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Abstract 

Defining, Modeling, and Solving a Real University Course Timetabling Problem 

Shoshana Hahn-Goldberg 
Master of Applied Science 

Graduate Department of Mechanical and Industrial Engineering 
University of Toronto 

2007 
 

The central thesis of this dissertation is that the problem definition stage of solving real 
world problems should be directly studied and that problems must be studied in their 
entirety to create useful solutions. The problem definition stage has been identified as 
important yet is not directly studied in operations research (OR). This work is an 
introduction of such research to OR. Timetabling has received much attention from 
researchers and this work is a continuation of such effort.  
 
 We conduct an analysis of the timetabling problem at the Faculty of Applied 
Science and Engineering at the University of Toronto (APSC), showing how difficult it 
would be to create a definition for a mathematical model. We also create evaluation criteria 
for APSC and show that quality measures in an objective function cannot accurately 
represent the desired metrics. Finally, we apply mathematical programming and 
decomposition techniques to some benchmark timetabling problems. 
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Chapter 1 

Introduction 
 
The central thesis of this dissertation is that the problem definition stage of solving real 
world problems should be directly studied and that the problems must be studied in their 
entirety in order to create a solution that is truly useful in the real world. This is shown 
through the use of university course timetabling problems and the Faculty of Applied 
Science and Engineering at the University of Toronto’s timetable in particular. The problem 
definition stage has been identified as important and is studied in depth in both software 
engineering and enterprise modeling, yet this is not the case in the area of Operations 
Research (OR). This work is an introduction of such research into the OR field. University 
course timetabling has received much attention from researchers in both the OR and 
Artificial Intelligence (AI) fields and this work is a continuation of such effort. In particular, 
in this dissertation: 
 

• We conduct a thorough analysis of the university course timetabling problem at the 
Faculty of Applied Science and Engineering at the University of Toronto (APSC) as 
an example of a real world problem in operations research. 

 
• We create detailed evaluation criteria for the APSC timetable. 

 
• Motivated by the constraint structure of university course timetabling problems, we 

apply constraint programming (CP), Integer Programming (IP), and decomposition 
techniques to a benchmark university course timetabling problem found in the 
literature. The problem has a similar structure to the APSC problem. 
 

1.1 Background Information  
 

The real world is full of complex situations, addressed by a wide variety of research 
domains; from zoology to electricity to operations research, the focus of this thesis. In 
operations research, problems can be anything from an optimization of a factory [79, 80], a 
schedule for a job shop [81, 82], a transportation routing problem [83, 84], or even a 
university timetable [11, 66]. The approaches used to solve these problems can range from 
integer [66, 84], mixed-integer [67, 82], or constraint programming [63, 68] to simulation 
[79] and heuristics such as tabu search [13] and other local search techniques [5, 83].  
 

In order to model a problem or put a problem into a language that a given approach 
can solve, the problem definition must be formulated; i.e. one must decide what information 
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to include when creating a model to solve the problem. It is also important to be able to 
evaluate the model created by a given problem definition in the real world. Therefore, one 
must decide how to evaluate a solution when defining the problem. A certain set of 
evaluation criteria can dictate what information is important to include in the problem 
definition. Once the evaluation criteria are known and the problem definition is made, a 
model can be created to solve the problem. We can then take the solution from that model 
and see how it fits back into the actual system, the real world situation. 

 
This thesis looks at the timetabling problem at the Faculty of Applied Science and 

Engineering at the University of Toronto (APSC) as an example of a real world problem. As 
with many real life problems, the university course timetabling problem can be messy and 
complicated. Solving the timetabling problem at APSC involves many people 
communicating to try to achieve a timetable that meets some set of requirements and goals. 
The literature on automated timetabling takes a given timetabling problem and reduces it to 
a mathematical definition, which can then be solved. In reality, the timetabling process is 
long and consists of many stages before that of actually placing courses into timeslots. To 
automate the university course timetabling process, one must consider this entire process, 
and not just the scheduling part of it. 

1.2 Objectives 
 

This research investigates the process of solving a real world problem. This process can be 
broken down into three steps after which a solution can be generated. The first two steps are 
both parts of the problem formulation stage [85]. 
 

1. Analyzing the process currently in place for solving the problem. This includes a 
detailed study of the system, data collection, and identification of problematic 
areas, as well as, system constraints, restrictions, and objectives. 

 
2. Determining evaluation criteria and creating a problem definition. This is the 

construction of an abstraction of the problem that can be mathematically modeled. 
 
3. Developing a model to solve the problem. It is important to remember that 

solutions obtained from the model are solutions to the model and not necessarily 
solutions to the real-world problem. How well the solution to the model fits in the 
real world is dependent on the specific problem definition. 

 
The objectives of this research are as follows: 
 
n Introduce the step of creating a problem definition as something that should be directly 

studied in operations research. 
 
n Use the timetabling problem of the Faculty of Applied Science and Engineering at the 

University of Toronto (APSC) to investigate the process of solving a real world 
problem. 
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n Make contributions to each of the three steps of solving a real world problem outlined 
above. 

 
1) Create a detailed process definition for the timetabling problem at APSC. 

This description can be used to analyze and improve the process. Areas 
where automation can be helpful are identified.  

2) Determine evaluation criteria for APSC. These evaluation criteria create 
objectives when timetabling. Together with the process description, the 
evaluation criteria can be used to create a problem definition. 

3) Create models to solve a university course timetabling problem. Investigate 
the use of constraint programming for solving a university course timetabling 
problem. 

1.3 Thesis Organization 
 

The Thesis is organized as follows: 
 

Chapter 2 introduces the problem definition concept to the operations research 
field. It does so through the use of an example, which shows how the concept of a 
problem definition is part of the operations research problem solving process, yet it is not 
directly studied in the research. 

 
Chapter 3 is a literature review. It looks at the process of creating a problem 

definition in the areas of operations research, model-based diagnosis, bond graphs, 
software engineering, and enterprise modeling. Both defining the problem and validating 
the model will be discussed. The step of creating the problem definition is studied directly 
in many fields. However, in the field of operations research, although it is present, it is not 
directly studied.  

 
Chapter 4 provides a detailed description of the process used to solve the 

university course timetabling problem at APSC. It also outlines the goals and constraints 
of the problem and highlights areas where automation would be helpful. The entire 
timetabling process can be thought of as the largest possible problem definition because 
everything is included. In order to apply automated solutions to the problem one would 
most likely require an abstraction of such a large definition. 

 
Chapter 5 details the evaluation criteria for the timetabling problem at APSC. It 

details the process involved in creating the evaluation criteria along with a set of database 
queries that calculate several quality metrics based on a set of data provided by APSC. 
Creating evaluation criteria is an important part of creating a problem definition. It must 
be clear how solutions generated from a model based on a particular problem definition 
will be validated and evaluated back in the real world.  

 
Chapter 6 acts as an introduction to the next stage in the problem solving process 

as well as an introduction to the next chapter of the thesis. Once the problem definition is 
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created, a mathematical model can be created to generate an actual timetable. The next 
chapter of the thesis focuses on the modeling step of problem solving. This chapter is a 
literature review of research existing on automated university course timetabling.  

 
Chapter 7 provides a description of six models created to solve a university course 

timetabling problem. It also describes the experiments run on these models. 
 
Chapter 8 provides the conclusions and highlights the major contributions of the 

research. It concludes with suggestions for future research, building from the thesis. 

1.3 Summary of Contributions 
 

This thesis looks at problem solving in the domain of operations research through the 
example of university course timetabling. The three steps of solving a real world problem 
are outlined and contributions are made to each. The three steps in solving a real world 
problem are (1) to analyze the problem, (2) to develop a problem definition and 
evaluation criteria, and (3) to model and solve the problem. The contributions made by 
this thesis follow the problem solving process. 
 
§ First, to address the step of analyzing the problem domain, the problem of 

timetabling at APSC is analyzed. A detailed process description is made and 
problem areas, specifically ones where automation may be helpful, are 
highlighted. Solutions are suggested for all problematic areas. The main 
contribution to this area of problem solving is in taking a real world problem and 
going in detail over the process of how the problem is solved. By looking at the 
timetabling problem at APSC, we show that real world problems are much more 
complicated than what typically appears in a mathematical model or in a typical 
research paper on timetabling. The complexity of the APSC problem emphasizes 
how difficult, if not impossible, it is to come up with a definition of an 
optimization problem that could be used to define a mathematical model. The 
complexity of the APSC problem is also motivation for research into how to 
define a problem, a problem-solving step that is not directly studied in the 
operations research domain. 

 
§ Second, to address the step of creating a problem definition, evaluation criteria are 

created for APSC. These evaluation criteria are implemented in the form of a 
Microsoft Access database that can score the quality of a timetable created 
through their current process. Creating a complete problem definition is a vital 
step in the problem solving process. The creation of evaluation criteria is the 
creation of a part of a problem definition. The evaluation criteria are complex and 
may be difficult to incorporate into a traditional optimization function. Since that 
is the case, it is necessary to evaluate how a solution works. In the APSC case, a 
detailed set of evaluation criteria is useful and necessary if one is to find an 
automated timetabling solution. 
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§ Thirdly, to address the step of modeling and solving the problem, six 
mathematical programming models are created to solve a university course 
timetabling problem of similar style to that of the APSC, which was studied in the 
first part of the thesis. These six models experiment particularly with Constraint 
Programming (CP) and decomposition techniques. These are ideas that have not 
been explored as of yet in the automated timetabling research. The value of CP 
and decomposition in the automated timetabling domain is studied and compared 
to the popular solution techniques of Integer Programming (IP) and local search.  
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Chapter 2 

The Problem Definition Stage in Operations Research 

 

2.1 Introduction 
 

In operations research, real world problems are often solved by analyzing and modeling 
them so that they can be solved by some sort of mathematical program or heuristic. These 
problems can be anything from an optimization of a plant, a schedule for a job shop, a 
transportation routing problem, or even a university timetable. The programs used to solve 
these problems can range from integer, mixed- integer, or constraint programming to 
simulation and also heuristics such as tabu search and other local search techniques. In order 
to model a problem or put a problem into a language that a program can solve, the problem 
definition must be formulated. This step of formulating the problem is called the problem 
definition stage. 

2.2 The Problem Definition Stage: A Definition 
 

A problem definition is created by picking the information from the problem domain that 
should be represented in the model. The real world situation, no doubt, contains many 
details. Including every detail in the representation could result in a problem that may not be 
solvable by any program or may take an unrealistically long time to solve. The goal is to 
choose a level of detail that produces a model that accurately represents the problem and is 
not too complex that it is overly difficult or costly to model and solve. This desired level of 
abstraction is often reached using simplifying assumptions. 
 

A specific combination of assumptions creates a specific problem definition. These 
definitions, although they describe the same real world problem are not mathematically 
equivalent. Each problem definition will create a different mathematical model and will 
result in a different solution to the problem. This solution must be checked to ensure that it 
works back in the real world.  It is also valuable to learn what implications choosing one 
problem definition over another have on the solution and whether one is in fact better than 
another. One can imagine that there are sets of assumptions that will create a solution that is 
unusable as well as sets of assumptions that do not simplify the problem enough to make 
any difference. 

 
In the following section, we illustrate the concept of a problem definition stage and 

how different problem definitions create different solutions using a simple example. 
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2.3 An Example: LP Relaxation 
  

The above concept can be illustrated using the example of an integer program (IP). An 
integer program is one where the variables that are being solved for are restricted to integer 
values. IP’s are very common because in reality many decisions are discrete, yes or no, 
decisions. IPs can be very difficult to solve since there is no generic and computationally 
effective algorithm for solving them. A classic assumption to simplify an IP is to relax the 
integrality constraint and formulate the IP as a linear program (LP). The IP is one problem 
definition and the LP is another problem definition for the same real world problem. The 
advantage of having this simpler problem definition is that the LP can be solved easily using 
well-known algorithms such as the simplex method. The resultant solution from such a 
relaxation may be an integer solution, in which case the simplifying assumption still had a 
solution that could be used to solve the problem in the real world. The LP could also result 
in a solution with fractional values that may or may not be usable.  

2.3.1 Problem Definitions 
 

The following example, which will further illustrate the problem definition concept, is taken 
from J. E. Beasley’s OR-Notes [59]. It is a capital budgeting problem where a company has 
to choose from four possible projects. They will each run for three years and are subject to 
the following data: 

Figure 2.1. Data for the capital budgeting problem example.  

  Capital requirements (in millions of dollars) 

Project Return (millions) Year 1 Year 2 Year 3 

1 0.2 0.5 0.3 0.2 

2 0.3 1.0 0.8 0.2 

3 0.5 1.5 1.5 0.3 

4 0.1 0.1 0.4 0.1 

Available Capital (millions) 3.1 2.5 0.4 

 

The company’s goal is to decide which projects to take on in order to maximize the return. 
The formulated IP is as follows: 
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Figure 2.2. IP formulation for the capital budgeting problem example. 

The variables are: 

xj   = 1 if we decide to do project j (j = 1, 2, 3, 4) 

       = 0 otherwise. 

The objective function is: 

Maximize 0.2x1 + 0.3x2 + 0.5x3 + 0.1x4 

It is subject to constraints of availability of funds each year: 

  0.5x1 + 1.0x2 + 1.5x3 + 0.1x4 = 3.1 (year 1) 

  0.3x1 + 0.8x2 + 1.5x3 + 0.4x4 = 2.5 (year 2) 

  0.2x1 + 0.2x2 + 0.3x3 + 0.1x4 = 0.4 (year 3) 

And the integer constraint: 

  xj = 0 or 1, j = 1, 2, 3, 4. 

The above problem can be defined as is, where the variables must be integer, 
because that is how the problem exists in the real world. The company cannot decide to do a 
fraction of a project; it is a go/no-go decision. However, this problem can be defined in 
another way, which is simpler and therefore may be easier to solve. It can be defined in such 
a way that the variables do not have to be integer. The model resulting from such a problem 
definition is the same as above with the integer constraint replaced with the following 
continuous constraints: 

 

xj = 1, j = 1, 2, 3, 4 

xj = 0, j = 1, 2, 3, 4. 

2.3.2 Evaluating Different Problem Definitions 
 
The next step is to see if this second problem definition results in a solution that is useful in 
the real world. As it turns out, in this case the solution is not naturally integer, so the 
solution is different from that of the IP definition of the problem. The solution of the IP was: 
x1 = 0, x2 = 0, x3 = 1, and x4 = 1 for a return of 0.6. The solution of the LP was: x1 = 0, x2 = 
0.5, x3 = 1, and x4 = 0. Sometimes, the LP can be useful even if it is not naturally integer by 
rounding the values to the nearest integer and getting a feasible solution that way. Here, if 
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we round up and accept projects 2 and 3, the available capital constraint for year 3 is 
violated. This is an infeasible solution, but it may still be usable, if the company is willing to 
adjust their allocation of capital. We can also round down and only accept project 3. We 
then get a feasible solution with an objective function value of 0.5. This solution, although 
feasible, is not optimal. It has an objective function value that is less than the optimal value 
of 0.6. 
 

It is evident from this small example that different problem definitions can result in 
different solutions to the same problem. In the example given, an LP relaxation is used as a 
simplified problem definition of a problem that required integer values and it resulted in a 
solution that was not feasible in the real world.  

 
In general, an LP relaxation could result in a very usable solution if it is naturally 

integer. There has been research done and it is known that certain types of problems are 
naturally integer, such as network optimization problems [60]. When a problem can be 
formulated as a network problem, the LP relaxation will result in the optimal solution 
because the problem is naturally integer. However, if the problem is not one that is naturally 
integer, it may or may not result in a usable solution. It may result in a somewhat usable 
solution if rounding up or down can give an idea of what the optimal values are. It may also 
result in a solution that is useless, with the rounded LP solution being very far away from 
the optimal integer solution. 

2.4 Conclusion 
 
The problem definition stage consists of choosing what information to include in a model of 
a real situation. It is deciding what simplifying assumptions to make. It is settling on a level 
of abstraction that accurately represents the domain, but is not too complex that it is too hard 
to solve in a reasonable amount of time. There is more than one problem definition for each 
real world problem and, as shown above, a different problem definition can result in a 
different solution to the same problem. Each problem definition may be useful in a different 
way for solving a given problem. Some problem definitions may result a solution that is 
usable or preferable in the real world while some will result in a solution that is completely 
useless. Different problem definitions can be analyzed to see what implications a given 
definition has on the resulting solution in comparison to another. The problem definitions 
can also be evaluated to see if and how their respective solutions are usable in the real 
world.  
 
 As we will see in the next chapter, the problem definition stage is studied in several 
research domains, but has been overlooked in the Operations Research literature. This is 
surprising because it seems to be a fundamental concept when applying optimization 
techniques to the real world. Formulating the problem definition is, in fact, deciding what 
information should be represented in a given abstraction, thereby driving the information 
engineering aspects of real world applications. The problem definition stage exists in 
optimization problems, but its direct study as well as what implications different problem 
definitions have on the resulting solution is missing from the literature. 
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Chapter 3 

The Problem Definition Stage - Literature Review 

 

3.1 Introduction 
 

Solving a real-world problem such as a university timetable, diagnosing faults in a machine, 
or creating a knowledge-based decision support system is often quite difficult. This is due to 
the complex nature of many real-world situations. They include many details and are often 
extremely complex, so much so that if all the details were to be taken into account, the 
problem would not be solvable. When solving a real-world problem, or any other problem 
for that matter, there are many stages that must be traversed. First is the problem formulation 
stage. This first stage can be broken down into two parts [85]. The first part is to conduct a 
detailed study of the system currently in place, including identification of issues, constraints, 
restrictions, and goals. For the second part, the problem definition must be formulated, in 
what we will be referring to as the “problem definition” stage. As we described in the 
previous chapter, this is the act of describing the real-world domain by deciding what 
information to include in a mathematical model. After the problem formulation stage there is 
a modeling and solution stage, where a problem definition is put into a language that the 
program or heuristic can use. Finally, the mathematical program, computer program, or 
heuristic is used to find a solution. That solution can then be evaluated in the real world. If 
the solution cannot be used, the problem definition may need to be restructured and the 
process will continue from there. The following is a diagram of the problem solving process. 

Figure 3.1. The Problem Solving Process. 
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Including all possible information during the problem definition stage is often 

impossible because it would result in a problem that is not solvable in a reasonable amount 
of time. For example, in university timetabling problems information such as certain 
preferences for rooms or information having to do with the distance that students have to 
travel between consecutive classes is often omitted. This is because including such 
information as constraints would make the problem too complicated to solve. As well, there 
is the overhead of representing and maintaining all the information that is included in the 
problem definition. Therefore, it is preferred to represent as little as possible, especially 
because the data might change or it may not be completely accurate to begin with. The goal 
is to pick the level of detail that produces a model that represents the domain at the right 
level of abstraction. The right level of abstraction means that the model is solvable in a 
reasonable amount of time and that the solution can be used in the real world.  

 
 It is important to be able to evaluate the model created by a given problem definition 
back in the real world. Does the model accurately represent the domain? Is the level of detail 
sufficient? Is the problem solvable in a reasonable amount of time and can that solution be 
used? Often, models have objective functions, some sort of cost function, or a set of 
optimization criteria. However, those optimization criteria are unique to a given model and 
they measure how well the model does at meeting certain calculated measures and not 
necessarily how well the solution to the model works in the real world. Measures to 
represent the quality of a solution in the real world need to be defined so that models can be 
evaluated. Such measures will be referred to as evaluation criteria. These measures are 
reflective of some aspect of real world quality, yet they may not be represented well in a 
mathematical model. Evaluation criteria can be used to compare models to see what effect 
choosing one problem definition over another has; how does a different problem definition 
impact the usefulness or quality of a solution.  
 

When solving an optimization problem, the problem definition stage is a necessary 
step. However, in operations research, the problem definition stage is not formalized. In the 
following sections, we look at the problem definition stage in the areas of model-based 
diagnosis, software engineering, enterprise modeling, and operations research. Both defining 
the problem and validating the model will be discussed. We will also look at one technique 
that exists for modeling real world systems, namely bond graphs. 

3.2 Model-Based Diagnosis 
  
Model-based diagnosis uses mathematical models of machines and systems in order to 
diagnose faults. This requires having an accurate model of the machine or system. Model-
based diagnosis takes a model of the correctly behaving machine and makes a diagnosis by 
looking at the abnormal observations given and producing hypotheses as to the faults that 
lead to abnormal behaviour. In the design of a domain model, one must choose a level of 
detail that represents the object accurately, yet is not too difficult to represent and has an 
acceptable computational complexity [51]. There is a point where adding more detail does 
not result in enough new accurate hypotheses that it justifies the increased complexity. In the 
field of model-based diagnosis, a lot is written about how to simplify problems so they result 
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in models that accurately represent the domain and that the solutions work well in the real 
world. There is research done on how to represent the complex information in such a way 
that the resulting model is not too complex. In other words, there is a lot written on how to 
create problem definitions. 
 

One way to represent complex information is to use qualitative reasoning [28, 30, 
32]. The way that a system is represented can affect the accuracy of the model and the claim 
is that a qualitative representation will result in a more accurate model. In a paper by 
Museros & Escrig a method is given to represent shapes qualitatively [28]. Numerical 
methods often use piecewise interpolation, which is sometimes too much of a simplification. 
Often numerical methods require the use of data sets and if those sets are inadequate, the 
model may not be able to reproduce system dynamics. Guglielmann & Ironi explain how 
using data models for fuzzy systems can result in unstable models if inadequate data is 
available, but using qualitative reasoning allows the structure and the parameters to be 
modeled separately and therefore minimizes the effect of inadequate data [32]. Keppens & 
Shen look at using Bayesian networks to accurately represent a domain [31]. This is useful 
because most definitions  assume that system behavior is deterministic as a way to simplify 
the problem. Assuming that a system behaves deterministically works fine for most physical 
systems where the knowledge of how they work is quite complete, however, sometimes the 
assumption is too much of a simplification. Bayesian networks include many more options 
for why a certain scenario has come to be using probabilities. Alonso et al. use machine 
learning techniques incorporated with typical consistency-based diagnosis in order to 
represent the system in such a way that the reason for faults can be uncovered [33]. 

 
Complex information can still be used without over-complicating the model if it is 

modeled separately from the actual domain model used for diagnosis. One option is to 
combine heuristic and model-based diagnosis [51]. Heuristic diagnosis uses rules to 
diagnose. It is fast but may leave things out. Model-based diagnosis can take a lot of time, 
but is more accurate. Andersson uses two theories [51]: the object theory contains the model 
of the domain in its correct state and the meta-theory contains the heuristic rules as well as 
the complex information. The complex information is kept separate so it does not increase 
the level of detail involved in the actual model, but the information can still be used when 
refuting hypotheses during fault diagnosis. This way, one can run a simpler model and it will 
most likely be faster and require less memory. However, the complex information can be 
used to check the solution resulting from the simpler model and if necessary, a more 
complex model can be run.  

 
Another way that definitions used for model-based diagnosis are simplified is by 

using the single fault assumption [47]. This assumption either requires the problem be 
defined in such a way that every possible fault combination is modeled separately as a 
component that may fail or it restricts the solver to problems of simple, routine diagnosis 
[52]. There are papers that try to find other ways to represent multiple fault types without 
having to explicitly write out every possible fault combination. For example, Nyberg 
represents system fault modes as a vector of component fault modes [48]. 
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In model-based diagnosis there are many assumptions that are made to link the 
model with the actual problem, to deal with issues of complexity, and to be able to find 
solutions in a reasonable amount of time [52]. Assuming that domain models are accurate 
and complete and that the design of the model is correct are assumptions that have to do 
with linking the model to the real-world problem [52]. The single fault assumption is an 
assumption that deals with complexity. Being able to model using a hierarchal structure, so 
that more detailed levels of abstraction need only be explored for certain components, and 
assuming that probabilities exist, in regards to why faults occur are assumptions that reduce 
search time [52]. Including certain assumptions as opposed to others results in a different 
problem definition and therefore a different model. 

 
 In the model-based diagnosis research, little is written on evaluation criteria and 
comparing how different problem definitions play out in the real world. The models are 
validated either through an example [31, 48, 51] or using made up test data that is supposed 
to represent reality [33]. There are some cases where the model is tested in the real world 
[28] or used [30].  
 

The choice of which assumptions to include and at what level of abstraction to 
design is the problem definition stage. This stage is obviously present in model-based 
diagnosis. Although the stage exists and there is quite a bit written on assumptions that may 
be necessary, there does not appear to be research comparing different problem definitions 
against each other.  

3.3 Software Engineering 
 

When creating software, one needs models of required data, information and control flow, 
and behavior [40]. Creating these models requires an understanding of what is required by 
the system. These requirements are received from clients and potential users of the system 
and are generally given in vague terms that need to be turned into specifications. 
Specifications are abstractions of real or envisioned situations that are normally quite 
complex, resulting in specifications that are incomplete and exist at many levels of detail 
[40]. Deciding which requirements to turn into specifications and at what level of detail is 
called the requirements definition stage of software engineering. This task is, in effect, the 
same as the problem definition stage discussed earlier. 
 

Nuseibeh & Easterbrook describe requirements engineering as a way to anchor 
development activities to a real-world problem so the appropriateness of a solution can be 
analyzed [42]. They describe the act of creating requirements as a construction of abstract 
descriptions that are amenable to interpretation. They go through the many different 
modeling tasks of requirements modeling: 

 
• Enterprise modeling - to capture the purpose of a system where high- level 

goals are repeatedly refined. 
• Data modeling - where decisions are made as to what information to 

represent and how the information held corresponds to the real world 
phenomena being represented. 
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• Domain modeling - where a model of the domain provides an abstract 
description of the world in which an envisioned system will operate. 

• Modeling non-functional requirements.  
 

Software architecture is the high level abstraction of a software system that provides a way 
to document boundaries and constrain which parts rely on other parts [43]. Each architecture 
style makes assumptions. For example, publish-subscribe assumes that event delivery is 
reliable, centralized routing is sufficient, and that a common vocabulary makes sense [43]. 
Each style is appropriate for certain purposes due to its particular simplifying assumptions. 
By choosing to define the problem in a particular way, one effects the requirements 
definition as well. Garlan mentions that an area of future research is how software 
architectural choices effect the prioritization and evolution of requirements [43].  
 

Software engineering is one area where there has been a lot of work done on process 
models. The idea of a problem definition stage as well as validation of the definition in the 
real world is quite well-established. Following detailed processes to formulate the problem 
definition is beneficial to the field of software engineering. It helps ensure successful 
projects by being organized early on in the process and testing that the system works. This is 
necessary for the large and difficult projects encountered in the software engineering field, 
but it may be beneficial in other fields as well. Perhaps following a detailed procedure in 
operations research, when formulating the problem, would help in solving difficult, real-
world optimization problems. 

 
In software engineering, there is the idea of process simulation that tries to evaluate 

the performance of a given model [53, 54]. There are many developed process models that 
have detailed descriptions of how and when to collect requirements and how to analyze 
those requirements in order to decide which are the most important and how they should be 
included in the requirements definition. The process models also include testing. System 
tests, unit tests, and acceptance tests are just a few of the tests whose purpose is to check 
how the system works in the real world. The process models formalize the requirements 
definition, or in other words, the problem definition stage, in the context of the whole 
software development process. For example, two such process models are the classic 
waterfall model and the newer extreme programming model. 

 
The waterfall method follows a detailed process that begins with a feasibility study 

of the whole project. This is followed by requirements analysis and specification of the 
requirements for the entire system, a design and specification stage, coding and module 
testing, integration and system testing, and finally, delivery and maintenance [53]. Extreme 
programming, on the other hand, is an incremental and iterative process. The development 
team produces “stories”; descriptions of interactions with the system that they release to the 
customer every two weeks. Software functionality is built so that the story can be achieved. 
There is a planning act at the start of the project that looks at the project as a whole, but it is 
quite vague. The detailed planning, called iteration planning, occurs every two weeks and 
focuses on the requirements for the next software release date. The customer, at each 
planning session, provides the requirements, sets priorities, and defines tests that the 
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software must pass at the next release date [58]. This way, the requirements are being 
continuously defined and the system is being continuously validated.  

 
In software engineering, not only is there research on process models, there has also 

been work done on which processes are applicable to which types of projects. For example, 
a less risky project would benefit from a process model like extreme programming, which 
involves a lot of working prototypes early in the process and getting requirements from the 
users and testing system functionality at the same time [53]. A riskier project, however, 
would benefit more from a structured process such as the classic waterfall method [53].  It 
would be useful, when tackling a real world optimization problem, to know what sorts of 
simplifying assumptions are useful given the nature of the problem. It would be nice to have 
processes in place to follow in order to create problem definitions that lead to solvable 
models with solutions that work in the real world. 

3.4 Enterprise Modeling 
  
Enterprise modeling is another area where the problem definition stage is established. 
Enterprises need to be agile and integrated across their functions in order to stay 
competitive. Enterprise models enable this by promoting better design and analysis of 
enterprise practices [55]. A deductive enterprise model (DEM) that is given a proper model 
of the enterprise can answer common sense questions about the enterprise and thereby 
reduce management information system backlog [55]. The model needs to accurately 
represent the enterprise for a DEM to work. In a paper by Gruninger & Fox, the authors 
want to create formal representations of the knowledge found in enterprise engineering 
perspectives using ontologies [57]. An ontology identifies objects in a domain along with 
the properties of those objects and the relations between them. A micro theory defines the 
set of axioms to represent the constraints on the ontology. In enterprise modeling, ontologies 
have to represent concepts such as activity, time, and resource. 
 
 In enterprise modeling, the idea of having different problem definitions as well as 
comparing and evaluating them is strongly present. Fox & Gruninger reason about 
alternative designs for an enterprise in [55]. Different sets of constraints need to be 
considered. One must see if a process can be performed differently or if a constraint can be 
relaxed to improve performance. The impact of changes has to be known for all parts of the 
enterprise. How quality is affected by a relaxation is considered as well. Such information 
would be very useful in real world optimization problems. 
 
 Enterprise models are evaluated and validated through the use of competency 
questions, the set of queries that the enterprise model can answer [57]. The competency 
questions represent tasks that an ontology can represent and solve. The ontology represents 
tasks and their solutions using a set of axioms[57]. If the set of queries that a DEM can 
answer can be reduced to the competency questions, then the DEM is known to be 
sufficient. Also, the competency questions can be used to determine if a DEM is precise 
enough or if it allows for abstractions [55]. 
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 There is more than one way to represent knowledge and each way has different 
computational complexity when answering a specific set of competency questions [55]. The 
idea of having different ways to represent the same knowledge is the problem definition 
stage and the competency questions are a method to compare and evaluate given definitions 
and models. It is obvious that these ideas are considered important in the field of enterprise 
engineering. 

3.5 Operations Research 
  
In the field of operations research, there are many tasks that require creating a model of a 
real-world domain in order to solve a real-world problem. Tasks such as creating a timetable 
for a university or analyzing a queuing system are but two in a list of many. As mentioned 
earlier, when representing a real world problem, simplifying assumptions are almost always 
necessary. In operations research, the problem definition stage, where simplifications are 
made, exists, but the direct study of this stage is, for the most part, absent from the literature. 
 

When analyzing queuing models, it is often desirable to represent arrivals and 
service times in the system using pre-defined probability distributions or models. In a paper 
by Brandao & Porta Nova, an Auto Regressive Integrated Moving Average (ARIMA) 
model, a model used to forecast a time series, is used to represent a queue with utilization 
greater than or equal to one [37]. This representation is simpler than using all of the actual 
data, yet still realistic, and it is therefore easier to analyze. Graphs are provided showing 
how close the distribution is to reality, but the model does not represent the system exactly 
and what implication this has in terms of results is not discussed. 

 
In the area of automated timetabling, the problems are known to be NP-hard and 

therefore heuristic searches are often used to find solutions. When dealing with heuristic 
solutions, there is the idea of relaxing what would be hard constraints in order to increase the 
flexibility for moving around the search space [13]. This is a way of simplifying the problem 
by changing its definition. Such relaxations of hard constraints may result in a solution that, 
although it may have been found faster and it appears to be better as far as the cost function 
is concerned, may not be useful in the real world. This may be because the combination of 
constraints that are violated makes for a worse solution in the real world than a different 
solution, with more constraint violations. In a paper by Cambazard et al., a solution method 
for creating a timetable starts with a model of the problem with all constraints being hard; 
this is at the lowest level of abstraction [3]. If that model is found to be over-constrained, a 
search is done in the space of possible relaxations, in other words the space of different 
restricted problem definitions, to find a definition that both accurately represents the real 
problem and is solvable. A more common phenomenon is for a human scheduler to attempt 
to change the problem. For example, the person responsible for taking reservations at a 
restaurant will negotiate with the clients to change their requested reservation time to one 
where he has a solution, thereby changing the problem. 

 
Another way to alter the problem definition is to change the structure of the problem. 

In a paper by Aubin & Ferland there is discussion on whether or not it is more 
computationally cost effective to model a problem of generating a timetable and assigning 
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students to sections as two sub-problems or one large problem [14]. A question that comes 
to mind, but is not addressed in the paper is: Which problem definition makes for a better 
solution in the real world? Altering the priority of objectives can also change a problem 
definition by changing which objective comes first [22]. Modeling a problem with a 
different objective as its first priority may result in a different solution. In a paper by Wright, 
a timetable with a two-week cycle is simplified so that it can be represented by a one-week 
cycle that is repeated [25]. The simplification of the problem results in a different problem 
definition, yet the implications of this are not discussed. The problem is easier to model and 
solve as a one-week cycle, but we do not know if it works as well in practice as the two-
week definition. 

 
The stage of simplifying a problem is present because it is necessary in order to find 

solutions to almost every problem. Little is written, in the operations research domain, about 
what one simplification does in comparison to another and what implication each 
simplification has to fitting the solution into the real world. There are some papers that do 
discuss how to check for model quality. They look at which factors are important when 
creating a cost function and how important each constraint violation is in the real world [17, 
25]. A paper by Carter describes the timetabling procedure at the University of Waterloo as 
well as the cost function [17]. It describes how the costs for rooms are calculated by taking 
into account factors such as distance, size, and equipment. Wright describes a method of 
searching for a timetable at a high school [25]. It includes the full calculations for the cost 
function in the appendix. Although cost functions can help guide the solution to be of good 
quality, what factors to include and how to include them can be very difficult. Often, in 
timetabling, as will be shown in Chapters 4 and 5, human judgment has to be used to make 
difficult trade-offs between several goals and simply looking at the results of a cost function 
will not accurately describe the quality of the schedule. Nonetheless, measures of quality are 
important because they can be used to compare different problem definitions. 

 
There are some cases where a comparison of problem definitions is hinted at. Muller 

& Rudova test a timetable for a university using real data [4]. A problem definition is given 
along with several small changes that can be made. For example, the same definition can be 
used in one case where students are not moved between sections and in another case where 
they are moved. Also, in one definition the priority can be to satisfy faculty preferences 
while in another, the priority can be to satisfy student preferences. The paper compares the 
results for each of the cases listed above in terms of how long it took to solve the problem, if 
a feasible solution was reached, and to what degree soft constraints were violated. It does 
not look at how well solutions from each definition worked in the real world. 

 
There are many papers that show a model being implemented in a real situation, such 

as an automated timetable being used in a school [11, 21, 24, 25, 26, 27]. More commonly, 
though, a solution is simply tested with real world data [1, 6, 10, 13, 14, 15, 18, 19, 22] or 
with made-up data that is meant to be a good representation of the real world [5, 12, 20]. 
These methods work to show that a given solution can work in the real world. 

 
What is missing is showing why certain assumptions were made and how they affect 

the solution; showing how one problem definition creates a solution that works differently 
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than that of another problem definition. In other words, there should be evaluation criteria 
that are created. These evaluation criteria can then dictate what information is necessary to 
include in a problem definition and what information is not. There should be a step added to 
the process of solving real world problems in OR, which occurs after analyzing the problem, 
but before creating a model. One should sit down with the clients and clarify what is a 
solution, what form of solution is desired, and what, if any, tests can be done to ensure that 
the solution will work in the real world. In Chapter 5, we make a step towards this goal by 
creating evaluation criteria for a real world problem. 

3.6 Bond Graphs 
  
This section is different from the previous sections because it focuses on a specific 
technique for system modeling. Bond graphs are a modeling tool in that they are a flexible 
way to model a system that includes some sort of interaction between components. 
Systems interact by storing, transporting, or dissipating energy among subsystems. Bond 
graphs apply to the problem definition stage because they can represent a domain in such 
a way that a program or solver can use to find a solution. Below is a picture of a simple 
single degree of freedom mass-spring-damper system and its corresponding bond graph 
taken from [61]: 

Figure 3.2a. A mass-spring damper system 

 

Figure 3.2b. The bond graph representing the system in figure 3.1a. 
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In this example, a one port resistor (R), capacitor (C), and inductor (I), along with an effort 
source (SE) describe the system. These elements are connected by a 1-junction, which 
means that there is equality of flows and the effort sums to zero. 

Bond graphs can be used for many levels of abstraction when representing a 
problem, so they are adaptable to different problem definitions. Bond graphs are used in 
model-based diagnosis because they can represent a hybrid system [35, 36]. In papers by 
Narasimhan, et al.[35] and Karsai, et al. [36] the advantages of being able to represent a 
hybrid system is explained. A hybrid system is usually represented either as a discrete or 
continuous one, depending on the problem. Either way, it is a simplification that often 
results in inaccurate models of the domain. Discrete changes are not handled well by 
continuous models and discrete models can cause loss of information that is necessary for 
fault isolation and control. An enhanced form of bond graph, with switched junctions to 
represent the discrete change of modes can be used to represent a hybrid system. 

In a paper by Bos & Tiernego bond graphs are used to represent an industrial 
manipulator (figure 3.3a) with three rigid bodies. We see word bond graphs as the highest 
level of abstraction, where components and their connections are almost everything that is 
represented (figure 3.3b). The typical bond graph comes next and it expands on each of the 
connections shown in the word bond graph by including the type of energy connection 
between components (figure 3.3c). Finally, there are causal bond graphs, which expand on 
the connections shown in the typical bond graph and include detailed information on how 
components interact as well as direction of energy flow [29]. This lowest level of abstraction 
can be used for simulation. 

 

Figure 3.3a. An industrial manipulator with three rigid bodies [29] 
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Figure 3.3b. A word bond graph of the industrial manipulator [29] 

 

Figure 3.3c. A bond graph of the industrial manipulator [29] 
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It is possible to build a bond graph through a heuristic search such as the genetic 
algorithm [44]. Rosenberg, et al. show one way to find the best bond graph representation 
[44]. They start with a high level of abstraction and build to lower levels with more detail as 
they explore the space of possible bond graph representations. They also shown how, at the 
same level of detail, there can be different problem definitions and hence a different bond 
graphs, such as a bushy structure as opposed to a long chainlike structure. Different 
structures come with possible advantages. For example, a bushy structure may make it easier 
to exploit the subsystems because one may be able to make use of the chunks. The specific 
uses of a given structure are mentioned in the paper as an area for future work. 

 
 Bond graph models can be used at many abstraction levels and therefore for many 
different problem definitions. Here, as before, there is no use of evaluation criteria and the 
validation that exists is showing that a model works through the use of an example [29, 35, 
36, 44]. Perhaps a technique, similar to bond graphs in that they can represent information at 
several levels of abstraction, would be useful to have for optimization problems. 

3.7 Conclusion 
 

Real-world design typically begins with initial requirements that are vague and incomplete 
and that must be transformed into specified ones where a solution can be found to satisfy 
them [46]. Each problem can be defined as a set of requirements that refer to functional and 
other elements in a domain [46]. In all fields, where a definition of a domain is required, 
whether for a problem in optimization, diagnosis, software design, or enterprise modeling, 
assumptions are made for many reasons. These assumptions, to enable exploration of a 
space of possible solutions in a reasonable amount of time, are what define the problem in a 
particular way and may result in a solution that is quite different than one that would have 
resulted had the problem been defined differently.  
 

By looking at the literature, it has been shown that software engineering and 
enterprise modeling are two areas that actively research the problem definition stage as well 
as validating different problem definitions in the real world. Model-based diagnosis has a 
problem definition stage, although it is not discussed as openly as in software engineering 
and enterprise modeling. In the literature on operations research, although a problem 
definition stage is not directly studied, we know that such a stage is necessary when it comes 
to creating a model to solve a real-world problem. For example, the literature on automated 
timetabling takes a given timetabling problem and reduces it to a mathematical definition, 
which can then be solved. In reality, the timetabling process is long and complicated, as will 
be shown in Chapter 4. Authors, therefore, had to create a problem definition in order to 
solve the timetabling problems, but the process of creating those definitions as well as its 
implications on a solution are not discussed. It seems that research on this topic of defining 
the problem and seeing how different definitions can have different results in the real world 
would be beneficial to optimization and the field of operations research as a whole.  

 
It seems like it would be helpful, when tackling a real world optimization problem, 

to know what sorts of simplifying assumptions are useful given the nature of the problem, as 
in model-based diagnosis. It would be nice to have processes in place to follow in order to 
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create problem definitions that lead to solvable models with solutions that work in the real 
world, as in software engineering. It would also be nice to have a problem definition that 
could be used to analyze what would happen to the problem if certain constraints were 
relaxed and what effect it would have on the quality of the solution, as in enterprise 
modeling. It also seems that a technique, similar to bond graphs in that they can represent 
information at several levels of abstraction, would be useful to have for optimization 
problems.  

 
All of this would be nice, but currently does not exist. One way to start would be to 

add a step into the OR problem solving process. The step would be after analyzing the 
problem, formally deciding what a solution would look like and what tests can be done to be 
sure that the solution will be useful in the real world. This thesis makes contributions 
towards these goals. Firstly, in Chapter 4, a real problem is taken and its solution process is 
studied in detail to show how real world problems are much more complicated than what 
typically appears in a mathematical model. Secondly, the problem definition stage for that 
real world problem is addressed by creating evaluation criteria, which we will see in Chapter 
5. Finally, in Chapter 7, a mathematical model is developed for a problem similar to the real 
world problem that is studied. 
 



 

 

23

  

 

Chapter 4 

Timetabling at the Faculty of Applied Science and Engineering, 

University of Toronto 

 

4.1 Introduction 
 
As with many real life problems, the university course timetabling problem can be messy 
and complicated. Solving the university course timetabling problem involves many people 
communicating to try to achieve a timetable that meets a set of requirements and goals. As 
explained in Chapter 3, the literature on automated timetabling often takes a given 
timetabling problem and reduces it to a mathematical definition, which can then be solved. 
In reality, there is a lot more to a real world timetabling problem than what is represented in 
such a definition. The timetabling process is long and cons ists of many stages before that of 
actually placing courses into timeslots. The first stage of solving a problem in OR involves a 
detailed study of the system, identifying specific problems, system constraints, and objective 
functions.  
 
 This chapter looks, in detail, at the timetabling problem at the faculty of applied 
science and engineering at the University of Toronto (APSC). The process described is the 
one that took place in order to create the timetable for the 2006-2007 school year. This 
process shows how real world problems are actually much more complicated than what 
appears in a mathematical model. As well, a detailed analysis of a given problem is a step 
towards creating a problem definition. It allows one to identify all of the process issues, 
constraints, restrictions, and goals, thereby providing a base of information that may be 
included in a problem definition. 
 

The undergraduate program at APSC consists of four years of study. There are 4000 
students, over 1200 of which are first years. There are seven departments and nine degree 
programs totaling 79 POSts1. There are 219 faculty members, 12 buildings, and 80 lab 
rooms that are managed internally. The faculty uses a software scheduling package that is 
part of the Syllabus Plus suite of scheduling products. In particular the software Course 
Planner (CP) is used to schedule, identify issues, and support decisions. CP is a software 
package that uses several heuristics when scheduling. 75% of timetables are delivered to the 
individual student conflict- free, based on program structure. In the following sections, we 

                                                 
1 POSt stands for “Program Of Study”. It refers to a student group studying in the same program; students in 
the same department, same year, and same option. For example, fourth year, engineering science, 
manufacturing option is a POSt, as is first year civil engineering. 
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describe the goals that the timetable tries to achieve, the constraints involved, and the 
strategy, the process, used when creating the timetable. We then outline some problematic 
areas existing in the current process and highlight the areas where IT could be helpful. 
Identifying areas where IT could be helpful should make the problem definition problem 
easier. 

4.2 Goals 
 
The overall goal of the timetable is to provide students with a schedule that is not only 
conflict- free, but is of good quality as well. The following is a list of goals in terms of the 
students, the faculty, and the use of resources. There are both timetable goals and process 
goals. Timetabling goals refer to aspects that should be present in the resultant timetable and 
process goals refer to the process of creating the timetable. 

4.2.1 Timetable Goals 
 
Students: 
 

• Conflict- free schedules for years one to three and fourth year core courses  
o Next best is to minimize conflict and limit it to tutorials or ends of labs 
o For fourth year, try to minimize conflicts among the most popular courses  
 

• Deliver required courses to the students  
 
• Try to provide each student with a 9-5 schedule with a lunch break of one hour 

between eleven and one 
o next best is 9-6 and then 9-7 
o lunch break between 11 and 2 
 

• Minimize gaps in a given day 
o Existing gaps should be meaningful (i.e. not too long) 
 

• There should be some study time 
 
• All Programs of Study (POSts) should have equal access to resources (e.g. labs) 

 
 

Faculty: 
 

• Conflict- free 
 
• Meet staff criteria, such as staff availability and course delivery requirements 

 
 
• Ideally, professors should have one day for research that is free from teaching 
 



 

 

25

  

Resources: 
 

• Better utilize labs and rooms  
 
• Room usage: A minimum goal is to fill rooms 50% of the time 

o To fill a room means to have a scheduled event taking place in the room 

4.2.2 Process Goals 
 

• To serve the client - the students and the departments - through the counselors and 
the faculty 

 
• Try to get at much course data as possible confirmed, as early as possible  

o The curriculum committee should meet earlier than they do so that course 
delivery can be known early on and scheduled. Ideally, the curriculum 
committee would be working on a schedule where they are a full academic 
cycle ahead. For example, curriculum for the 08/09 school year would be 
mostly determined in 06/07.  

 
• Minimize the transfer of information between the counselors, the representatives 

from the departments who work together with the director of scheduling to create the 
timetable 

 
• Give all departments equal time with the director of scheduling to work on creating 

their schedules  
 

 
• Improve communication between faculty and department and director of scheduling 

 
Quality is a subjective measure and in such a large organization, where there are 

many courses that are taken by more than one student group, constraints can make it very 
difficult to create a satisfactory timetable that is of good quality for all the student groups. 
For example, in the third and fourth year of the electrical and computer engineering 
program, there is a flexible curriculum. This means that students get to choose all their 
courses from a fairly large list of options. This makes for over a hundred possible 
combinations of courses. When scheduling, it can be impossible to make all the courses in 
the list conflict- free. 

 
Providing schedules of good quality is the secondary objective when scheduling, 

after obeying all of the necessary constraints such as faculty and room availability. 
Assessing what makes a schedule one of good quality is therefore an important step of 
creating a timetable. The process we undertook to assess what makes a schedule good will 
be described in detail in Chapter 5. 
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4.3 Constraints 
  
In the timetabling domain, there are two types of constraints. Hard constraints are 
constraints that cannot be violated because if they were, the schedule would be infeasible. 
Soft constraints, otherwise known as preferences, are there to make the timetable as good as 
possible. Fewer soft constraint violations mean that the schedule is better. In addition, in the 
University of Toronto example, there are certain situations that arise, due to the nature of the 
program, that seriously constrain the schedule. Although these are constraints in a slightly 
different meaning, they will be referred to as constraining factors and they will be listed in 
this section as well. 

4.3.1 Hard Constraints 
 
The hard constraints are the constraints that cannot be violated. Of course, there are 
exceptions to every rule and if violating a hard constraint will make the quality of the 
schedule much better, perhaps it will be done.2 If a hard constraint is to be violated it must 
be sanctioned by the director of scheduling, the counselor of the affected department, the 
head of the affected department, and any affected faculty members. An example of when 
this might be done is the case where there are only supposed to be two sections of a tutorial, 
but for one group of students it makes their schedule bad if they go to either of those 
sections. It will be discussed and analyzed to see if it is worth the money and if there are 
enough resources to add a third section for that group of students. Another case where hard 
constraints may be violated is the case of the flexible curriculum of fourth year. There is a 
hard constraint to make a conflict- free schedule for all students, but when there are so many 
course options, it may be impossible to have every combination be conflict- free, especially 
when the courses are scheduled before the students’ final choices are known. In this case, 
conflicts are minimized and any conflict is sanctioned by the department. 
 
The following is a list of hard constraints in no particular order: 
 

• No conflicts3 for students 
• No conflicts for staff 
• No double booking of rooms 
• Faculty availability – All professors should be available when they need to teach 
• No courses on the weekend 
• All classes must fit into the capacity of the assigned room 
• Delivery requirements must be met 

o Number of lectures, labs, and tutorials 
• Special room needs such as electronic classrooms  

                                                 
2 This requirement of human judgment to make tradeoffs between satisfying a constraint and ensuring good 
quality is one of the things that makes the definition of a mathematical timetabling model so difficult. 
3 A conflict is when a student or faculty member is  scheduled, in their timetable, to be in more than one event 
at the same time. 
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• Pre set rooms (and lab rooms) 
• Same-timed activities – Same-timed activities refer to events that must be scheduled 

at the same time. One example is a tutorial of a particular course with several 
sections, where all the sections should have their tutorial at the same time. Another 
example is two courses for the same student group which both have three hour labs 
on alternating weeks. Those labs should be at the same time, just on different weeks. 

4.3.2 Soft Constraints 
 
Some of the soft constraints are built into the software as preferences and the user can 
choose what priority to give each constraint and whether or not to include it at all. The 
remainder of the soft constraints/preferences are kept in mind by the director of scheduling 
when creating the timetables. The following is the list of preferences. Preferences existing in 
the software will be denoted by (S). 
 

• Avoid overtime for staff and locations. Overtime is requiring staff to work, or rooms 
to be in use, later than the standard end of the day or earlier than the standard start of 
the day.  

• Avoid conflicts that are considered by the department to be acceptable. For example, 
a department may allow for there to be conflicts between tutorials, but they would 
still want them to be avoided, if possible.  

• Try to put activities in rooms that are as close in size as possible to the number of 
students attending the activity (S). 

• Load balancing (S) 
o Try to use all available resources evenly. 

• Preferred starts – Try to assign activities to their preferred times (S). 
• Preferred usage – Try to assign activities to their preferred rooms (S). 
• Primary suitability – The most suitable or primary resource should be used. For 

example, a lecture should be scheduled in a lecture room and a tutorial, in a tutorial 
room (S). 

• Usage spread  
o When there is more than one section of a course, the sections should be 

assigned as even as possible. Ideally there should be the same number of 
students in every section. 

4.3.3 Constraining Factors 
 
There are six issues that seriously constrain the schedule. Courses that are effected by these 
constraints must be scheduled in specific spots, thereby requiring that the timetable is built 
around them. 
 

1. Over-taxed locations – There are certain rooms, in particular lab rooms, that are 
almost always in use. They need to be used by many groups of students for many 
courses and therefore constrain the timetable a lot. In 2006-2007, as well, all of the 
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larger lecture rooms are over-taxed because of the double cohort4 being in the upper 
years. Usually, the upper years do not require larger rooms, but this year, because of 
the double cohort, they do.  

 
2. Shared courses – By nature of the program, there are many courses that are shared by 

several groups of students. It may be an elective for one group and core for another 
and/or it may be shared across departments and years. This causes all the timetables 
that are involved to be constrained by each other. 

 
3. Common sense rules – There are certain common sense rules that the scheduling 

department tries to follow while scheduling. One such rule is not to schedule 
tutorials in the morning, before lectures. The rule exists because it is known that few 
students will attend the tutorial. 

 
4. Externa l faculty – Faculty availability can be very constraining. This is especially 

true for external faculty who are constrained by courses that they teach outside of the 
faculty and other external responsibilities. External faculty refers to faculty members 
that are based in other departments at the university as well as faculty members 
whose main place of work is not the university. 

 
5. Team teaching – Team teaching is a new phenomenon where more than one teacher 

teaches the same course. This causes the course to be constrained by all the teachers’ 
schedules and all the teachers’ schedules to be constrained by whatever else is 
constraining that course. 

 
6. Specific courses – There are specific courses that require a lot of resources and 

therefore highly constrain the schedule. This applies, mostly, to first year. The first 
year program has one core course that all 1200 students must take at the same time. 
It uses up 30 rooms and many faculty members. No other first year courses can be 
scheduled at that time. 

4.4 Strategy 
 

There is no written protocol that is followed when creating the timetable. This is because 
every year is unique and different than the previous one. There is, however, a general 
strategy that is used. The basic steps that make up the scheduling process are the same each 
year. First is data acquisition. Second is deciding on the rollover strategy. The rollover 
strategy is deciding what part of the previous year’s schedule is kept and rolled over for the 
following year. After the rollover strategy is determined, each year’s timetable is scheduled, 
one at a time, starting with the first year program and finishing off with the fourth year. The 
following is a workflow diagram of the scheduling process: 

                                                 
4 In Ontario, the class that started high school in 2000 was the first class to graduate without Ontario Academic 
Credit (OAC), a previously required fifth year of high school. This resulted in two cohorts of students 
graduating high school, and therefore starting university, at the same time, in 2004. This group of students is 
referred to as the double cohort. 



 

 

29

  

Figure 4.1. A workflow diagram of the scheduling process. 

 

 The scheduling process really begins before the data acquisition stage, with the 
creation of the curriculum and calendar. However, this part of the process is not discussed 
here. In the following sections, each step in the above scheduling process will be looked at 
in more detail. 

4.4.1 Data Acquisition 
 
Accurate data is essential when creating a timetable. Without it, constraints cannot be 
formulated properly and conflicts will undoubtedly arise. Data is necessary for identifying 
the potential problem areas in a schedule so they can be kept in mind while scheduling. At 
APSC there is a lot of data that must be collected before the scheduling process can begin. 
The following is a list of data that must be collected:  
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• Course information   
o What is and is not being offered  
o What is different from last year  
 

• Program/POSt relationships   
o Which courses are core or elective 
o Which courses are shared 
o How are they shared 
 

• Staffing info  
o Who is teaching 
o What is their availability 
o What are their other responsibilities/availabilities 
o Which courses are not yet staffed, so late changes can be anticipated  
 

It is important to know which faculty members are teaching which courses. It is also 
important to know which courses have faculty assignments that are still to be announced 
(TBA), so that those courses can be scheduled with the knowledge that their assignments 
may have to change later on in the process. 
 

• Resource requirements  
o Special rooms 
o Smart/electronic classrooms 
o Labs 
o Large tutorials  
 

• Course choices  
o Possibly from a pre-registration process (Course and Option Selection (COS) 

is often used for third year students) 
 

• Activities  
o Sections per course 
o Planned sizes 
o Enrollment limits 
o Labs and tutorials 
o Delivery requirements such as same time vs. sequential scheduling  
 

• Resource data   
o New or refurbished space 
o Space lost 
o Updated/lost equipment 
 

• Student data  
o Returning students through COS 
o PREP for new students on the basis of previous years’ selections and 

curriculum changes. PREP is the term used to refer to estimated data. In this 
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case, PREP contains estimated planned sizes for a lot of the courses, as well 
as the number of first year students. The course choices are also estimated 
using the previous year’s data. 

o Allowances for retakes, etc.  
 

• Anticipated changes and trends in the student population  
 

The following is a workflow diagram of the data acquisition process: 

Figure 4.2. Workflow diagram of the data acquisition process. 

 

CP refers to Course Planner, the software used by APSC and A&S refers to the Faculty of 
Arts and Science. Spreadsheet1 contains data on staffing assignments, staffing constraints, 
term offerings, and planned sizes. Spreadsheet2 contains data on course delivery, class 
patterns, number of sections, and best room suitabilities. COS and ECE (Electrical and 
Computer Engineering) pre-registration are online forms that the students fill out in early 
March. They indicate which courses and/or options they are planning to register in for the 
coming year. For 2006-2007, APSC received 80% response back for the choice of options of 
students entering third year and 50% of course selections for students entering fourth year. 
 
 Verifying the CP and calendar data is a two-person process. It is a crosscheck of the 
curriculum change form, which contains all changes to the curriculum for the upcoming 

Spreadsheet1 created Counselors verify and amend spreadsheet1 

CP data adjusted 

Enter in preset data on A&S courses that engineering 
students take 

Fill in breaks in CP due to unrecorded last minute 
changes from previous years 

Spreadsheet2 created Counselors verify and amend spreadsheet2 

Adjust CP data 

Enter COS and ECE Pre-registration data into CP  

Adjust and verify data in CP continuously 

Verify data in CP and calendar 
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year, the CP database, with the data from the previous year, and the calendar for the 
upcoming year. This is a manual process. 
 

The process of collecting data through the spreadsheets takes a long time: a couple of 
months. It involves the counselors verifying and filling out what is missing from the data by 
checking with the professors teaching each course. This is a manual process, which means 
there can be errors and the data must be checked over carefully before it is put into CP. 

 
Curriculum changes come in throughout the process and when they do, the data in 

CP must be adjusted and verified. Also, if scheduling has already begun, the schedule may 
need to be adjusted as well. When changes come in after the schedule is already posted, and 
there are always changes, three systems must be updated; CP, ROSI, and the room 
reservation system (RRS). ROSI is the student web service. Along with many other things, it 
stores students’ schedules and it is the tool through which students enroll in their courses. 

4.4.2 Rollover Strategy 
 
The rollover strategy determines which courses are kept from the previous year. Rolling 
over some courses makes the scheduling task a little easier by providing a starting point. It 
provides something other than constraints to work from.  
 

Curriculum changes affect the rollover strategy greatly. If the courses offered are 
different than the previous years, then the schedule cannot be kept. All curriculum changes 
need to be evaluated for the impact on the rest of the schedule. A feasibility study should be 
done to see if existing resources are sufficient to accommodate the changes. There is often 
not enough time to evaluate every change properly because the curriculum committee works 
on a very tight timeline. As a result, many changes go through when they probably shouldn’t 
and it is only once scheduling has begun that it becomes clear that the changes require too 
many resources. These changes often have a negative impact on the rest of the timetable. 
Along with curriculum changes, staffing changes can affect the rollover strategy as well. 
Each faculty member comes with his or her own availability. A timeslot that worked well 
for one faculty member may not work at all for another. Analysis must be done to see if a 
curriculum or staffing change affects other courses, to the extent that they too cannot be 
rolled over. 

 
When deciding what to rollover, the scheduling office analyses the timetable from 

the previous year. They ask themselves: How was the quality? Were we satisfied? The 
determination of whether or not a timetable was of good quality is currently done very 
informally. In an open discussion, each department has input as to how they would like their  
schedule dealt with. There are no concrete measures currently used to evaluate the quality of 
a schedule. The scheduling office prefers not to completely erase the previous year’s 
schedule. If something is kept as an initial template, the scheduling office can then make 
incremental changes as needed. Of course, this can only be done if there are no major 
curriculum changes and if the schedule from the previous year was satisfactory. 
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It is preferred to have some rolled over courses because it decreases the  amount of 
time required to create a schedule. For example, the fourth year curriculum is very flexible 
and changes have been made in the last few years by almost all the departments. Because of 
this, it is impossible to keep the same timetable from year to year. It is quite likely that 
scheduling from scratch would result in a better timetable because of these large changes 
and due to the fact that the existing student choice data is out of date and hence, practically 
useless. The scheduling office still rolls over some basic, core courses, which are the same 
as the previous year. It is too labor intensive and the timelines from faculty committees do 
not provide adequate response time to start from scratch.  

4.4.3 Slot in First Year 
    
There are certain things that are common to the scheduling of each year. For each year, the 
director of scheduling together with the counselors look at what changes affect that 
particular year. The scheduling for each year is done separately for each department. The 
director of scheduling meets with each counselor individually and they schedule that 
department’s courses. There are many shared courses, but each course is owned by one 
department and that department can choose to place their course where they would like, 
assuming there is room for it, there are no faculty conflicts, and that it does not prohibit 
another engineering student set, that is supposed to have access to that course, from 
accessing the course. It is the director of scheduling’s responsibility to ensure that all of the 
departments are being treated fairly as far as access to rooms and times. 
 

Before the scheduling department can begin scheduling they must check that all the 
courses are in the database in the system and check the delivery patterns. Delivery patterns 
refer to the number and length of course activities. For example one course may have a 
delivery pattern of three one-hour long lectures and a two-hour lab. Another course may 
have a delivery pattern of a single one-hour lecture, a two-hour lecture, and a ninety-minute 
tutorial. 

 
For each step in the scheduling process, there are many iterations. At each step, the 

settings of preferences and constraints are redone and reworked many times to see if 
compromises can be made in order to get a better quality schedule for the students. There are 
many meetings with each departmental counselor. Often, at a meeting the scheduling 
director along with the counselor will come up with a solution to a scheduling problem, but 
the change cannot be made until the counselor checks if the faculty member assigned to the 
course is willing to accept the change. 

 
Once the timetable for a given year and department is completed, the scheduling 

department checks if everything was scheduled. They also check how it got scheduled; are 
there classes in the evenings and what is the spread like. If they are not happy with what the 
schedule looks like, they will often reschedule by unscheduling and rescheduling classes. 
First this is done automatically, using the software. Automatically means letting the software 
use the embedded heuristics to schedule any selected group of classes. The results are then 
evaluated, preferences are tweaked and rescheduling can occur. Later, manual adjustments 
are made. This step is invoked if most of the courses were scheduled well except for one or 
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two. Those could be manually moved in the schedule, rather than auto-scheduling 
everything. While scheduling, CP will indicate whether an activity can be put in a given slot 
and if not, why; when it conflicts and with what student set or if any other hard constraints 
are being violated. Sometimes these constraints can be overridden. 

 
 Once all departments have been scheduled for a given year, the schedule for that year 
is then analyzed from the student perspective and signed-off. Changes are often made to a 
signed off schedule if it causes an upper year schedule to be of bad quality, if changes are 
made to originally poor data, or as a response to unanticipated factors. 
 
 At the end of scheduling a given year, the existing timetables are signed off 
temporarily. At the end of the process, when all years are signed off, departmental 
counselors ensure that quality criteria are met, everything is scheduled, and that program 
constraints are accommodated. 
 

At the APSC, first year is scheduled first for several reasons. (1) First year is given 
priority because the scheduling department wants to ensure the best quality possible for the 
new students as a sort of welcome to the faculty. Because the scheduling department wants 
the first years to have the best quality, they don’t want to run the risk of not scheduling the 
first years first and leaving them unprotected, having the first year schedule be impacted 
negatively. (2) First year uses over 25% of the resources. (3) First year has a lot of large 
classes and there are a limited number of adequately sized rooms. In fact, there are half as 
many rooms that can accommodate first year sized classes than can accommodate third and 
fourth year classes. Below is a workflow diagram of slotting in the first year timetable: 
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Figure 4.3. A workflow diagram of slotting in the first year timetable 

 

4.4.4 Slot in Second Year 
 

Below is the workflow diagram for scheduling courses of second, third, and fourth year. 
This process is repeated separately for each department and year of study. 

Set known data 

Run CP to schedule activities 
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Figure 4.4. A workflow diagram of slotting in an upper year timetable. 

 

 It should be noted that certain courses that were supposed to be rolled over, might 
have been affected by the first year schedule. This is true for the third and fourth year 
schedules as well. Third year may have been effected by first and second year and fourth 
year may have been affected by all three previous year. Often, while scheduling an upper 
year, changes are made to the earlier year’s schedules. 
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4.4.5 Slot in Third Year 
 
For some departments, third and fourth year are scheduled together. For the rest, third year 
is done before fourth year. In 2006-2007, many third and fourth year student sets resulted in 
too many combinations, so student sets could not be considered. A student set is students 
that share the same timetable. In the case of third and fourth year, a student set is students 
who chose the exact same courses. When there are so many possible combinations of 
courses, and equally many student sets, it is impossible to create a conflict-free schedule for 
every student set. For the 2006-2007 school year, there were 540 possible combinations of 
courses that a student could  choose in the mechanical engineering program and there were 
nine possible combinations in the mineral program, a program with only twelve students. 
Therefore, the scheduling office did not take into account the student sets for many third and 
fourth year programs. Instead, they tried to minimize conflicts between courses that seemed 
to go together. In 2007-2008, they plan to group courses according to streams. A stream 
refers to an area of specialization within a program. For example, the industrial engineering 
courses can be grouped into three streams; operations research, human factors, and 
information engineering. By grouping courses into streams, courses that apply to a particular 
stream, can be conflict- free. 

4.4.6 Slot in Fourth Year 
 

Fourth year is done last for several reasons. (1) There is the most flexibility in the fourth 
year schedule. The number of options results in a large number of possible combinations. It 
is impossible for all the combinations to have conflict- free schedules. Some of the 
combinations have only one or two students in them. Because of this, difficult trade-offs 
have to be made. Since many conflicts would be sanctioned for the fourth year program 
anyway, it makes sense to leave it to last so that it not constrain the other schedules. (2) The 
student choice data that exists is out of date, making the scheduling process even more 
difficult. As it gets later in the process, more and more current student choice data becomes 
available. (3) There are smaller lecture sizes and therefore the most flexibility in the number 
of rooms that can be used. 

4.4.7 Room Booking 
 

As a first step, before rooms can be assigned, each room has to be given a suitability 
designation; whether it is a departmental room, a lab room, a tutorial room, or a lecture 
room. The features that each room possesses must also be recorded.  
 

Assigning rooms is a process that takes place both during and after the assignment of 
times described above. During that process, lab rooms are assigned. This is necessary 
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because there are a finite number of lab rooms for the entire faculty and there are no rooms 
that can be used in their place in the rest of the university. Also, activities with preset rooms 
are entered during the assignment of times. CP assigns rooms during this process as well, 
although during the time assignment exercise, all conflicts regarding the rooms assigned by 
CP are ignored.  The rest of the rooms are assigned after times are assigned. If there are no 
rooms available at the assigned time in one of the engineering buildings, a room is found 
elsewhere in the university. This, of course, is not preferred. 

 
Once the times are set, the list of conflicts regarding rooms is examined. Some room 

conflicts are sanctioned. For example, this may be the case if one cour se has two course 
codes. There are some courses that are taken by both graduate and undergraduate students. 
The course is the same, but the course code is different for the graduate students than for the 
undergraduate students. Therefore, both of the courses must be in the same room. Also, 
some lectures can be given in tutorial rooms and vice versa. At that point, the rooming for 
any activities that are still left without a room is done manually. 

 
Just like the rest of the timetabling process, there are oft en unexpected challenges in 

room assignment. In 2006-2007, there were surprise room conflicts because the office of 
space management (OSM) allowed Arts and Science to use some of APSC’s larger spaces, 
which the faculty needed, before APSC was done scheduling their rooms. The scheduling 
department then had to find new spaces for those classes. There were also several instances 
of rooms not being adequately maintained. For example, what was supposed to be an 
electronic lecture room may not have had adequate equipment, etc. 

4.4.8 Upload Timetable to ROSI and the Web 
 

Once the schedule is made it is uploaded to ROSI and the faculty website so that students 
can view it. The timetable needs to be on ROSI by the time students are able to register for 
their courses. This mainly applies to students in third and fourth year, who choose and enroll 
themselves in all their courses. It may also apply to a lower year student who has an Arts 
and Science (A&S) elective to enroll in. The scheduling office attempts to have the schedule 
online before the date when students enroll, so that students have a chance to look over the 
courses and get an idea for which combination of courses will work for them along with any 
A&S courses they are considering. 
 
 Uploading the timetable is not completely automated. CP and ROSI are not, by 
nature, compatible. Therefore, formats and such may need to be tweaked in order for the 
upload to go smoothly. The scheduling department does the tweaking manually. As well, the 
IT department of the registrar, does tweaking electronically. 
 
 After the timetable goes up, there are almost always more changes that need to be 
made. Mostly this is a result of poor communication of requirements on the part of the 
faculty. At the time of timetable creation, the data that was verified by the counselors is 
assumed to be correct, but once it is online, there are often complaints such as those from 
professors who realize that they want more or different rooms. Also, there are some courses 
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that do not have assigned staff at the time of the upload and once that staff is assigned, the 
assigned professor may have time constraints or other requirements that force a change in 
the schedule.  
 

Other conflicts can result from planned sizes. At the time of upload, the scheduling 
department only has an estimate of course sizes. There are students who transfer between 
programs or options as well as students who did not fill in their COS form and therefore it 
was unknown which courses or options they were taking. Once the real course sizes are 
known, there may be rooming issues. Planned sizes are especially problematic for first year, 
since it is unknown who will accept or reject their offers of admissions at the time of the 
upload. 

 
 Issues such as those described above continue to occur until the last day to drop and 
add fall courses, in mid-September.  

4.5 Problems in the Process 
 
There are many areas of the process where there is a need for improvement. These problems 
range from technical issues such as there being too much data being entered manually, to 
communication issues, to political issues within the faculty. Some can benefit from an IT 
solution, and some cannot.  

4.5.1 IT Solutions 
 
There are several instances during the process where automation would be helpful. The 
obvious one is that of the creation of the timetable. Software is currently used, but that 
software requires a lot of interaction and in a way it is merely a database that holds data and 
notifies the user when conflicts exist, while the timetable is actually created manually. The 
CP software can schedule automatically, but from experience, the created schedules are 
often quite far from ideal. CP often has a lot of difficulty finding a timetable that doesn’t 
violate constraints. CP does, after all, use heuristics to make its scheduling decisions, which 
may not be the best option. Using mathematical programming, a model could be created to 
solve the APSC timetabling problem. Such a model might not require as much interaction. It 
would take the data and create a timetable, which could then be modified by the user. 
 
 There are other areas, earlier in the APSC process that could also benefit from 
automation. The director of scheduling has identified these areas as well as the proposed 
solution. One such area is the step of verifying the CP and calendar data. This is currently a 
manual, two-person process involving cross-checking data from three different sources. If 
these data were connected electronically, a lot of time would be saved. Also, during the data 
acquisition phase, data is collected through spreadsheets. The process involves passing back 
and forth information that gets changed slightly each time. This process is currently done 
manually, creating many opportunities for miscommunication and errors. Errors include 
filling out forms incorrectly as well as missing information. A third area where automation 
would be helpful is that of updating the CP data after the spreadsheets are completed. This is 
done manually. 
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 The proposed solution, from the director of scheduling, is to make the process of 
verifying, collecting, and updating data electronic. A database could be created from which 
the calendar data could be uploaded electronically to CP. Also, data collection could be done 
through online forms, where there could be input restrictions so that the counselors would 
not be allowed to fill out the forms incorrectly and blank slots would not be permitted. The 
data from these forms could then be uploaded electronically into CP. Such a solution would 
save a lot of time as well as prevent many errors. 
 
 Another area where an IT solution would be useful is that of the disconnect between 
the systems used for the schedule. When a change is made to the schedule, three systems 
must be updated: CP, ROSI, and the Room Reservation System (RRS). Often, there are 
different people updating the different systems and if it is not done simultaneously, someone 
may work on one of the systems assuming it is up to date when it is not. This can cause 
problems. It would be useful to connect the systems so that when one is updated, so are the 
others. 

4.5.2 Non-IT Solutions 
 

There are two reasons why an IT solution may not be possible: there is no IT solution that 
applies to the specific problem, or the IT solution that applies is not feasible.  
 
 The biggest issue existing in the current timetabling process is that of 
communication during the data acquisition phase. During this phase, the counselors are 
supposed to get all the requirements from the faculty in regards to their schedule preferences 
and necessities. Faculty are supposed to supply their departments with the delivery of the 
courses they will be teaching. Delivery refers to the number of sections the course should 
have and the number and length of all meetings of the course. Faculty members are also 
supposed to supply their rooming requirements. It is very common in the current process 
that faculty members do not supply much data during the data acquisition phase. In such 
cases, it is assumed that there are no strict constraints and that the delivery is the same as 
what is written in the calendar. It is also very common for such faculty members to come to 
the scheduling office with demands or complaints once the schedule is completed and 
uploaded. These demands range from wanting different rooms to wanting to change a one-
hour lab to be a three-hour lab. 
 
 Although it may be possible to have an IT solution where faculty members could 
enter their data online, instead of going through the counselor, it is likely infeasible to expect 
“buy in” from all the faculty members. A more realistic solution would be to develop a 
written policy that includes a date by which the departments must have all their teaching 
assignments done, a date by which the faculty members must submit their scheduling data, 
and what data must be included. The scheduling office would then be required to approve 
any deviations from the faculty members’ requests and there would be no changes made 
once the schedule is uploaded. A similar policy would be useful in regards to the 
development of curriculum. There should be no changes to curriculum made past a certain 
date. Implementing such a strict set of rules would not be a simple task. Ideally, the 
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curriculum committee would be a year ahead of where they are now. Adjusting to that 
timeline would take time and effort and although it would be nice for scheduling, it would 
mean that it would take a year longer for curriculum changes to take effect. 
 
 Another issue that can be resolved without an IT solution is that of scheduling 
without known class sizes for first year. Since the admission numbers are not known until 
after classes start, it is impossible to schedule the first year schedule with known class sizes. 
However, the later on in the summer the first year is scheduled, the more accurate the 
estimate of the class sizes. It would be a good idea to change the scheduling order and 
schedule first year last, after all the other years are completed. There were several reasons, 
listed earlier in the chapter for scheduling first year first. However, when the first year 
schedule has to be changed last minute due to unknown class sizes, it ends up being 
scheduled last anyway. The only difference is that time was wasted by scheduling it the first 
time. The scheduling department intends to try scheduling first year last in the upcoming 
year. 

4.6 Conclusion 
 

University course timetabling is not simply putting a bunch of constraints into a software 
program, pushing a button, and getting back a timetable. It is a long, laborious process that 
involves many people: the director of scheduling, the departmental counselors, the 
curriculum committees, the professors, and of course, the students. It is process that takes 
the entire year, starting with the creation of the next year’s curriculum and calendar, 
continuing with collecting and verifying all data, and finally ends in the creation of a 
timetable. There are many surprises that come up and changes that must be made at the last 
minute, throughout the entire process. 
 
 To automate the university course timetabling process, one must consider this entire 
process, and not just the scheduling part of it. As shown above, there are many parts to the 
process and a lot of it is done manually, causing an already difficult job to become more 
tedious and to take longer than necessary and also creating more opportunities for errors and 
miscommunications. Automating parts of the process would provide the director of 
scheduling with more time to focus on creating a good quality timetable. 
 
 The complexity of this timetabling problem shows how difficult, if not impossible, it 
would be to create a definition of this problem that could be put into a mathematical model. 
Not only is there more than one issue to consider, the problem is extremely dynamic and is 
based on judgments as to what constraints can be relaxed as well as the data that has been 
gathered. It is clear that real problems, like the APSC problem are large and complex and we 
don’t have a formal methodology for creating a problem definition, such as some that we 
saw in Chapter 3. As one suggested step toward such a methodology, in the next chapter, we 
will look at evaluation criteria created for the APSC problem. Having evaluation criteria is 
important as it enables you to look at how well the solution created from a problem 
definition fits back in the real world. 
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Chapter 5 

Evaluation of the Timetable at the Faculty of Applied Science 
and Engineering at the University of Toronto 

 

5.1 Introduction 
 
The real-world evaluation of a solution to a model representing a real-world problem is an 
important step in an application. It allows one to discern what information to include in the 
problem definition as well as whether the problem definition was useful. An evaluation 
shows whether the problem definition resulted in a model whose solution could be used. As 
we saw in the previous chapter, the timetabling problem at APSC, like many real life 
problems, is messy and complicated. It involves many people communicating to try to 
achieve a timetable that meets a complex set of requirements and goals. It is important to 
keep in mind the criteria for evaluation of the timetable when one is creating the timetable. 
This chapter looks at the evaluation process developed for the faculty of applied science and 
engineering at the University of Toronto (APSC).  
 
 The creation of an evaluation system for APSC is a step toward formalizing 
evaluation as an integral part of the problem solving process. Before modeling, one should 
sit down with the client and define, independent of any eventual models, how to judge the 
quality of a solution. 
 

The problem solving process, as described in Section 3.1, starts with the creation of a 
problem definition. In this case, the APSC’s problem definition includes all the constraints 
and goals described in the previous chapter. Since the schedulers’ main focus is to satisfy 
the hard constraints of the problem, it can be difficult to ensure the secondary objective: a 
good quality schedule from the student’s perspective. They therefore wanted to develop a 
system for measuring the quality of a schedule so they could see how their solution to the 
timetabling problem worked in the real world, when the student’s actually had to follow 
their schedules. In most of the timetabling literature, objectives such as the quality measures 
described in this chapter are put into an objective function of a given mathematical model 
[7, 13, 21, 25, 66]. The results of this analysis show that this is often unproductive, as it is 
extremely unlikely for such an objective function to accurately represent the quality criteria 
that it is supposed to represent. Quality is determined by using human judgment to make 
tradeoffs between satisfying constraints and obtaining quality on an issue-by- issue basis. 

 
In this chapter, we present  the motivation for creating an evaluation system for the 

timetabling problem at APSC. We then examine the process of determining which quality 
measures to include and provide a detailed description of the resulting quality metrics. The 
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metrics are followed by a description of the tool created in order to implement the evaluation 
system, directions for future work, and conclusions. 

5.2 Motivation 
 
There were several reasons that motivated the creation of an evaluation system for the APSC 
timetabling problem. The first motivator was the complexity of the problem’s hard 
constraints. The timetable is put together almost completely manually and there are many 
complex constraints, as shown in the previous chapter. This results in most of the 
scheduler’s energy being spent trying to create a schedule that does not violate any of the 
hard constraints and where all students have access to the courses in their curriculum. 
During the process, the scheduler does keep in mind the idea of creating a schedule that is of 
good quality for the students and whenever possible will adjust the timetable in order to 
achieve a good quality schedule. Nevertheless, there are many student sets with intertwining 
schedules to consider and balancing good quality across these student sets can be a nearly 
impossible task. The registrar’s office at APSC thought that having a tool that could measure 
the quality of their schedule according to certain metrics would help them to see how good a 
job they were doing in creating a good quality schedule. It would also highlight the areas 
where they were not doing a great job. If this tool were to be used only on past schedules, 
the scheduler would know what to keep in mind the next time around. If the tool were to be 
used during the scheduling process, the scheduler would be able to address the problem 
areas. 
 
 Another reason that an evaluation system is useful is that it aids in the objectification 
of quality. Quality is subjective. What one person thinks of as a good quality schedule, 
another may think of as horrible. For example, some people may prefer to have a couple of 
days that are very full, even without a break, if it means they could have a day off, while 
other people would rather have the load spread evenly throughout the week. It is useful to 
have set quality measures by which to evaluate a timetable, as it makes sure that everyone is 
in agreement as to what should be motivating the scheduler’s judgments when timetabling.  
 
 The third motivating factor for the APSC was the ability to compare timetables. 
They wanted to be able to compare quality in timetables across years and POSts. They were 
interested in seeing if they had improved over the years at creating a good quality schedule. 
As well, if they had gotten worse, in which aspects had the quality suffered. For example, 
over the years, more and more flexibility has been put into the curriculum. This makes it 
more difficult to create a conflict- free schedule due to the immense number of possible 
combinations of courses that students can take. As a consequence, as demonstrated below, 
the evaluation system shows an increase in the number of conflicts over the years. In this 
particular example, nothing can be done, but in other cases, the scheduler may be able to 
analyze why a certain area is getting worse and perhaps find a way to correct it. The 
registrar’s office at APSC would also like to be able to use the evaluation tool to show the 
curriculum committee what effect the curriculum changes have had on the quality of the 
schedule. It is also useful to see if there are any POSts whose schedules are of considerably 
worse quality than the others. It may be a case that the curriculum does not allow for a better 
schedule, but it may also be the case that that particular POSt’s schedule can be improved if 
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some of the other POSts compromise their quality, resulting in an overall better quality 
timetable.  
 
 The final motivating factor is to measure how well the timetable fits into the real 
world. This is of particular interest to my research as it is the connection to the problem 
definition phase described in Chapter 2. The combination of data, constraints, and quality 
measures is what defines the timetabling problem at APSC. They are what drive the 
scheduling process and ultimately the solution to the problem: a timetable. An evaluation 
system is a way to measure how well the solution works in the real world. It allows the 
registrar’s office at APSC to see if their definition results in a timetable that can be used by 
the students. If it were to show that the quality of the schedule is so poor that the students 
cannot use it, APSC would have to change their definition by either adding or removing 
constraints or changing their definition of quality. It is a way of validating their problem 
definition and evaluating it in the real world. 

 5.3 The Quality Measures 
 
The quality measures were developed through a series of meetings and interviews with the 
associate registrar and the director of scheduling at APSC. I developed a number of quality 
measures that, I believed, represented quality from the students’ point of view and 
developed a prototype that displayed the results of the metrics in the form of bar graphs 
based on a preliminary set of timetable data. The associate registrar and the director of 
scheduling then reviewed the proposed metrics and suggested changes and several additional 
metrics. The resulting metrics are listed below, in no particular order: 
 

1. Number of Conflicts 
2. Days ending after 5pm. 
3. Days without a lunch break 
4. Student utilization 
5. Days starting at 9am 
6. Friday prayer break 
7. Room utilization 
 

Being that this is the first time that the associate registrar and the director of scheduling have 
had these metrics implemented in the database, obviously they will need to be refined. For 
example, in the first metric, conflicts between required courses are more serious than 
conflicts between electives, yet the database considers them to be the same. The same is true 
for the second metric, where ending the day at ten is much worse than ending at six. 
 
In the following paragraphs, each of the metrics will be described in detail. 

5.3.1 Number of Conflicts 
 
This is a metric representing the number of conflicts a student has in their schedule. It was 
chosen because one of the main goals of the timetable at APSC is to create a conflict- free 
schedule for the students. Unfortunately, this is not always possible. A conflict is any time a 
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student has more than one activity scheduled. It is tabulated as the number of students with x 
activities in conflict. For example, if a student has three activities scheduled at the same 
time, they have three activities in conflict. If a student has two pairs of activities scheduled 
at the same time, they have two activities in conflict, counted twice. It is tabulated for all the 
students, grouped by semester, and for each semester separately, grouped by POSt. 

5.3.2 Days ending after 5pm  
 
This metric represents the number of times students have to stay late at school. It was chosen 
because a good quality schedule from the students’ point of view would not require them to 
stay late. 5pm was chosen, as it is the standard time for the end of the school day. It is 
calculated as the number of students ending after 5pm x times in a week. For example, there 
may be 200 students that end after 5pm two times in a week and 500 students ending after 
5pm, five times in a week. It is tabulated for all students, grouped by the semester, and for 
each semester separately, grouped by POSt. 

5.3.3 Days without a lunch break 
 
 This metric represents the number of times students have no break between 11am and 1pm. 
It was chosen because a good quality schedule from the students’ point of view would 
contain a break for lunch. 11am to 1pm is thought of as lunchtime, and was therefore chosen 
as the time boundary for the metric. It is calculated as the number of student-days in a week 
without a break between 11am and 1pm. For example, if there are 200 students without a 
lunch break twice a week and 100 students without a lunch break three times a week, then 
there are 700 student-days without a lunch break (i.e., 400 student days plus 300 student 
days). It is tabulated for all students, grouped by semester, and for each semester separately, 
grouped by POSt.  

5.3.4 Student utilization  
 
This metric represents the percentage of a student’s school day spent in a scheduled activity. 
It was chosen because it is important for a student’s time at school to be meaningful. A 
meaningful schedule is one where there are enough breaks to do some work and to get 
something to eat, ye t not too many breaks. Student utilization on a given day is the number 
of hours where the student has an activity scheduled divided by the number of hours 
between the start of their first class and the end of their last class. The metric is calculated in 
several ways. Firstly, it is calculated as the average student utilization over the week. This is 
tabulated both for all students, grouped by semester, and for each semester, grouped by 
POSt. For example, the average utilization for first year civil engineering in the fall of 2004 
may have been 75%. The metric is also calculated in terms of low, medium, and high 
utilization. Up to 40% utilization is considered to be low, from 40% up to 70% is considered 
to be medium, and 70% and higher is considered to be high utilization. There is a separate 
utilization level assigned to each student day. It is tabulated grouped by semester, and for 
each utilization category separately, it is grouped by POSt and semester. For example, for 
the student days utilization level graph, grouped by semester, there may be 100 student days 
with a low utilization, 500 with a medium utilization, and 1000 with a high utilization. 
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5.3.5 Days starting at 9am  
 
This metric represents the number of times students have to start the school day early. It was 
chosen because a good quality schedule from the students’ point of view would not require 
them to start early. 9am was chosen as it is, currently, the earliest time for the start of the 
school day. It is calculated as the number of students starting at 9am x times in a week. For 
example, there may be 200 students that start at 9am two times in a week and 500 students 
starting at 9am, five times in a week. It is tabulated for all students, grouped by the semester, 
and for each semester separately, grouped by POSt. 

5.3.6 Friday prayer break  
 
This metric represents the number of students that do not have a break between 12pm and 
2pm on Fridays, a time when the Moslems are supposed to pray. There are enough Moslem 
students to make this metric important. The metric is calculated as the number of students 
that do not have a break in their schedule between 12pm and 2pm on Fridays. It is tabulated 
for all students, grouped by the semester, and for each semester separately, grouped by 
POSt. An interesting point to note is that there is no indication in the date of whether a 
student is Moslem or not. This metric counts all students regardless of their desire for a 
prayer break. As well, it does not appear that daylight savings time, which effects the 
Moslem prayer time, has been taken into account: yet another complication making 
timetabling challenging. 

5.3.7 Room utilization  
 
This metric represents the percentage of time that a room has an activity scheduled in it. 
This metric was chosen because the university has a requirement that all rooms must be used 
50% of the time. It does not reflect quality from the students’ point of view, but it is still 
useful information for the director of scheduling and is therefore included. It is calculated as 
the number of hours in a week where a room has an activity scheduled in it divided by 40, a 
standard week length. It is tabulated for each room, grouped by semester. 

5.4 Evaluation System Setup 
 
The evaluation system for APSC was created using a Microsoft Access database. The 
database is based on the end of semester data on student choices and course schedules. 
Therefore, any changes made to the schedule in the first few weeks of the semester and any 
students who dropped or added courses at the appropriate dates are included in the database. 
This is not the data available when the schedule is created, because the registrar’s office at 
APSC does not have all the student choices and they do not know which students will 
change their choices once the semester has already begun. However, this data allows us to 
see how well the created schedule, made with many unknowns, works in the real world, 
once all the unknowns become known. The data currently in the database is from the 2004-
2005 and 2005-2006 school years. It is the data from the end of the semesters, meaning that 
it contains changes that were made once classes had already begun. 
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The database is based on three tables: 
 

1. Student Choices 
2. Course Schedules 
3. Student Schedules 
 

Student Choices contains data on each student. There is one row for each meeting of 
each course that each student is registered for. For each student, it includes the course code, 
the meeting code, and section number. Student Choices contains 86845 rows. Course 
Schedules contains data on each course. There is one row for each meeting of each course. 
For each course meeting, it contains the day, start time, end time, and location. Course 
Schedules contains 19294 rows. Student Schedules is a join on the first two tables; i.e. it 
combines the two tables into one large table. Student Schedules contains data for each 
student. There is one row for each meeting of each course that each student is registered for. 
For each student, there is the course code, meeting code, section number, day, start time, end 
time, and location. Student Schedules contains 308874 rows.  

 
The metrics described in the above section are all calculated using SQL queries. 

Several of the metrics are calculated using a series of SQL queries. The code for all the 
queries can be found in Appendix A. The result of the queries are tabulated in the form of 
bar graphs and organized through the use of reports.  

 
The bar graphs of the query results provide a visual display of the metric results. 

Below are several of the graphs to serve as examples. First is a graph of the first metric, 
number of conflicts, tabulated for all the students and grouped by semester. 
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Figure 5.1: bar graph of the results of the first quality metric, number of conflicts. 
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From this graph, one can see that the number of conflicts has risen by over 30% from 
20049 to 20059, in the 2005-2006 school year. This rise can be attributed to the introduction 
of new, more flexible curriculums to the third and fourth year programs of several 
departments. Due to the large number of options available to the students, it became 
impossible to ensure that all possible combinations of courses be conflict-free. From the 
graph, the director of scheduling can see to what extent the curriculum changes have 
affected the schedule. Perhaps she can use this graph to illustrate this point to the curriculum 
committee and together they can decide what to do. They may choose to change the 
curriculum or they may choose to change the scheduling strategy. One way to do that is to 
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introduce several streams. The director of scheduling could then focus on keeping courses 
within the streams conflict- free and not have to worry about all the possible combinations of 
courses.  

 
Next is one of the graphs of the third metric, No Lunch Breaks. It shows the number 

of student days during the week without a lunch break.  
 

Figure 5.2: Bar graph of the results of the third quality metric, no lunch breaks. 
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Here too, we can see that the number of students without a lunch break has slightly 
increased in the winter 2006 semester. Again, this can be attributed to the change in 



 

 

50

  

curriculum. The registrar’s office at APSC may decide that the increase is insignificant. If 
they do not think that the increase is insignificant, seeing that the curriculum changes have 
affected the quality of the schedule in several areas may make the faculty more likely to 
change something. Perhaps they will take a different approach when designing the 
curriculum and consider the effects on the timetable more seriously than they have 
previously. Perhaps, they will adjust their expectations for the quality of the timetable.  

 
The next graph is a subset of the graph for the seventh metric, room utilization: 
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Figure 5.3: Bar graph of the seventh quality metric, room utilization. 
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By looking at this graph, the director of scheduling can see which of the faculty’s 
rooms are not used enough; i.e. they do not meet the university requirements. For example, 
GB 308, BA 2124, BA 2128, and BA 2135 are used less than 50% of the time. The 
registrar’s office at APSC can then look at those rooms and try to discern why they are not 
used. In this case, the BA rooms are quite small, they can fit less than 40 students and all the 
rooms listed above are not electronic. The registrar’s office can then decide if it is 
worthwhile to make the rooms electronic. The director can also look at the graph to see 
which rooms are over-utilized. For example, LM 217, ES 1050, and MC 402, which are not 
shown in the graph, are used more than 40 hours a week. The director of scheduler can now 
schedule these rooms first since they are under high demand and perhaps see if there is 
another room of the same type that can be used instead. 

 
The remainder of the bar graphs can be found in Appendix B.  
 
The user, through the use of switchboard menus, can easily access the reports 

containing the bar graphs. The switchboard menus are designed to be simple, clear, and easy 
to use. Below are snapshots of several switchboard menus. 

Figure 5.4: The main switchboard menu. 

 

The main switchboard opens when the database is opened. The user has a simple 
choice of viewing the charts of the metric results or exiting the database. 
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Figure 5.5: The metric charts menu. 

 

The metrics charts menu opens up when view metric charts is chosen on the main 
menu. The user can choose to view charts for any of the listed metrics or return to the main 
menu. 

Figure 5.6: The Early starts menu. 
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The early starts menu opens up when early starts is chosen on the metric charts 
menu. The user can choose to view any of the charts on that metric or they can return to 
either the metric charts menu or the main menu. 

5.5 Future Work 
 

There are a couple of ways to extend on the work described in this chapter. From a research 
perspective, it would be useful to study quality metrics of all forms to see if there are metrics 
that could be placed in an objective function and that would accurately represent the desired 
qualitative effect.  
 
 Another way to extend the evaluation database is to add more, and more detailed, 
quality metrics. There are more complicated metrics, such as how courses are spread over 
the week and how students’ breaks are spread over the course of a day. These metrics would 
provide more information to the schedulers. 
 
 A third way to extend on the evaluation database is to incorporate the database into 
the scheduling process at APSC. Microsoft Access can interface with Course Planner, the 
software used to create the timetable at APSC. The database could then be used to inform 
the scheduler as they make decisions throughout the scheduling process. For example, when 
the scheduler chooses to place a meeting for a course in a specific timeslot, it could show 
them how that changes the value of the quality metrics.  

5.6 Conclusions  
 

The registrar’s office at APSC has decided to take on the evaluation database. They are 
pleased with the information it provides. They see themselves using it to evaluate their 
schedules as well as a tool to show the curriculum committee how the new curriculum has 
affected the schedule. They hope that it will provide enough proof to showcase the faculty’s 
need of more resources. The registrar’s office would like to change some of the existing 
metrics, such as changing metric number 5, days starting at 9am, to days starting at or before 
9am. They would also like to add some additional metrics, such as calculating the number of 
hours of consecutive class, and drill down further on the existing metrics by analyzing them 
according to year and individual student sets. The IT department of the registrar’s office will 
be taking over the database.  
 

It has become evident that having a concrete way to measure the solution to a real 
world problem is very useful. It provides validation to the current solution method, and it 
also provides directions for improvement. Especially in this case, where the solution to a 
problem is judged based on quality, a subjective measure, concrete metrics provide 
objectivity as well. The evaluation tool also acts as a political tool because the director of 
scheduling can take the results to the board and show evidence that more resources are 
needed, perhaps changing the problem. 
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 Another conclusion that has emerged through the creation of an evaluation system 
for APSC is that putting quality measures such as those described in Section 5.3 into an 
objective function of a mathematical model, as is done in many cases in the literature, is 
difficult and it would not accurately represent the desired quality metrics. For example, it is 
not enough to simply minimize the number of student days without a lunch break, as in 
quality metric number 3, because there are many cases where not having a break between 
11am and 1pm is not a bad thing. A student may have a day where they start at 11am or 
where they end at 1pm. Both of these cases are considered to be a good quality day, even 
though there is no actual lunch break. Also, the metrics are misleading because they don’t 
differentiate between levels of quality. For example, a day that ends at 10PM is considerably 
worse than one that ends at 6PM. The evaluation criteria must be finer to represent this. It is 
up to the APSC schedulers to decide where to draw the line so that this can be better 
represented. Furthermore, on top of single metrics being misleading, it is unclear how to 
balance all the metrics automatically. It is important to use the evaluation metrics as one of 
many tools to provide input into human decision making when making tradeoffs and 
developing a good quality schedule.  
 
 As far as the problem definition problem goes, this chapter has shown us that 
evaluation criteria are complex and may be difficult, if not impossible, to incorporate into a 
traditional optimization function. Since this is the case, it is important to evaluate how a 
given solution works back in the real world. In the case of a manufacturing plant, one might 
create a simulation. Here, a detailed set of evaluation criteria is useful and necessary if we 
are to continue on in attempting to find an automated timetabling solution. 
 
 In the next two chapters, we will look at the next step in the problem solving process, 
namely modeling and solving a timetabling problem. In Chapter 6, we look at existing 
literature on university course timetabling, and in Chapter 7, we experiment with a 
university timetabling problem, similar in part to the APSC problem that we found in the 
literature. 
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Chapter 6 

Automated University Course Timetabling – Literature Review 

 

6.1 Introduction 
  

The timetabling problem involves scheduling lectures attended by both students and teachers 
into times and rooms. Typically a weekly timetable is created. Historically, people 
scheduled their timetables manually. This requires many hours of work and often the 
resulting timetable does not meet all the requirements. Because of this, a lot of research has 
been done in the area of automated timetabling and there are many different techniques used 
in the literature in order to solve the university course timetabling problem. The techniques 
span traditional operations research (OR) methods as well as, more recently, artificial 
intelligence (AI) methods have entered the picture.  
 

Constraint programming (CP), a relatively new AI field, is becoming more common 
as a tool for solving timetabling problems, yet it has not been very successful. This is 
surprising because the timetabling problem seems to be well-suited to CP. This is due in part 
to the difficulty involved in defining the problem’s constraints. CP provides flexibility when 
formulating the problem. Also, the constraints are often very hard to satisfy, making them 
suitable for CP propagation techniques. In Chapter 7, several models will be used to solve a 
university course timetabling problem. The main techniques used are CP, Integer 
programming (IP), and decomposition.  

 
In this chapter, we describe the course timetabling problem. We then look at solution 

techniques and approaches found in the literature. Following that, we provide a brief 
presentation of CP and finish with some conclusions. 

6.2 The Course Timetabling Problem 
  

The course timetabling problem involves scheduling the delivery of courses into a specific 
number of rooms and timeslots. The delivery of a course usually involves lectures, tutorials, 
and occasionally labs. Courses can be mandatory or elective for students in a given program. 
Courses with common students conflict and shouldn’t be scheduled in the same period. 
Room sizes and room availability also impact the schedule. The course timetabling problem 
is known to be NP-hard even in the simplest of cases [8]. 
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6.2.1 Problem Formulation 
 
The formulation of the course timetabling problem takes many forms. Each university or 
institution has its own unique structure and set of constraints. The following formulation is 
taken from [66].  
 
 There are i days, j time periods, k student groups (students with common courses), l 
faculty members, m courses, and n rooms. There are two basic variables. The first, xijklmn is 1 
if course m, taught by teacher l, to the group of students k is scheduled on day i, in period j, 
and in room n. It is 0 otherwise. In [66], the above sets of variables are grouped in order to 
make modeling of constraints easier. An example of some groups are Kl - a group of 
students for which teacher l offers a course, Li - a lecturer available on day i (this extends to 
Lkm and Lki), the same is done for M where courses are taught by a given teacher l, Ml, or for 
a certain k, Mk, and for I and J when a room n, In and Jn, or a teacher l, Il and Jl, is available. 

6.2.2 Constraints 
 
Every university or institution has its own set of constraints. In timetabling problems these 
constraints are usually categorized into two groups. Hard constraints are ones that cannot be 
violated if a timetable is to be feasible. Soft constraints, sometimes referred to as 
preferences, are ones that the school does not want violated, but the timetable can exist with 
some violations. The best timetable will have the fewest soft constraint violations. 

Hard Constraints 
 In [66] the hard constraints are as follows: 
 

• There should be no conflicts. No teachers, student groups, or rooms should be 
assigned to more than one class at a time. 

• The timetable should be complete. All the courses should be in the timetable in the 
correct number of periods. 

• All pre-assignments of rooms or times should be honored. 

Soft Constraints 
 
Often, the soft constraints are represented in an objective function. This is the case in [66] 
where the soft constraints are represented as costs for each assignment. The soft constraints 
are the preferences for times and rooms. An assignment of the variable x that is less 
favorable will have a higher cost. The objective function will then be minimized. The result 
is that as many preferences as possible will be respected while not violating any hard 
constraints. The preferences are determined by looking at requests from teachers and student 
groups. The costs are also meant to minimize the number of room changes a student group 
has to make. 
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6.3 Solution Techniques 
 
The timetabling problem is well- researched because it effects many institutions. There are 
many different techniques used in the literature to solve the problem. The techniques span 
traditional operations research (OR) methods as well as, more recently, artificial intelligence 
(AI) methods have entered the picture. 

6.3.1 Operations Research 
 
Timetabling has historically been considered an OR problem. The first research on 
automated timetabling began 30 to 40 years ago in this field. In this section, we look at some 
OR techniques that are used to solve course timetabling problems. 

Graph Coloring 
De Werra reduced a timetabling problem to a graph colouring problem [69]. Each lecture of 
a given course is assigned a vertex and a clique is made between the lectures for each 
course. Edges are introduced between cliques if two courses are conflicting, they share a 
teacher or students. The graph colouring technique is used in several papers in order to solve 
a part of the course timetabling problem. Some create the initial assignment of courses to 
times using graph colouring and then use a local search technique such as simulated 
annealing, discussed later in this section, to optimize the timetable [5]. Some use graph 
colouring to simplify the problem. For example, graph colouring may be used to divide the 
large problem into smaller ones and then other solution methods can be applied [11]. 

Integer and Mixed Integer Programming 
Many papers use integer programming techniques to solve the course timetabling problem. 
One of the earliest mathematical programming timetabling papers uses layouts, a statement  
of the curriculum and its organization, to simplify planning and to suppress a certain amount 
of detail [67]. Other techniques used include Lagrangian relaxation to assign classes to 
rooms [17], or formulate the problem as a transportation problem [22]. Probably the most 
popular integer programming technique is to formulate the problem as a 0-1 optimization 
problem or an assignment problem [14, 21, 66]. 

Network Flow 
Several authors suggest using a network model for the course timetabling problem. One 
example uses a network model with three levels [18]. The first level is the departmental 
level containing a vertex for each department. The second is the faculty level containing a 
vertex for every teacher and course combination. The third level is the room and time level 
with a vertex for every room and time combination.  The network model can be solved in 
polynomial time, but it does not ensure that a teacher is not assigned to two courses at the 
same time. The paper, therefore, first solves the network model and if there are conflicts, it 
uses the solution as a starting point for a search to find a solution without conflicts. 
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6.3.2 Artificial Intelligence 
 
Recently the field of AI began to tackle the timetabling problem with newer, promising 
heuristics.  

Local Search Techniques 
It is very common to find an approach that uses one method to find an initial solution and 
then follows up with a local search technique to optimize. Local search techniques are very 
popular because the course timetabling problem is known to be NP-hard. Therefore, local 
search heuristics can be used to search for good solutions as opposed to using a 
mathematical program to find an optimal solution, which may take too long to find. Local 
search techniques move from one solution to another by making a “move” to a neighbor of 
the current solution. Neighbors, as well as moves, may be different for different problem 
models. Solutions are compared based on an objective function that needs to be minimized 
or maximized. 
 
 The main local search techniques found in the automated timetabling literature are 
simulated annealing [5, 63] and tabu search [3, 7, 13, 16]. Simulated annealing uses a 
cooling rate to decide whether or not to accept the best neighboring move. Sometimes a 
move will be accepted even if it is not better than the current solution. This is done to 
prevent getting stuck in a local optimum. Kostuch uses two stages of simulated annealing 
once there is an initial timetable [5]. The first stage swaps already created timeslots and the 
second swaps individual events. 
 
 Tabu search appears to be the most popular local search for timetabling problems. 
Tabu search keeps a finite list of the most recent moves. While on the list, these moves 
cannot be reversed. This is the tabu search way of avoiding local optima. A common move 
is moving the timeslot of one lecture [13]. This way, neighboring solutions are identical 
except for the time of one lecture. Another common technique used in tabu search is 
relaxing hard constraints [13]. Often hard constraints are relaxed in order to give the method 
freedom while moving through the search space. 
 

Other local search techniques found in the literature include genetic algorithms [65, 
69] as well as other local search techniques using several different diversification methods, 
such as the one found in [25]. 

Logic Programming 
There are some papers that use logic programming to solve timetabling problems [15, 20, 
26]. Kang & White propose a logic programming method to the timetabling problem using 
PROLOG, a language that enables them to express constraints declaratively [20]. A heuristic 
reschedules conflicts by finding a so-called “equivalent” lecture and reassigning it to a 
different timeslot so that the conflicting lecture can be placed in its spot. 

Constraint Logic Programming 
A constraint logic programming (CLP) system generates values for variables and propagates 
through constraints so as to remove inconsistent values and shrink the search space. The 
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basic method is a backtrack search, but the constraints provide look-ahead capabilities. 
Gueret et al. model constraints using the built- in constraints provided by CHIP, a popular 
CLP language [65]. The paper compares four labeling strategies. Abennader & Marte use 
constraint handling rules to model a university timetabling problem [64]. They use a partial 
CSP (PCSP), where each constraint has a weight. Each value in a variable’s domain has an 
assessment. Propagating through a soft constraint will change the assessment value while a 
hard constraint will remove values. 

Constraint Programming 
Constraint programming (CP), a relatively new AI field is becoming more prominent in the 
timetabling research [69]. Programming with constraints allows more flexibility when 
formulating the problem. This is important because the problems are usually complicated 
and unclear. CP has declarative constraints like CLP, but it is not as restrictive because 
constraints can be integrated into imperative languages like C++ and Java [70]. Sometimes 
CP is used to obtain an initial solution [63] or as part of the solution process [3]. Cambazard 
et al. create a system for over-constrained and dynamic problems [3]. At first, the problem is 
solved with all the constraints. If it is found to be over-constrained, the system searches in 
the space of possible relaxations. The details of CP and how it can be used to solve 
timetabling problems will be discussed further in section 6.4. 

6.3.3 Other Methods 
 
It is very common to see a combination of methods being used to solve the timetabling 
problem. For example, Cooper et al. combine several heuristics [19]. At its base, their 
solution method uses bipartite graph matching. The algorithm identifies groups of lectures 
that conflict. It then improves on the timetable by choosing from the possible assignments. 
Resources are assigned to lectures using a brute force algorithm or a beam search. More 
recent papers discuss the possibility of combining IP and CP [68]. Another technique used, 
although less prevalent in the literature, is goal programming. Shniederjans & Kim divide 
the constraints of the problem into three categories [24]. The first is a set of goals that ensure 
course offering requirements, the second is the set of faculty teaching load assignment goals, 
and the third is preference goal constraints. Each set of goals can have different 
weights/priorities. 
 
 Another phenomenon seen in many timetabling papers is the use of an interactive 
system [6]. In such systems, there is a large manual part. It is more than the user being able 
to adjust the timetable at the end. Interactive systems are popular because the evaluation of 
timetable quality is complicated. It is often hard to describe to a computer what makes one 
timetable better than another, as was shown in Chapter 5. 

6.4 Constraint Programming 
 
CP is described as the study of computational systems based on constraints [70]. A 
constraint satisfaction problem (CSP) is a problem defined over finite domains, as is the case 
in timetabling problems. A CSP is a set of variables each with a domain and a set of 
constraints that restrict which values variables can take. A solution is an assignment to every 
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value with all constraints being satisfied. The search can be for any solution, all solutions, or 
for an optimal solution defined by an objective function.   

6.4.1 Search and Heuristics 
 
There are different methods for systematically searching through the search space. The 
classic is chronological backtracking (BT) that incrementally assigns values to variables and 
when a dead end is hit it goes back one step in the tree and assigns a different value to that 
variable. BT has three drawbacks [70]: 
 

• Thrashing (repeated failure for the same reason)  
• Redundant assignments because conflicting variables are not remembered 
• Late detection of conflicts.  
 

To overcome this, different search methods and heuristics have been developed for both 
going forward, deciding which variable to assign next and to what value, and going back 
after a dead end is hit. One method for going back after a dead end is backjumping (BJ) 
[72]. BJ looks at which variables the dead end variable had conflicts with and jumps back to 
the most recent one. It backtracks to the lowest level such that it can prove that it will not 
miss a solution. A classic going forward heuristic is fail- first, to pick the variable most likely 
to fail. More details about fail- first as well as methods for calculating which variable is most 
likely to fail first can be found in [73].  

6.4.2 Propagation 
 
Another technique used to minimize late detection of conflicts is propagation. As values are 
assigned to variables, the constraints are checked to see what values can be removed from 
the domains of the remaining unassigned variables. Standard CP solving is a combination of 
search with propagation at each node. A simple form is forward checking (FC). After a 
variable is assigned, FC checks the unassigned variables directly connected to the just-
assigned variable and removes values that conflict with the just-made assignment.  
 

An important concept in constraint propagation is local inconsistency, when a 
particular instance of a set of variables satisfies a set of constraints but cannot be extended to 
more variables and therefore cannot be part of a solution. Therefore, to prevent unnecessary 
backtracking, it is good to maintain consistency in a CSP [88]. Arc consistency is one type 
of local consistency. A constraint is arc consistent if for every variable in the constraint, for 
each of its values, there exists a value in the domain of all the other variables in the 
constraint such tha t the constraint is satisfied [88]. For global constraints, which will be 
described in the next paragraph, pruning the domains of the variables so that constraints 
remain arc consistent is referred to as generalized arc consistency (GAC). Generally, a 
compromise needs to be made between the level of consistency maintained (i.e. the amount 
of domain pruning) and the cost of performing that constraint propagation at every node in 
the search tree [88]. 
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Global constraints are constraints over more than two variables. They usually have 
propagation algorithms developed specifically for them so that the propagation does more 
pruning or is less costly than if the same constraint was expressed using several smaller 
constraints [88]. They also make modeling a problem more natural. One example of a global 
constraint is the all-different constraint. An all-different constraint is a constraint over a set 
of variables that must all have different values. Without that global constraint, one would 
have to enumerate each pair of variables and constrain them to be different (i.e., with a 
binary not-equals constraint). Using the all-different constraint takes less effort and 
maintaining consistency on the all-different constraint removes more values from the 
domains of the variables than the alternative of writing out each pair of variables and 
requiring them to be different. 

6.4.3 Modeling 
 
Modeling can effect how well a problem can be solved [30]. Modeling techniques include 
using combined constraints and implied constraints as well as using different sets of 
variables. Combined constraints are made up of more than one constraint with the same 
scope. When local consistency is run on the constraint, it will only allow tuples that are 
allowed by both [71]. Implied constraints are constraints that are implied by the already 
existing constraints and they are therefore logically redundant. They can, however, reduce 
the required search effort [71]. Using a different set of variables can be useful because one 
set of variables may make modeling a constraint easier than another. Due to the interaction 
of search heuristics, algorithms and the model, it is hard to know which model is best [71].  

6.4.4 Beyond the Basic CSP 
 
Two extensions to the basic CSP are applicable to timetabling problems. The first is when 
there is an objective function. These problems, Constraint Satisfaction Optimization 
Problems (CSOPs), look for an optimal solution, which is one that minimizes or maximizes 
a given objective function. In timetabling problems, this is usually minimizing the soft 
constraint violations or maximizing the student and staff preferences. The second CSP 
extension is the partial CSP, PSCP. This is used when a problem is over-constrained, when 
there is no solution that satisfies all the constraints. This often occurs in timetabling 
problems. For example, in a paper by Cangalovic & Schreuder a tabu search is done in the 
space of possible relaxations [3]. Not all the constraints can be kept as hard constraints. 

CSOP 
The most widely used method for dealing with CSOPs is branch and bound [70]. A heuristic 
function is used to estimate the best complete solution from the partial solution that exists so 
far. This estimate is used as a bound on that section of the tree. If it is not as good as a 
solution that already exists that section of the tree need not be explored. 

PCSP 
PCSPs are a method of targeting over-constrained problems [70]. Like a CSOP, a numerical 
value is given to each assignment or partial solution. The value is, in effect, a rating of how 
well it solves the problem, knowing that some constraints are not satisfied. A PCSP is very 
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similar to a CSOP, except all the constraints do not need to be satisfied. This is achieved by 
allowing more variable assignments to be considered acceptable. A particular constraint is 
weakened by enlarging the domains of the variables effected by the constraint. Many of the 
standard algorithms, such as backjumping, arc-consistency, and branch and bound, can be 
extended to work for a PCSP [70]. 

6.5 Conclusions 
 
The work discussed above motivates the work in Chapter 7. Since CP seems to be applicable 
to the timetabling problem, it is surprising that it is not more present in the research. We, 
therefore, implement several models, using CP, as a first step to understanding if CP can be 
successful in timetabling. We look at CP on its own, CP in contrast with an IP model, and 
CP in combination with IP using decomposition. 
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Chapter 7 

Investigating Decomposition and Constraint Programming for 
Timetabling Problems 

 

7.1   Introduction 
 
The timetabling problem seems to be well-suited to constraint programming (CP). This is 
due in part to the difficulty involved in defining the problem’s constraints as well as the 
difficulty involved in satisfying the constraints. CP provides flexibility when formulating the 
problem, which is helpful for modeling. Also, the difficult constraints seem to be suitable for 
CP propagation techniques. However, most of the successful timetabling work appears to 
use some form of local search as was shown in Chapter 6. This chapter is an investigation of 
CP to evaluate if it can be successful in timetabling. We look at CP on its own, CP using 
decomposition, and CP in combination with IP using decomposition. The use of CP 
decomposition has never been used for solving timetabling problems. Recently, research has 
been done combining CP and IP [91], but it is a novel approach in timetabling. 
 
  The timetabling problem involves scheduling lectures (i.e., meetings of students and 
teachers) into times and rooms. Typically, a weekly timetable is created. Historically, people 
scheduled their timetables manually. This requires many hours of work and often the 
resulting timetable does not meet all the requirements. Because of this, a lot of research has 
been done in the area of automated timetabling as was seen in Chapter 6.  
 
  This chapter discusses several models designed for solving the course timetabling 
problems of the 2003 international competition of the Metaheuristics Network. We created 
six models for this problem. There are three monolithic models (a CP model, a CP 
scheduling model, and an Integer Programming (IP) model) and three decomposition models 
(a CP/CP model, a CP Scheduling/CP model, and an IP/CP model). 
 
  In the following section, we will describe the specific problem instances used to test 
the CP model. The next section discusses the models. Then, we will describe the 
experiments and results. We will provide a discussion of the results as well as compare our 
result to those of the metaheuristics competition entries. Finally, we will conclude and 
discuss future work. 
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7.2   Problem Definition 
 

The problem used for the experiments in this paper is taken from [75]. Ben Paechter 
designed the course-timetabling problem for the Metaheuristics Network, who used twenty 
instances of the problem for an international competition in 2003. The problem consists of a 
set of events to be scheduled in 45 timeslots; nine periods on each of the five weekdays. 
There is a set of rooms with features and a size, a set of events that require specific room 
features, a set of students, each of whom attend a number of events, and a set of features that 
are characteristics of rooms and requirements of events. A feasible timetable is one in which 
all events have been assigned to a time and a room so that all the hard constraints are 
satisfied. 
 

The hard constraints are as follows: 
 

1. No conflicts for students - A student conflict is any time a student is scheduled to be 
attending more than one event at a time. 

2. The room assigned to an event must be large enough to hold all students attending 
that event and it must possess all the features required by that event. 

3. No conflicts for rooms – A room conflict is any time a room is scheduled to have 
more than one event at a time.  

 
The competition gave a penalty of one point for each soft constraint violation. The soft 
constraints are as follows: 
 

4. A student has a class in the last slot of the day. 
5. A student has to attend more than two events consecutively. 
6. A student has a single class on a day. 

 
The competition instances contained 350 to 440 events taken by around 200 students. There 
were 10 or 11 rooms containing 10 or 11 features. 

7.3   Models 
 
We created six models to solve problems of the above form using the ILOG Optimization 
Suite. The models are as follows:  
 

• CP 1 is a monolithic model that uses constraint programming alone. It uses ILOG 
Solver 6.2, a constraint-based optimization engine.  

• CP Scheduling 1 is a monolithic model that uses constraint programming as well, 
only it models the problem as a scheduling problem. It uses ILOG Scheduler as well 
as ILOG Solver.  

• IP 1 is a monolithic model using integer programming (IP). 
• CP 2 is a decomposition model. It contains two sub-models, both of which use 

Solver. The two sub-models work together in a way that resembles decomposition.  
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• CP Scheduling 2 is also a decomposition model that works in the same way as CP 
Model 2; only the first sub-model uses Scheduler and Solver while the second sub-
model uses Solver alone.  

• IP 2 is another decomposition model; only this one has one model that uses integer 
programming and one that uses constraint programming.  

 
The following table summarizes the models: 

Table 1.  Model Descriptions.  

Model Type Master Problem Sub Problem 

CP 1 Monolithic CP using ILOG Solver N/a 
CP 
Scheduling 1 

Monolithic CP as a scheduling 
problem using ILOG 
Scheduler 

N/a 

IP 1 Monolithic MIP using ILOG Cplex N/a 
CP 2 Decomposition CP using ILOG Solver CP using ILOG 

Solver 
CP 
Scheduling 2 

Decomposition CP as a scheduling 
problem using ILOG 
Scheduler 

CP using ILOG 
Solver 

IP 2 Decomposition MIP using ILOG Cplex CP using ILOG 
Solver 

Data 
 The data used in the models is as follows: 
 

• D: set of days – the five weekdays.  
• P: set of periods – nine periods on each day.  
• T: set of times – day and period combinations. For example, the third period on the 

second day is time 11. 
• TS: set of timeslots – time and room combinations. For example, the first time in the 

fourth room is timeslot 3. 
• S: set of students. 
• R: set of rooms. 
• E: set of events – the events in the timetable. 
• Es: set of events that student s attends, s ? S. 
• sizer – room r’s capacity. 
• featuresr – an array of the features that the room r possesses.  
• sizee – the number of students attending event e. 
• featurese – an array of the features required by event e.  
• attendinge – an array of the students attending event e. 
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• LastPeriod - an array of auxiliary variables. They are binary variables, where 
LastPeriode takes the value 1 if event e is scheduled to be in the last period of a day 
and zero otherwise. 

• Schedules – It is in the form of a 2D variable array of days by periods. It represents a 
student’s schedule. An entry in the schedule will take the value 1 if the student has 
an event in that day and period combination, and zero otherwise. 

• EventDay  - It is an array of auxiliary variables indexed from zero to |E|-1. The 
values are the day index, from zero through four, on which the event takes place. In 
the IP models, EventDay is a 2D array of days by events. The variables take the 
value 1 if an event is on a given day and zero otherwise. 

• StudentEventDays - It is a separate array of auxiliary variables for each student that 
is the same as EventDay except that it contains only the events that the student is 
taking.  

• EventTimes - It is an array of auxiliary variables indexed from zero to |E|-1. The 
values are the time index, from zero through 44, during which the event takes place. 
In the IP models, EventTimes is a 2D array of times by events. The variables take the 
value 1 if an event is at a given time and zero otherwise. 

• StudentEventTimes - It is a separate array of auxiliary variables for each student that 
is the same as EventTimes except that it contains only the events that the student is 
taking.  

• Eventst – It is an array containing the indices of the events scheduled at time t, where 
t ?  T. 

7.4 The Monolithic Models. 
 

The first three models are monolithic models. They are each a single model designed to 
solve the problem described in section 7.2.  

7.4.1   CP 1 
 
CP 1 is a monolithic CP model. 

Decision Variables  
For each event, e ? E, we have one decision variable. 
 

• tse - It takes a value from 0 through |TS|-1. It represents the timeslot that the event is 
scheduled in. Recall that a timeslot value corresponds to a time and room. 

Set Up  
The model is set up using three variable arrays that are linked to each other. The first is a 3D 
array of days by periods by rooms.  
 
   ]][][[,, rpdgnmentsEventsAssiRrP,pDd ∈∀∈∀∈∀  
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The domain of each variable is the set of events and the value is the event assigned to day d, 
period p, and room r. The second array is a 2D array of times by rooms. Each time period 
variable has an array of rooms equal to the array of rooms for the corresponding day and 
period combination.  
 
  =∈∀∈∀ ][,, teriodEventTimePPpDd ]][[ pdnmentsEventAssig , t = d*|P| + p – 1. 
 
Here, too, the domain is the set of events and the value is the event assigned to the specific 
time period t, and room r. The third array is an array of timeslots.    
   
  =∈∀∈∀ ][,, tsTimeslotRrTt  ]][[ rteriodEventTimeP , ts = t*|R| + r -1. 
 
Timeslot[ts] is the variable representing the event that is scheduled in timeslot ts. This value 
is also represented in the 2D array where ]][[ rteriodEventTimeP  is the event that is 
scheduled at time t and in room r, and in the 3D array where ]][][[ rpdgnmentsEventsAssi  is 
the event scheduled on day d, at period p, and in room r. The Timeslot variables are linked 
to the decision variables in such a way that Timeslot[ts] has the value e, while tse has the 
value ts. 
 

tstsetsTimeslotTStsEe e =↔=∈∃∈∀ ][,,  
 
Since there may not be as many events as there are timeslots, dummy events are 

created so that there is the same number of events as there are timeslots. There are no 
students attending the dummy events and they require no features. There are, therefore, no 
constraint violations for dummy events because all the soft constraints involve the students 
and there are no students attending any dummy events. 
 
  The following modifications were made to the model in order to increase efficiency: 
 

• Requiring a dummy event to be scheduled before any dummy event with a higher 
index enforced an order. This is possible since dummy events are identical and it 
doesn't matter what order they are in.  

• Symmetry was reduced using lexicographic ordering constraints. For one array of 
variables to be lexicographically ordered before another means that the first non-zero 
entry in the array must be less than the first non-zero entry in the other array. The 
days in the model are symmetric, meaning that they can be interchanged without 
affecting the quality of the schedule. Therefore, lexicographically ordering 
constraints were imposed on the days. This ensures that the same combination of 
events will not be tried for each of the five days, but rather, only once [86]. 

 
    ]1[][, +<∈∀ ddaylexddayDd  

 
day[d] refers to the full assignment of day d, meaning all the events assigned to a 
particular day. 
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Constraints 
 There are three hard constraints and three soft constraints that are all common to every 
model. The constraints were described in section 7.2. 

Hard Constraints 
(1) There can be no conflicts for students. This constraint is modeled as an all-different 
constraint on the start times on each student’s events.  
 
    )(, sEventTimesntalldiffereSs ∈∀      (1) 

 
(2) Size and feature requirements must be respected. For each event, every room is checked, 
first for size and then for features. If a room is not large enough for the event or if it does not 
contain all the required features, any timeslot representing that room is removed from the 
domain of tse using a not-equals constraint. 
 

   ,, RrEe ∈∀∈∀  )( esizersizeif <  

   )( rfeaturesefeaturef ⊄∈∃∨  

   )||!,( rRtetsTtthen ⋅+=∈∀       (2) 

 
(3) There can be no conflicts for rooms. This constraint states that no room can be used by 
more than one event at a time. In CP 1 it is represented by an all-different constraint on the 
array of timeslots. This means that each event has a different time and room combination, 
ensuring that no room will have more than one event at any time. 
 

)(Timeslotntalldiffere       (3) 

Soft Constraints 
All the soft constraints are formulated in such a way that they output a variable or 
expression with the number of points or constraint violations. They are included in the 
objective, which the model is instructed to minimize. For each soft constraint, the number of 
constraint violations will be referred to as Points (x), where x is the constraint number. 
 
(4) There should be no events in the last period of a day. In CP 1, the constraint is 
formulated as follows. 
 
    eLastPeriodesize

Ee
sPo ⋅∑

∈
=)4(int     (4) 

 
(5) No student should have more than two consecutive events. To find the number of times 
there is a student with more than two classes in a row, each student’s schedule is stepped 
through one day at a time using a three period window, and the number of times that a 
student has three events in a row is counted and added to the total number of Points(5), 
violations of the fifth constraint.  
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  Two global cardinality constraints are used. The first global cardinality constraint 
counts the number of events in each three period span. The values are stored in a variable 
array called Count_Events, one for each student. 
 
 ])][[,1,_(,2,, pdScheduleEventsCountgccPppDdSs s∈+→∀∈∀∈∀ 5  (5)  
 
Count_Eventss[i], where i goes from 0 through 3, is the number of times that student s has i 
events in a three-period span. The second global cardinality constraint extracts the number 
of times that the student had three events in a row from Count_Eventss. The result, 
Count_Threes contains the total number of times that the student had three events in a row.  
 
    )_,3,_(, ss EventsCountThreeCountgccSs ∈∀     (6) 
   
The final step is to add the count for each student to the total number of constraint 
violations. 
 
    sThreeCount

Ss
sPo _)5(int ∑

∈
=               (7) 

 
(6) No student should have a single event on a day. For each student, their events are looked 
at one by one to see how many are on each day. This is done using two global cardinality 
constraints. The first global cardinality constraint counts the number of events on each day. 
The values are stored in a variable array called untEventDayCo , one for each student. 
 

  )|],|,...,1,0[,(, sntDaysStudentEveDuntEventDayCogccSs ∈∀            (8) 
 
EventDayCount[i], where i goes from zero through |D|-1, contains the number of events that 
the student has on day i. The second global cardinality constraint goes through 

untEventDayCo and counts how many variables took the value 1. The result, Count_Ones 
contains the number of times that student had a single event on a day. 
 
    ),1,_(, untEventDayCoOneCountgccSs s∈∀     (9) 
 
The final step is to add the count for each student to the total number of constraint 
violations. 
 
    sOneCount

Ss
sPo _)6(int ∑

∈
=               (10) 

Objective function 
The objective function is then to minimize all of the soft constraint violations. 

                                                 
5 gcc(a,b,c) is the standard way of writing a global cardinality constraint. The constraint takes an array of 
variables, c, and it counts how many times each of the values in a given range, b, appears. It stores the count of 
how many times each of the values appear in an array, a. 
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    Minimize (Points(4) +Points(5) + Points(6))             (11) 

7.4.2 CP Scheduling 1 
 
CP Scheduling 1 is a monolithic CP model using scheduling constructs such as activities and 
resources. 

Decision Variables 
For each event, e ? E, we have two decision variables. 
 

• te -  It takes a value from 0 through |T|-1. It represents the time that the event is 
scheduled in. 

• re – It takes a value from 0 through |R|-1. It represents the room that the event is 
scheduled in. 

Set Up 
The model is set up as a scheduling problem. The events are activities that have duration of 
one time unit. The students and rooms are unary capacity resources, meaning that they can 
only service one event at a time. Therefore, if two events require the same student or room, 
they will not be scheduled at the same time. 

Constraints 

Hard Constraints.  
(1) In CP Scheduling 1, the students are represented as unary capacity resources. Therefore, 
if two events require the same student, they cannot be scheduled at the same time. This 
constraint is represented as follows. 
 
    eattendingsEe ∈∀∈∀ , , e.requires(s)             (12) 

 
(2) Size and feature requirements must be respected. For each event, every room is checked, 
first for size and then for features. If a room is not large enough for the event or if it does not 
contain all the required features, that room is removed from the domain of re using a not-
equals constraint. 
 

   ,, RrEe ∈∀∈∀  )( esizersizeif <  

   )( rfeaturesefeaturef ⊄∈∃∨  

   )!( rerthen =                  (13) 

 
In CP Scheduling 1, the rooms are set up as unary capacity resources. For this 

constraint, an alternate resource set is made for each room. The alternate resource set 
contains all the rooms that the event can be scheduled in while respecting the size and 
feature requirements; i.e. after rooms are removed from the domain of re as above. The event 
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is constrained to require its alternate resource set. During solving, the solver chooses one of 
the rooms from its set as re.   
 
    )((,, erDomainrifRrEe ⊂∈∀∈∀   

    )__( esetresourcealternaterthen →  

   ∧  e.requires(alternate_resource_sete)             (14) 
 
(3) There can be no conflicts for rooms. This constraint is represented by representing the 
rooms as unary capacity resources. 

Soft Constraints 
All of the soft constraints are represented in the same way as in CP 1. 

Objective function 
The objective function is then to minimize all of the soft constraint violations as in equation 
(11). 

7.4.3   IP 1 
 
IP 1 is a monolithic MIP model. 

Decision Variables 
For each event, e ? E, we have one decision variable array. 
 

• tse - It is an  array of variables of size |TS|-1. Variable tse[i] takes the value 1 if event 
e is scheduled in timeslot i and is 0 otherwise. 

Set Up 
The model is set up using two linked variable arrays. The first is a 3D array of time periods 
by rooms by events.  
 
    ]][[,, rtgnmentsEventsAssiEeR,rTt ∈∀∈∀∈∀ [e] 
 
The domain is binary and the value is 1 if the event, e, is assigned to time t and room r, and 
is zero otherwise. The second is a 2D array of decision variables of timeslots by events. The 
values of the variables in Timeslots are equal to the corresponding time, room, and event 
combination in EventAssignments. 
 

]][[,,, etsTimeslotsEeRrTt ∈∀∈∀∈∀  = ]][][[ ertnmentsEventAssig , ts = t*|R| + r – 1. 
 
Timeslots is linked to the decision variables in such a way that Timeslots[i][e] takes the same 
value as tse[i]. 
 

][]][[,, itseiTimeslotsEeTSi e=∈∀∈∀  
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Constraints 

Hard Constraints 
(1) There can be no conflicts for students. In IP 1, there is a constraint on each time period, 
that each student cannot have more than one event at that time. 
 

1][,, ≤∑
∈

∈∀∈∀ eteEventatTim

sEe
TtSs                     (15) 

 
EventatTimet is an array of auxiliary variables, the size of |Es| - 1. EventatTimet[e] = 1 if 
StudentEventTimess[e] = t and is zero otherwise. 
 
(2) Size and feature requirements must be respected. For each event, every room is checked, 
first for size and then for features. If a room is not large enough for the event or if it does not 
contain all the required features, any timeslot representing that room is removed from the 
domain of tse using a constraint that sets the value of that variable to zero. 
 

   ,, RrEe ∈∀∈∀  )( esizersizeif <  

   )( rfeaturesefeaturef ⊄∈∃∨  

   )0]][[),||(,,( ==⋅+=∈∀∈∀ eitsrRtiifTSiTtthen                       (16) 
 
(3) There can be no conflicts for rooms. This constraint states that no room can be used by 
more than one event at a time. In IP 1 it is a linear constraint, which makes sure that each 
room is used at most once for any time. It sums over the timeslot array for each event and 
ensures that at most one event is assigned to any given timeslot. 
 

∑
−=

=
≤∈∀

1||

0
1]][[,

Ee

e
eitsTSi               (17) 

Soft Constraints 
All the soft constraints are formulated in such a way that they output a variable or 
expression with the number of points or constraint violations. They are included in the 
objective, which the model is instructed to minimize. For each soft constraint, the number of 
constraint violations will be referred to as Points (x), where x is the constraint number. 
 
(4) There should be no events in the last period of a day. This constraint is formulated as in 
equation (4). 
 
(5) No student should have more than two consecutive events. To find the number of times 
there is a student with more than two classes in a row, each student’s schedule is stepped 
through one day at a time using a three period window, and the number of times that a 
student has three events in a row is counted and added to the total number of Points(5), 
violations of the fifth constraint. For IP 1, a logical, yet linear constraint is used.  
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   ])][[(
3||

0
_, pdsreeScheduleTh

Dd

P

psThreeCountSs ∑
∈

∑
−

=
=∈∀            (18) 

 
ScheduleThree is a 2D array of auxiliary variables of the size |D| by |P|-3. 
ScheduleThree[d][p]= 1 if 1]2][[]1][[]][[ =+=+= pdsSchedulepdsSchedulepdsSchedule  

and is 0 otherwise. The result, Count_Threes contains the total number of times that the 
student had three events in a row. The final step is to add the count for each student to the 
total number of constraint violations as in equation (7). 
 
(6) No student should have a single event on a day. For each student, their events are looked 
at one by one to see how many are on each day. This is done using a logical, yet linear 
constraint.  
 
    yOneEventDa

d sEe
sOneCountSsDd ∑ ∑

∈
=∈∀∈∀ _,,              (19) 

 
OneEventDay is a 2D array of auxiliary variables of the size |D| by |Es|-1. 
OneEventDay[d][e] = 1 if 1]][[ =edsntDaysStudentEve  and is 0 otherwise. The result, 

Count_Ones contains the number of times that student had a single event on a day. The final 
step is to add the count for each student to the total number of constraint violations as in 
equation (10). 

Objective function 
The objective function is then to minimize all of the soft constraint violations as in equation 
(11). 

7.5 The Decomposition Models 
 

The next three models are decomposition models. They each contain two sub-models 
designed to solve the problem described in section 7.2. The interaction is the same for all of 
the decomposition models. The first sub-model is referred to as the master problem or the 
time model. It assigns events to times. It takes into account the hard constraint of students 
not having conflicts as well as all three soft constraints and the objective function that says 
that the soft constraint violations should be minimized. The second sub-model, referred to as 
the sub-problem or room model, assigns the events in each time to rooms. It takes into 
account the two hard constraints involving the rooms, respecting size and feature 
requirements as well as room conflicts. 
 

The first sub-model is solved. Then, for each time period independently, the room 
model is created to assign the events at that time to rooms. If this cannot be done without 
violating the hard constraints, a cut is created. Once all the time periods have been passed 
through the room model, the collection of resulting cuts is added to the time model and the 
process repeats. 
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In order for this decomposition to be as efficient as possible, there are two things to 
consider. The first is the representation of a relaxation of the room model in the time model 
and the second is the quality and type of cut being created by the room model [87]. In the 
models discussed, several ideas were attempted for both of these points. 

 
The representation of the room model in the time model is a constraint that the total 

number of events assigned to any time period cannot exceed the number of rooms available.  
 

||||, RtEventsTt ≤∈∀  
 
It is a relaxation of the room constraints. There is also a constraint that ensures that the sum 
of the sizes of events assigned to any time period cannot exceed the sum of the capacities of 
all the rooms.  
 

∑
∈

∑
∈

≤∈∀

tEventse Rr
rsizeesizeTt ,  

 
The cut passed from the room model into the time model is actually a series of 

constraints. Any time the room model cannot find a solution, the set of events assigned to 
that time period are analyzed by looking at every combination of that set of events, from 
combinations of two up to the full set of events less one. The set of combinations is referred 
to as EventCombos. Any time that the sum of the event sizes is greater that the sum of the x 
biggest room capacities, x being the number of events in the given combination, or the sum 
of any feature requirement is greater than the number of that feature available in the rooms, 
a cut is created. The cut states that the set of events in the given combination cannot be 
assigned to the same time period. 

 
∑>∑∈∀∨∑ ∑>∈∀ ),(, rfeatureefeatureFfesizeifsEventComboec rsize  

]2[]1[,21,2,1, eEventTimeeEventTimeeeeceecethen ≠≠∈∀∈∀  

7.5.1   CP 2 
 
CP 2 is a decomposition CP model. Both of the sub-models are modeled in CP. 

Decision Variables 
For each event, e ? E, we have two decision variables. The first decision variable is in the 
time model. 
 

• te -  It takes a value from 0 through |T|-1. It represents the time at which the event is 
scheduled. 

 
The second decision variable is in the room model. There is therefore a separate set of 
decision variables for each time period. 
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• ret – It takes a value from 0 through |R|-1. It represents the room in which the event is 
scheduled. 

Set Up 
The time model is set up using two linked variable arrays. The first is a 2D array of days by 
periods.  
 
   ]][[, pdsignmentsP,EventsAspDd ∈∀∈∀  
 
The domain of each variable is the set of events and the value is the event assigned to day d, 
and period p. The second array is an array of times, the decision variables.  
 
     =∈∀∈∀ ][,, tmentsTimeAssignPpDd ]][[ pdgnmentsEventsAssi  
 
TimeAssignments[t] is the variable representing the event that is scheduled at time t. This 
value is also represented in the 2D array where ]][[ pdgnmentsEventsAssi  is the event 
scheduled on day d, and at period p. The TimeAssignments variables are linked to the 
decision variables in such a way that TimeAssignments[t] has the value e, while te has the 
value t. 
 

tstetmentsTimeAssignTtEe e =↔=∈∃∈∀ ][,,  

Constraints 

Hard Constraints 
(1) There can be no conflicts for students. This constraint is an all-different constraint on the 
start times on each student’s events as in equation (1). It appears in the time model. 
 
(2) Size and feature requirements must be respected. This constraint is represented in the 
room model. For each event, every room is checked, first for size and then for features. If a 
room is not large enough for the event or if it does not contain all the required features, that 
room is removed from the domain of re using a not-equals constraint. 
 

   ,, RrEe ∈∀∈∀  )( esizersizeif <  

   )( rfeaturesefeaturef ⊄∈∃∨  

   )!,( retrTtthen =∈∀                 (20) 
 
(3) There can be no conflicts for rooms. This constraint states that no room can be used by 
more than one event at a time. In CP 2 it is represented in the room model using an all-
different constraint on the array of room choices for the set of events assigned to each time. 
 

)(, trntalldiffereTt ∈∀                 (21) 
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Soft Constraints 
All of the soft constraints are in the time model and are modeled in the same way as in CP 1. 

Objective function 
The objective function is in the time model and is to minimize all of the soft constraint 
violations as in equation (11). 

7.5.2 CP Scheduling 2 
 
CP Scheduling 2 is a decomposition CP model. The time model is modeled as a scheduling 
problem and the room model is the same as in CP 2. 

Decision Variables  
For each event, e ? E, we have two decision variables. The first decision variable is in the 
time model. 
 

• te - It takes a value from 0 through |T|-1. It represents the time at which the event is 
scheduled. 

 
The second decision variable is in the room model. There is therefore a separate set of 
decision variables for each time period. 
 

• ret – It takes a value from 0 through |R|-1. It represents the room that the event is 
scheduled in. 

Set Up 
The time model is set up as a scheduling problem. The events are activities that have 
duration of one time unit. The students are unary capacity resources, meaning that they can 
only service one event at a time. Therefore if two events require the same student, they will 
not be scheduled at the same time. 

Constraints 

Hard Constraints 
(1) In CP Scheduling 2, the students are represented as unary capacity resources. Therefore, 
if two events require the same student, they cannot be scheduled at the same time. This 
constraint is therefore represented as in equation (12). 
 
(2) Size and feature requirements must be respected. This constraint is represented in the 
room model. For each event, every room is checked, first for size and then for features. If a 
room is not large enough for the event or if it does not contain all the required features, any 
timeslot representing that room is removed from the domain of re as in equation (20).  
 
(3) There can be no conflicts for rooms. This constraint is in the room model and is 
represented as in equation (21). 
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Soft Constraints 
All of the soft constraints are in the time model and are modeled in the same way as in CP 1. 

Objective function 
The objective function is in the time model and is to minimize all of the soft constraint 
violations as in equation (11). 

7.5.3   IP 2 
 
IP 2 is decomposition MIP/CP model. The time model is a MIP model and the room model 
is the same as in CP 2. 

Decision Variables 
For each event, e ? E, we have two decision variable arrays. The first is in the time model. 
 

• te - It is an array of variables of size |T|-1. Variable i takes the value 1 if event e is 
scheduled at time i and is 0 otherwise. 

 
The second array is in the room model. There is therefore a separate set of decision variables 
for each time period. 
 

• ret – It is an array of variables of size |R|-1. Variable i takes the value 1 if event e is 
scheduled in room i and is 0 otherwise. 

Constraints 

Hard Constraints 
(1) There can be no conflicts for students. In IP 2, there is a constraint on each time period, 
that each student cannot have more than one event at that time as in equation (15). 
 
(2) Size and feature requirements must be respected. This constraint is represented in the 
room model. For each event, every room is checked, first for size and then for features. If a 
room is not large enough for the event or if it does not contain all the required features, any 
timeslot representing that room is removed from the domain of re as in equation (20). 
 
(3) There can be no conflicts for rooms. This constraint states that no room can be used by 
more than one event at a time. This constraint is in the room model and is represented as in 
equation (21). 

Soft Constraints 
All of the soft constraints are in the time model and are modeled in the same way as in IP 1. 

Objective function 
The objective function is in the time model and is to minimize all of the soft constraint 
violations as in equation (11). 
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7.6   Experiments 
 
The models were tested using a set of 21 problems. They were all of the form described in 
section 7.2. The first was a medium-sized problem created by Ben Paechter [78]. We created 
the other 20 by scaling down the 20 problem instances used in the international timetabling 
competition [75]. They were scaled down to match the size of Ben Paechter’s medium-sized 
problem since the actual competition instances were too large for any of the models, 
excluding IP 1, to solve in a reasonable amount of time, in this case a three-hour period. 
 
  The problem instances all have 100 events, 80 students, 10 rooms, and 5 features. 
The 20 scaled down problems were created by selecting the 100 events, the first 80 students, 
the first 10 rooms, and the first 5 features from each of the 20 large problem instances from 
the competition. 
 
  The models were tested on each of the 21 problem instances eight times.  
 

• To find any feasible solution, ignoring all soft constraints. 
• To find an optimal solution considering all the hard constraints and only the first soft 

constraint, constraint (4). 
• To find an optimal solution considering all the hard constraints and only the second 

soft constraint, constraint (5). 
• To find an optimal solution considering all the hard constraints and only the third 

soft constraint, constraint (6). 
• To find an optimal solution considering all the hard constraints and only the first two 

soft constraints, constraints (4) and (5). 
• To find an optimal solution considering all the hard constraints and only the first and 

third soft constraints, constraints (4) and (6). 
• To find an optimal solution considering all the hard constraints and only the second 

two soft constraints, constraints (5) and (6). 
• To find an optimal solution considering all the hard constraints and all the soft 

constraints. 
•  

All of the experiments were run on a 2.8 GHz Pentium 4 with 512 Mb RAM running Fedora 
Core 2 and were implemented using the ILOG Optimization Suite as described in Section 
7.3. In the following sections, the results from all the experiments will be documented.  

7.6.1 Satisfaction Experiments 
 
There were no soft constraints used during the satisfaction experiments. Each of the 21 
problems was run on each of the six models without taking into account any of the soft 
constraints. As soon as a feasible solution was found (i.e. a solution that did not violate any 
hard constraints) the time was recorded. The entries in the table refer to the time in seconds 
it took to find the solution. A ‘–‘ means that no solution was found in the allotted three 
hours. Problem 16 has no solution. It was created that way so that the time to see that no 
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solution was possible could be recorded. The bold entries show the best time to solve for 
each problem instance. 

Table 2. Satisfaction Experiment Results. The best time to solve for each problem instance 
is in bold. 

Problem 
Instance CP 1 

CP 
Scheduling 

1 IP 1 CP 2 

CP 
Scheduling 

2 IP 2 
0 1.75 0.13 0.63 1.78 0.21 - 
1 13.98 0.07 1.19 0.73 0.35 0.14 
2 14.46 0.08 1.2 0.42 36.63 0.13 
3 15.03 0.09 1.36 8.56 163.6 - 
4 13.38 0.07 1.05 75.41 - - 
5 14.53 0.1 1.23 1.27 132.1 - 
6 14.78 0.08 1.01 8.5 2003.4 0.13 
7 14.25 0.07 1.06 0.77 169.4 - 
8 13.87 0.07 1.09 3.63 - - 
9 14.06 0.06 1.1 231.44 26.04 - 
10 14.42 0.08 1.02 759.9 - - 
11 13.35 0.07 0.93 16.06 - - 
12 14.42 0.05 1.09 106.28 - - 
13 14.41 0.07 1.24 40.48 - - 
14 13.94 0.1 1.17 1.14 - - 
15 14.31 0.09 1.19 28.7 - - 
16 0 0 0 - - - 
17 13.89 0.07 1.06 38.57 - - 
18 13.15 0.07 1.13 3.78 0.03 0.14 
19 14.66 0.06 1.14 12.86 - - 
20 13.26 0.1 1.26 16.9 602.4 - 

CP Scheduling 1 has the fastest time to solve for all of the problem instances. It is followed 
closely by IP 1. CP Scheduling 2 and IP 2 perform the worst and are unable to solve many 
of the problem instances in the allotted three hours. All three monolithic models are able to 
discover that problem 16 has no solution very quickly, while the decomposition models are 
not able to.  

7.6.2 Optimization Experiments 
 

Experiments were run for every combination of soft constraints as well as for each soft 
constraint on its own. Each of the 21 problems was run on each of the six models. The 
results are tabulated separately for the monolithic and the decomposition models.  

Monolithic Models 
For the monolithic models, the time to solve as well as the number of violations of the soft 
constraint(s) being minimized is recorded. The time limit for all the experiments was three 
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hours (10800 seconds), at which point the best solution found so far was recorded. A ‘-‘ 
means that no feasible solution was found in the allotted time. The following tables 
summarize the results. It should be noted that I could only output the solution from IP1 if it 
was optimal, so in the cases where it shows that no solution was found, it may have actually 
found feasible solutions. 

Table 3a. Optimization results for soft constraint (4), events in the last period. 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations  IP 1 time 
IP 1 

violations  
0 20.1 0 10800 - 0.8 0 
1 10800 4 10800 9 1.79 0 
2 10800 5 10800 - 1.56 0 
3 10800 3 10800 6 1.62 0 
4 10800 5 10800 8 1.42 0 
5 10800 6 10800 - 1.76 0 
6 10800 3 10800 5 1.86 0 
7 10800 5 10800 8 1.58 0 
8 10800 1 10800 - 1.5 0 
9 10800 1 10800 2 1.55 0 
10 10800 3 10800 - 1.61 0 
11 10800 4 10800 7 1.41 0 
12 10800 3 10800 3 1.26 0 
13 10800 6 10800 6 1.52 0 
14 10800 5 10800 - 1.62 0 
15 10800 2 10800 9 1.5 0 
16 0 N/a 0 N/a 0 N/a 
17 10800 5 10800 - 1.37 0 
18 10800 2 10800 5 1.59 0 
19 10800 2 10800 6 1.67 0 
20 10800 1 10800 8 1.82 0 

IP 1 is the best. It solves all the problem instances to a solution without constraint violations 
quickly. CP Scheduling 1 is the worst since it cannot solve all the instances. 
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Table 3b.Optimization results for soft constraint (5), three events in a row. 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations  IP 1 time 
IP 1 

violations  
0 143 0 10800 - 497.2 0 
1 375.42 0 10800 3 111.72 0 
2 621 0 10800 2 63.19 0 
3 846.7 0 10800 8 36.9 0 
4 239.8 0 1.16 0 18.01 0 
5 776.2 0 10800 1 179.7 0 
6 1342.5 0 10800 23 159.2 0 
7 665.4 0 10800 10 36.22 0 
8 530.1 0 10800 4 42.3 0 
9 920.9 0 10800 18 76.79 0 
10 547.3 0 10800 - 143.2 0 
11 517.3 0 10800 13 49.51 0 
12 465.37 0 10800 36 7.07 0 
13 749.8 0 10800 14 23.48 0 
14 716 0 10800 - 158.2 0 
15 673.3 0 10800 5 45.58 0 
16 0 N/a 0 N/a 0 N/a 
17 501.57 0 10800 13 79.91 0 
18 814.6 0 10800 21 37.08 0 
19 517.9 0 10800 21 75.06 0 
20 946.4 0 10800 4 593.9 0 

IP 1 was the best in every case except for problem instance 0 when CP 1 was the best and 
for problem instance 4, when CP Scheduling 1 was the best, but both IP 1 and CP 1 were 
able to find solutions without soft constraint violations for every model.  
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Table 3c. Optimization results for soft constraint (6), a single event on a day. 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations  IP 1 time 
IP 1 

violations  
0 10800 29 10800 - 1370 0 
1 10800 31 10800 - 10800 - 
2 10800 39 10800 - 10800 - 
3 10800 38 10800 119 10800 - 
4 10800 42 10800 141 10800 - 
5 10800 20 10800 - 10800 - 
6 10800 33 10800 110 10800 - 
7 10800 60 10800 79 10800 - 
8 10800 35 10800 - 10800 - 
9 10800 38 10800 88 10800 - 
10 10800 37 10800 - 10800 - 
11 10800 42 10800 101 10800 - 
12 10800 53 10800 36 10800 - 
13 10800 37 10800 115 10800 - 
14 10800 31 10800 - 10800 - 
15 10800 15 10800 124 10800 - 
16 0 N/a 0 N/a 0 N/a 
17 10800 41 10800 130 10800 - 
18 10800 35 10800 98 10800 - 
19 10800 38 10800 71 10800 - 
20 10800 43 10800 - 10800 - 

In almost all cases, the models were run until the three-hour time limit was reached. CP 1 
was the best in all cases except for problem instance 1, where IP 1 was able to find the 
optimal solution in less than the allotted three hours, and problem instance 12 where CP 
Scheduling 1 was able to find a solution with less soft constraint violations. However, I 
could only output the solution from IP1 if it was optimal, so it may have found feasible 
solutions. 
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Table 3d. Optimization results for soft constraint (4) and (5). 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations  IP 1 time 
IP 1 

violations  
0 174.6 0 10800 - 1176 0 
1 10800 3 10800 - 85.86 0 
2 10800 5 10800 - 80.38 0 
3 10800 1 10800 - 20.97 0 
4 10800 4 10800 12 15.06 0 
5 10800 6 10800 - 131.6 0 
6 10800 3 10800 11 122.18 0 
7 10800 3 10800 17 32 0 
8 10800 1 10800 - 40.46 0 
9 10800 1 10800 9 49.6 0 
10 10800 5 10800 - 99.47 0 
11 10800 4 10800 36 27.88 0 
12 10800 3 10800 38 8.67 0 
13 10800 5 10800 20 31.46 0 
14 10800 5 10800 - 131.2 0 
15 10800 2 10800 9 41.21 0 
16 0 N/a 0 N/a 0 N/a 
17 10800 5 10800 - 44.79 0 
18 10800 2 10800 30 24.62 0 
19 10800 2 10800 22 71.36 0 
20 10800 1 10800 - 383.1 0 

IP 1 was the best in every case except for problem instance 0 when CP 1 was the best. CP 
Scheduling 1 was worst since it could not find solutions to many of the problem instances. 
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Table 3e. Optimization results for soft constraint (4) and (6). 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations  IP 1 time 
IP 1 

violations  
0 10800 37 10800 - 10800 - 
1 10800 36 10800 - 10800 - 
2 10800 45 10800 - 10800 - 
3 10800 43 10800 82 10800 - 
4 10800 48 10800 - 10800 - 
5 10800 26 10800 - 10800 - 
6 10800 41 10800 99 10800 - 
7 10800 67 10800 53 10800 - 
8 10800 39 10800 - 10800 - 
9 10800 44 10800 83 10800 - 
10 10800 44 10800 - 10800 - 
11 10800 47 10800 80 10800 - 
12 10800 61 10800 47 10800 - 
13 10800 44 10800 84 10800 - 
14 10800 38 10800 - 10800 - 
15 10800 18 10800 76 10800 - 
16 0 N/a 0 N/a 0 N/a 
17 10800 47 10800 - 10800 - 
18 10800 40 10800 86 10800 - 
19 10800 46 10800 74 10800 - 
20 10800 49 10800 - 10800 - 

In all cases, the models were run until the three-hour time limit was reached. CP 1 was the 
best in all cases except for problem instance 12 where CP Scheduling 1 was able to find a 
solution with less soft constraint violations. 
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Table 3f. Optimization results for soft constraint (5) and (6). 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations IP 1 time 
IP 1 

violations  
0 10800 - 10800 - 10800 - 
1 10800 50 10800 - 10800 - 
2 10800 80 10800 - 10800 - 
3 10800 90 10800 127 10800 - 
4 10800 59 10800 142 10800 - 
5 10800 76 10800 - 10800 - 
6 10800 - 10800 133 10800 - 
7 10800 91 10800 89 10800 - 
8 10800 66 10800 - 10800 - 
9 10800 - 10800 106 10800 - 
10 10800 65 10800 - 10800 - 
11 10800 71 10800 114 10800 - 
12 10800 - 10800 72 10800 - 
13 10800 85 10800 129 10800 - 
14 10800 - 10800 - 10800 - 
15 10800 64 10800 147 10800 - 
16 0 N/a 0 N/a 0 N/a 
17 10800 - 10800 143 10800 - 
18 10800 - 10800 119 10800 - 
19 10800 - 10800 92 10800 - 
20 10800 106 10800 - 10800 - 

In all cases, the models were run until the three-hour time limit was reached. CP 1 was the 
best in most cases, although there were several instances where CP 1 was not able to find a 
solution and CP Scheduling was. IP 1 was not able to find solutions to any of the instances. 
However, I could only output the solution from IP1 if it was optimal, so it may have found 
feasible solutions. 
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Table 3g. Optimization results for soft constraint (4), (5), and (6). 

Problem 
Instance CP 1 time 

CP 1 
violations  

CP 
Sched.1 

time 

CP Sched. 
1 

violations  IP 1 time 
IP 1 

violations  
0 10800 - 10800 - 10800 - 
1 10800 55 10800 - 10800 - 
2 10800 86 10800 - 10800 - 
3 10800 95 10800 142 10800 - 
4 10800 65 10800 - 10800 - 
5 10800 82 10800 - 10800 - 
6 10800 - 10800 134 10800 - 
7 10800 98 10800 64 10800 - 
8 10800 70 10800 - 10800 - 
9 10800 - 10800 94 10800 - 
10 10800 72 10800 - 10800 - 
11 10800 76 10800 109 10800 - 
12 10800 - 10800 98 10800 - 
13 10800 92 10800 107 10800 - 
14 10800 - 10800 - 10800 - 
15 10800 67 10800 97 10800 - 
16 0 N/a 0 N/a 0 N/a 
17 10800 - 10800 - 10800 - 
18 10800 - 10800 105 10800 - 
19 10800 - 10800 91 10800 - 
20 10800 112 10800 - 10800 - 

In all cases, the models were run until the three-hour time limit was reached. CP 1 was the 
best in most cases, although there were several instances where CP 1 was not able to find a 
solution and CP Scheduling was. IP 1 was not able to find solutions to any of the instances. 
However, I could only output the solution from IP1 if it was optimal, so it may have found 
feasible solutions. 

Decomposition Models 
For the decomposition models, the time to solve, the number of violations, and feasibility 
status is recorded. If the solution found is not feasible, it only solves the first sub-model, a 
‘*’ appears next to the number of violations. If the entry for violations is a ‘-‘, it means that 
no feasible solution was found in the allotted time of three hours. The following tables 
summarize the results. It should be noted that the IP model in IP2 could only put out a 
solution if it was optimal. 
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Table 4a. Optimization results for soft constraint (4), events in the last period. 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 3.87 0 2.55 0 10800 0* 
1 10800 4 10800 10 3.87 0 
2 10800 7 10800 10 3.72 0 
3 10800 6 10800 10 10800 0* 
4 10800 10 10800 - 10800 0* 
5 10800 4 10800 10 10800 0* 
6 10800 2 10800 10 3.79 0 
7 10800 5 10800 - 10800 0* 
8 10800 4 10800 - 10800 0* 
9 10800 1 10800 - 10800 0* 
10 10800 6 10800 - 10800 0* 
11 10800 6 10800 - 10800 0* 
12 10800 7 10800 - 10800 0* 
13 10800 7 10800 - 10800 0* 
14 10800 5 10800 - 10800 0* 
15 10800 4 10800 - 10800 0* 
16 10800 - 10800 - 10800 - 
17 10800 8 10800 - 10800 0* 
18 4.93 0 10800 - 3.74 0 
19 10800 1 10800 - 10800 0* 
20 10800 2 10800 - 10800 0* 

In most of the cases, CP 2 was the best, as it was the only model that was able to find 
feasible solutions to all the problem instances. In the few cases where IP 2 did find a feasible 
solution, it found a better one faster than CP 2. CP Scheduling 2 was not able to find 
solutions to many of the problems. 
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Table 4b.Optimization results for soft constraint (5), three events in a row. 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 129.7 0 10800 10 10800 0* 
1 3.21 0 855.23 0 10800 0* 
2 100.9 0 7481.5 0 1.11 0 
3 24.49 0 10800 - 10800 0* 
4 110.67 0 10800 - 10800 0* 
5 53.38 0 1089.6 0 10800 0* 
6 97.7 0 950.6 0 1.17 0 
7 23.73 0 10800 - 10800 0* 
8 41.18 0 10800 - 1.08 0 
9 10800 - 9162.4 0 1.13 0 
10 1587 0 10800 - 10800 0* 
11 56.12 0 10800 - 10800 0* 
12 354.41 0 10800 - 10800 0* 
13 138.54 0 10800 - 10800 0* 
14 21.01 0 10800 - 10800 0* 
15 171.96 0 10800 - 10800 0* 
16 10800 - 10800 - 10800 - 
17 58.96 0 10800 - 1.2 0 
18 23.36 0 616.39 0 1.12 0 
19 31.66 0 10800 - 10800 0* 
20 91.12 0 10800 - 10800 0* 

In most of the cases, CP 2 was the best, as it was the only model that was able to find 
solutions to all the problem instances. In the few cases where IP 2 did find a solution, it 
found a better one faster than CP 2. CP Scheduling 2 was not able to find solutions to many 
of the problems. 
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Table 4c. Optimization results for soft constraint (6), a single event on a day. 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 10800 - 10800 - 3643.6 0 
1 10800 - 10800 - 10800 - 
2 10800 106* 10800 - 10800 - 
3 10800 116* 10800 - 10800 - 
4 10800 105* 10800 - 10800 - 
5 10800 74* 10800 - 10800 - 
6 10800 - 10800 - 10800 - 
7 10800 56* 10800 - 10800 1* 
8 10800 92* 10800 - 10800 5* 
9 10800 107* 10800 - 10800 - 
10 10800 80* 10800 - 10800 - 
11 10800 - 10800 - 10800 4* 
12 10800 97* 10800 - 10800 2* 
13 10800 119* 10800 - 10800 - 
14 10800 - 10800 - 10800 - 
15 10800 83* 10800 - 10800 - 
16 10800 - 10800 - 10800 - 
17 10800 88* 10800 - 10800 - 
18 10800 - 10800 - 10800 - 
19 10800 - 10800 - 10800 - 
20 10800 - 10800 - 10800 - 

In almost all the cases, the models were run until the three-hour time limit. For problem 
instance 0, IP 2 was able to find a feasible solution without constraint violations. CP 2 and 
IP 2 were able to find partial solutions to some of the problems and CP Scheduling 2 was 
not able to find any solutions. 
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Table 4d.Optimization results for soft constraint (4) and (5). 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 170.4 0 10800 24 10800 0* 
1 10800 1 10800 7 8.07 0 
2 10800 6 10800 - 5.92 0 
3 10800 3 10800 - 10800 0* 
4 10800 6 10800 - 10800 0* 
5 10800 1 10800 - 10800 0* 
6 155.5 0 10800 - 6.78 0 
7 10800 4 10800 - 10800 0* 
8 10800 3 10800 - 7.74 0 
9 10800 - 10800 - 10800 0* 
10 10800 5 10800 - 10800 0* 
11 10800 6 10800 - 10800 0* 
12 10800 6 10800 - 10800 0* 
13 10800 7 10800 - 10800 0* 
14 10800 3 10800 - 8.12 0 
15 10800 5 10800 - 10800 0* 
16 10800 - 10800 - 10800 - 
17 10800 4 10800 - 10800 0* 
18 29.13 0 10800 - 8.6 0 
19 10800 1 10800 - 10800 0* 
20 120.17 0 10800 - 10800 0* 

In most of the cases, CP 2 was the best, as it was able to find feasible solutions to almost all 
of the problem instances. In the few cases where IP 2 did find a feasible solution, it found a 
better one faster than CP 2. CP Scheduling 2 was not able to find solutions to many of the 
problems. 
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Table 4e. Optimization results for soft constraint (4) and (6). 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 10800 - 10800 - 10800 - 
1 10800 - 10800 - 10800 - 
2 10800 106* 10800 - 10800 - 
3 10800 116* 10800 - 10800 - 
4 10800 105* 10800 - 10800 - 
5 10800 74* 10800 - 10800 - 
6 10800 88* 10800 - 10800 - 
7 10800 56* 10800 - 10800 1* 
8 10800 92* 10800 - 10800 5 
9 10800 - 10800 - 10800 - 
10 10800 - 10800 - 10800 - 
11 10800 83* 10800 - 10800 - 
12 10800 - 10800 - 10800 - 
13 10800 119* 10800 - 10800 - 
14 10800 - 10800 - 10800 - 
15 10800 83* 10800 - 10800 - 
16 10800 - 10800 - 10800 - 
17 10800 88* 10800 - 10800 - 
18 10800 - 10800 - 10800 - 
19 10800 - 10800 - 10800 2 
20 10800 - 10800 - 10800 - 

Almost all the models were run until the three-hour time limit. For problems 8 and 19, IP 2 
was able to find a feasible solution. CP 2 and IP 2 were able to find partial solutions to some 
of the remaining models, but CP Scheduling 2 was not able to find any solutions. 
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Table 4f. Optimization results for soft constraint (5) and (6). 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 10800 - 10800 - 10800 - 
1 10800 - 10800 - 10800 - 
2 10800 106* 10800 - 10800 - 
3 10800 116* 10800 - 10800 - 
4 10800 105* 10800 - 10800 - 
5 10800 74* 10800 - 10800 - 
6 10800 - 10800 - 673.5 0 
7 10800 56* 10800 - 10800 5* 
8 10800 92* 10800 - 10800 - 
9 10800 107* 10800 - 10800 - 
10 10800 80* 10800 - 10800 - 
11 10800 - 10800 - 10800 - 
12 10800 97* 10800 - 10800 - 
13 10800 119* 10800 - 10800 - 
14 10800 - 10800 - 10800 - 
15 10800 83* 10800 - 10800 - 
16 10800 - 10800 - 10800 - 
17 10800 88* 10800 - 10800 - 
18 10800 - 10800 - 10800 - 
19 10800 - 10800 - 10800 2* 
20 10800 - 10800 - 10800 - 

Almost all the models were run until the three-hour time limit. For problem 6, IP 2 was able 
to find a feasible solution. CP 2 and IP 2 were able to find partial solutions to some of the 
remaining models, but CP Scheduling 2 was not able to find any solutions. 
 
 

 

 

 

 

 

 



 

 

94

  

Table 4g. Optimization results for soft constraint (4), (5), and (6). 

Problem 
Instance CP 2 time 

CP 2 
violations  

CP 
Sched.2 

time 

CP Sched. 
2 

violations  IP 2 time 
IP 2 

violations  
0 10800 - 10800 - 10800 - 
1 10800 - 10800 - 10800 - 
2 10800 - 10800 - 10800 - 
3 10800 - 10800 - 10800 - 
4 10800 - 10800 - 10800 - 
5 10800 - 10800 - 10800 - 
6 10800 - 10800 - 10800 - 
7 10800 - 10800 - 10800 - 
8 10800 - 10800 - 10800 - 
9 10800 - 10800 - 10800 - 
10 10800 - 10800 - 10800 - 
11 10800 - 10800 - 10800 - 
12 10800 - 10800 - 10800 - 
13 10800 - 10800 - 10800 - 
14 10800 - 10800 - 10800 - 
15 10800 - 10800 - 10800 - 
16 10800 - 10800 - 10800 - 
17 10800 - 10800 - 10800 - 
18 10800 - 10800 - 10800 - 
19 10800 - 10800 - 10800 - 
20 10800 - 10800 - 10800 - 

All of the models were run until the time limit and none of them could find any solutions to 
any of the models. 

7.7 Discussion 
 

Below is an aggregate table of the results in the previous section. The average time for each 
of the models, for each experiment is calculated. As well, for the optimization experiments, 
the number of solutions (out of 21 possible) that were feasible and the number of solutions 
that had the best score (i.e. the least amount of soft constraint violations). It should be noted 
that I could only output the solution from the IP models if it was optimal, so there may be 
cases where sub-optimal, yet feasible solutions were found. 
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Table 5. Aggregate Experimental Results. The best (i.e. a combination of the best time and 
the most solved) model for each experiment is in bold. 

Included 
Constraints CP 1 

CP 
Scheduling 

1 IP 1 CP 2 

CP 
Scheduling 

2 IP 2 
1,2,3       

avg. time 11.53 0.075 1.05 578.9 5805.1 8742.9 
# solved 21 21 21 20 10 4 
1,2,3,4       

avg. time 9772.4 10285.7 1.47 9771.8 10285.8 8743.6 
# feas. 21 13 21 20 6 4 
# best 2 1 21 2 1 4 
1,2,3,5       

avg. time 582.9 9771.5 115.9 1177.1 8674.1 7714.6 
# feas. 21 17 21 19 7 6 
# best 21 2 21 19 6 6 
1,2,3,6       

avg. time 10285.7 10285.7 9836.7 10800 10800 10459.2 
# feas. 21 13 2 0 0 1 
# best 1 1 2 0 0 1 

1,2,3,4,5       
avg. time 9779.7 10285.7 124.66 9274 10800 7716.4 

# feas. 21 11 21 19 2 6 
# best 2 1 21 4 0 6 

1,2,3,4,6       
avg. time 10285.7 10285.7 10285.7 10800 10800 10800 

# feas. 21 11 1 0 0 2 
# best 1 1 1 0 0 0 

1,2,3,5,6       
avg. time 10285.7 10285.7 10285.7 10800 10800 10317.8 

# feas. 13 13 1 0 0 1 
# best 1 1 1 0 0 1 

1,2,3,4,5,6       
avg. time 10285.7 10285.7 10285.7 10800 10800 10800 

# feas. 13 11 1 0 0 0 
# best 1 1 1 0 0 0 

 

The results seem to show that, in general, the monolithic models work better than the 
decomposition models and that the pure IP model is the best, except for when constraint 6 is 
introduced. In the cases where soft constraint 6 is included, CP 1 is the best. However, I 
could only output the solution from IP1 if it was optimal, so it may have found feasible 
solutions that were better than those from CP1. It should be noted that for the 21 test 
problems, the optimal solution is not known, so it is unclear how far from the optimal any of 
the solutions are. In the cases where a solution with a value of zero was found, it is known 
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that the optimal solution is zero. It should also be noted, that this research began as CP 
research. First came the pure CP models and it was because they did not work well on the 
larger competition problems that decomposition models were introduced as well. After 
observing the performance of the decomposition IP/CP model, a pure IP model was 
developed for the purpose of comparison. Before the introduction of the pure IP model, it 
was the CP decomposition model that had the most success with the competition instances. 
The following table displays the results when solving for any feasible solution, ignoring all 
the soft constraints, on the 20 competition instances. The entries in the table are as follows: 
A time in seconds means that a feasible solution was found, a P means that solutions were 
found to the first part of the decomposition models, but that the solutions were not feasible, 
and a ‘-‘ means that no solution was found in the allotted three hours. 

Table 6. Satisfaction experiment results for the competition instances. 

Problem 
Instance CP 1 

CP 
Scheduling 

1 IP 1 CP 2 

CP 
Scheduling 

2 IP 2 
1 - - 6.91 P - P 
2 - - 6.82 P - P 
3 - - 7.97 P - P 
4 - - 9.19 - - P 
5 - - 8.17 - - P 
6 - - 9.37 - - P 
7 - - 10.14 533.34 - P 
8 - - 8.76 P - P 
9 - - 8.94 P - P 
10 - - 7.91 P - P 
11 - - 7.47 P - P 
12 - - 7.03 P - P 
13 - - 8.22 - - P 
14 - - 10.2 - - P 
15 - - 8.45 - - P 
16 - - 9.52 P - P 
17 - - 7.63 P - P 
18 - - 6.85 P - P 
19 - - 10.5 - - P 
20 - - 9.13 62.9 - P 

           

If the pure IP model is not considered, the CP decomposition model works the best, 
but the IP model far surpasses the performance of any other model. This is surprising, since 
CP seems to be better suited to timetabling problems than IP due to the nature of the 
constraints. 

 
In an attempt to understand why the pure IP model was the best, a linear 

programming (LP) model was created. The LP model was a relaxation of the IP model. It 
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had no integrality constraints and no soft constraints. The rest of the set up was the same as 
the pure IP model. Each of the 21 test problems was run on the LP model. The results were 
as follows. Results are time to solve in seconds. 

Table 7. Satisfaction experiment results for the test problems using the LP model. 

 Test Problems 
Competition 

Problems 
0 0.49 N/a 
1 0.86 6.96 
2 0.88 6.85 
3 0.95 7.44 
4 0.81 9.77 
5 0.92 9.02 
6 0.9 9.21 
7 0.83 10.53 
8 0.81 8.61 
9 0.83 8.92 
10 0.81 7.48 
11 0.8 7.41 
12 0.75 7.05 
13 0.85 8.31 
14 0.93 10.76 
15 1 9.17 
16 0 9.21 
17 0.85 8.95 
18 0.86 7.23 
19 0.86 10.39 
20 0.94 9.28 

 

Surprisingly, all of the solutions are integer. The likely explanation for why the IP 
model worked the best was that it was able to make good use of the LP bounds. In the case 
of the satisfaction experiments, the LP bounds even provided solutions, since the problem 
was naturally integer. The LP model was run on the competition instances also, to see if they 
were naturally integer as well and the model provided integer solutions to the competition 
instances as well. 

 
The results also highlighted drawbacks inherent in the decomposition models. The 

first is that in the optimizations problems, the decomposition models could get stuck in the 
first section trying to find a good objective function value, when the results may not even be 
a feasible solution, thereby wasting a lot of time. The second drawback is that they are 
unable to see if a problem is not solvable. For example, test problem 16 had no solution. The 
decomposition models were not able to discover this.  
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7.6 Conclusion 
 

In this chapter, we looked at several models using CP. Some of these models involved CP 
decomposition, a novel approach in timetabling. The models did show a little promise in 
terms of CP being used to solve timetabling problems. The constraints fit nicely with 
existing CP constraints, making the model very natural. The decomposition models did not 
work out well. There was one enlightening discovery that came out of the experiments: the 
LP model of the timetabling problem, when solving for feasibility alone, was naturally 
integer.  
 

For the international competition, the solution techniques were extremely 
complicated, as are most of the successful solution techniques found in the literature. It 
would therefore be quite a breakthrough if in fact linear programming could be used to solve 
timetabling problems, even of a particular form. The form of this particular problem is 
similar to many university timetabling problems. In most universities, the problem could be 
broken down and a section could be modeled in this form so that linear programming could 
at least be part of the solution process. Although the LP gave an integer solution for the 
feasibility problems, it is unknown what solution it would give for any of the optimization 
problems or if the problem description were to be changed.  We can therefore say that the 
results of this research are promising and merit further work. 

 
The results of the experiments run in this chapter show that there is potential for 

linear programming as a tool for solving university course timetabling problems. Although, 
most real-world timetabling problems in their entirety would not be solvable using linear 
programming, this research shows that there may be a way to use linear programming to 
solve a good portion of a timetabling problem. In this chapter, it was shown that problems 
that are of the same form as the timetabling problems used for the international competition 
of metaheuristics in 2003, when feasibility alone is considered, appear to be naturally 
integer. The problems used for the competition were meant to resemble real-world 
university course timetabling problems, so it makes sense that most universities would be 
able to represent, at least part of their problem, in that form. They would then be able to use 
linear programming to solve that part of their problem. The advantage of this is that an LP 
model can be solved easily using well-known algorithms such as the simplex method. 
Currently, the successful timetabling algorithms are mostly local search techniques, which 
do not guarantee a feasible solution and integer programming techniques that can be very 
time consuming. 
 
 Future work would be to test the LP model on the problem instances and include 
some soft constraints. It would be interesting to see what objectives could be included and 
for the solution to remain integer. It would also be interesting to attempt to represent a real-
world timetabling problem in the format described in this paper and to use the LP model to 
solve it. We could then get a better idea for how useful of a tool LP can be for solving a real-
world timetabling problem. 



 

 

99

  

 

Chapter 8 

Conclusions and Future Work 
 

In this chapter we reiterate the contributions from this thesis and suggest directions for 
future work based on this research. 

8.1 Contributions 
 

The contributions of this thesis follow the process of solving a real world problem. The three 
steps in solving a real world problem are (1) to analyze the problem, (2) develop a problem 
definition and evaluation criteria, and (3) to model and solve the problem. This thesis makes 
contributions to each of those three areas in the domain of operations research.  

8.1.1 Analyzing the Problem 
 
The main contribution to this area of problem solving is in taking a real world problem and 
going in detail over the process of how the problem is solved. By looking at the timetabling 
problem at APSC, we show that real world problems are much more complicated than what 
typically appears in a mathematical model. It is also more complicated than what appears in 
a typical research paper on timetabling. The complexity of the APSC problem emphasizes 
how difficult, if not impossible, it is to come up with a definition of an optimization problem 
that could be used to define a mathematical model. In the APSC problem, there wasn’t one 
definition to the problem. As well, the definition was dynamic, based on human judgments 
about what constraints can be relaxed and data that has been gathered. The complexity of the 
APSC problem is motivation for research into how to define a problem, a problem-solving 
step that is not directly studied in the operations research domain. Also, a detailed process 
description is made of the APSC problem and problem areas, specifically ones where 
automation may be helpful, are highlighted. Solutions are suggested for all problem areas. 

8.1.2 Developing a Problem Definition 
 
The main contribution to this area of problem solving is in taking a real world problem and 
defining evaluation criteria. The creation of evaluation criteria is part of a problem 
definition. The evaluation criteria are complex and may be difficult to incorporate into a 
tradition optimization function for two reasons. (1) The metrics meant to show the quality of 
the schedule can be misleading and cannot be used in isolation from human judgment. (2) It 
is unclear how to balance different metrics automatically. Since, the metrics cannot be 
incorporated into a traditional optimization function, it is necessary to evaluate how a 
solution works. In the APSC case, a detailed set of evaluation criteria is useful and necessary 
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if one is to continue on in trying to find an automated timetabling solution. These evaluation 
criteria are implemented in the form of a Microsoft Access database that can score the 
quality of a timetable created through their current process. These evaluation criteria, 
together with the process description form one possible problem definition. 

8.1.3 Modeling and Solving the Problem 
 
The main contribution to this area of problem solving is in developing a mathematical 
model. Though the APSC problem is not used, since it is too big, a simpler university 
timetabling problem is used to test several mathematical models. Six mathematical 
programming models were created to solve a university timetabling problem of similar style 
to that of the APSC. These six models experimented particularly with Constraint 
Programming (CP) and decomposition techniques. These are ideas that have not been 
explored, in depth, as of yet in the automated timetabling research. The results of the 
experiments showed that the Integer Programming (IP) was the best technique for solving 
the problem, due to the fact that the timetabling problem being studied, when solved using a 
Linear Programming model, appeared to be naturally integer. This suggests potential for 
linear programming as a tool for solving university course timetabling problems. 

8.2 Future Work 
 
Many interesting questions arose from this thesis, suggesting possibilities for further 
research. The following sections outline possib le directions for future work. 

8.2.1 The Problem Definition Stage 
 
The problem definition stage consists of choosing what information to include in a model of 
a real situation. It is settling on a level of abstraction that accurately represents the domain,  
but is not too complex that it is too hard to solve in a reasonable amount of time. There is 
more than one problem definition for each real world problem and, as shown in Chapter 2, a 
different problem definition can result in a different solution to the “same” problem. 
 

The problem definition stage has been overlooked in the Operations Research 
literature. This is surprising because it seems to be a fundamental concept when applying 
optimization techniques to the real world. The problem definition stage exists in 
optimization problems, but it is skipped over in the research. In Chapter 3, we saw that 
software engineering and enterprise modeling are two areas that actively research the 
problem definition stage as well as validating different problem definitions in the real world. 
One direction for future research would be to try to develop some of the techniques that 
exist in the model-based diagnosis, software engineering, and enterprise modeling domains 
and apply them to operations research problems. This thesis made contributions towards 
these goals, but a lot of work still remains to achieve them.   

 
As a first step, we would have to see what sorts of simplifying assumptions are 

useful given the nature of a problem. One way to research this would be to take a group of 
real world optimization problems that are of similar form and put them into mathematical 
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models. While doing this, we would keep track of the assumptions that we had to make for 
each of the problems. We could then see what assumptions, if any, were necessary for most 
of the problems. If we then repeated this process for other groupings of problems, we could 
develop a compilation of which assumptions are necessary for problems sharing a certain set 
of characteristics as well as which assumptions might be necessary for those problems. 

 
Another direction for future work would be to experiment with different problem 

definitions using the APSC problem. The complexity of the APSC timetabling problem 
shows how difficult, if not impossible, it would be to create a definition that could be put 
into a mathematical model, making it a prime candidate for problem definition research. 
Some examples of possible problem definitions for the APSC problem are: 

 
• A small part of the APSC problem as it is currently. 
• A simplified version of the entire process. 
• The scheduling part of the process ignoring soft constraints. 
• The scheduling part of the process with some of the hard constraints relaxed. 
 

We could put the different problem definitions into a mathematical model and see what 
effect different problem definitions had on the solution. We could then attempt to see how 
useful any of the solutions coming from those definitions are in the real world. We could 
also compare the solutions using the evaluation database. 
 

Another direction for future work would be to expand the research on defining the 
problem and seeing how different definitions can have different results in the real world to 
optimization and the field of operations research as a whole by looking at other domains in 
the operations research field. We could take other problems, such as queuing theory 
problems or transportation routing problems and try to develop sets of problem definitions 
whose solutions we could then compare. 

8.2.2 The APSC Evaluation Database 
 
Several directions could be taken to extend on the work described in Chapter 5. From a 
research perspective, it would be useful to study quality metrics of all forms to see if there 
are metrics that could be placed in an objective function and that would accurately represent 
the desired qualitative effect.  
 
 Another direction would be to improve the current database. One idea is to add more 
and more detailed quality metrics. There are more complicated metrics, such as how courses 
are spread over the week and how students’ breaks are spread over the course of a day. 
These metrics would provide more information to the schedulers. Another idea is to 
incorporate the database into the scheduling process at APSC. Microsoft Access can 
interface with Course Planner, the software used to create the timetable at APSC. The 
database could then be used to inform the scheduler as they make decisions throughout the 
scheduling process. For example, when the scheduler chooses to place a meeting for a 
course in a specific timeslot, it could show them how that changes the value of the quality 
metrics.  
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8.2.3 Extensions of the Mathematical Models 
 
The results of the experiments run in Chapter 7 showed that there is potential for linear 
programming (LP) as a tool for solving university course timetabling problems. Although, 
most real-world timetabling problems in their entirety would not be solvable using linear 
programming, this research shows that there may be a way to use linear programming to 
solve a good portion of a timetabling problem. The experiments showed that problems that 
are of the same form as the timetabling problems used for the international competition of 
metaheuristics in 2003, when feasibility alone is considered, appear to be naturally integer. 
The problems used for the competition were meant to resemble real-world university course 
timetabling problems, so it makes sense that most universities would be able to represent, at 
least part of their problem, in that form. They would then be able to use LP to solve that part 
of their problem. The advantage of this is that an LP model can be solved easily using well-
known algorithms such as the simplex method. Currently, the successful timetabling 
algorithms are mostly local search techniques, which do not guarantee a feasible solution 
and integer programming techniques that can be very time consuming. 
 

Future work would be, firstly, to analyze the structure of the timetabling problems 
used in the competition in order to bring to light what it is that makes the problem naturally 
integer. There is quite a bit of research on what problem structures lead to naturally integer 
solutions in LP [89, 90] and it would be useful to know what it is in the competition 
problems that cause this property. Another direction for future work would be to test the LP 
model on the problem instances and include some soft constraints. It would be interesting to 
see what objectives could be included where the solution would remain integer. It would 
also be interesting to attempt to represent a real-world timetabling problem in the format 
described in Chapter 7 and to use the LP model to solve it. We could then get a better idea 
for how useful of a tool LP can be for solving a real-world timetabling problem. 

8.3 Conclusions 
 
The central thesis of this dissertation is that the problem definition stage of solving real 
world problems should be directly studied and that the problems must be studied in their 
entirety in order to create a solution that is useful in the real world. This was shown through 
the use of university course timetabling problems and the Faculty of Applied Science and 
Engineering at the University of Toronto’s timetable, in particular. The problem definition 
stage has been identified as important and is studied in depth in both software engineering 
and enterprise modeling, yet this is not the case in the area of operations research. This work 
was an introduction of such research into the Operations Research (OR) field. University 
course timetabling has received much attention from researchers in both the OR and 
Artificial Intelligence (AI) fields and this work was a continuation of such effort. In 
particular, in this dissertation:  
 

• We conducted a thorough analysis of the university course timetabling problem 
at the Faculty of Applied Science and Engineering at the University of Toronto 
(APSC) as an example of a real-world problem in operations research. The 
complexity of the APSC timetabling problem showed how difficult, if not 
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impossible, it would be to create a definition that could be put into a 
mathematical model. It also provided motivation for researching the problem 
definition phase. 

 
• We created detailed evaluation criteria for the APSC timetable. Through the 

creation of an evaluation system for APSC, we saw that putting quality measures 
into an objective function of a mathematical model is difficult.  The objective 
function would not accurately represent the desired quality metrics and since this 
is the case, it is important to evaluate how a given solution works back in the real 
world. 

 
• Motivated by the constraint structure of university course timetabling problems, 

we applied constraint programming (CP), Integer Programming (IP), and 
decomposition techniques to a benchmark university course timetabling problem 
found in the literature. The results of the experiments showed that there is 
potential for linear programming (LP) as a tool for solving university course 
timetabling problems. 
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Appendix A: SQL Queries 
 
q_Conflicts_by_POSt_49 
 
SELECT [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 AS Conflicts, Count([Copy of 
q_conflict1].POST_CD) AS [Conflict Count] 
FROM [Copy of q_conflict1] 
GROUP BY [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 
HAVING ((([Copy of q_conflict1].SESSION)=20049)); 
 
q_Conflicts_by_POSt_51 
 
SELECT [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 AS Conflicts, Count([Copy of 
q_conflict1].POST_CD) AS [Conflict Count] 
FROM [Copy of q_conflict1] 
GROUP BY [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 
HAVING ((([Copy of q_conflict1].SESSION)=20051)); 
 
q_Conflicts_by_POSt_59 
 
SELECT [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 AS Conflicts, Count([Copy of 
q_conflict1].POST_CD) AS [Conflict Count] 
FROM [Copy of q_conflict1] 
GROUP BY [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 
HAVING ((([Copy of q_conflict1].SESSION)=20059)); 
 
q_Conflicts_by_POSt_61 
 
SELECT [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 AS Conflicts, Count([Copy of 
q_conflict1].POST_CD) AS [Conflict Count] 
FROM [Copy of q_conflict1] 
GROUP BY [Copy of q_conflict1].SESSION, [Copy of q_conflict1].POST_CD, [Copy of 
q_conflict1].CountOfMEET_END_SUFFIX1 
HAVING ((([Copy of q_conflict1].SESSION)=20061)); 
 
 
 
copy of q_conflict1 
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SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1, 
Count(t_Student_Schedule.MEET_END_SUFFIX1) AS CountOfMEET_END_SUFFIX1, 
t_Student_Schedule.POST_CD 
FROM t_Student_Schedule 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1, 
t_Student_Schedule.POST_CD 
HAVING (((Count(t_Student_Schedule.MEET_END_SUFFIX1))>1)); 
 
Make_conlict_count 
 
SELECT q_conflict1.SESSION, q_conflict1.CountOfMEET_END_SUFFIX1 AS Conflict, 
Count(q_conflict1.CountOfMEET_END_SUFFIX1) AS [Count] 
FROM q_conflict1 
GROUP BY q_conflict1.SESSION, q_conflict1.CountOfMEET_END_SUFFIX1; 
 
q_conflict1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1, 
Count(t_Student_Schedule.MEET_END_SUFFIX1) AS CountOfMEET_END_SUFFIX1 
FROM t_Student_Schedule 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1 
HAVING (((Count(t_Student_Schedule.MEET_END_SUFFIX1))>1)); 
 
q_Early_Starts_by_POSt_49 
 
SELECT [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID AS Early_Starts, Count([Copy of 
q_early2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_early2] 
GROUP BY [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID 
HAVING ((([Copy of q_early2].SESSION)=20049)); 
 
 
 
 
 
 
 
 
 
q_Early_Starts_by_POSt_51 
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SELECT [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID AS Early_Starts, Count([Copy of 
q_early2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_early2] 
GROUP BY [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID 
HAVING ((([Copy of q_early2].SESSION)=20051)); 
 
q_Early_Starts_by_POSt_59 
 
SELECT [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID AS Early_Starts, Count([Copy of 
q_early2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_early2] 
GROUP BY [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID 
HAVING ((([Copy of q_early2].SESSION)=20059)); 
 
q_Early_Starts_by_POSt_61 
 
SELECT [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID AS Early_Starts, Count([Copy of 
q_early2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_early2] 
GROUP BY [Copy of q_early2].SESSION, [Copy of q_early2].POST_CD, [Copy of 
q_early2].CountOfPERSON_ID 
HAVING ((([Copy of q_early2].SESSION)=20061)); 
 
Copy of q_early2 
 
SELECT [Copy of q_early1].SESSION, [Copy of q_early1].POST_CD, [Copy of 
q_early1].PERSON_ID, Count([Copy of q_early1].PERSON_ID) AS CountOfPERSON_ID 
FROM [Copy of q_early1] 
GROUP BY [Copy of q_early1].SESSION, [Copy of q_early1].POST_CD, [Copy of 
q_early1].PERSON_ID; 
 
copy of q_early1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.POST_CD 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_START_TM1)<=#12/30/1899 9:0:0#)) 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.POST_CD; 
 
 
Make_early_starts 
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SELECT q_early2.SESSION, q_early2.CountOfPERSON_ID AS Early_Starts, 
Count(q_early2.CountOfPERSON_ID) AS [Count] 
FROM q_early2 
GROUP BY q_early2.SESSION, q_early2.CountOfPERSON_ID; 
 
q_early2 
 
SELECT q_early1.SESSION, q_early1.PERSON_ID, Count(q_early1.PERSON_ID) AS 
CountOfPERSON_ID 
FROM q_early1 
GROUP BY q_early1.SESSION, q_early1.PERSON_ID; 
 
q_early1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_START_TM1)<=#12/30/1899 9:0:0#)) 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1; 
 
q_Friday_Prayer_by_POSt 
 
SELECT [Copy of q_friday2].SESSION, [Copy of q_friday2].POST_CD, Count([Copy of 
q_friday2].POST_CD) AS No_Friday_Break 
FROM [Copy of q_friday2] 
GROUP BY [Copy of q_friday2].SESSION, [Copy of q_friday2].POST_CD; 
 
Copy of q_friday2 
 
SELECT [Copy of q_friday1].SESSION, [Copy of q_friday1].PERSON_ID, [Copy of 
q_friday1].POST_CD, Count([Copy of q_friday1].MEET_START_TM1) AS 
CountOfMEET_START_TM11 
FROM [Copy of q_friday1] 
GROUP BY [Copy of q_friday1].SESSION, [Copy of q_friday1].PERSON_ID, [Copy of 
q_friday1].POST_CD 
HAVING (((Count([Copy of q_friday1].MEET_START_TM1))=2)); 
 
 
 
 
 
 
 
copy of q_Friday1 
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SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1, 
t_Student_Schedule.POST_CD 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_DAY1)="FR") AND 
((t_Student_Schedule.MEET_START_TM1)=#12/30/1899 12:0:0#)) OR 
(((t_Student_Schedule.MEET_START_TM1)=#12/30/1899 13:0:0#)); 
 
q_Make_Friday_Prayer 
 
SELECT q_friday2.SESSION, Count(q_friday2.SESSION) AS No_Friday_Break 
FROM q_friday2 
GROUP BY q_friday2.SESSION; 
 
q_Friday2 
 
SELECT q_friday1.SESSION, q_friday1.PERSON_ID, 
Count(q_friday1.MEET_START_TM1) AS CountOfMEET_START_TM1 
FROM q_friday1 
GROUP BY q_friday1.SESSION, q_friday1.PERSON_ID 
HAVING (((Count(q_friday1.MEET_START_TM1))=2)); 
 
q_Friday1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_DAY1)="FR") AND 
((t_Student_Schedule.MEET_START_TM1)=#12/30/1899 12:0:0#)) OR 
(((t_Student_Schedule.MEET_START_TM1)=#12/30/1899 13:0:0#)); 
 
q_Late_Ends_by_POSt_49 
 
SELECT [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID AS La te_Ends, Count([Copy of 
q_late2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_late2] 
GROUP BY [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID 
HAVING ((([Copy of q_late2].SESSION)=20049)); 
 
 
 
 
 
q_Late_Ends_by_POSt_51 
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SELECT [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID AS Late_Ends, Count([Copy of 
q_late2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_late2] 
GROUP BY [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID 
HAVING ((([Copy of q_late2].SESSION)=20051)); 
 
q_Late_Ends_by_POSt_59 
 
SELECT [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID AS Late_Ends, Count([Copy of 
q_late2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_late2] 
GROUP BY [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID 
HAVING ((([Copy of q_late2].SESSION)=20059)); 
 
q_Late_Ends_by_POSt_61 
 
SELECT [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID AS Late_Ends, Count([Copy of 
q_late2].CountOfPERSON_ID) AS [Count] 
FROM [Copy of q_late2] 
GROUP BY [Copy of q_late2].SESSION, [Copy of q_late2].POST_CD, [Copy of 
q_late2].CountOfPERSON_ID 
HAVING ((([Copy of q_late2].SESSION)=20061)); 
 
copy of q_late2 
 
SELECT [Copy of q_late1].SESSION, [Copy of q_late1].PERSON_ID, [Copy of 
q_late1].POST_CD, Count([Copy of q_late1].PERSON_ID) AS CountOfPERSON_ID 
FROM [Copy of q_late1] 
GROUP BY [Copy of q_late1].SESSION, [Copy of q_late1].PERSON_ID, [Copy of 
q_late1].POST_CD; 
 
copy of q_late1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.POST_CD 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_END_SUFFIX1)>=#12/30/1899 17:0:0#)) 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.POST_CD; 
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q_Make_late_ends  
 
SELECT q_late2.SESSION, q_late2.CountOfPERSON_ID1 AS Late_Ends, 
Count(q_late2.CountOfPERSON_ID1) AS [Count] 
FROM q_late2 
GROUP BY q_late2.SESSION, q_late2.CountOfPERSON_ID1; 
 
q_late2 
 
SELECT q_late1.SESSION, q_late1.PERSON_ID, Count(q_late1.PERSON_ID) AS 
CountOfPERSON_ID1 
FROM q_late1 
GROUP BY q_late1.SESSION, q_late1.PERSON_ID; 
 
q_late1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_END_SUFFIX1)>=#12/30/1899 17:0:0#)) 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1; 
 
q_Lunch_Break_by_POSt 
 
SELECT [Copy of q_lunch2].SESSION, [Copy of q_lunch2].POST_CD, Count([Copy of 
q_lunch2].POST_CD) AS No_Lunch_Break 
FROM [Copy of q_lunch2] 
GROUP BY [Copy of q_lunch2].SESSION, [Copy of q_lunch2].POST_CD; 
 
Copy of q_lunch2 
 
SELECT [Copy of q_lunch1].SESSION, [Copy of q_lunch1].PERSON_ID, [Copy of 
q_lunch1].POST_CD, [Copy of q_lunch1].MEET_DAY1 
FROM [Copy of q_lunch1] 
GROUP BY [Copy of q_lunch1].SESSION, [Copy of q_lunch1].PERSON_ID, [Copy of 
q_lunch1].POST_CD, [Copy of q_lunch1].MEET_DAY1 
HAVING (((Count([Copy of q_lunch1].MEET_DAY1))=2)); 
 
copy of q_lunch1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1, 
t_Student_Schedule.POST_CD 
FROM t_Student_Schedule 
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WHERE (((t_Student_Schedule.MEET_START_TM1)=#12/30/1899 11:0:0# Or 
(t_Student_Schedule.MEET_START_TM1)=#12/30/1899 12:0:0#)); 
 
Make_lunch_break 
 
SELECT q_lunch2.SESSION, Count(q_lunch2.SESSION) AS No_Lunch_Break 
FROM q_lunch2 
GROUP BY q_lunch2.SESSION; 
 
q_lunch2 
 
SELECT q_lunch1.SESSION, q_lunch1.PERSON_ID, q_lunch1.MEET_DAY1 
FROM q_lunch1 
GROUP BY q_lunch1.SESSION, q_lunch1.PERSON_ID, q_lunch1.MEET_DAY1 
HAVING (((Count(q_lunch1.MEET_DAY1))=2)); 
 
q_lunch1 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.MEET_DAY1, t_Student_Schedule.MEET_START_TM1 
FROM t_Student_Schedule 
WHERE (((t_Student_Schedule.MEET_START_TM1)=#12/30/1899 11:0:0# Or 
(t_Student_Schedule.MEET_START_TM1)=#12/30/1899 12:0:0#)); 
 
q_UHigh_POSt 
 
SELECT q_U5.SESSION, q_U5.POST_CD, Count(q_U5.Utilization) AS High_Ut 
FROM q_U5 
GROUP BY q_U5.SESSION, q_U5.POST_CD 
HAVING (((Count(q_U5.Utilization))>0.7)); 
 
q_U5 
 
SELECT q_U2.SESSION, q_U2.POST_CD, q_U2.PERSON_ID, q_U2.MEET_DAY1, 
q_U2!Hours_On/q_U4!Day_length AS Utilization 
FROM q_U2 INNER JOIN q_U4 ON (q_U2.SESSION = q_U4.SESSION) AND 
(q_U2.POST_CD = q_U4.POST_CD) AND (q_U2.PERSON_ID = q_U4.PERSON_ID) 
AND (q_U2.MEET_DAY1 = q_U4.MEET_DAY1); 
 
qU2  
  
SELECT q_U1.SESSION, q_U1.POST_CD, q_U1.PERSON_ID, q_U1.MEET_DAY1, 
Sum(q_U1.Course_length) AS Hours_On 
FROM q_U1 
GROUP BY q_U1.SESSION, q_U1.POST_CD, q_U1.PERSON_ID, q_U1.MEET_DAY1; 
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qU4 
 
SELECT q_U3.SESSION, q_U3.POST_CD, q_U3.PERSON_ID, q_U3.MEET_DAY1, 
Hour(q_U3!End-q_U3!Start) AS Day_length 
FROM q_U3; 
 
qU1  
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.PERSON_ID, 
t_Student_Schedule.POST_CD, t_Student_Schedule.MEET_DAY1, 
t_Student_Schedule.MEET_START_TM1, t_Student_Schedule.MEET_END_SUFFIX1, 
Hour(t_Student_Schedule!MEET_END_SUFFIX1-
t_Student_Schedule!MEET_START_TM1) AS Course_length 
FROM t_Student_Schedule; 
 
qU3 
 
SELECT t_Student_Schedule.SESSION, t_Student_Schedule.POST_CD, 
t_Student_Schedule.PERSON_ID, t_Student_Schedule.MEET_DAY1, 
Min(t_Student_Schedule.MEET_START_TM1) AS Start, 
Max(t_Student_Schedule.MEET_END_SUFFIX1) AS [End] 
FROM t_Student_Schedule 
GROUP BY t_Student_Schedule.SESSION, t_Student_Schedule.POST_CD, 
t_Student_Schedule.PERSON_ID, t_Student_Schedule.MEET_DAY1; 
 
q_UMed_POSt 
 
SELECT q_UMed1.SESSION, q_UMed1.POST_CD, Count(q_UMed1.Utilization) AS 
Med_Ut 
FROM q_UMed1 
GROUP BY q_UMed1.SESSION, q_UMed1.POST_CD; 
 
q_UMed1 
 
SELECT q_U5.SESSION, q_U5.POST_CD, q_U5.Utilization 
FROM q_U5 
WHERE (((q_U5.Utilization)>0.4 And (q_U5.Utilization)<=0.7)); 
 
q_ULow_POSt 
 
SELECT q_ULow1.SESSION, q_ULow1.POST_CD, Count(q_ULow1.Utilization) AS 
Low_Ut 
FROM q_ULow1 
GROUP BY q_ULow1.SESSION, q_ULow1.POST_CD; 
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q_ULow1 
 
SELECT q_U5.SESSION, q_U5.POST_CD, q_U5.Utilization 
FROM q_U5 
WHERE (((q_U5.Utilization)<=0.4)); 
 
q_ULevel_Year 
 
SELECT q_UHigh_Year.SESSION, q_ULow_Year.Low_Ut, q_UMed_Year.Med_Ut, 
q_UHigh_Year.High_Ut 
FROM (q_UHigh_Year INNER JOIN q_ULow_Year ON q_UHigh_Year.SESSION = 
q_ULow_Year.SESSION) INNER JOIN q_UMed_Year ON q_ULow_Year.SESSION = 
q_UMed_Year.SESSION; 
 
q_UHigh_Year 
 
SELECT q_U5.SESSION, Count(q_U5.Utilization) AS High_Ut 
FROM q_U5 
GROUP BY q_U5.SESSION 
HAVING (((Count(q_U5.Utilization))>0.7)); 
 
q_UMed_Year 
 
SELECT q_U5.SESSION, Count(q_U5.Utilization) AS Med_Ut 
FROM q_U5 
GROUP BY q_U5.SESSION 
HAVING (((Count(q_U5.Utilization)>0.4 And (q_U5.Utilization)<=0.7)); 
 
q_ULow_Year 
 
SELECT q_U5.SESSION, Count(q_U5.Utilization) AS Low_Ut 
FROM q_U5 
GROUP BY q_U5.SESSION 
HAVING (((Count(q_U5.Utilization))<=0.4)); 
 
q_UAvg_Year  
 
SELECT q_U5.SESSION, Avg(q_U5.Utilization) AS Avg_Ut 
FROM q_U5 
GROUP BY q_U5.SESSION; 
 
q_UAvg_POSt 
 
SELECT q_U5.SESSION, q_U5.POST_CD, Avg(q_U5.Utilization) AS Avg_Ut 
FROM q_U5 
GROUP BY q_U5.SESSION, q_U5.POST_CD; 
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q_Make_Room_Util 
 
SELECT q_roomut3.SESSION, q_roomut3.MEET_BUILDING_CD1, 
q_roomut3.MEET_ROOM_NR1, (q_roomut3!SumOfTime+q_roomut4!SumOfTime)/40 
AS Room_Util 
FROM q_roomut3 INNER JOIN q_roomut4 ON (q_roomut3.MEET_ROOM_NR1 = 
q_roomut4.MEET_ROOM_NR1) AND (q_roomut3.MEET_BUILDING_CD1 = 
q_roomut4.MEET_BUILDING_CD1) AND (q_roomut3.SESSION = 
q_roomut4.SESSION); 
 
q_roomut3 
 
SELECT q_roomut1.SESSION, q_roomut1.MEET_BUILDING_CD1, 
q_roomut1.MEET_ROOM_NR1, Sum(q_roomut1.Time) AS SumOfTime 
FROM q_roomut1 
GROUP BY q_roomut1.SESSION, q_roomut1.MEET_BUILDING_CD1, 
q_roomut1.MEET_ROOM_NR1 
HAVING (((q_roomut1.MEET_BUILDING_CD1) Is Not Null) AND 
((q_roomut1.MEET_ROOM_NR1) Is Not Null)); 
 
q_roomut4 
 
SELECT q_roomut2.SESSION, q_roomut2.MEET_BUILDING_CD1, 
q_roomut2.MEET_ROOM_NR1, Sum(q_roomut2.Time) AS SumOfTime 
FROM q_roomut2 
GROUP BY q_roomut2.SESSION, q_roomut2.MEET_BUILDING_CD1, 
q_roomut2.MEET_ROOM_NR1; 
 
q_roomut1 
 
SELECT t_Course_Sched_Norm.SESSION, 
t_Course_Sched_Norm.MEET_BUILDING_CD1, 
t_Course_Sched_Norm.MEET_ROOM_NR1, t_Course_Sched_Norm.MEET_DAY1, 
Hour([MEET_START_TM1]-t_Course_Sched_Norm!MEET_END_SUFFIX1) AS [Time], 
t_Course_Sched_Norm.MEET_ALT_WEEKS1 
FROM t_Course_Sched_Norm 
WHERE (((t_Course_Sched_Norm.MEET_BUILDING_CD1) Is Not Null) AND 
((t_Course_Sched_Norm.MEET_ROOM_NR1) Is Not Null) AND 
((t_Course_Sched_Norm.MEET_ALT_WEEKS1)="E")); 
 
q_roomut1 
 
SELECT t_Course_Sched_Norm.SESSION, 
t_Course_Sched_Norm.MEET_BUILDING_CD1, 
t_Course_Sched_Norm.MEET_ROOM_NR1, t_Course_Sched_Norm.MEET_DAY1, 
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Hour([MEET_START_TM1]-t_Course_Sched_Norm!MEET_END_SUFFIX1)/2 AS 
[Time], t_Course_Sched_Norm.MEET_ALT_WEEKS1 
FROM t_Course_Sched_Norm 
WHERE (((t_Course_Sched_Norm.MEET_BUILDING_CD1) Is Not Null) AND 
((t_Course_Sched_Norm.MEET_ROOM_NR1) Is Not Null) AND 
((t_Course_Sched_Norm.MEET_ALT_WEEKS1)="A")); 
 
q_Make_Student Schedule 
 
SELECT DISTINCT t_Course_Choices.SESSION, t_Course_Choices.COURSE1, 
t_Course_Choices.COURSE2, t_Course_Choices.PERSON_ID, 
t_Course_Choices.POST_CD, t_Course_Choices.PRIME_TEACH_METHOD, 
t_Course_Choices.PRIME_SECTION_NR, t_Course_Schedule_no_rooms.MEET_DAY1, 
t_Course_Schedule_no_rooms.MEET_START_TM1, 
t_Course_Schedule_no_rooms.MEET_END_SUFFIX1 INTO t_Student_Schedule 
FROM t_Course_Schedule_no_rooms INNER JOIN t_Course_Choices ON 
(t_Course_Schedule_no_rooms.TEACH_METHOD = 
t_Course_Choices.PRIME_TEACH_METHOD) AND 
(t_Course_Schedule_no_rooms.SECTION_NR = 
t_Course_Choices.PRIME_SECTION_NR) AND 
(t_Course_Schedule_no_rooms.COURSE1 = t_Course_Choices.COURSE1) AND 
(t_Course_Schedule_no_rooms.SESSION = t_Course_Choices.SESSION); 
 
q_make no rooms 
 
SELECT DISTINCT t_Course_Sched_Norm.SESSION, 
t_Course_Sched_Norm.COURSE1, t_Course_Sched_Norm.COURSE2, 
t_Course_Sched_Norm.SECTION_NR, t_Course_Sched_Norm.TEACH_METHOD, 
t_Course_Sched_Norm.MEET_DAY1, t_Course_Sched_Norm.MEET_START_TM1, 
t_Course_Sched_Norm.MEET_END_SUFFIX1 INTO t_Course_Schedule_no_rooms 
FROM t_Course_Sched_Norm; 
 
q_make_course_schedules 
 
SELECT [Course Schedules].SESSION, [Course Schedules].COURSE1, [Course 
Schedules].COURSE2, [Course Schedules].SECTION_NR, [Course 
Schedules].TEACH_METHOD, [Course Schedules].PRIM_TEACH_METHOD, [Course 
Schedules].MEET_BUILDING_CD1, [Course Schedules].MEET_ROOM_NR1, [Course 
Schedules].MEET_ROOM_SUFFIX1, [Course Schedules].MEET_DAY1, [Course 
Schedules].MEET_START_TM1, [Course Schedules].MEET_END_SUFFIX1, [Course 
Schedules].MEET_ALT_WEEKS1 INTO t_Course_Sched_Norm 
FROM [Course Schedules] 
WHERE ((([Course Schedules].MEET_DAY1) Is Not Null) AND (([Course 
Schedules].MEET_START_TM1) Is Not Null)); 
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q_make course choices 
 
SELECT [Course Choices].SESSION AS Expr1, Left([COURSE],8) AS COURSE1, 
Right([COURSE],1) AS COURSE2, [Course Choices].PERSON_ID AS Expr2, [Course 
Choices].POST_CD AS Expr3, [Course Choices].PRIME_TEACH_METHOD AS Expr4, 
[Course Choices].PRIME_SECTION_NR AS Expr5, [Course 
Choices].OTH_TEACH_METHOD1 AS Expr6, [Course Choices].OTH_SECTION_NR1 
AS Expr7, [Course Choices].OTH_TEACH_METHOD2 AS Expr8, [Course 
Choices].OTH_SECTION_NR2 AS Expr9, [Course Choices].PRIMARY_ORG_CD AS 
Expr10, [Course Choices].SECOND_ORG_CD AS Expr11, [Course 
Choices].STUDENT_STATUS_CD AS Expr12, [Course Choices].ADMIN_ORG_CD AS 
Expr13, [Course Choices].REG_STS_CD AS Expr14, [Course 
Choices].YEAR_OF_STUDY AS Expr15, [Course Choices].Program AS Expr16 INTO 
t_Course_Choices 
FROM [Course Choices]; 
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Appendix B: Quality Metric Charts 
 
The following are the charts output by the evaluations database. For the charts that are 
grouped by POSt, the abbreviations are as follows: 

• AE followed by a space refers to a non degree program 
• AECIV refers to a civil engineering POSt 
• AECPE refers to a computer engineering POSt 
• AEELE refers to an electrical engineering POSt 
• AEESC refers to an engineering science POSt 
• AELME refers to a mineral engineering POSt 
• AEMEC refers to a mechanical engineering POSt 
• AECHE refers to a chemical engineering POSt 
• AEIND refers to an industrial engineering POSt 
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Conflicts by POSt 20059
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Conflicts by POSt 20061
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Early Starts by POSt 20049
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Early Starts by POSt 20051
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Early Starts by POSt 20061
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No Friday Prayer Break by POSt
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No Lunch Break by POSt
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Late Ends by POSt 20049
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Late Ends by POSt 20051

0
50

100
150
200
250
300
350
400

AE
   N

DEG

AE
CIVB

AS
C

AE
CPE

BA
SC

C

AE
EL

EB
AS

C

AE
ES

CBA
SC

B

AE
ES

CBA
SC

I

AE
INDBA

SC

AE
LM

EB
AS

CG

AE
MEC

BA
SC

AE
MMSB

AS
C

POSt

co
un

t

1

2

3

4

5

 

Late Ends by POSt 20059

0
50

100
150
200
250
300
350
400

AE
   N

DEG

AE
CIVB

AS
C

AE
CPE

BA
SC

C

AE
EL

EB
AS

C

AE
ES

CBA
SC

B

AE
ES

CBA
SC

I

AE
INDBA

SC

AE
LM

EB
AS

CG

AE
MEC

BA
SC

AE
MMSB

AS
C

POSt

co
un

t

1

2

3

4

5

 



 

 

132

  

Late Ends by POSt 20061
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High Utilization by POSt
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Medium Utilization by POSt
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Low Utilization by POSt
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Average Utilization by POSt

0
0.2
0.4
0.6
0.8

1
1.2
1.4

A
E

  
 N

D
E

G

A
E

C
H

E
B

A
S

C
E

A
E

C
IV

B
A

S
C

E

A
E

C
P

E
B

A
S

C
C

A
E

C
P

E
B

A
S

C
S

A
E

E
S

C
B

A
S

C

A
E

E
S

C
B

A
S

C
B

A
E

E
S

C
B

A
S

C
E

A
E

E
S

C
B

A
S

C
M

A
E

IN
D

B
A

S
C

A
E

LM
E

B
A

S
C

A
E

LM
E

B
A

S
C

P

A
E

M
E

C
B

A
S

C

A
E

M
E

C
B

A
S

C
T

POSt

av
er

ag
e 

u
ti

liz
at

io
n

20049

20051

20059

20061

 

average student utilization

0.79
0.8

0.81
0.82
0.83

20049 20051 20059 20061

term

av
er

ag
e 

u
ti

liz
at

io
n

average

 
 


