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Abstract

Inverse reinforcement learning (IRL) focuses on recovering the agent’s objective function through

observed demonstrations, enabling us to better understand human and non-human animals’ decision-

making processes. However, an important aspect of decision-making—how we discount the future

reward—has not been well-studied in IRL.

In this thesis, we study the problem of IRL with unknown discount factor and develop its first

application in animal behaviour. We investigate an existing work on IRL with unknown discount

factor in detail, correcting several minor errors in the formulation and examining different mathe-

matical characteristics of the problem. We propose an alternative algorithm for the correct gradient

calculation, examine the convexity of the objective function in the optimization problem, and dis-

cuss the connections among different formulations of the objective functions seen in the literature.

We then apply the framework to studying wild vervet monkeys’ foraging behaviour in two different

scenarios: foraging alone or in competition. We formulate and solve each scenario as an IRL prob-

lem. Our experimental results provide novel insights into vervet monkeys’ cognitive decision-making

process. We present several suggestions on future foraging experiment design to improve the current

mathematical models.
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Chapter 1

Introduction

Decision-making is an intrinsic part of human and non-human animals’ lives. As humans, we face

decisions such as determining the best route from home to work, while animals may have to choose

between pursuing a particular food source or avoiding a potential predator. These decisions reflect

our goals and preferences. Consider a modified version of the Stanford marshmallow experiment

[77], which originally studied delayed gratification in children. In this scenario, children first need

to choose their preferred reward, either a marshmallow or a pretzel stick. Then, they can decide

whether to have this reward immediately or, if they can resist the temptation and wait for 15

minutes, receive two marshmallows or pretzel sticks. These choices reflect two fundamental aspects

of decision-making: our preferences for the reward itself (e.g., sweet or salty) and how we discount

the value of future rewards against immediate gratification (eat now or wait for a greater reward).

In machine learning, the reinforcement learning (RL) paradigm simulates the decision-making

process by training an agent to take actions within an environment to maximize its cumulative

reward [103]. RL problems are typically formulated as finite Markov decision processes (MDPs)

(formally defined in Section 2.2) that discretize the environment into states and an agent’s actions

in a state result in it receiving an immediate reward and triggering a state transition. For example,

we can model our modified marshmallow experiment as an MDP in which the agent is the child and

the actions are choosing a marshmallow or a pretzel stick, and to eat now or to wait.

While RL has proven to be a powerful approach in training autonomous agents and developing

intelligent systems [57], one of the major challenges in RL is the manual specification of rewards. De-

signing a reward function that accurately captures all relevant aspects of the incentive often requires

expert domain knowledge and fine-tuning [46]. This limitation becomes particularly pronounced in

applications with high complexity, such as autonomous driving, where numerous factors need to be

considered to ensure safe and efficient navigation [97, 117]. However, since our goal is to train an

agent that drives like a human, a more promising approach may be to extract the reward function

from demonstrations of human drivers directly. This field of research, called inverse reinforcement

learning (IRL) [92], aims to infer the agent’s preferences through observed behaviour. For example,

if a child participated in our experiment ten times, assuming each trial is independent, they may

choose the marshmallow and pretzel stick five times each and choose to have the treat immediately

every time. IRL seeks to learn the preferences and the weights of the preferences that lead to such

observed behaviour. Compared to RL, IRL does not require the manual specification of the agent’s

1
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preferences.

Over the past two decades, IRL has gained significant attention from researchers and has been

applied to fields such as robotics [4, 97, 63], human behaviour [71, 120, 31], and animal behaviour

[118, 48, 13]. However, most IRL studies focus solely on learning the reward preferences and overlook

the degree to which the agent discounts future rewards. That is, IRL techniques are often applied

to recover whether the children prefer marshmallows or pretzel sticks, while assuming a particular

level of discounting for future rewards. Intelligent decision makers, both humans and non-human

animals, value the future differently from one another. To our knowledge, there is only one work (a

paper by Giwa and Lee [40] and the accompanying PhD thesis by Giwa [41]) that seeks to recover

the reward weights and the discount factor simultaneously.

This thesis focuses on recovering the decision maker’s reward preference and discount factor

jointly through demonstrations and develops the first application of this problem in animal behaviour

using IRL. We first examine the work of Giwa and Lee [40, 41] in detail. Then, we build upon and

apply this framework to study the foraging behaviour of wild vervet monkeys. We first cast the

foraging experiment as an IRL problem, identifying factors that affect the monkey’s choices (the

type of food it gets and how far it has to travel to get the food). We then apply our IRL framework

to solve this problem. The recovered parameters provide interpretable and novel insights into wild

vervet monkeys’ cognitive decision-making process.

This thesis confirms that the weight parameters and discount factor can be recovered jointly

in an IRL problem and corrects errors in the previous formulation. We also show that IRL is a

viable tool for animal behaviour studies and we hope that it can serve as a starting point for more

interdisciplinary research between the field of animal behaviour and the IRL community.

1.1 Organization of Thesis

Chapter 2 provides background necessary to understand the thesis. First, the chapter presents the

formal definitions of finite MDPs and IRL, and notation that will be used in this thesis. Then,

the chapter reviews the IRL literature, covering successful applications and algorithms in both

single-agent and multi-agent problems. The chapter closes with a discussion on the limitations and

challenges in IRL.

Chapter 3 examines and analyzes the current method of solving IRL with unknown discount

factor problems [40, 41] in detail. This chapter introduces the Maximum Entropy IRL framework by

Ziebart et al. [129], the foundation of Giwa and Lee’s work [40]. We provide a complete derivation of

the original MaxEnt IRL optimization problem and correct several minor errors in Giwa and Lee’s

formulation. In particular, we propose a time-indexed algorithm for computing the gradients required

to solve the optimization problem. Next, the chapter investigates a claim about the convexity of

the objective function and demonstrates that it is not trivial to prove this claim mathematically.

Finally, the chapter closes with a discussion on different objective function formulations in MaxEnt

IRL that we found are often overlooked in the literature.

Chapter 4 studies the wild vervet monkey behaviour when foraging alone. The chapter introduces

the original foraging experiment by Arseneau-Robar et al. [10] and describes key characteristics and

assumptions we made for this foraging problem. We then model the foraging problem as an MDP

and solve the single-agent IRL problem to recover the unknown parameters. Experimental results
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show that our model produces behaviour that aligns with observed data from the real-life foraging

experiment. More importantly, we show that, when foraging alone, monkeys are farsighted decision

makers who only value the preferred food choice. The chapter then provides an extensive discussion

on the challenges of applying IRL to this application and alternative modelling options for the

foraging problem.

Chapter 5 extends the application in Chapter 4 and studies the monkeys’ behaviour when foraging

in competition. We treat both monkeys in the trial as the decision makers, modelling the problem in

a multi-agent IRL setting. We propose two approaches for modelling a monkey’s foraging behaviour

as an MDP by embedding the other’s actions into the environment. Experimental results show that

while the monkeys value the immediate reward similarly to the case of foraging alone, depending

on their social status, they value the future differently and exhibit different behaviour. We then

discuss the limitations of our approaches and alternatives we can explore for the case of foraging in

competition.

Chapter 6 concludes this thesis and presents potential next steps for future research.

1.2 Summary of Contributions

The main contributions of this thesis are as follows:

• We correct several minor errors in the original formulation for MaxEnt IRL with unknown

discount by Giwa and Lee [40, 41]. We propose an alternative algorithm for the correct

gradient calculation.

• We investigate the convexity of the objective function in the optimization problem. We em-

pirically show that the objective function is neither concave nor convex.

• We demonstrate the relationship between different formulations of the objective functions seen

in the literature, deriving conditions for when they are equivalent.

• We develop the first application for studying monkey behaviour when foraging alone as a

single-agent IRL problem. Our experimental results align with the behaviour observed in the

field experiments and provide novel insights into monkeys’ cognitive decision-making process.

• We extend the foraging-alone case and present the first application for studying monkey be-

haviour when in competition as a multi-agent IRL problem. We propose two methods for

extracting and embedding the competitor’s actions into the environment. Our experimental

results show that monkeys exhibit different behaviour depending on their social status.

• We provide several suggestions for future foraging experiment design and alternative mod-

elling options that may lead to more realistic mathematical models and further collaborations

between the fields of IRL and animal behavioural science.



Chapter 2

Literature Review

2.1 Introduction

Reinforcement learning (RL) is a machine learning approach where an autonomous agent learns

to achieve a goal through interactions with the environment [103]. The objective of the agent is to

maximize the accumulated the reward it receives from the environment in the long run. Although RL

has seen significant progress in recent decades, a major drawback is the need for manual specification

of the reward function [9]. Often, the reward functions are carefully designed by a human expert

based on domain specific knowledge and require fine-tuning [46]. In contrast, inverse reinforcement

learning (IRL) refers to a class of problems that aim to recover the reward function an agent is

optimizing through observed behaviours [92].

IRL, initially proposed in 1998 [92], falls under the paradigm of Learning from Demonstrations

(LfD) in robotics [93, 8] and can be considered as a way to perform imitation learning [52]. LfD and

imitation learning focus on recovering the policy or mimicking the demonstrated behaviours, which

may not necessarily involve recovering the reward function. IRL is also closely related to the well

established concept of inverse optimal control (IOC) in control theory. Ab Azar et al. [1] provide a

historical and comparative review on IOC and IRL and defined IRL as “modern IOC”. Since LfD,

imitation learning, and IOC are not the focus of this thesis, the reader is referred to existing surveys

[8, 52, 1] for more details on these topics.

Over the past two decades, IRL has gained significant attention from researchers in different fields.

IRL is advantageous as it avoids the process of manually designing the agent’s preferences and thus

enabling better generalization as a learned reward function from one agent can be transferred to

another in a different environment, assuming both agents share the same goal. IRL has been applied

to fields including robotic systems [4, 97, 63, 34, 84], human behaviour [71, 120, 31, 54], and animal

behaviour [118, 48, 13, 85].

This chapter is organized as follows. Section 2.2 introduces the formal definitions and notations

of Markov decision process (MDP) and IRL which are used throughout this thesis. Then, Section

2.3 provides an overview of applications of IRL. Sections 2.4 and 2.5 review IRL algorithms for

single-agent and multi-agent problems, respectively. Finally, we conclude this chapter in Section 2.6

by briefly discussing some limitations and challenges in IRL.

4
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2.2 Formal Definitions

2.2.1 Markov Decision Process and Reinforcement Learning

A finite Markov decision process (MDP) [50] is defined as a tuple ⟨S,A, Psa, γ, R⟩ where

• S is a finite set of N states.

• A = {a1, ..., ak} is a set of k actions.

• Psa(·) : S → [0, 1] are the state transition probabilities upon taking action a in state s.

• γ ∈ [0, 1] is the discount factor, which quantifies how much the agent values future reward

relative to the present.

• R : S 7→ R is the reward function.

Following the book by Sutton and Barto [103], we focus on RL (and IRL) problems that can be

formulated as finite MDPs, namely, problems that satisfy the Markov property. A stochastic process

is Markovian if it is memoryless, meaning the future only depends on the present state but not the

past states. That is, at time step t, the next state, st+1, only depends on the state st and the action

at:

P (st+1|st, at, st−1, at−1, ..., s0, a0) = P (st+1|st, at). (2.1)

The RL problem can be broadly defined as a decision-maker learning to achieve a goal through

interactions. The decision maker is called the agent, and it interacts with the environment. The

interactions between the agent and the environment are discretized into distinct time steps, where

a state st provides a representation of the environment and the agent selects an action at, which

moves the agent into a new state st+1 while it receives a reward rt+1. Figure 2.1 from Sutton and

Barto [103] illustrates the interactions.

Figure 2.1: General reinforcement learning framework [103].

A policy π is a mapping from state to action and π(a|s) denotes the probability of taking action

a in state s. The value function of an agent’s policy V π represents the value of a given state s as the

expected cumulative reward at s following the state sequence (s, s1, s2, ...) produced by π, namely

V π(s) = E[R(s) + γR(s1) + γ2R(s2) + ...|π]. (2.2)
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We can also write the value function as the Bellman equation [18]:

V π(s) = R(s) + γ
∑
s′

Psπ(s)(s
′)V π(s′), (2.3)

where π(s) represents the best action to take at state s according to a deterministic π. Similarly, the

state-action function, or Q-function, represents the value of taking action a at state s and following

the policy π:

Qπ(s, a) = R(s) + γ
∑
s′

Psa(s
′)V π(s′). (2.4)

The optimal Q-function is defined as Q∗(s, a) = supπ Q
π(s, a). The goal of solving an MDP is to

find an optimal policy π∗ such that the value function at each state is simultaneously maximized:

V π∗
(s) = sup

π
V π(s) = sup

a
Q∗(s, a), ∀s ∈ S (2.5)

2.2.1.1 Value Iteration and Soft Value Iteration

When the state and action space are small and the environment dynamics are known, one way to

solve for the optimal policy is to use value iteration (VI) [103] as shown in Algorithm 1.

Algorithm 1 Value Iteration Algorithm

1: Initialize V arbitrarily
2: repeat
3: for each s ∈ S do:
4: v ← V (s)
5: V (s)← argmaxa

∑
s′ Psa(s

′)
[
R(s) + γV (s′)

]
6: ∆← max(∆, |v − V (s)|)
7: end for
8: until ∆ < θ (a small positive threshold)
9: Output policy π(s) = argmaxa

∑
s′ Psa(s

′)
[
R(s) + γV (s′)

]
We first randomly initialize the value function (line 1). Using dynamic programming, we repeat-

edly calculate the value of each state (line 3–6) until convergence (line 8). Finally, we obtain a policy

π based on the value function V by selecting the action at each state that returns the highest value

(line 9).

Note that in line 5, we update the V (s) by choosing the action that returns the highest expected

return and again in line 9 we pick the best action for each state as the policy. We often choose

the max operator in the VI algorithm since it is a non-expansion. A non-expansive operator brings

the distance between two points closer or no further apart, and thus the max operator guarantees

the convergence of values to a unique fixed point [11]. However, it is important to note that other

operators such as the mean operator can also be used. Here, we introduce the softmax operator and

the resulting VI algorithm called Soft VI [129], which is relevant later in this thesis.

Analogous to Eq. 2.3 and 2.4, we define the following soft value and Q functions and the policy

based on these two functions at state s.
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V Soft(s) = σ log
∑
a∈A

e
QSoft(s,a)

σ (2.6)

QSoft(s, a) = R(s, a) + γ
∑
s′

Psa(s
′)V Soft(s′) (2.7)

π(a|s) = e
QSoft(s,a)−V Soft(s)

σ (2.8)

The σ in the equations above represents a non-negative value defined as the “temperature”, which

controls the stochasticity of the policy: a lower temperature leads to more deterministic behaviour

while a higher temperature leads to more stochastic behaviour. When σ → 0, the optimal policy

π∗ converges to the deterministic policy from Algorithm 1. Soft VI is presented in Algorithm 2

where we simply replace the max operator in Algorithm 1 with softmax in line 5 and change how

we evaluate the action distribution in line 9.

Algorithm 2 Soft Value Iteration Algorithm

1: Initialize V arbitrarily
2: repeat
3: for each s ∈ S do:
4: v ← V (s)
5: V (s)← softmaxa

∑
s′ Psa(s

′)
[
R(s) + γV (s′)

]
6: ∆← max(∆, |v − V (s)|)
7: end for
8: until ∆ < θ

9: Output policy π(a|s) = e
QSoft(s,a)−V Soft(s)

σ

2.2.2 Markov Games

The RL framework can also be extended to the case where there are multiple agents, defining a

multi-agent RL (MARL) problem. In the multi-agent setting, the agents interact not only with

the environment but also with each other, and they can be modelled to act either cooperatively

or competitively. MARL problems that satisfy the Markov property can be formulated as Markov

games (MGs) [69].

A Markov game (MG) is an extension of an MDP where there is more than one decision maker.

Similar to an MDP, a finite MG is a tuple ⟨P, S,A, Psa, R, γ⟩, where P is the set of agents in the

game. Without loss of generality, let us assume that there are two players in the game and P = 1, 2.

S = S1 × S2 and A = A1 × A2 are the joint state and action spaces of the two agents. The reward

R = (R1, R2) where Ri(s, ai, a−i) represents the immediate reward of agent i in state s based on its

own and the other player’s action (−i = P\{i}). The transition probability is similar to an MDP

Psa : S ×A→ S; and finally γ = (γ1, γ2) is the discount factor for each agent.

To solve a Markov game, we can either consider the other agent −i as part of the environment

(i.e., embedded in the transition probabilities) or we can model all agents as decision makers in the

game. In this thesis, we choose the former method, and so the game reduces to a single-agent MDP

and can be solved using VI or other algorithms. However, if we choose to model all agents, we

denote πi as the policy of player i, and the optimal policy π∗,i maximizes agent i’s expected sum of
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discounted rewards with respect to its opponent −i’s policy. Namely,

π∗,i = argmaxπiV πi

(s), ∀s ∈ S (2.9)

where

V πi

(s) = Eπ−i [R(s, ai, a−i) + γiV πi

(s′)]. (2.10)

The game is in Markov perfect equilibrium when each agent’s policy is optimal given the policies

of the other players. Depending on the type of the game (e.g., general-sum or zero-sum game),

different algorithms can be applied to solve the game such as minmax-Q [69] for two-player zero-

sum game or Nash-Q for general-sum games [51].

2.2.3 Inverse Reinforcement Learning

In IRL, the goal is to find a reward function that best explains the observed behaviours of an expert,

E. Russell [92] defines an IRL problem as:

Given 1) measurements of the expert agent’s behaviour over time, 2) measurements of the

sensory inputs to the expert; 3) a model of the environment.

Determine the reward function that is being optimized.

More formally, assume the expert interacts with the environment according to its optimal policy

πE , which may or may not be known to the subject agent, whom we call the learner, L. An IRL

problem is then defined as follows. Given an MDP without reward, MDP\RE , and a set of M

trajectories ξ = {τi}Mi=1, where τ = {(s0, a0), (s1, a1), ..., (sj , aj)}, determine the reward function

R̂E .

Further, we define ϕ(s) as the feature vector of state s, and we rewrite the reward function (if

linear) as the weighted sum of features:

R(s) = w1ϕ1(s) + w2ϕ2(s) + ...+ wkϕk(s) = w⊤ϕ(s)

where ϕi and wi represent the ith feature and its associated weight, respectively, and so the IRL

problem becomes one of finding the weight vector w.

Like many inverse problems, IRL is ill-posed as there is an infinite number of reward functions

that can explain the observed behaviours. One trivial example is when the reward is 0. We discuss

different IRL algorithms and how they address the ill-posedness through different techniques such

as regularization in Sections 2.4 and 2.5.

2.3 Applications of Inverse Reinforcement Learning

One of the greatest appeals of IRL is that it enables agents to learn from data directly without

the researchers having to explicitly specify a reward function. Thus, IRL has attracted significant

attention in the past decades from different research communities. In this section, we provide

an overview of IRL applications, focusing on three areas: robotics, human behaviour, and animal

behaviour.
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2.3.1 Robotics

One of the earliest and most notable applications of IRL was to train an autonomous agent to fly

a toy helicopter by learning from demonstrations of a human expert [4]. A reward function with

24 features, which produces a policy that is close to the expert’s behaviours, is recovered and the

authors demonstrate that simple helicopter manoeuvres such as flip and roll can be learned in just

a few iterations. Subsequently, the same research group presented the learning of more challenging

aerobatic manoeuvres [2, 3, 29]. An autorotation descent and landing, which is required when the

helicopter’s engine fails [2], as well as one of the most challenging helicopter manoeuvres called

“chaos” [3], can be learned via IRL.

Another application that fits well into the IRL framework is autonomous driving. The goal of

this task is to train an agent to drive like a human and there are many components one needs to

consider when driving. Thus, it is difficult to manually design a reward function that would satisfy

all the requirements and it is more promising to apply autonomous learning instead. Sharifzadeh

et al. [97] apply IRL with deep Q-network (DQN) to a highway driving problem and show that

the algorithm achieves satisfactory results after a few iterations. Kuderer et al. [63] use IRL to

learn driving styles from demonstrations using features that represent real drivers’ preferences such

as desired speed and acceleration. Similarly, Wulfmeier et al. [116] propose an IRL algorithm that

uses deep learning to recover the reward function and apply the algorithm to learn a large-scale

cost function to test its real-world applicability in the context of autonomous driving [117]. Wu

et al. [115] apply sampling-based IRL to recover the reward function using real world traffic data

in a continuous domain and test the algorithm on two different driving scenarios—non-interactive

and interactive. The authors show that using scenario-specific features, the proposed algorithm

produces more accurate predictions compared to the baseline IRL algorithm. More specific driving

style learning such as car-following preferences [125], lane change preferences [70], and behaviours

at intersections [114] have also been studied.

As mobile robots become more common in the human environment, creating robots that are

socially compliant is another research area that has gained popularity in the IRL community [34, 83].

Robot navigation often focuses on tasks in crowded environment and uses trajectories demonstrated

by humans (either by using real human behaviours or controlling the robots) such that robots learn

to obey certain social norms that people follow. In some applications in this field, IRL plays an

indirect role in training the robots. For example, Ziebart et al. [130] use IRL to provide predictions

of a pedestrian’s movement, which are then incorporated into a hinderance-sensitive robot’s planner,

so that the robot can plan its path to avoid the pedestrian. Similarly, Fahad et al. [34] use IRL

to learn how pedestrians navigate with the goal of extending the learned reward function to a

robot performing a navigation task in crowded spaces. Other than learning to predict pedestrian

trajectories and to avoid collision, Okal and Arras focus on learning socially normative navigation

behaviours, such as learning to stop if there are people engaging in a photography activity ahead

of the robot [83]. Different from the previous applications, Okal and Arras apply IRL directly to

the planning task, where demonstrations are robot behaviour collected in different scenarios [83].

Vasquez et al. [110] present a systematic and experimental comparison of different features and IRL

algorithms used for the robot navigation task, and evaluate the impact on the learning outcomes.

Other navigation learning tasks that do not involve interactions with human include path planning

for planetary rovers [84] and for a quadruped robot [127].
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In summary, IRL has proven to be a valuable framework in various robotic applications. From

learning to fly a toy helicopter to learning to drive and robot path planning, real-world tasks are

often too complicated for humans to manually specify a reward function that produces satisfactory

results. However, demonstrations from human experts for these tasks are abundantly available (e.g.,

real-life driving data), making IRL a useful tool since it can extract insight automatically from given

data in the form of the reward in the environment.

2.3.2 Human and Animal Behaviours

In the previous section, we mentioned the use of IRL on learning pedestrian behaviours for social

robot planning. In this section, we review a wider range of applications of IRL on learning human

and animal behaviour, where the goal of recovering the reward function not only provides a basis

for predictions but also potentially helps us better understand the humans’ and animals’ decision-

making process.

2.3.2.1 Human Behaviours

One of the earliest applications using human data is perhaps by Ziebart et al. [129], where the authors

apply IRL to predict taxi drivers’ route choices in a large road network. Similarly, Liu et al. [71] study

driver behaviour in more specific scenarios, such as when they have no passengers. Muelling et al.

[78] identify important elements of a table tennis player’s strategy by learning from demonstrations

from skilled and naive human players. Rhinehart et al. [90] develop an algorithm that forecasts

behaviours using data collected by a wearable camera. The algorithm, called “Discovering Agent

Rewards for K-futures Online” (DARKO), is an online version of IRL as it continuously learns to

predict human behaviours from a stream of data input. DARKO not only predicts a person’s physical

trajectory but also their semantic goals. Das and Lavoie [31] study how feedback that a user receives

on social media platforms affects their behaviours as a form of IRL. The authors model the feedback

(e.g., number of replies a user receives) as features and learn the coefficients in the reward function

which explain the user’s behaviour. Yang et al. [120] apply IRL to predict human’s attention during

visual search. The algorithm learns the reward function through sequences of gaze fixations on an

image, and the authors show that IRL has the closest performance to humans compared to heuristic

and random methods tested in the study. Tastan and Sukthankar [105] employ IRL in the context

of creating a bot for first-person shooter games. Learning from demonstrations provided by human

experts, the authors report that their bot exhibits the most “human-like” behaviour compared to

other baselines.

Besides learning extrinsic factors that guide human behaviours (e.g., feedback on social media

from Das and Lavoie [31]), researchers have also used IRL to study the intrinsic factors from a

cognitive science perspective. Jara-Ettinger [54] draws a loose connection between Theory of Mind

(ToM) [32] and IRL. ToM refers to humans’ abilities to reason about other people’s mental state

based on how they behave, similar to how IRL models are trained on demonstrations to learn a

reward function that explains the observed behaviour. The author discusses how our beliefs and

desires can be modelled as the environment and the reward function, which together determine

what we intend to do or what the policy should be. Baker et al. [16] pose action understanding

[39] as an “inverse planning” problem. The same group of researchers later propose the concept



CHAPTER 2. LITERATURE REVIEW 11

of Bayesian ToM (BToM) [15, 17], which adopts a Bayesian approach to infer the observed agent’s

goals. Moreover, Wang et al. [111] apply IRL to learn a reward function that incorporates different

motivations that drive various behaviours during gameplay. The study shows that, other than trying

to win the game, players are also motivated by factors such as socializing with other players [111].

To summarize, IRL has been applied to study both extrinsic and intrinsic factors that drive

human behaviour. For extrinsic motivations, applications cover diverse fields such as driving be-

haviour, sports, and social media, while for intrinsic motivations, researchers have focused more on

mapping concepts in cognitive science such as goals and intents to the IRL framework.

2.3.2.2 Animal Behaviours

Applications of IRL in behavioural ecology and animal behaviour have received comparatively less

attention than studies on human behaviour, potentially due to difficulty in obtaining behavioural

data.

Yamaguchi et al. [118] investigate the behavioural strategies of Caenorhabditis elegans (C. ele-

gans) on a thermal gradient. The authors use IRL to obtain the behavioural strategies of different

types of worms (e.g., fed worm, starved worms, and thermosensory neuron-deficient worms) and

find that fed worms tend to migrate towards the cultivation temperature (i.e., the temperature that

the worms were kept in before the experiment), while starved worms tend to migrate away from

the temperature. Hernandez-Reyes et al. [48] apply deep IRL [116] to identify male silk moth’s

strategies for olfactory searches. The experiment was conducted using a virtual reality (VR) device,

exposing the silk moths to different stimuli such as wind in a controlled environment. The results

show that the IRL algorithm outperforms the baseline methods and have better generalizability.

More recently, Ashwood et al. [13] use dynamic inverse reinforcement learning (DIRL) to study the

behaviours of mice exploring a labyrinth. In the labyrinth navigation experiment, trajectories of

the mice were collected via video [91], capturing the precise positions of the mice and recording the

timestamps. Thus, unlike typical IRL algorithms, DIRL recovers a time-varying reward function

that characterizes and provides explanation of the animal’s behaviours at different time points. Yu

et al. [122] and Schafer et al. [94] study collective animal behaviours under the multi-agent IRL

framework.

While the studies mentioned above were all conducted in a laboratory setting, there have also

been studies on animals in the wild. Pinsler et al. [85] use GPS data to recover the reward function of

pigeons. The authors model the birds’ behaviours in a flock by treating each bird as a separate MDP.

By assuming each bird in the flock is maximizing its own reward function, different sets of learned

feature weights are obtained for each bird. The recovered reward functions successfully generate

flock-like behaviours, which not only explains the flock’s behaviour but can also be potentially applied

to swarm robotics, where multiple agents follow similar dynamics to complete tasks. Another bird

related application is proposed by Hirakawa et al. [49]. This study aims to address the issue in

animal behaviour research where parts of recorded data are missing due to factors such as device

malfunctions. Using GPS data collected for streaked shearwater’s migration trajectories, the authors

recover the seabirds’ reward function. The learned reward function is then used to predict the

animal’s behaviour and therefore fill in the gaps in trajectories.

Though there have not been many IRL studies on animal behaviour, existing literature covers

a broad range of animals from worms to seabirds. Similar to applications in human behaviour,
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researchers utilize IRL as a tool to better understand and predict animal behaviour.

2.4 Solution Methods for Single-agent IRL

In many IRL algorithms, we often assume that the dynamics of the environment are known to the

learner and the features of the reward function are given. The structure of the reward function RE

is predefined, taking on forms such as a linear combination of weighted features [129, 5]. Thus, to

learn the parameters in the reward function, many IRL methods require repeatedly solving an MDP

using the intermediate learned reward function and updating the parameters after each iteration.

A general template of IRL algorithms from a recent survey by Arora and Doshi [9] is shown in

Algorithm 3. As we will see in this section, while earlier IRL algorithms address the ill-posedness

issue by optimizing a predefined margin between the learner’s and the expert’s behaviour, algorithms

that are more popular now tend to resolve the issue using a probabilistic approach.

Algorithm 3 General IRL process [9]

Input: MDP\RE , and a set of M trajectories ξ = {τi}Mi=1, state feature ϕ

Output: reward function R̂E

1: Initialize reward function parameters wini.
2: Solve the MDP with the current reward function and produce an intermediate learned policy

πL.
3: Update the parameters w to bring the learned behaviour closer to the observed.
4: Repeat Step 2 and 3 till desired convergence criteria is met.

In this section, we review several fundamental algorithms and their variations for solving the

single-agent IRL problem.

2.4.1 Margin-based IRL

We refer to the algorithms presented in this section as “margin-based” because they focus on the

goal of finding a reward function that either maximizes the gap between observed behaviour better

than the next best behaviour or minimizes the difference between the learner and the expert. The

earliest algorithm for solving IRL problems is presented by Ng and Russell [82], which takes a given

policy π as input and finds a reward function that makes π optimal. The authors first derive a

constraint that the reward function must satisfy, namely,

(Pa1 − Pa)(I − γPa1)
−1R ⪰ 0 (2.11)

where Pa is the transition probability matrix of action a (i.e., a S × S matrix that represents

the transition probabilities of every state pair by taking action a), action a1 represents the policy

π(s) ≡ a1 and R is the reward vector. Eq. 2.11 is derived from V π = (I − γPa1)
−1R and so if we

rearrange Eq. 2.11, we get

Pa1V
π ⪰ PaV

π

which is the condition of π being optimal—every action following π, a1, has a higher or equal value

than all other actions a for all states s ∈ S. However, the authors point out that this condition leads

to many degenerate solutions, including the trivial case where R = 0. Thus, the author propose using
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a linear program (LP) to find a reward function R that makes π optimal and maximizes the sum of

the differences between the value of the best action and the next best action value over all states,

namely,
∑

s∈S Qπ(s, a∗) −maxa∈A\a∗ Qπ(s, a) with Eq. 2.11 as a constraint. Further, the authors

believe that small rewards are “simpler and therefore more preferable” [82], thus a penalty term is

added to the objective function as regularization for the value of the reward function. Extensions

to infinite state space and the case when trajectories from a policy π were given instead are also

presented in the paper.

Another margin optimization based algorithm takes the difference between the learner’s and

the expert’s expected feature count as the margin and seeks to minimize it. Given that the reward

function is formulated as a linear combination of features, apprenticeship learning via IRL by Abbeel

and Ng [5] proposes the notion of feature matching :

Given the expert’s feature expectations, denoted as µE .

Find a reward function that makes the performance of the learner’s policy, πL, close to that of

the expert’s and thus ||µ(πL)− µE ||2 < ϵ.

Two algorithms were presented in the paper, max-margin and projection, to find the re-

ward function. The max-margin algorithm is very similar to the optimization problem presented

in Ng and Russell [82] except that the weight vector is regularized under the L2 norm, and thus

requires a quadratic program (QP) to solve it instead of an LP. The projection algorithm simplifies

max-margin and does not require a QP solver. Syed and Schapire [104] propose the multiplicative

weights for apprenticeship learning (MWAL) algorithm, which extends apprentice learning using a

game-theoretic approach. MWAL models the problem as a two-player zero-sum game between the

learner and the environment, where the former chooses a policy to maximize its performance while

the latter selects a reward function. Neu and Szepesvári [81] propose a gradient method to learn a

reward function that minimizes the action distribution difference between learned and expert pol-

icy’s (i.e., πL(a|s)− πE(a|s)). The concept of feature matching later became fundamental in other

IRL algorithms as the way to ensure the learner’s policy matches the performance of the expert [129,

88, 116].

Finally, another margin-based optimization algorithm is the maximum margin planning (MMP)

proposed by Ratliff et al. [88]. Similar to Ng and Russell [82], MMP also seeks a reward function

that makes the demonstrated behaviour better than other possible behaviour by a margin. However,

MMP does not assume that the demonstrations come from a single policy π but rather focuses on

matching the behaviour demonstration by demonstration. The authors define a loss function that

penalizes taking actions different from the expert’s. The loss function can take on different forms

and thus can scale the margin differently.

2.4.2 Bayesian IRL

Different from using margin optimization as a way to resolve the issue of ill-posedness, Bayesian IRL

(BIRL) [87] approaches the issue from a probabilistic point of view. BIRL treats the demonstrations

from the expert as evidence to update a prior on the reward function. The algorithm assumes that the

expert maximizes its total accumulated reward, namely, at each state the expert picks the action that

has the highest Q-value, Q∗. Further, BIRL assumes that the expert is following a stationary policy

that does not change over time. Given a demonstration with length k, τ = ⟨(s1, a1), ..., (sk, ak)⟩, we
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can make the following assumption given an agent’s stationary policy:

P (τ |R) = P ((s1, a1)|R)P ((s2, a2)|R)...P ((sk, ak)|R).

Here, we assume that the state-action pairs are independent of one other. Thus, the probability of

a trajectory is the product of the probabilities of the state-actions in that trajectory. Moreover, BIRL

models P ((si, ai)|R) as a Boltzmann distribution based on Q∗, i.e., P ((si, ai)|R) = 1
Zi
eαQ

∗(si,ai,R),

where Zi is the normalization function and α represents the inverse temperature in Boltzmann

distribution—the higher α is, the more rational the agent would be. Thus, the likelihood of the

agent producing demonstration τ given reward function R is

P (τ |R) =
1

Z
eα

∑k
i=1 Q∗(si,ai,R).

Using Bayes’ Theorem, we have

P (R|τ) = P (τ |R)P (R)

P (τ)
.

Several distributions for P (R) are suggested in BIRL, such as Gaussian, Laplace, and Beta

distribution depending on the specific characteristics of the problem. Computing P (τ) is difficult,

and thus a Markov Chain Monte Carlo (MCMC) algorithm is used to obtain the posterior mean of

R. Lopes et al. [72] adopt the BIRL framework and extended it to an active learning setting. Unlike

previous algorithms where the provided demonstrations are fixed, the agent is allowed to query the

expert for some specific states.

Under the Bayesian framework, Choi and Kim [27] propose using the maximum a posterior

(MAP) estimation for the reward function. The authors point out that using the posterior mean

reward function may result in an optimal policy inconsistent with the observed data since the

objective function integrates over the entire reward space. Moreover, the authors show that many

IRL algorithms can be cast as BIRL using MAP and propose a gradient method for finding the MAP

reward function. Choi and Kim later extend their work and present hierarchical BIRL (HBIRL),

which imposes a prior on the confidence parameter α and a hyper-prior on the prior of the reward

function [26].

Michini and How [76] present a modified BIRL algorithm that enables scaling to large spaces.

The original BIRL algorithm suffers from the “curse of dimensionality” [76] since it requires re-

solving the MDP in every iteration. The improved algorithm suggests that the inference task should

focus on states that are in the demonstrations rather than the entire state space. The authors

show that their algorithm significantly reduces convergence time while maintaining solution qual-

ity comparing to the original BIRL [76]. Michini and How also propose another algorithm called

Bayesian Nonparametric IRL (BNIRL) [75]. In BNIRL, the data is partitioned into different “sub-

demonstrations” automatically, and we infer a set of simpler reward functions corresponding to each

partition. Choi and Kim [28] present a nonparametric Bayesian IRL algorithm for inferring multiple

reward functions. While each trajectory is assumed to be generated from one reward function, the

authors study the scenario where the demonstration set might consist of trajectories from different

reward functions.

Other algorithms related to BIRL or the Bayesian approach in general include robust BIRL

proposed by Zheng et al. [126] to handle sparse behaviour noise and Gaussian process IRL (GPIRL)
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by Levine et al. which represents the reward function as a nonlinear function of features modelled

as a Gaussian process [66]. More recently, Brown and Niekum [23] propose a deep Bayesian IRL

algorithm that can scale to more complex problems.

2.4.3 Maximum Entropy IRL

Similar to BIRL, another popular algorithm that attacks ill-posedness from a probabilistic view is

Maximum Entropy IRL (MaxEnt IRL) proposed by Ziebart et al. [129]. Entropy, in information

theory, is a measure of the average amount of “information” conveyed by a random variable [96].

For a random variable X that takes values in a set X and is distributed according to P : X → [0, 1],

the entropy of X is defined as

H(X) = −
∑
x∈X

P (x) logP (x).

MaxEnt IRL applies the principle of maximum entropy [55] and produces a distribution of tra-

jectories parameterized by the weights of the features that is the least wrong while satisfying the

constraints in the optimization problem:

maximize
∑
τ

−P (τ) logP (τ) (2.12)

subject to
∑
τ

P (τ) = 1 (2.13)

Eτ∼P [ϕ(τ)] = Eτ∼ξ[ϕ(τ)] (2.14)

The objective of the optimization problem is to find a distribution of all possible trajectories that

maximizes the entropy. The first constraint represents the axiom of probability while the second

constraint represents the concept of feature matching [5] defined in Section 2.4.1, where the left-

hand side represents the feature expectation of the trajectory distribution, and the right-hand side

represents the feature expectation of the given demonstration, which can be empirically obtained

through Eτ∼ξ[ϕ(τ)] =
1
|ξ|

∑
τ∈ξ

∑|τ |
t=0 γ

tϕ(st).

The Lagrangian relaxation of this formulation shows that the distribution of trajectories belongs

to the exponential family, and thus maximizing the entropy is equivalent to finding the weights of

the reward function that maximizes the likelihood of the given trajectories:

argmax
w

∑
τ∈ξ

logP (τ ;w)

where

P (τ ;w) =
ew

⊤ϕ(τ)

Z

and Z is the partition function. Ziebart et al. [129] solve this optimization problem through gradient

descent, where the gradient can be expressed as the difference between the expert’s expected feature

count and the learner’s.

While Ziebart et al. [129] assume the reward function is a linear combination of the features,

Wulfmeier et al. [116] generalize MaxEnt IRL to non-linear reward function by using a neural

network to approximate the reward function, in an approach called Deep MaxEnt IRL. Deep MaxEnt
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IRL uses the same gradient as Ziebart et al. [129] in backpropagation to update the parameters in

the neural network.

Audiffren et al. [14] propose an algorithm that combines MaxEnt IRL with semi-supervised

learning [109]. The Maximum Entropy Semi-Supervised Inverse Reinforcement Learning (MESSI)

algorithm takes not only the trajectories from the expert but also “unsupervised trajectories” that

may or may not be generated by the expert. MESSI adds a penalty term R(w) that penalizes

weights that produce different rewards for similar trajectories and updates the weight parameter in

the similar fashion to MaxEnt IRL [129].

Ziebart et al. [128] extend MaxEnt IRL to maximizing causal entropy (MCE IRL) for stochastic

processes. Mai et al. [73] generalize MCE IRL to not only recover the reward function but also

partially recover the underlying structure among the states that impacted the expert’s decision.

Bloem and Bambos extend MCE IRL to the infinite horizon setting [20].

While in the original MaxEnt IRL algorithm, Ziebart et al. proposed a simple dynamic program

to estimate the partition function Z, other algorithms have used sample-based techniques such as

importance sampling [22, 58, 36]. Boularias et al. propose relative entropy IRL (REIRL) which

minimizes the relative entropy (or Kullbach-Leibler (KL) divergence). The objective function of

REIRL is min
∑

τ P (τ) log P (τ)
Q(τ) where Q(τ) is an empirical trajectory distribution obtained by a

baseline policy while P (τ) is the distribution from the learner’s policy. Through importance sam-

pling, REIRL can be used to solve model-free problems using stochastic gradient descent [22]. A

recent study by Snoswell et al. [100] proposes a new formulation of MaxEnt IRL using KL divergence

and therefore unifies MaxEnt IRL and REIRL. Other sample-based algorithms include path integral

IRL (PI-IRL) by Aghasadeghi and Bretl [6] and guided cost learning (GCL) proposed by Finn et al.

[36], which both generalize MaxEnt IRL to high-dimentional and continuous state space.

Finn et al. [35] also present a connection between generative adversarial networks (GANs) [44]

and MaxEnt IRL. The authors show that when the generator’s density is known and assuming the

real distribution of given data follows the Boltzmann distribution, GAN and sample-based MaxEnt

IRL are equivalent. Later, Fu et al. build on this work and propose Adversarial IRL (AIRL) [38].

Fu et al. show that the trajectory-centric approach of Finn et al. performs poorly in practice.

While Finn et al. infers the distribution of trajectories, AIRL’s discriminator learns to discriminate

state-action pairs instead, resulting in a more scalable and robust algorithm.

Other IRL algorithms based on the MaxEnt framework include inverse reinforcement learning

from failure (IRLF) by Shiarlis et al. [98], which learns from two sets of demonstrations—successful

and failed. On top of the feature matching constraint in MaxEnt IRL, IRLF also has a constraint

that maximizes the dissimilarity between the feature expectations of the learned feature and the

failed set. Kamalaruban et al. propose an interactive teaching algorithm for IRL where a “teacher”

can provide demonstrations to the learner based on the performance of the learner’s policy [59].

Ashwood et al. [12] propose dynamic IRL (DIRL) which not only learns a time-varying reward

function but also recovers the features of each state.

2.4.4 Other IRL Algorithms

Besides the three most popular frameworks presented above, researchers have also proposed algo-

rithms that approach the IRL problem differently. For example, the Structured Classification-based

IRL (SCIRL) algorithm by Klein et al. [61] casts IRL as a multi-class classification problem. In
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SCIRL, the demonstration set is treated as a training set, where each state-action pair is a data-

label pair. The same researchers also develop an IRL algorithm using Cascaded Supervised Learning

(CSI), which breaks the IRL problem into two supervised learning problems to infer the reward func-

tion. Uchibe combines deep IRL with logistic regression [108]. Cross-embodiment IRL (XIRL) by

Zakka et al. [123] enables the agent to learn from video demonstrations where the same tasks have

different embodiments (e.g., taking different actions to complete the same task).

2.4.5 Summary

In this section, we reviewed three major frameworks—margin-based algorithms, the Bayesian ap-

proach, and the maximum entropy approach—for solving IRL problems as well as their extensions.

The common assumptions in these algorithms are: i) the demonstrations are either optimal or near

optimal and are complete, meaning the learner has access to all information in the trajectories; and

ii) the expert is optimizing one goal. While many algorithms use a linear combination of weighted

feature to impose some structure to the reward function, non-linear functions were used in the form

of neural networks [116] or Gaussian process [66]. The algorithms covered in this section align with

the focus of this thesis, where we only consider complete demonstrations with one objective, and

we have a complete MDP model for our problem. However, there also exist algorithms that handle

incomplete demonstrations, incomplete models, or the case when the expert has multiple intentions.

The interested reader is referred to a recent survey [9] as a starting point for these techniques.

2.5 Solution Methods for Multi-agent IRL

As we have seen in the previous section, most of the IRL algorithm focus on a single agent interacting

with the environment and MA-IRL only started receiving more attention over the past decade. One

can cast a multi-agent problem back to single-agent by choosing to focus on one agent at a time

and modelling the other agents as part of the environment. For example, Tian et al. [106] propose

a bounded rationality [99] two-player Markov game model where each player is modelled separately

with the other embedded in the transition dynamics. However, this approach may not be applicable

in certain situations where modelling the interactions between agents is important, such as when

the agents need to cooperate to achieve a common goal.

The first MA-IRL study is by Natarajan et al. [80] in 2010. This study assumes there exists a

centralized controller whose goal is to maximize the individual agents’ joint reward. The authors

extend the work of Ng and Russell [82] to learn the reward function of an average-reward MDP.

Reddy et al. study a decentralized case where each agent maximizes its own reward and modelled

the problem as a general sum stochastic game [89]. Reddy et al. also use Ng and Russell’s classical

IRL algorithm [82] and the authors assumed that the agents’ policies are at a Nash equilibrium. Lin

et al. [68] propose a Bayesian framework for solving competitive zero-sum games where the prior of

the rewards is assumed to be Gaussian, following Qiao and Beling [86]. Lin et al. [67] later expand

this approach to five classes of general sum games under different equilibria. Bogert and Doshi [21]

extend the MaxEnt IRL framework, called IRL∗ to study multi-robot interactions under occlusions,

meaning some state-action pairs in other agents’ trajectories may be hidden from the learner. Since

interactions are sparse in Bogert and Doshi, each robot is modelled as a separate MDP except when
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they interact, which is then assumed that they are at a Nash equilibrium. Recently, AIRL has also

been generalized to a multi-agent setting (MA-AIRL) by Yu et al. [121].

Šošić et al. [101] study IRL in swarm systems where each agent in the swarm is homogenous and

only has access to local information (i.e., the agent can only observe a pre-defined neighbourhood

near it). The authors show that the problem can be reduced to a single-agent problem due to the

homogeneity assumption. Yu et al. [122] follow the framework developed by Šošić and propose a

parameter-sharing AIRL (PS-AIRL) algorithm, which also utilizes the homogeneity of agents in the

system and assumes agents share the same parameters in the policy network. Hadfield et al. [47]

formulate the value alignment problem as cooperative IRL (CIRL), defined as a two-player game

of partial information with a human player and a robot player. In CIRL, the human knows the

reward function while the robot initially does not. The goal of CIRL is to make the robot learn

and maximize the reward function, hence aligning itself to the human’s goal. Zhange et al. [124],

conversely, study the case when the agents have misaligned goal and develop non-cooperative IRL

(N-CIRL). N-CIRL is formulated as a zero-sum Markov game with one-sided information where only

one player knows the true reward function. Zhang et al. apply N-CIRL in a cybersecurity setting

where the defender must learn the attacker’s intent.

Finally, although the MA-IRL problem is often formulated as a game, existing literature seldom

makes the connection between MA-IRL and inverse game theory [64]. In game theory literature, Inga

et al. [53] and Mehr et al. [74] both extend MaxEnt IRL [129] to solve inverse dynamic games. Cao

and Xie [25] propose a game-theorectic IRL (GT-IRL) framework where both the system dynamics

and the reward function of the players are parameterized and unknown. Waugh et al. [112] and

Bertsimas et al. [19] study the equilibrium estimation problem from given behaviours, which is

effectively equivalent to recovering a reward function that makes the observed behaviour optimal in

IRL.

In summary, MA-IRL was introduced roughly a decade after the single-agent IRL problem was

proposed in 1998 [92]. MA-IRL algorithms are mostly extensions of existing single-agent IRL algo-

rithms such as MaxEnt IRL [129] or BIRL [87]. While the connection between forward multi-agent

RL and game theory is well established [69, 119], MA-IRL and inverse game theory are often seen

as separate topics by the two research fields and thus there exists an opportunity to unify the two

frameworks.

2.6 Conclusion

In this chapter, we presented an overview of IRL by first providing the formal definitions of related

concepts, followed by the applications of IRL. We also present some foundational algorithms for

single-agent and multi-agent IRL and how these algorithms address the ill-posedness of the IRL

problem. Although IRL has gained significant attention over the past two decades, some limitations

and challenges IRL faces include:

• Although IRL avoids the issue of specifying the exact reward function as in RL, the majority

of IRL algorithms still require us to choose a set of features and to impose some structure in

the reward function (e.g., a linear combination) [36], making the algorithms highly sensitive

to feature selection [9]. There exists only a few works that discuss feature construction and

selection in IRL [110, 65]. Further, if we choose to represent the reward function using a neural
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network [116, 36], avoiding specifying the function structure and hand-designed features, we

face the issue of losing the ability to interpret the recovered results. Therefore, there is a

trade-off between choosing a feature-based function based on domain knowledge that may not

correctly represent the true reward and choosing a more expressive function that works well

but loses interpretability.

• As we have seen in Algorithm 3, many popular IRL algorithms still require solving the forward

problem in the learning process, which may lead to computational and scaling issues.

• Besides the machine learning community, IRL has also been applied to the field of cognitive

science and behavioural science. However, it is worth noting that there appears to be a

disconnect with between IRL and other research communities even though concepts similar to

IRL have been proposed (e.g., inverse dynamic games, ToM). Building stronger connections

among these different fields can potentially lead to novel applications and methods for IRL.



Chapter 3

Learning the Discount Factor in

IRL

In the literature, standard IRL algorithms focus on learning weights in the reward function solely.

For example, recall the MaxEnt IRL framework [129] presented in Chapter 2, where we see that

under the principle of maximum entropy, the goal is to maximize the log likelihood of the observed

trajectories τ ∈ ξ:

argmax
w

∑
τ∈ξ

logP (τ ;w).

It seems intuitive that we can extend the maximum likelihood estimation to be with respect to

both w and γ:

argmax
w,γ

∑
τ∈ξ

logP (τ ;w, γ) (3.1)

However, to the best of our knowledge, there is only one study that attempts to learn the discount

factor along with the weight parameters in the reward function [40, 41]. The authors build upon

MaxEnt IRL and present a method of learning both parameters simultaneously. However, there are

several minor errors in their proposed formulation, that we discuss in Section 3.3.

This chapter is organized as follows. We first address the importance of the discount factor in

the agent’s behaviours in Section 3.1. Section 3.2 provides a complete formulation of the modified

MaxEnt IRL problem. Then, Section 3.3 presents the corrected version of solving the optimization

problem using the extended MaxEnt IRL algorithm based on Giwa and Lee [40]. In Section 3.4, we

investigate a claim about Eq. 3.1’s convexity made in the study. Next, we discuss the connections

among different ways of formulating the likelihood function in Section 3.5. Finally, we conclude this

chapter in Section 3.6.

3.1 Motivation

The discount factor γ is often seen as a mathematical convenience to ensure convergence for the

value function in an infinite horizon setting [40]. However, the discount factor in an MDP also

represents how much the agent values the future. A smaller discount factor value indicates that the

agent is more myopic, meaning the agent cares more about the immediate reward than the future

20
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reward, while a larger value represents a larger emphasis on future reward.

Consider the example shown in Figure 3.1. We can construct an MDP where each node can be

seen as a state and nodes T1 and T2 are terminals. Each arc represents a valid action from each

state and the values of the arcs represent the immediate reward an agent receives. Table 3.1 shows

the values obtained by solving the MDP under two different discount factors, γ1 = 0.1 and γ2 = 0.9,

using regular VI.

Figure 3.1: A motivating example with four states.

Assume the starting state is node 1, we can see that when γ is small, the optimal policy is to

move to node T2 directly for a reward of 1 (i.e., π(s = 1) = argmaxa Q(1, a) = T2); when γ is large,

the agent will move towards node T1 despite the negative reward for moving from node 1 to node 2.

Table 3.1: Values of each state-action pair and each state for the example in Figure 3.1.

State γ1 = 0.1 γ2 = 0.9

1
Q(1, 2) = 0.1
Q(1, T2) = 1
V (1) = 1

Q(1, 2) = 1.7
Q(1, T2) = 1
V (1) = 1.7

2
Q(2, T1) = 3
V (2) = 3

Q(2, T1) = 3
V (2) = 3

From this simple example, we illustrate how the discount factor affects the agent’s decisions.

From an IRL perspective, when studying the expert’s behaviours, we believe it is reasonable to

treat the discount factor as an unknown variable rather than choosing an arbitrary value as most

RL and IRL studies. One can imagine that if the expert demonstrations are from a myopic expert,

having a large discount factor may result in a reward function that has low interpretability in terms

of how each feature affects the agent. As discussed later in this thesis, our application focuses

on interpreting real-life animal behaviour, therefore, learning the agent’s discount factor allows us

to better understand why an agent exhibits certain behaviour. Note that an IRL problem with

unknown discount factor is ill-posed: for example, the combination of a 0 reward function and any

discount factor γ ∈ [0, 1] is a valid solution to the problem. We adopt a probabilistic approach based

on MaxEnt IRL [129] to resolve the ill-posedness issue.

3.2 MaxEnt IRL as Maximum Likelihood Estimation

In this section, we present a complete formulation of the modified MaxEnt IRL problem and how

we arrive at Eq. 3.1. The derivations presented in this section are based on Ziebart et al. [129] and
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Giwa and Lee [40]. We note that the derivations have been shown in the literature [42], nonetheless,

we show the steps required for completeness.

The notations used in this chapter follow the ones presented in Section 2.4.3. Recall ξ is defined

as the set of trajectories and τ = {(s0, a0), (s1, a1), ..., (sn, an)} is a trajectory of length n. P (τ) is

the probability of τ under a policy. Here, we present the optimization problem shown in Chapter 2

again, with the feature matching constraint written explicitly:

max −
∑
τ

P (τ) logP (τ) (3.2)

subject to
∑
τ

P (τ)

|τ |∑
t=0

γtϕ(st) =
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st) (3.3)

∑
τ

P (τ) = 1 (3.4)

The optimization problem aims to find a trajectory distribution that maximizes the entropy while

ensuring the feature matching requirement between the demonstrations and the learner’s policy is

satisfied (Constraint 3.3) and the probabilities of all trajectories sum up to 1 (Constraint 3.4). The

discount factor is often included implicitly in the expected feature count term. However, there exists

formulations in the literature that explicitly include γ. For example, Bloem and Bambos [20] use the

expression in Constraint 3.3 when formulating the infinite horizon MCE IRL algorithm, and Gleave

and Toyer [42] include γ in the finite horizon MaxEnt IRL formulation to show that having a γ < 1

would not affect the derivations [42] w.r.t. the weights w. Since γ is one of the unknown variables,

we also write γ explicitly in the formulation for clarity.

Next, we present the Lagrangian relaxation of the optimization problem. We first move the two

constraints to the objective function with λ and µ as the Lagrangian multipliers:

max −
∑
τ

P (τ) logP (τ)

− λ⊤
(∑

τ

P (τ)

|τ |∑
t=0

γtϕ(st)−
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st)
)

− µ
(∑

τ

P (τ)− 1
)

Taking the derivative of the objective function with respect to the distribution P (τ) and setting

it to zero, we get

− d

dP (τ)

∑
τ

P (τ) logP (τ)

− d

dP (τ)
λ⊤

( ∑
τ

P (τ)

|τ |∑
t=0

γtϕ(st)−
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st)
)

− d

dP (τ)
µ
( ∑

τ

P (τ)− 1
)
= 0

(3.5)
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We can simplify the first term as

d

dP (τ)

(∑
τ

P (τ) logP (τ)
)
=

∑
τ

( d

dP (τ)
P (τ)

)
logP (τ) +

∑
τ

P (τ)
( d

dP (τ)
logP (τ)

)
=

∑
τ

logP (τ) +
∑
τ

1

The second term becomes

d

dP (τ)
λ⊤

( ∑
τ

P (τ)

|τ |∑
t=0

γtϕ(st)−
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st)
)
= λ⊤

( ∑
τ

|τ |∑
t=0

γtϕ(st)
)

And finally, the third term

d

dP (τ)

(
µ
(∑

τ

P (τ)− 1
) )

= µ
( ∑

τ

1
)

Putting the three derivatives together, we rewrite 3.5 as

−
∑
τ

logP (τ)−
∑
τ

1− λ⊤
∑
τ

|τ |∑
t=0

γtϕ(st)− µ
∑
τ

1 = 0

=⇒
∑
τ

[
logP (τ) + λ⊤

|τ |∑
t=0

γtϕ(st) + µ+ 1
]
= 0

=⇒ logP (τ) + λ⊤
|τ |∑
t=0

γtϕ(st) + µ+ 1 = 0

=⇒ logP (τ) = −λ⊤
|τ |∑
t=0

γtϕ(st)− µ− 1

=⇒ P (τ) = exp
(
− λ⊤

|τ |∑
t=0

γtϕ(st)− µ− 1
)

(3.6)

From Eq. 3.6, we can see that P (τ) is under the exponential family, namely:

P (τ) ∝ exp
(
− λ⊤

|τ |∑
t=0

γtϕ(st)
)

Since the reward is linear in the features ϕ(st), we substitute w = −λ back to 3.6,
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P (τ) = exp
(
w⊤

|τ |∑
t=0

γtϕ(st)− µ− 1
)

= exp
( |τ |∑
t=0

γtw⊤ϕ(st)− µ− 1
)

Recall that
∑

τ P (τ) = 1, and following Giwa and Lee’s notations [40], we define the discounted sum

of reward as U(τ) =
∑|τ |

t=0 γ
tw⊤ϕ(st), we have∑

τ

exp
(
U(τ)− µ− 1

)
= 1

exp(µ+ 1) =
1∑

τ exp(U(τ))

Therefore, we arrive at the conclusion that

P (τ) =
eU(τ)∑
τ e

U(τ)
=

eU(τ)

Z
(3.7)

where Z is the partition function. Similar to Ziebart et al. [129], maximizing the entropy of the

distribution over all trajectories subject to the feature constraints from demonstrations implies that

we maximize the likelihood of the observed data under the maximum entropy (exponential family)

distribution and parameters w and γ

w∗, γ∗ = argmax
w,γ

∑
τ∈ξ

logP (τ |w, γ). (3.8)

3.3 Learning the Weights and the Discount Factor

In Giwa’s thesis [41], the optimization problem is solved by using gradient descent directly. The

gradients derived in their study have several minor notation errors and, more importantly, one of

the algorithms for approximating the partition function Z is incorrect. In this section, we provide

the correct gradient derivations and the approximation algorithm for Z.

First, let us derive the gradients of the maximum likelihood with respect to w and γ (Eq. 3.8).

The derivations are not presented in Giwa’s thesis [41] and we include the steps here for completeness.
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Taking the derivative w.r.t. w, we have:

d

dw

∑
τ∈ξ

logP (τ |w, γ) =
d

dw

∑
τ∈ξ

log(
eU(τ)

Z
)

=
d

dw

∑
τ∈ξ

U(τ)−
∑
τ∈ξ

logZ

=
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st)−
∑
τ∈ξ

∑
τ

∑|τ |
t=0 γ

tϕ(st)e
U(τ)

Z

=
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st)−
∑
τ

P (τ)

|τ |∑
t=0

γtϕ(st)

(3.9)

Similarly,

d

dγ

∑
τ∈ξ

logP (τ |w, γ) =
d

dγ

∑
τ∈ξ

log(
eU(τ)

Z
)

=
d

dγ

∑
τ∈ξ

U(τ)−
∑
τ∈ξ

logZ

=
∑
τ∈ξ

|τ |∑
t=1

tγt−1w⊤ϕ(st)−
∑
τ∈ξ

∑
τ

∑|τ |
t=1 tγ

t−1w⊤ϕ(st)e
U(τ)

Z

=
1

|ξ|
∑
τ∈ξ

|τ |∑
t=1

tγt−1w⊤ϕ(st)−
∑
τ

P (τ)

|τ |∑
t=1

tγt−1w⊤ϕ(st)

(3.10)

The last line of Eq. 3.9 is the discounted feature count difference between the expert and the

learner. The first term represents the empirical mean of the given trajectories and the second term

is the expected discounted feature count from the learner’s policy, which generates P (τ). Eq. 3.10

follows the same structure where the first term can be directly calculated using the demonstrations

while the second term comes from the learned policy. Note that Eq. 3.9 is exactly the feature

matching constraint we have in the original optimization problem, meaning that the optimal solution

of the maximum likelihood problem would be feasible for the original problem. Eq. 3.10 shows a

similar matching requirement between the expert and the learner.

The difficulty of computing Eqs. 3.9 and 3.10 lies in obtaining the value of Z, which is required to

compute P (τ). The partition function relies on the knowledge of all feasible paths. However, as the

size of the state and action space increases, the number of paths increases exponentially, making the

enumeration computationally infeasible. One way to resolve this issue is to compute the expected

sum of discounted features over all states (and the discounted sum of discounted reward scaled by

time) instead. In Eqs. 3.11 and 3.12, we replace P (τ) with the expected state visitation frequency,

denoted as Pt(s|w, γ). The gradients then become:

∇w =
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(τ ; t)−
∑
s∈S

T∑
t=0

γtPt(st|w, γ)ϕ(st) (3.11)
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∇γ =
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

tγt−1w⊤ϕ(τ ; t)−
∑
s∈S

T∑
t=0

tγt−1Pt(st|w, γ)w⊤ϕ(st) (3.12)

The gradients shown above follow the same structure as the ones presented in Giwa and Lee

[40], where Pt(st|w, γ) represents the expected state visitation frequency at time step t for the tth

state in the trajectory and T is the planning horizon. We can calculate Pt(st|w, γ) similarly to the

algorithm presented in Ziebart et al. [129]. However, since this term is now time-indexed, we need to

record the visitation frequency at each time step, instead of summing the state visitation frequency

over an arbitrary horizon (line 6 in Algorithm 1 by Ziebart et al. [129]). Algorithm 4 illustrates how

each time-indexed state visitation frequency is calculated.

Algorithm 4 Time-indexed State Visitation Frequency Calculation

Input: An intermediate policy πL, initial state distribution I(s0)
Output: Time-indexed state visitation frequency Pt(s|ŵ, γ̂),∀s ∈ S,∀t ∈ T

1: Initialize Pt(s|ŵ, γ̂) := 0
2: for s ∈ S do
3: P0(s|ŵ, γ̂) = I(s0)
4: end for
5: for t = 1, ..., T do
6: for (s, a, s′) ∈ S ×A× S do
7: Pt+1(s

′|ŵ, γ̂) =
∑

(s,a) Pt(s|ŵ, γ̂)πL(a|s)P (s′|s, a)
8: end for
9: end for

Algorithm 4 takes the learner’s intermediate policy πL based on ŵ and γ̂, the feature value for

each state ϕ(s), and the initial state distribution from the demonstration I(s0) as input, and outputs

the time-indexed state visitation frequency Pt(s|w, γ), where t ∈ {0, .., T}. We use the empirical

initial state distribution as the visitation frequency at t = 0 (line 2 to 4), and each subsequent time

step depends on the visitation frequency of the previous time step, the policy and the transition

probability (line 5 to 9).

Once we obtain the time-indexed state-action visitation frequency, Algorithm 5 shows the general

learning process of obtaining w and γ.

Algorithm 5 Modified MaxEnt IRL Algorithm [41]

Input: MDP \R, γ, demonstration set ξ, initial state distribution I(s0), learning rate α
Output: Learned ŵ∗ and γ̂∗

1: Initialize ŵ and γ̂
2: while not converged do
3: Compute the first terms of the gradients empirically using ξ
4: Solve the forward RL problem with ŵ and γ̂, produce a learner’s policy πL

5: Compute state visitation frequencies Pt(s|ŵ, γ̂) under πL using Algorithm 4
6: Compute gradients ∇ŵ and ∇γ̂

7: Update ŵ and γ̂ with learning rate α
8: end while

The modified MaxEnt IRL algorithm takes an MDP without the reward function, the expert

demonstrations and its initial state distribution as input and aims to recover the weight parameters

and the discount factor γ. We first initialize the parameters, either randomly or with an educated
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guess. For line 3 to 7, we first empirically compute the first terms in the two gradients (Eqs. 3.11 and

3.12) using ŵ, γ̂ , and ξ. Next, we solve for an intermediate policy πL and calculate the visitation

frequency in line 5. We compute the gradients and update the parameters with a step size α. We

repeat this process until the parameters converge.

3.4 On the Convexity of the Objective Function

With the objective function now associating with two variables w and γ, solving the problem is not

as trivial as the original formulation by Ziebart et al. [129]. In Giwa’s thesis, the author claims

that the objective function is concave, and so we can directly use gradient ascent to obtain the

global optimal solution. In this section, we attempt to provide a proof for this important claim. We

show that, while the MaxEnt IRL with learning only the weights w is concave, proving the same

conclusion holds when the discount factor is also an unknown variable is challenging.

First, let us examine the claim where the maximum likelihood function is concave with respect

to parameter w. Let us rewrite the sum of discounted feature of a trajectory τ in Eq. 3.9 as

ϕτ =
∑|τ |

t=0 γ
tϕ(st). We obtain the second derivative of the objective function w.r.t. w by taking

the derivative of Eq. 3.9:

d2

dw2

∑
τ∈ξ

logP (τ |w, γ) = 0−
∑

τ e
U(τ)

∑
τ ϕ

2
τe

U(τ) − (
∑

τ ϕτe
U(τ))2

(
∑

τ e
U(τ))2

. (3.13)

Let us focus on the numerator:
∑

τ e
U(τ)

∑
τ ϕ

2
τe

U(τ) − (
∑

τ ϕτe
U(τ))2. If we expand every term

in the equation, for some feasible trajectory τ1,

eU(τ1)ϕ2
τ1e

U(τ1) = (ϕτ1e
U(τ1))2,

and thus the two terms will cancel out to be 0. For any τ2 and τ3 where τ2 ̸= τ3, in the first term,

the multiplication is

eU(τ2) · ϕ2
τ3e

U(τ3) + eU(τ3) · ϕ2
τ2e

U(τ2) = (ϕ2
τ2 + ϕ2

τ3)e
U(τ2)eU(τ3),

and in the second term

2(ϕτ2ϕτ3)e
U(τ2)eU(τ3).

We then have

(ϕ2
τ2 + ϕ2

τ3)e
U(τ2)eU(τ3) − 2(ϕτ2ϕτ3)e

U(τ2)eU(τ3) = eU(τ2)eU(τ3)(ϕ2
τ2 + ϕ2

τ3 − 2ϕτ2ϕτ3),

which is equivalent to

eU(τ2)eU(τ3)(ϕτ2 − ϕτ3)
2,

and it is non-negative.

Thus, for every pair of feasible τi and τj , assuming that the sum of features for each trajectory

is non-zero, the numerator is always positive, making the second derivative d2

dw2

∑
τ∈ξ logP (τ |w, γ)

always negative and thus
∑

τ∈ξ logP (τ |w, γ) is concave w.r.t. w. Therefore, a gradient-based

method can solve the problem of learning w to optimality.
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In Giwa’s thesis [41], the author claims that when the reward function is non-negative, R =

w⊤ϕ ≥ 0, the objective function is concave with respect to w and γ as the Hessian of the objective

function is negative semi-definite. Since the author did not provide a proof to this claim, in the rest

of this section, we attempt to show the definiteness of the Hessian.

For the Hessian matrix to be negative semi-definite, the eigenvalues of the matrix need to be

non-positive. We know the Hessian is in the form of

H =

[
∇ww ∇wγ

∇γw ∇γγ .

]

The first term ∇ww corresponds to Eq. 3.13, which is non-positive. However, determining the signs

of the other terms in the Hessian is not as trivial. Consider the second derivative of the objective

function w.r.t. to γ:

∇γγ =
1

|ξ|

|τ |∑
t=0

t(t− 1)γt−2w⊤ϕ(st)−

Z(
∑

τ e
U(τ)(

∑|τ |
t=0 tγ

t−1w⊤ϕ(st))
2 +

∑
τ e

U(τ)
∑|τ |

t=0 t(t− 1)γt−2w⊤ϕ(st))

Z2
+

(
∑

τ e
U(τ)

∑|τ |
t=0 tγ

t−1w⊤ϕ(st))
2

Z2

(3.14)

We can see that the sign of the derivative depends on both the demonstrations (i.e., the first

term) and the expected value that involves the partition function Z (i.e., the second and the third

terms). Similar results can be obtained for d2

dγw and d2

dwγ :

d2

dγw

∑
τ∈ξ

logP (τ |w, γ) =
d2

dwγ

∑
τ∈ξ

logP (τ |w, γ)

=
1

|ξ|

|τ |∑
t=0

tγt−1ϕ(st)−

Z(
∑

τ e
U(τ)(

∑|τ |
t=0 tγ

t−1ϕ(st)) +
∑

τ e
U(τ)

∑|τ |
t=0(tγ

t−1w⊤ϕ(st)) · γtϕ(st))

Z2
+∑

τ e
U(τ)

∑|τ |
t=0 tγ

t−1ϕ(st) ·
∑

τ e
U(τ)

∑|τ |
t=0 γ

tϕ(st)

Z2

(3.15)

Further, to determine definiteness of the Hessian, we need to compute the matrix’s eigenvalue, λ, by∣∣∣∣∣∇ww − λ ∇wγ

∇γw ∇γγ − λ

∣∣∣∣∣ = 0.

Solving for λ, we get

λ =
∇ww +∇γγ ±

√
(∇ww +∇γγ)2 − 4(∇ww∇γγ −∇wγ∇γw)

2
.

To claim H is negative semi-definite is to claim that both eigenvalues are non-positive. For this

to be true, we need
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1. ∇ww +∇γγ to be negative, as a positive value would not lead to two negative eigenvalues.

2. ∇ww∇γγ − ∇wγ∇γw to be strictly positive. If this term is 0, we would have λ = 0; if it is

negative, we would have one positive and one negative eigenvalue.

For the first condition, we know that ∇ww is non-positive but ∇γγ is inconclusive; for the second

condition, it is more difficult to determine the sign with the terms interacting with each other.

Therefore, without knowledge of the demonstrations, we do not think it is possible to conclude

the convexity of the objective function w.r.t. w and γ jointly with the only assumption being the

reward is non-negative. Moreover, one may consider an extreme case where w is approaching 0,

this assumption would make ∇γγ effectively become 0, rendering the second condition infeasible.

However, w being 0 is a trivial solution to the inverse problem and is generally avoided.

Since we cannot prove the claim that, in general, the objective function’s Hessian being negative

semi-definite directly, let us focus on something that is more manageable - the discounted sum of

reward U(τ) =
∑|τ |

t=0 w
⊤γtϕ(st).

Let us first derive the second derivatives of the function U(τ):

∇wwU(τ) = 0

∇wγU(τ) = ∇γwU(τ) =

|τ |∑
t=1

tγt−1ϕ(st)

∇γγU(τ) =

|τ |∑
t=2

t(t− 1)w⊤γt−2ϕ(st)

Thus, the Hessian of U(τ), HU , is then

HU =

[
0

∑|τ |
t=1 tγ

t−1ϕ(st)∑|τ |
t=1 tγ

t−1ϕ(st)
∑|τ |

t=2 t(t− 1)w⊤γt−2ϕ(st)

]

To obtain the eigenvalues of Hessian HU , we set its determinant to zero:∣∣∣∣∣ 0− λU
∑|τ |

t=1 tγ
t−1ϕ(st)∑|τ |

t=1 tγ
t−1ϕ(st)

∑|τ |
t=2 t(t− 1)w⊤γt−2ϕ(st)− λU

∣∣∣∣∣ = 0

Thus,

−λU (

|τ |∑
t=2

t(t− 1)w⊤γt−2ϕ(st)− λU )− (

|τ |∑
t=1

tγt−1ϕ(st))
2 = 0

Similar to the previous procedure, we solve the equation above for λU :

λU =

∑|τ |
t=2 t(t− 1)w⊤γt−2ϕ(st)±

√
(
∑|τ |

t=2 t(t− 1)w⊤γt−2ϕ(st))2 + 4(
∑|τ |

t=1 tγ
t−1ϕ(st))2

2

For any x ∈ R, we have x <
√
x2 + y2 for some y > 0. Therefore, the two eigenvalues of HU do

not share the same sign, indicating that the function U(τ) =
∑|τ |

t=0 w
⊤γtϕ(st) is neither convex nor

concave.

Therefore, we can conclude that eU(τ) is neither convex nor concave. In general, we cannot
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conclude the convexity of the sum of non-convex functions, such as the partition function, Z =∑
τ e

U(τ). However, we do believe that it is unlikely that Z and its logarithm are both concave.

In summary, for the two components in objective function (Eq. 3.8),
∑

τ∈ξ U(τ) and |ξ| logZ,

we can only determine that the former is neither convex nor concave while the latter is inconclusive

when learning w and γ jointly. Further, we also cannot conclude whether the objective function is

concave w.r.t. γ, because the sign of ∇γγ depends on the demonstrations’ values. Therefore, while

using direct gradient ascent is still a valid method, it may lead to solutions that are only locally

optimal.

3.5 Discussion

So far in this chapter, the probability of a trajectory P (τ) is expressed as:

P (τ) =
eU(τ)

Z
. (3.16)

Alternatively, since we know the learned policy πL and the state-action pairs in a given trajectory,

it is intuitive to represent the probability as

P (τ) =

|τ |−1∏
t=0

πL(at|st) =
|τ |−1∏
t=0

eQ(st,at)−V (st) (3.17)

where πL(at|st) = eQ(st,at)−V (st) since we use soft VI [129]. In the literature, Eq. 3.17 is sometimes

used to replace Eq. 3.16 [106, 12] as the objective function or used as an evaluation metric [129].

One advantage of using Eq. 3.17 is that it is differentiable because of soft VI, and so we can

avoid computing Z or the approximation of Z using visitation frequency and derive the gradients

directly from the reward and value functions.

Intuitively, given the definition of P (τ), the probability of a trajectory occurring under the

learned policy, one may think that Eqs. 3.16 and 3.17 are equivalent, namely,

P (τ) =
eU(τ)

Z
=

|τ |−1∏
t=0

πL(at|st) (3.18)

However, for Eq. 3.18 to be true, the learned policy needs to be non-stationary, meaning that

the action distribution at a particular state changes over time. The condition is not often mentioned

in the literature. In fact, Snoswell et al. [100] point out that many studies, including theirs, treat

the learned reward function as suitable for a stationary policy since it is easier to evaluate the

performance of a stationary policy computationally. However, since the reward at each time step

is discounted by γt and P (τ) is proportional to the total discounted reward, we can interpret all

feasible trajectories in Z as being produced by a non-stationary policy [100].

To show how the policy’s stationarity affects Eq. 3.18, let us consider a three-state example

illustrated in Figure 3.2.

In this example, each node is a state, with node 3 being the terminal and an absorbing state, and

the value of each arc represents the immediate reward of choosing action j (j ∈ {1, 2, 3}) at state i

(i ∈ {1, 2, 3}). Assume that the reward RL and discount factor γL in the example are the optimal
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Figure 3.2: A three-state example.

parameters recovered using the modified MaxEnt IRL algorithm. We can manually perform soft VI

to obtain a policy π. The final values and the action distribution for each state are shown in Table

3.2.

Table 3.2: State-action values, state values, and policy for each state in the example.

State Q Function (Q(s,a)) V Function (V(s)) Policy (π(a|s))

1
Q(1, 3) = 1
Q(1, 2) = 0.135

1.35
π(3|1) = 0.705
π(2|1) = 0.295

2
Q(2, 3) = 1
Q(2, 1) = 0.135

1.35
π(3|2) = 0.705
π(1|2) = 0.295

For simplicity, let us assume that the starting state is node 1 and trajectory length is 2, that is,

I(s0 = 1) = 1 and |τ | = 2. We have three different trajectories:

τ1 = {(1, 3), (3, 3)}

τ2 = {(1, 2), (2, 3)}

τ3 = {(1, 2), (2, 1)}

We can then calculate P (τi) (i ∈ {1, 2, 3})) using the two different methods, shown in Table 3.3.

Table 3.3: Probability of the three trajectories calculated using the two methods.

Trajectory exp(U(τ))/Z
∏

π(a|s)
τ1 0.564 0.705
τ2 0.229 0.208
τ3 0.207 0.087

We can see that although the two trajectory distributions follow the same trend (i.e., τ1 has the

highest probability since it has the highest reward, then τ2 and τ3), the distribution produced by fol-

lowing Eq. 3.17 is less skewed and has similar probability for τ2 and τ3, which can be counterintuitive

since τ3 has 0 reward.

Therefore, the results shown in Table 3.3 indicate that Eq. 3.18 is invalid when the policy

is stationary. Next, using the same example in Figure 3.2, we show that we can also interpret

γ as an indicator of how the reward deteriorates over time in a non-stationary and undiscounted

environment. Let us rename γ to β to avoid any confusion, and we define a non-stationary reward
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function Rt(s, a) = βtwϕ(s, a). Thus, the sum of rewards of a trajectory τ becomes

U ′(τ) =

|τ |−1∑
t=0

βtw⊤ϕ(s, a).

Although, mathematically, U ′(τ) is equivalent to U(τ), they are from two different environments

- the former is from an undiscounted environment (i.e., γ′ = 1), while the latter is discounted. Since

βt is now part of the reward function, P (τ) now represents the probability of trajectory τ given a

non-stationary policy π̂ for a non-stationary environment. We illustrate this new environment with

the rewards discounted by βt at each time step in Figure 3.3 where the trajectory length is two.

Figure 3.3: Updated example with decaying reward with length of trajectory set to two.

In Figure 3.3, we expand the original example into three layers, and the arcs connecting the

layers represent the actions taken and only the ones towards node 3 have non-zero values. Note

that when t = 1, the rewards become β11 = 0.1. We then apply soft VI on this new example with

time-varying reward, the resulting values and policy are shown in Table 3.4.

Table 3.4: State-action values, state values, and the corresponding non-stationary policy given time-
varying rewards.

State Time
t = 0 t = 1

1
Q0(1, 3) = 1
Q0(1, 2) = 0.744

V0(1) = 1.573
π0(3|1) = 0.564
π0(2|1) = 0.436

Q1(1, 3) = 0.1
Q1(1, 2) = 0

V1(1) = 0.744
π1(3|1) = 0.525
π1(2|1) = 0.475

2
Q0(2, 3) = 1
Q0(2, 1) = 0.744

V0(2) = 1.573
π0(3|2) = 0.564
π0(1|2) = 0.436

Q1(2, 3) = 0.1
Q1(2, 1) = 0

V1(2) = 0.744
π1(3|2) = 0.525
π1(1|2) = 0.475

Assume I(s0 = 1) = 1, the three trajectories’ probabilities are

P (τ1) =
eU

′(τ1)

Z
=

e1

e1 + e0.1 + e0
= π0(3|1)× π1(3|3) = 0.564 (3.19)

P (τ2) =
eU

′(τ2)

Z
=

e0.1

e1 + e0.1 + e0
= π0(2|1)× π1(3|2) = 0.229 (3.20)

P (τ3) =
eU

′(τ3)

Z
=

e0

e1 + e0.1 + e0
= π0(2|1)× π1(1|2) = 0.207 (3.21)

Under the interpretation of time-varying reward Rt, the role of the original discount factor γ is
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embedded in the environment, and thus it no longer represents the decision maker’s view on future

reward. To separate the reward and the discount factor in U(τ), we first introduce another concept

- the discounted likelihood presented in Gleave and Toyer [42]:

Pγ(τ) =

|τ |∏
t=0

πt(at|st)γ
t

(3.22)

Eq. 3.22 is equivalent to the likelihood function (Eq. 3.17) when γ = 1. When γ < 1, the

probabilities later in the trajectory will converge towards 1 when t is large. As noted by Gleave

and Toyer, the discounted likelihood is not normalized. According to Lemma 3.4 in Gleave and

Toyer [42], for MaxEnt IRL, if we assume the initial state distribution I(s0) is deterministic, the

discounted likelihood of a trajectory Pγ(τ) is

Pγ(τ) =
I(s0)
eV0(s0)

eU(τ) (3.23)

where V0(s0) is the value function of the initial state s0 at t = 0.

Proposition 3.5.1. For any trajectory τ , P (τ) in Eq. 3.16 is the normalized Pγ(τ) in a determin-

istic environment with deterministic I(s0).

Proof. Recall that the partition function Z is the sum of all possible trajectories’ discounted return

(i.e., Z =
∑

τ e
U(τ)). We have one initial state, such that I(s0) = 1.

To normalize Pγ(τ), we divide each term by the sum of all Pγ(τ),

Pnorm
γ (τ) =

eU(τ)

eV0(s0)∑
τ

eU(τ)

eV0(s0)

=
1

eV0(s0) e
U(τ)

1
eV0(s0)

∑
τ e

U(τ)
=

eU(τ)∑
τ e

U(τ)
= P (τ)

Therefore, following Gleave and Toyer [42], the trajectory probability P (τ) is proportional to the

discounted likelihood, namely,

P (τ) =
eU(τ)

Z
∝

|τ |∏
t=0

πt(at|st)γ
t

(3.24)

To illustrate this proposition more concretely, let us revisit the example in Figure 3.2. This

time, the reward the agents receives from the environment at each state is the same regardless of

the time step (i.e., Rt(s) = Rt′(s), ∀t, t′ ∈ {0, ..., |τ | − 1}) and t ̸= t′). However, when traversing

the trajectory, the reward is discounted by γt defined in the environment. Since the environment

is stationary, to create a “non-stationary” policy, we add the time step t into the state space.

We still assume a trajectory length of 2, and so the state space expands from S = {1, 2, 3} to

S = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)}, where states with t = 2 are terminals and

absorbing states.

By definition, a non-stationary policy is a policy where the action distribution of the same state

might be different at different time steps due to a non-stationary environment (i.e., πt(s) ̸= πt′(s)).

When we introduce time step into the state space, the policy we obtain is still technically stationary

because s = (1, 0) and s′ = (1, 1) are two distinct states instead of state 1 being at t = 0 and 1.
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However, for illustrative purposes, we would assume that with the newly defined state space, the

optimal policy is “non-stationary”. The non-terminal states’ final values by soft VI are shown in

Table 3.5.

Table 3.5: State-action values, state values, and the corresponding policy given the newly defined
state space.

State Q Function V Function Policy

(1,0)
Q(3, (1, 0)) = 1
Q(2, (1, 0)) = 0.131

1.35
π(3|(1, 0)) = 0.705
π(2|(1, 0)) = 0.295

(1,1)
Q(3, (1, 1)) = 1
Q(2, (1, 1)) = 0

1.31
π(3|(1, 1)) = 0.733
π(2|(1, 1)) = 0.267

(2,0)
Q(T, (2, 0)) = 1
Q(1, (2, 0)) = 0.131

1.35
π(3|(2, 0)) = 0.795
π(1|(2, 0)) = 0.295

(2,1)
Q(T, (2, 1)) = 1
Q(1, (2, 1)) = 0

1.31
π(3|(2, 1)) = 0.733
π(1|(2, 1)) = 0.267

Therefore, the discounted likelihood of the same three trajectories starting from node 1 are

Pγ(τ1) = 0.705, Pγ(τ2) = 0.295 × 0.7330.1 = 0.286, and Pγ(τ3) = 0.295 × 0.2670.1 = 0.259, respec-

tively.

Normalizing the discounted likelihoods, we get

Pnorm
γ (τ1) =

0.705

0.705 + 0.286 + 0.259
= 0.564 (3.25)

Pnorm
γ (τ2) =

0.286

0.705 + 0.286 + 0.259
= 0.229 (3.26)

Pnorm
γ (τ3) =

0.259

0.705 + 0.286 + 0.259
= 0.207 (3.27)

which are exactly the values shown in Table 3.3.

3.5.1 Summary

In this section, we start with an observation that in the literature, Eqs. 3.16 and 3.17 are sometimes

used interchangeably. However, the condition under which these two equations are equivalent is

rarely mentioned: the learned policy is non-stationary. Following this observation, we show that

the expression U(τ) =
∑|τ |

0 γtw⊤ϕ(st) can be interpreted in two different ways through a simple

three-state example in Figure. 3.2:

1. U(τ) can be seen as the sum of undiscounted but decaying reward of the trajectory. Here,

we treat γtϕ(st, at) as the feature value the agents gets at the same state but different time

step. Thus, we rewrite γ as β to indicate that it no longer serves as the function of a discount

factor in the MDP but as part of the reward signal the environment offers. As a result, the

parameter does not represent how much the agent values the future reward anymore.

2. A second interpretation is related to the concept of discounted likelihood presented in Gleave

and Toyer [42]. We separate the immediate reward the agent gets and the discount factor γ.

Under this interpretation, the reward signal from the environment is constant for each state

across all time steps, but in calculating the return of the trajectory, the rewards are discounted

by γt accordingly.
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These two interpretations regarding what is being discounted in U(τ) are generally not discussed

in the literature, potentially because almost all IRL studies focus on learning the weight parameters

only and the discount factor γ is hidden in the formulation. However, since our goal is to learn the

discount factor as well, the two interpretations above lead to different policies as shown in Tables 3.4

and 3.5. We believe that the latter is more suitable to the definition of discount factor in an MDP

and so P (τ) ∝
∏|τ |

t=0 πt(at|st)γ
t

(Eq. 3.24). Thus, when computing P (τ), even with a non-stationary

policy, the product of probabilities of actions in a trajectory is only an approximation of the true

probability. To obtain the accurate probability of a trajectory, we need to enumerate all feasible

trajectories for both Z and
∑

τ

∏|τ |
t=0 πt(at|st)γ

t

, which is only possible for small state and action

spaces. Further study is required to investigate and establish a more efficient way to calculate or

estimate the partition function.

Finally, although it is clear that the policy corresponding to the learned reward function under

the MaxEnt IRL framework is non-stationary, as mentioned before, many studies assume the policy

is stationary since it is easier to compute [100]. In this thesis, we also choose to use a stationary

policy since the environment in our application presented in the next chapter is static. As noted

previously, this simplification has several limitations, one of which being that because we depend on

the learned policy in Algorithm 4, the visitation frequencies of all states are approximations of the

true frequencies.

3.6 Conclusion

Learning the discount factor γ along with the weight parameters is rare in the field of IRL since γ is

often treated as a mathematical convenience for convergence criteria. However, we can also interpret

γ as an indicator of how much the decision maker values the future rewards, and thus has an impact

on the decision maker’s behaviour. In this chapter, we present an algorithm based on the MaxEnt

IRL framework proposed by Ziebart et al. [129], which enables the learning of γ and the weights.

The proposed modified MaxEnt IRL algorithm is built upon the work by Giwa [40, 41], who first

proposed learning γ and the weights simultaneously. However, we point out several errors in Giwa’s

formulation and present an updated algorithm. We then investigate the claim about the concavity

of the objective function when learning the two components in the MDP jointly, and conclude that

we cannot determine the objective function is concave as the author claimed. Finally, we provide

some insight into different ways of expressing the trajectory probability, P (τ), and we show that the

standard equivalence seen in the literature does not hold.



Chapter 4

Modelling Wild Vervet Monkey

Behaviour When Foraging Alone

4.1 Introduction

In this chapter, we apply the methods presented in the previous chapter to explaining wild vervet

monkeys’ foraging behaviour. We believe that on top of recovering the reward function, learning

the discount factor is also particularly applicable to behavioural studies. As we have established in

Chapter 3, the discount factor can be interpreted as how much the decision maker values the future

reward, a factor that changes the choices that it makes. Rather than making assumptions about

whether our subjects are myopic or not, treating the discount factor as an unknown to be recovered

from the observed behaviours may offer valuable insight on their decision-making process.

As mentioned in Chapter 2, animal behaviour is a significantly less popular application of inverse

reinforcement learning (IRL) than others such as robotics or human behaviour. Although there have

been several studies in the literature on animal behaviour [118, 48, 13], the majority of these studies

were conducted in a laboratory setting, where data can be collected in a controlled environment.

Existing work on wild animal is very limited, and to our knowledge, there are only a few studies [49,

85]. Data collection in the wild is more challenging due to the unpredictability of animal behaviour.

Thus, researchers often use aids such as GPS to help more accurately track the animals’ movements

[49, 85]. In the study that we base this chapter on, however, the experimental data were manually

recorded by human experts, an additional challenge as it can lead to incomplete data, potentially

hindering our modelling capability.

The foraging experiment was conducted by Arseneau-Robar et al. [10], where one of the main

findings is that when the monkeys forage alone, they tend to maximize their total reward while

minimizing their travel distance, with which our experimental results align; and when foraging in

competition, monkeys tend to prioritize the preferred reward while responding to the social context.

In this chapter, we focus on modelling the behaviours when foraging alone. Some key research

questions are:

1. How much does the monkey care about the food reward versus the travel distance?

2. When there is no competition, is the subject myopic or farsighted?

36
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3. Does the starting position in the foraging experiment affect the monkey’s decisions? If so, how

different is the behaviour?

This chapter is organized as follows. We first introduce the foraging experiment setup and

describe some key characteristics and assumptions we made in Section 4.2. Next, we present the

Markov decision process (MDP) model that represents the foraging experiment and our approach

to solving the IRL problem in Section 4.3. We then present the experimental results in Section 4.4

followed by a discussion on the problem and the challenges of applying IRL to our specific application

in Section 4.5. We propose some alternative modelling options if the data required is available in

Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 The Foraging Experimental Setup

The foraging experimental setup in Arseneau-Robar et al. [10] is described as follows. There were

five platforms placed 5 meters apart from each other and arranged in a pentagon. Four of the five

platforms were baited with three corn kernels, and the remaining platform was baited with half of

a banana placed in a container. Figure 4.1 illustrates one possible setup.

Figure 4.1: Foraging experimental set-up.

The experimental site was set in an open area near the habitat of a group of monkeys, and thus

the monkeys can enter or exit the trial freely. The monkey that participated in a trial is referred

to as the “focal” monkey. Although various types of information were collected for each trial, our

process of modelling the experiment as an MDP only utilizes two specific pieces of information: the

sequence of platforms visited and which platform was baited with the banana. We choose to focus

on the decision sequence and the banana platform because we believe they are the most unbiased

and accurate information in a dataset that was manually collected by human experts [10]. Due to

the unpredictable nature of wild animal behaviour, without the proper aid of technology, manual

data collection may result in incomplete data. For example, the duration of retrieving the banana

from the container was documented in each trial, but the time spent travelling between platforms

or the time spent on corn platforms was not. Therefore, if we want to discretize the state space by
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time steps, we would need to make additional assumptions about the time it takes for the focal to

complete each task, which may be biased and can lead to a decrease in data quality. Additional

information about each trial includes: the focal’s sex, age, and rank in the group; the closest platform

to the focal before the foraging trial began; whether there was an “audience” of the trial, that is,

monkey(s) that observed the trial from a distance but did not participate.

4.3 Methodologies

In order to study the monkeys’ foraging behaviours using IRL, we first model the observed se-

quential decision-making process as an MDP, where the focal is the agent. The global assump-

tions/modifications made about the foraging experiments are described below.

1. Although the banana platform was randomly chosen in each trial, we set the platform label

in each trial to be C1 to B5 as shown in Figure 4.1, making the last platform, platform 5, the

banana platform, and platform 1 to 4 the corn platforms.

2. All five platforms are properly baited before the focal enters the trial.

3. Once the focal visits a platform, we assume that the food on that platform is taken.

4. We assume that travelling from one platform to another and consuming the food on each

platform do not take any time.

5. We assume that the audience of the trial (if there is any) does not affect the behaviour of the

focal.

6. All trials are completed, namely, the focal collected all available food in the site.

7. We assume that each trajectory starts with the focal being on a platform.

We make Assumption 1 to ensure data clarity and ease of interpretation. This assumption does not

alter the actual decision sequence because the pentagon’s symmetrical structure allows us to think

of the process of transforming any platform label as rotating the pentagon until the original banana

platform aligns with B5 in Figure 4.1. The focal’s starting platform and path are then similarly

transformed. With such a transformation, we implicitly assume that the monkey’s behaviour of

starting from C3 (or C4) is the same as C2 (or C1), which may be a potential source of error.

Assumption 4 is derived from the fact that, as mentioned in Section 4.2, the data only contains

the duration of a specific task but lacks information on others. Further, in the original study, the

trial begins before the focal reaches a platform, as the focal’s first choice is an important aspect in

Arseneau-Robar et al. [10]. However, in Assumption 7, our focus shifts to the sequence of decisions

made by the focal following the first decision, as we do not have enough information to model the first

decision in the MDP. Based on these assumptions, we now present the MDP model for representing

the foraging experiment.

4.3.1 Modelling Foraging Alone as an MDP

We denote the MDP model that considers the case when the focal forages alone as MDP-NoComp.

The known components of MDP-NoComp, ⟨S,A, Psa⟩, are described as follows.
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• State S: we discretized the foraging experiment by platforms and each state consists of two

elements:

– f loc: the platform the focal is currently on. f loc ∈ {C1, C2, C3, C4, B5}.

– remaining plats: a binary 5-tuple in which an element takes the value 1 if the platform

has not been visited by the focal. For example, if platform C1 is the only remaining

platform, remaining plats = (1, 0, 0, 0, 0).

Whichever platform the focal is on, the food is assumed to be taken (Assumption 3). Therefore,

for each f loc, there are 16 possible combinations of remaining plats. In total, there are

80 states in the state space S. States with remaining plats = (0, 0, 0, 0, 0) are considered

terminal states.

• Action A: an action a ∈ {C1, C2, C3, C4, B5} represents the focal’s choice of moving to

another platform (a ̸= f loc) or staying at the platform that it is currently on (a = f loc).

We allow the focal to go back to a visited platform in this model to be more general, although

it is highly unlikely that a monkey would do so and this behaviour was never observed in the

data.

• Transition Probability Psa: The transition probabilities are deterministic in the model

since an action a represents the focal’s decision that we can observe (i.e., physically mov-

ing to a platform) rather than its internal thought process when making the decision (i.e.,

wanting to move to a platform). The latter would lead to potentially stochastic dynam-

ics since the focal may want to move to a certain platform but end up on a different one.

However, since we do have information on the monkey’s internal decisions, we define the

transition probabilities to be deterministic. Under Psa, the agent transitions into the next

state s′ = (f loc′, remaining plats′) with probability 1 where f loc′ depends on a and

remaining plats′ = remaining plats \ f loc′. For example, for s = (C1, (0, 1, 1, 1, 1)) and

a = B5, s′ is (B5, (0, 1, 1, 1, 0)).

Based on the observations in Arseneau-Robar et al. [10], we expect that, when foraging alone,

the focal not only considers the food reward but also the distance it needs to travel in order to get

the reward. Thus, we define two features for each state-action pair in this model:

• Food: According to the two-choice experimental preference trials ran by Arseneau-Robar et

al. [10], the monkeys prefer the banana 20 times over the dried corn kernels. Thus, the feature

value of a state-action that leads to a corn platform is set to 0.05, and 1 to the banana platform.

If the focal decided to go back to a platform that it has already visited or stay at the current

platform, the value is 0.

• Distance: Given the pentagon-shaped foraging array, the feature value of moving to an adja-

cent platform is 5 meters, and moving to a non-adjacent platform is 8.09 meters.

Following the common approach in IRL literature, we set the immediate reward function at each

state-action pair to be a linear combination of the weighted features, namely,

R(s, a) = w1Food(s, a)− w2Distance(s, a),
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where w1 and w2 are the weights of each feature that we aim to learn. They represent how much

the focal cares about the food and about the distance it has to travel to obtain it.

Further, the model is flexible in what actions the focal can take at each state. Thus, the immediate

reward of taking action a in a non-terminal state s is:

R(s, a) =


w1Food(s, a)− w2Distance(s, a) if going to a platform with food

−w2Distance(s, a) if going to a platform with no food

−ρ if staying at the current platform

(4.1)

where ρ ∈ R+. We assign a negative constant for staying at the same platform because in the given

demonstrations, we observed that when foraging alone, the focal never chose to stay at a platform

during a trial.

In addition to the weights, we are also interested in learning the discount factor γ, which repre-

sents how much the focal values the future reward. In Chapter 3, we define the sum of discounted

reward of a given trajectory τ as:

R(τ) = w⊤
|τ |−1∑
t=0

γtϕ(st, at)

where w = (w1, w2) and ϕ(st, at) is the feature vector of the tth state-action pair in τ . We are

interested in finding the optimal combination of (w∗, γ∗) that best explains the observed data.

Recall that in Assumption 7, we state that the foraging trial begins with the focal already being

on a platform. Therefore, we set three different starting states - s0 ∈ {(B5, (1, 1, 1, 1, 0)), (C1,

(0, 1, 1, 1, 1)), (C2, (1, 0, 1, 1, 1))}, as shown in Figure 4.2. Note that we only have three instead of

five starting states because of the symmetrical structure of a pentagon, namely, starting from C4 is

equivalent to starting at C1, and C3 equivalent to C2. Thus, we can convert trajectories starting

from C3 or C4 to the appropriate starting platforms and increase the number of available trajectories

in each group.

(a) Starting from platform B5. (b) Starting from platform C1. (c) Starting from platform C2.

Figure 4.2: Three possible starting states.
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4.3.2 Recovering the Parameters Using IRL

To learn w and the discount factor γ, we use the modified MaxEnt IRL framework presented in

Chapter 3, where, given a set of demonstrations ξ, we solve the maximum log likelihood estimation

(MLE) problem with respect to the two parameters. Namely,

w∗, γ∗ = argmax
w,γ

∑
τ∈ξ

logP (τ |w, γ). (4.2)

In this study, we employ basic gradient ascent methods to solve the MLE problem and report

the best w∗ and γ∗ found by using the gradients Eq. 3.11 and 3.12, and Algorithm 5 presented

in Section 3.3. In addition to learning the parameters w and γ jointly, we also try learning each

parameter separately in an iterative fashion, presented in Algorithm 6. The main motivation behind

using Algorithm 6 is that although the convexity of the objective function (Eq. 4.2) is inconclusive

as presented in Section 3.4, we know that Eq. 4.2 is concave w.r.t. w and may be convex w.r.t. γ.

Therefore, solving the two parameters separately may be more likely to lead us to a better solution

than learning the two parameters simultaneously.

The iterative approach offers an additional benefit for the optimization problem and is related

to the concept of block coordinate ascent (BCA) [113]. In Algorithm 6, the discount factor γ and

the weight w can be seen as two blocks of coordinates and we optimize the objective function w.r.t.

one block by fixing the value of the other. Although our initial intention for using Algorithm 6 was

not to solve the optimization problem more efficiently, using BCA leads to two lower-dimensional

subproblems (i.e., a 1D problem w.r.t. γ and a 2D problem w.r.t. w) that are easier to solve than

the full problem 3D problem.

Moreover, since our reward function is low-dimensional, we can further divide w into w1 and w2

and solve the objective function w.r.t. γ, w1, and w2 iteratively, resulting in three one-dimensional

subproblems. When optimizing 1D problems, there are various search algorithms that can identify

the local optimum, such as bracketing [62]. However, these algorithms require us to calculate the

objective function value with specific parameters, which is not trivial since we need to compute

the partition function Z. Thus, while coordinate ascent leads to simpler and lower-dimensional

subproblems, it may not provide any computational benefit.

Algorithm 6 is slightly modified from Algorithm 5 and is similar to the one presented in Ashwood

et al. [12]. In each iteration i, we first update the weight parameters w (line 3 to 7), and then we

use the updated weight to update the discount factor γ with the new weights (line 8 to 12). Note

that, because we are solving w and γ iteratively, we need to solve the forward problem within each

inner loop j, thus, in total, we need to solve the forward problem 2MN times.

4.4 Experiment

4.4.1 Data

The dataset used in Arseneau-Robar et al. [10] contains 782 trials in which the focal foraged without

competition. There are some incomplete trials due to various factors, such as the focal not completing

the experiments. We remove those trials and 753 records remain.

The raw data is stored in a text-based format that contains the sequence of decisions made by
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Algorithm 6 Iterative Modified MaxEnt IRL Algorithm

Input: MDP \R, γ, demonstration set ξ, initial state distribution I(s0), learning rate α
Output: Learned ŵ∗ and γ̂∗

1: Initialize ŵ and γ̂
2: for i = 1, ..., N do
3: for j = 1, ...,M do
4: Solve the forward RL problem with ŵi

j and γ̂i, produce a learner’s policy πL.

5: Update ŵi by computing the gradient ∇wj using Eq. 3.11: ŵi
j+1 = ŵi

j + αw∇wj

6: end for
7: Set ŵi+1 = ŵi

M

8: for j = 1, ..,M do
9: Solve the forward RL problem with ŵi+1 and γ̂i, produce a learner’s policy πL

10: Update γ̂i by computing the gradient ∇γj using Eq. 3.12: γ̂i
j+1 = γ̂i

j + αγ∇γj
11: end for
12: Set γ̂i+1 = γ̂i

M

13: end for

the focal. The original platform that was baited with banana was also provided. For the foraging

trials with no competitor, transforming the raw data into feasible trajectories is relatively simple.

An example of how we do so is illustrated in Table 4.1.

Table 4.1: Transforming the example sequence in raw data to a feasible trajectory.

Raw Data Banana Platform Trajectory

21543 1
{(C1, (0, 1, 1, 1, 1)), (B5, (0, 1, 1, 1, 0),
(C4, (0, 1, 1, 0, 0)), (C3, (0, 1, 0, 0, 0)),
(C2, (0, 0, 0, 0, 0))}

In this example, the order of platforms visited is “21543” and platform 1 was baited with banana.

Recall that we fix the banana platform to be B5, and thus we shift the platform numbers accordingly.

As presented in Section 4.3, there are three starting non-symmetric platforms for the foraging

alone case—C1, C2, and B5. Of the 753 trajectories in the dataset, 183 trajectories started at C1

(24.3%), 458 started at C2 (60.8%) and 112 started at B5 (14.9%). We obtained the training and

test set through an 80-20 split for each subset.

4.4.2 Experimental Setup

For the computational experiments, we randomly and uniformly initialize the parameters as follows:

w1 ∈ U [10, 11]

w2 ∈ U(0, 0.1]

γ ∈ U [0.01, 0.99]

Note that the range of w1 and w2’s initialization ensure that the reward of going to an adjacent

platform will be non-negative while going to a non-adjacent platform will result in a negative reward

except for going to the banana platform. We initialize w2 to be positive based on the assumption

that travelling between platforms is a cost.

Soft VI [129] (see Section 2.2) was used for solving the forward problem, where we write the Q
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function, value function, and policy as:

V Soft(s) = σ log
∑
a∈A

e
QSoft(s,a)

σ

QSoft(s, a) = R(s, a) + γ
∑
s′

Psa(s
′)V Soft(s′)

π(a|s) = e
QSoft(s,a)−V Soft(s)

σ .

The σ in the equations above represents the “temperature”, and a lower temperature leads to more

deterministic behaviour. While one may think that σ has a similar function as the discount factor,

note that there is a distinction between the role of σ and γ: σ indicates how rational the agent is,

while γ, as we have established previously, represents how myopic or farsighted the agent is regarding

the future reward. In our experiments, we follow the convention in literature [128, 48, 20] and set

the temperature to be 1, which can also be interpreted as assuming that the focal is not a highly

rational decision maker.

We set a computational budget for each set of experiments based on how many times the visitation

frequency matrix is computed, since that is the most time-consuming part in the training process.

We denote the number of times that the visitation frequency matrix is built as max iter, and set

max iter = 60.

There are three possible starting platforms: B5, C1, and C2. To test the hypothesis of whether

starting from different platforms affects the focal’s trade-off between food and travel distance, we

separate the data based on starting platform and develop two learning schemes (LS):

1. LS1: We learn one set of parameters that optimize all three sets of data. In each iteration i, we

use the same intermediate parameters and calculate the gradients for each dataset: ∇wk
i ,∇γk

i

where k ∈ {B5, C1, C2}. We then update the parameters by the weighted average of the

three sets of gradients: wi+1 = wi + αw

∑
k ck∇wk

i and γi+1 = γi + αγ

∑
k ck∇γk

i , where α

represents the learning rate and ck is the proportion of trajectories starting from platform k

in the training data. We denote the learned parameters as wLS1 and γLS1

2. LS2: We train each starting platform independently and learn a set of parameters for each

dataset. That is, we learn three separate sets of (wl, γl) for each starting platform l ∈ {LS2-C1,
LS2-C2, LS2-B5}.

For LS1, since we update the parameters based on the three gradients, three visitation frequency

matrices are computed in each iteration. Therefore, we ran the modified MaxEnt IRL (Algorithm

5) for max iter
3 = 20 times. For the iterative algorithm (Algorithm 6), the number of iterations for

the inner loop is fixed to M = 5 for both learning w and γ, and so the N is set to 2. For LS2, we

ran Algorithm 5 max iter times and ran Algorithm 6 with N = 6 and M = 5. Moreover, for each

experiment, we calculate the log likelihood (LL) of the intermediate parameters after each iteration,

and the parameters that produce the best LL are returned at the end of the learning process along

with the LL.

Through preliminary experiments, the learning rate αw and αγ are set to [0.05, 0.02] and 0.02,

respectively, for both learning schemes.

Finally, we compared the two methods with random search as a baseline. For random search,

instead of updating the parameters in each iteration, we randomly sample new parameter values as
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follows:

wRandom
1 ∈ U [10, 11]

wRandom
2 ∈ U(0, 1]

γRandom ∈ U [0.01, 0.99]

4.4.3 Results

In this section, we present both the training and test results for the three methods: vanilla gradi-

ent ascent (VGA, Algorithm 5), iterative gradient ascent (IGA, Algorithm 6), and random search

(RS). We apply these methods to both learning schemes, so in total, there are 12 sets of recovered

parameters (wLS
m , γLS

m ), where LS ∈ {LS1, LS2-C1, LS2-C2, LS2-B5} and m ∈ {VGA, IGA, RS}.

4.4.3.1 Training Results

Table 4.2 illustrates the learned parameters. Overall, the learned parameters are similar across

different methods and the learned discount factors are all close to 1.

Table 4.2: Learned parameters by starting platform and methods.

Learning Scheme (LS) Learned Parameters
Vanilla Gradient Ascent Iterative Gradient Ascent Random Search

Temperature w1 w2 γ w1 w2 γ w1 w2 γ
σ = 1 LS1 10.605 0.647 0.986 10.549 0.472 0.99 10.112 0.252 0.956

LS2-C1 10.623 0.888 0.99 10.599 0.709 0.982 10.778 0.87 0.969
LS2-C2 10.666 0.689 0.98 10.59 0.66 0.983 10.279 0.586 0.96
LS2-B5 10.657 0.785 0.99 10.653 0.674 0.99 10.419 0.903 0.97

Figure 4.3 shows the best training LL at each iteration for both learning schemes. Figure 4.3a to

4.3c show the results of LS1 by starting platforms, and Figure 4.3d to 4.3f show the results for LS2.

The vanilla gradient ascent method has the best overall performance in terms of achieving better

LLs except for LS2-C1, where random search obtained the best LL within 10 iterations. Further,

we can see that the best LLs plateaued in later iterations for both learning schemes, indicating that

we arrived at good solutions early on in the training process.

Figure 4.4 shows the optimal paths of most starting platform-method pairs given their learned

policies. Unsurprisingly, the best path, regardless of where the focal starts, is to go around the

pentagon array to collect all the available food rewards while minimizing the travel distance. This

result matches with our intuition of how the focal would behave when foraging alone and aligns with

the results in Arseneau-Robar [10].

One exception is the optimal path produced by parameters (wLS1
RS , γLS1

RS ) when starting from C2:

instead of going in order, the optimal behaviour based on this set of parameters is to prioritize the

banana, then collect the corn kernels on the adjacent platform C1, and instead of moving directly to

C3, the action with the highest probability according to the learned policy is to go to C3 through C2

and collect the last reward at C4. This result seems to suggest that the focal would rather choose to

visit the platforms in order than moving to an available platform directly even if the travel distance

is longer.
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(a) Training LL using LS1 start-
ing from C1.

(b) Training LL using LS1 start-
ing from C2.

(c) Training LL using LS1 start-
ing from B5.

(d) Training LL using LS2-C1. (e) Training LL using LS2-C2. (f) Training LL using LS2-B5.

Figure 4.3: Best training LL in each iteration by learning scheme and starting platform.

4.4.3.2 Test Results

We then apply the learning results to the test set and compare them using three metrics: the

average test LL, the expected food feature value difference, and the expected travel distance feature

difference between the test set and the learned policy.

Table 4.3 shows the results of the LLs for the test set. We compute the LLs for each starting

platform using wLS1 and γLS1 and compare them with the LL using starting platform specific

parameters. We use dashes in the table to indicate that we only computed the LLs for the test set

that corresponds to the starting platform (e.g., wLS2−C1 and γLS2−C1 were used to compute the

result for trajectories starting from C1, not C2 and B5).

Table 4.3: Test LL based on starting platform and learned parameters.

Test LL
Vanilla Gradient Ascent Iterative Gradient Ascent Random Search

Temperature Learning Scheme C1 C2 B5 C1 C2 B5 C1 C2 B5
σ = 1 LS1 -2.672 -2.619 -3.451 -2.924 -2.897 -3.579 -3.53 -3.645 -4.105

LS2-C1 -2.524 - - -2.62 - - -2.549 - -
LS2-C2 - -2.572 - - -2.604 - - -2.748 -
LS2-B5 - - -3.429 - - -3.432 - - -3.5

We can see that using starting platform specific parameters leads to better results, and vanilla

gradient ascent method has the best performance, suggesting that it is a promising approach even

though we do not have a convexity guarantee of the objective function.

Table 4.4 and 4.5 show the expected discounted feature count difference between the test set and

the learned policies. For the food feature in Table 4.4, using starting platform specific parameters

again leads to better results, aligning with the results in Table 4.3. Although the difference in Table

4.4 may seem to be very small, recall that we set the feature value for corn kernels to be 0.05 and
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(a) Optimal path starting from
B5.

(b) Optimal path starting from
C1.

(c) Optimal path starting from
C2.

Figure 4.4: Optimal paths based on starting platform.

banana to be 1. Vanilla gradient ascent has the best performance overall, where all values are less

than 0.05.

Table 4.4: Expected food feature value difference in the test set by learned parameters based on LS
and methods.

Test Expected Feature Difference – Food
Vanilla Gradient Ascent Iterative Gradient Ascent Random Search

Temperature Learning Scheme C1 C2 B5 C1 C2 B5 C1 C2 B5
σ = 1 LS1 0.024 0.03 0.005 0.069 0.081 0.015 0.101 0.103 0.05

LS2-C1 0.009 - - 0.018 - - 0.01 - -
LS2-C2 - 0.024 - - 0.028 - - 0.032 -
LS2-B5 - - 0.002 - - 0.004 - - 0.001

For the distance feature difference shown in Table 4.5, the results show that for starting at

platform B5, using wLS2−B5
V GA and γLS2−B5

V GA obtained by vanilla gradient ascent is actually worse

than using wLS1 and γLS1. Again, vanilla gradient ascent produces the best overall performance

among the three methods.

Table 4.5: Expected travel distance feature value difference in the test set by learned parameters
based on LS and methods.

Test Expected Feature Difference – Travel Distance
Vanilla Gradient Ascent Iterative Gradient Ascent Random Search

Temperature Learning Scheme C1 C2 B5 C1 C2 B5 C1 C2 B5
σ = 1 LS1 0.671 0.535 -0.04 1.673 1.602 0.973 2.928 3.502 2.501

LS2-C1 -0.05 - - 0.428 - - 0.011 - -
LS2-C2 - 0.357 - - 0.479 - - 0.88 -
LS2-B5 - - -0.544 - - -0.169 - - -0.765

4.5 Discussion

In this chapter, we applied the modified MaxEnt IRL algorithms presented in Chapter 3 to an ap-

plication of animal foraging behaviour, and compare it against a similar but iterative algorithm and

random search. Using these results, we can now attempt to answer the research questions posed at
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the beginning of this chapter.

1. What is the trade-off between the food and travel distance?

Although the initial weights were drawn from a range that ensures that the focal would receive a

non-negative reward by moving to an adjacent platform, the learned weights for distance are higher

than the initial w2 across all experiments. As a result, only moving towards B5 would have a

positive reward. For example, consider wLS2−C1
V GA = (10.623, 0.888), if B5 is the adjacent platform,

the focal will get a reward of 10.623 · 1 − 0.888 · 5 = 6.813; if B5 is non-adjacent, the reward is

10.623 · 1− 0.888 · 8.09 = 3.439. For any corn platform, the focal will get −3.909 if the platform is

adjacent and −6.653 if it is non-adjacent.

This result suggests that there is no incentive (a positive reward) for the focal to get the corn. One

possible interpretation could be that the focal only truly cares about the banana. When the banana

is no longer available, the focal is simply visiting the remaining platforms with food by following

the shortest path. This result is rather surprising because even though the optimal behaviour based

on the recovered parameters matches the observations in Arseneau-Robar et al. [10], it does not

match with our expectation of why the monkey is visiting the platforms in order or indeed why

it is visiting them at all. Intuitively, we would assume that even though the corn kernels are less

preferred, the focal would still value the food more and thus is motivated by maximizing the food

rewards. However, our experiments imply that the monkeys do not care about the corn kernels. We

tested multiple initial weight parameters and discount factors, all ensuring that moving to a corn

platform would have positive reward (i.e., high w1 and low w2), but all converged towards points

that produce negative rewards for corn. Given the concavity of the objective function w.r.t. w, we

do not think that there exists another optimal solution where moving to an available corn platform

is an incentive.

However, our MDP model is a simplification of the real foraging experiment, and so there may

be factors other than food and travel distance that affect the focal’s decision-making process. For

example, one hypothesis may be that, if there is any audience of the trial, the focal may be mo-

tivated by the fact that it does not want the others to get the food. Further, during the foraging

experiment, the monkey is free to leave the site at any time without finishing the trial, which is not

reflected in our MDP model. Thus, one possible explanation of why the monkey would continue

foraging even with a negative reward for corn may be because the model does not have the action

“leave experiment”. We leave the investigation of this model modification to future work.

2. Is the focal myopic or farsighted?

When foraging alone, our results suggest that the focal tends to be a very farsighted decision maker,

since the recovered discount factors are above 0.97 for all experiments. Therefore, the focal treats

the future reward almost as equally as the present reward. One potential interpretation for this

result may be the focal takes the future rewards into account because it understands that it can

collect all available rewards since it is not under any foraging pressure.

3. Does the starting position in the foraging experiment affect the monkey’s deci-

sions?

Although the focal is a farsighted decision maker and our results suggest that the focal is most likely
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to go around the array to collect all the food, which way it chooses to go around (i.e., clockwise or

counterclockwise) matters depending on which platform the focal starts with.

Let us consider the three sets of learned parameters using LS2-VGA. When starting from C1,

the policy based on (wLS2−C1
V GA , γLS2−C1

V GA ) shows that the probability of moving counterclockwise to

B5 is 0.562, and the probability of moving to C1 is 0.425, and a small probability of moving to either

C3 or C4. This result matches with our expectation since B5 is adjacent to C1, the focal should be

more likely to go collect the banana rather than collecting all the corn kernels before arriving at B5

at the end. In the real data, we also observe that while the most frequent path is {C1, B5, C4, C3,
C2}, the second most frequent path is going the other way {C1, C2, C3, C4, B5}.

Similarly, when starting from C2, according to the policy based on (wLS2−C2
V GA , γLS2−C2

V GA ), moving

to C1 has a probability of 0.512, and to C3 is 0.433. While the focal is still more likely to move

counterclockwise, the difference between going to C1 and C3 is smaller compared to moving to B5

or C2 from C1. This is because the difference between {C2, C1, B5, C4, C3} and {C2, C3, C4, B5,
C1} is whether the focal gets the banana as the second or third reward, compared to whether it is

the first or the fourth when starting from C1. Although the discount factor is very high (γ = 0.99),

there still exists a slight preference to get the banana as quickly as possible since the banana is

the only positive reward in the trial and the monkey does not truly value the future equally as the

present (i.e., if γ = 1).

Finally, when starting from B5, since the banana has been taken, the focal should have equal

probability of choosing to move to C1 or C4. Given (wLS2−B5
V GA , γLS2−B5

V GA ), there is an equal proba-

bility (0.487) of moving to C1 or C4. This aligns with our interpretation of Question 1: because the

focal does not care about the corn kernels, it does not matter which way it goes when the banana

is no longer available. However, this behaviour is also consistent with the corn having a positive

reward since the choice of C1 or C4 leads to identical subsequent foraging (i.e., the focal receives

corn at each step of its trajectory and the trajectories are equal length).

In summary, starting from different platforms does have an effect on the focal’s behaviour, and

our learned models support the hypothesis that the behaviour difference is driven by the proximity

of B5 to the starting platform.

4.5.1 Convexity of the Objective Function w.r.t. the Discount Factor

The results suggest that, under the same computational budget, learning a policy for starting plat-

form using vanilla gradient ascent method has the best overall performance. However, recall that

in Chapter 3, we could not prove whether the objective function is concave or not w.r.t. w and γ

jointly. More specifically, we only know that the objective function is concave w.r.t. w; its convexity

w.r.t. γ is inconclusive. Using gradient methods to solve a non-convex/non-concave problem can

lead to getting stuck at a local optimum. Thus, to verify whether the solution obtained is a global

optimum (or is close to the global optimum) w.r.t γ, we select wLS2−C1
V GA and enumerate 50 values for

γ from [0.01, 0.99] and compute the objective function values, shown in Figure 4.5a. The objective

function is a smooth curve that monotonically increases as γ increases until γ is very close to 1.

Figure 4.5a also shows that the LL function is neither convex not concave w.r.t. γ, as we can see

from the plot that it is convex from 0 to approximately 0.6, and becomes concave afterwards. If we

zoom into the range of 0.9 to 0.99, as illustrated in Figure 4.5b, we can see that there exists a global

optimum at around γ = 0.98. The objective function value using wLS2−C2
V GA has a similar trend as
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Figure 4.5a while using wLS2−B5
V GA results in a function that monotonically increases with the best LL

at γ = 0.99. These results empirically confirm our hypothesis made in Chapter 3 that the objective

function is neither concave nor convex.

(a) LL by the discount factor γ ∈ [0.01, 0.99]. (b) LL by the discount factor γ ∈ [0.9, 0.99]

Figure 4.5: The LL value by discount factor γ for starting from C1.

4.5.2 Alternative Modelling Choices

As mentioned in Section 4.3.1, to cast the foraging experiment as an MDP, we made a number of

restrictive assumptions. These simplifications are due to the fact that we have limited information

about the foraging experiments in the data. Here, we discuss several alternative modelling choices

that can potentially lead to more realistic models that better represent the foraging experiment,

assuming we have all the information needed in the given data. We hope that these suggestions can

serve as a guide for future foraging experiment design and for what type of information would need

to be collected for modelling.

4.5.2.1 Incorporating the First Decision

To incorporate the first decision into the MDP model, we can simply add a dummy state sd =

(dummy, (1, 1, 1, 1, 1)) to MDP-NoComp proposed in Section 4.3.1. We denote this MDP model

as MDP-NoComp-SP, since the dummy node now serves as a fixed starting platform. We assume

that the distance between sd and each platform is the same, denoted as d0, and thus the immediate

reward at this state is R(sd, a) = w1Food(sd, a) − w2d0. For illustration purpose, Figure 4.6 shows

that the focal will start the trial in the middle of the pentagon, though in reality, the focal joins the

experiment from outside the experiment site.

The advantage of having a dummy starting state, comparing to MDP-NoComp, is that it al-

lows us to get a more complete picture of how the focal behaves and it aligns with the foraging

experiments conducted in Arseneau-Robar et al. [10], where the focal’s first decision was recorded.

Thus, one may argue that MDP-NoComp-SP more closely adheres to reality and should be chosen

as the mathematical representation for our application. However, a closer examination of MDP-

NoComp-SP reveals that, given the ratio of corn to banana preference, the first decision will always

favour going to B5. To see why this is the case mathematically, recall that the agent’s optimal
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Figure 4.6: Illustration for adding a dummy state sd to the MDP model.

policy simultaneously optimizes the value of every state in the MDP, V (s),∀s. Assuming we have a

deterministic policy, the optimal value of the dummy state sd is

V ∗(sd) = [R(sd, ad) + γR(s1, a1) + γ2R(s2, a2) + γ3R(s3, a3) + γ4R(s4, a4)|π]

where the trajectory {(sd, ad), ..., (s4, a4)} consists of the optimal actions at the states visited.

Given the structure of the reward function, we know that the path with the highest sum of

reward is going around the array in order, no matter which platform the focal starts on. If the first

choice is B5 (i.e., ad = B5), the total discounted sum of reward of a path would be

Rad=B5 = w1 − w2d0 +

4∑
t=1

γt(0.05w1 − 5w2)

If ad ̸= B5 and B5 is the jth choice along the path, the discounted sum of reward becomes

Rad ̸=B5 = 0.05w1 − w2d0 +

j−1∑
t=1

γt(0.05w1 − 5w2) + γj(w1 − 5w2) +

4∑
t=j+1

γt(0.05w1 − 5w2)

If we compare the difference between these 2 paths

Rad=B5 −Rad ̸=B5 = 0.95w1− 0.95γjw1 > 0

since γ ∈ (0, 1] and we assume w1 > 0.

Therefore, unless γ is 1, no matter what values w1, w2, and d0 take, the resulting policy will

always prioritize B5 as the focal’s first choice. In the actual field data, we did not observe this type

of behaviour: as mentioned in Section 4.4, only about 15% of the demonstrations started at B5, and

the focal tends to choose one of the corn platforms as their first decision.

One potential cause of this misalignment between the model and the real behaviour is that, by

including the dummy state in the MDP model, we assume that the first decision depends on the
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same factors that affect the subsequent decision-making—food and distance. However, since the

experiment site is set in an open area where the monkey may come from any direction, the first

platform it chooses may depend on additional features such as which platform is closest to it, who is

present in the audience, or the monkey’s handling skill for getting the banana out of the container.

4.5.2.2 Choice of a Simple Combination of Features

Although the original study by Arseneau-Robar et al. [10] suggests that factors such as the focal’s

rank in the group also impacted its decision-making process, we did not include these elements in

our reward function for the MDP.

Since our defined state space in the model is discretized based on the location of the focal,

incorporating information such as age and rank is not feasible because they are dependent on the

focal instead of the platforms. Thus, for the same state s, the “age” feature or the “rank” feature

may have different values in two trajectories by different focals, resulting in an invalid environment

for the MDP. One potential way to take these factors into account is to split the data according to

the focal’s status. Instead of simply splitting the data based on starting platforms, we can further

divide each group into more granular subsets. For example, under the group in which the focals

started at C1, a subset may be focals who were low-ranked adult monkeys in the group that started

at C1. Further data exploration and testing is required to properly define these subgroups. One

disadvantage of a more granular dataset is that we would have fewer data points in each set, making

it challenging for the algorithm to learn parameters that are more generalized. However, it would

be interesting to see how differently the monkeys perform the food-distance trade-off based on their

status.

4.5.2.3 Alternative State Space

As we have seen in Section 4.3, the state space of our proposed model is small, with only 80 states in

total. While a small state space enables us to compute certain elements that are usually infeasible to

achieve (e.g., the enumeration of all possible paths), one disadvantage is that it may be too restricted

to represent the actual foraging experiments realistically.

One of the most important simplifications we made to map the foraging experiment as an MDP

is the assumption that the action of taking the food on a platform and travelling between platforms

take no time. This simplification was made due to the fact that the original data only recorded

the handling time of the focal getting the banana out, but not the other activities during the trial.

Therefore, we do not see a suitable way to only incorporate handling time into the model.

Intuitively, we may think that the handling skill level can also affect which platform the focal

decides to go to. Indeed, in Arseneau-Robar et al. [10], the authors show that the monkey’s handling

skill affects its first decision, which is not considered in our model. While it may not be obvious

how being better or worse at getting the banana is relevant when foraging alone, when foraging in

competition, the skill level may be critical to whether the focal can get the preferred food before

its competitor does. One thing we can do is to process the timing of the handling into a “skill

level” score for the focal. However, this again would result in a focal-based attribute rather than a

location-based attribute as discussed in Section 4.5.2.2.

Assuming the data we are given contains sufficient and complete information, we can consider

modelling the behaviour in a GridWorld setting, a popular framework for modelling RL and IRL
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problems. Instead of specifying each state by platform, we can instead represent the state as a tuple

of coordinates on the grid as well as the current time step similar to the model in Hirakawa et al.

[49]. Each platform is located at certain coordinates and the focal can choose to move freely in the

grid to collect the rewards.

One advantage of this potential model is its granularity: depending on the computational power

and the recording device we have, we can adjust the grid size and record the time in shorter intervals

to track the focal’s movements. Further, we can also expand the definition of the experiment site to

include area near the platforms. This way, we can track the focal’s position before it reaches the first

platform, thus incorporating the first decision into the model. Figure 4.7 shows the potential state

space as a grid at a specific timestep. However, achieving this level of detail for the model requires

Figure 4.7: Example grid for the foraging experiment.

thorough planning before conducting the foraging experiments and devices that can precisely capture

the position and the movement of the focal. One example is the experimental setup in the dataset

used in Ashwood et al. [12], where a camera was placed under a maze to track mice behaviour.

4.5.3 Suggestions for Future Foraging Experiment Design

In summary, we present several alternative modelling choices for the foraging problem to create a

more realistic representation under the restriction of modelling as an MDP. Since the field data we

obtained for this study was not originally designed to be used under the IRL framework, we provide

some suggestions for future foraging experiment design that can produce data more suitable for an

IRL study.

• When recording the foraging behaviour, the data should include timing information.

• Implement an experimental setup that allows more precise movement tracking.

• In addition to the pentagon arrangement, we can also try increasing the number of platforms

and setting up different configurations (e.g., a hexagon) to test generalizability of the learned

discount factor and reward function.

• Following the previous suggestion, when we have more platforms, we can design more complex

placements of food, such as having multiple bananas placed within the experiment site, or
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having a third type of food as a reward. Such a set up can potentially elicit more diverse

behaviour.

4.6 Conclusion

In this chapter, we used the modified MaxEnt IRL algorithm from Chapter 3 to examine the foraging

behaviour of wild vervet monkeys when they forage alone. The original foraging experiment was

conducted by Arseneau-Robar et al. [10], where the focus of the study was only the monkey’s first

and second decision in a trial. We first model the foraging experiment as an MDP, where the focal

is the decision maker in the environment, and formulate the IRL problem whose unknown reward

function is a linear combination of two features: food and travel distance. We then solve the IRL

problem using the vanilla gradient ascent, iterative gradient ascent, and random search to recover

the weight parameters and the discount factor. The results of our experiments indicate that vanilla

gradient ascent exhibits the best overall performance. Moreover, the learned parameters suggest that,

in the absence of competitive pressure, the monkeys exhibit farsighted decision-making behaviour

by maximizing food reward while minimizing travel distance, aligning with the observations in

Arseneau-Robar et al. [10].

While our simple model yields satisfactory results, it is important to acknowledge that, due to

limited data availability, we had to make restrictive assumptions when representing the foraging ex-

periment as a mathematical model. Therefore, we also discuss several alternative modelling options,

such as a more complex reward function or a more realistic state space, provided the required data

is accessible. These suggestions can guide future foraging experiment designs by specifying the type

of information that should be collected for different modelling choices.

For the case of foraging alone, the mathematical results presented in this chapter match with

our intuitions about the monkeys’ behaviour. Our model provides explanations of the complete

sequences of decisions made in a trial and can predict the monkey’s actions given in any specific state.

A particular novel hypothesis arising from our work is that the monkeys exhibit a future discounting

factor close to 1, indicating under the sole foraging scenario, that they do little discounting of future

reward. To our knowledge, this is the first attempt to analyse such as aspect of animal cognition

based on behaviour data.

In the next chapter, we continue our study of wild vervet monkeys’ behaviour and explore a more

complicated case: foraging in competition, which presents additional challenges in formulating it as

an IRL problem.



Chapter 5

Modelling Wild Vervet Monkey

Behaviour When Foraging In

Competition

5.1 Introduction

In this chapter, we continue our application of Inverse Reinforcement Learning (IRL) to animal

behaviour. Extending the results from Chapter 4, we study the case when the focal monkey forages

in competition. When modelling the case with no competitor, we treated the problem as a single-

agent IRL problem since the focal is the sole decision maker. When foraging in competition, in

addition to collecting the food reward, the focal may interact with its competitor(s). We define

“focal” as the first monkey that reaches the experiment site while the “competitor” is defined as

the monkey that arrives afterwards. Although it is possible for the focal to have more than one

competitor, in the data it is less common to have three or more monkeys involved in a single trial.

Thus, in this chapter, we consider the case where there is only one competitor and we ignored the

records for cases where there was more than one (19.2% of the trials in the raw data).

Different from the case of foraging alone, we are interested in studying both the focal and the

competitor behaviour during the trial, meaning the problem is now in a multi-agent setting. Recall

in Section 2.5, we describe two ways of solving multi-agent IRL problems: casting a multi-agent

problem to a single-agent problem by choosing to focus on one agent at a time and modelling the

other agents as part of the environment, or modelling the problem as a Markov Game with two or

more decision makers. In this chapter, we focus on the former method by embedding the competitor’s

action probabilities into the transition probabilities of the focal’s MDP. This approach can be seen

in Pinsler et al. [85], who investigated the behaviour of pigeons in a flock, where each pigeon was

modelled independently.

We present two ways of extracting the competitor’s behaviour. The first method is simple: we

empirically calculate the action probabilities using the given demonstrations; the second method is

more complex, where we adopt an iterative approach called level-k reasoning [30, 79], which assumes

the monkeys are agents with a specific level of reasoning ability. We discuss these approaches in

54
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Sections 5.2.2.2 and 5.2.2.3.

To our knowledge, this study is the first attempt to model monkey behaviour as a multi-agent

IRL problem, and two research questions we are interested in are:

1. How different is the monkeys’ behaviour when foraging in competition from when they forage

alone?

2. How does the rank of the monkeys affect their decisions when foraging in competition?

This chapter is organized as follows. Section 5.2 introduces our methodologies for modelling the

foraging experiment as an MDP. Next, experimental results are presented in Section 5.3, followed

by a discussion about the limitations of our approaches and some alternatives we can explore in the

future in Section 5.4. We then conclude this chapter in Section 5.5.

5.2 Methodologies

The experiment setup for foraging in competition is the exact same as described in Section 4.2.

In addition to the assumptions we made for the foraging alone case, we present several further

assumptions about the foraging experiments with a competitor:

1. Each trial begins when both monkeys are on a platform.

2. There is no interaction between the two monkeys during the trial. We assume the only actions

that can be taken are to move to another platform or to stay.

3. Between the two monkeys, one is dominant over the other based on their ranks in the group.

The focal can either be dominant or subordinate to its competitor.

4. If the dominant and the subordinate arrive at the same platform, the dominant would get the

reward of the food and the subordinate would get 0.

Similar to assumptions we made for the foraging alone case, while the assumptions listed above are

necessary for transforming the foraging experiment to an MDP, they also significantly simplify the

experiment. Assumption 1 and 2, for example, make our model quite different from the real-world

foraging experiment. Assumption 1 requires both the focal and the competitor to be on a platform

to begin a trial since, as we have established in Section 4.3, we do not take the first decision of

the monkeys into account when modelling their behaviour. Further, in the field experiment, it

is possible for the competitor to join the trial after the focal has been to one or more platforms.

However, when the competitor decides to join the experiment depends on factors that cannot be

incorporated into the MDP model, such as how far away the competitor is from the experiment site

when the focal starts foraging. Assumption 2 further simplifies the foraging experiment, since in

reality, it is possible for the two monkeys to interact with each other. Since we do not have enough

information to represent the interactions properly, these actions are omitted in the models.

Each monkey in the group has an assigned Elo rank [7, 33]; a higher Elo rank indicates the monkey

is more dominant within the group. Assumption 3 is based on the fact that no two monkeys have

the same rank. We call the monkey with a higher rank the “dominant” and the other “subordinate”.

Since the dominant has more power than the subordinate, we observe that the dominant is often
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the monkey that gets the preferred banana reward while the subordinate tends to keep a distance

from the dominant and rarely goes for the banana.

5.2.1 Modelling Foraging in Competition as an MDP

We denote the MDP model for foraging with one competitor as MDP-OneComp. Its state and

action spaces are very similar to MDP-NoComp presented in Section 4.3.1, with slight modifications

to incorporate the competitor into the state space. The transition probability, however, is no longer

deterministic as in MDP-NoComp. Each known element of MDP-OneComp is described as follows.

• State S: we discretized the foraging experiment by platforms and each state consists of three

elements:

– f loc: the platform the focal is currently on. f loc ∈ {C1, C2, C3, C4, B5}.

– remaining plats: a binary 5-tuple in which an element takes the value 1 if the platform

has not been visited by the focal or the competitor. For example, if platform C1 is the

only remaining platform, remaining plats = (1, 0, 0, 0, 0).

– c loc: the platform the competitor is currently on. c loc ∈ {C1, C2, C3, C4, B5}.

The food is assumed to be taken when the focal/competitor visits a platform. Therefore, for

each pair of f loc and c loc, if f loc ̸= c loc, there are 20 possible (f loc, c loc) pairs,

and each pair has 8 possible combinations of remaining plats; if f loc = c loc, there are

16 possible combinations. In total, there are 240 states in the state space S. States with

remaining plats = (0, 0, 0, 0, 0) are considered terminal states.

• Action A: an action a ∈ {C1, C2, C3, C4, B5} represents the focal’s choice of moving to

another platform (a ̸= f loc) or staying at the platform that it is currently on (i.e., a = f loc).

• Transition Probability Psa: The transition probabilities are stochastic: transitioning into

the next state s′ = (f loc′, remaining plats′, c loc′) not only depends on the focal’s action

a but also the competitor’s. Since the competitor is now part of the environment, we assume

that its action distribution is known beforehand. For example, for s = (C1, (0, 0, 1, 1, 1),C2),

if a = B5 and we know that at C2, the competitor has a 50% probability of going to C3, then

the transition probability to s′ = (B5, (0, 1, 1, 1, 0),C3) is 0.5.

The structure of the reward function of MDP-OneComp is assumed to be the same as MDP-

NoComp: a linear combination of weighted food and distance features. Namely,

R(s, a) = w1Food(s, a)− w2Distance(s, a).

However, there is a subtle difference between a dominant focal and a subordinate focal. In Assump-

tion 4, we state that the dominant monkey has the priority of access to the food reward if both

monkeys arrive at the same platform. Therefore, the dominant’s reward function is defined as:

RDom(s, a) =


wDom

1 Food(s, a)− wDom
2 Distance(s, a) if going to a platform with food

−wDom
2 Distance(s, a) if going to a platform with no food

0 if staying at the current platform

(5.1)
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And the reward function for a subordinate focal is:

RSub(s, a) =


wSub

1 Food(s, a)− wSub
2 Distance(s, a) if going to a platform with food

−wSub
2 Distance(s, a) if going to a platform with no food or the same

platform as the dominant

0 if staying at the current platform

(5.2)

Note that, different from the reward function in Section 4.3.1, we do not penalize the monkey for

staying at the same platform. When foraging in competition, we notice that the monkeys sometimes

choose to stay and observe its competitor’s action. Further, while we assume that both the dominant

and subordinate are optimizing the trade-off between food and travel distance, the weights for the

feature values may be different. Similarly, the monkeys may also value the future reward differently

based on their ranks. Therefore, our goal is to learn two sets of parameters: (wDom∗, γDom∗) and

(wSub∗, γSub∗) for the dominant and the subordinate focal, respectively.

Finally, since we assume that the experiment only starts when both monkeys are on a platform,

there are 10 possible initial states as shown in Table 5.1. Different from the case of foraging alone

which only has three starting states (Figure 4.2 in Section 4.3.1), the 10 starting states are determined

by the two factors combined: the distance between dominant (either as the focal or the competitor)

and subordinate and the distance between the subordinate and platform B5. Therefore, states

such as (C1, (0, 0, 1, 1, 1), C2) and (C2, (0, 0, 1, 1, 1), C1) are not symmetrical because although the

distances between the two monkeys are the same (5m), the distances between the subordinate and

B5 are different: C2 to B5 is 8.09m, and C1 to B5 is 5m. The four of the ten possible starting states

where the dominant is at C1 are shown in Figure 5.1.

Table 5.1: Ten potential starting states depending on the monkeys’ locations.

Dominant
Location

Subordinate
Location

Starting State s

C1

C2 (C1, (0, 0, 1, 1, 1), C2)
C3 (C1, (0, 1, 0, 1, 1), C3)
C4 (C1, (0, 1, 1, 0, 1), C4)
B5 (C1, (0, 1, 1, 1, 0), B5)

C2

C1 (C2, (0, 0, 1, 1, 1), C1)
C3 (C2, (1, 0, 0, 1, 1), C3)
C4 (C2, (1, 0, 1, 0, 1), C4)
B5 (C2, (1, 0, 1, 1, 0), B5)

B5
C1 (B5, (0, 1, 1, 1, 0), C1)
C2 (B5, (1, 0, 1, 1, 0), C2)

With all the components for the MDP described above, the key of constructing MDP-OneComp

is how we define the transition probabilities. Recall that we assume that the focal can either be the

dominant or the subordinate to its competitor (Assumption 3). When the focal is dominant, the

transition probabilities reflect the action probabilities of a subordinate, and vice versa.

In the next section, we present two approaches for extracting the competitor’s action distribu-

tions. The first one empirically extracts the competitor’s action distributions using the given demon-

strations; the second is an iterative approach called level-k reasoning [30, 79] from behavioural game

theory.
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(a) Focal starting at C1
and competitor at C2.

(b) Focal starting at C1
and competitor at C3.

(c) Focal starting at C1
and competitor at C4.

(d) Focal starting at C1
and competitor at B5.

Figure 5.1: Four possible starting states with focal at C1.

5.2.2 Methods for Extracting the Competitor’s Action Probabilities

5.2.2.1 Data Processing

Since the first approach relies on the given data to determine the transition probabilities, we first

discuss the data processing procedure for the case of foraging in competition, which is significantly

more complicated than the data processing step described in Section 4.4.

When there is no competitor involved, the data transformation process is simple. We only need

the order of platforms visited by the focal, which is readily available in the dataset. However, for

the case with a competitor, the data is much more complex as we now have to extract the behaviour

of both the focal and the competitor. Three example records from the original dataset are shown in

Table 5.2.

Table 5.2: Two example trials recorded using ethograms.

Focal Competitor
Example 1 C3 C4 C2 C1 B5
Example 2 C3 rsC4.rsC2 ae-n.paC1.paB5
Example 3 C3 ap-ag.vo C4.B5 ae-n.rsC1 rt rsC2

Besides the platform codes (i.e., C1 to B5) we have seen before, there are additional annotation

such as “rs” or “pa” before the platforms as shown in Example 2. The platform codes and the text

are called ethograms, which are commonly used to record the behaviours of animals in ethology [107].

Each ethogram (e.g., C1 or rs) represents an observed behaviour exhibited by the study species, and

when put together, we get a sequence of actions a monkey took in a foraging trial.

The space and the periods between two ethograms hold different meanings in the sequence: the

space between the ethograms is a “while” relationship, and the “.” indicates a “then” relationship,

that the monkey performed the actions in a consecutive manner regardless of the actions of the other

monkey.

In Example 1, the focal visited platform C3, C4 and C2, and the competitor visited C1 and B5.

With the spaces between the ethograms, we can describe Example 1 in plain language as:

The trial starts with the focal on C3 and competitor on C1. Then, while the focal moved

to C4, the competitor moved to B5 simultaneously. Finally, the focal moved to C2 while

the competitor stayed at B5.
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Notice, at the end of this example, we assume that the competitor stayed at B5 because there is

no information about what the competitor did when the focal moved to C2. To transform the data

into trajectories that we can use, we pad a monkey’s incomplete sequence by the last action it took.

Therefore, a complete trajectory for Example 1 is: {(C3, (0, 1, 0, 1, 1), C1), (C4, (0, 1, 0, 0, 0), B5),
(C2, (0, 0, 0, 0, 0), B5)}.

In Example 2, the raw data becomes slightly more complicated with additional ethograms, such

as “ae-n” which represents the monkey approaches the experiment neutrally. That is, the monkey

joins the trial without displaying any hostile or aggressive tendencies towards its competitor. Since

we only focus on which platforms each monkey went to when modelling its behaviour mathematically,

we ignore the non-platform-related actions (i.e., “rs”, “ae-n”, and “pa”) when creating a trajectory.

Therefore, Example 2 in plain words would be:

While the focal was on C3, the competitor was on C1 then it went to B5. While the

competitor is on B5, the focal went to C4 then C2.

Similar to how we encode the end of Example 1, we make the assumption that a monkey simply

stayed at the last platform it was on when we do not have enough information. Thus, a trajectory

for Example 2 would be: {(C3, (0, 1, 0, 1, 1), C1), (C3, (0, 1, 0, 1, 1), B5), (C4, (0, 1, 0, 0, 0), B5), (C2,
(0, 0, 0, 0, 0), B5)}.

Finally, the most restrictive assumption we made is Assumption 2 in Section 5.2, in which we

assume that there is no interaction between the two monkeys in the trial. However, Example

3 illustrates the possible interactions between the monkeys, often in the form of the dominant

aggressing the subordinate. Let us focus on the ethograms “ap-ag.vo” for the focal and “rt” for

the competitor. The former reads as “approached aggressively then aggressively vocalized” at the

competitor, and the latter means the competitor “retreated”, meaning it moved away from the focal

to avoid the aggression. When processing trials with interactions, we simply remove the interaction

ethograms along with other non-platform ethograms. Thus, Example 3 becomes: “C3 C4.B5” and

“C1 C2”, which can then be translated into a feasible trajectory similar to Example 1.

5.2.2.2 Empirical Model

The first model directly uses the available training data to calculate the empirical probabilities of

the competitor moving from one platform to another. These probabilities are then embedded into

the transition probabilities Psa. Consider an example of a simplified foraging experiment shown in

Figure 5.2.

Figure 5.2: A simplified foraging experiment with three platforms.

In this example, we only have three platforms: C1, C2, and C3, and a starting state: s0 = (C1,

(0, 0, 1), C2), and the competitor can either move to C1 or C3, or stay at the current platform. In
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this empirical model, we extract the competitor’s action probabilities by counting the number of

transitions observed between pairs of platforms in the given data, and normalize the frequencies to

obtain the probabilities. For example, assume that the demonstration set for the foraging experiment

in Figure 5.2 only consists of three trajectories: ξ′ = {τ1, τ2, τ3} where

τ1 = {(C1, (0, 0, 1), C2), (C3, (0, 0, 0), C3)}

τ2 = {(C1, (0, 0, 1), C2), (C3, (0, 0, 0), C3)}

τ3 = {(C1, (0, 0, 1), C2), (C3, (0, 0, 0), C2)}.

Based on ξ′, when at C2, the competitor stayed at C2 once, moved to C3 two times, and never

moved to C1. Thus, the competitor’s action distribution is:

Pcomp(C2 to C2) =
1

2 + 1
= 0.333

Pcomp(C2 to C3) =
2

2 + 1
= 0.667

Pcomp(C2 to C1) = 0.

The MDP for this example would then have a transition probability that includes Pcomp. The

transition probability at s0 is shown in Table 5.3.

Table 5.3: Transition probability at s0 = (C1, (0, 0, 1), C2) for the example in Figure 5.2 with
empirical action probabilities of the competitor.

State s Action a State s′
Transition Probability

Psa(s
′)

(C1, (0, 0, 1), C2)

C1
(C1, (0, 0, 1), C2) 0.333
(C1, (0, 0, 0), C3) 0.667

C2
(C2, (0, 0, 1), C2) 0.333
(C2, (0, 0, 0), C3) 0.667

C3
(C3, (0, 0, 0), C2) 0.333
(C3, (0, 0, 0), C3) 0.667

When the agent takes an action a in state s, the resulting state s′ is probabilistically generated

based on the transition probabilities in Table 5.3. With all the known components of the MDP, we

can then formulate an IRL problem to recover the agent’s reward function parameter w and the

discount factor γ.

For the actual foraging experiment, we denote the MDP model that uses the empirical transition

probability as MDP-OneComp-E-D for dominant as focal, and OneComp-E-S for subordinate as

focal. We obtained the transition probabilities in the same way as the example presented above: by

normalizing the frequencies of platform pairs in the demonstrations. If the dominant is the focal,

the transition probabilities depend on the behaviour of the subordinate, and vice versa. Table 5.4

and 5.5 illustrate the action probability of a dominant and a subordinate, respectively.

From Table 5.4, we can see that a dominant monkey has the highest probability of moving

towards B5 when at C1 (0.5), and is more likely to move to an adjacent corn platform when at C2,

C3, or C4. From Table 5.5, the subordinate tends to either stay or simply move to the adjacent

corn platform, and it almost never moves to B5. In the rare case where the subordinate reaches B5,
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Table 5.4: A dominant’s empirical transition probability.

To
From

C1 C2 C3 C4 B5

C1 0.053 0.158 0.211 0.079 0.5
C2 0.311 0.067 0.444 0.044 0.133
C3 0.069 0.103 0.069 0.759 0
C4 0.3 0.05 0.45 0 0.2
B5 0.083 0.019 0.037 0.176 0.685

Table 5.5: A subordinate’s empirical transition probability.

To
From

C1 C2 C3 C4 B5

C1 0.565 0.217 0.13 0.043 0.043
C2 0.157 0.333 0.451 0.039 0.02
C3 0.073 0.091 0.218 0.6 0.018
C4 0.184 0.053 0.132 0.632 0
B5 0.04 0 0 0.1 0.86

it behaves in the same way as a dominant at B5: a high probability of staying (0.685 for dominant

and 0.86 for subordinate) rather than going to another platform.

It should be noted that the probabilities shown in the tables assume the platform that the

competitor moves to is still available. For example, in Table 5.4, a dominant at C1 would move to

C2 with a probability 0.158 if and only if all four platforms are available. Thus, if certain platforms

no longer have the food reward, we assume that the competitor would not visit those platforms

again and we renormalize the probabilities.

Consider a simple example where we have a subordinate focal at the state st= (C3, (1, 0, 0, 0, 1),

C2), that is, the subordinate is currently at C3 and the dominant at C2, with platform C1 and B5

remaining. According to Table 5.4, the dominant would have 0.311 probability of going to C1, 0.067

of staying at C2, and 0.133 of going to B5. Since there are only two remaining platforms to go to

at this state, we renormalize the probabilities of going to either one of those or staying: P (C1|st) =
0.311

0.311+0.067+0.133 = 0.609, P (C2|st) = 0.067
0.311+0.067+0.133 = 0.131, and P (B5|st) = 0.113

0.311+0.067+0.133 =

0.26.

One disadvantage of using empirical data to calculate the transition probability is that, if the

dataset is too small, certain transitions may not be available. Although using the data we have,

Table 5.4 and 5.5 account for all possible transitions in the state space, there exists a corner case

where we have 0 transition probability to any state. Consider a subordinate focal at state s′t= (C3,

(0, 1, 0, 0, 0), C4); if the dominant has 0 probability of staying or moving to C2, s′t becomes an

absorbing state. To handle this corner case, we manually reassign a 50% chance of staying at the

current platform, and the remaining 50% is evenly distributed to the available remaining platforms.

Therefore, in this example, assuming the action a′ = C2, there is a 0.5 probability of transitioning

to s′t+1 =(C2, (0, 0, 0, 0, 0), C2) or a 0.5 probability to (C2,(0, 0, 0, 0, 0), C4).

5.2.2.3 Iterative Model With Level-k Reasoning

One of the pitfalls of the previous model is that it heavily depends on data availability. We can see

from Table 5.4 and 5.5 that there are several transition probabilities that take the value of 0 because
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the corresponding actions were not observed in the data. Given sufficient data, we may believe that

it is generally true that a dominant would never choose to go to C4 from C3 even if there is food

on C4, as per Table 5.4. However, since foraging in competition is far less common than foraging

alone, the data for foraging trials with two monkeys is limited. Therefore, in our case, it seems to

be more reasonable to believe that the dominant never visits C4 from C3 because of data limitation.

While the empirical model has several advantages, we seek to move away from relying on the data

to compute the action probabilities while trying to represent the assumption that the focal has some

idea of what its competitor will do.

In this method, the transition probabilities reflect the competitor’s strategy at any give state.

That is, we treat the competitor as a decision maker and obtain its optimal policy, which is then

embedded into the MDP with the focal as the agent in the environment. Let us revisit the three-

platform example in Figure 5.2. Instead of counting the number of times the competitor visited

C2 and C3 to calculate Pcomp as described in Section 5.2.2.2, let us assume that we already have

a policy of the competitor beforehand, πcomp(a|s). To obtain a policy for the competitor means

that we would treat the competitor as the “focal” and the original focal as the “competitor” and

formulate an MDP where the competitor is the decision maker. Thus, the original starting state

s0 = (C1, (0, 0, 1), C2) becomes s′0 =(C2, (0, 0, 1), C1). Assume the competitor’s policy at s′0 is

πcomp(C1|(C2, (0, 0, 1), C1)) = 0.01

πcomp(C2|(C2, (0, 0, 1), C1)) = 0.09

πcomp(C3|(C2, (0, 0, 1), C1)) = 0.9,

the transition probabilities for the focal at the original s0 are shown in Table 5.6.

Table 5.6: Transition probability at s0 = (C1, (0, 0, 1), C2) for the example in Figure 5.2 with
competitor policy πcomp.

State s Action a State s′
Transition Probability

Psa(s
′)

(C1, (0, 0, 1), C2)

C1
(C1, (0, 0, 1), C1) 0.01
(C1, (0, 0, 1), C2) 0.09
(C1, (0, 0, 0), C3) 0.9

C2
(C2, (0, 0, 1), C1) 0.01
(C2, (0, 0, 1), C2) 0.09
(C2, (0, 0, 0), C3) 0.9

C3
(C3, (0, 0, 0), C1) 0.01
(C3, (0, 0, 0), C2) 0.09
(C3, (0, 0, 0), C3) 0.9

Note that s0 and s′0 are symmetrical and so we can always convert a state in the “competitor

as focal” MDP back to a state in the original state space, and map the competitor’s policy to the

transition probabilities accordingly.

In this method, to acquire a policy of the competitor to be embedded into the focal’s MDP,

we need the focal’s policy to construct the competitor’s MDP. To achieve this iterative process,

we borrow a concept of iterative learning from behavioural game theory [24], called quantal level-k

model [30, 79], where πcomp is assumed to be from a competitor that reasons at a lower level than

the focal.
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Level-k Reasoning

Level-k reasoning is based on the idea that human decision makers are not perfectly rational and,

rather, have bounded rationality [99], meaning that we have limited cognitive resources and can

only perform a bounded number of recursions of strategic reasoning. When in a game, each player

can reason strategically about what the others may do before choosing his/her own actions. It is

reasonable to believe that, with humans, we can take into account the strategic reasoning abilities

of another again: an agent i takes an action by reasoning that agent j reasons about i. Such a

recursive reasoning can continue (i.e., agent i reasons that agent j reasons that i reasons about j)

until the cognitive limit k.

The level-k model associates an agent with an intelligence level k ∈ {0, 1, 2, ..}, which corresponds

to the number of reasoning recursions this agent can perform:

• Level-0 agents do not have the capability to perform any strategic reasoning

• Level-k (k ≥ 1) agents make strategic decisions by treating other agents as level-(k−1) agents.

A simple example that more concretely illustrates the concept is the guessing games experiment

conducted by Nagel [79]. In the experimental setup, there are 1000 people in the experiment, each

of them needs to pick a number of from 0 to 100. The person who is closest to half of the average

gets a reward. A level-0 player would choose a number randomly and uniformly from the range,

while a level-1 player would choose 25 by assuming everyone else is level-0 and so the mean of all

the other choices will be 50. The player would get more and more rational as the intelligence level

k increases, and so the number the player chooses gets closer and closer to 0 as it attributes higher

rationality to other players. Zero is the Nash equilibrium of the guessing game.1

Naive Level-k Model

In reality, most humans are level-2 players [102]. In our application, we assume that monkeys are

also intelligent agents who take their competitor’s actions into account. Therefore, we propose an

iterative modelling approach that represents the focal as a level-k decision maker. We denote each

MDP model as MDP-OneComp-k-D for a level-k Dominant and MDP-OneComp-k-S for a level-k

Subordinate.

The naive level-k learning framework is shown in Figure 5.3. Given an initial level-0 policy,

π0,Dom and π0,Sub, and a set of demonstrations with a dominant/subordinate focal (i.e., ξDom and

ξSub), we iteratively create level-k dominant/subordinate by embedding the level-(k − 1) subordi-

nate/dominant policy into the transition probabilities.

We refer to the level-0 policy as the “anchoring policy”, which is generated either randomly or

with an educated guess. In our study, we choose to define the anchoring policy for both dominant

and subordinate as follows. At each state s, we assume that 90% of the time, the monkey would

move to an available platform or stay at its current platform, while 10% of the time it would make

an irrational decision of moving to a visited platform. One may suggest that we can also use the

empirical policies presented in Section 5.2.2.2 as the anchoring policies. However, note that the

action probabilities extracted from the given data likely already incorporate the monkeys’ foraging

strategies with the knowledge of their competitor (e.g., the subordinate rarely visits B5 in the

1In Nagel’s experiment, the mean is 27.05 and the median is 17 [79], suggesting that the subjects are at level-2.
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Figure 5.3: The iterative naive level-k framework.

presence of the dominant). Using such a policy as an anchoring policy conflicts with the assumption

that a level-0 agent does not have the ability to reason strategically.

At each level, we take the same set of demonstrations and learn a pair of (wk,i, γk,i) and subse-

quently a policy π∗,k,i using the opponent’s previous level’s policy π∗,k−1,−i ({i,−i} = {Dom,Sub})
as part of the transition probabilities.

As in the empirical model, we embed the other monkey’s actions as transitions into the MDP

model. However, instead of using the global empirical probabilities, the action distributions come

from a level-(k−1) policy. The advantage of the level-k approach is that, compared to the empirical

models, we no longer directly depend on the demonstrations to determine the transition probabilities.

Instead, we assume that the focal has the capability to reason about its competitor’s potential actions

at any given state by assuming the competitor is one level below itself. As a result, we obtain a

more granular action distribution compared to the ones in Section 5.2.2.2. In MDP-OneComp-E,

we have a fixed probability of moving to a platform regardless of where the focal is, whereas in

the level-k model, the action probabilities are state-specific, which take the focal’s position into

account. However, modelling using this iterative approach is more computationally demanding than

the empirical models: to reach the models for a level-k Dominant and level-k Subordinate, we need

to create and solve 2k MDPs in total.

5.2.3 Computing the Gradients of the Objective Function

By embedding the competitor’s action probabilities into the environment, the transition dynamics

of the MDPs become stochastic. Thus, for every feasible trajectory τ = {(s0, a0), ..., (s|τ |, a|τ |)}, we
define a probability q(τ) that is induced by the MDP’s transition probabilities P (s′|s, a) alone:

q(τ) = I(s0)
|τ |−1∏
t=1

P (st+1|st, at).

In the original MaxEnt IRL framework proposed by Ziebart et al. [129], the authors state that

the likelihood of a trajectory τ can be approximated using

P (τ |w, γ, Psa(·)) =
q(τ)eU(τ)

Zp
(5.3)

where Zp =
∑

τ q(τ)e
U(τ) is the partition function.
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Under the MaxEnt IRL framework, the objective function (Eq. 3.8 in Section 3.2) becomes

argmax
w,γ

∑
τ∈ξ

logP (τ |w, γ, Psa(·)) =
1

|ξ|
∑
τ∈ξ

U(τ)− logZq +
1

|ξ|
∑
τ∈ξ

log q(τ). (5.4)

The last term, 1
|ξ|

∑
τ∈ξ log q(τ), in Eq. 5.4 is a constant that does not depend on w or γ.

Therefore, the gradients w.r.t. w or γ of Eq. 5.4 is equivalent to Eq. 3.9 and 3.10. Namely,

∇w =
1

|ξ|
∑
τ∈ξ

|τ |∑
t=0

γtϕ(st)−
∑
τ

P (τ)

|τ |∑
t=0

γtϕ(st)

∇γ =
1

|ξ|
∑
τ∈ξ

|τ |∑
t=1

tγt−1w⊤ϕ(st)−
∑
τ

P (τ)

|τ |∑
t=1

tγt−1w⊤ϕ(st)

Recall, in Section 3.3, we stated that using Algorithm 4, the second terms of the gradients can be

computed by using time-indexed state visitation frequencies (Eq. 3.11 and 3.12). However, as noted

in Snoswell et al. [100], using Eq. 3.11 and 3.12 for stochastic MDPs leads to “approximate gradients

and negatively impacts the reward learning process”. The authors provided empirical evidence in

their computational experiments and showed that the gradients computed based on state visitation

frequencies resulted in greater learning error compared to other approaches tested [100]. Although

the proof for the claim about gradient approximation is currently not available in Snoswell et al.

[100], we also observed the same negative effect when conducting preliminary experiments. When

using Eq. 3.11 and 3.12, the gradient ascent method could sometimes take a step in the wrong

direction, hindering the learning process.

Thus, for the case of foraging in competition, instead of using Algorithm 4 as we did for the

deterministic MDP in Chapter 4, we compute the gradients using Eq. 3.9 and 3.10. This is, of

course, generally intractable and computationally expensive as we need to enumerate all feasible

trajectories with length |τ | in every iteration to compute the partition function Zq. However, given

that the state and action spaces in our application are manageable, we chose this enumeration

approach to enable more accurate learning.

In general, the approach of using state visitation frequency for gradient computation based on

Ziebart et al. [129] works well for deterministic MDPs (as we have shown in Chapter 4), but the

same cannot be said if we have stochastic transition dynamics. Further investigation is required to

study the cause of this issue.

5.3 Experiments

5.3.1 Data

For the case of foraging with one competitor, originally there are 299 trials in the dataset. After

the data processing procedure described in Section 5.2.2.1, we filter out trajectories that did not

start with both monkeys being on a platform and incomplete trajectories with length of 1, and 126

trajectories remain. Of these 126 trajectories, 73 have a dominant focal and 53 have a subordinate

focal. To increase the number of trajectories for each rank, we switch the f loc and c loc in each

state in the trajectories to create a mirrored dataset for the other rank. Therefore, each rank has



CHAPTER 5. APPLICATION TO ANIMAL BEHAVIOUR - FORAGING IN COMPETITION 66

126 trajectories in total and we obtained the training and test set through a random 80-20 split.

there are 93 trajectories in the training set and 33 in the test set.

5.3.2 Experimental Setup

For the computational experiments, similar to the experimental setup in Section 4.2, we randomly

and uniformly initialize the parameters as follows:

w1 ∈ U [10, 11]

w2 ∈ U(0, 0.1]

γ ∈ U [0.01, 0.99]

The ranges of w1 and w2’s initialization ensure that the reward of going to an adjacent platform will

be non-negative while going to a non-adjacent platform will result in a negative reward except for

going to the banana platform. Additionally, we set the temperature σ = 1. Since the experiments

in Chapter 4 show that we obtain relatively good results within approximately 30 iterations (Figure

4.3), we set the maximum number of iterations for each model to max iter = 30. The learning rate

αw and αγ are set to [0.02, 0.01] and 0.05 for all models.

Finally, we adopt the vanilla gradient ascent (VGA) method during training since VGA produces

the best overall results in Chapter 4.

5.3.3 Results

5.3.3.1 Training Results

Table 5.7 illustrates the learned parameters for the different models. Overall, the weight parameters

are similar across different methods but, for the discount factor γ, we can see that while the dominant

focal is a more farsighted decision maker with higher value of γ, the subordinate is more myopic

with lower γ. Interestingly, for both dominant and subordinate, the value of γ increases with level

k. In particular, the discount factor for the level-2 dominant is 0.99, suggesting that the agent is

very farsighted.

Table 5.7: Learned parameters by models.

Model Parameters
w1 w2 γ

Empirical Dominant 10.242 0.311 0.817
Level-1 Dominant 10.24 0.335 0.855
Level-2 Dominant 10.238 0.336 0.99
Empirical Subordinate 10.098 0.688 0.575
Level-1 Subordinate 10.095 0.69 0.576
Level-2 Subordinate 10.101 0.65 0.654

Figure 5.4 shows the best training LL at each iteration for different models. Figure 5.4a to 5.4c

show the results for a dominant focal, and Figure 5.4d to 5.4f show the results for a subordinate

focal. We can see that while the best LLs plateaued quickly for models with a dominant focal, the

subordinate models improved steadily over the iterations.
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(a) Training LL for Empirical
Dominant focal.

(b) Training LL for Level-1
Dominant focal.

(c) Training LL for Level-2 Dom-
inant focal.

(d) Training LL for Empirical
Subordinate focal.

(e) Training LL for Level-1 Sub-
ordinate focal.

(f) Training for Level-2 Subordi-
nate focal.

Figure 5.4: Best training LL in each iteration by model.

5.3.3.2 Test Results

Table 5.8 shows the experimental results on the test set. We use the test set log likelihood (LL) as

the main metric for performance and level-1 dominant and level-2 subordinate achieve the best LL

among the models by rank, respectively. For the test feature match, while the difference between

expected travel distance in the test set and from the learned policy is relatively small, the food

feature difference is more significant considering that corn has a value of 0.05 and banana of 1.

Table 5.8: Test results of different models by ranks and levels.

Model Test LL Feature Difference – Food
Feature Difference –
Travel Distance

Empirical Dominant -7.179 -0.688 2.095
Level-1 Dominant -6.878 -0.69 1.913
Level-2 Dominant -7.339 -0.695 2.014
Empirical Subordinate -7.187 -0.869 0.623
Level-1 Subordinate -8.004 -0.877 0.499
Level-2 Subordinate -6.387 -0.833 0.101

Interestingly, the combination of large negative food feature difference and small travel distance

difference suggests that our learned parameters lead to the prioritization of banana for both dominant

and subordinate. Recall that the feature difference is calculated by subtracting the learned expected

feature counts from the demonstrations’ feature count. Therefore, the learner travels roughly the

same distance as the monkeys in the demonstration (the maximum expected travel distance difference

is around 2.1 meters, less than the distance between two adjacent platforms), but obtains more food

in a trial. Given the feature values assigned to corn (0.05) and banana (1), the most probable
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explanation is that the learner would choose to move to B5 more often than the demonstrated data.

5.4 Discussion

In this chapter, we extend our application of wild vervet monkey foraging behaviour presented in

Chapter 4 to the case where the focal forages with a competitor. Based on the experiment results,

we can try to answer the research questions we posed at the beginning of this chapter.

1. How different is the monkeys’ behaviour when foraging in competition from when

they forage alone?

In terms of the trade-off between the two different factors in the reward function—food and travel

distance—we can see that the focal monkey values the food and travel distance similarly to the case

of foraging alone. More specifically, although we deliberately initialize the weight parameters w1

and w2 to ensure a positive reward for going to the adjacent platform, the learned w2 is significantly

larger than the initial value, which is less than 0.1. Thus, as in the foraging alone case, the reward

function indicates that only moving to the banana platform B5 leads to positive reward while all

other actions have a non-positive reward. Consider the level-1 dominant, for example, whose learned

weight parameters are w1,Dom = (10.242, 0.311). If B5 is the adjacent platform, the focal will get a

reward of 10.242·1−0.311·5 = 8.687; if B5 is non-adjacent, the reward is 10.242·1−0.311·8.09 = 7.72.

For any corn platform, the focal will get -1.043 if the platform is adjacent and -2 if it is non-adjacent.

Thus, similar to what we observed for foraging alone, there is no incentive for the focal, regardless

of its rank, to get the corn; the monkeys only care about the banana.

For the discount factor, we know that the focal is a farsighted decision maker with γ greater

than 0.95 when foraging alone. As shown in Table 5.7, regardless of the focal’s rank, all models

learn a smaller discount factor value (except for the level-2 dominant focal). Comparing to foraging

alone, we may interpret the lower γ values as that the focal values the future reward less when in

competition. Intuitively, this interpretation is reasonable since the future is more uncertain as the

competitor is also foraging in the trial. When the focal is alone, a high discount factor implies that

it knows that all rewards are available to itself only. However, a competitor represents a potential

threat to the focal that the future reward may be taken, prompting the focal to focus more on the

present. We can see that a dominant focal is still a farsighted decision maker with γ > 0.8, while

the subordinate focal is more myopic. We will discuss more about the difference between dominant

and subordinate in the next question.

2. How does the rank of the monkeys affect their decisions in the trial?

As alluded to in the previous discussion, the main difference between a dominant and subordinate

focal is how they value the future reward compared to the present. The weight parameters for both

focals are quite similar (see Table 5.7), indicating that the monkeys have a similar trade-off between

food and travel distance regardless of their ranks. This is a reassuring result as we intended the food

weights to reflect the intrinsic value of the food that should be independent of focal rank.

As level-1 dominant and level-2 subordinate are the models with the best test LL (see Table

5.8), our results suggest that a subordinate focal is more myopic than the dominant (γ = 0.654 vs.

0.855) and it uses a higher level of reasoning k. One possible explanation for the subordinate’s lower
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discount factor value is that, since the subordinate understands that it is at a disadvantage when

competing with the dominant, it focuses more on the immediate reward rather than planning for

the future. Furthermore, the different values of k suggests that the dominant monkey does not need

to reason as much as its competitor since it has more power; while the subordinate, on the contrary,

needs to perform more complex strategic reasoning to maximize its own reward.

From the experiment results, we observe that while the dominant prioritizes the banana reward,

the subordinate tends to stay on the current platform and rarely moves to B5. Consider an example

where the dominant is at platform C1 and the subordinate at C2, and C3, C4, and B5 are available.

The best models, level-1 dominant and level-2 subordinate, have a 0.95 and 0.01 probability of

moving towards B5, respectively. The level-2 subordinate is most likely to stay at C2 with 0.89

probability. While it is obvious why a dominant focal would move almost deterministically to B5

and a subordinate would rarely go to B5, it may seem counter-intuitive for the subordinate to stay

at C2 instead of moving to an available platform. Based on our domain knowledge and observations

from the actual foraging experiments, we know that the subordinate has a fair probability of moving

to an adjacent platform (see Table 5.5). Thus, there exists a misalignment between our expectations

and learned behaviour from the IRL problem.

After the banana has been taken, the focal tends to stay at its current platform even if there

are still available platforms in the trial since, as discussed in Section 4.5, the MDP models do not

have the action “leave experiment”. For a dominant focal, the most probable action at any state

where B5 is no longer available is to stay with probability around 0.65; for a subordinate focal,

the probability of staying is approximately 0.9. This result suggests that, in a foraging trial, the

most probable actions for a dominant agent would be to take the banana and stay at B5, while a

subordinate agent would simply stay at its current platform from the start, and neither of the two

agents would bother moving to the corn platforms.

This discrepancy between the model prediction and real-life behaviour points to one of the

limitations we have in the modelling process. The tendency to stay at the current platform is

because we did not assign a penalty for staying at the current platform. Based on the behaviour in

the data, we observe that, unlike the foraging alone case, a monkey may stay at its current platform

for different reasons, such as observing the competitor’s next move before making a decision. Further,

after the data processing, the trajectories are often padded with the action of staying. Consider the

case where the focal is at B5, one example trajectory from the dataset is {(B5, (0, 1, 1, 1, 0), C1),
(B5, (0, 0, 1, 1, 0), C2), (B5, (0, 0, 0, 1, 0), C3), (B5, (0, 0, 0, 0, 0), C4}. In this example, the focal was

at B5 while its competitor took all the remaining corn. Recall that the banana was placed inside a

container and thus, depending on the monkey’s handling skill, the time it takes for the monkey to

get it out of the container may vary. Since we discretize the foraging trials by each decision made

by the monkeys, this example trajectory is to be interpreted as the focal chose to stay three times

while in reality, a single decision was made and it took a while to finish the task. By not imposing a

negative reward on staying, we accommodate this action seen in the processed trajectories, but we

also misrepresent handling time with staying.

It is also unclear whether adding the action “leave experiment” to the MDP models would yield

different results for the foraging in competition case. Regardless of the value we assign to “leave”

(positive, 0, or negative), it has effectively the same impact as staying in terms of matching the food

and distance features as both feature values would be 0.
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Moreover, although we initially set staying to be an unfavourable action (moving to an adjacent

corn platform would yield a positive reward), the learned parameters make it a more attractive

choice than moving to a non-banana platform, which has a negative reward. For a subordinate

monkey, staying at its current platform is in fact the optimal choice. Since the dominant can take

the reward if the two monkeys move to the same platform as the dominant, the subordinate will

receive a negative reward for travelling (i.e., −w2Distance). Thus, there is no real incentive of

taking any action in a trial except for staying. In reality, however, this result is a limitation of our

models and a consequence of the restrictive data processing procedure, and we should be cautious

about how we interpret the results for the case of foraging in competition.

5.4.1 Convexity of the Objective Function w.r.t. the Discount Factor

Recall in Chapter 4, we plotted the objective function values by γ to empirically show that the

objective function is neither concave nor convex w.r.t. the discount factor. Since the number of

trajectories in the case of foraging in competition is still manageable to enumerate, we can compute

the log likelihood of each model with the learned weight parameters and 50 γ values from [0.01, 0.99]

and see if there exists any local optimum w.r.t. γ. Figure 5.5 shows the objective function for

each model vs the discount factor γ. Figure 5.5a to 5.5c show the LL of the empirical dominant

(a) LL for Empirical Dominant
focal by γ.

(b) LL for Level-1 Dominant fo-
cal by γ.

(c) LL for Level-2 Dominant fo-
cal by γ.

(d) LL for Empirical Subordi-
nate focal by γ.

(e) LL for Level-1 Subordinate
focal by γ.

(f) LL for Level-2 Subordinate
focal by γ.

Figure 5.5: LL for each model by γ.

focal, level-1 and level-2 dominant focal, respectively, and Figure 5.5d to 5.5f show the subordinate

models in the same order. We can see that for dominant focal, the trend is quite similar to the case

of foraging alone (Figure 4.5) where the LL is monotonically increasing until the global optimum,

or in the case of Level-2 dominant, the optimal solution is when γ is at the border 0.99. For

the subordinate focal, however, the LL behaves in a different way. For the empirical and level-1

subordinate models, there exists a global optimum at γ = 0.01, while the level-2 subordinate model
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has a global optimum at around γ = 0.65. Thus, depending on the initial γ value, vanilla gradient

ascent may lead to different optimal discount factor values for the subordinate models. Interestingly,

we can see that the level-1 models (Figure 5.5b and 5.5e) are more aligned with the models with

empirical competitor distributions (Figure 5.5a and 5.5d) in terms of the shape of the objective

function, while the level-2 models are quite different from the others.

Further, the global optimum in Figure 5.5c and 5.5f suggest the level-2 focals are farsighted. It

is unclear why the level-2 models, both for dominant and subordinate, indicate the focals would

be more farsighted than the level-1 models. We only know that a higher value of k indicates that

the decision maker is more rational, but being rational is not equivalent to being farsighted. One

hypothesis is related to the temperature parameter σ in the soft VI [130] algorithm. Recall that σ

represents how rational the agent is in soft VI, and we set σ to be 1 for all models. One potential

issue about the level-k models then may be as we increase k, it is possible that σ should decrease

to indicate the fact that rationality is increasing. Further investigation is required to study the

relationship between k and σ.

5.4.2 Alternative Modelling Approaches

5.4.2.1 A Markov Game with Bounded Rationality

In the two models presented in this chapter, instead of treating both monkeys in the foraging trial

as agents in the IRL problem, we embed the competitor into the environment of the MDP and

represent its action through the transition probabilities. One natural extension would be to include

the competitor as a decision maker and model the foraging experiment as a Markov game (MG).

Here, we briefly discuss one possible framework based on the Bounded Risk-sensitive Markov

Game (BRSMG) proposed by Tian et al. [106]. In fact, the authors also utilize level-k reasoning

and thus render the MG into a single-agent IRL problem, making the model very similar to the naive

level-k model we presented in Section 5.2.2.3. In the MG formulation, the level-(k− 1) competitor’s

policy is represented explicitly in the MG, while in our MDP model, it is embedded into the transition

dynamics. Additionally, in BRSMG, the decision makers are assumed to be risk-sensitive and the

agent’s intelligence level k is an unknown parameter. In our application, to make BRSMG equivalent

to our level-k model, we would relax these two conditions by assuming the monkeys are risk-neutral

and their intelligence levels are bounded by k. We can then formulate our problem as a classical

MG as presented below. Interested readers are referred to Tian et al. [106] to learn more about the

BRSMG framework.

Recall that a finite classical MG is a tuple ⟨P, S,A, Psa, R, γ⟩, where P is the set of agents in the

game. In our case, we have two agents in the game, P = {Dom,Sub}. S = (d loc, remaining plats, s loc)

and A = ADom × ASub are the joint state and action spaces. Note that S is a combination of the

location of dominant and subordinate, d loc, s loc ∈ {C1, C2, C3, C4, B5}, and the correspond-

ing configurations of the remaining platforms. The action set A is ADom = ASub ={C1, C2, C3,
C4, B5}. The reward R = (RDom, RSub) where Ri(s, ai, a−i) represents the immediate reward of

agent i in state s based on its own and the other player’s action (−i = P\{i}). Similar to the

reward function for the MDP models described before, Ri(s, ai, a−i) = wiϕi(s, ai, a−i), where wi

and ϕi(s, ai, a−i) are the weight parameters and the feature value for agent i, respectively. Different

from our naive level-k model, the transition probability Psa = S×A→ S is now deterministic given
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the dominant’s and subordinate’s actions at any state. Finally, γ = (γDom, γSub) is the discount

factor for each agent.

A policy of agent i is denoted as πi and, since we assume the decision maker is risk-neutral, the

optimal policy π∗,i maximizes the expected sum of discounted rewards with respect to its opponent

−i’s policy.
π∗,i = argmaxπiV πi

(s), ∀s ∈ S (5.5)

where

V πi

(s) = Eπ−i [R(s, ai, a−i) + γiV πi

(s′)]. (5.6)

When solving an MG, the goal is to find the Markov perfect equilibrium (MPE) when each

agent’s policy is optimal given the policies of the other players, which is NP-hard [106]. However,

recall that we are incorporating the concept of bounded rationality into the model and so we assume

that for an agent i with intelligence level k, its optimal policy is with respect to a level-(k − 1)

opponent −i. Therefore, the value function of a level-k agent i is:

V πi,k

(s) = Eπ−i,k−1 [R(s, ai, a−i) + γi,kV πi,k

(s′)]. (5.7)

Similar to the naive level-k model, we can then iteratively obtain the optimal policy of one agent

at level k and use it for the other at level-(k+1), effectively reducing the MG to an MDP. In Tian et

al. [106], the authors also formulate the IRL problem under the MaxEnt framework. Let us denote

p̂ = (wDom,wSub, γDom, γSub) to consolidate the parameters to be learned for notation clarity and,

following Tian et al. [106], define the objective function as:

max
p̂

∑
τ∈ξ

logP (τ |p̂) =
∑
τ∈ξ

log Π
|τ |−1
t=0 P (ât|st, p̂), (5.8)

where P (ât|st, p̂) is the joint probability of agents’ actions at state st [106]. Namely,

P (ât|st, p̂) = π∗,i,ki

(st, a
i
t)π

∗,−i,k−i

(st, a
−i
t ). (5.9)

Notice that, although the MG formulation has deterministic transition probabilities, when reduc-

ing the MG to an MDP, the transition dynamics become stochastic since they depend on the action

distributions of the level-(k−1) competitor. Therefore, as discussed in Section 5.2.3, computing the

gradients of the objective function using Algorithm 4 as we did in Chapter 3 may lead to recovering

a set of inaccurate parameters p̂.

The main difference between this modified BRSMG framework and our naive level-k model is the

competitor is seen as a decision maker in the game rather than being part of the transition dynamics

of the model. However, since both approaches assume the monkeys have bounded intelligence level

and that one monkey always makes its decisions based on the assumption that the other is one level

below itself, we can expect that using the modified BRSMG framework will result in similar results

compared to the naive level-k model.
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5.4.2.2 Alternative State Space

A More Descriptive State Representation for More Granular Action Probabilities

While the two methods presented in this chapter produce a good approximation of the competitor’s

behaviour, both provide a rather high-level representation of the action distributions. As mentioned

previously, transition probabilities in the naive level-k models are more granular than the empirical

model because the focal’s position is taken into account. However, anecdotally, we learned2 that

there may be more factors that affect the competitor’s actions than where the focal is.

One potential factor is how many platforms the competitor has visited and taken the food from.

This factor is particularly applicable to a subordinate competitor, who, based on observations from

field experiments, would stop foraging after visiting a certain number of platforms even if there is

still food left. This behaviour is interpreted to mean that the subordinate respects the hierarchy, and

by letting the dominant take the food, the subordinate is less likely to be aggressed or displaced.

Thus, in our current model, for the same state representation (e.g., (C1, (0, 0, 0, 1, 1), C2)), the

competitor’s action probabilities may differ based on whether C2 is the first or second platform it

visited.

Another factor that affects the competitor’s decision-making may be how full it is at the beginning

of the trial. This factor applies to both a dominant and subordinate competitor. Since the foraging

experiment site is set in an open area, the same monkey can visit the site and join the experiments

multiple times in a short period of time. Moreover, we can also infer that the feeding platforms are

not the monkeys’ only food source. Intuitively, we would expect that if the monkey is full at the

beginning, it may be less motivated to move compared to if it is hungry.

We can expand the state representation to include these two factors as non-negative integers,

which we denote as f food num and f fullness for the focal and c food num and c fullness

for the competitor. Thus, the new state becomes a 7-tuple (f loc, f food num, f fullness,

remaining plats, c loc, c food num, c fullness), and each transition increases the new factors’

values by 1. For the initial state s0, food num would be set to 0 but determining the initial fullness

of the monkeys is challenging. Although we can keep track of how many times the same monkeys

has done the foraging experiment, activities outside the experiment are not recorded, thus, we do

not have any information on whether the monkeys have other food sources.

Incorporating Interactions Into the State Space

One of the greatest simplifications we made is to assume that both the focal and the competitor focus

solely on maximizing their food reward and minimizing the travel distance. In reality, interactions

between the monkeys are often observed in the foraging experiments (e.g., Example 3 in Table 5.2)

and they are part of the social context that is crucial for understanding the monkeys’ foraging

behaviour.

Following the current 3-tuple structure of a state, one way to incorporate interactions into the

model is to define specific f loc and c loc that represent the interactions while remaining plats is

unchanged. In Example 3 in Table 5.2, “ap-ag” (approach aggressively) and “vo” (aggressive vocal-

ization) can be seen as two types of aggression from the focal and “rt” (retreat) is the competitor’s

reaction. Thus, in addition to the platforms C1 to B5, we can expand the value f loc and c loc can

take by defining a set of interactions I = {ap-ag, vo, rt, ...}. That is, f loc, c loc ∈ {C1, ...,B5}∪I.
2T. Jean M. Arseneau-Robar, personal communication.
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Subsequently, we need to expand the action space (i.e., A ∈ {C1, ...,B5} ∪ I) and define the

transition probabilities and the immediate reward for the new states and actions. One example

transition is described as follows. Assume we have a dominant focal and the current state is s =

(C1, (0, 0, 0, 1, 1), C2)) and the focal chooses action a = ap-ag. We can define a deterministic

transition probability of 1 to s′ = (ap-ag, (0, 0, 0, 1, 1), rt), meaning that the subordinate competitor

will be forced to retreat instead of going to another platform or staying. Conversely, if, at the same

state s = (C1, (0, 0, 0, 1, 1), C2)), we have a subordinate focal and the dominant competitor chooses

to attack, we would transition into s′′ = (rt, (0, 0, 0, 1, 1), ap-ag) deterministically, regardless of what

the action is.

Finally, the most challenging part of expanding the state space to handle interaction is defining

the reward function value for these states. The main reason why we decided not to include interac-

tions in our current model is because we do not have enough information to quantify the reward for

aggressing the opponent and for retreating from an attack. We hypothesize that the monkey may

be driven by intrinsic motivations, such as asserting dominance over the opponent, or by how far

away it is from the opponent. Further studies are required to identify the features that are relevant

to the interactions.

GridWorld as the Environment

Another alternative model would be to represent the foraging experiment in a GridWorld setting

with time steps. As described in Section 4.5.2, each state becomes a tuple of coordinates on the grid

and the current time step. The advantages of this approach mentioned in Section 4.5.2 also apply to

the case of foraging in competition, including more accurate tracking of the monkeys’ movements and

their positions before reaching the first platform, which can be used to incorporate the first decisions

into the model. An additional benefit of the grid setting is that it allows us to measure the distance

between the focal and the competitor. In our current state representation, the distance between the

monkeys is fixed to be either 5 or 8.09 metres depending on the platforms they are on. In a grid

setting, however, we can calculate the relative distance more accurately. For example, Figure 5.6

shows two different states at an arbitrary time step t. We can see that as the grid size increases, the

distance between the two monkeys becomes more accurate. Knowing the relative distance between

the focal and the competitor can help verify the hypothesis about when interactions occur during

the trial. Intuitively, we would assume that the focal is more likely to interact with the competitor

in Figure 5.6b than Figure 5.6a since the subordinate is much closer. We can then incorporate the

relative distance as a feature in each state and in the reward function.

5.4.2.3 Incorporating the Relationship Between Focal and Competitor

We also simplify the social relationship between the focal and the competitor in our model. Since

the monkeys live together as a group, we can expect that, outside the foraging experiment, they

would have social interactions that either strengthen or weaken their relationship. One example is

social grooming: an activity where one monkey cleans or maintains the other’s body or appearance

to create social bonds or in exchange for favours [95]. We can hypothesize that the relationship

between a specific focal-competitor pair will affect their action probabilities during the trial. For

example, the dominant may allow the subordinate to collect more food reward and may be less likely

to attack the subordinate if they are “friends”. While the original data recorded some interactions
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(a) Possible state with the focal at (3, 4) and the
competitor at (3, 1).

(b) Possible state with the focal at (3, 4) and the
competitor at (2, 4).

Figure 5.6: Two possible states in a grid setting.

between trials, we did not find it sufficient to quantify the relationships between any two individuals.

We currently only have two classes of monkeys—dominant and subordinate—which is determined

by the monkeys’ Elo ranks. One limitation of this classification is that we cannot differentiate trials

where the monkeys have similar Elo ranks from those with drastically different ranks. We may expect

that the interactions between two monkeys may differ based on how similar their Elo ranks are. For

example, consider two monkeys with relatively high ranks in the group in the same trial. They

may both be considered “dominant” in the group but based on our current classification method,

one will be classified as the subordinate and so is expected to behave as a subordinate. However,

this high-ranked “subordinate” may be more likely to challenge the other monkey and fight for the

banana.

Similar to the discussion of incorporating age and sex of each monkey into the model in Section

4.5.2, one way we can include the social relationships among the monkeys is to further split the

dataset based on these specific conditions. However, such a split requires a significant amount of

data to ensure that each subset would have sufficient data for training.

5.4.3 Suggestions for Future Foraging Experiment Design

In summary, to create more realistic mathematical representations of the foraging experiments, we

propose the following suggestions on the design of future experiment that can lead to better data

availability and suitability for an IRL study.

• One of the biggest issues for studying the case of foraging in competition is that we have very

limited data. From the field data, it is obvious that foraging in competition is less common

than foraging alone since the monkeys can choose if they want to participate in the trial and

when to join the trial. Thus, perhaps a more controlled environment should be considered for



CHAPTER 5. APPLICATION TO ANIMAL BEHAVIOUR - FORAGING IN COMPETITION 76

collecting data for foraging in competition. By conducting controlled trials, we can deliberately

select focal-competitor pairs to gain more precise insights into the monkeys’ behaviour.

• Increase the number of platforms in the experiment. Currently, if we assume both focal and

competitor would always choose to move to an available platform, each trial would end in 3

steps as we only have 5 platforms. If we want to capture more diverse behaviour and study

the monkeys’ decision sequences more in depth, we should increase the number of platforms

available. With a larger experiment site, we can then consider the case where there are more

than two monkeys involved in a trial. The social dynamics among the monkeys may elicit

behaviour that is not observed in the current data. For example, if there are two subordinates

and one dominant in a trial, we may see the two subordinates cooperating against the dominant

while maximizing their own rewards.

• Similar to the case of foraging alone, implementing precise movement tracking and including

timing information when collecting the data will allow us to build more sophisticated mathe-

matical models that better represent the real-life foraging experiment.

5.5 Conclusion

In this chapter, we extended the foraging experiment presented in Chapter 4 to study the foraging

behaviour of wild vervet monkeys in competition. We focus on the case when there is only one

competitor in the trial, and transform this multi-agent problem back to the single-agent setting

by embedding the competitor’s behaviour in the transition probabilities of the MDP model. We

present two methods of obtaining the action distributions of the competitor: directly extracting

from the given data, or by adopting the level-k reasoning framework, which iteratively produces

level-k policies that can be used as the transition probabilities of level-(k + 1) models.

We were also interested in studying how a monkey’s rank affects their decisions in a foraging

trial. We formulate the MDP models from two perspectives: a dominant monkey as the focal with a

subordinate competitor and a subordinate focal with a dominant competitor, and aim to recover the

focals’ weight parameters and discount factors. We solve the IRL problem using the vanilla gradient

ascent and the experimental results suggest that when foraging in competition, the dominant tends

to be a farsighted decision maker and the subordinate tends to more myopic.

While we believe that our models provide novel insights on wild vervet monkeys’ behaviour

when foraging in competition, it is important to note that, similar to modelling for foraging alone

in Chapter 4, we made restrictive assumptions when transforming the foraging experiment into a

mathematical model due to limited data availability. To enable better designed IRL studies on forag-

ing behaviour in the future, we present several alternative modelling options, such as incorporating

interactions between dominant and subordinate during the trial into the model. We also provide

some suggestions on future foraging experiment designs that may lead to more realistic models.

In conclusion, for the case of foraging in competition, the experimental results presented in

this chapter show some interesting differences compared to the results in Chapter 4. We hope the

exploratory efforts presented in this chapter can serve as a starting point for future research on

animal behaviour using IRL, particularly in the multi-agent setting.



Chapter 6

Conclusion

6.1 Summary and Contributions

In this thesis, we explored the framework of inverse reinforcement learning (IRL) with unknown

discount factor, building on Giwa and Lee [40, 41], and applied it to study animal behaviour.

Currently, the majority of IRL studies focus solely on recovering the reward function and treat the

discount factor as a fixed parameter. However, we believe that intelligent decision makers perceive

the future differently from one and another. Indeed, our experiments on wild vervet monkeys’

foraging behaviour show that they discount the future reward differently based on the scenario they

are in (foraging alone or in competition) and their social status (being a dominant or a subordinate

monkey).

In Chapter 3, we examined the framework for solving an IRL problem with an unknown discount

factor proposed by Giwa and Lee [40, 41]. We noticed several minor errors in the proposed formula-

tions. In particular, we found that the given the structure of the gradients (Eq. 3.11 and 3.12), the

visitation frequency matrix should be indexed by time (Algorithm 4). We then investigated a claim

about the convexity of the objective function w.r.t. the weight parameters and the discount factor

jointly. We attempted to provide a proof for this claim and demonstrated that, without knowledge

of the given demonstrations, it is not trivial to arrive at such a conclusion. We also discussed the

connection between different formulations of the objective function seen in the literature and derived

the conditions required to make them equivalent to each other.

In Chapter 4, we applied the method presented in Chapter 3 to an application of animal foraging

behaviour. In this chapter, we focused on wild vervet monkeys’ behaviour when they forage alone.

We first modelled this foraging problem as a finite deterministic Markov decision process (MDP),

with the focal monkey as the decision maker and the reward function assumed to represent a trade-

off between the food reward and the travel distance. The recovered parameters from our experiment

suggest that when foraging alone, the monkeys prioritize the preferred food reward (banana) and

they are very farsighted decision makers with a high discount factor. This result provides novel

insight into monkeys’ decision-making process and offers explanations for the observed behaviour.

We also discussed several alternative modelling options that may lead to MDPs that can more

accurately represent the real-life foraging experiment. Finally, using the results we obtained, we

proposed suggestions for future foraging experiment designs that are more oriented to an IRL study.
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In Chapter 5, we extended the findings from Chapter 4 to the case when the focal monkey forages

with a competitor. Different from the case of foraging alone, both the focal and the competitor

are decision makers in the trial, and we cast this multi-agent problem to a single-agent setting

by embedding one of the two monkeys’ actions into the environment. We proposed two methods of

extracting the competitor’s behaviour, either through empirically calculating the action probabilities

using the given demonstrations or through an iterative approach called level-k reasoning [30, 79].

Since the transition probabilities of the MDPs are stochastic, we found that the algorithm proposed in

Chapter 3 could not be used. Thus, we chose to compute the required gradients through enumeration

instead. Our results suggest that, when foraging in competition, the monkeys with lower rank (i.e.,

the subordinate monkey) need to perform more complex strategic reasoning than the dominant and

they are generally more myopic. Although this insight is interesting and points towards a research

direction exploring the relationship between power dynamics and foraging behaviour in animals,

we acknowledge that our models for the foraging in competition case are prototypes due to data

limitations. Therefore, we should be cautious about how we interpret the experimental results. As

in Chapter 4, we presented an extensive discussion on alternative models and provided suggestions

on future experiment design.

6.2 Future Work

Alternative Modelling Options in Chapter 4 and 5

We proposed various alternative modelling choices in Section 4.5.2 for the case of foraging alone and

in Section 5.4.2 for foraging in competition.

The first suggestion is to incorporate the first decisions made by the focal and the competitor into

the models. As we have discussed in Section 4.5.2, if we assume that the first decision depends on

the same factors that affect the subsequent decision-making—food and travel distance—the model

would always choose to move to B5 first. Since the experiment site is set in an open area where

the monkey may approach from any direction, the first platform it chooses could be influenced by

additional factors, such as which platform is closest to it or who is present in the audience. Further,

in the case of foraging in competition, the competitor may only choose to join the experiment after

the focal monkey has started foraging and visited multiple platforms. Therefore, when modelling

the competitor, we need to identify not only factors that affect which platform it may choose first

but also when it chooses to join the experiment. The latter is difficult within our current modelling

framework because it is possible that, when the focal first started foraging, the competitor was

approaching the site and was simply too far away to join at that moment. Since we do not have data

about the competitor’s distance from the site, predicting when it would join is very challenging.

The second suggestion involves implementing movement tracking and including timing informa-

tion when collecting the behavioural data. With accurate movement and position tracking, we can

model the foraging experiment in a GridWorld setting where the states are defined not by platforms

but as tuples of coordinate and timestep. This future research direction can lead to a significantly

more realistic model for the foraging problem. By including timesteps in the state space, we can

incorporate the banana handling time into the model; and with a finer grid, we can accurately

calculate the distance between the two monkeys, which can potentially provide insights into when

interactions occur during the trial (e.g., if the two are close to each other).



CHAPTER 6. CONCLUSION 79

The third suggestion is to split the data into different subsets based on the characteristics of

the monkeys. For the foraging alone case, we can explore how, or if, the monkeys perform the

food-distance trade-off differently based on their status (e.g., male vs. female, adult vs. subadult).

For the foraging in competition case, splitting the dataset by the relationship between different

focal-competitor pairs could also yield interesting insights.

However, as noted in Section 4.5.2 and 5.4.2, all the above suggestions require a substantial

amount of data. Thus, if we want to implement these changes in the future, we will need to rerun

the foraging experiments to collect more data.

Feasible Next Steps for MDP-OneComp Using the Current Data

Some immediate next steps we can take using the available data we currently have are described as

follows.

1. Adding “attempt to get food” and “leave experiment” to the model.

Recall that in Section 4.3, Assumption 3 states that once a monkey visits a platform, the food is

assumed to be taken. When foraging alone, this statement is true since all the rewards are available

to the focal monkey only, thus, it does not need to “try” to get the food. However, when foraging in

competition, it is often observed that the subordinate attempts to get the food on a certain platform

but fails due to aggression from the dominant. This behaviour can be seen as having additional

uncertainty when moving to another platform in the transition probabilities. Further, in Section

4.5, we state that one of the potential causes of why the focal would continue foraging even with a

negative utility for corn is that the MDP models do not allow the monkey to leave the experiment.

Adding “attempt to get food” and “leave experiment” to the model would lead to a more realistic

representation of the foraging experiment. Consider the following changes we need to make to

incorporate the notions of “attempting” and “leaving”.

• Action space A. The action set now consists of six actions: a ∈ {C1, C2, C3, C4, B5,

leave}. Each action a (except for “leave”) also represents “attempting” implicitly with a

certain probability of transitioning to a state where the food is not taken.

• State space S. In our current state space, the remaining plats always reflect the fact that

the food has been taken at the focal and the competitor’s location by setting the corresponding

element in the tuple to be 0. For example, if the focal is at C1 and the competitor at C2, the

first two elements of remaining plats are 0 (e.g, (0, 0, 1, 1, 1) or (0, 0, 0, 1, 1)). To incorporate

“attempting” into the model, we can have an additional state, sfail, that represents the monkey

fails to get the food. If the focal is at C1 and takes action “C3” while the competitor stays

at C2, then one of the possible states it transitions to may be sfail = (failed, (0, 0, 1, 1, 1),

C2), where failed is an arbitrary location that indicates the focal fails to get the corn on C3.

Incorporating “leaving” into the model is simpler. If the focal chooses to leave the experiment,

then the trial ends and we transition into a terminal state sexit. If the competitor chooses to

leave while the focal stays in the trial, then we set c loc = exit, and the next state solely

depends on the focal’s action a.

• Transition probabilities Psa. If we assume that the action “attempting” can sometimes lead

to success, then the transition probability of taking an action a does not only depend on the

competitor’s action probabilities but also the success rate of trying. If the focal is at C1 and



CHAPTER 6. CONCLUSION 80

takes action “C3”, we assume that there is a probability p of success (i.e., s′ = (C3, (0, 0, 0, 1, 1),

c loc)) and 1 − p of attempting but failing (i.e., s′ = (failed, (0, 0, 1, 1, 1), c loc)), where

c loc is the location of the competitor. The transition probabilities associated with “leaving”

are deterministic: if the focal chooses to leave, we transition into sexit with a probability of 1;

if the competitor chooses to leave, the model then becomes equivalent to one for the foraging

alone case. For example, if we are currently at s = (C1, (0, 0, 0, 1, 1), exit) and a = B5, we

would transition to (B5, (0, 0, 0, 1, 0), exit) deterministically.

For “attempting to get food”, note that since we do not add any extra state to represent the

aggression that leads to a failed attempt, the interaction is implicitly embedded into the transition

probability. Namely, there is a probability of 1−p of getting aggressed by the dominant competitor.

The immediate reward of moving to another platform still depends on the value of the food and

travel distance, as the current model. However, we now assume that with probability (1 − p), the

focal would try to get the food but fail, resulting in a negative reward for travelling. Namely,

R(s, a′) =

w1Food(s, a
′)− w2Distance(s, a

′) Success with probability p

−w2Distance(s, a
′) Failure with probability 1− p

.

The challenge of incorporating “attempt” into the model is to determine the value of p. One way

to obtain this probability is through calculating the empirical action distributions. We can count

the number of times a monkey succeeds or fails to get the food after moving to a specific platform.

A more realistic way would be to consider additional aspects that may be relevant to the monkey’s

chance of getting the food. For example, the success probability p may be lower if moving to a

platform that is close to the dominant’s current platform.

For “leaving”, the immediate reward may be set to a constant that represents the cost of leaving

the experiment:

R(s, leave) = ν,

where ν is a non-positive value.

2. Counting how many platforms the monkey has visited and taken the food from.

As mentioned in Section 5.4.2.2, counting the number of visited platforms is particularly relevant

for a subordinate monkey, who is likely to stop foraging after visiting a certain number of platforms,

even if there is still food left. Following the notations presented in Section 5.4.2.2, we can expand the

state representation to include this factor as non-negative integers, namely, s =(f loc, f food num,

remaining plats, c loc, c food num). We can then incorporate the new “attempt” actions into

the model, where a successful attempt will increase f food num by 1 in the next state, and the failed

attempt will lead to no increment.

Thus, an example state representation may be s =(C1, 2, (0, 0, 0, 1, 1), C2, 1), meaning that

C1 is the second platform the focal has been to, while C2 is the first platform for the competi-

tor. We may expect that since the competitor has only been to one platform, it is more likely to

move to another available platform compared to if c food num = 2. Adding these extra elements

(i.e., f loc and c loc) would make the state space more descriptive; however, it would also expand

its size. Thus, due to the limited data, it is unclear whether it would potentially lead to better results.
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3. Implementing a Markov Game model described in Section 5.4.2.1

As discussed in Section 5.4.2.1, under the assumption that the monkeys are risk-neutral decision

makers with bounded intelligence level, we can formulate a Markov game (MG) that is equivalent to

our naive level-k model presented in Section 5.2.2.3. However, recall that the objective function for

the MG represents the joint likelihood of both agents’ unknown parameters and their intelligence

level k. Namely,

max
p̂

∑
τ∈ξ

logP (τ |p̂) =
∑
τ∈ξ

log Π
|τ |−1
t=0 P (ât|st, p̂), (6.1)

where p̂ = (wDom,wSub, γDom, γSub) represents the parameters to be learned and P (ât|st, p̂) is

P (ât|st, p̂) = π∗,i,ki

(st, a
i
t)π

∗,−i,k−i

(st, a
−i
t ). (6.2)

Therefore, one potential benefit of adapting our model as an MG is that, rather than learning

from each monkey’s perspective separately, we may obtain a more accurate representation of how

the two monkeys forage together by recovering the parameters jointly.

Moreover, since the MG with bounded rationality framework has almost the same structure as

the naive level-k model, we believe that it would be a natural extension to our work and a potential

starting point for exploring solving the foraging in competition case as a Markov game instead of

an MDP.

Extending to Other Foraging Problems

Another potential research direction is to apply our framework to other animal foraging behaviour

problems. It would be interesting to see whether the trade-off between food reward and travel

distance and the discount factor recovered in our study are relevant in a different foraging context.

While finding another experiment that has the same rewards (corn and banana) is difficult, there is

one study by Joyce et al. [56] that has a similar setup but with a different platform configuration

and food reward (peanuts). The foraging trials were conducted with Japanese macaques and a

6-platform Z-array shown in Figure 6.1.

Figure 6.1: A 6-platform Z-array experimental setup in Joyce et al. [56].

Since the experiment is also platform-based, we can easily extend our MDP models to this

foraging problem. Moreover, the Z-array setup creates a more diverse environment than the pentagon
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array presented in this thesis and there are more strategies a monkey can take to optimize its goals.

Each platform in this study was equipped with a camera that captures the monkey’s behaviour and

records the time taken for foraging accurately, making it ideal for the alternative models we proposed

in Chapter 4 and 5.

Extending to Problems in Different Fields

As a future research direction, we can extend our framework to other research areas where the degree

to which the decision maker discounts the future affects their choices. One example would be to

study human behaviour in the context of an inverse orienteering problem (OP) [43]. We find OP

an intuitive extension of the foraging problem as it is a routing problem where we need to decide

which subset of nodes (analogous to platforms in our foraging problem) to visit to maximize some

notion of reward [45]. For instance, consider a travel itinerary problem where each node is a tourist

attraction. Instead of solving the forward problem to determine the best itinerary, if we are instead

given a set of trajectories from tourists, can we learn something about their preferences? Applying

IRL to such an application can help answer questions such as why tourist A visits attraction A first

while tourist B prefers to visit attraction B first. Having a better understanding of tourist behaviour

can help attraction sites or travel agencies better plan itineraries to maximize customer satisfaction

and potentially use the results from the IRL problem to recommend personalized travel plans.

Another interesting direction related to inverse OP is the Amazon Last Mile challenge,1 whose

goal is to develop solutions for routing problems that outperform traditional optimization techniques.

One key aspect of this challenge is to understand how a delivery driver’s tacit knowledge impacts

their route choices. Similar to the itinerary planning problem mentioned above, we can formulate

this problem as an inverse OP where we extract the driver’s preferences from delivery trips they

have conducted.

Implementing Alternative MaxEnt IRL Algorithms

In this thesis, we extended the original MaxEnt IRL algorithm [129] to solve the foraging problem.

For future research, we may try implementing different variations of MaxEnt IRL algorithms and

compare their performance against our framework.

One example is the Deep MaxEnt IRL algorithm by Wulfmeier et al. [116], which generalizes

MaxEnt IRL to handle non-linear reward functions through a neural network approximation. To

adapt Deep MaxEnt IRL to the case with an unknown discount factor, one possible approach is

to include the discount factor as an input to the neural network. However, the reward function

recovered using this method may not be as interpretable due to the complex structure of a neural

network.

Another example is a recent new algorithm proposed by Snoswell et al. [100]. In this study, the

authors point out several weaknesses in the original algorithm and present an improved method that

leads to better reward learning results. Since the proposed algorithms primarily focus on computing

the state visitation frequencies, extending them to the case of learning the discount factor should be

trivial since the gradients of the objective function are readily available.

There are many other algorithms that are based on MaxEnt IRL [129] (see Section 2.4.3) and

we can explore the possibility of incorporating the unknown discount factor into these methods.

1https://routingchallenge.mit.edu/
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Dynamic Weight Parameters and Discount Factor

If we have a dataset with recorded timesteps (e.g., data from Joyce et al. [56]), we can not only

model the handling time of the banana as discussed in Section 4.5 and 5.4, but also incorporate a

time-varying reward and discount factor.

Similar to dynamic IRL proposed by Ashwood et al. [12], we may assume that, during the

foraging trial, the monkeys may perceive the reward differently over time. For example, when

foraging in competition, a dominant focal may initially prioritize minimizing travel distance, but as

the trial progresses and fewer food rewards remain, the focal may shift its focus towards the food

itself. That is, the weight parameter for food increases as t increases, while the one for distance

decreases.

In addition, we may also introduce a dynamic discount factor, γt, that represents how the focal

discounts the future over time. In the RL literature, researchers have implemented different adaptive

discounting schemes [37, 60] and showed that varying the discount factor during training can improve

the final performance of the agent. In our case, the goal of learning γt is to recover an interpretable

discount factor and weight vector that better explain the elements that affect the animals’ decision-

making process throughout the experiment.

An Equilibrium-based Approach for the Case of Foraging in Competition

In Section 2.5, we briefly mentioned the connection between multi-agent IRL and inverse game

theory. Thus, for the case of foraging in competition, one future direction is to formulate the problem

as a game instead of an MDP. Similar to Bertsimas et al. [19], we can treat the given trajectories

as observed equilibria of a game between two players: the dominant and the subordinate monkey,

and the goal is to recover the players’ utility functions, which is equivalent to recovering the reward

function in IRL.

There is also existing work in the literature that builds upon MaxEnt IRL for inverse game theory

problems [53, 74], making it an intuitive extension for our framework. More specifically, Inga et al.

[53] present solution methods for several types of games, including non-cooperative games, where

the players are in competition with each other. The gradient-based approach proposed in Inga et

al. [53] is similar to our method presented in Section 3.3 and thus we should be able to extend to

the case of learning the discount factor.

Formulating the problem from a game-theoretic perspective not only allows us to better study

each player’s strategy but also offers an opportunity to further establish the connection between IRL

and inverse game theory.

6.3 Concluding Remarks

The goal of this thesis is to explore the framework of IRL with unknown discount factor and apply

it to an application in animal behaviour. This work is built upon the method proposed by Giwa

and Lee [40, 41] and we studied the foraging behaviour of wild vervet monkeys as an IRL problem.

We investigated two specific foraging scenarios: alone and in competition, and demonstrated the

monkeys value the future rewards differently depending on if a competitor is present and on their

social status. We hope this work can serve as a starting point for future research on animal behaviour

using IRL.
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