results

Figure 5.3 presents distance vs. fitness plots of the same two problem instances as Figure 5.1
using the two new heuristic evaluation functions. From H2 to H3 the evaluation functions pro-
vide slightly better predictions of the partial solution’s distance to the satisfying solution. This
is evident from the correlations measured (mknap1-5: rH2 = 0.265, rH3 = 0.312; mknap2-
PB7: rH2 = −0.026, rH3 = 0.292) and can be seen on the graphs in the slightly less uniform
distribution of points.

Figure 5.4 displays the scatter plot of the normalized search performance versus FDC for
all of our heuristic evaluation functions together with the minimum mean squared error line.
As above, we do not include mknap1-0 and mknap1-2. Although limited by our small number
of instances, the plot clearly shows a trend of better search cost with higher FDC values. The
r2 value is 0.568 (r = −0.754). If we further omit mknap1-3 and mknap1-6, r2 = 0.631.
Both these instances are outliers, the former because it is easy and the latter because it is only
solved in 14 of 4000 runs (over all SGMPCS algorithms and chron) and so exhibits errors due
to hitting the overall fail-limit.

Table 5.3 displays the performance of each SGMPCS variation. For completeness we re-
peat the results for chronological backtracking and SGMPCS-H1 from Table 5.2. While not
clearly superior, SGMPCS-H3 is competitive with chron overall. For the harder instances (i.e.,
mknap1-5, mknap2-PB2, mknap-PB6, and mknap2-PB7 where chron has a high number of
fails) SGMPCS-H3 is 1.5 to 8 times better than chron in terms of the number of fails.

3It does not seem likely that either of these heuristics will be useful, in general, for solving multi-dimensional
knapsack problems because both make use of knowledge of the value of the most profitable knapsack.
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Figure 5.3: Plots of the heuristic evaluations H2 (top) and H3 (bottom) of each elite solution vs.
its normalized distance from the unique satisfying solution for two of the multi-dimensional
knapsack problem instances: Left: mknap1-5; Right: mknap2-PB7. A small noise component
is added to the fitness and distance for purposes of visibility in the plot–this noise is not present
in the data.
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Figure 5.4: A scatter-plot of the measured fitness-distance correlation versus the normalized
log of search cost for three heuristic evaluation functions: H1, H2, H3. The graph does not
contain the results for problem instances mknap1-0 and mknap1-2 as they are trivially solved.
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chron SGMPCS-H1 SGMPCS-H2 SGMPCS-H3

%sol fails time %sol fails time %sol fails time %sol fails time
mknap1-4 100 15123 0.4 100 44260 1.2 100 29895 0.9 100 11349 0.5
mknap1-5 100 3271555 67.2 71 5573573 137.0 77 4839688 126.2 98 1824457 71.6

mknap2-PB1 100 15223 0.3 100 28770 0.6 100 28405 0.6 100 23445 0.7
mknap2-PB2 100 3088092 54.1 88 3741187 77.8 92 3191853 71.2 98 1933160 60.9
mknap2-PB4 100 10167 0.1 100 28406 0.4 100 24112 0.4 100 24370 0.5
mknap2-PB5 100 7011 0.1 100 15077 0.3 100 13747 0.3 100 11650 0.4
mknap2-PB6 100 16050 1.9 100 25954 3.4 100 26082 3.4 100 8554 1.8
mknap2-PB7 100 1472499 138.7 86 4113704 423.6 86 4287571 447.7 100 184443 32.8

Table 5.3: Comparison of multi-dimensional knapsack results for chronological backtracking
(chron), and SGMPCS using the three heuristic evaluation functions H1, H2, H3.

5.4 Discussion
In this chapter, we addressed the question of developing an understanding of why SGMPCS
performs as it does on constraint satisfaction problems. We demonstrated that the correlation
between the heuristic evaluation of an elite solution and its distance to the satisfying solu-
tion, is well-correlated with the search performance of SGMPCS. Standard constructive search
approaches such as chronological backtracking, randomized restart, and limited discrepancy
search make no use of such heuristic information.

5.4.1 Limitations
There are a number of limitations to the study in this chapter. First, it is a case study of 12 prob-
lem instances of one type of problem. While we believe these results are likely to be observed
for other problems instances and types, a larger study is needed. Accordingly, the next chap-
ter does provide a larger study on various search space features, including FDC, for job-shop
scheduling. Second, the poor performance of randomized restart on the multi-dimensional
knapsack problems suggests that they do not exhibit heavy-tails. In Chapter 4, we showed
evidence that SGMPCS is able to exploit heavy-tails in the same way as randomized restart.
Therefore, a full descriptive model of SGMPCS must address the impact of heavy-tailed dis-
tributions. In fact, one of the reasons that the multi-dimensional knapsack problem was chosen
for this case study was precisely because we did not have to address the impact of heavy-tailed
distributions. Third, it should be acknowledged that multi-dimensional knapsack problems are
strange CSPs since the underlying problem is an optimization problem and we exploit this in
formulating the new heuristic evaluation functions in Section 5.3.4. Our original motivation
for choosing to apply SGMPCS to a CSP version of multi-dimensional knapsack was simply
because [54] did so and showed poor performance for randomized restart. Given the relation-
ship between randomized restart and SGMPCS, this appeared to be a fertile choice. There
remains some uncertainty regarding the application of the FDC-based descriptive model of
SGMPCS performance on more “natural” CSPs. Nonetheless, our model makes clear, testable
hypotheses that can be evaluated in future work. Finally, as a descriptive model, the work in
this chapter does not, on its own, produce a clear benefit for constraint solvers. That is, we have
not demonstrated any improvement on the state-of-the-art for any problem classes. That was
not our aim here. What we have done is provided a deeper understanding of the performance
of SGMPCS and a potential new source of search guidance for CP search.
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5.5 Conclusion
In this chapter, steps were taken in understanding the search behaviour of Solution Guided
Multi-Point Constructive Search (SGMPCS). Using fitness-distance analysis, a technique com-
mon in the metaheuristic literature [36], a descriptive model of SGMPCS search behaviour on
multi-dimensional knapsack satisfaction was developed. Empirical results, both in an artificial
context and using three different heuristic evaluation functions, demonstrated that the corre-
lation between the heuristic evaluation of a state and its proximity to the satisfying solution
has a strong impact on search performance of SGMPCS. This (partial) descriptive model is
important for three main reasons:

1. It makes strong, testable predictions about the behaviour of SGMPCS on other constraint
satisfaction and optimization problems.

2. It provides a clear direction for improving SGMPCS search performance: the creation
of, perhaps domain-dependent, heuristic evaluation functions for partial search states that
are well-correlated with the distance to the nearest solution.

3. It re-introduces a heuristic search guidance concept to the constraint programming litera-
ture. Though guidance by heuristic evaluation of search states is common in metaheuris-
tics, general AI search (e.g., A∗ and game playing), and best-first search approaches, it
does not appear to have been exploited in constructive, CP search. We believe this is an
important direction for further investigation.

In the next chapter, we explore descriptive models of SGMPCS further by evaluating how
well various measures of the search space, including FDC, can predict SGMPCS search cost
on the job-shop scheduling problem.



Chapter 6

Static Cost Models of Solution Guided
Multi-Point Constructive Search

6.1 Introduction
The last chapter showed a link between a feature of the search space, fitness-distance corre-
lation, and SGMPCS performance. The purpose of this current chapter is to investigate how
SGMPCS performance may be related to other search space features. This is accomplished
through a set of experiments analogous to those of Watson et al. [70] on job-shop scheduling
problems. Instead of investigating the correlation between search space features and tabu-
search performance, we look at the correlation of the exact same measured features and the
performance of SGMPCS.

In this chapter, we first review past work of descriptive models of algorithm behaviour
in local search and describe the experiments and results of Watson et. al in detail. Then, in
Sections 6.3 and 6.4, we show how the various search space features measured by Watson et
al. correlate with SGMPCS performance on the same set of problem instances. In Section 6.5,
we discuss the significance of our results and limitations of our experiments.

6.2 Background
An open problem in search algorithm research is to explain the large variation in search costs
observed between problem instances [47, 21, 52, 60]. The focus has been predominantly in
local-search algorithms where there is still a lack of understanding of why local search pro-
cedures work as well as they sometimes do. A way of reaching this better understanding has
been to investigate how different search space features induced by an instance affect a search
algorithm’s performance.

Watson et al. [70] took four features used in past studies [14, 52, 45, 60] and investigated
their accuracy in predicting the search cost for of tabu search on the job-shop scheduling op-
timization problem. The four features were the number of optimal solutions, backbone size,
distance between local optima, and distance between local optima and the nearest optimal so-
lution. Watson et al. refer to the use of these various search space features to account for the
variability of search cost between instances as static cost models of problem difficulty. By

65
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static they are referring to the fact that the features are largely independent of the individual
algorithm dynamics, relying on unchanging features of the search space. In contrast, dynamic
cost models which do rely on dynamic features of specific algorithms—such as the set of solu-
tions encountered by an algorithm—are investigated for tabu search and job-shop scheduling
in [67]. The following static cost models are investigated here:

Number of Optimal Solutions |optsols|: One of the earliest static cost models of local
search investigated was the number of optimal solutions by Clarke et al. [14]. Intuitively,
the more often solutions occur in the search space, the quicker it should be for a local search
procedure to encounter one. Yet, on satisfiable problems, local search difficulty decreases past
the phase transition peak even as the number of solutions continues to drop [60, 74].

Backbone Size |backbone|: Used initially by Parkes [52] to explain the search cost peak of
local-search SAT solvers, a backbone of a SAT instance is the set of variables which always
have the same value in any satisfying solution. As the backbone size becomes larger, solutions
will necessarily cluster in the search space and hence be more difficult for local search pro-
cedures to locate. Parkes observed that many large backbone instances start to appear at the
critically constrained region. Parkes also observed that when backbone size is fixed, difficulty
always decreases as constrainedness increases.

Distance Between Local Optima loptdist: It has been observed that many local search al-
gorithms consist mainly of movement from one local optima to another [45, 70]. Seen as such,
local search performance should be related to how large this area of local optima is. Mattfeld
[45] first used this measure to explain the differences in difficulty between general JSPs, where
the ordering of operations are chosen at random, and workflow JSPs, where a structure is im-
posed on the routing orders. In workflow problems, the m resources are split into q ordered
subsets of m/q resources, and each job needs to visit the resources in an earlier subset (in a
randomly generated order for each job), before visiting the next. Watson et al. and Mattfeld
used q = 2.

Distance Between Quasi-Solutions and the Nearest Optimal Solution d̄lopt−opt: Singer et
al. [60] observed in local search for SAT, that search consisted mainly of movement from
near-solutions found early in the search, to the satisfying solution. They measured the average
distance between these quasi-solutions (assignments where only 5 of the 100 clauses were
unsatisfied) and the nearest satisfying solution, and found that it correlated well with local-
search performance.

Fitness-Distance Correlation FDC: While not included by Watson et al., as mentioned in
Chapter 5, the correlation between the evaluated cost or fitness of a solution and its true dis-
tance to an optimal solution has been used in past studies [64] to predict problem difficulty.
Watson explains [67, p. 63] that FDC was not explored because he had no reason believe FDC
could affect problem difficulty for non-adaptive local search algorithms. Since SGMPCS is
an adaptive search algorithm, and because of the positive results of Chapter 5 we also include
FDC here.
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6.2.1 Problem Difficulty for Tabu Search in Job-Shop Scheduling
As this chapter follows directly from the paper by Watson et al. [70], we recount the details
and results of their relevant experiments. The purpose of these experiments was to investigate
various search cost models of problem difficulty of tabu search on a set of ‘typical’ instances
of the general JSP.

6.2.1.1 Problem Instances

Watson et al. used 6x4 and 6x6 general JSP instances: 6 jobs and 4/6 machines. Such small
problem sizes were used because some of the static models require all optimal solutions to be
enumerated, and the number of solutions can quickly grow into the billions at larger sizes. The
1000 instances were generated for each size with an earlier generator [69], in which the routings
through the machines were randomly generated and the operation durations were independently
and randomly drawn from [1, 99]. See Section 2.1.1 for further information on this problem.

Search cost for tabu search on an instance, costmed, was defined as median number of
iterations needed to find an optimal solution over 5000 independent runs.

6.2.1.2 Static Cost Models

The static models of search cost investigated by Watson et al. attempted to predict search cost
from a search space feature of an instance. The accuracy of these models was quantified by the
r2 value of the linear regression model between the search space feature of an instance, and the
log of the median search cost to find an optimal solution log(costmed). We now recount how
each feature was measured, and the resulting accuracy of their models on the 6x6 JSPs.

Number of Optimal Solutions |optsols|: Watson et. al. enumerated all solutions to each
instance by using a constructive search algorithm [9]. They found a weak correlation (r2 =
0.2223) between the log of the number of solutions and log(costmed) for 6x6 JSPs.

Backbone Size |backbone|: The backbone of an instance is the set of solution components
that have the same value in all solutions. This requires all solutions to be enumerated, as
well a definition of a solution component. Backbones of JSP instances were measured us-
ing a solution’s disjunctive graph representation [11]. A solution to a 6x6 JSP instance in
this representation consists of sets of

(

6
2

)

Boolean variables for each machine. The variables
represent the precedence relations for all pairs of operations that run on the same machine.
The backbone size of an instance is the proportion of variables that have the same value in
all optimal solutions: the proportion of paired orderings which are the same in each optimal
solution. Watson et al. also found a weak correlation between log of median search cost and
the square of backbone size (r2 = 0.2331). This was a very similar correlation as found for
|optsols|, and was explained through the very high negative correlation between these two
features (r = −0.9103).

Average Distance Between Local Optima loptdist: The final three search space features
required a definition of distance between solutions and a random sampling of local optima.
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Watson et al. defined the distance between two solutions, s1 and s2, as the value of Equa-
tion 6.1 [45], where precedesijk(s) is the predicate of whether job i is processed before job j
on machine k on solution s, and ⊕ is the Boolean XOR operator. The actual distance used for
the search space features was normalized: D̄(s1, s2) = 2D(s1, s2)/mn(n − 1).

D(s1, s2) =

m
∑

i=1

n−1
∑

j=1

n
∑

k=j+1

precedesijk(s1) ⊕ precedesijk(s2) (6.1)

5000 random local optima were generated for each instance using a hill climbing procedure
with a random starting point and the N1 JSP move operator [40]. Watson et al. found a
relatively low r2 value (0.2223) for the static cost model using the average distance between
the 5000 randomly generated local optima.

Distance Between Local Optima and Nearest Optimal Solution d̄lopt−opt: Watson et al.
adapted Singer et al.’s quasi-solution measure for JSP optimization by measuring the average
distance between random local optima and the nearest optimal solution d̄lopt−opt. This measure
used the 5000 local optima, and all optimal solutions generated for each instance as described
earlier. The correlation found between the log of median tabu search cost and the square root
of d̄lopt−opt was the best of all static models investigated (r2 = 0.6541).

6.3 Experiment 1: Evaluation of Static Cost Models
In the following experiments, we correlate SGMPCS search cost against the search space fea-
tured measured by Watson et al. [70].1

6.3.1 Problem Instances and Search Space Features
The same 1000 6x6 JSP instances from Watson et al. are used in these experiments. The search
space measurements for each instance, as described earlier, were taken directly from Watson et
al.’s experiments. Although FDC did not appear in [70], fitness-distance correlations were still
measured using the 5000 local optima for each instance, and provided to us.

6.3.2 Algorithms
For means of comparison, the cost of finding an optimal solution is measured for three algo-
rithms: SGMPCS, randomized restart (Restart), and standard chronological search (Chron).
The last two algorithms are implemented through special parameter settings of SGMPCS. As
in previous chapters, randomized restart is replicated by never guiding by a solution, p = 1.
Chronological search is implemented with SGMPCS using p = 1 along with a fail sequence
that never restarts search: {∞}. These two settings result in one backtracking search which
terminates when the optimal solution is found. SGMPCS always guides by a solution, p = 0,
and uses the Luby [43] fail sequence: {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, · · ·}.

1We thank Jean-Paul Watson for providing us with the problem instances and search space feature measure-
ments from their experiments
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fail sequence |e| p Init. Fail Bound Backtrack Method
SGMPCS Luby 1 0 1 chron

Restart Luby 1 1 1 chron
Chron ∞ 1 1 1 chron

Table 6.1: Parameter values for the experiments where Restart and Chron are implemented
through special parameter settings of SGMPCS

Displayed in Table 6.1 are the parameter settings used by each algorithm. Again from past
good performance and as a means to simplify SGMPCS, only one elite solution is maintained.
Due to the small size of problem used, a fail limit of 1 is used in all cases to generate the initial
elite solution. In the Restart and Chron algorithms, this initial elite solution is only used to set
the initial upper bound on the makespan.

The same 10% randomized texture-based heuristic [9] and constraint propagation tech-
niques for scheduling [51, 41, 42] used in Chapter 4 are used again here for all algorithms.
All algorithms were implemented in ILOG Scheduler 6.3 and run on a 2GHz Dual Core AMD
Opteron 270 with 2GB RAM running Red Hat Enterprise Linux 4.

Since all algorithms contain a degree of randomness, search cost for each instance and
algorithm is measured over 1000 independent runs with different random seeds. The measure
of search cost for each instance (costmed) is the median number of choice points—over the
1000 independent runs—needed to find, but not prove, the optimal solution.

6.3.3 Initial Results
Various statistics of costmed over the 1000 instances are shown at the top of Table 6.2. Scatter
plots of the first experiments are displayed in the left sides of Figures 6.1–6.5. In all plots, the
y-axis is on a log scale, and the least-squares fit line is included. Pearson r and r2 values are
shown in the top half of Table 6.3.

Log-log scatter plots of |optsols| versus costmed for the three algorithms appear on the left
side of Figure 6.1. The low r values of -0.1829, -0.1814, and 0.0975 for SGMPCS, Restart and
Chron respectively suggest the log of the number of solutions is a poor static cost model of JSP
difficulty for any of the three constructive search algorithms.

Similar, inverted, results can be seen for |backbone|2 in Figure 6.2 with r values of 0.2094,

mean(costmed) median(costmed) std.dev.(costmed)

SGMPCS 256.25 264.59 60.92
Restart 249.00 257.00 58.41
Chron 169.00 173.43 31.74

SGMPCSweak 635.25 980.78 1329.80
Restartweak 930.25 1059.13 560.29
Chronweak 336.75 517.72 660.50

Table 6.2: Mean, median and standard deviation of costmed for the original and weakened
versions of the three algorithms over the 1000 instances.
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|optsols| |backbone|2 loptdist

√

d̄lopt−opt FDC
SGMPCS -0.1829 (0.0334) 0.2091 (0.0437) 0.6445 (0.4154) 0.6026 (0.3631) -0.2025 (0.0410)

Restart -0.1814 (0.0329) 0.2055 (0.0422) 0.6536 (0.4272) 0.6150 (0.3782) -0.2290 (0.0524)
Chron 0.0957 (0.0092) -0.0123 (0.0002) 0.5856 (0.3430) 0.4230 (0.1789) -0.1577 (0.0249)

SGMPCSweak -0.2030 (0.0412) 0.2180 (0.0475) 0.5830 (0.3398) 0.6627 (0.4392) -0.4554 (0.2074)
Restartweak -0.0522 (0.0027) 0.1018 (0.0104) 0.7212 (0.5201) 0.5736 (0.3290) -0.3534 (0.1249)
Chronweak 0.0654 (0.0043) -0.0202 (0.0004) 0.7039 (0.4954) 0.5419 (0.2936) -0.4790 (0.2294)
TSTailard -0.4715 (0.2223) 0.4723 (0.2231) 0.5238 (0.2744) 0.8088 (0.6541) -0.3433 (0.1178)

Table 6.3: Pearson’s correlation coefficients r(r2) between log(costmed) and the various search
space features for the original three algorithms, the three algorithms with weakened propaga-
tion, and the original results for tabu search by Watson et al. [70].

0.2055, and -0.0123 for the same three algorithms. Since we are using the exact same instances
as Watson et. al, this similarity can be attributed to the high correlation between log(|optsols|)
and |backbone|2 (r = −0.9103) first noticed by Watson et al. [70].

More positive results can be seen for the average distance between local optima loptdist.
Scatter plots for each algorithm (Figure 6.3 Left) show a slight upward trend. r values of
0.6445, 0.6536 and 0.5856 for SGMPCS, Restart and Chron respectively are all larger than that
found by Watson et al. for tabu search (0.5238). Surprisingly, the r values for all algorithms
are quite similar.

Scatter plots of the square root of the distance between local optima and the nearest optimal
solution

√

d̄lopt−opt versus costmed (log scale) appear in the left of Figure 6.4. r-values of
0.6026, 0.6150, 0.4230 for the three algorithms are slightly less than those found for loptdist.

Scatter plots of FDC versus log-scale costmed for the three algorithms are shown on the left
side of Figure 6.5. r values of -0.2025, -0.2290, and -0.1577 for the three algorithms suggest
that FDC is a poor predictor of search cost for these instances.

6.4 Experiment 2: SGMPCS with Weaker Propagation
From the results seen so far, there was a concern that the algorithms were behaving much too
similar to each other because of the small problem size. The thought was that in all cases, the
algorithms were mainly finding the optimal solutions through the powerful propagation tech-
niques of constraint programming, and less through the individual backtracking techniques of
the varying algorithms. Gomes et al. [27, p. 81] noted a similar experience on smaller quasi-
group with holes problems. When the all-different global constraints were used, the heavy-
tailed distribution in run-times disappeared, which they attributed to a lack of balance between
the propagation and backtracking parts of search.

In this second experiment, all algorithms are modified in an attempt to bring a similar
balance between the effects of search and propagation on these smaller instances by changing
the variable ordering and level of constraint propagation. The variable ordering is changed from
a randomized texture heuristic to a completely random variable ordering. The enforcement
level on the precedence and capacity constraints are set back to the default level used by the
ILOG Scheduler [58], down from the medium-high level used previously for SGMPCS. This
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lower level does not maintain the global constraint on precedence, and removes the edge-finder
algorithm [51] from the unary resource constraint enforcement. The weakened Restartweak and
Chronweak algorithms are implemented in the exact same way using the weakened version of
SGMPCS with the parameters in Table 6.1. All other experimental details are the same.

6.4.1 Results
As shown in Table 6.2, for the weakened algorithms, SGMPCS now outperforms Restart, yet
Chronological still performs best in both cases. As seen in Chapter 4, our problem size appears
to be too small for SGMPCS to outperform standard backtracking.

Scatter plots, and least-squares fit lines, of the search space features versus the median
search cost (log scale) of the weakened algorithms appear on the right sides of Figures 6.1–6.5.
The plots appear similar to the plots for the original algorithms, although the range of the log-
scale y-axis is now ten times larger. Pearson r and r2 values are displayed under the original
results in Table 6.3.

For |optsols| and |backbone|2, the r values for SGMPCSweak remained about the same at
-0.2030 and 0.2180. The results for Restartweak are now as low as those of Chronweak, with
|optsols| r values of -0.0522 and 0.0654 and |backbone|2 r values of 0.1018 and -0.0202. Yet,
all correlations for these two features still remain very low.

Results for loptdist are similar to those of the original algorithms: slightly lower for
SGMPCSweak, and slightly higher for Restartweak and Chronweak. The r-value for Restartweak

and loptdist is the highest seen in any of the experiments r, (r2) = 0.7212, (0.501).
Results for

√

d̄lopt−opt are also similar to the first experiment. This time, the r(r2) values
of SGMPCSweak are slightly higher at 0.6627 (0.4392).

The correlations for FDC show the greatest change from the previous experiment with all
correlations being stronger. Surprisingly, Chronweak has the strongest correlation, with an r
value three times as large as the one found with the original algorithm (-0.4790 vs. -0.1577).

6.5 Discussion
Through the investigation of correlations of SGMPCS performance with the search space fea-
tures measured by Watson et al. [70] some interesting relations are shown. On all constructive
algorithms investigated, results were surprisingly similar to those found by Watson et al. with
tabu search. That these relations can also be seen in parameter settings of SGMPCS that never
guide from solutions (Restart) and never restart (Chron) is quite unexpected and makes any
conclusions from this study unclear.

Although they are still quite similar in many regards, the accuracy of the various static
cost models did vary from those found by Watson et al. for tabu search. Both |optsols|, and
|backbone|2 models are much less accurate for SGMPCS search cost, even though Watson et al.
conclude they were also weak models for tabu search. In contrast, loptdist is a better predictor
of search cost for all constructive algorithms used here than it was for tabu search. The best
predictor of search cost for tabu search,

√

d̄lopt−opt, while giving the second to best models of
search cost here, was less accurate for SGMPCS than it was for tabu search. Although FDC
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was not included by Watson et al., the FDC models were slightly more accurate for weakened
versions of SGMPCS and Chron than they were at predicting tabu search cost.

By weakening the propagation we do see an increase in the correlation with all the search
space features. This suggests that we may have partially succeeded in balancing propaga-
tion with the various backtracking techniques. Yet, chronological search still outperformed
by Restart and SGMPCS. This suggests that the problem size, 6x6, may still be too small for
SGMPCS to perform well, and that a larger size is needed to investigate SGMPCS behaviour.
A slightly greater correlation for the feature which best predicted tabu local search difficulty,
√

d̄lopt−opt, may be seen as evidence, although not very strong evidence, that SGMPCS is be-
having more like local search.

If we argue that the correlations seen with local search related search space features suggest
that SGMPCS is performing local search, we then must also argue that Restart and Chron,
due to the similar (and even higher) correlations seen for these algorithms, also perform local
search. And perhaps, in some sense, they do. All optimization algorithms used in this chapter
find better makespans in a step-wise fashion. In SGMPCS, the best solution found is used
at each restart to guide the search. With each iteration in Restart, search is not guided by
a solution, but the bounds on the makespan are decreased to the best one found so far. Even
though Chron never restarts, the bounds on the optimization criterion are still lowered whenever
a better solution is encountered. Whenever this criterion is lowered, one changes the set of
solutions one is searching through. In a crude sense, all algorithms are performing movement
between very large neighborhoods defined by the current bounds on the makespan. This idea
is just speculation and no concrete explanation of our results exist at this time. Further studies
that may aid in understanding these results are discussed in the next chapter.

One rather puzzling result of the second experiment results is that the correlation with
FDC is strongest with Chron. One would expect the chronological algorithm would be least
affected by how sub-optimal solutions are evaluated. This may again be due to the step-wise
decreasing of the optimization function. Or, perhaps there is another factor, not measured in
these experiments, which is associated with both FDC and search cost that can better explain
our results.

Given the results of Chapter 5, it is interesting that FDC does not account for much of the
variability of SGMPCS, although differences in how this correlation was measured may help
explain the results. In Chapter 5, we were looking at FDC values between algorithms with
different evaluation functions instead of the variability within one algorithm on many random
instances. As well, in Chapter 5, we computed FDC using solutions that had ever entered
the elite set, not N1-operator local optima. Using solutions encountered during search is quite
similar to a technique later used by Watson [67] to create an even more accurate quasi-dynamic
model of tabu search problem difficulty. We speculate that more accurate models would result
if the relevant search space features were defined and measured using solutions encountered
by SGMPCS. That we found any relationship at all using search space features based on hill
climbing local optima is itself a bit surprising.
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6.6 Conclusion
By evaluating the static cost models from [67] on three constructive search algorithms, we
were able to find some correlations between SGMPCS behaviour and various search space
features. Models of tabu search behaviour were similarly—and some times better—able to
predict constructive search cost. We believe this is the first time such an analysis has been
applied to constructive search procedures. Unexpectedly, similar correlations were found for
both randomized restart and standard backtracking algorithms. While also interesting, these
similar results remain mostly unexplained, and limit us from an argument that SGMPCS is
behaving more like local search.
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Figure 6.1: Log-log scatter plots and least-squares best-fit lines of |optsols| versus costmed for
the original Left and weakened Right versions of SGMPCS Top, Restart Middle, and Chron
Bottom.



CHAPTER 6. STATIC COST MODELS OF SGMPCS 75

M
ed

ia
n 

Ch
oi

ce
 P

oi
nt

s
10

0
10

00

0.2 0.4 0.6 0.8 1.0

PSfrag
replacem

ents

|backbone|2

M
ed

ia
n 

Ch
oi

ce
 P

oi
nt

s
10

0
10

00
10

00
0

0.2 0.4 0.6 0.8 1.0

PSfrag
replacem

ents
|backbone|2

M
ed

ia
n 

Ch
oi

ce
 P

oi
nt

s
10

0
10

00

0.2 0.4 0.6 0.8 1.0

PSfrag
replacem

ents

|backbone|2

M
ed

ia
n 

Ch
oi

ce
 P

oi
nt

s
10

0
10

00
10

00
0

0.2 0.4 0.6 0.8 1.0

PSfrag
replacem

ents

|backbone|2

M
ed

ia
n 

Ch
oi

ce
 P

oi
nt

s
10

0
10

00

0.2 0.4 0.6 0.8 1.0

PSfrag
replacem

ents

|backbone|2

M
ed

ia
n 

Ch
oi

ce
 P

oi
nt

s
10

0
10

00
10

00
0

0.2 0.4 0.6 0.8 1.0

PSfrag
replacem

ents

|backbone|2

Figure 6.2: Scatter plots and least-squares best-fit lines of |backbone|2 versus costmed for the
original Left and weakened Right versions of SGMPCS Top, Restart Middle, and Chron
Bottom (log-scale y-axis).
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Figure 6.3: Scatter plots and least-squares best-fit lines of loptdist versus costmed for the
original Left and weakened Right versions of SGMPCS Top, Restart Middle, and Chron
Bottom (log-scale y-axis).
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Figure 6.4: Scatter plots and least-squares best-fit lines of
√

d̄lopt−opt versus costmed for the
original Left and weakened Right versions of SGMPCS Top, Restart Middle, and Chron
Bottom (log-scale y-axis).
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Figure 6.5: Scatter plots and least-squares best-fit lines of FDC versus costmed for the original
Left and weakened Right versions of SGMPCS Top, Restart Middle, and Chron Bottom (log-
scale y-axis).



Chapter 7

Conclusions and Future Work

In this chapter, we recount the major contributions from this dissertation and suggest future
work.

7.1 Contributions
The contributions made by this dissertation were as the result of the various empirical inves-
tigations of Solution Guided Multi-Point Constructive Search (SGMPCS). The contributions
are the application of SGMPCS to constraint satisfaction problems, and the investigation of
heavy-tailed distributions, evaluations functions and static cost models of SGMPCS.

7.1.1 SGMPCS on CSPs
This dissertation provided the first systematic application of Solution Guided Multi-Point Con-
structive Search to constraint satisfaction problems. Empirical results demonstrated that SGM-
PCS can perform significantly better than chronological backtracking and randomized restart
on constraint satisfaction problems. In particular, our experiments with quasigroup-with-holes
problems showed that a relatively small elite pool and a zero probability of searching from an
empty solution led to such strong results. In general, our results are in agreement with previous
studies on optimization problems in the scheduling domain, however the results reinforce the
intuition that exploiting multiple viewpoints can be of substantial benefit in heuristic search.

An interesting pattern was revealed in the three constraint satisfaction problems experi-
mented with. SGMPCS significantly out-performed chronological backtracking on the quasi-
group-with-holes (QWH) and magic square problems but significantly under-performed on
the multi-dimensional knapsack problems. Similarly, SGMPCS out-performed randomized
restart on the quasigroup problems, performed slightly worse on the magic square problems,
and performed about the same on the multi-dimensional knapsack problems. Evaluating the
elite solutions by their cost instead of the number of assigned variables as an optimization
problem resulted in orders of magnitude speed-up in finding the optimal solution on the multi-
dimensional knapsack problems.

79
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7.1.2 Heavy Tails and SGMPCS
Our thesis is that one factor for the good performance of SGMPCS is the exploitation of heavy
tails. We show that SGMPCS should theoretically also benefit in the same way as other rapid
randomized restart techniques when heavy-tailed distributions are present. From the experi-
ments of Chapter 4, we confirm that the distribution in run-times of the backtracking search on
JSP instances can be heavy-tailed. It was shown that SGMPCS and randomized restart tech-
niques perform better at the same instance sizes in which heavy tails start to appear. Guided
runs used by SGMPCS were also shown to exhibit heavy tails. To our knowledge, this is also
the first work to measure heavy-tailed distributions in job-shop scheduling optimization.

7.1.3 Evaluation Functions in SGMPCS
The second claim of our thesis is that SGMPCS performance is partly due to the benefit of
searching in the area of good solutions. In Chapter 5, we investigated the related conjecture
that SGMPCS performance, unlike that of randomized restart and chronological backtracking,
is partially affected by the quality of the heuristic that is used to select the guiding partial
solutions. Empirical results, both in an artificial context and using three different heuristic
evaluation functions, demonstrated that the correlation between the heuristic evaluation of a
state and its proximity to the satisfying solution has a strong impact on search performance of
SGMPCS. This (partial) descriptive model is important for three main reasons:

1. It makes strong, testable predictions about the behaviour of SGMPCS on other constraint
satisfaction and optimization problems.

2. It provides a clear direction for improving SGMPCS search performance: the creation
of, perhaps domain-dependent, heuristic evaluation functions for partial search states that
are well-correlated with the distance to the nearest solution.

3. It re-introduces a heuristic search guidance concept to the constraint programming litera-
ture. Though guidance by heuristic evaluation of search states is common in metaheuris-
tics, general AI search (e.g., A∗ and game playing), and best-first search approaches, it
does not appear to have been exploited in constructive, CP search. We believe this is an
important direction for further investigation.

7.1.4 Search Cost Models of SGMPCS
This dissertation has provided some interesting initial results investigating search cost mod-
els of SGMPCS. As noted in the last section, Chapter 5 investigated a descriptive model of
SGMPCS based on the fitness-distance correlation induced by the heuristic evaluation. Ap-
proximately 44% of the variation in search performance can be accounted for by the quality of
the heuristic.

By evaluating the static cost models from [70] on three constructive search algorithms in
Chapter 6, we were able to find correlations between SGMPCS behaviour and various search
space features. Surprisingly, models of similar, or greater, strength were found for algorithms
that never guided search (randomized restart), or restarted (standard chronological search).
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While the accuracy of the various static cost models vary from those found by Watson et al. [70]
for tabu search, they remain quite similar. Stronger correlations were found for models based
on average distance between local optima loptdist, where the strongest models of any of our
experiments were found for randomized restart (Random) and chronological search (Chron).
Slightly stronger correlations were also found between FDC and all constructive algorithms
with weakened propagation. The best predictor of search cost for tabu search, based on the
distance between local optima and the closest optimal solution

√

d̄lopt−opt, did give the best
model for SGMPCS, although it was weaker than that of tabu search, and loptdist with Chron
and Restart. Overall, there is no clear explanation for the results we saw. From the correlations
measured, local-search based search space features do seem to be related to the performance
of all three constructive search algorithms investigated. We believe this is the first time such an
analysis has been applied to such constructive search algorithms.

7.2 Future Work
7.2.1 Applying SGMPCS to Other Problems
One direction for future work is to apply SGMPCS to a larger variety of satisfaction and op-
timization problems. SGMPCS behaved differently on each of the three satisfaction problems
investigated in Chapter 3. The other chapters focused on a single problem: multidimensional
knapsack satisfaction or job-shop scheduling optimization.

As the results of Chapter 3 show, for constraint satisfaction problems, SGMPCS only
outperformed the other constructive search algorithms on the quasigroup-with-holes (QWH)
problem. An important goal of future research is to find out whether SGMPCS can perform
similarly on other satisfaction problems, or if QWH is a special case.

Heavy-tailed distributions were only measured for instances of job shop optimization. Sim-
ilar experiments can be applied to measure the distribution of run-times for other optimization
and satisfaction problems. We would again expect SGMPCS to perform better with problem
instances that exhibit heavy-tailed distributions.

The fitness-distance correlation (FDC) analysis of SGMPCS on multiknapsack satisfaction
problems can be naturally extended to a wider range of satisfaction problems. From other
problems, we can test our hypothesis for SGMPCS that performance is affected by how well
the evaluation of partial/suboptimal solutions predicts distance to the closest satisfying/optimal
solution.

7.2.2 Applying Analysis to Larger Problems
One common constraint in many of the experiments in this dissertation was the computational
cost of using larger instances. As shown in Chapter 4, SGMPCS only outperforms other tech-
niques at larger problem sizes. To understand how SGMPCS works, we should be investigating
it in conditions when it does actually work.1

1The rational for using these smaller instances was that even though SGMPCS was not outperforming other
techniques, there was still high variability between instances. We could still investigate relative performance: why
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The 6x6 job-shop instances in Chapter 6 were taken from Watson et al.’s 2003 paper [70].
Speed of computers have increased since then, so moderately larger JSP instances may be con-
sidered. We may also rely on statistical techniques to estimate search space feature measure-
ments. Achlioptas et al. use such a technique to estimate backbone sizes of the quasigroup-
with-holes problem [1]. Perhaps the distance in fitness-distance correlation measures could
also be estimated by redefining distance as the average, or minimum, distance to k random,
uniformly distributed, solutions.

7.2.3 Extending Cost Models of SGMPCS
Chapter 6 showed some interesting initial results investigating cost models of SGMPCS, from
which further work can be done in order to understand the results and improve on the models.
Still left mostly unexplained are the similar correlations found for the algorithms other than
SGMPCS. One way of investigating whether our results were due to the similar updating of
the bounds on the optimization criterion is to look at problems where these bounds are less
important to search performance, such as when the objective of minimization is the weighted
tardiness of the individual jobs [6]. On these problems, we would expect the correlations to be
weaker for randomized restart and chronological search relative to those for SGMPCS.

The search space features used in Chapter 6 were taken directly from Watson et al.’s [70]
study on tabu search. A number of these features are based on the local minima defined by
the move operator used by tabu search. A first step in improving the cost models for SGMPCS
would be to redefine local minima, and possibly distance as well, as they pertain to SGMPCS.
As suggested in Chapter 6, dynamic models of SGMPCS based on solutions that enter the elite
set may also be more accurate predictors of search cost.

7.3 Conclusion
The central thesis of this dissertation is that, as proposed by Beck [7], SGMPCS performance
is partially influenced by at least two non-mutually exclusive factors: the exploitation of heavy
tails and guiding search in the area of past good solutions. In regards to the first factor, we
have shown theoretically and empirically that SGMPCS should benefit when heavy tails are
present. In terms of support for the second factor, guiding in the area of good solutions, our
results are more mixed. In Chapter 5, we were able to show strong empirical results, both in
an artificial context and using three different heuristic evaluation functions, demonstrating that
the FDC induced by the evaluation function has a strong impact on SGMPCS performance.
The results of Chapter 6, which show that static cost models for local search perform similarly
in predicting all constructive search techniques, while interesting, remain mostly unexplained
and provide little support to our thesis. Overall, through our empirical investigations, we have
gained a considerable amount of information on how and why SGMPCS works, as well as
created opportunities for further research on SGMPCS and heuristic search in general.

SGMPCS performed better on one instance than another.
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[36] H.H. Hoos and T. Stüzle. Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, 2005.

[37] J. Huang. The effect of restarts on the efficiency of clause learning. In Proceedings of
the Twentieth International Joint Conference on Artificial Intelligence (IJCAI07), pages
2318–2323, 2007.

[38] T. Hulubei and B. O’Sullivan. The impact of search heuristics on heavy-tailed behaviour.
Constraints, 11(2–3):159–178, 2006.

[39] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine, pages
32–44, 1992.



BIBLIOGRAPHY 86

[40] P. J. M. Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by simulated
annealing. Operations Research, 40(1):113–125, January–February 1992.

[41] P. Laborie. Algorithms for propagating resource constraints in AI planning and schedul-
ing: Existing approaches and new results. Artificial Intelligence, 143:151–188, 2003.

[42] C. Le Pape. Implementation of resource constraints in ILOG Schedule: A library for the
development of constraint-based scheduling systems. Intelligent Systems Engineering,
3(2):55–66, 1994.

[43] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47:173–180, 1993.

[44] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118,
1977.

[45] D.C. Mattfeld, C. Bierwirth, and H. Kopfer. A search space analysis of the job shop
scheduling problem. Annals of Operations Research, 86:441–453, 199.

[46] P. Merz and B. Freisleben. Memetic algorithms for the traveling salesman problem. Com-
plex Systems, 13(4):297–345, 2001.

[47] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems.
In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),
pages 459–465, 1992.

[48] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Ma-
lik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), 2001.

[49] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42(6):797–813, 1996.

[50] E. Nowicki and C. Smutnicki. New algorithm for the job shop problem. Technical report,
Institute of Engineering Cybernetics, Wroclaw University of Technology, Poland, 2003.

[51] W. P. M. Nuijten. Time and resource constrained scheduling: a constraint satisfaction
approach. PhD thesis, Department of Mathematics and Computing Science, Eindhoven
University of Technology, 1994.

[52] A. J. Parkes. Clustering at the Phase Transition. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97), pages 340–345, Providence, RI, 1997.

[53] L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In
Proceedings of the Tenth International Conference on the Principles and Practice of Con-
straint Programming (CP2004), pages 468–481, 2004.

[54] P. Refalo. Impact-based search strategies for constraint programming. In Proceedings
of the Tenth International Conference on the Principles and Practice of Constraint Pro-
gramming (CP2004), pages 557–571, 2004.



BIBLIOGRAPHY 87
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