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The strictly convex integer quadratically constrained problem (IQCP) is an important class of optimiza-

tion problem that arises in numerous applications both in theoretical science and industry. Due to its

NP-hard nature, common exact methods are typically tree search algorithms with various techniques

for pruning sub-trees while ensuring that at least one optimal solution is retained. In this dissertation,

we exploit the similarities among three tree search algorithms, discrete ellipsoid-based search (DEBS),

mixed integer programming (MIP), and constraint programming (CP) and integrate their techniques

to develop efficient hybrid algorithms for solving IQCPs. We empirically demonstrate the superior per-

formance of our hybrid algorithms in comparison to the previous best known exact methods in the

literature.

Our novel hybrid algorithms achieve the state-of-the-art on a variety of important classes of the IQCP,

such as the binary quadratic programming problem, the exact quadratic knapsack problem, the variance

minimization problem, and the integer least squares problems, which all have significant influence in the

research fields of operations research (OR) and communications. In addition, we propose a novel global

constraint in CP that infers domain reductions based on strictly convex quadratic constraints. Our new

global constraint, together with the complementary branching heuristics, bring CP within an order of

magnitude of the best-known techniques for the IQCPs tested, and achieve the state of the art when

compared with general solvers such as CPLEX on some problem domains. Our new global constraint

and branching heuristics fit naturally in the “model and solve” framework of CP and provide much

more flexibility than the hand-crafted, specialized algorithms, allowing practitioners to easily adapt our

techniques.

For the first time our study brings together the research of OR, CP and communications communities

on IQCPs. We believe that our success in connecting different research fields can provide new insights

into IQCPs and encourage future innovation.
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Chapter 1

Introduction

This dissertation develops exact solution approaches for the strictly convex integer quadratically con-

strained problem (IQCP) problem, an important class of optimization problem that arises in many

applications, including algorithmic number theory [13], cryptography [119], global positioning systems

[146], wireless communications [6], and scheduling [94]. The IQCP problem is known to be NP-hard

[148], which means that no known algorithm is able to solve it in polynomial time. Given its theoretical

challenge and practical value, it is of great interest to develop efficient algorithms that can find the

optimal solution and prove its optimality. Specifically, the goal is to find the assignment of values to

variables for the following problem:

min
x∈C

1

2
x>Hx+ f>x,

C =

{
x ∈ Zn :

1

2
x>Mkx+ c>k x ≤ bk,∀k = 1, . . . ,m, l ≤ x ≤ u

}
,

where l ∈ Zn, u ∈ Zn, H, Mk,∀k are symmetric positive definite [66].

Although every NP-hard problem can be solved by an exhaustive search, it is practically impossible

to enumerate and check all feasible solutions for large instances, sometimes even for instances of fairly

small size [160]. In order to overcome this difficulty, the search space needs to be explored in an efficient

and organized way. A systematic manner to explore the search space is to conduct a tree search: Let the

original problem be the root node with all the variables unassigned, a variable is chosen and branched

on by imposing additional constraints on the variable. Each additional constraint forms a branch that

leads to a sub-problem (child node) with all the constraints of its parent node and the additional

constraint, where all the sub-problems together partition the search space so that the search remains

complete. Each sub-problem therefore has a more restricted (smaller) feasible region after branching,

making it potentially easier to solve. The sub-problems are recursively divided into smaller sub-problems

when necessary, thus forming a branching tree. The search terminates when it can be proved that all

unexplored nodes lead either to infeasiblility in the search space or to solutions which are no better

than the best solution found so far. Under some conditions, it can be inferred that certain branching

decisions can never lead to an optimal solution. In these cases we can simply cut off the corresponding

sub-trees, therefore speeding up the search. It is not surprising that common exact methods for solving

IQCPs are tree search type algorithms with various techniques for pruning sub-trees that are guaranteed

to not contain the optimal solution. In the following paragraphs we introduce several efficient tree

1



Chapter 1. Introduction 2

search strategies that have been proposed in the research fields of operations research (OR), constraint

programming (CP), and communications for solving IQCPs.

In operations research, the common generic approach to solving IQCPs exactly are the so-called

branch-and-cut based mixed integer programming (MIP) solvers [29]. By bounding the objective value at

each node via solving a relaxed problem and strengthening the relaxed problem formulation with cutting

planes to further restrict the feasible space, MIP has been proven effective for attacking combinatorial

optimization problems [81]. In the realm of mixed integer linear programming (MILP), tremendous

algorithmic progress has been achieved over the last decades [27, 81], allowing practitioners to use MIP

as an out-of-the-box solver to solve a significant number of non-trivial MILP instances. However, the

techniques for solving mixed integer nonlinear programing problems have not reached the maturity of

MILP, leaving a great room for improvement.

Constraint programming (CP) [133] is another general tree search framework for solving combina-

torial optimization problems that can be applied to IQCPs. At each node in the search tree, inference

algorithms, often encapsulated in the so-called global constraints [153], are used to remove domain values

that violate the constraints, therefore pruning sub-trees with value assignments that are not part of any

solution. CP originated in artificial intelligence and became a recognized research area in the late 1970s

[14], and has proven to be successful for modelling and solving complex discrete optimization problems

over the last decade [14, 16]. However, the techniques for solving quadratically constrained problems

have not received much attention. There are only a few dedicated global constraints that are concerned

with quadratic constraints. For example, the Spread constraint [124] enforces a specific quadratic re-

lationship amongst a set of variables, their mean, and their standard deviation. The general quadratic

constraints [52, 96], while being able to reason both convex and nonconvex quadratic functions, do not

exploit the strictly convex nature of the IQCP.

In communications, IQCPs are most commonly solved with discrete ellipsoid-based search (DEBS)

based on enumeration of integer points within the hyper-ellipsoid defining the feasible space [6, 73]. DEBS

can be understood from a CP perspective as a form of CP with a static variable ordering heuristic and

a dynamic value ordering heuristic, where the geometry of the ellipsoid induces an interval domain for

each variable, inducing an inference algorithm that is used to remove values that do not belong to the

ellipsoid. In contrast to MIP and CP, DEBS is a specialized tree search that was originally developed to

solve only three types of the integer least squares (ILS) problem. Therefore, although DEBS has been

successfully applied to a variety of problems in communications applications [73, 108, 146], it cannot be

applied to general IQCPs problem, e.g., problems with linear constraints,1 due to its specialized nature.

Despite the difference in the underlying theories of these three approaches, rich information can be

extracted from one method to enhance the others. In this dissertation, we aim at bringing together the

techniques that have been often studied independently by these three research communities.

Thesis Statement

Integrating techniques from DEBS, MIP and CP results in efficient hybrid algorithms that perform

better than using each method individually for solving IQCPs. Abundant geometric information can

be extracted from DEBS and formulated as inference techniques that can be used in any tree search

algorithm to prune search space.

1See Chapter 3 for an extension of DEBS to handle general linear constraints.
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1.1 Research Outline

In this section we outline our research.

1.1.1 Integration of MIP & DEBS and CP & DEBS

In Chapter 3 we show how MIP, CP and DEBS can be hybridized to solve some special cases of the

IQCP efficiently.

The hybridization of MIP and DEBS can be regarded as a component enhancement, since different

aspects of DEBS are incorporated into MIP as a presolving technique, cutting planes, and a primal

heuristic. As test sets, we study the binary quadratic programming (BQP) problem [131] and the three

types of the ILS problems: unconstrained, box-constrained, and ellipsoid-constrained problems [6]. We

perform experiments on benchmark instances for these four problems and compare the performance of

two MIP solvers, DEBS, the new hybrid algorithm, and the best known available approaches in the

literature. Our results demonstrate that the new hybrid algorithm is competitive to the best known

approaches and achieves the new state of the art for many cases.

The hybridization of CP and DEBS is done in a different way and it can be seen as a node processing

enhancement, i.e., the additional inference from DEBS is used to reduce the domains of the variables

during a CP search. Specifically, we generalize DEBS to incorporate general linear constraints, broad-

ening the class of problems that DEBS can solve. As noted previously, DEBS can be understood as a

specialized CP search where the geometry of the ellipsoid induces an interval domain for each variable.

We use this insight to integrate linear constraints into DEBS so that the domains of the variables are

further reduced by the intervals implied by the linear constraints. Although CP has not been known for

solving IQCPs efficiently, we show that a combination with DEBS greatly improves the performance of

CP. For test sets, we use the exact quadratic knapsack problem (EQKP), an important class of opti-

mization problem with a number of practical applications. We demonstrate that our hybrid algorithm

achieves state-of-the-art for solving the EQKP and a variation.

1.1.2 Constraint Integer Programming for Variance Minimization

In Chapter 4, we study a tighter integration than the hybrid algorithms in Chapter 3, combining MIP,

CP and DEBS together for solving the variance minimization problem, an important class of IQCP.

The integration is done in the paradigm of Constraint Integer Programming (CIP) [3] which integrates

CP and MIP solving techniques. Specifically, at each node, we perform MIP routines such as LP

relaxation solving and CP routines such as constraint propagation. In addition, we strengthen the

problem formulation with cutting planes based on a CP perspective on problem structure and the

geometrical reasoning from DEBS. We demonstrate that the CIP approach can be used to efficiently

solve the variance minimization problem. For experiments, we focus our study on two load balancing

problems: the load balancing nurse-to-patient assignment problem (NPAP) and the balanced academic

curriculum problem (BACP), which appear frequently in scheduling applications. Results show that our

CIP model with problem-specific branching rules outperforms both our new mixed integer quadratic

programming (MIQP) model in CPLEX and the previous state-of-the-art CP model for the NPAP. For

the BACP, both our new MIQP model and CIP model with problem-specific heuristic outperform the

previous best known CP model.
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1.1.3 CP for General IQCPs

In Chapter 5, we develop a CP approach that builds upon the previous chapters to solve a much broader

class of problems with general strictly convex quadratic constraints, at the same time allowing the

incorporation of any side constraints that fit into the CP framework.

Inspired by the geometric reasoning exploited in DEBS, we introduce two novel techniques for solving

strictly convex IQCPs with CP. First, we propose the ellipsoid constraint, a novel global constraint

that filters variable domains with respect to strictly convex quadratic functions. We derive a direct

quadratically constrained programming (QCP) formulation that achieves bounds consistency (BC), and

two light-weight filtering algorithms that do not guarantee BC. Though it is natural to consider integer

domains in CP, our filtering algorithm can be applied to variables with real domains, broadening its appli-

cation to, for example, mixed integer programming solvers. Second, we propose a pair of variable/value

selection rules. We implement the filtering algorithms and the branching heuristics in IBM ILOG CP

Optimizer. Our results on five problem domains show orders of magnitude improvement compared to

the default CP Optimizer. When compared to the best known algorithms, our results demonstrate that

the new CP approach is competitive to the best known approaches and establishes a new state of the

art for some problem domains.

1.2 Contributions

1.2.1 State-of-the-Art Hybrid Algorithms

Strictly Convex Quadratically Constrained Problems with Variable Bounds. We propose a

novel, competitive hybrid algorithm that combines DEBS and MIP and demonstrate that it is one of the

state-of-the-art approaches for strictly convex quadratically constrained problems with variable bounds,

i.e., problems without linear constraints.

We experiment with the binary quadratic programming (BQP) problem, an important class of prob-

lems in the operations research literature, and the ILS problems studied in the signal processing literature

and demonstrate that our hybrid algorithm is the state-of-the-art approach. A particular advantage of

this hybrid approach is that, unlike the specialized approaches (e.g., the semi-definite programming

approach [87]) that only solve BQPs, it can be applied to a broader class of problems, such as the

unconstrained IQCPs or IQCPs with general integer variable bounds. In addition, we conduct the first

extensive experiments that compare the traditional OR approaches and DEBS on BQPs and the three

types of ILS problems. We believe such a connection between MIP and DEBS can provide new insights

into the IQCPs and may inspire future innovation. This work appeared in the CPAIOR2014 conference

[89].

Strictly Convex Quadratically Constrained Problems with Linear Constraints. For the first

time in the literature, we apply DEBS to problems with linear constraints. Our hybridization with CP

enables DEBS to solve a much broader class of problems. As a test set, we experiment with the EQKP

and a variation and achieve the state-of-the-art. This work is also the first study that analyzes the DEBS

method from a CP perspective: We describe DEBS as a set of branching heuristics and a propagation

algorithm. This work was originally published in the CPAIOR2015 conference [90].
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Variance Minimization Problems. We show how various global constraints can be extended to

their augmented forms to not only embed their traditional filtering algorithms but also linear relaxations

strengthened with cutting planes. Within the framework of the augmented global constraint, we develop

relaxations and cutting planes for the spread constraint and implement them in the CIP solver SCIP

[142]. In terms of reusability, the augmented global constraints can be added to any solver that solves

linear relaxations and supports the dynamic addition of cutting planes. As a test set, we apply our CIP

approach for variance minimization with the application in load balancing problems. We also study the

structure of the load balancing problems and propose problem-specific branching rules that guide the

search in an efficient way. Our CIP models with branching rules outperform the previous best known

non-decomposition based CP model for the nurse to patient assignment problem (NPAP) and the best

known CP model for the balanced academic curriculum problem (BACP). In addition, we propose novel

MIQP models that solve the load balancing problems in the CP literature and perform the first empirical

study on the NPAP and the BACP that analyze the performance of MIP and CP. A preliminary report

on this work has previous published in the CP2014 conference [93].

1.2.2 A New Global Constraint for Strictly Convex IQCPs

For the first time in the literature, we propose a CP approach for solving strictly convex IQCPs. We

make a strong connection between CP and MINLP and bring a problem often seen as intractable to the

CP community and incorporate it effectively in the framework of global constraints.

Our novel global constraint, the ellipsoid constraint, can be used to filter the variable domains

for any formulation that contains a strictly convex quadratic function. We formally define the classical

bounds consistency notation for the ellipsoid constraint and propose three inference algorithms with

different strength of filtering power and computational complexity. In additional to the new global

constraint, we develop variable and value ordering heuristics that complement our global constraint.

Our novel CP approach brings CP within an order of magnitude of the state-of-the-art techniques for

the IQCPs tested. When compared to non-problem specific solvers, our CP approach even achieves the

state of the art on some problem types. We believe that this work can attract the OR community to the

CP way of thinking and encourage further exploration of using CP as a basis for solving MINLPs. The use

of our new global constraint and branching heuristics, as opposed to hand-crafted, specialized algorithms,

provides more flexibility and fits well into the “model and solve” framework, allowing practitioners to

utilize our techniques effortlessly. The work in this chapter is based on the CP2016 conference publication

[91].

1.3 Organization of Dissertation

In Chapter 2 we describe the notation and necessary background for this dissertation, providing an

overview of how the existing literature is related to our new approaches for solving IQCPs. In Chapter

3 we present our new hybrid algorithms that combine DEBS, MIP and CP for solving some special

cases of the IQCP. In Chapter 4 we develop new CIP and MIQP approaches for variance minimization

with an application to load balancing problems. In Chapter 5 we present our novel global constraint

and branching heuristics for solving general IQCPs. Finally, we conclude and discuss possible future

research in Chapter 6.



Chapter 2

Preliminaries

As described in the Introduction, in this dissertation we develop efficient hybrid algorithms for solving

the strictly convex integer quadratically constrained problem (IQCP). In this chapter we describe the

notation and necessary background for this dissertation. The relevant work is organized into two parts:

1. The problem: The strictly convex integer quadratically constrained problem (IQCP).

2. The methods: The exact solution approaches for solving IQCPs.

For the problem, we first give the formal definition of the IQCP and describe a real world example.

We then make a connection between the IQCP and an equivalent formulation, the integer least squares

(ILS) formulation. Such mutual reformulation is crucial for developing the hybrid algorithms in this

dissertation. For the methods, we first describe the common exact methods for solving IQCPs and then

explain the details of the methods that are relevant to our novel hybrid algorithms. Finally, we end

this chapter with an overview of how the existing literature is related to our new approaches for solving

IQCPs.

2.1 Notation

Although most notation is introduced in place, we summarize some common notation used in the dis-

sertation for ease of reference.

The sets of all real and integer m×n matrices are denoted by Rm×n and Zm×n, respectively, and the

set of real and integer n-vectors are denoted by Rn and Zn, respectively. Bold upper case letters denote

matrices and bold lower case letters denote vectors. The identity matrix is denoted by I and its i-th

column is denoted by ei. Ai denotes the i-th column of a matrix A. A> and A−1 denote the transpose

and inverse of a matrix A, respectively. Aij denotes the entry in the i-th row and j-th column of a

matrix A. ‖·‖2 denotes the 2-norm of a vector or a matrix. D = diag(d1, . . . , dn) denotes a diagonal

matrix. For a scalar z ∈ R, we use bze to denote its nearest integer. (If there is a tie, bze denotes the

one with smaller magnitude.) bzc denotes its nearest integer less than or equal to z, and dze denotes its

nearest integer greater than or equal to z.

6
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2.2 The Strictly Convex Integer Quadratically Constrained

Problem

The strictly convex integer quadratically constrained problem (IQCP) is an optimization problem where

the objective and/or some constraints are strictly convex quadratic functions. The IQCP is an extension

of integer linear programming [36] such that it allows for a more natural modelling of problems that

can be represented with quadratic functions or a combination of linear and quadratic functions. As

mentioned in Chapter 1, the IQCP has a wide range of applications such as algorithmic number theory

[13], cryptography [119], global positioning systems [146], wireless communications [6], and scheduling

[94].

2.2.1 Problem Definition

The general IQCP problem has the following form:

min
x∈Zn

1

2
x>Hx+ f>x, (2.1)

s.t.
1

2
x>Mkx+ c>k x ≤ bk, k = 1, . . . ,m,

l ≤ x ≤ u,

where l ∈ Zn, u ∈ Zn, H ∈ Rn×n, Mk ∈ Rn×n, f ∈ Rn, ck ∈ Rn, and bk ∈ R. The IQCP is strictly

convex if the quadratic matrices H, Mk,∀k are symmetric positive definite [66]. As the above form

suggests, quadratic functions can appear in the objective function and/or the constraints.

2.2.2 A Motivating Example: Wind Farm Optimization

In this section we describe a real world scenario, the wind farm optimization (WFO) problem, which

can be modelled as an IQCP. The WFO problem [147, 163] is concerned with placing wind turbines

at different locations in the wind farm in order to maximize the energy generated. It is defined by a

finite set of n locations where at most one turbine can be placed. For each location i, a non-negative

value ai is used to represent the cost of placing a turbine at location i. The total cost incurred from the

turbines cannot exceed MaxCost. The objective can be approximated well with a quadratic function

that describes the summation of power generated by the turbines considering the interrelation, a non-

negative value hij , between each pair of the turbines, i.e., turbine at location i and j. The goal of the

WFO problem is to place exactly K (≤ n) turbines on the wind farm in order to maximize the total

energy generated.

Let the binary decision variable xi be 1 if a turbine is placed at location i, the WFO problem can be

modelled as an IQCP in Fig. 2.1.

The quadratic objective function is stated in (2.2). Constraint (2.3) specifies that exactly K turbines

are chosen. Constraint (2.4) ensures that the total cost lies within the budget limit.

The WFO problem actually has the same structure as the exact quadratic knapsack problem, which

is discussed in detail in Section 3.3.
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max
x∈{0,1}

n−1∑

i=1

n∑

j=i+1

hijxixj , (2.2)

s.t.

n∑

i=1

xi = K, (2.3)

n∑

i=1

aixi ≤MaxCost, (2.4)

xi ∈ {0, 1}, i = 1, . . . , n

Figure 2.1: The IQCP model for the WFO problem.

2.2.3 Equivalence of IQCP and Integer Least Squares

The integer least squares (ILS) problem can be defined as follows:

min
x∈Zn

‖y −Ax‖22 , (2.5)

where A ∈ Rm×n is a matrix with full column rank and y ∈ Rm is a vector.

The strictly convex quadratic objective function (2.1) can be transformed from the equivalent ILS

formulation (2.5) as follows:

min
x∈Zn

‖y −Ax‖22 = min
x∈Zn

(y −Ax)>(y −Ax),

= min
x∈Zn

x>A>Ax− 2y>Ax+ y>y,

= min
x∈Zn

1

2
x>Hx+ f>x,

where H = A>A and f = −y>A. Obviously, a quadratic constraint can be transformed in the same

manner. It follows that the objective function of an ILS problem can be transformed from the equivalent

IQCP problem through the relationship A = chol(H) and y = −(fA−1)>, where chol denotes the

Cholesky decomposition on a matrix [66].

Throughout this dissertation, we make use of this transformation to combine techniques from different

research fields.

2.3 Exact Methods for Solving IQCPs

In this section we review the common exact methods for solving the strictly convex IQCP. Since IQCPs

appear in numerous applications, they have been studied by many different research communities, often,

independently. In this section we take a broad view of the solution approaches that are generally used

in operations research (OR), constraint programming (CP), and communications.

In operations research, the common generic approaches to solving IQCPs exactly are the use of

mixed integer nonlinear programming (MINLP) solvers such as BARON [134, 145], BONMIN [29] and

ANTIGONE [112], and the application of MIP solvers such as CPLEX and Gurobi which have been

extended to reason about convex quadratic constraints. We clearly describe how the techniques originally
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developed for mixed integer linear programming (MILP) are generalized for IQCPs in Section 2.3.1. We

end the MIP section with a discussion of the more general solving framework MINLP, and a specialized

approach for binary problems, semi-definite programming (SDP), that is closely related to MIP.

In constraint programming, techniques to solve quadratically constrained problems have not receive

much attention. There are only a few dedicated global constraints that reason about quadratic terms.

For example, the Spread constraint [124] enforces the standard quadratic relationship amongst a set

of variables, their mean, and their standard deviation. General quadratic constraints [52, 96] can be

applied to both convex and nonconvex quadratic functions. However, they do not exploit the strictly

convex nature of the IQCP. We briefly describe these global constraints in Section 2.3.2.3 and Section

2.3.2.4.

In communications, there are four main families of approaches to solving the ILS problems: the

Voronoi approach [110], the approximation approach [7], semi-definite programming [85], and discrete

ellipsoid-based search (DEBS) [82]. However, the Voronoi approach is known to be computationally

inefficient, and the approximation approach and the semi-definite programming approach are not able

to guarantee optimal solutions. Therefore in practice, ILS problems are most commonly solved with

DEBS based on the enumeration of integer points within the hyper-ellipsoid defining the feasible space

[6, 73]. We describe the details of DEBS in Section 2.3.4.

2.3.1 Mixed Integer Programming

The history of MILP dates back to the 1950s [81]. In recent years, substantial progress has been made

and it has been shown that MILP techniques can be successfully applied to the convex mixed integer

quadratically constrained problem (MIQCP), an important sub-class of the MINLP problem, where the

quadratic objectives and/or constraints are convex [23, 31]. In this section we describe how a MIQCP

is solved with MIP.

Formally, a mixed integer program is defined as follows [97].

Definition 2.3.1. A mixed integer program is an optimization problem of the form:

min{f(x) | gk(x) ≤ 0,∀k = 1, . . . ,m, x ∈ Rn,x ∈ [l,u], xj ∈ Z,∀j ∈ I},

where f : Rn → R is the objective function, gk : [l,u] → R are the constraint functions, and I ⊆ N =

{1, . . . , n} is the index set of the integer variables.

Following Definition 2.3.1, a mixed integer linear program and a mixed integer quadratically con-

strained program are defined as follows:

• Mixed integer linear program: A mixed integer program is a mixed integer linear program if the

objective function and the constraints are linear, i.e., f(x) is of the form c>x, where c ∈ Rn, and

gk(x),∀k = 1, . . . ,m are of the form Ax− b, where A ∈ Rm×n, and b ∈ Rm.

• Mixed integer quadratically constrained program: A mixed integer program is a mixed integer

quadratically constrained program if the objective function or one or more of the constraints are

quadratic, i.e., f(x) is of the form 1
2x
>Hx+ f>x and gk(x) is of the form 1

2x
>Mkx+ c>k x− bk,

where H ∈ Rn×n, Mk ∈ Rn×n, f ∈ Rn, ck ∈ Rn, and bk ∈ R. A mixed integer quadratically

constrained program is convex if the quadratic matrices H, Mk,∀k = 1, . . . ,m are positive semi-

definite [155].
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We define the continuous relaxation of a mixed integer program as follows.

Definition 2.3.2. The continuous relaxation of a mixed integer program is defined as

min{f(x) | gk(x) ≤ 0, k = 1, . . . ,m, x ∈ [l,u], x ∈ Rn}.

Note that the integrality restrictions on xj , ∀j ∈ I are removed in the relaxed problem.

2.3.1.1 The Convex Mixed Integer Quadratically Constrained Problem

State-of-the-art MINLP solvers typically solve MIQCPs using three approaches: outer-approximations

with MILP relaxations [54], branch and cut (B&C) with outer-approximation linear programming (LP)

relaxation [127], and branch and bound with nonlinear programming (NLP) relaxation (in our case,

quadratic programming (QP) relaxation) [101]. In this section we focus on the second approach, the

outer-approximation based B&C approach, as it is the technique that many modern MIP solvers use.

The basic idea of this approach is to exploit the already rich B&C MILP techniques, building the solver

upon the B&C framework for the MILP, and then making the generalization to MIQCP problems [23].

A comprehensive survey on different approaches can be found in Bussieck and Vigerske [37].

We note that we are interested in the strictly convex IQCP, which is a sub-class of the convex MIQCP.

Compared to the convex MIQCP where the quadratic matrices need only be positive semi-definite, the

quadratic matrices in the strictly convex IQCP are required to be positive definite.

2.3.1.2 The Outer-approximation Based B&C Algorithm

Branch and Cut We briefly summarize the B&C method in this section. More details can be found

in survey papers about the B&C method [1, 12, 107].

The basic B&C procedure is described as follows: Let P0 be the original problem and the root node of

the search tree. The first step of the algorithm is to consider a relaxation, P̄0, commonly the continuous

relaxation of P0 that disregards the integrality constraints on the integer variables. Let x̄ be an optimal

solution for the relaxed problem P̄0. If x̄ is integer then we have found an optimal solution for the

original problem and the algorithm terminates. Otherwise, a branching heuristic is used to choose one

of the variables, xi, whose value in the relaxed optimal solution, x̄i, is non-integer. This variable is

“branched on” to create two sub-problems (children nodes): one with xi ≥ dx̄ie and the other one with

xi ≤ bx̄ic. It is clear that the feasible regions of the sub-problems are smaller after branching, thus

making them potentially easier to solve. Another heuristic (for node selection) is used to choose which

of the so far unexplored nodes should be processed next. As with the root node, the first step is to

solve the relaxed problem. The sub-problems are further recursively divided into smaller sub-problems

when necessary, thus forming a branching tree. The search terminates when the algorithm proves that

all open nodes lead either to infeasiblility in the search space or to solutions which are no better than

the best solution found so far (the incumbent).

In addition, at each node, after the relaxed problem is solved, hyperplanes of the form x ∈ Rn :

a>x = α such that a>x̄ > α and a>x ≤ α may be added to separate the optimal relaxed solution

from the rest of the feasible region, cutting off part of the solution space without removing the optimal

integer solution. This addition of cutting planes strengthens the relaxation and has become a key part

of modern MILP solvers [27]. The B&C algorithm is so named because the incorporation of the cutting

plane generation into the branching scheme.
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Many other techniques crucial to the search efficiency can be added to the B&C process. For example,

before the B&C process, presolving algorithms [3] can be executed to simplify the problem and extract

information useful for the main search. In addition, during the search, primal heuristics algorithms [3]

can be used to locate feasible solutions by heuristically constructing a candidate solution.

Outer Approximation The outer approximation [54] approach solves an MIQCP by iterating be-

tween solving a MILP problem and a continuous convex QP problem, until optimality conditions

are reached. Let P denote the original MIQCP. The outer-approximated MILP problem POA is ob-

tained from P by replacing the non-linear objective function and constraints with polyhedral outer-

approximations. The convex QP is formed by fixing the integer variables of P to an optimal solution

to POA. After solving the convex QP, additional information in the form of linear inequalities derived

from the optimal solution to the QP problem is then used to strengthen POA. This approach has been

shown to converge in a finite number of iterations if the original problem is convex and the objective

function and constraints are differentiable [58].

Integration of Outer Approximation and Branch and Cut It has been shown that combining

B&C and outer-approximation provides advantages over using either of them alone [127]. The B&C

process is strengthened by using the outer-approximation method as an additional source of cutting

planes. As before, the LP relaxation is solved at each node in the search tree. In addition, new linear

outer-approximations of the original MIQCP are generated whenever the optimal solution of the LP

relaxation is integer and these new linearizations are then lazily added as cutting planes during the

search to improve the relaxations. Finally, integrality constraints are enforced by branching on the

integer variables that take continuous values in the relaxation solution. The outer-approximation based

B&C approach has all the advantages of the B&C process plus additional dynamic strengthening of

the linear approximations. Compared to the pure outer-approximation method, the combination avoids

solving the already difficult MILP problems multiple times.

We give a pseudo-code for the outer-approximation based B&C algorithm in Algorithm 1 due to [127].

Let P0 be the original problem, i.e., the root node. We denote the problem (node) that is currently being

solved as Pc. Let P̄c be the continuous relaxation problem of Pc, x̄ be the optimal solution to P̄c, and

obj(x̄) be the objective value that corresponds to x̄. We further let incumbent be the best candidate

integer solution found so far and obj(incumbent) be the objective value that corresponds to incumbent.

We use LIST as a data structure to store the tree nodes to be explored.

Recent advances in cutting planes techniques [10, 154] have significantly improved the performance

of commercial MIQCP solvers such as CPLEX [31].

We note that modern MIP solvers can choose from two different node processing strategies, i.e., in

addition to using the outer approximation based B&C algorithm that solves regular linear relaxation at

each node, CPLEX can be set to solve quadratic relaxation directly for IQCPs. Empirical results show

that neither of these two strategies dominates the other in general [47].

2.3.1.3 Mixed Integer Nonlinear Programming

Mixed integer nonlinear programming (MINLP) is concerned with problems with general nonlinear

objective functions and constraints [97]. It is a further extension of the MILP problem and MIQCP.

MINLP is an active research field that receives much attention from industry where many problems
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Algorithm 1 Outer-approximation Based B&C Algorithm

1: Set incumbent← NULL, obj(incumbent)←∞
2: Add P0 to LIST
3: while length(LIST )> 0 do
4: Choose Pc from LIST , solve P̄c for x̄ and obj(x̄)
5: if P̄c is feasible then
6: if obj(x̄) ≥ obj(incumbent) then
7: Cut off Pc, since there are no integer solutions to the problems in the subtree of Pc better

than incumbent
8: else if x̄ ∈ Zn then
9: Compute linear outer-approximations and add them as cutting planes to the problems in

LIST .
10: obj(incumbent)← obj(x̄)
11: incumbent← x̄
12: else
13: Choose a variable xi such that x̄i /∈ Z to branch on
14: Add the two sub-problems Pc ∪ {xi ≥ dx̄ie } and Pc ∪ {xi ≤ bx̄ic } to LIST
15: end if
16: else
17: Cut off Pc, since it is infeasible
18: end if
19: end while

cannot be approximated well with lower order functions [37, 63]. In addition to convex MINLP problems,

a large body of the literature studies the nonconvex [35, 97] MINLP problem, which is much more

difficult to solve than convex MINLPs, due to the typically nonconvex continuous NLP relaxation. It

has been shown that solving a nonconvex NLP relaxation is in general NP-hard [117], which means

that no known algorithm is able to locate the global optimum of the relaxation problem in polynomial

time [144]. In order to overcome this difficulty, many techniques have been developed, such as piecewise

linear approximations, convex relaxations for nonconvex functions, spatial branch and bound, and primal

heuristics [35]. For a review on the techniques for convex MINLP and nonconvex MINLP problems, please

refer to [30, 63, 69].

2.3.1.4 Semi-definite Programming-based Branch and Bound

Another generic approach for solving IQCPs is semi-definite programming (SDP) based branch and

bound [87, 131]. SDP based approaches were originally developed to solve the max-cut problem [65].

The key idea is to replace the rather weak linear relaxation with the SDP relaxation, then the bound

obtained from solving the SDP relaxation is used in the branch and bound tree search for pruning nodes.

Several works have improved the strength of the SDP relaxation, which enables SDP solvers to achieve

state-of-the-art performance on several classes of binary quadratic programming problems [88, 130] that

can be reformulated from the max-cut formulation. Since the SDP relaxation is specifically developed for

the max-cut problem, the available SDP solvers, e.g., BiqCrunch [88], only solve problems with binary

variables as opposed to general integer variables.
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2.3.2 Constraint Programming

Constraint Programming (CP) originated in artificial intelligence and became a recognized research

area in the late 1970s [14]. It has proven to be successful for modelling and solving complex discrete

optimization problems over the last decade [14, 16]. In the rest of the section, we introduce the neces-

sary background for this dissertation based on the books Constraint Processing [50] and Handbook of

Constraint Programming [133].

2.3.2.1 Constraint Satisfaction and Constraint Optimization

In CP, a combinatorial problem is often formulated as a constraint satisfaction problem (CSP) [133],

which is represented by a set of variables, each with a set of possible values, and a set of constraints

among the variables. The goal is to decide whether there exists a set of variable assignments that satisfies

all the constraints. Formally, a CSP is defined as follows.

Definition 2.3.3. An instance of CSP can be formally described as a triple of (X,D, C) where X =

{x1, x2, ..., xn} each taking its value from a finite domain, xi ∈ D(xi) ⊂ Z, 1 ≤ i ≤ n, and a finite set of

constraints C = {c1, c2, . . . , cm} each defined on a subset of the variables, cj(xj1 , xj2 , . . . , xjk) ⊂ Zk, 1 ≤
j ≤ m. A constraint cj(xj1 , xj2 , . . . , xjk) is defined on the Cartesian product of the domains of the

variables in its scope D(xj1)× . . .×D(xjk). A solution to an instance of CSP is an n-tuple assignment

A = (a1, a2, . . . , an) where ai ∈ D(xi) such that each cj is satisfied.

It is often of interest to find the optimal solution w.r.t. some objective while satisfying all the

constraints. A constraint optimization problem (COP) is a CSP with an objective function f : D(x1)×
. . .×D(xn)→ R that evaluates the assignment of values to the variables. An optimal solution to a COP

is a solution to its corresponding CSP that minimizes, or maximizes, the value of f .

Typically, a COP is solved as a series of CSPs: When an incumbent is found during the search,

a constraint that limits the next solution to be no worse than the current incumbent is added to the

problem and search backtracks from that node. The search proves that the latest solution is optimal

when no more solutions can be found.

2.3.2.2 Constraint Propagation

The key feature of CP is that the constraints are not only used to verify the feasibility of a solution

but also to actively reduce the search space. This process is referred to as constraint propagation and is

typically applied at each node of the search tree. Constraint propagation relies on inference, often in the

form of propagation algorithms (or filtering algorithms). A filtering algorithm examines the variables that

are not yet instantiated, and removes values that cannot participate in any solution w.r.t. the already

instantiated variables. Specifically, given a constraint c(x1, x2, . . . , xk), the propagation algorithm of c

removes domain values from its variables when it can be proved that a value does belong to a solution of c,

given the current domains of the other variables in the scope of c. The filtering algorithms are commonly

executed for all constraints until a fixed point when no more domain reductions can be inferred.

Consistency. In order to formalize the concept of constraint propagation and characterize propagation

algorithms, the notation of consistency is used to define the properties that a constraint problem must

satisfy after constraint propagation. We describe the classical consistency notations [50] in this section.



Chapter 2. Preliminaries 14

Let xj be a finite-domain variable, D(xj) be the domain of xj , which is a set of values that can be

assigned to xj , and ID(xj) = [lj , uj ] be the interval domain of xj . We first define arc consistency (AC)

as follows.

Definition 2.3.4. A constraint c(x1, x2) is arc consistent with respect to domains D(x1) and D(x2) if

for every value vj ∈ D(x1), there exists a value vi ∈ D(x2) such that c(x1 = vj , x2 = vi) holds, and for

every value vj ∈ D(x2), there exists a value vi ∈ D(x1) such that c(x1 = vj , x2 = vi) holds.

We note that AC is defined on a binary constraint. When a constraint is defined on a set of variables,

AC is extended to hyper-arc consistency (HAC), which is also referred to as generalized arc consistency

(GAC) or domain consistency (DC) [133]. We define DC as follows.

Definition 2.3.5. A constraint c(x1, . . . , xn) is domain consistent with respect to domains D(xj) if for

all j ∈ 1, . . . , n and every value vj ∈ D(xj), there exists values vi ∈ D(xi) for all i ∈ {1, . . . , n} \ {j}
such that c(x1 = v1, . . . , xn = vn) holds.

Achieving DC is often computationally expensive and NP-hard for some constraints [24]. Alter-

natively, bounds consistency (BC) is a weaker notion of consistency that can often be achieved more

cheaply than DC for the same constraint. BC is defined as follows.

Definition 2.3.6. A constraint c(x1, . . . , xn) is bounds consistent with respect to domains D(xj) if for

all j ∈ 1, . . . , n and each value vj ∈ {lj , uj}, there exists values vi ∈ ID(xi) for all i ∈ {1, . . . , n} \ {j}
such that c(x1 = v1, . . . , xn = vn) holds.

Global Constraints. Unlike the constraints in MIP that must take the form of a polynomial function,

a constraint in CP can be specified intensionally with a formula that must be satisfied, or extensionally

with a list of satisfying assignments of values to the variables in the constraint [133]. Although a

constraint can be used to define any arbitrary relation among a set of variables, it is highly desirable to

develop a constraint for recurring patterns that frequently arise in many problems, as such a constraint

is reusable and can simplify modeling effort. In CP, such a constraint that captures an important

combinatorial substructure of the problem is referred to as a global constraint. A global constraint is

often semantically redundant in the sense that the same relation can be captured with a combination

of simpler constraints, however, it often achieves more domain reductions [133]. For a comprehensive

introduction to global constraints, please see van Hoeve and Katriel [153].

We explain the concept of the global constraint with the alldifferent constraint, a well-known

global constraint that specifies that the values assigned to the variables x1, . . . , xn must take different

values. The formal definition of the alldifferent constraint is given as follows.

Definition 2.3.7. Let x1, . . . , xn be a set of finite-domain variables, then

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ D(xi),∀i, di 6= dj ,∀i 6= j}.

We now explain how to model the n-Queens problem with CP using the alldifferent constraint

[153]. The n-Queens problem can be defined with a n × n matrix representing the n rows and the n

columns of a chess board, and n integer variables x1, . . . , xn, where each xi ∈ {1 . . . , n} represents the

column location of the queen at the i-th row.
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The goal of the n-Queens problem is to assign a number to each xi such that no queen attacks another

queen. Specifically, the no-attack constraints can be written in the pairwise not-equal constraints as

follows:

xi 6= xj , 1 ≤ i < j ≤ n, (2.6)

xi − xj 6= i− j, 1 ≤ i < j ≤ n, (2.7)

xi − xj 6= j − i, 1 ≤ i < j ≤ n, (2.8)

xi ∈ {1, . . . , n}, 1 ≤ i ≤ n.

Constraint (2.6) ensures that no two queens can be placed in the same column. Constraints (2.7) and

(2.8) state that no two queens can be placed in the same diagonals. The same set of constraints can be

modelled with the alldifferent constraint as follows:

alldifferent(x1, . . . , xn),

alldifferent(x1 − 1, . . . , xn − n),

alldifferent(x1 + 1, . . . , xn + n),

xi ∈ {1, . . . , n}, 1 ≤ i ≤ n.

Although the pairwise distinct property can easily be modeled with a set of not-equals between each

pair of the variables, the filtering algorithm for the alldifferent constraint can achieve more domain

reduction [152] by providing a better view of the problem structure. Consider a 3-queen problem with

initial domains x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {1, 2}. Achieving AC on (2.6) does not prune any of

the domains from the variables. However, it is clear that there exists no solution for this problem.

The filtering algorithm of the alldifferent constraint [152] can identify such infeasibility and thus

terminates the search immediately.

In the following two sections we describe the two global constraints that are concerned with quadratic

constraints.

2.3.2.3 The Spread Constraint

The spread constraint enforces a given mean µ and maximum standard deviation σ among a set of n

variables {x1, . . . , xn}. It can be defined as follows:

spread({x1, . . . , xn}, µ, σ),

where σ =
√∑n

i=1(xi − µ)2/n and µ =
∑n

i=1 xi/n.

Bounds consistency for the spread constraint is defined separately for continuous and integer do-

mains as follows [138]:

Definition 2.3.8. Let IQD(xi) = [li, ui] be the rational interval domains of xi, and let IZD(xi) =

{li, . . . , ui} be the integer interval domains of xi. A spread constraint is Q-bounds consistent (resp.

Z-bounds consistent) with respect to the domains of {x1, . . . , xn} if for all i ∈ {1, . . . , n} and each value

vi ∈ {li, ui}, there exists values vj ∈ IQD(xj) (resp. vj ∈ IZD(xj)) for all j ∈ {1, . . . , n} \ {i} such that

spread({x1 = v1, . . . , xn = vn}, µ, σ) holds.
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In other words, in Z-BC, the support vector must be integer while in Q-BC the support vector may be

rational.

The spread constraint was originally proposed by Pesant et al. [124], where a Q-BC algorithm that

filters the domains of the xi variables w.r.t. constant µ and variable σ was presented. A simplified

Q-BC algorithm was presented in Schaus et al. [137, 138], where an extended algorithm that filters the

mean variable was proposed. The Z-BC algorithm was introduced in Schaus et al. [138], demonstrating

stronger filtering than Q-BC. Both of these existing BC algorithms address the case where µ is fixed,

a natural restriction in the applications that have been studied, for example, where a fixed amount of

work is to be divided as evenly as possible amongst a set of workers [139]. A Q-BC filtering algorithm for

the variable mean case was presented in our recent work [104]. For achieving DC, Pesant [121] proposed

a pseudo-polynomial time filtering algorithm for the fixed mean case, where the generalization to the

variable mean case was also discussed, showing that DC with variable mean can be achieved at a higher

computational cost compared to the fixed mean case.

As the fixed mean Q-BC filtering algorithm is used in Chapter 4 for solving the variance minimization

problems, we describe the propagation algorithm due to Schaus et al. [137, 138] as follows.

Let I(x) be the set of intervals defined by pairs of consecutive elements of the sorted sequence of

bounds of the variables {x1, . . . , xn}, we denote the k-th interval of I(x) by Ik. Let R(Ik) = {xi|li ≥
max(Ik)} be the set of variables whose values must be greater than Ik. In a number line representation,

R(Ik) are the variables whose values will necessarily lie to the right of Ik. Similarly, L(Ik) = {xi|ui ≤
min(Ik)} is the set of variables that lie to the left of Ik. We let M(Ik) be the remaining variables not

in R(Ik) or L(Ik) and let m = |M(Ik)|. We further let ES(Ik) be the sum of the assigned xi values at

their extremes in R(Ik) and L(Ik), i.e., ES(Ik) =
∑

xi∈R(Ik) li +
∑

xi∈L(Ik) ui.

Let q = nµ =
n∑

i=1

xi, we can compute V (Ik) = [ES(Ik) + (m) min(Ik), ES(Ik) + (m) max(Ik)], which

is the interval of possible q values related to Ik. Let Iq ∈ I(x) such that q ∈ V (Iq). That is, Iq is the

interval that contains q. To find the minimum consistent value of σ, all the variables in R(Iq) should

be assigned to their minimum value, li. Similarly, all the variables in L(Iq) should be assigned to their

maximum value, ui. These are, in both cases, the domain values closest to the mean, which, as noted,

lies in the interval Iq. All the remaining unassigned variables in M(Iq) must be assigned the value, v,

to satisfy the mean, after all the xi variables in both R(Iq) and L(Iq) are assigned to their appropriate

extreme value. This reasoning means that we need to satisfy mv + ES(Iq) = q. Therefore we have

v = q−ES(Iq)
m .

We can locate the interval Iq such that V (Iq) contains q and classify all the xi variables to the sets

R(Iq), L(Iq), and M(Iq). We restrict our analysis to R(Iq), as the derivation for M(Iq) can be reduced

to the same procedure as for the case R(Iq), and the derivation for L(Iq) is symmetric.

Pruning ui ∀ xi ∈ R(Iq). The pruning of xi has to respect the current upper bound on the standard

deviation variable. Let σshift be the standard deviation that results from adding d to li, where d > 0.

Let dmax be the shift amount in li such that σshift = σub. Any shift larger than dmax will result

in σshift > σub, which renders the assignment inconsistent. Therefore, we can prune xi using xi =

[li,min(li +dmax, ui)]. Shifting li by d shifts v to q−(ES(Iq)+d)
m = v− d

m . Therefore, nσ2
shift is a function

of d that can be written as follows:

nσ2
shift(d) = d2(1 +

1

m
) + 2d(li − v) + nσ2. (2.9)
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To solve for dmax, let Equation 2.9 equal to nσ2
ub and solve for d, we have

dmax = −b′ +
√
b′2 − ac
a

, (2.10)

where a = 1 + 1
m , b = 2(li − v), c = nσ2 − nσ2

ub, b
′ = b

2 .

Note that if dmax > q −minV (Iq), the v value does not reside in Iq. In this case, dmax is not valid

and it needs to be calculated recursively through the intervals. We refer to Schaus [137, 138] for further

details.

2.3.2.4 General Quadratic Constraints

A quadratic constraint represented in the algebraic form can be modelled in CP solvers using the standard

form:

lower bound ≤ linear expr + nonlinear expr ≤ upper bound.

A quadratic objective has the same form but without the bounds. The linear expression linear expr

terms are stored in a data structure such as a sparse coefficient list. Each nonlinear expr is represented

using an expression tree, where the internal nodes represents operators or functions and the leaf nodes

denote variables or constants [59].

We first define the general form of a quadratic constraint. The quadratic constraint is used to reason

about constraints with quadratic terms and consists of a set of n variables {x1, . . . , xn}, a n×n symmetric

matrix H, a n-dimensional vector f , and scalars l and u. The representation is given as follows:

quadratic({x1, . . . , xn},H,f , l, u),

where H ∈ Qn×n, f ∈ Qn, l ∈ Q and u ∈ Q. The constraint ensures the following condition:

n∑

i=1

n∑

j=1

Hi,jxixj +

n∑

i=1

fixi ∈ [l, u].

We note that in this general form, the matrix H is not required to be positive semi-definite, i.e., the

quadratic constraint need not be convex.

There are two types of global constraints in the literature that reason about quadratic terms in a

function. Both can be applied to convex and nonconvex quadratic constraints. We note that although

these two filtering algorithms have been tested in the authors’ own testing environments, we have not

found them implemented in any major CP solver.

Constraint 1. The first global constraint was proposed by Domes and Neumaier [52]. The key idea

lies in eliminating bilinear entries in a quadratic constraint and solving the resulting separable quadratic

constraints by means of a sequence of univariate quadratic problems.

Without loss of generality, given a univariate quadratic function aix
2
i + bi, we first find the upper

bound of the function:

u
′

= max{aix2
i + bixi | li ≤ xi ≤ ui},

which can be computed with the relationship u
′

= max{(li(ailibi)), (li(ailibi))}, as u
′

must take its

maximum value at the boundary of the quadratic function. The lower bound l
′

can be found by searching
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for a value v such that aix
2
i + bi is minimum:

∂aix
2
i +bi

∂xi
|xi=v = 0. If v does not reside within [li, ui], we

can set l
′

= min{(li(ailibi)), (li(ailibi))}. The new lower and upper bounds are therefore the intersection

of the original bounds [l, u] and the bounds due to the quadratic constraint, [l
′
, u

′
].

Second, we reduce the domain for xi by finding its new lower and upper bounds as follows:

[l
′

i, u
′

i] = {xi ≥ 0 | aix2
i + 2bixi ≥ c},

which can be computed analytically. We can then tighten [l
′
, u

′
] to [l

′
, u

′
] ∩ [l, u].

The results from univariate quadratic functions are then generalized to multi-variable separable

quadratic functions of the form:
n∑

i=1

pi(xi) ≥ c, l ≤ x ≤ u,

where

pi(xi) = aix
2
i + bixi.

The above formulation implies that none of the quadratic terms involves bilinear entries entries, xixj ,

where i 6= j. In order to apply the propagation algorithm to a separable quadratic function, the bilinear

entries are computed approximately and eliminated from the function so that the resulting quadratic

function is separable. Finally, the new lower and upper bounds due to the separable quadratic function

are used to infer domain reductions for the xi variables.

The filtering algorithm was compared to a traditional approach, the elementary constraint propa-

gation, which simply finds the interval of each expression in the quadratic constraint individually, then

uses the intervals of all other expressions but itself to compute the new bounds. Results on randomly

generated problems show that the proposed filtering algorithm can infer many more domain reductions

than the elementary constraint propagation method.

Constraint 2. The second global constraint was proposed by Lebbah et al. [96]. The main idea is

to obtain tight linear outer-approximations of the original quadratic constraints, and then use an LP

solver to reduce the domain of each variable, by minimizing and maximizing each variable with respect

to the linear outer-approximations. Specifically, let the original constraint set be C = {gk(x) ≤ 0} that

is defined on the quadratic constraints gk and a set of variables x, and let the linear outer-approximation

of C obtained with the reformulation-linearization techniques (RLT) [143] be COA = {dk(xOA) ≤ 0}
that is defined on the linear constraints dk, where xOA = (x,y) and y are the newly introduced variables

required by the approximation technique. The filtering algorithm first finds the new lower and upper

bounds for xOA subject to the constraint set COA and the current bounds of the variables as follows:

lOA
j = minxOA

j subject to COA, l ≤ xOA ≤ u, (2.11)

uOA
j = maxxOA

j subject to COA, l ≤ xOA ≤ u. (2.12)

The problems (2.11) and (2.12) can be solved with LP solvers such as CPLEX.

The new bounds lOA and uOA are then used to tighten the linear constraints in COA, and the problems

(2.11) and (2.12) are solved again to infer new domain reductions. The process between improving and

solving the problems (2.11) and (2.12) ends when no more significant reductions can be made or when
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the domain of a variable becomes empty. It was proved that this process terminates in finite number of

iterations [96].

A major contribution of this work is the rigorous derivation of the linear outer-approximations.

Special care is taken to ensure that the linearization and the Simplex algorithm used by the LP solver

do not create any numerical issues that may remove a feasible solution.

The filtering strategy has been tested on the benchmark instances in robotics and kinematics. Results

show that the filtering algorithm is able to significantly tighten the initial domains of the variables and

finds all the feasible solutions quickly when incorporated within a tree search [96].

We note that although the authors did not make the connection to the MINLP literature, this

approach is similar to the optimization-based bound tightening (OBBT) technique [64]. OBBT based

approaches are often only done at the root node of the search tree as it is too expensive to perform at

every node.

2.3.2.5 Search

Similar to MIP, CP uses a tree search framework. At each node during the search, a variable that has

not been assigned a value is first selected with respect to some variable ordering heuristic, then a value is

selected, forming the next node. The common branching scheme of CP creates two branches: Let xi be

the variable selected at a node and let vi be some value in the domain of xi, then two branches, xi = vi

and xi 6= vi, are created. Since the search is basically an enumeration of all the possible variable-value

combinations, constraint propagation is applied at each node to reduce the domains of the variables,

pruning subtrees containing no solutions. The search continues until a feasible solution is found or

until the search proves that no feasible solution exists for a CSP. In case of a COP, in order to prove

optimality, a variable, obj, is typically used to represent the objective value, which is linked to the actual

objective function with a constraint. When an incumbent is found with the objective value vobj during

the search, a constraint of the form obj < vobj (in case of a minimization problem) is added to the

problem, constraining the next solution to be better than the current one. The search terminates when

no better feasible solution exists, proving the latest solution optimal. The basic CP search algorithm for

a CSP is given in Algorithm 2.

Algorithm 2 Basic CP Search Algorithm for a CSP

1: CPSearch(Problem P)
2: if propagate(P) → dead-end then
3: return no-alternative
4: end if
5: if not all variables are fixed then
6: xi = choose an unassigned variable in P
7: vi = choose a value for xi from the domain of xi
8: if CPSearch(P ∪ (xi = vi)) → solution then
9: return solution

10: else
11: return CPSearch(P ∪ (xi 6= vi))
12: end if
13: end if

In addition to the basic search and propagate framework, many advanced techniques have been de-

veloped to further improve the performance of CP. The most notable techniques include constraint-based
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local search [149], randomization and restart strategies [67, 68], no-good learning [83, 132], backjumping

[51], symmetry breaking [61], and sophisticated branching heuristics [123]. The combination of the above

techniques enable CP to solve challenging real world applications and outperform MIP on a variety of

problems [15].

2.3.3 Constraint Integer Programming

Constraint Integer Programming (CIP) [4] is a generalization of MILP that allows the inclusion of arbi-

trary constraints, with the restriction that after the integer variables are fixed, the remaining subproblem

is a linear program. For clarity, it is useful to introduce the formal definition of CIP [4] as follows:

A constraint integer program CIP = (C, I, c) consists of solving

c? = min{cTx | C(x), x ∈ Rn, xj ∈ Z,∀j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = {1, . . . ,m}, the index set

I ⊆ N = {1, . . . , n} of the integer variables, and an objective function vector c ∈ Rn. A CIP has to

fulfill the following condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , cC)} = {cC ∈ RC | A′xC ≤ b′}

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.

We note that the linearity restriction of the objective function does not hinder CIP from solving

problems with non-linear objective functions, as we can introduce an auxiliary objective variable z to

link to the actual non-linear objective function with the relationship z = f(x).

CIP has been extended to solve MIQCPs. In this case, it is required that the subproblem with all

integer variables fixed to be a quadratically constrained program [23, 155].

2.3.3.1 CIP Solving Framework

We now describe the main CIP solving process. CIP integrates MIP and CP in a single search tree,

where the search is a branching process as in MIP. Each node in the search tree is first treated by

CP techniques such as domain propagation. The LP relaxation is then solved and strengthened by MIP

techniques such as cutting plane generation. If the bounds of the variables are tightened during the node

processing, domain propagation is triggered again to infer further domain reductions. The loop between

domain propagation and LP relaxation solving terminates when no more improvement can be made by

either technique. Then the search continues depending on the outcome of solving the LP relaxation,

i.e., branching is performed if the LP relaxation is feasible, and, in the infeasible case, conflict analysis

is performed to learn no-goods [2]. The basic framework of CIP is presented in Fig. 2.2.

In the CIP solver, SCIP, the semantics and algorithms for processing constraints of a specific type are

defined in a constraint handler, which acts as an augmented global constraint that embeds both inference

techniques in the form of bounds propagation and relaxation-based reasoning via constraint-specific linear

relaxations and cutting planes. These techniques are functional extensions to global constraints beyond

filtering. We describe the constraint handler for quadratic constraints in the following section.
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Figure 2.2: The CIP framework. This diagram is taken from Vigerske & Gleixner [155] with slight
modification. In “enforce constraints”, the algorithm has to decide whether the optimal relaxed solution
satisfies all of its constraints. If it is infeasible, the algorithm can try to resolve the infeasibility by
adding cutting planes, performing domain reductions, or triggering conflict analysis.

2.3.3.2 The Quadratic Constraint Handler

The quadratic constraint in SCIP follows the same definition of the quadratic constraint in Sec-

tion 2.3.2.4. The full quadratic constraint handler in SCIP implements a number of problem solving

techniques in addition to the propagation algorithm. Computational results show that SCIP with the

quadratic constraint handler is competitive to commercial MIP and MINLP solvers on various MIQCP

benchmarks and applications [22, 23, 28]. We now explain the functionalities of the quadratic constraint

handler using Fig. 2.2.

Presoving. In presolving, SCIP applies two reformulation strategies to quadratic terms with binary

variables that reduces the number of quadratic terms in a constraint. First, the square of a binary

variable is replaced by the binary variable itself through the relationship x2
i = xi. Second, if a constraint

contains quadratic terms that are a product of a linear term and a binary variable, i.e., x
∑k

i=1 aiyi,

where x is binary, yi is a general integer variable, and ai ∈ Q, then this product is replaced with the

following constraints:

yLx ≤ z ≤ yUx,
k∑

i=1

aiyi − yU (1− x) ≤ z ≤
k∑

i=1

aiyi − yL(1− x),

where yL =
∑k

i=1,ai>0 aiy
L
i +

∑k
i=1,ai<0 aiy

U
i and yU =

∑k
i=1,ai>0 aiy

U
i +

∑k
i=1,ai<0 aiy

L
i .

In addition, the constraint handler recognizes quadratic constraints of the form of a second order
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cone (SOC), i.e., √√√√
k∑

i=1

γ + (αi(xi + βi))2 ≤ α0y + β0, α0 ≥ −β0,

where αi, βi ∈ Q,∀i, γ ∈ Q+. If the current LP solution (x̄, ȳ) violates some SOC constraint, then valid

cutting planes of the following form can be applied:

η +
1

η

k∑

i=1

α2
i (x̄i + βi)(xi − x̄i) ≤ α0y + β0,

where η =
√∑k

i=1 γ + (αi(x̂i + βi))2.

At the end of presolving, a quadratic constraint is checked for convexity by computing the sign of

the minimum eigenvalue of the coefficient matrix H. The constraint handler then generates appropriate

cutting planes during the search depending on the convexity of the quadratic constraint.

Processing. In Domain Propagation, SCIP implements filtering algorithms that perform domain re-

ductions both on the bounds of the variables, x, and the lower and upper bound of the quadratic

expression, l and u. Specifically, the quadratic constraint is first rewritten to separate the linear terms

from the quadratic terms as follows:

∑

j∈J
djxj +

∑

k∈K
(ek + pk,kxk +

∑

r∈K
pk,rxr)xk ∈ [l, u], (2.13)

where J ∪K ⊆ N , J ∩N = Ø, and pk,r = 0 for k > r. We further define the interval

q(a, [bL, bU ], y) := {by + ay2 | y ∈ [yL, yU ], b ∈ [bL, bU ]}, (2.14)

which can be computed analytically. To compute the new bounds [l
′
, u

′
], we replace the variables in the

linear terms, xj , and the bilinear terms, xr, with their interval domain and rewrite (2.13) as follows:

∑

j∈J
dk[xLj x

U
j ] +

∑

k∈K
([fLk , f

U
k ]xk + pk,kx

2
k) ∈ [l, u], (2.15)

where [fLk , f
U
k ] := [ek, ek] +

∑
r∈K pk,r[xLj x

U
j ]. The formulation in (2.15) can be rewritten with the

interval defined in (2.14) as

[l
′
, u

′
] :=

∑

j∈J
dk[xLj x

U
j ] +

∑

k∈K
q(pk,k, [f

L
k , f

U
k ], xk)),

where [l
′
, u

′
] are the new bounds. If [l

′
, u

′
]∩ [l, u] = Ø then the quadratic constraint cannot be satisfied

and the current node can be cut off. Otherwise, we can tighten [l
′
, u

′
] to [l

′
, u

′
]∩ [l, u]. The new bounds

on the objective value are then used to tighten the domains of the variables.

During processing, if the current optimal LP solution, x̄, violates a quadratic constraint, the con-

straint handler may add valid cutting planes to strengthen the formulation. In case of a violated convex

quadratic constraint, it is possible to linearize the constraint at x̄ and add the valid cutting plane to cut
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off x̄ using the following form:

−u− x̄>Hx̄+ (f> + 2x̄>H)x ≤ 0.

For nonconvex quadratic constraints, valid cutting planes may also be added with underestimators such

as the McCormick underestimators [109]. In this dissertation, we restrict our focus on the convex case.

For more details, please see [23].

Primal Heuristics. Two primal heuristics have been developed for finding high quality feasible so-

lutions for the MIQCP based on the concept of large neighbourhood search [49]. The key idea is to

restrict the search to finding good solutions in a neighborhood of some optimal or feasible solutions.

The hope is that such a restriction makes the resulting problem much easier to solve but still maintains

the flexibility to find high quality solutions.

The first heuristic is referred to as the QCP local search. The neighborhood is constructed based

on a feasible solution, x̂, of the MILP relaxation of a MIQCP. If a MILP primal heuristic finds such a

solution but it violates some quadratic constraints, a QCP relaxation of the MIQCP is solved with the

integer variables fixed to the values of those in x̂ of the MILP relaxation. A feasible solution to this

QCP is therefore a feasible solution to the MIQCP.

The second heuristic is an extension of the relaxation enforced neighbourhood search [21]. Let x̄ be

the optimal LP solution at a given node, this heuristic creates a sub-MIQCP problem by fixing all the

integer variables which take an integral value in x̄ and restricts the bounds of all the integer variables

with fractional LP solution value to the two nearest integral values. The sub-MIQCP thus provides a

valid solution to the original MIQCP.

2.3.4 Discrete Ellipsoid-based Search

Discrete enumeration based search algorithms originated from solving the unconstrained ILS problem,

which is defined as follows.

Unconstrained ILS Problem. Given a real matrix A ∈ Rm×n with full column rank and a real

vector y ∈ Rm, the unconstrained ILS problem has the following form:

min
x∈Zn

‖y −Ax‖22 . (2.16)

Lattice theory [6] provides a geometric view of the ILS problem. Let A be the lattice generator

matrix, the lattice generated by A is defined as follows:

L(A) = {Ax : x ∈ Zn}.

In lattice theory, solving the ILS problem is equivalent to finding the closest point in L(A) to y. There-

fore, the ILS problem is also referred to as the closest vector problem [6].

There are two main approaches of discrete enumeration based search algorithms for solving the ILS

problem. The major difference between these two approaches lies in the geometry of the search region

which these two approaches explore. The first approach, following the work of Phost [56], enumerates
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lattice points, e.g., integer solutions, based on the hyper ellipsoid defined by the objective function, while

the other approach, following the work of Kannan [82], enumerates solutions w.r.t. the convex polytope

of the objective function. In practice, Phost’s method is more commonly used due to its superior search

efficiency, while Kannan’s method is more often studied for its theoretical value [161]. Schnorr and

Euchner [140] made a major improvement upon Phost’s method by instantiating the variables in a more

efficient order and their algorithm has been considered the state-of-the-art enumeration based search

algorithm.

Schnorr and Euchner’s method has been successfully applied to communication applications such

as multiple-input and multiple-output wireless communications [108], signal processing [73], and GPS

positioning [146]. For example, to achieve a very high precision in a global navigation satellite system, an

ILS problem is solved to estimate the double-difference carrier phase ambiguities obtained from pairs of

satellite and receivers [146]. Loosely, this problem is to find the integer number of wavelengths between

the satellite and the receiver in order to precisely estimate their range. Depending on the specific

application that is solved with Schnorr and Euchner’s method, the search process is sometimes referred

to as sphere decoding [108] or least squares ambiguity decorrelation adjustment [146]. As there does not

seem to be a standard name in the communications literature for the search process proposed by Schnorr

and Euchner, we have adopted the term discrete ellipsoid-based search (DEBS) in this dissertation.

DEBS has been formulated to solve only three types of ILS problems: unconstrained, box-constrained,

and ellipsoid-constrained [42, 43, 89, 92]. The unconstrained problem is defined above in (2.16). We

define the box-constrained, and ellipsoid-constrained problems as follows.

Box-constrained ILS Problem. The box-constrained ILS problem can be defined as follows:

min
x∈B
‖y −Ax‖22 , (2.17)

B = {x ∈ Zn : l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}.

Ellipsoid-constrained ILS Problem. The ellipsoid-constrained problem can be defined as follows:

min
x∈E
‖y −Ax‖22 , E = {x ∈ Zn : ‖Ax‖22 ≤ α}, (2.18)

where α is a constant.

As one of our contributions, we extended DEBS for ILS problems with general linear constraints in

Section 3.3.

Geometrically, the objective function of the ILS problem defines a hyper-ellipsoid with center A−1y

as follows:

‖y −Ax‖22 < β, (2.19)

where β is a constant. The DEBS method systematically searches for the optimal integer solution inside

the ellipsoid.

The DEBS method consists of two phases: reduction and search. The former is a preprocessing

step that transforms the given ILS problem into one for which the search process is more efficient [43],

and search consists of the enumeration of the integer points inside the ellipsoid defined by the objective

function [140]. While reduction is done before the search, it is easier to justify the impact of the

reduction on search performance after the search has been presented. We, therefore, describe search and

then reduction as they apply to the unconstrained ILS problem and then note the extensions required
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for the box-constrained and the ellipsoid-constrained ILS problems.

2.3.4.1 Search

Among several search strategies in the literature, the Schnorr & Euchner strategy is usually considered

the most efficient [140]. The approach can be defined as follows.

Suppose the optimal solution z satisfies the bound ‖ȳ −Rz‖22 < β, or equivalently
∑n

k=1(ȳk −∑n
j=k rkjzj)

2 < β, where β is a constant which can be obtained for any feasible integer solution and R

is the matrix A after transformation by the reduction phase (see Equation (2.23) below).

Define the so far unknown (apart from cn) and usually non-integer variables:

cn = ȳn/rnn, ck = (ȳk −
n∑

j=k+1

rkjzj)/rkk, k = n− 1, . . . , 1. (2.20)

Note that ck is a function of zk+1 to zn, and it is fixed when zk+1 to zn are fixed. The above equation

can be rewritten as
n∑

k=1

r2
kk(zk − ck)2 < β,

which implies the following n inequalities:

level n : (zn − cn)2 <
β

r2
nn

,

level n− 1 : (zn−1 − cn−1)2 <
β − r2

nn(zn − cn)2

r2
n−1,n−1

,

...

level k : (zk − ck)2 <
β −∑n

i=k+1 r
2
ii(zi − ci)2

r2
kk

, (2.21)

...

level 1 : (z1 − c1)2 <
β −∑n

i=2 r
2
ii(zi − ci)2

r2
11

.

The search starts at level n, heuristically assigning zn = bcne, the nearest integer to cn. Given the

value of zn, cn−1 can be calculated from the above equation as cn−1 = (ȳn−1 − rn−1,nzn)/rn−1,n−1.

From this value, we can set zn−1 = bcn−1e and search continues. During the search process, zk is

determined at level k, where zn, zn−1, . . . , zk+1 have already been determined, but zk−1, zk−2, . . . , z1 are

still unassigned (note that ck depends on zk+1, zk+2, . . . . , zn).

At some level k − 1 in the search, it is likely that the corresponding inequality in (2.21) cannot be

satisfied, requiring the search to backtrack to a previous decision. When we backtrack from level k−1 to

level k, we choose zk to be the next nearest integer to ck. More precisely, if there are multiple backtracks

to level k, zk takes on values in the order

bcke, bck − 1e, bck + 1e, bck − 2e, . . . , if ck ≤ bcke,

or

bcke, bck + 1e, bck − 1e, bck + 2e, . . . , if ck > bcke.
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In the Schnorr & Euchner strategy, the initial bound β can be set to ∞. When we find the first

integer point, the k-th entry of the first integer point is bcke for k = n, . . . , 1. We can use this integer

point to update β, reducing the hyper-ellipsoid. As this is a feasible, but not necessarily optimal solution,

after updating β, the algorithm backtracks to search for improving solutions. For the formal definition

and treatment of DEBS search, see [140].

The search algorithm for the box-constrained ILS problem is modified to take into account the box-

constraints, i.e., l̄ ≤ z ≤ ū, l̄ ∈ Zn, ū ∈ Zn in (2.25). The modification is done by examining zk

computed at each level, and comparing it with the given variable bounds l̄k and ūk in a straightforward

way: During the search, the algorithm keeps track of whether the enumeration of zk at level k has

reached l̄k and ūk from the box-constraint. This mechanism ensures that the search algorithm always

enumerates the integers within the box-constraint at each level [43].

Similarly, the algorithm for the ellipsoid-constrained problem has to take into account the bounds

imposed by the ellipsoidal constraint [42]. The key idea is to derive the interval defined by the ellipsoidal

constraint in (2.24). Rewrite the ellipsoidal constraint ‖Rz‖22 ≤ α as follows:

n∑

k=1

(rkkzk +

n∑

j=k+1

rkjzj)
2 ≤ α. (2.22)

We further define:

dn = α, dk−1 = α−
n∑

i=k

(riizi +

n∑

j=i+1

rijzj)
2 = dk − (rkkzk + ck)2, k = n, . . . , 2,

where ck is defined in (2.20). Then inequality (2.22) can be rewritten as follows:

(rkkzk + ck)2 ≤ dk, k = n, . . . , 1.

Therefore, zk is restricted in the interval induced by the ellipsoidal constraint as follows:

⌈−
√
dk − ck
rkk

⌉
≤ zk ≤

⌊√
dk − ck
rkk

⌋
, k = n, . . . , 1.

We note that the search interval at level k depends on zk+1, . . . , zn. Therefore, this interval has to be

recomputed whenever the search moves from level k + 1 to k.

In our DEBS implementation, we use an incremental update strategy following the work of Chang

[44] for all three types of the ILS problems, so that redundant computation is avoided during the search.

Specifically, the partial summation
∑n

j=l rkjzj , for some l > k + 1 may have been already computed

when the search previously visited level k. Therefore it is not computed again in the current visit at

level k.

2.3.4.2 Reduction

It has been shown that the order of the diagonal entries of R can greatly affect the performance of

the DEBS search by reducing the branching factor at the top of the search tree [6, 43]. Note that the

n inequalities in (2.21) define an interval of possible values for each variable, zk, and the smaller this

interval, the smaller the number of possible integer values for a given variable. Since search tree size will
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tend to be smaller if there is a small branching factor at the top of the tree and the diagonal entries in

the R matrix play a large role in determining the size of the interval of possible values for each variable

(see (2.21)), the reduction phase of DEBS tries to transform A into an upper triangular matrix R such

that the diagonal entries are ordered in non-decreasing order:

|r11| ≤ |r22| ≤ . . . ≤ |rkk| ≤ . . . ≤ |rn−1,n−1| ≤ |rnn|.

Transforming A to R can be achieved by finding an orthogonal matrix Q ∈ Rm×m and a unimodular

matrix Z ∈ Zn×n such that

Q>AZ =

[
R

0

]
, Q =

[
Q1,Q2

]

where Q ∈ Rm×m is orthogonal, R ∈ Rn×n is upper triangular, and Z ∈ Zn×n is a unimodular matrix.

We have

‖y −Ax‖22 =
∥∥∥Q>1 y −RZ−1x

∥∥∥
2

2
+
∥∥∥Q>2 y

∥∥∥
2

2
,

where ȳ = Q>1 y and z = Z−1x.

Therefore, the original ILS problem (4.4.3) is transformed to the new ILS problem:

min
z∈Zn

‖ȳ −Rz‖22 , (2.23)

where z = ZTx.

The problem (2.23) is exactly the reduced unconstrained ILS problem, on which the search can

be carried out directly. For the ellipsoid-constrained problem, the reduced problem can be written as

follows:

min
z∈Ē
‖ȳ −Rz‖22 , Ē = {z ∈ Zn : ‖Rz‖22 ≤ α}. (2.24)

In this dissertation, we use the common LLL matrix reduction technique [98] for the unconstrained

ILS and ellipsoid constrained problems. Specifically, we implement the partial LLL reduction algorithm

proposed by Xie [162], which has lower computational complexity than the original LLL matrix reduction.

A comparison of recent LLL reduction strategies is given in Xie [162]. Note that for the ellipsoid-

constrained problem, we can still apply the LLL reduction to A as in the unconstrained case, as there

is no restriction on the bounds of the variables [42].

For the box-constrained problem, in order to keep the bounds on the variables unchanged, a transfor-

mation to A from the right-hand side must be a permutation matrix P ∈ Zn×n instead of a unimodular

matrix Z. The reduced box-constrained problem can be written as follows:

min
z∈B̄
‖ȳ −Rz‖22 , (2.25)

B̄ = {z ∈ Zn : l̄ ≤ z ≤ ū, l̄ ∈ Zn, ū ∈ Zn},

where l̄ = P>l and ū = P>u. We use the reduction algorithm due to Chang et al. [43] in this

dissertation.

For all three types of the ILS problems, after the optimal solution z∗ to a reduced ILS problem is

found, the optimal solution x∗ to the original ILS problem can be recovered with the relationship x∗ =

Zz∗ for the unconstrained and ellipsoid-constrained problems, and x∗ = Pz∗ for the box-constrained
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problem.

As a final note, although DEBS has been successful for solving problems in communications, it has not

been well recognized by the OR community. Therefore, as one of our contributions in this dissertation,

we study the performance of DEBS on a variety of problems in OR and communications in Chapter 3,

and compare its performance with the common approaches in the OR literature.

2.4 Summary

In this chapter we introduced the strictly convex IQCP and reviewed the common exact solution ap-

proaches for solving IQCPs. All of the exact approaches described in this chapter are tree-search based

enumeration scheme with various techniques to reduce the nodes that need to be explored. This sim-

ilarity, together with the equivalence between the IQCP and ILS formulations, allows the possibility

of efficient hybrid algorithms. In Chapter 3 we develop two hybrid algorithms that integrate MIP and

DEBS and CP and DEBS, respectively, for solving some special cases of the IQCP. In Chapter 4, we use

the CIP approach to solve the variance minimization problem, an important application of the IQCP. In

Chapter 5 we develop a CP approach that combines the techniques from MIP, CP and DEBS for solving

general IQCPs.



Chapter 3

Combining DEBS with MIP and CP

for Solving IQCPs

3.1 Introduction

As introduced in Chapter 2, mixed integer programming (MIP) and constraint programming (CP) are

both general tree search frameworks for solving combinatorial optimization problems and they can be

applied to IQCPs. Discrete ellipsoid-based search (DEBS), in contrast, is a specialized tree search

algorithm that aims at solving the integer least squares (ILS) problem. In Section 2.2.3 we showed that

a mutual reformulation of the IQCP and the ILS problem exists, allowing the potential of solving these

two problems with approaches from different fields. Despite the difference in the underlying theories and

techniques of these three approaches, abundant information can be extracted from DEBS to enhance

several components of MIP and CP for solving IQCPs. In this chapter, we present two hybrid algorithms

that, respectively, combine DEBS with MIP and CP.

First, we hybridize DEBS with MIP to solve the strictly convex quadratically-constrained problems

with variable bounds, incorporating aspects of DEBS into a presolving technique, cutting planes, and

a primal heuristic. While MIP is able to solve problems with general linear constraints, the DEBS

method has only been known to solve pure quadratically constrained problems. As test sets, we study

the binary quadratic programming (BQP) problem [131] and the unconstrained, box-constrained, and

ellipsoid-constrained ILS problems [6]. We perform experiments on benchmark instances for these four

problems and compare the performance of two MIP solvers, DEBS, the new hybrid algorithm, and the

best known available approaches in the literature. Our experimental results demonstrate that the new

hybrid algorithm is competitive to the best known approaches, and, in many cases, establishes the new

state of the art.

Second, we hybridize DEBS with CP to solve strictly convex quadratically constrained problems with

linear constraints. As noted above, previously DEBS has been formulated to only be applicable to pure

quadratically constrained problems. This work is the first that generalizes DEBS to incorporate general

linear constraints. From a CP perspective, DEBS can be understood as a specialized CP search that

does three things. First, the search strategy implies a fixed variable ordering heuristic that is determined

after the reduction phase. Second, DEBS provides a value ordering heuristic. Third, the geometry of the

ellipsoid induces an interval domain for each variable. As a result, DEBS is essentially the enumeration

29
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of these domains under the prescribed variable and value orderings. We use this insight to integrate

linear constraints into DEBS so that linear constraints are made arc consistent to further reduce the

domains of the variables. Although CP has not been known for solving IQCPs efficiently, we show that

a combination with DEBS greatly improves the performance of CP. The hybridization is implemented

as part of DEBS, but a reverse implementation can also be done: we can implement DEBS as branching

heuristics and a global constraint in a CP solver. We turn to this approach in Chapter 5. For test sets,

we use the exact quadratic knapsack problem (EQKP), an important class of optimization problem with

a number of practical applications. We demonstrate that our hybrid algorithm achieves state-of-the-art

for solving the EQKP and a variation.

3.1.1 Contributions

The main contributions of this chapter are as follows:

Hybrid of DEBS and MIP:

• We propose a novel, competitive hybrid algorithm that combines DEBS and MIP and demon-

strate it is one of the state-of-the-art approaches for the BQP problems in the operations research

(OR) literature. A particular advantage of this hybrid approach is that, unlike the BQP specific

approaches such as semi-definite programming (SDP) [87] or the specialized branch and bound

(B&B) solver [102], the hybrid algorithm can be applied to a broader class of problems, such as

the unconstrained integer quadratically constrained problems and integer quadratically constrained

problems with general integer bounds on the variables [90].

• We apply our hybrid algorithm to solve the ILS problems studied in the signal processing literature

and demonstrate that it is the state-of-the-art approach. We reformulate the ILS problems as

IQCPs and conduct extensive experiments to evaluate our hybrid algorithm on three types of ILS

problems: unconstrained, box-constrained, and ellipsoid-constrained problems. We believe such a

connection between MIP and DEBS bridges the research fields of OR and communications and

may encourage future innovation for solving IQCPs.

• To the best of our knowledge, this work is the first study that applies the DEBS approach to

BQP problems. Our experimental results demonstrate that DEBS can outperform state-of-the-art

MIP solvers and the best known SDP approaches, especially for smaller problem instances. This

suggests that the somewhat different approach from the OR community is worth considering when

solving BQP problems.

• To the best of our knowledge, MIP solvers have never been applied to the ILS problems that are of

interest to the signal processing community. Our results serve as the first empirical study comparing

the DEBS method and MIP solvers for the ILS problems. We identify the key characteristics that

are crucial to the performance of each approach. We also show that an off-the-shelf commercial

MIP solver performs very well on the box-constrained problems and should be considered as a

competitive approach for solving such problems.
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Hybrid of DEBS and CP:

• This work is the first time that DEBS has been applied to problems with linear constraints. Our

hybridization with CP enables DEBS to solve a much broader class of problems, i.e., problems

with a quadratic objective function and any number of linear constraints. We experiment with the

EQKP and a variation and achieve the state of the art.

• This work is also the first study that analyzes the DEBS method from a CP perspective. We

describe DEBS as a set of branching heuristics and a propagation algorithm.

The work in this chapter is based on two publications [89, 90] and a submitted manuscript [92].

3.1.2 Organization

The rest of the chapter is organized as follows. We present our two hybrid algorithms in two separate

sections, Section 3.2 and Section 3.3, organized based on the types of problems that these hybrid algo-

rithms solve. In both sections, we first provide the problem definition and review relevant literature. We

then present the hybrid algorithm, computational results, and discussions. We conclude this chapter in

Section 3.4.

3.2 Combining DEBS and MIP

In this section we propose a hybrid algorithm that combines DEBS and MIP to solve quadratically-

constrained problems with variable bounds. Specifically, we study the BQP problem and the uncon-

strained, box-constrained, and ellipsoid-constrained ILS problems.

3.2.1 Literature Review

Integer Least Squares (ILS) Problems. ILS problems arise in many signal processing applications

such as global positioning system, communications, and cryptography (see e.g., [6, 73, 146]). For ex-

ample, in the multiple-input and multiple-output wireless communications, the transmitted signal can

be estimated via maximum likelihood decoding, or equivalently, by solving an ILS problem [73]. As

another example, achieving high precision relative global navigation satellite system positioning [80]

requires resolving double differenced carrier phase ambiguities as integers, which again can be naturally

formulated as an ILS problem. In the signal processing community, there are four main families of

approaches to solving the ILS problems: the Voronoi approach [110], the approximation approach [7],

semi-definite programming [85], and DEBS [82] (see Chapter 2 for details). In practice, ILS problems

are most commonly solved with DEBS based on enumeration of integer points within the hyper-ellipsoid

defining the feasible space.

ILS problems can also be formulated as equivalent IQCPs and solved with branch-and-cut (B&C)

based MIP solvers [11] such as CPLEX, GUROBI, and SCIP.

Binary Quadratic Programming (BQP) Problems. BQP problems arise in many combinatorial

optimization problems such as task allocation [100], quadratic assignment [57], and max-cut problems

[87]. In addition to DEBS, a variety of exact methods exist for solving BQP problems including the

linearization method [156], MIP [23, 32], and SDP based B&B approaches [87, 131].
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The SDP based approach is often regarded as the state-of-the-art approach for solving BQPs. In

this approach, the semi-definite relaxation bound of the objective function is used to prune nodes during

the branch-and-bound process. Krislock et al. [87] showed that their SDP algorithm dominates existing

approaches for the BQP problems in the Biq-Mac library [158].

As another state-of-the-art approach, Li et al. [102] proposed a specialized branch-and-bound algo-

rithm and demonstrated its strong performance on benchmark instances from a number of sources. Li

et al.’s techniques are derived from the geometric structure of the BQP problem based on perturbation

analysis. The results of the analysis are implemented in the form of problem-specific lower bounding

techniques and inference rules to fix values. Variable and value ordering heuristics, as well as a primal

heuristic to find high quality feasible solutions, are also proposed to accelerate the convergence of the

search. Empirical results demonstrate that the algorithm is one of the state-of-the-art approaches for

finding exact solutions to these benchmark BQP problems.

Mixed Integer Programming for BQP and ILS Problems. MIP is considered the standard

generic approach in OR for solving IQCPs exactly [37]. MIP can be further categorized into mixed

integer linear programming (MILP) and mixed integer nonlinear programming (MINLP). BQP and

ILS are special types of IQCPs, in the sub-class of MINLP that is generally solved with the following

four approaches based on MIP-related techniques: branch-and-bound and branch-and-cut (B&C) [70],

outer approximation [54], extended cutting-planes [157], and generalized Benders decomposition [62]. Of

the above methods, the outer-approximation and the B&C methods have received the most attention

and both commercial and non-commercial solvers are available based on these two approaches. An

empirical study of these two methods on binary quadratic programming problems concluded that the

two approaches performs significantly differently on various classes of problems and it is not clear which

is generally superior [32].

The state-of-the-art MIP solvers are typically hybrid algorithms that combine many of the above

elements. Modern MIP solvers are able to outperform several other exact approaches [25]. Many solvers

such as SCIP [3] and FilMINT [1] incorporate the outer-approximation into the B&C framework and

are efficient for solving convex MINLP problems. Commercial software such as CPLEX, GUROBI and

BARON also provide functionality to solve convex mixed integer quadratically constrained problems and

so can all be applied to solve the BQP problems. We refer interested readers to Bussieck & Vigerske

[37] for a review of MINLP solvers.

3.2.2 Problem Definition

3.2.2.1 The Integer Least Squares Problem

The three types of ILS problems are defined as follows.

Unconstrained ILS Problem. Given a real matrix A ∈ Rm×n with full column rank and a real

vector y ∈ Rm, the unconstrained ILS problem has the following form:

min
x∈Zn

‖y −Ax‖22 . (3.1)

Box-constrained ILS Problem. The box-constrained ILS problem can be defined as follows

min
x∈B
‖y −Ax‖22 , (3.2)
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B = {x ∈ Zn : l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}.

Ellipsoid-constrained ILS Problem. The ellipsoid-constrained problem can be defined as follows

min
x∈E
‖y −Ax‖22 , E = {x ∈ Zn : ‖Ax‖2 ≤ α}, (3.3)

where α is a constant.

3.2.2.2 The BQP Problem

The BQP problem is defined as follows:

min
x∈{0,1}

1

2
x>Hx+ f>x, (3.4)

where H ∈ Rn×n is a symmetric semi-definite positive matrix and f ∈ Rn is a vector.

Note that when H is not symmetric, the symmetric form can be obtained by setting H = (H +

H>)/2. Another common issue for real world applications is the non-convexity property of the matrix

H. Convexifying H is possible in the BQP case since, for every variable, the relationship xi = x2
i holds.

Therefore, we can perturb the H matrix and make it semi-definite positive by using a vector u until

(H + diag(u)) is semi-definite positive. A computationally inexpensive way to find such a u vector

consists of computing the eigenvectors of H [25]. The convex equivalent BQP problem can be obtained

as follows:

min
x∈{0,1}

1

2
x>(H + diag(u))x+

(
f − 1

2
u
)>
x. (3.5)

3.2.3 The Hybrid Algorithm

In this section we describe the three components of DEBS that we integrate into the B&C-based MIP

solver SCIP [3]: preconditioning, axis-aligned circumscribed box constraints, and a primal heuristic.

Preconditioning applies the DEBS reduction techniques to the IQCP to transform it into a new IQCP

problem for which search can potentially be more efficient. The axis-aligned circumscribed box represents

globally valid bounds of the variables derived from the geometry of the objective function of the ILS

problems. The box is computed after an initial primal solution is found and used to update the bounds

whenever a new incumbent solution is found. Finally, we apply the DEBS search as a primal heuristic

to find feasible solutions during the B&C search.

3.2.3.1 Preconditioning

Applying the reduction technique from the DEBS method to the IQCP has been shown to be beneficial

to the efficiency of the B&C process [11]. The new IQCP problem after performing preconditioning is

defined as follows:

min
x∈Zn

1

2
x>H̄x+ f̄

>
x, (3.6)

where H̄ = R>R and f̄ = −ȳ>R. Note that R and ȳ are from the reduced ILS problem (2.23) in

Section 2.3.4.2.

Although the transformation is the same as the reduction in the DEBS method, the reason for the

improvement in the B&C search is different. Therefore, we use the word preconditioning when it is
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applied to the IQCP to distinguish it from the reduction in the DEBS method.

In the context of DEBS, the reduction phase decreases the branching factor early in the search tree

as described in Section 2.3.4.2. In contrast, the motivation for performing preconditioning is to reduce

the distance to integrality. Let xR denote the optimal solution to the continuous relaxation of the ILS

problem and xI the solution to the ILS problem. We define the distance to integrality as the Euclidean

distance between the real and integer optimal solutions to the ILS problem:

d(xR,xI) = ‖xR − xI‖2 .

Previous results on communication applications showed that the experimental correlation between the

number of nodes in the B&C search tree and the distance to integrality in logarithmic scales is around

0.7 [11]. The intuition is that if the root node xR is closer to the leaf node xI, fewer branching decisions

are required and hence the search tree will be smaller. Preconditioning, therefore, aims at decreasing

this distance. The relationship between preconditioning and the distance between the real and integer

optimal solutions to the ILS problem can be understood as follows. Using A†, the Moore-Penrose

generalized inverse of A, we can write xR = A†y and A†A = I. Therefore

d(xR,xI) = ‖xR − xI‖2 = ‖A†y − xI‖2 = ‖A†(y −AxI)‖2,

leading to

d(xR,xI) ≤ ‖A†‖2‖y −AxI‖2. (3.7)

Therefore, it is possible to decrease the distance to integrality by transforming the problem using a

unimodular matrix U that minimizes ‖(AU)†‖2. Here U is obtained by performing the LLL reduction

on A, which is subjected to the QR decomposition and a series of permutations on the columns of A.

The details are given in Anjos et al. [11].

We apply the preconditioning technique to all three types of the ILS problems and the BQP problem.

In our implementation, we perform the preconditioning in the presolving stage of the B&C algorithm.

3.2.3.2 Axis-aligned Circumscribed Box

Based on the geometry of the objective function of the ILS problem, the axis-aligned circumscribed box

can be computed and used to tighten the bounds of the variables. Chang & Golub [42] proposed an

efficient way to compute the smallest hyper-rectangle whose edges are parallel to the axes of the coordi-

nate system and that includes the hyper-ellipsoid defined by Expression (2.23). The lower bound l and

the upper bound u of the smallest hyper-rectangle including the reduced hyper-ellipsoid ‖ȳ −Rz‖22 ≤ β
can be computed by solving the following problems:

lk = min
z∈Rn

e>k z subject to ‖ȳ −Rz‖22 ≤ β, (3.8)

uk = max
z∈Rn

e>k z subject to ‖ȳ −Rz‖22 ≤ β, (3.9)

where ek ∈ Zn is the unit vector in the k-th direction, i.e., the k-th column of an identity matrix with

size n.

Since the variables can only take integer values, we can safely round down the upper bound values
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and round up the lower bound values after solving the problems, which gives us:

uk =
⌊√

β
∥∥∥R−>ek

∥∥∥
2

+ e>kR
−1ȳ

⌋
,

lk =
⌈
−
√
β
∥∥∥R−>ek

∥∥∥
2

+ e>kR
−1ȳ

⌉
.

The axis-aligned circumscribed box can be computed for all three types of the ILS problems and the

BQP problem. Since this box is globally valid regardless of the branching decisions, the global bounds

of the variables are updated if the box is tighter than the original global bounds of the variables. For

the ellipsoid-constrained problem, the box is computed for each ellipsoid: the objective function and the

constraint. For each variable, the intersection of the two intervals is taken as the variable bounds.

3.2.3.3 DEBS as a Primal Heuristic

Primal heuristics are used to find feasible solutions in state-of-the-art MIP solvers. Good quality feasible

solutions are beneficial in a number of ways [3, 23]. First, the feasible solution proves that the problem is

feasible and the solution might already be good enough if the user does not require optimality. Second,

the feasible solution provides a valid bound for pruning the search tree. Third, a feasible solution can

be used for dual fixing or reduction to strengthen the problem formulation, a common technique in MIP

solving [3].

When applying DEBS as a primal heuristic, we employ a computational resource bound (e.g., a short

time limit) to run DEBS search at the root node after MIP presolving. If the DEBS search finds an

optimal solution, it is returned and the algorithm terminates. Otherwise, the best solution found by the

DEBS method is used as the starting integer solution. In addition, DEBS search is executed at selected

nodes in the B&C search tree. If the solution found by the DEBS is better than the current incumbent,

the current incumbent is updated. Specifically, we run the primal heuristic at a tree node whenever

a variable is fixed: During the B&C process, variables might be fixed either by branching decisions or

other techniques. When such fixing takes place, we can efficiently reduce the size of the problem, so

running the DEBS method is much more efficient. Let U be the set of indices of variables that are not

yet fixed at a given node in the search tree and let Ai be the i-th column vector of A of the original ILS

problem. The updated ILS can be defined as follows:

min
x̃∈{0,1}

∥∥∥ỹ − Ãx̃
∥∥∥

2

2
,

where

Ã = [Ai] , i ∈ U ,

ỹ = y −
∑

i/∈U
Aixi,

Ã ∈ Rn×|U | and ỹ ∈ Rn. The resulting problem is (n − |U |) dimensional smaller than the original

problem.

We summarize our hybrid algorithm with the flowchart in Figure 3.1. The relationship between the

flowchart and Algorithm 1 in Section 2.3.1.2 is as follows. The main solving loop in Figure 3.1 consists

of the while loop from line 3 to line 20 in Algorithm 1. The preconditioning and the first execution of

the primal heuristic are done before the main solving loop, i.e., between line 2 and line 3. During the
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main solving loop, the primal heuristic is executed before solving the continuous relaxation problem at

line 4, whenever a variable is fixed. When the incumbent solution is updated (line 11), we compute the

axis-aligned box and use it to tighten the global bounds of the variables. This is done between line 11

and line 12.

Node%Selec)on�

Primal%Heuris)cs�

Precondi)oning�

Tree%search%begins�

Relaxa)on%
Solving�

Integer%
Solu)on?%�

No�Axis>aligned%Box�

Yes�

Primal%Heuris)cs�

Main%Solving%Loop�

Figure 3.1: The flowchart of the hybrid algorithm. The three components are colored with shades of
gray.

In our hybrid implementation, we branch on the variable with the smallest domain and choose the

node with the smallest relaxed optimal objective value.

3.2.4 Experimental Results: ILS Problems

3.2.4.1 Setup

All experiments were performed on a Intel Core i7 3.40 GHz machine (in 64 bit mode) with 8GB memory

running Red Hat Enterprise 6.2 with one thread. We evaluated three different solution approaches:

“MIP”: using CPLEX v12.5 as the MIP solver, “DEBS”: both the partial LLL reduction and the search

are written in C with the GNU Scientific Library (GSL), and “HYBRID”: the hybridization of DEBS and

the MIP solver SCIP, implemented in SCIP v3.0.2. We use MATLAB 7.7.0 for generating the problem

instances. The CPU time limit for each run on each problem instance is 3600 seconds. Since the running

times of different approaches for different problem sizes spread across a very wide spectrum, we assume

a 0.01 minimum run-time for legibility of the graphs. That is, if the running time of a given approach

is less than 0.01 for some instances, we report its running time as 0.01.

3.2.4.2 Test sets

The problem instances for the unconstrained, box-constrained and ellipsoid-constrained problems are

generated as in the literature [11, 42, 43]. Each problem instance is generated with the linear model

y = Ax + v, where the noise vector v ∈ Rn is randomly generated by σ × randn(n,1), the matrix

A ∈ Rn×n is randomly generated by A = randn(n,n) and x ∈ Zn is randomly generated in different
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ways for each of the three types of ILS problems (see below). In wireless communications, the signal-

to-noise ratio is usually used as a measure of the difficulty of the problems [43]. We use σ = 0.01

as a representative of the low noise range, σ = 0.05 to represent moderate noise, and σ = 0.5 for

high noise range. Here randn(n,1) is a MATLAB function which returns an n-dimensional vector

containing pseudorandom values drawn from the standard normal distribution N(0, 1), and rand(n,1)

is a MATLAB function which returns an n-dimensional vector containing pseudorandom values drawn

from the standard uniform distribution on the interval (0, 1), and round(x) is MATLAB function which

rounds the elements of x to the nearest integers.

In addition to noise (σ), we also manipulated the range of the initial bounds on the variables (c

for the unconstrained and box-constrained problems and α for the ellipsoid constrained problems) as

follows.

• Unconstrained Problems: the nine different variations are generated as follows:

x = round(c× rand(n,1)),

where c = {3, 10, 100} and σ = {0.01, 0.05, 0.5}.

• Box-constrained Problems: the nine different variations are generated as follows:

x = round(c× rand(n,1)),0 ≤ x ≤ c,

where c = {3, 10, 100} and σ = {0.01, 0.05, 0.5}. Note that c is a n-dimensional vector with all its

entries equal to c.

• Ellipsoid-constrained Problems: the six different variations are generated as follows:

x = round(lb + (ub − lb)× rand(n,1)),

s.t. ‖Ax‖22 ≤ α,

where α = {0.5n, n}, n is the problem size (see below), and σ = {0.01, 0.05, 0.5}. The lower bounds

lb and upper bounds ub are the minimal axis-aligned box for the ellipsoidal constraint ‖Ax‖22 ≤ α.

The x vector is first generated randomly w.r.t. this box. If it is inside the ellipsoidal constraint,

we use it. Otherwise we continue generating a new x until it satisfies the ellipsoidal constraint.

For each problem variation, the problem instances consist of ten problem sets with sizes n × n

ranging from 10× 10 to 100× 100 with a step size of 10. Each set consists of 50 problem instances for

a total of 500 instances for each problem variation. The total number of problem instances is therefore

12, 000 = 500× (9 + 9 + 6).

Our motivation for choosing these particular sets of simulations is to analyze the performance of the

three approaches with respect to different noise level, problem size, and domain size of the variables.

3.2.4.3 Summary of Results

We summarize the results in Table 3.1, which lists the best approaches for each of the experiments.

We use the bootstrap paired-t test [46] with p ≤ 0.01 to compare the performance of each pair of the
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approaches for each of the 24 problem variations. The table shows that the hybrid algorithm outperforms

DEBS and MIP overall. It achieves the best performance in 21 of the 24 variations and performs uniquely

the best in 3 of them. It performs better or equal compared to DEBS across the 24 variations, including

18 tied with DEBS as the bootstrap paired-t tests indicate that there is no significant difference in average

running time for the two approaches. While MIP achieves the best performance in only 3 variations,

it is uniquely the best in each of the variations. Note that in two of those three variations, the hybrid

approach is significantly better than DEBS.

Unconstrained

c = 3 c = 10 c = 100

MIP 0.03 0.04 0.03
σ = 0.01 DEBS 0.01 0.01 0.01

HYBRID 0.01 0.01 0.01
MIP 0.06 0.04 0.05

σ = 0.05 DEBS 0.01 0.01 0.01
HYBRID 0.01 0.01 0.02
MIP 23.38 14.51 5.15

σ = 0.5 DEBS 56.32 55.80 55.80
HYBRID 0.66 0.36 0.96

Box-constrained

c = 3 c = 10 c = 100

MIP 0.04 0.04 0.03
σ = 0.01 DEBS 0.01 0.01 0.01

HYBRID 0.01 0.01 0.01
MIP 0.04 0.04 0.05

σ = 0.05 DEBS 0.01 0.01 0.01
HYBRID 0.01 0.01 0.01
MIP 0.06 0.28 2.39

σ = 0.5 DEBS 101.15 196.61 169.16
HYBRID 0.32 1.08 68.69

Ellipsoid–constrained

α = 0.5n α = n

MIP 3.23 2696.75
σ = 0.01 DEBS 0.01 0.01

HYBRID 0.01 0.01
MIP 5.01 2688.88

σ = 0.05 DEBS 0.01 0.01
HYBRID 0.01 0.01
MIP 533.45 2649.62

σ = 0.5 DEBS 29.47 42.89
HYBRID 0.23 0.19

Table 3.1: Mean running time in seconds over all the n values (number of variables) and best approaches
for each problem variation. Bold numbers indicate the best approaches for a given problem variation
w.r.t. the paired-t test with p ≤ 0.01.
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3.2.4.4 Detailed Results

Before comparing the three solution approaches, we note that SCIP, the solver used in our hybrid

algorithm, can also solve pure MIP problems. However, in each problem instance we tested, SCIP is

dominated by CPLEX and therefore we only report the MIP results from CPLEX.

In addition, for the unconstrained and the ellipsoid-constrained problems, SCIP often return error

messages due to no initial bounds on the variables. Therefore, our hybrid algorithm, i.e., the axis-

aligned circumscribed box component, provides finite bounds for all the variables and avoids the issue

of unboundedness.

Comparison of the Three Solution Approaches. In the following figures, the average CPU time

for finding and proving optimality on the 50 different problem instances versus the dimension of the three

types of the problems are presented. In this section, we only present the results that are representative

for our discussion and leave the complete results in Appendix A.1.

Unconstrained Problems. For the unconstrained ILS problems, the hybrid algorithm performs the

best in general. It is only slightly slower than the DEBS method for problems with small and moderate

noise (σ = 0.01 and σ = 0.05) due to preprocessing overhead and performs about two orders of magnitude

faster on problems with large noise (σ = 0.5). The hybrid algorithm is able to prove optimality for each

instance in around one one-hundredth of a second.

In Fig. 3.2, the results show the results for c = 10 as the results for different c values have a very

similar relative performance. Comparing to MIP, the hybrid algorithm consistently outperforms MIP for

all instances. Comparing the DEBS method to MIP, DEBS greatly outperforms MIP for all problems

with small and moderate noise (σ = 0.01 and σ = 0.05), proving optimality for all instances in less than

one one-hundredth of a second. As the noise becomes larger, all the three approaches are less efficient.

However MIP performs better than the DEBS method and the hybrid algorithm remains the best for

all tested problem instances.

The results for problems with large noise, in particular, demonstrate the value of hybridizing DEBS

and MIP solving. It is not simply that the hybrid approach is able to achieve the minimum run-time

(after overhead) of DEBS and MIP. Rather the combination of techniques allows the hybrid to achieve

lower run-time on many problem instances than either DEBS or MIP could achieve. A closer examination

shows that a problem instance for which DEBS struggles to find good solutions can often be solved to

optimality very quickly by DEBS after some variables are restricted during the branch-and-cut process,

therefore speeding up the search.

Box-constrained Problems. As with the unconstrained problems, we only show the figure for c = 10

because results for different c values are similar. Fig. 3.3 demonstrates that for problems with small

and moderate noise (σ = 0.01 and σ = 0.05), the DEBS method, MIP and the hybrid algorithm are

all able to prove optimality quickly. For problems with large noise (σ = 0.5), the hybrid approach is

approximately two orders of magnitude faster than DEBS but about one order of magnitude slower than

MIP. The reason that the hybrid approach underperforms MIP is mainly because the underlying MIP

solver included in the hybrid algorithm, SCIP, is not as efficient as CPLEX, which is used to report the

MIP running time.
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Figure 3.2: Average running time vs dimension for the unconstrained problems, c = 10.

For problems with large noise, the DEBS method has great difficulties solving problems with size

larger than n = 50, while the hybrid algorithm and MIP are still able to solve all the problems. MIP

performs the best on all the box-constrained problem instances, specifically, outperforming the DEBS

method by about three orders of magnitude when both noise and problem size are large: an off-the-shelf

solver defeats the special purpose algorithm for the box-constrained ILS problems.

10 20 30 40 50 60 70 80 90 100

10
−2

10
−1

10
0

10
1

10
2

10
3

Problem size

T
im

e
 (

s
e

c
)

 

 

MIP(σ = 0.01)

MIP(σ = 0.05)

MIP(σ = 0.5)

DEBS(σ = 0.01)

DEBS(σ = 0.05)

DEBS(σ = 0.5)

HYBRID(σ = 0.01)

HYBRID(σ = 0.05)

HYBRID(σ = 0.5)

Figure 3.3: Average running time vs dimension on the box-constrained problems, c = 10.

Ellipsoid-constrained Problems. The results of the ellipsoid-constrained problems are presented in

Figs. 3.4 and 3.5. The hybrid algorithm performs the best, and both the DEBS method and the hybrid

algorithm significantly outperform MIP. While the performance for the DEBS method and the hybrid

algorithm are similar for both the α = 0.5n and α = n cases, the results for MIP show an interesting

difference. MIP is much more efficient for the former. This suggests that MIP performs better when the
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constraining ellipsoid is smaller. The reason is likely that the linear approximations are much tighter for

the α = 0.5n case. For example, the difference in average optimality gap at the root node for instances

with σ = 0.5 is 5.37% for α = 0.5n, and 9.19% for α = n.

For large problems with α = n (Fig. 3.5), we again see the synergy arising from the hybridization:

the hybrid achieves lower run-time than either DEBS or MIP on many instances of size 50 and greater.

We note that in Fig 3.4, the results of DEBS on the size 60 and size 90 problems are orders of

magnitude better than slightly smaller and larger problems. This behaviour is due to the method that

is used to generate the problem instances: When α = 0.5n, the constraining ellipsoid is already small,

which benefits DEBS solving greatly. Therefore most of the instances in this problem set are actually

easy to solve with DEBS. Our results show that DEBS solve all of the 50 instances generated for size 60

and size 90 very quickly.
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Figure 3.4: Average running time vs dimension on the ellipsoid-constrained problems, α = 0.5n.
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Figure 3.5: Average running time vs dimension on the ellipsoid-constrained problems, α = n.
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3.2.4.5 Factors that affect the performance

In this section we discuss the impact of our three independent variables: noise, the size of the circum-

scribed box, and the size of the problem.

Noise. The noise directly affects the size of the ellipsoid defined by the objective function of the ILS

problems. A larger noise leads to a larger ellipsoid thus increasing the search space. Recall the ellipsoid

with center A−1y:

‖y −Ax∗‖22 < β,

where x∗ is the optimal solution and β is a constant. If the noise v is increased, the expression

‖y −Ax∗‖22 will also increase, thus increasing the volume of the ellipsoid. The increment in noise

seems to have a smaller impact on MIP than on the DEBS method. This might be due to the fact that

MIP solves the problems by recursively dividing the original problem into smaller subproblems and, with

the help of the dual bounding mechanism, MIP is able to cut off more solution space than the DEBS

method. Fig. 3.3 demonstrates the impact of different noise levels on the box-constrained problems with

c = 10, where MIP is less efficient than DEBS with σ = 0.01 and σ = 0.05 but significantly outperforms

DEBS with σ = 0.5. For all three types of the ILS problems, the performance of the DEBS method

greatly deteriorates from being able to solve all larger problem instances (n ≥ 50) in less than 0.01

seconds to more than 100 seconds, about five orders of magnitude slower. MIP, on the contrary, exhibits

a steadier increase of running time as the noise is increased. It is less efficient than DEBS when noise

is small, but is able to outperform DEBS when the noise is large (σ = 0.5) for the unconstrained and

the box-constrained problems. For the ellipsoid-constrained problem, the quadratic constraint greatly

increases the difficulty for MIP. Therefore, even though MIP is less sensitive to noise in general, it is

outperformed by DEBS regardless of noise level on ellipsoid-constrained problems.

The Size of the Box. Since the outer-approximations in MIP depend heavily on the tightness of the

bounds on the variables, MIP performs much better when the range of the initial bounds of the variables

is smaller. This is reflected in the results of the unconstrained problems and box-constrained problems.

Fig. 3.6 clearly shows the impact of different size of boxes for MIP with σ = 0.5.

For the DEBS method, we observe that, surprisingly, adding any box constraints is counter-productive.

For the difficult problems with large noise σ = 0.5, Fig. 3.2 and Fig. 3.3 show that the running time for

the unconstrained problems is consistently lower than that of the box-constrained problems. The reason

is that with bounds on the variables, the DEBS reduction must use permutation matrices instead of the

more powerful general unimodular matrices in order to maintain the box-constrained structure without

introducing linear constraints, which cannot be handled by the DEBS method. The use of permutation

matrices greatly reduces the desired property of the matrix in the DEBS method. Therefore, the DEBS

method performs much better for the unconstrained and the ellipsoid-constrained problems, where more

powerful reduction techniques are used.

Size of the Problem. Since both MIP and the DEBS method are exact approaches, the search space

grows exponentially when the size of the problem is increased. As shown in Figs. 3.2, 3.3, and 3.4,

the running time for MIP increases more steadily as problem size becomes larger. In contrast, the

performance of the DEBS method deteriorates greatly with problem size larger than n = 50. Judging

from the results, it seems that the DEBS method is very efficient for all problem sizes when the noise
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Figure 3.6: Average running time vs dimension for MIP on the box-constrained problems with different
initial bounds, σ = 0.5.

is small or moderate, but fails to scale when the noise is large. When the noise is large, the ellipsoid

defined by the objective function is much larger and it becomes extremely difficult to search discretely

for the optimal solution.

3.2.5 Experimental Results: BQP Problems

In this section, we turn our attention to the second class of problems: BQPs. As noted in Section 3.2.1,

these problems are well studied in the OR literature, in contrast to the problems in the previous section

which are studied primarily in the communications literature.

In order to compare our results to the current state-of-the-art, we use the online SDP solver BiqCrunch

[88] and we also provide the results on BQPs from Li et al. [102] and Krislock et al. [87].

3.2.5.1 Setup

The environment is the same as the one used for the ILS problems in Section 3.2.4.1.

3.2.5.2 Test sets

We use a subset of the benchmark instances presented by Li et al. [102], excluding the max-cut problems

as they require additional transformations and cannot be solved with MIP or DEBS directly. We perform

experiments on medium size BQP problems on seven problem sets: Carter type problems [40], William

type problems [159], bqp50 and bqp100 problems, and gkaia, gkaib, and gkaid problems [158]. We

generate ten problem instances for each of the Carter and William type problems and use the problem

instances in the public benchmark sets for the other problem types.

In order to ensure convexity, we perform the same transformation as Li et al. We compute the smallest

eigenvalue for the H matrix of each problem and let it be λmin. Then we apply the perturbation vector

u = (−λmin + 0.001)e to the BQP problem (3.5) when λmin is negative. Note that the transformed

problem has the same optimal solution as the original problem. For the DEBS method, we use Cholesky
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decomposition on matrix H in the BQP problem to obtain matrix A in the binary ILS problem, and

we obtain y from the equation f = −y>A, which gives us y = −(fA−1)>.

The results for all seven problem sets are presented in Table 3.2. For the bqp50, bqp100, gkaia,

gkaib, and gkaid problems, we report the CPU time for each instance. For the Carter and Williams type

problems, we report the arithmetic mean CPU time “arith”, and the shifted geometric mean CPU time

“geo” on the ten instances for each problem size.1

3.2.5.3 Summary

Our experimental results demonstrate that DEBS performs much better than CPLEX on average, though

approximately at the same level as default SCIP (without the hybrid extensions) on seven standard

benchmark sets. Interestingly, DEBS is both significantly better and significantly worse than SCIP on

different problem sets. The hybrid approach, implemented in SCIP, outperforms CPLEX, SCIP, and

DEBS on all seven problem sets, though on some sets the improvement is marginal. Li et al.’s approach

dominates the B&C solvers and DEBS overall while being comparable to our new hybrid approach: on

one problem set Li et al.’s approach is superior, on another the hybrid performs approximately an order-

of-magnitude better, and on the remaining five sets, the performance of the two algorithms is essentially

equivalent. When compared to the SDP approach, the hybrid algorithm performs as efficiently for

moderate size problems but lags behind the SDP approach for large problems. However, on some dense

problems, the hybrid algorithm greatly outperforms the SDP approach. Overall, the SDP approach still

appears to be the strongest for solving BQPs.

3.2.5.4 Detailed Results

The comparison of the identical MIP models in CPLEX and SCIP shows, somewhat surprisingly, that

CPLEX performs substantially better than SCIP on only two of the seven problem sets (Williams and

Carter). SCIP is clearly superior for bqp50, bqp100, gkaia, and gkaib sets while solving one problem more

for gkaid. We attribute this strong performance of SCIP to the quadratic constraint handler described

in Berthold et al. [23].

DEBS is noticeably more efficient than B&C (both CPLEX and SCIP) on the William and Carter

type problems and superior to CPLEX on the bqp50, gkaia, and gkaib problems. While CPLEX does

not out-perform DEBS for any problem instances, SCIP has the edge over DEBS on bqp50, bqp100, and

gkaia. For the final problem set, gkaid, SCIP is able to solve one more problem than DEBS. Comparing

the DEBS method and CPLEX, the DEBS method is noticeably more efficient than CPLEX for five

problem sets: William type, Carter type, bqp50, gkaia and gkaib. Therefore, we conclude that the

DEBS approach from the communications literature is a competitive approach to solving BQPs that

are of interest to the OR community. In fact, DEBS is superior to a state-of-the-art commercial solver,

CPLEX.

Turning to the hybridization of B&C and DEBS, we see that the new hybrid approach out-performs

CPLEX on all problem sets while achieving clearly better performance than SCIP on the Williams and

Carter type problems and marginally better performance on the other five problem sets: there are a

number of problem instances in the latter five sets where the hybrid makes meaningful improvements on

the default SCIP performance and none where it is substantially inferior. Similarly, the hybrid improves

1The shifted geometric mean time is computed as follows:
∏

(ti + s)1/n − s, where ti is the actual CPU time, n is the
number of instances, and s is chosen as 10. Using geometric mean can decrease the influence of the outliers of data [3].
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Table 3.2: A comparison of four approaches plus Li et al.’s results and Krislock et al.’s SDP results for
the seven problem sets. Bold numbers indicate the best approach for a given problem. The symbol ‘-’
means that no problem instances were solved to optimality within 3600 seconds. For the Carter and
William type problems, n is the size of the problem, and p and d are problem generation parameters.
The superscripts indicate the number of instances for which no optimal solution was found. We note
that Li et al.’s results are due to [102] therefore the run-time information is not consistent with the rest
of the results.

Carter type problems

n p CPLEX SCIP DEBS Hybrid Li SDP

arith geo arith geo arith geo arith geo arith arith

40 0.2 0.21 0.21 29.55 21.06 0.01 0.01 0.02 0.02 0.32 0.32
40 0.3 0.38 0.38 34.01 26.35 0.01 0.01 0.03 0.03 0.26 0.62
50 0.2 2.38 2.26 896.53 655.17 0.15 0.15 0.24 0.24 1.5 0.66
50 0.3 2.85 2.69 891.71 767.32 0.80 0.80 1.10 0.85 1.2 1.15
80 0.4 1170.012 349.342 - - 1020.202 249.312 98.37 67.40 89.9 21.39
80 0.5 659.99 369.26 - - 225.33 60.03 48.09 31.02 2.5 16.01

100 0.5 3222.908 2955.288 - - 2766.317 2226.487 2249.535 1584.125 10.8 57.97

William type problems

n d CPLEX SCIP DEBS Hybrid Li SDP

arith geo arith geo arith geo arith geo arith arith

40 0.5 0.25 0.25 8.29 7.59 0.01 0.01 0.01 0.01 0.44 0.33
40 0.7 0.22 0.21 14.16 12.16 0.01 0.01 0.01 0.01 0.47 0.34
50 0.2 1.75 1.70 12.00 10.51 0.35 0.32 0.44 0.40 6.6 0.52
50 0.4 1.74 1.68 148.64 115.64 0.09 0.09 0.14 0.14 24 0.75
50 1 2.78 2.61 1463.022 948.472 0.13 0.09 0.19 0.18 2.5 0.85
60 0.1 21.83 15.29 4.61 4.17 1.57 1.51 1.93 1.85 0.72 0.72
60 0.2 22.81 11.20 387.15 163.29 2.10 1.84 2.65 2.26 5.3 1.33
60 0.4 14.18 11.49 2568.634 1833.754 31.21 10.48 6.24 5.17 18.9 2.32
80 0.1 2014.325 1047.605 1688.283 850.383 157.52 80.99 178.82 89.52 7 3.01
80 0.2 1023.811 530.401 - - 188.92 97.89 140.83 82.79 123.1 2.19

bqp50 problems

Instance CPLEX SCIP DEBS Hybrid Li SDP

bqp50-1 11.66 0.07 0.65 0.06 <0.2 0.25
bqp50-2 1.84 0.06 1.20 0.03 <0.2 0.24
bqp50-3 0.60 0.04 0.01 0.03 <0.2 0.17
bqp50-4 2.84 0.05 0.30 0.04 <0.2 0.22
bqp50-5 3.72 0.03 0.13 0.02 <0.2 0.21
bqp50-6 0.46 0.01 0.15 0.02 <0.2 0.21
bqp50-7 1.70 0.05 0.02 0.05 <0.2 0.26
bqp50-8 0.93 0.06 0.03 0.06 <0.2 0.19
bqp50-9 5.32 0.09 0.35 0.07 <0.2 0.25
bqp50-10 14.30 0.07 0.25 0.06 <0.2 0.24
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bqp100 problems

Instance CPLEX SCIP DEBS Hybrid Li SDP

bqp100-1 - 55.50 - 46.13 1648 1.72
bqp100-2 - 6.74 - 7.12 63.4 2.06
bqp100-3 - 4.99 - 9.10 66.3 1.60
bqp100-4 - 8.83 - 8.96 165.7 1.42
bqp100-5 - 10.28 - 9.17 1230 1.69
bqp100-6 - 566.92 - 55.54 175.2 11.12
bqp100-7 - 42.52 - 13.37 427 1.80
bqp100-8 - 4.63 - 5.96 25.6 1.63
bqp100-9 - 3.50 1282.42 5.90 21.9 1.46
bqp100-10 - 4.43 - 4.45 57.2 1.67

gkaia problems

Instance n CPLEX SCIP DEBS Hybrid Li SDP

gka1a 50 11.32 0.03 4.55 0.02 <1 0.33
gka2a 60 1.60 0.02 0.84 0.02 <1 0.42
gka3a 70 2817.3 0.93 1335.20 0.79 <1 0.93
gka4a 80 88.86 1.12 348.61 0.86 <1 1.07
gka5a 50 3.22 0.94 0.11 0.11 <1 0.29
gka6a 30 0.11 0.37 0.01 0.02 <1 0.06
gka7a 30 0.05 0.41 0.01 0.02 <1 0.07
gka8a 100 - 0.08 634.88 0.08 <1 2.11

gkaib problems

Instance n CPLEX SCIP DEBS Hybrid Li SDP

gka1b 20 0.08 0.29 0.01 0.01 <1 0.10
gka2b 30 0.1 0.36 0.01 0.01 <1 2.18
gka3b 40 0.58 0.6 0.01 0.01 <1 9.44
gka4b 50 1.7 1.15 0.01 0.03 <1 18.42
gka5b 60 5.86 1.44 0.04 0.07 <1 39.20
gka6b 70 21.75 1.95 0.15 0.26 <1 86.56
gka7b 80 59.88 2.52 0.34 0.53 <1 212.73
gka8b 90 160.79 3.67 0.98 1.43 <1 789.10
gka9b 100 502.79 6.04 2.66 3.67 <1 1608.04
gka10b 125 - 9.51 20.7 12.06 <1 5104.21

gkaid problems

Instance n CPLEX SCIP DEBS Hybrid Li SDP

gka1d 100 - 5.90 - 5.84 24 2.10
gka2d 100 - - - - 5671 2.65
gka3d 100 - - - - 1713 2.79
gka4d 100 - - - - 3835 4.23
gka5d 100 - - - - 5466 55.72
gka6d 100 - - - - 1534 3.03
gka7d 100 - - - - 4273 46.04
gka8d 100 - - - - 683 2.94
gka9d 100 - - - - 2481 34.08
gka10d 100 - - - - 1878 30.97
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on the pure DEBS results on all problem sets though the improvement is marginal for bqp50, gkaib and

gkaid.

While our experimental environment is different from that of Li et al., the new hybrid algorithm

appears competitive on the Carter type, William type, bqp50, gkaia, and gkaib problems. The hybrid

algorithm performs better on the bqp100 problems and worse on the gkaid problems. For the bqp100

problems, the hybrid algorithm outperforms Li et al.’s algorithm by about an order of magnitude.

Compared to the SDP approach, the hybrid algorithm performs basically the same or slightly better

for moderate size problems, but significantly less efficiently for larger problems. However for some dense

problem instances (gkaib), the hybrid algorithm greatly outperforms the SDP approach. The hybrid

algorithm was able to solve all of them quickly, while the SDP approach is in general two orders of

magnitudes slower. Overall, the SDP approach still appears to be most efficient for the BQP problems.

3.2.5.5 Discussion

Our results in Section 3.2.4 showed that the DEBS method performs especially well on ILS problems

when the residual ‖y −Az∗‖22, or equivalently, the noise in the data, is small (z∗ is the optimal integer

solution). However, a MIP solver performs better than DEBS with small variable domains and large

noise. To investigate an analog of the noise in the BQP problem, we use the following linear model:

y = Ax+ v, where v ∈ Rn denotes the noise vector. As mentioned in Section 3.2.4, a large noise vector

results a large residual.

In communication applications, a noise vector v of σ ∗ randn(m,1), σ ≥ 5 is generally considered as

an extremely large noise in the data [11]. We computed the noise vectors in the seven problem sets by

substituting the optimal solution or the best solution found within the time limit into the linear model

and found that σ > 5 for all seven problem sets (complete results in Appendix A.2). Therefore these

problems can be regarded as problems with very large noise and the poor performance of the DEBS

method on the larger problems is consistent with both our previous results and the need to search a

larger ellipsoid.

Our results show that combining the DEBS method with a B&C based MIP solver indeed results in

better performance when large noise is present in the problem instances. The additional techniques from

MIP such as relaxation, cutting planes, and inference appear to complement the presolving, axis-aligned

box constraints, and primal heuristic adopted from the DEBS approach.

Analysis of CPLEX solving behaviour shows that the reason that CPLEX is unable to prove opti-

mality for bigger problems (e.g., bqp100 and gkaid) is mainly weakness in the dual bound. Solutions

with good quality are found early in the search but the dual bound only improves slowly. For the DEBS

method, optimal or near optimal solutions are typically found, though not as quickly as with CPLEX.

However, similarly to CPLEX, DEBS is not able to prove optimality since the search space is too large

and it does not have an effective dual bounding mechanism. SCIP, however, performs well on the gka1d,

bqp50, and bqp100 problems because it is able to make rapid improvements in the dual bound. The lack

of such an ability, conversely, appears to explain the very poor performance of SCIP on the Carter and

Williams problems. One area for future work is to investigate the performance differences on individual

problem sets, in particular, to understand the structure that SCIP appears to be taking advantage of in

the problems in which it performs well. The comparison of the hybrid algorithm and the SDP approach

shows that the hybrid algorithm seems to outperform the SDP approach on dense problems (e.g., gkaib).

Further investigation is required to identify the reasons.
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3.3 Combining DEBS with CP

In the previous section, we investigated the combination of DEBS with MIP and demonstrated state-

of-the-art and near state-of-the-art results on four problems classes in the communications and OR

literature. Here, we investigate another hybridization of DEBS, this time with constraint programming

techniques. In particular, we extend DEBS to perform inference on linear constraints, enabling it, for

the first time to be applied to problems with linear constraints. We demonstrate our hybrid algorithm

on the exact quadratic knapsack problem (EQKP) [99], which has a quadratic objective function, a

cardinality constraint, and a knapsack constraint.

3.3.1 Literature Review

Given a set of elements where a distance is specified for each pair of them, the EQKP consists of selecting

a subset of elements such that the sum of the distances between the chosen elements is maximized while

also satisfying a knapsack constraint. It is an extension of the well studied maximum diversity problem

[106], the quadratic knapsack problem [39], and the exact linear knapsack problem [38], which arise in a

wide range of real world applications such as wind farm optimization [147, 163] and task allocation [100].

The EQKP consists of one quadratic objective function and two linear constraints, i.e., one knapsack

constraint and one cardinality constraint, where all variables are binary. It was first studied by Létocart

[99] who proposed a heuristic method for the problem.

For solving EQKPs exactly, the common generic approach in OR is the use of a commercial MIP

solver such as CPLEX or Gurobi. These solvers have been extended to reason about quadratic constraints

[37] and they are able to outperform several other exact approaches [25]. The other generic approach is

the semi-definite programming (SDP) based branch-and-bound algorithm [87], as we saw in the previous

section, which is often regarded as the state-of-the-art approach for solving BQPs. EQKP is an extension

of the BQP and it can be solved with the SDP approach. However, the SDP approach has not been

evaluated on problems with the EQKP structure.

3.3.2 Problem Definition

The EQKP problem is defined as follows:

max
x∈{0,1}

n−1∑

i=1

n∑

j=i+1

hijxixj , (3.10)

s.t.

n∑

i=1

xi = K,

n∑

i=1

aixi ≤ B,

where n ∈ Z , K ∈ Z, ai ∈ R+,∀i, B ∈ R+, hij ∈ R,∀i, j.
For the simplicity of explanation, we reformulate the EQKP in its minimization form with matrix

representation as follows:

min
x∈{0,1}

1

2
x>Hx+ f>x, s.t. c>1 x = K, c>2 x ≤ B, (3.11)
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where H ∈ Rn×n is a symmetric semi-definite positive matrix, f ∈ Rn is a vector equal to zeros,

c1 ∈ Rn is a vector equal to ones, and c2 ∈ Rn is a vector equal to ais. Note that H can always be

made symmetric semi-definite positive to ensure convexity when all variables are binary [25].

3.3.3 The Hybrid Algorithm

To solve the EQKP with the DEBS method, we need to transform the objective function into its

equivalent ILS form through the relationship H = A>A and f = −y>A. Thus, the equivalent ILS

problem can be defined as follows:

min
x∈{0,1}

‖y −Ax‖22 , s.t. c>1 x = K, c>2 x ≤ B. (3.12)

3.3.3.1 Modifying the Reduction

As explained in Section 2.3.4, the reduction phase of DEBS transformsA into an upper triangular matrix

R such that the diagonal entries are ordered in non-decreasing order to improve the efficiency of the

DEBS search by reducing the branching factor at the top of the search tree [43]. Here we demonstrate

how to perform reduction on problems with linear constraints, using the EQKP as an example.

Transforming A to R for the EQKP can be achieved by finding an orthogonal matrix Q ∈ Rn×n and

a permutation matrix P ∈ Zn×n such that Q>AP =

[
R

0

]
, Q =

[
Q1,Q2

]
. Therefore we have:

‖y −Ax‖22 =
∥∥∥Q>1 y −RP Tx

∥∥∥
2

2
+
∥∥∥Q>2 y

∥∥∥
2

2
.

Let ȳ = Q>1 y, z = P Tx, and c̄2 = c2P , the original EQKP (3.12) is then transformed to the new

reduced EQKP:

min
z∈{0,1}

‖ȳ −Rz‖22 , s.t. c>1 x = K, c̄>2 x ≤ B. (3.13)

Note that applying the permutation matrix P to the original problem changes the order of the variable

bounds and the coefficients of the linear constraints. However, since the original lower and upper bounds

on the variables are all zeros and ones, and the coefficients of the cardinality constraint are all ones for

the EQKP, the new bounds and c1 remain unchanged after applying the permutation matrix P . For

problems with general variable bounds, i.e., l ≤ x ≤ u, the reordering can be done with l̄ = P>l and

ū = P>u.

After the optimal solution z∗ to the new EQKP problem (3.13) is found, the optimal solution, x∗,

to the original EQKP problem (3.12) can be recovered with the relationship x∗ = Pz∗.

3.3.3.2 Modifying the Search

From a constraint programming perspective, DEBS does three things. First, the search strategy implies

a fixed variable ordering heuristic (zn, zn−1, . . . , zk, . . . , z1) that is determined after the reduction phase,

where the variables are reordered with the permutation matrix as z = P>x. Second, through the

calculation of ck, i.e., the center of the ellipsoid in the k-th dimension (see Section 2.3.4), DEBS provides
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a value ordering heuristic: for zk, integer values closer to ck are preferred. Third, the inequalities

described in Section 2.3.4.1 induce an interval domain for each zk. DEBS is essentially the enumeration

of these domains under the prescribed variable and value orderings. We use this insight to integrate

linear constraints into DEBS in a straightforward way: linear constraints are made arc consistent (AC)

to further reduce the domains of the zk variables.

A linear constraint is defined as b ≤ a>z ≤ b̄, where b, b̄ ∈ Rn∪{±∞}, and a ∈ Rn is the coefficients

of the constraint. Given a linear constraint, let

αk = min{a>z − akzk | l ≤ z ≤ u} and ᾱk = max{a>z − akzk | l ≤ z ≤ u}

be the minimal and maximal values that a>z can achieve over all variables except zk with respect to

the variable bounds. These values can be computed by substituting the zk variables with their lower or

upper bounds, depending on the signs of the ak variables. The propagation rule for each integer variable

zk is then defined as follows:

⌈
b− ᾱk

ak

⌉
≤ zk ≤

⌊
b̄− αk

ak

⌋
if ak > 0, (3.14)

⌈
b̄− αk

ak

⌉
≤ zk ≤

⌊
b− ᾱk

ak

⌋
if ak < 0. (3.15)

Although the idea of propagating the linear constraint is straightforward and not novel, the imple-

mentation involves maintaining useful information efficiently as the search moves from assigning zk+1

to zk. Recall that variable zk is instantiated at level k (see Section 2.3.4) in the DEBS search. As a

variable is fixed when the search moves down the levels, the values αk and ᾱk actually consist of two

parts: the sum of all the variables that are fixed already (zk+1 to zn), and the sum of the maximum or

minimum values that the unfixed variables (z1 to zk−1) can achieve, according to the variable bounds.

Below we show how to update αk and ᾱk using the cardinality constraint as an example.

For the cardinality constraint, we have ak = 1,∀k, and b = b̄ = K. Therefore, using Equation (3.14),

the lower bound Lk and upper bound Uk imposed by the cardinality constraint can be derived as follows:

Lk = K −
n∑

i=k+1

zi −
k−1∑

i=1

ui and Uk = K −
n∑

i=k+1

zi −
k−1∑

i=1

li,

where
∑k−1

i=1 li = 0 and
∑k−1

i=1 ui = k − 1, since zis are binary for the EQKP.

During the search, the sum of the fixed values S =
∑n

i=k+1 zi is only changed when moving up or

down between two adjacent levels. Therefore, we can use a single variable to keep track this value,

efficiently updating S rather than computing from scratch. When the search backtracks from level k to

k + 1, we set S = S − zk to reverse the assignment of zk. Similarly, when the search moves down from

level k to k − 1, we set S = S + zk to take into account the current assignment of zk.

Equations (3.14) and (3.15) are general and they can be applied to all types of linear constraints.

Similarly, each linear constraint keep tracks of its own sum of the current assigned values S. Therefore

our extended DEBS can be used to solve problems with any number of linear constraints of any type.

The variable domain at each level is the intersection of all the bounds imposed by the linear constraints.

In addition, some types of constraints, e.g., the cardinality constraint as shown above and the knap-
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sack constraint, can be specialized from the general linear constraint formulation and be propagated more

efficiently. For the EQKP, a variable’s domain does not become empty unless the cardinality number

or the capacity is exceeded, which only happens when the variable instantiation violates the cardinality

constraint or the knapsack constraint at the current level. Therefore, we can do a lazy version of AC that

only filters the variable at the current level. The resulting filtering thus runs faster than maintaining

AC directly, while exploring the exact same nodes as AC.

A naive extension of the DEBS method for solving problems with linear constraints can be achieved

by using the linear constraints only as “checkers”: the constraints simply return true or false when all

the variables in their scope are instantiated. If all linear constraints agree on an instantiation, it is

accepted as an integer solution and the search proceeds correspondingly.

Solving Non-Binary Problems. Our extended DEBS method can solve non-binary problems with-

out any modification. However, it requires that the quadratic objective function be inherently convex,

as convexifying a non-binary problem is not possible in general. The reduction and the propagation on

the linear constraints are not affected by the variable domains and therefore remain the same.

3.3.4 Experimental Results: EQKP Problems

3.3.4.1 Setup

The CPU time limit for each run on each problem instance is 3600 seconds. All experiments were

performed on a Intel(R) Xeon(R) CPU E5-1650 v2 3.50GHz machine (in 64 bit mode) with 16GB

memory running MAC OS X 10.9.2 with one thread. The hybrid approach is written in C. We use

CPLEX Optimization Studio v12.6 and the SDP solver BiqCrunch downloaded from the website [88]

for comparison. Both solvers are executed with their default settings. For the SDP solver, there are

four specialized versions that deal with problem-specific structures. Three of them are consistent with

the EQKP problem and the SDP results presented are the best of the three versions for each individual

problem instance, representing the “virtual best” SDP solver. We report the arithmetic mean CPU time

“arith”, and the shifted geometric mean CPU time “geo” to find and prove optimality for each problem

set.

3.3.4.2 Test sets

We use five sets of the benchmark instances with different sizes generated in the same way as Létocart

et al. [99], with 10 instances in each set. For additional comparison, we relax the binary domains

xj ∈ {0, 1} to xj ∈ {0, 1, 2}, meaning that we have the option of selecting two “copies” of each element

when maximizing the quadratic objective function but hjj = 0 (see Formulation 3.10). To the best of

our knowledge, this problem has not been studied in the literature.

In order to ensure convexity, we compute the smallest eigenvalue for theH matrix of each problem and

let it be λmin. If λmin is negative, i.e., the problem is non-convex, we apply the perturbation vector u =

(−λmin+0.001)e such that the original objective function is transformed to: minx∈{0,1}
1
2x
>H̄x+ f̄

>
x,

where H̄ = H + diag(u) and f̄ =
(
f − 1

2u
)>

. Note that this convex formulation has the same optimal

solution as the original one. For the DEBS method, we use Cholesky decomposition on the perturbed

matrix H̄ to obtain matrix A in the ILS formulation (3.12), and we obtain y from the relationship
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f̄ = −y>A, which gives us y = −(f̄A−1)>. If the problem is originally convex, we obtain A and y

with H and f .

3.3.4.3 Results of the EQKP

We first compare the three different implementation of the hybrid DEBS+CP algorithms: DEBS+arc

consistency (AC), DEBS+lazy arc consistency (LAC), and DEBS+checking (CHECK). From Table

3.3, we can see that DEBS+LAC performs the best, while DEBS+CHECK is, unsurprisingly, orders of

magnitude slower than DEBS+AC and DEBS+LAC. This result suggests that the propagation is critical

to the performance.

Second, we compare the best hybrid algorithm to the other solvers. From Table 3.4, it is clear that

the DEBS+LAC hybrid algorithm performs the best both for the EQKP and its relaxed problem. For

the EQKP, the hybrid algorithm is on average one to two orders of magnitude faster than CPLEX and

it strictly dominates CPLEX on each problem instance in our experiments. The SDP approach per-

forms the worst among the three approaches. These results are surprising given the strong performance

for solving the BQPs, and the fact that these results are the best per instance results over the three

BiqCrunch variations. Analysis of CPLEX and the SDP solving behaviour shows that the reason that

both approaches are unable to prove optimality for larger problems is mainly the weakness in the dual

bound.

{0,1} Problems

n DEBS+AC DEBS+LAC DEBS+CHECK

arith geo arith geo arith geo

10 0.01 0.01 0.01 0.01 0.01 0.01
20 0.02 0.02 0.01 0.01 1.34 1.34
30 4.16 3.39 0.72 0.68 1434.52 1434.51
40 709.341 153.031 115.64 31.91 - -
50 1005.542 300.262 317.83 49.87 - -

Table 3.3: A comparison of DEBS+AC, DEBS+LAC and the DEBS+CHECK approach for the EQKP
({0,1} Problems). Bold numbers indicate the best approach for a given problem set. The superscripts
indicate the number of instances not solved to optimality within 3600 seconds. The symbol ‘-’ means
that none of the 10 problem instances were solved to optimality within 3600 seconds.

Interestingly, the running times for all three approaches increase significantly when K is increased.

The reason is that, during the search, when the sum of the already fixed variables at a node is equal

to K, we know that the unfixed variables have to be set to zero to satisfy the cardinality constraint.

Intuitively, if K is small, such solutions are early in the search tree, as fewer branching decisions are

required to reach such nodes. For the same reason, we expect that the running time to be also decreased

when K is further increased towards n.

From Table 3.4, it is observed that while the relaxed domain makes the problem much more difficult

to solve, the hybrid algorithm still dominates CPLEX. The SDP approach cannot be used to solve the

relaxed problem without transforming the problem back to binary domains at the cost of introducing

additional variables. Therefore, we perform this transformation using the standard technique by repre-

senting the integer variables with their binary expansion [55], i.e., we replace each xj ∈ {0, 1, 2} with

yj0 +2yj1, where yj0 and yj1 are binary. Results show that the SDP approach does not solve the relaxed
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{0,1} Problems

n DEBS+LAC DEBS+LAC+Red. CPLEX SDP

arith geo arith geo arith geo arith geo

10 0.01 0.01 0.01 0.01 0.04 0.04 0.14 0.14
20 0.01 0.01 0.01 0.01 0.18 0.18 4.94 4.35
30 0.72 0.68 0.69 0.65 18.82 12.21 336.94 152.53
40 115.64 31.91 109.63 30.78 1274.052 401.52 2374.784 1238.914

50 317.83 49.87 329.31 50.91 1810.346 1006.416 3237.457 3119.117

{0,1,2} Problems

n DEBS+LAC DEBS+LAC+Red. CPLEX SDP

arith geo arith geo arith geo arith geo

10 0.01 0.01 0.01 0.01 0.01 0.01 3567.759 3566.439

20 0.02 0.02 0.02 0.02 0.26 0.25 - -
30 1.05 0.95 0.99 0.90 11.49 6.78 - -
40 276.28 65.86 308.52 69.78 1203.592 281.982 - -
50 2354.506 1216.436 2406.486 1262.996 3149.808 2700.368 - -

Table 3.4: A comparison of CPLEX, DEBS+LAC and the SDP approach for the EQKP ({0,1} Problems)
and its problem variation ({0,1,2} Problems). Bold numbers indicate the best approach for a given
problem set. The superscripts indicate the number of instances not solved to optimality within 3600
seconds. The symbol ‘-’ means that none of the 10 problem instances were solved to optimality within
3600 seconds.

problem efficiently due to the very slow improvement of the dual bound.

It is interesting to observe that the reduction does not seem to improve the performance for the

EQKP as it does on the BQP problems without general linear constraints [89]. Reduction even wors-

ens performance on the relaxed problems. It may, therefore, be of interest to develop new reduction

algorithms that achieve improvements similar to the original reduction but in the presence of linear

constraints.

For the sake of completeness, we also hybridize our DEBS+LAC approach with MIP as done in

Section 3.2 to solve the EQKP. However, the results are worse than that of DEBS+LAC. For example,

the average running time of the EQKP ({0,1} Problems) are 0.01, 0.01, 0.69, 208.02 and 1170.52 seconds,

for the five problems. In addition, for instances of size 50, 1 out of 10 instances could not be solved to

optimality within the time limit. The reason is because that the MIP component does not contribute to

the overall solving capability, as the dual bound is very weak.

3.4 Conclusion

In this chapter, we propose two hybrid algorithms that combine techniques from DEBS and MIP and

CP, respectively.

The hybridization of DEBS and MIP implements DEBS-based presolving, axis-aligned box con-

straints, and a primal heuristic in a MIP solver to solve the three types of ILS problems that arise in

signal processing applications and the classical BQP problem in the OR field.

For the ILS problem, we show that the hybrid algorithm outperforms both the MIP and DEBS

approaches individually, while under-performing MIP, only for box-constrained problems with large
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noise. Our results demonstrate that although DEBS is often considered the state-of-the-art approach in

the communications literature for solving ILS problems, it is possible to substantially improve upon its

performance by hybridizing it with complementary technology from another field of study. The hybrid

algorithm can be especially useful when the ILS problems have to be solved a large number of times or

when the running time is very limited as in some important applications [146].

We also conduct the first empirical study comparing the performance of a MIP solver, the DEBS

method, and the hybrid algorithm for three types of the ILS problems. We performed extensive experi-

ments on problems with various attributes and identified key characteristics impacting the performance

of each approach: noise, the size of the constraining box, and the size of the problem. Our experimental

results demonstrate that the DEBS method is both significantly better and significantly worse than the

MIP solver depending on the problem characteristics. DEBS is more sensitive to the noise while MIP is

more sensitive to the size of the variable domains. The DEBS method performs better than MIP when

noise is small, regardless of the size of the problem or the size of the box, while MIP is two orders of

magnitude better for all the box-constrained problems and when the noise is large. This latter result

is notable as it shows that for some problem characteristics, an off-the-shelf solver out-performs the

specialized technique typically used in the communications literature. However, in the final analysis it

is the combination of the specialized approach and the MIP solver in the form of the proposed hybrid

algorithm that results in the best problem-solving performance.

For the BQP problems, the hybridization of DEBS and B&C out-performs both the B&C and DEBS

based approaches across all problem sets. The improvement is substantial for some problem sets, though

only marginal in others. Compared to the best special-purpose algorithms, Li et al.’s branch-and-bound

algorithm [102] and an SDP approach [87], the new hybrid algorithm is competitive though overall not

as strong as the SDP algorithm. We, therefore, conclude that the hybridization of DEBS with B&C is

a strong contender on BQP problems, though the SDP approach remains the state of the art.

Our results also show that the DEBS performs much better than CPLEX and about even with

SCIP, though different problem sets show markedly different relative performance. The DEBS algorithm

from the communications literature, therefore, is at least competitive with state-of-the-art B&C MIP

approaches to binary quadratic problems.

For the hybridization of DEBS and CP, the hybrid algorithm is implemented as an extension to

DEBS. The core of our extension required the modification of the DEBS approach to incorporate linear

constraints. We did this by adopting standard linear constraint propagation algorithms. Results on the

exact quadratic knapsack problem (EQKP) and a variation showed that our algorithm outperforms both

the state-of-the-art MIP and SDP approaches.

Our work on the hybrid algorithms has inspired us to explore other possibilities of using geometric

information from DEBS to enhance MIP and CP solving. Specifically, in Chapter 5 we develop inference

rules and search strategies to solve the strictly convex quadratically-constrained problems.

In the next chapter, we focus on an important case of the IQCP: the variance minimization problem.

Such problem arise in many applications such as load balancing scheduling problems. We again develop

a hybrid algorithm that combines techniques from MIP and CP to solve two real world problems, i.e.,

the load balancing nurse scheduling problem and the balanced academic curriculum problem.



Chapter 4

Constraint Integer Programming for

Variance Minimization: An

Application to Load Balancing

Problems

In Chapter 3 we showed how MIP, CP and DEBS can be hybridized to solve some special cases of the

IQCP efficiently. The hybridization of MIP and DEBS can be regarded as a component enhancement,

since different aspects of DEBS are incorporated into MIP as a presolving technique, cutting planes, and

a primal heuristic. The hybridization of CP and DEBS is done in a different way and it can be seen as a

node processing enhancement, i.e., the propagation from the linear constraints is used to prune variable

domains in the DEBS search.

In this chapter, we study a even tighter integration, this time combining MIP, CP and DEBS together.

The integration is done in the paradigm of Constraint Integer Programming (CIP) (see Section 2.3.3 and

the references therein) which integrates CP and MIP modelling and solving techniques. Specifically, at

each node, we perform MIP routines such as LP relaxation solving and CP routines such as constraint

propagation. In addition, we strengthen the problem formulation with cutting planes based on a CP

perspective on problem structure and the geometrical reasoning from DEBS. We demonstrate that the

CIP approach can be used to efficiently solve the variance minimization problem, an important class

of IQCPs. In this chapter, we focus our study on load balancing problems, which appear frequently in

scheduling applications.

We note that although our CIP approach was clearly the state-of-the-art in our previous confer-

ence publication [93], substantial improvements have been made on the MIP and CP solvers used for

comparison. Therefore we have rerun all the experiments with the latest versions of the solvers.

4.1 Introduction

Load balancing problems are concerned with the assignment of a given workload to different resources

such that the loads are as evenly distributed as possible. Common objectives include minimizing the

55
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maximum load [41, 78], the gap between the maximum and minimum loads [116], the sum of deviations

from the mean load (L1-norm), the sum of squares deviations from the mean load (L2-norm), and the

maximum deviation from the mean load (L∞-norm) [115, 136]. Among these different load balancing

criteria, it has been shown that minimizing the L2-norm achieves the best performance in terms of evenly

distributing the loads across all resources [45, 138, 139], as the L2-norm is more sensitive to extreme

values. Indeed, in real world load balancing problems, e.g., workforce scheduling where fairness among

workers is crucial, many small deviations from the mean are often considered more desirable than a few

large deviations [139]. Therefore, we are interested in the L2-norm, i.e., minimizing the variance of the

loads.

In this chapter, we study two real world applications, the load balancing nurse-to-patient assignment

problem (NPAP) and the balanced academic curriculum problem (BACP). The NPAP assigns nurses

to a hospital zone (e.g., a nursery room) and to patients within the zone to minimize the variance in

the total acuity of patients assigned to each nurse. The BACP is concerned with assigning courses

to academic periods and balancing the course load within each period, subject to some constraints on

course prerequisites.

Constraint programming based approaches, combining the spread constraint [124] with problem-

specific search heuristics, are currently the state-of-the-art for solving the NPAP [121, 122] and the

BACP [115, 121] exactly. In this chapter, we address the problem with two approaches that, to our

knowledge, have not yet been applied: mixed integer quadratic programming (MIQP) and CIP [3, 4].

Mixed integer linear programming (MILP) techniques have been extended to reason about convex

quadratic constraints [37], allowing MIQPs to be solved by commercial MILP solvers. Since variance

minimization can be modelled as an MIQP and underlying MILP technology has seen substantial im-

provement over the past few years [86], we develop and apply an MIQP model to the problem. The

model is natural, given the direct representation of the quadratic constraints, however we show that

model performs worse using CPLEX than the best known CP model implemented in OSCAR for the

NPAP.1

We then improve the MIQP model in two orthogonal directions. First, in the CIP framework, we

exploit the idea of augmented global constraints that embed both inference techniques in the form of

bounds propagation and relaxation-based reasoning via constraint-specific linear relaxations and cutting

planes. These techniques are functional extensions to global constraints (beyond filtering) that can be

implemented in any solver that allows linear relaxations and the dynamic addition of cutting planes.

In particular, we augment the MIQP model to include the quadratic [23], gcc, and spread global

constraints. For the first two constraints, the propagation, relaxation, and cutting plane techniques are

taken from the literature. For the spread constraint, we implement the bound consistency algorithm due

to Schaus et al. [137] and develop novel relaxation and cutting plane techniques. Our augmented global

constraints can be soundly used in any models in which the unaugmented global constraints appear.

The second direction of improvements is to modify the branching heuristics. Given the structure of

the NPAP and the BACP, we develop two simple, static variable ordering heuristics that influence the

default, general branching rules of the CIP solver, SCIP [3, 5].

For the NPAP, we first note that while our CIP approach developed in 2014 [93] underperforms

a recent decomposition method [122], it is still of interest from the perspective of the “model and

1In our previous publication [93], we used COMET as the CP solver. We switched to OSCAR as COMET is no longer
supported by the developers.
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solve” paradigm and the goal of declarative problem solving [60]. Problem decomposition requires

more knowledge and work by the modeler and restricts the extensibility of the model, for example,

to the addition of inter-zone constraints. Therefore in the rest of the chapter, we focus our study on

models without decomposition. Our empirical results show that the CIP models without problem-specific

branching heuristics perform slightly worse than the MIQP model in CPLEX. However, the existing CP

model still performs the best. When problem-specific branching priorities are used, the best CIP model

outperforms both the MIQP model in CPLEX and the previous state-of-the-art CP model. The best CIP

model includes all three global constraints and results in at least an order of magnitude improvement

over MIQP. Compared to the default heuristics, the problem-specific heuristics find and prove optimal

solutions with 30 to 40 times less effort in terms of both search tree size and run-time. Subsequent

analysis shows that the improved performance arises due to the rapid improvement in both the primal

(upper) bound and the dual (lower) bound early in the search.

For the BACP, both our new MIQP model and CIP models with problem-specific heuristic outperform

the previous best known CP model. In addition, the relative performance of the CIP models follow the

same trend as those in the NPAP, reinforcing our results on the effectiveness of the augmented global

constraints.

4.1.1 Contributions

The contributions of this chapter are as follows:

• Within the framework of the augmented global constraint, we develop relaxations and cutting

planes for the spread constraints and implement them in the CIP solver SCIP. We show how

various global constraints cannot only embed their traditional filtering algorithm but also linear

relaxations strengthened with cutting planes. In terms of reusability, the augmented global con-

straints can be applied to any problems that contain e.g., spread constraints, in any solver that

allows linear relaxations and the dynamic addition of cutting planes.

• We study the structure of the load balancing problems and propose problem-specific branching

rules that guide the search in an efficient way. Our CIP models with branching rules outperform

the previous best known non-decomposition based CP model for the NPAP and the best known

CP model for the BACP.

• We propose novel MIQP models that solve the load balancing problems in the CP literature and

perform the first empirical study on the NPAP and the BACP that analyze the performance of

MIP and CP. Results show that the MIQP model achieves the state-of-the-art for the BACP.

A preliminary report on the work in this chapter has previous appeared in a conference publication

[93].

4.1.2 Organization

This chapter is organized as follows. We present the two load balancing problems in Sections 4.2 and 4.3.

In each section, we first review relevant literature and present the problem definition. We then introduce

the base CP model in the literature and the new MIQP and CIP models. We address our primary

contribution, the CIP components, in Section 4.4, which presents the augmented global constraints used
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in the CIP models. We discuss the branching heuristics in Section 4.5. Sections 4.6 and 4.7 provide

computational results and discussions for the two load balancing problems, respectively. We conclude in

Section 4.8.

4.2 The Load Balancing Nurse-to-Patient Assignment Problem

(NPAP)

4.2.1 Background

The load balancing nurse-to-patient assignment problem (NPAP) requires the assignment of nurses to

new-born infant patients across different zones in a hospital [116]. Each infant is hospitalized in one of

the rooms, or zones, in the nursery and requires a certain amount of care depending on the acuity of

his/her condition. The problem has two main decisions. First, each nurse has to be assigned to a zone

in which he/she will work for the entire shift. Second, each nurse has to be assigned to a set of patients

in the same zone. The objective is to minimize the variance of the total acuity assigned to each nurse.

Such an assignment will avoid overloading the nurses, which can result in stress and poor quality of the

care.

The problem was originally modeled and solved as an MILP with a linear objective function that

minimizes the sum of the differences between the maximum and minimum assigned workload in each zone

[116]. However, although the objective function ensures the workload of each zone is evenly distributed,

the workload difference between nurses in different zones may be large.

Schaus et al. [138, 139] proposed a CP model that directly minimizes the standard deviation of the

nurses’ workloads using the bounds consistency spread constraint [124]. Results showed significant

improvements in both solution quality and computational efficiency compared to the MILP model. The

CP approach is able to solve problems with two zones exactly, but not very efficiently without using

an approximation of the number of nurses assigned to each zone and further decomposition. While the

approximation and decomposition techniques solve the problem quickly, optimality is not guaranteed.

More recently, Pesant [121] solved the single-zone problem with domain consistency spread constraint

and proposed an exact CP-based decomposition method for the multi-zone problem [122].

4.2.2 Mathematical Models

4.2.2.1 Problem Definition

The load balancing NPAP is defined by a finite set of m patients, a finite set of n nurses, and a finite set

of p zones. In addition, let Pk denote the set of patients in zone k, thus {P1, . . . , Pp} forms a partition of

{1, . . . ,m}. For each patient, i, a non-negative integer, Ai, represents his/her acuity. The mean of the

nurses’ workload is therefore computed as µ =
∑m

i=1Ai/n. The sum of the acuity levels of the patients

assigned to a nurse cannot exceed MaxAcuity and the total number of assigned patients cannot exceed

MaxPatients. Each patient can only be assigned to one nurse, and each nurse can only be assigned

to one zone. The objective is to minimize the variance or, equivalently, the standard deviation of the

nurses’ workload, measured as the total acuity assigned to the nurses.
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min σ (4.1)

s.t. spread({W1, . . . ,Wn}, µ, σ), (4.2)

multiknapsack({N1, . . . , Nm}, {A1, ..., Am}, {W1, . . . ,Wn}), (4.3)

cardinality({N1, . . . , Nm}, {1, . . . , n}, {1, . . . ,MaxPatients}), (4.4)

pairwiseDisjoint({Z1, . . . , Zp}), (4.5)

Zk =
⋃

i∈Pk

Ni, k = 1, . . . , p (4.6)

Wj ∈ {min{Ai}, . . . ,MaxAcuity}, j = 1, . . . , n (4.7)

Ni ∈ {1, . . . , n}. i = 1, . . . ,m (4.8)

Figure 4.1: The CP model of Schaus et al. [139] for the NPAP.

4.2.2.2 The CP Model

In the state-of-the-art exact CP model [139], the decision variables are defined as follows:

• Ni denotes the nurse assigned to patient i.

• Wj denotes nurse j’s workload.

• σ denotes the standard deviation of the variables W1, . . . ,Wn.

The CP model is shown in Fig. 4.1. Constraint (4.2) is the spread constraint, which relates a set

of variables to their mean and standard deviation. Constraint (4.3) is a global packing constraint that

governs the packing of items, corresponding to patients with “size” equal to their acuity levels, into

bins corresponding to the workload of each nurse. Constraint (4.4) is the gcc placing the limit on each

nurse in terms of number of assigned patients. Constraint (4.5) expresses that a nurse can only work in

one zone during the shift, where Zk is the set of nurses assigned to zone k, i.e., Zk =
⋃

i∈Pk
Ni. The

pairwiseDisjoint constraint enforces pairwise empty intersections among variables representing the

set of nurses working in each zone. Constraint (4.7) expresses bounds on the workload of each nurse.

Since there are always more patients than nurses, each nurse will be assigned to at least one patient and,

therefore, the Wj variables have a lower bound equal to the minimum acuity among all patients.

A customized search heuristic is an important aspect of the success of the CP model. First, the

symmetry arising from the interchangeability of the nurses is dynamically broken during search by

exploiting the equivalence among all nurses who have not yet been assigned a patient. Second, problem-

specific variable and value ordering heuristics are implemented: the unassigned patient with the highest

acuity is selected and assigned to the nurse with the current smallest workload.

4.2.2.3 The New MIQP Model

We propose a new mixed integer quadratic programming (MIQP) model for the problem that is mathe-

matically equivalent to the CP model. In addition to µ, σ, and the Wj variables, we define two additional

decision variables as follows:

• xij is equal to 1 if patient i is assigned to nurse j.

• zjk is equal to 1 if nurse j is assigned to work in zone k.
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min σ (4.9)

s.t. σ ≥

√∑n
j=1(Wj − µ)2

n
, (4.10)

n∑

j=1

xij = 1, i = 1, . . . ,m (4.11)

p∑

k=1

zjk = 1, j = 1, . . . , n (4.12)

Wj =

m∑

i=1

xijAi, j = 1, . . . , n (4.13)

∑

i∈Pk

xij ≤ zjkMaxPatients, j = 1, . . . , n, k = 1, . . . , p (4.14)

Wj ≤Wj+1, j = 1, . . . , n− 1 (4.15)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (4.16)

zjk ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , p (4.17)

Wj ∈ [min{Ai},MaxAcuity]. j = 1, . . . , n (4.18)

Figure 4.2: The MIQP model for the NPAP.

The MIQP model is given in Fig. 4.2. The objective function is stated in (4.9). Constraint (4.10)

specifies the quadratic relationship between the standard deviation, σ, and the workload variables, Wj .

Constraint (4.11) ensures that each patient is assigned to exactly one nurse. Constraint (4.12) ensures

that each nurse is assigned to exactly one zone. Constraint (4.13) calculates the workload of each nurse

by summing over all patients. Constraint (4.14) ensures that the maximum number of patients assigned

per nurse does not exceed the capacity of the nurse and that a nurse is only assigned patients from

his/her assigned zone. Constraint (4.15) is the symmetry breaking constraint.

4.2.2.4 The New CIP Model

We propose a novel CIP model that adds global constraints to the MIQP model. To do this, we include

the Ni variable with the same meaning as in the CP model: the index of the nurse assigned to patient

i. We link Ni to xij as follows:

Ni =

n∑

j=1

xijj. i = 1, . . . ,m (4.19)

The global constraints added to the MIQP model to form the CIP model are Constraints (4.2) and

(4.4) from the CP model (Fig. 4.1). The complete CIP model is the MIQP model in Fig. 4.2 plus

Constraints (4.2), (4.4) and (4.19), .

Note that there is no need for an explicit quadratic global constraint in the CIP model. The SCIP

solver used for the CIP models recognizes the quadratic nature of Constraint (4.10) and automatically

includes the quadratic constraint.
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4.3 The Balanced Academic Curriculum Problem (BACP)

4.3.1 Background

The balanced academic curriculum problem (BACP) is concerned with scheduling courses in different

teaching periods at universities. Each course has an academic workload and may have a set of prerequisite

courses, which define the partial order of the courses that a student must follow. The goal of the BACP

is to assign courses to periods where the academic loads of the courses are balanced within each period,

while satisfying the prerequisite requirement. In addition, the number of courses assigned to each period

must satisfy given upper and lower bounds.

The BACP was first introduced by Castro and Manzano [41] and solved with CP, where a linear

objective function is used to minimize the maximum academic load of a period. The problem was then

tackled by Hnich et al. [77, 78] with an hybrid CP/MIP approach and Lambert et al. [95] with another

hybrid approach that combines CP and genetic algorithms. Both hybrid approaches showed substantial

improvement over the pure CP approaches. However, all of the work above considered only the linear

objective function.

Monette et al. [115] introduced different balancing criteria to the BACP, including the variance

minimization of the academic loads. Schaus [136] and Monette et al. [114] solved the variance mini-

mization version of the BACP with the spread constraint that provides specific inference based on the

relationship between the standard deviation and the mean. However, in both works, a simplified version

of the BACP is studied, where the problem does not consider the cardinality constraint that limits the

number of courses per period. More recently, Pesant [121] solved the BACP with the domain consistency

spread constraint, where both the original and the simplified problems are studied. Results show that

the simplified problem can be solved to optimality much faster than the original problem with CP, either

using the bounds consistency algorithm or the domain consistency algorithm. The CP approach with

the domain consistency spread constraint represents the current state-of-the-art for both the simplified

and original problems.

4.3.2 Mathematical Models

4.3.2.1 Problem Definition

The BACP is defined by a finite set of n periods and a finite set of m courses. For each course, i, a

non-negative integer, Li, represents the load of the course. In addition, a finite set of Prerequisites

defines the pairwise relationship (i, ī) such that course i must be assigned to a period prior to course

ī, ∀(i, ī) ∈ Prerequisites. The mean of the loads is computed as µ =
∑m

i=1 Li/m. The number of the

courses assigned to a period is restricted to be between MinCourses and MaxCourses. Each course

can only be assigned to one period. The objective is to minimize the variance of the loads assigned to

the periods.

4.3.2.2 The CP Model

The decision variables are defined as follows:

• Ni denotes the period assigned to course i.

• Wj denotes the academic load of period j.
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min σ (4.20)

s.t. spread({W1, . . . ,Wn}, µ, σ), (4.21)

multiknapsack({N1, . . . , Nm}, {L1, ..., Lm}, {W1, . . . ,Wn}), (4.22)

cardinality({N1, . . . , Nm}, {1, . . . , n}, {MinCourses, . . . ,MaxCourses}), (4.23)

Ni < Nī, ∀(i, ī) ∈ Prerequisites (4.24)

Wj ∈ {min{Li}, . . . ,
m∑

i=1

Li}, j = 1, . . . , n (4.25)

Ni ∈ {1, . . . , n}. i = 1, . . . ,m (4.26)

Figure 4.3: The CP model of Schaus [136] for the BACP.

• σ denotes the standard deviation of the variables W1, . . . ,Wn.

The CP model is shown in Fig. 4.3. Similar to the CP model of NPAP, Constraint (4.21) is the spread

constraint, which relates the load variables to their mean and standard deviation. Constraint (4.22) is

the global packing constraint and Constraint (4.23) is the gcc that restricts the number of assigned

courses to each period. Constraint (4.24) enforces the precedence relations defined by the prerequisite

requirement. Finally, Constraint (4.25) places bounds on the loads of each period.

4.3.2.3 The New MIQP Model

We propose a new MIQP model to solve the BACP. In addition to µ, σ, and the Wj variables, we define

the additional decision variable as follows:

• xij is equal to 1 if course i is assigned to period j.

The MIQP model is given in Fig. 4.4. The objective function (4.27) minimizes the standard devia-

tion. Constraint (4.28) specifies the relationship between the standard deviation, σ, and the academic

load variables, Wj . Constraint (4.29) ensures that each course is assigned to exactly one period. Con-

straint (4.30) calculates the academic load of each period by summing over all courses. Constraint (4.31)

enforces the minimum and the maximum number of courses assigned to each period. Constraint (4.32)

is the prerequisite constraint.

4.3.2.4 The New CIP Model

We propose a novel CIP model and add the global constraints to the MIQP model in the same way that

we did for the NPAP. We include the Ni variable with the same meaning as in the CP model: the index

of the period assigned to course i. We link Ni to xij as follows:

Ni =

n∑

j=1

xijj. i = 1, . . . ,m (4.35)

The global constraints added to the MIQP model to form the CIP model are Constraints (4.21) and

(4.23) from the CP model of the BACP (Fig. 4.3). The complete CIP model is the MIQP model in Fig.

4.4 plus Constraints (4.21), (4.23) and (4.35).
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min σ (4.27)

s.t. σ ≥

√∑n
j=1(Wj − µ)2

n
, (4.28)

n∑

j=1

xij = 1, i = 1, . . . ,m (4.29)

Wj =

m∑

i=1

xijLi, j = 1, . . . , n (4.30)

MinCourses ≤
m∑

i=1

xij ≤MaxCourses, j = 1, . . . , n (4.31)

n∑

j=1

xijj <

n∑

j=1

xījj, ∀(i, ī) ∈ Prerequisites (4.32)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (4.33)

Wj ∈ [min{Li},
n∑

i=1

Li}]. j = 1, . . . , n (4.34)

Figure 4.4: The MIQP model for BACP.

4.4 Augmented Global Constraints

In Section 4.2.2 and Section 4.3.2 we proposed novel MIQP and CIP models for the NPAP and BACP. In

this section, we focus on our more significant contribution: the augmented global constraints, which em-

bed both inference techniques and constraint-specific linear relaxations and cutting planes. Specifically,

we augment the MIQP models to include the quadratic [23], gcc, and spread global constraints

within the CIP framework. For the first two constraints, the propagation algorithm, relaxation, and

cutting planes are taken from the existing literature. For the spread constraint, we implement the

inference algorithm due to Schaus et al. [137] and develop novel relaxation and cutting plane techniques.

For each constraint, bounds propagation is used as the underlying inference algorithm in the solver

used, SCIP, as it employs an interval representation of variable domains. As the functionality of global

constraints in CIP is more general than in CP, we discuss each constraint in this section.

4.4.1 The Quadratic Constraint

The quadratic constraint [23] is used to reason about constraints with quadratic terms and consists of

a set of n variables {W1, . . . ,Wn}, an n×n symmetric matrix A, an n-dimensional vector b, and scalars

l and u. The representation is given as follows:

quad({W1, . . . ,Wn},A, b, l, u),

where A ∈ Qn×n, b ∈ Qn, l ∈ Q and u ∈ Q. The constraint ensures the following condition:

n∑

i=1

n∑

j=1

Ai,jWiWj +

n∑

i=1

bixi ∈ [l, u].
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We use the existing quadratic constraint in SCIP [23] with its default parameter values. It im-

plements a number of problem solving techniques including bounds propagation, addition of linear

relaxations, cutting plane generation, problem reformulation, and primal heuristics.

4.4.2 The Global Cardinality Constraint

The gcc constraint consists of a set of m variables {N1, . . . , Nm}, a set of n values {v1, . . . , vn}, and a

set of n pairs of values [lj , uj ], for each vj . The constraint is satisfied if and only if each vj is assigned

at least lj times and at most uj times to the Ni variables. The representation is given as follows:

cardinality({N1, ..., Nm}, {v1, ..., vn}, {[l1, u1], ..., [ln, un]}).

We use the bound consistency filtering algorithm due to Quimper et al. [128].

4.4.2.1 Relaxation

Linear relaxations have a central role in mixed integer programming. Given an MILP, which is, in

general, NP-hard, the standard relaxation arises from ignoring the integrality constraints on the integer

variables resulting in a polytime solvable linear program (LP). The LP plays numerous roles in search

including providing a dual bound on a problem that is compared to the current best solution to prune

search sub-trees in which no improving solution exists and in providing a basis for search heuristics

[5, 125].

A substantial body of work has developed linear relaxations for global constraints (e.g., [79, 111, 129]).

We implement an existing relaxation based on the MILP representation of gcc [79]. Using the notation

for gcc introduced above, if we define an additional binary variable xij = 1 if Ni = vj , an exact

formulation of gcc is presented in Fig. 4.5. This formulation is used by the solver to form a linear

relaxation of the gcc constraint by ignoring the integrality constraint on xij (i.e., Constraint (4.39))

and replacing it with xij ∈ [0, 1].

n∑

j=1

xij = 1, i = 1, . . . ,m (4.36)

lj ≤
m∑

i=1

xij ≤ uj , j = 1, . . . , n (4.37)

xij = 0, ∀i, j /∈ Dxi
(4.38)

xij ∈ {0, 1}, ∀i, j (4.39)

Ni =

n∑

j=1

vjxij . i = 1, . . . ,m (4.40)

Figure 4.5: A MILP formulation of gcc [79].

Our CIP models already contain linear constraints that are identical to some of those in Fig. 4.5.

Specifically, Constraint (4.11), (4.16), and (4.19) in the CIP model of the NPAP and Constraint (4.29),

(4.33), and (4.35) in the CIP model of the BACP are identical Constraints (4.36), (4.39), and (4.40),
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respectively. As Constraint (4.38) does not fix any xij variables in our problems, the only constraint we

add to the CIP model is Constraint (4.37).

4.4.2.2 Cutting Planes

With the importance of the linear relaxation to MILP solving, techniques for improving it via the addition

of cutting planes (i.e., implied linear constraints) have been developed [105]. We use the cutting planes

for gcc due to Hooker [79].

For the CIP model we generate one inequality constraint using all xi variables:

n∑

i=1

pivi ≤
m∑

j=1

Nj ≤
n∑

i=1

qivi, (4.41)

where

pi = min
{
ui m−

i−1∑

j=1

pj −
n∑

j=i+1

lj

}
, i = 1, . . . , n (4.42)

qi = min
{
ui m−

n∑

j=i+1

qj −
i−1∑

j=1

lj

}
. i = n, . . . , 1. (4.43)

Note that pi and qi are the maximum number of times that a value in Nj ’s domain, vi, can be selected

when, respectively, minimizing and maximizing the sum of the xi variables, assuming, without loss of

generality, that the vis are ordered from smallest to largest. Similar inequalities including subsets of the

xi variables ranging in cardinality from 2 to m − 1 are also valid and could result in a smaller search

space. However, our preliminary results indicated that the large number of the constraints added to the

problem results in a very large model, reducing search efficiency. Please see Hooker [79] for more details.

4.4.3 The Spread Constraint

The spread constraint was first proposed by Pesant [124] to achieve the balancing of a set of values

based on statistical concepts. A bound consistency algorithm was proposed in the same paper and a

simplified and extended filtering algorithm was presented in Schaus et al. [137].

The spread constraint enforces a given mean µ and maximum standard deviation σ among a set of

n variables {W1, . . . ,Wn}. It can be defined as follows:

spread({W1, . . . ,Wn}, µ, σ).

The filtering algorithm reduces the domains of the Wj variables based on µ and σ in O(n2) time-

complexity. Another algorithm filters values in the domain of σ based on domains of the variables Wj

in quadratic time [137]. Both algorithms are implemented in the spread constraint in this paper. The

complete spread constraint also propagates from Wj and σ to µ. However, since in our problem the

total acuity load and number of nurses are fixed and known, the mean, µ, is always fixed to a single

value. The filtering algorithm for the variable mean case is presented in our recent work [104].
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4.4.3.1 Relaxation

A simple relaxation of the spread constraint is a single linear equality that enforces the mean among

all the variables in the spread constraint. The constraint guarantees that the sum of all variables Wj

is equal to µ× n, where n is the number of variables.

n∑

j=1

Wj = µ× n. (4.44)

4.4.3.2 Cutting Planes

When the objective is to minimize the standard deviation, the quadratic objective function can be

formulated as follows:

minσ =

√∑m
j=1(Wj − µ)2

n
, (4.45)

which can be re-written in the following form:

min ‖µ− IW ‖22 , (4.46)

where I ∈ Zn×n is the identity matrix, µ = µe, µ ∈ Rn and W ∈ Rn are n-dimensional vectors.

Suppose the optimal integer solution W ∗ to the above problem satisfies the following bound

‖µ− IW ∗‖22 < β, (4.47)

where β is a constant. Geometrically, Equation (4.47) is a hyper-ellipsoid with center µ.

As seen in Section 3.2.3, we can apply the DEBS reasoning and derive the smallest hyper-rectangle

whose edges are parallel to the axes of the coordinate system and that includes the hyper-ellipsoid.

Recall that for the general form of the hyper-ellipsoid ‖y −Ax‖22 ≤ β, the lower bound l and the upper

bound u can be computed as follows:

uk =
⌊√

β
∥∥∥A−>ek

∥∥∥
2

+ e>kA
−1y

⌋
,

lk =
⌈
−
√
β
∥∥∥A−>ek

∥∥∥
2

+ e>kA
−1y

⌉
.

Since in our problem, A = I and y = µ, Equation (4.47) is actually a hyper-sphere with center µ

with the same lower bounds and upper bounds for all the variables. Thus, the computation of the lower

bounds and the upper bounds can be simplified as follows:

uk =
⌊√

β + µ
⌋
, (4.48)

lk =
⌈
−
√
β + µ

⌉
. (4.49)

An upper bound of the standard deviation σmax can be used to compute β through the following

relationship, based on Equation (4.45) and (4.46):

β =
√
nσ2

max. (4.50)
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Therefore, the cutting planes (4.48) and (4.49) can be computed and used to update the bounds on the

Wj variables. In our implementation, these constraints are computed every time the upper bound of σ

is improved. Since the constraints are globally feasible, the global bounds of the variables are updated if

the new bounds are tighter than the current global bounds of the variables. In Section 3.2.3, we applied

a similar approach to solving BQPs and ILS problems within CIP.

4.5 Branching Heuristics

It is well recognized in CP and MILP that the use of search heuristics can have substantial impact on

problem solving performance [5, 18, 72, 125]. One simple way to influence search without implementing

new heuristics is to modify the heuristic priority of variables. In SCIP, the branching priority of variables

can be modified, allowing problem-specific knowledge to be incorporated into the default heuristics. A

set of variables with higher branching priority will be branched on earlier in the search.

For the NPAP, we investigate two manipulations: 1) increasing the priority of the zjk variables

that assign nurses to zones and 2) increasing the branching priority of both the zjk variables and the

workload variables, Wj . For the BACP, we increase the branching priority of the workload variables. In

all conditions, we assign maximum priority to all corresponding variables.

Increasing zjk Priority. We choose to increase the branching priority of the zjk variables based

on the intuition that they have a significant effect on many other variables. Pryor & Chinneck [125]

have shown that to quickly find a feasible solution in MILP, it is often desirable to branch on variables

whose assignment results in substantial change to the linear relaxation. When a zjk variable is set to

1, Constraint (4.12) immediately results in the p − 1 other zik variables with i = j being assigned to

0. Furthermore, through Constraint (4.14), fixing a zjk variable to 0 leads to the assignment of m

xij variables to 0. Therefore, whether branching up or down on the zjk variables, we expect to see a

substantial change in the linear relaxation.

Increasing Wj Priority. We choose to also increase the branching priority of the Wj variables due

to their expected impact on the dual bound. A second intuition for heuristics in a MILP is to branch to

quickly increase the dual bound (i.e., the lower bound in a minimization problem). It is often observed

that a considerable amount of the effort in solving a problem is not in finding a solution but in proving

its optimality [47]. As the primary method for such a proof is through pruning the sub-trees when the

dual bound meets or exceeds the incumbent solution value, it is often useful to base branching heuristics

on increasing the dual bound (e.g., [3]).

Given Constraint (4.10) of the NPAP and Constraint (4.28) of the BACP, branching on variables

other than Wj will tend to lead to relaxed Wj values that are close µ, resulting in a dual bound that is

close to 0. Branching on the Wj variables, in contrast, can more quickly increase the dual bound as the

upper and lower bounds on other Wj variables must be changed due to Constraint (4.44).

For the NPAP, our experiments showed that only increasing the branching priority of the Wj variables

without the zjk led to poor performance due to difficulty in finding feasible solutions. We will return to

this point in Section 4.7.2.
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4.6 Experimental Results: NPAP

4.6.1 Setup

All experiments were performed on a Intel Core i7 3.40 GHz machine (in 64 bit mode) with 8GB

memory running Red Hat Enterprise 6.2 with one thread. The software is CPLEX v12.6.3, SCIP v3.0.2,

OSCAR v2.0.0 (using the bounds consistency spread constraint), and ILOG CP v1.6 (using the domain

consistency spread constraint). The CPU time limit for each run on each problem instance is 7200

seconds.

For the CIP models, we compare the performance of the following nine model-heuristic combinations.

• The basic CIP is declaratively identical to the MIQP model (Fig. 4.2) but, when solved using default

SCIP, incorporates the quadratic constraint. We experiment with three models corresponding

to the branching priorities: CIP (default), CIPz (increased zjk priority), and CIPz,W (increased

priority for zjk and Wj).

• The CIP model augmented to include only the constraint propagation of the gcc and spread

constraints is indicated by a superscript p (for propagation). There are, again, three models:

CIP p, CIP p
z , and CIP p

z,W corresponding to the branching priorities.

• The full CIP model, indicated by superscript f includes constraint propagation, relaxation, and

cutting planes of the quadratic, gcc, and spread constraints: CIP f , CIP f
z , and CIP f

z,W .

4.6.2 Test sets

Following the methodology of Schaus et al. [139], we generated problem instances to closely resemble the

original real world instances [116]. Specifically, the maximum acuity for a nurse is set to MaxAcuity =

105 and the maximum number of patients per nurse is MaxPatients = 3. We generate two zone (p = 2)

instances with number of nurses, n ∈ [9, 12], number of patients, m ∈ [21, 30], and three zone (p = 3)

instances with n ∈ [13, 19], m ∈ [36, 51]. We generate 24 problem instances for both the two zone and

three zone problems.

4.6.3 Results

Two Zone Problems. An overview of the results is given in Table 4.3. We report the arithmetic mean

CPU time “arith”, and the shifted geometric mean CPU time “geo” for finding and proving optimality

on the 24 instances.2 The arithmetic mean on the number nodes “Nodes” (number of backtracks “Bts”

for CP) and the optimality gap “Opt gap” are also presented. We finally report the number of instances

for which an optimal solution is found and proved “# opt” and the number of optimal solutions found

“# opt found” without necessarily being proved.

The results of the new MIQP model demonstrate that state-of-the-art solver CPLEX is able to

find optimal solutions to all problems,3 and it is able to prove optimality in 22 of 24, however, with

a substantially larger run-time as compared to the previously best known CP model in OSCAR. We

note that the CP(DC) results are reported using a simple branching strategy that chooses a nurse

2The shifted geometric mean time is computed as follows:
∏

(ti + s)1/n − s, where ti is the actual CPU time, n is the
number of instances, and s is chosen as 10. Using geometric mean can decrease the influence of outliers [3].

3In our previous publication [93] we used CPLEX v12.5, which is only able to prove optimality in 7 of 24.
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Solver Model Time to opt (sec) Nodes or Bts Opt gap (%) # opt # opt found
arith geo

OSCAR CP(BC) 86.02 20.97 9972713 0 24 24
ILOG CP CP(DC) 4121.75 2432.47 60283636 0 13 16
CPLEX MIQP 1683.39 522.81 3133729 0 22 24

CIP 1763.78 523.39 4041783 1 21 23
CIPp 2706.14 725.31 4825965 3 17 19
CIPf 2191.18 547.17 4028996 5 19 20
CIPz 1570.28 258.64 3790472 19 20 23

SCIP CIPp
z 1701.88 320.01 3324735 0 20 24

CIPf
z 1471.04 270.38 2508124 7 21 21

CIPz,W 119.40 37.97 210485 0 24 24
CIPp

z,W 99.75 34.20 132342 0 24 24

CIPf
z,W 75.70 28.46 130012 0 24 24

Table 4.1: Comparison of CP, MIQP, and 9 different CIP variations. For the CP solvers, “BC” denotes
bounds consistency and “DC” denotes domain consistency. “Time to opt” is the time in seconds to find
and prove optimality. We report both the arithmetic mean time “arith” and the shifted geometric mean
time “geo”. The optimality gap “Opt gap” is computed only for the problem instances where feasible
solutions are found.

with the minimum domain size. We did not report the results using the branching rule that breaks

symmetry dynamically because this strategy is not able to prove any of the instances to optimality

when implemented in CP v1.6. Upon inspection of the backtracking patterns of CP v1.6, one possible

explanation of this unexpectedly bad performance is that the backtracking decisions made by CP v1.6

might violate the dynamic symmetry breaking rule. In contrast, this situation does not happen in

OSCAR. It is worth pointing out that comparing the performance of different CP solvers using different

filtering algorithms is delicate, so we do not emphasize the relative performance of these two CP models.

Nevertheless, it is clear that the branching rule has a significant impact on solving the NPAP.

Turning to the CIP results, the first set of our new CIP models (CIP , CIP p, and CIP f ) show worse

performance than MIQP: fewer problems solved to optimality with about 30% more nodes. The inclusion

of constraint propagation in the gcc and spread constraints degrades performance (CIP p vs. CIP )

both in terms of run-time and search tree size. The 20% larger search tree in particular is interesting and

deserves more study. We speculate, given results below, that we may be observing a negative interaction

between the constraint propagation and relaxation-based MILP-style search, indicating that we cannot

necessarily expect improved performance from simply adding global constraint propagation to a MILP-

style search. Comparing CIP f to CIP shows similar run-times and tree sizes but worse solution quality

for CIP f . We believe that the gains from the global constraints are not large enough to out-weigh the

increased computation they incur.

In the second set of CIP results, with increased branching priority for the zjk variables, we see a

substantial performance improvement in all models compared to the default heuristic. The inclusion

of global constraints, whether just the propagation or the full model, results in smaller search trees by

about 12% for CIP p
z and 34% for CIP f

z and better solution quality. However, the run-times are either

about the same or are actually worse than the CIPz model.

Finally, the most substantial gains arise from increasing the branching priority of both the zjk

variables and the Wj variables. About an order of magnitude improvement is seen compared to the
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Solver Model Time to opt (sec) Nodes or Bts Opt gap (%) # opt
arith geo

OSCAR CP(BC) 5384.11 2992.33 542901857 27 8
CPLEX MIQP 6260.89 5345.15 11452100 12 5
SCIP CIPf

w 2433.56 1316.99 3031630 9 21

Table 4.2: Results of the three zone NPAP. All notations are the same as in Table 4.1. We do not report
the number of optimal solutions found “# opt found” as we do not know the optimal solutions for all
the instances. The optimality gap is computed as: opt gap = (UB(σ) − LB(σ))/LB(σ) × 100, where
UB(σ) is the best upper bound and LB(σ) represents the best lower bound found by our CIP approach
at 7200 seconds, or the known optimal solution cost, if an instance is proved optimal.

previous CIP models. In addition, all the three CIP models outperform the MIQP model using CPLEX.

The inclusion of global constraint propagation plus relaxation and cutting planes leads to clear gains

with search tree sizes of almost 40% smaller than CIPz,W . Furthermore, our best CIP model, CIP f
z,W ,

solves all problems to optimality and outperforms the CP model in OSCAR in terms of arithmetic mean

running time by 14%.4

Three Zone Problems. The results of the three zone problems are given in Table 4.2. Although

both our best CIP model and the CP model in OSCAR solve the two zone problems very quickly, they

cannot solve all of the three zone problems to optimality within the time limit. However, our best CIP

model greatly outperforms the CP model, proving 2.6 times more instances to optimality with a much

smaller optimality gap. We believe this is the first model of any type that has been able to improve on

the performance of the CP state-of-the-art. Recall that the three zone problems not only has one more

zone but the number of patients and nurses are also substantially increased. Our results suggest that

the CP approach is not able to scale as well as the CIP approach.

4.6.4 Discussion

Our experimental results have demonstrated that the hybridization of CP and MIQP techniques within

the framework of CIP results in a new state-of-the-art for the load balancing NPAP.

Primal Bounds and Dual Bounds. Fig. 4.6 plots the evolution of the mean primal and dual bounds

over time for the three CIP models of the two zone problems. For each instance, the primal, p, and dual,

d, gaps are computed as follows: p = (UB(σ) − σ∗)/σ∗ × 100 and d = (LB(σ) − σ∗)/σ∗ × 100, where

σ∗ is the known optimal solution cost and UB(σ) and LB(σ) respectively represent the best upper and

lower bounds at a given point in the search.

Consistent with our intuitions in Section 4.5, CIP f
z,w delivers tight primal and dual bounds, though

it is more clearly dominant in the latter. However, the results of CIP f
z contradict our expectations

that increasing the priority of the zjk variables alone would lead to strong primal bounds. We see

the opposite, as CIP f
z dominates CIP f in terms of the dual bound while performing much worse on

the primal bound. Interestingly, experiments that only increasing the priority of the Wj variables (not

included here) do match our intuitions: the model performs poorly, timing out without finding feasible

4In our previous publication [93], all the three CIP models solve all problems to optimality from 7 to 10 times faster
than the CP model implemented in COMET v2.1.1.
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Figure 4.6: Comparison of the primal and dual gaps of CIP f , CIPf
z and CIP f

z,w.

solutions to 5 problem instances. More detailed experimentation is needed to understand the reasons

behind the impact of the search heuristics and, in particular, why CIP f
z,w performs so well.

The Impact of Global Constraints. Global constraints play a primary role in CP, forming the

central object in both modeling and solving. Building on this role and the substantial work over the

past 15 years on the hybridization of CP and MIP solving techniques [151], we are interested in exploring

the concept of a global constraint as a richer object in the search process, exploiting its structure to do

more than domain pruning [17].

Several works have shown the success on the pursuing of this direction. For example, global con-

straints can provide heuristic information [123], generate SAT clauses [141] and cutting planes [20],

detect independent sub-problems [74], and decompose constraints and fix or remove variables [76].

Though we have developed a new state-of-the-art hybrid model for the NPAP and demonstrated the

reduction in search effort (in both time and nodes) from the integration of constraint propagation, linear

relaxation, and cutting planes within global constraints (i.e., compare CIPz with CIP f
z and CIPz,w

with CIP f
z,w), the importance of augmented global constraints to our results should not be overstated.

Without the use of the branching priorities on zjk and Wj variables, none of the CIP models are able

to match the performance of the CP model.5 Therefore, it appears that the primary reason for the

strong performance of the new state-of-the-art is the branching priorities and, at best, the interaction of

the branching priorities with the augmented global constraints. Furthermore, as the comparison of the

number of nodes of CIP and CIP p indicate, the simple addition of global constraint propagation to a

MILP-style search does not necessarily result in improved performance: a more nuanced understanding

of the interactions is needed.

5The CP model also uses a problem-specific heuristic and so we believe the direct comparison of it with the CIP f
z,w is

justified.
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Solver Model Time to opt (sec) Nodes or Bts Opt gap (%) # opt # opt found
arith geo

OSCAR CP(BC) 0.04 0.04 1261 0 48 48
ILOG CP CP(DC) 0.03 0.03 145 0 48 48
CPLEX MIQP 2.49 1.80 6673 0 48 48

CIP 2.43 1.92 7935 0 48 48
CIPp 1.95 1.78 4800 0 48 48

SCIP CIPf 1.51 1.34 4793 0 48 48
CIPw 0.84 0.82 2812 0 48 48
CIPp

w 1.12 1.06 2899 0 48 48
CIPf

w 0.87 0.81 3159 0 48 48

Table 4.3: Results of the single zone NPAP. All notations are the same as in Table 4.1.

Comparison of CP(BC) and CP(DC). It is surprising that the CP model using the domain consis-

tency filtering algorithm performs significantly worse than that using the bounds consistency algorithm.

Recall that dynamic symmetry breaking rule exploits the equivalence among all nurses who have not

yet been assigned a patient. The search dynamically breaks the value symmetries originating from the

nurse interchangeability by considering the already assigned nurses and at most one additional nurse

without any assigned patient. Specifically, let the value maxUsed be the maximal index of a nurse al-

ready assigned to a patient. We only consider the nurses with indices less than or equal to maxUsed+1,

i.e., nurse maxUsed + 1 currently has no patient. In CP v1.6, a patient might be assigned to a nurse

that is greater than maxUsed+ 1 during backtracking, thus violating the dynamic symmetry breaking

branching rule. We speculate that this weakens the strength of symmetry breaking and leads to inferior

overall performance.

Single Zone Problems. For the sake of completeness, we also experiment with the single zone prob-

lems, which are only concerned with assigning patients to nurses. We use the same 24 instances as those

in Section 4.6.2, but with the number of nurses per zone precomputed using the heuristic in Schaus et

al. [139], resulting in 48 single zone problems. Table 4.3 shows that all approaches are able to solve

the single zone NPAP very quickly. The CP approach using the domain consistency filtering algorithm

performs the best, which is consistent with the results reported in [121, 122]. All approaches are able

to prove optimality in less than 3 seconds. In a real world setting, the performance difference might be

insignificant.

Comparison of CIP and Decomposition Method. We end this section with a note on the relative

performance between our best CIP model and the exact CP-based decomposition method proposed by

Pesant [122] recently. Pesant’s method decomposes the multi-zone problems into independent single zone

problems that can be solved very efficiently with CP, as shown in Table 4.3. The average running time

for solving the three zone problems with the decomposition method is about three order of magnitudes

faster than our CIP approach, as expected. However, for problems that are naturally non-decomposable,

e.g., problems with inter-zone constraints, our CIP approach remains the state of the art.
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4.7 Experimental Results: BACP

The experimental setup is the same as the one used for the NPAP in Section 4.6.1.

4.7.1 Test sets

We use the benchmark instances from Schaus [136], which consist of 100 instances. These instances were

generated randomly with the academic loads of each course between 1 and 5. There are 66 courses, 12

semesters, and 50 prerequisite constraints that define the pairwise precedence relationships between two

courses. The number of courses per semester is constrained between 5 and 7.

4.7.2 Results and Discussion

An overview of the results is given in Table 4.4. Our new MIQP model and augmented CIP model with

branching heuristics both outperform the best known CP models by at least two orders of magnitude.

In addition, our results show that the latest version of CPLEX performs the best, proving all instances

to optimality in about 2 seconds. We attribute this strong performance to the recent improvement on

the MIQP techniques in CPLEX [31].

The results of the MIQP model and the CP model show opposite results to those of the NPAP, i.e.,

the MIQP model performs significantly better than the CP model for the BACP. Recall that in the

(full) NPAP, both the nurse-to-zone and the nurse-to-patient decisions have to be made. In the BACP,

similar to the one zone NPAP, only one decision is required, which is the course-to-period assignment.

We observe a very rapid dual bound improvement for the BACP and we believe that this accounts for

the superior performance of CPLEX.

The first set of CIP models (CIP , CIP p, and CIP f ) show that the inclusion of constraint propaga-

tion in the gcc and spread constraints does not affect the performance (CIP p vs. CIP ) in terms of

run-time in a substantial way. Comparing CIP f to CIP shows only a slight improvement in terms of

number of instances that are proved optimal.

With increased branching priority for the Wj variables, we see a significant performance improvement

in the second set of CIP results. As observed in the NPAP, the inclusion of global constraint propagation

plus relaxation and cutting planes leads to clear gains in terms of search tree sizes and running time. It

is interesting to observe that while all the CIP models are able to find the optimal solutions, only the

models with the branching heuristic are able to prove optimality efficiently.

BACP Without the Cardinality Constraint. We also experiment with a variation of the BACP

in the literature [114, 136], which ignores the cardinality constraint that enforces the number of courses

per period. Consistent with previous results [121], the CP approaches perform substantially better on

this problem variation than the original problem. While the same conclusion can be drawn for the MIQP

and CIP approaches, Table 4.5 shows that MIQP and CIP are much less sensitive to the existence of the

cardinality constraints: It is unlikely to make a significant portion of the non-solvable problems solvable

by removing the cardinality constraint from the problem formulation.

While our best CIP model performs worse (within one order of magnitude) than the MIQP model

in CPLEX for the BACP, it is worth pointing out that CPLEX is usually considered significantly faster

than SCIP [113], the underlying solver of our CIP models. In our case, CPLEX is at least 3 orders of
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Solver Model Time to opt (sec) Nodes or Bts Opt gap (%) # opt # opt found
arith geo

OSCAR CP(BC) 2668.14 264.56 10015243 13 69 69
ILOG CP CP(DC) 2246.35 173.43 6824036 18 72 72
CPLEX MIQP 2.15 1.92 674 0 100 100

CIP 6336.59 3422.98 9504397 0 12 100
CIPp 6336.76 3456.30 4967846 0 12 100

SCIP CIPf 6272.14 3340.73 5999422 0 13 100
CIPw 868.82 21.85 2100346 0 88 100
CIPp

w 34.98 24.57 6712 0 100 100
CIPf

w 12.72 11.61 1518 0 100 100

Table 4.4: Results of the BACP. All notations are the same as in Table 4.1.

Solver Model Time to opt (sec) Nodes or Bts Opt gap (%) # opt # opt found
arith geo

OSCAR CP(BC) 217.69 3.14 139731 1 97 97
ILOG CP CP(DC) 147.31 3.10 47542 1 98 98
CPLEX MIQP 1.25 1.18 621 0 100 100

CIP 6172.13 2968.95 6408372 0 12 100
CIPp 6171.98 2939.95 8292744 0 12 100

SCIP CIPf 6172.05 2949.78 7620029 0 13 100
CIPw 869.87 23.85 1572461 0 88 100
CIPp

w 5.57 5.35 1098 0 100 100
CIPf

w 5.51 5.29 1089 0 100 100

Table 4.5: Results of the BACP without the cardinality constraint. All notations are the same as in
Table 4.1.

magnitude faster than the default CIP model. Our branching heuristics and global constraints therefore

have substantially improved the default CIP performance.

4.8 Conclusion

In this chapter, we developed a series of novel MIQP and CIP models for the load balancing NPAP

and the BACP. These problems are challenging and have been addressed with mixed integer linear

programming and constraint programming, with the latter representing the state-of-the-art.

Our approach focused on the integration of augmented global constraints into the CIP model. In

addition to constraint propagation, the global constraints implemented constraint-specific linear relax-

ations and cutting plane generation. Building on the existing work on the quadratic [23], gcc [79, 128],

and spread [137] constraints, we introduced a linear relaxation and cutting planes for the latter.

For the NPAP, our empirical results demonstrate that the default CIP model performs slightly worse

than the MIQP model implemented in CPLEX and does not compete with the non-decomposition

based CP model. To facilitate the search process, we propose problem-specific branching priorities,

which greatly improve the CIP models. Results show that our best CIP model significantly outperforms

the previous best known CP model, especially when the scale of the problem is increased. For the

BACP, both our new MIQP model and our augmented CIP model with branching heuristics outperform
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the best known CP models, with the MIQP model using CPLEX performing the best. As for the

relative performance among the CIP models, our results show the same trend as those observed in

the NPAP, supporting the effectiveness of the augmented global constraints. In summary, our CIP

approach demonstrates how techniques from CP and MIP can benefit from each other and achieve the

state-of-the-art or near state-of-the-art for both the NPAP and BACP.

For future work, we would like to investigate other possibilities of using the information from

global constraints to enhance the search. We propose two potential directions for further exploration:

constraint-specific lazy constraint generation [120] and constraint-specific based branching.

Lazy constraint (clause) generation [120] is a powerful technique to reduce the search effort in CP

by recording the reasoning that leads to a failure and creating an implication graph that can be used to

infer no-goods. To generate constraint-specific no-goods, a global constraint must be extended to explain

itself. For example, Downing [53] has shown how various propagation algorithms of the alldifferent

constraint can be extended to explain themselves and generate no-goods in a CP solver. It has been shown

that learning the no-goods for problems involving the alldifferent constraint often lead to tremendous

reduction in running time. Results show that the combination of the alldifferent propagators with

their explanation algorithms result in a state-of-the-art CP approach for several problems involving the

all-different structure. While lazy constraint generation has been proved to be a useful technique for

the alldifferent and cumulative constraints [75, 141], the explanation algorithms have not been

developed for many other well-known global constraints, including the gcc and the spread constraint.

As a starting point, we would like to generate explanations for the infeasibility that result from the

propagation of these two constraints to reduce search effort.

A global constraint might also provide useful information for branching decisions. For example, the

counting-based search [123] examines each constraint and analyzes the frequency of a given variable-

value assignment in the solutions of the constraint. Such information can be used to design branching

heuristics that guide the search toward the regions that are more likely to contain solutions. In addition

to solution density, a global constraint may provide other structure information to enhance the search.

For example, the spread constraint achieves its minimum standard deviation when all of its variables

take values of its mean. Intuitively, the standard deviation increases when the variables take values

farther from the mean value. During our preliminary investigation, we observed that a value branching

rule developed w.r.t. the mean value can reduce the number of branches by about 20% compared to our

best CIP approach for both the NPAP and the BACP. We believe that such constraint-specific branching

strategies can be applied successfully to problems where global constraints play a major role in solving

the problem.

As a final note, although we investigated the idea of the augmented global constraint in the CIP

paradigm, applicable techniques can be chosen selectively for CP and MIP alone, e.g., a MIP solver can

easily adapt all the techniques from a augmented global constraint except the filtering algorithm.

In the next chapter, we build on the work in Chapter 3 and Chapter 4 and develop a CP approach

to solve the strictly convex integer quadratically-constrained problems, which expands upon the type of

problems that were previously considered to the much more general setting.



Chapter 5

Constraint Programming for Strictly

Convex Integer Quadratically

Constrained Problems

In Chapter 3 and Chapter 4 we proposed a number of hybrid approaches that combine mixed integer

programming (MIP), constraint programming (CP) and discrete ellipsoid-based search (DEBS) to solve

special cases of the strictly convex integer quadratically constrained problem. In this chapter, we develop

a CP approach that builds upon the previous chapters to solve a much broader class of problems with

general strictly convex quadratic constraints, allowing the incorporation of any side constraints that

fit in the CP framework. Inspired by the geometric reasoning exploited in DEBS, we strengthen the

key aspects of the DEBS approach and implement them as combination of a global constraint and

variable/value ordering heuristics in IBM ILOG CP Optimizer.

5.1 Introduction

The strictly convex integer quadratically constrained problem (IQCP) is an important sub-class of mixed

integer nonlinear programming (MINLP) problems where the objective and/or some constraints are

strictly convex quadratic functions. As mentioned in the previous chapters, the IQCP is NP-hard

[148] and arises in a number of applications including algorithmic number theory [13], cryptography

[119], global positioning systems [146], wireless communications [6], and scheduling [94]. Despite the

long history of CP, the techniques to solve quadratically constrained problems have not receive much

attention. There are only a few dedicated global constraints that reason about quadratic terms. For

example, the Spread constraint [124] enforces the standard quadratic relationship amongst a set of

variables, their mean, and their standard deviation. General quadratic constraints [52, 96] can be

applied to both convex and nonconvex quadratic functions. However, they do not exploit the strictly

convex nature of the IQCP.

We showed in Section 2.2.3 that strictly convex IQCPs can be formulated as integer least squares

(ILS) problems and solved with DEBS. From a CP perspective, DEBS can be understood as a form of CP

search. First, the search strategy uses a static variable ordering heuristic and a dynamic value ordering

76
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heuristic based on the structure of the ellipsoid. Second, the geometry of the ellipsoid induces an interval

domain for each variable. As a result, DEBS is essentially the enumeration of these domains under the

prescribed variable and value orderings with some bounds pruning based on the radius of the hyper-

ellipsoid. DEBS was originally formulated to solve only three types of ILS problems: unconstrained,

box-constrained, and ellipsoid-constrained [42, 43, 89, 92]. In Section 3.3, we extended DEBS for ILS

problems with general linear constraints.

In this chapter, we develop techniques that are both powerful and cover a broad range of problems.

We introduce two novel techniques, inspired by DEBS, for solving strictly convex IQCPs with constraint

programming. First, we propose the ellipsoid constraint, a global constraint that filters variable

domains with respect to strictly convex quadratic functions. We derive a direct quadratically constrained

programming (QCP) formulation that achieves bounds consistency (BC), and two light-weight filtering

algorithms that do not guarantee BC. Though it is natural to consider integer domains in CP, our

filtering algorithm can be applied to variables with real domains, broadening its application to, for

example, mixed integer programming solvers. Second, we propose a pair of variable/value selection

rules. We implement the filtering algorithms and the branching heuristics in IBM ILOG CP Optimizer

and experiment with five problem classes, showing orders of magnitude improvement compared to the

default CP Optimizer. We then compare our new CP approach with the best known algorithms on the

same problem sets. Our results demonstrate that the new CP approach is competitive to the best known

approaches, and, for some problem classes, establishes a new state of the art.

5.1.1 Contributions

The contributions of this chapter are as follows:

• To the best of our knowledge, this is the first work that solves the strictly convex IQCPs with

CP. We make a strong connection between CP and MINLP and bring a problem often seen as

intractable to the CP community, incorporating it effectively in the framework of global constraints

and branching strategies. We believe that this work can attract the OR community to the CP way

of thinking and encourage further exploration of using CP as a basis for solving MINLPs.

• Our novel approach brings CP within an order of magnitude of the state-of-the-art techniques for

the IQCPs tested. When compared to non-problem specific solvers, our CP approach even achieves

the state of the art on some problem types. The use of our new global constraint and branching

rules, as opposed to hand-crafted, specialized algorithms, provides more flexibility and fits well in

the “model and solve” framework, allowing practitioners to utilize our techniques effortlessly.

The work in this chapter is based on the publication [91].

5.1.2 Organization

The rest of the chapter is organized as follows. We give the necessary background in Section 5.2. In

Section 5.3 we define of our new global constraint. Section 5.4 and 5.5 present the filtering algorithms

and the branching heuristics. Section 5.6 provides computational results and discussions. We conclude

in Section 5.7.
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5.2 Background

5.2.1 The Strictly Convex Integer Quadratically Constrained Problem (IQCP)

The general IQCP problem has the following form:

min
x∈C

1

2
x>Hx+ f>x,

C =

{
x ∈ Zn :

1

2
x>Mkx+ c>k x ≤ bk,∀k = 1, . . . ,m, l ≤ x ≤ u, l ∈ Zn, u ∈ Zn

}
.

The IQCP is strictly convex if the quadratic matrices H, Mk,∀k are symmetric positive definite

[66]. As the above form suggests, quadratic formulations can exist in the form of an objective function

and/or as constraints.

In operations research, the common generic approaches to solving IQCPs exactly are the use of

MINLP solvers such as BARON [134, 145], BONMIN [29] and ANTIGONE [112], and the application of

MIP solvers such as CPLEX and Gurobi which have been extended to reason about quadratic constraints

[37] (See Section 2.3.1.2 for details on MIP solving techniques for IQCPs). Another generic approach

is semi-definite programming (SDP) based branch-and-bound [87]. The available SDP solvers, e.g.,

BiqCrunch [88], only solve problems with binary variables as opposed to general integer variables.

5.2.2 Discrete Ellipsoid-based Search (DEBS)

We briefly review the discrete ellipsoid-based search (DEBS) method for solving ILS problems. The

DEBS method consists of two phases: reduction and search. The reduction is a preprocessing step that

transforms A to an upper triangular matrix R using the QRZ factorization [42]:

min
x∈Zn

‖y −Ax‖22 → min
z∈Zn

‖ȳ −Rz‖22 , (5.1)

where ȳ = Q>y, z = Z−1x, Q is orthogonal, and Z is unimodular. The diagonal entries of R are

approximately1 ordered in non-decreasing order: |rii| ≤ |ri+1,i+1|. This ordering has been shown to

increase the efficiency of the DEBS search by reducing the branching factor at the top of the search tree

[43]. As we argue in Section 5.5 below, this ordering is approximately equivalent to a static smallest

domain first variable ordering.

Suppose the optimal solution z∗ satisfies ‖ȳ −Rz∗‖22 < β, or equivalently
∑n

k=1(ȳk−
∑n

j=k rkjzj)
2 <

β, where β is a constant that can be obtained by substituting any feasible integer solution to equation

(5.1). This expression defines a hyper-ellipsoid with center R−1ȳ. The search, then, systematically

enumerates all the integer points in the bounded hyper-ellipsoid [140]. When an incumbent, i.e., new

upper bound on β, is found, the hyper-ellipsoid is contracted resulting in reduction of the bounds of the

decision variables. After the optimal solution z∗ to the reduced problem (right hand side of (5.1)) is

found, the optimal solution, x∗, to the original problem (left hand side of (5.1)) can be recovered with

the relationship x∗ = Zz∗.

See Section 2.3.4 for more details on DEBS.

1Depending on the data, it is sometimes not possible to transform a matrix to exactly achieve this ordering [33].
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5.3 The Ellipsoid Constraint

We propose the ellipsoid constraint to reason about convex quadratic functions. It consists of a set of

n variables {x1, . . . , xn}, an n × n matrix A with full column rank, an n-dimensional vector y, and a

constant β. The definition is given as follows:

ellipsoid({x1, . . . , xn},A,y, β),

where A ∈ Rn×n, y ∈ Rn, β ∈ R. The constraint ensures the following condition:

‖y −Ax‖22 ≤ β. (5.2)

Geometrically, the above expression defines a hyper-ellipsoid with center A−1y. Equivalently, (5.2) can

be written in its standard convex quadratic constraint form as

1

2
x>Hx+ f>x ≤ β̄, (5.3)

where H ∈ Rn×n is a symmetric positive definite matrix, f ∈ Rn is a vector, and β̄ = (β − y>y)/2.

The transformation is obtained with the relationships H = A>A and f = −y>A.

The ellipsoid constraint can be applied to any formulation with a strictly convex quadratic function.

For example, consider the following objective function: min 1
2x
>Hx + f>x + 1

2y
>H1y + f>1 y, where

only H is symmetric positive definite. We can still apply the ellipsoid constraint to the first half of

the objective function: 1
2x
>Hx+ f>x, even if the second part is not strictly convex.

5.4 Filtering Algorithms for the Ellipsoid Constraint

In this section, we present a number of filtering algorithms that achieve or approximate bounds consis-

tency of the ellipsoid constraint.

Let xj be a finite-domain variable, D(xj) be the domain of xj , which is a set of ordered values that

can be assigned to xj , and ID(xj) = [lj , uj ] be the interval domain of xj .

Definition 5.4.1. An ellipsoid constraint is bounds consistent [50] with respect to domains D(xj) if

for all j ∈ 1, . . . , n and each value vj ∈ {lj , uj}, there exists values vi ∈ ID(xi) for all i ∈ {1, . . . , n} \ {j}
such that ellipsoid({x1 = v1, . . . , xn = vn},A,y, β) holds.

In the 2D example shown in Fig. 5.1, the rectangle (in the shaded area) contains all the integer values

that are bounds consistent. For all these integer value in each dimension, we can find a value in the

other dimension such that the ellipsoid constraint holds. For each integer value no longer in a variable

domain, there does not exist a value in the other variable domain that forms a point inside the ellipse.

Therefore, the ellipsoid constraint (on the two variables) is bounds consistent.

5.4.1 A Direct Quadratically Constrained Programming (QCP) Formulation

Achieving bounds consistency for a variable xj is equivalent to finding the lower bound lBC
j and upper

bound uBC
j for xj , given the ellipsoid constraint and the current bounds of the variables. Assume that
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Bounds Consistency (BC) 
•  Def: An ellipsoid constraint is bounds consistent iff for 

every value                      , there exists                    for all    
d                             s.t.                                                     
holds                  

Ripple Note 202 by Wen-Yang Ku
Limited Circulation1

The ELLIPSOID Constraint

This note introduces the ELLIPSOID constraint, a global constraint that filters variable domains with respect to
convex quadratic functions.

1 Introduction
The ELLIPSOID constraint is used to reason about convex quadratic functions and consists of a set of n variables
{x1, . . . , xn}, an n ⇥ n matrix A with full column rank, an n-dimensional vector y, and a constant �. The
definition is given as follows:

ellipsoid({x1, . . . , xn}, A, y, �),

where A ⌅ Rn⇥n, y ⌅ Rn, � ⌅ R. The constraint ensures the following condition:

⌃y �Ax⌃22 ⇤ �. (1.1)

Geometrically, the above expression defines a hyper-ellipsoid with center A�1y. Equivalently, the above expres-
sion can be written in its standard convex quadratic constraint form as follows:

1

2
xT Hx + fT x ⇤ �̄,

where H ⌅ Rn⇥n is a symmetric positive definite matrix, f ⌅ Rn is a vector, and �̄ = (� � yT y)/2. The
transformation is obtained with the relationships H = AT A and f = �yT A.

2 Slide Materials

min
1

2
xT Hx + fT x +

1

2
yT A0y + aT

0 y

1

2
xT Akx + aT

k x ⇤ bk, ⇧k = 1, . . . , m

l ⇤ x ⇤ u

x ⌅ Zn

⌃y �Ax⌃22 ⇤ �̄. (2.1)

zk ⌅ [lk, uk], where zk is a function of zk+1, . . . , zn

A ⌅ Rm⇥n has full column rank, y ⌅ Rn, � ⌅ R.
1Distribution disallowed, promulgation prohibited.
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Definition 2.1. A ELLIPSOID constraint is bounds consistent with respect to domains Dom(xj) if for all j 2
1, . . . , n and each value vj 2 {lj , uj}, there exists values vi 2 ID(xi) for all i 2 {1, . . . , n} \ j} such that
ellipsoid({x1 = v1, . . . , xn = vn}, A, y, �) holds.

Achieving bounds consistency for a variable xj is equivalent to finding the lower bound lBC
j and upper bound

uBC
j for xj , given the ELLIPSOID constraint and the current bounds of the variables. Assume that no further

reduction can be inferred on the domains of xi, 8i 6= j, the mathematical model for achieving bounds consistency
for xj can be defined as follows:

lBC
j = min

x2Rn
eT

j x subject to ky �Axk2  �, l  x  u, (2.1)

uBC
j = max

x2Rn
eT

j x subject to ky �Axk2  �, l  x  u. (2.2)

(3.1) and (3.2) are actually quadratically-constrained programming (QCP) optimization problems, which can
be solved with QCP solvers such as CPLEX. However, solving a QCP problem is time-consuming.

3 Axis-Aligned Tangent Planes
Let B be the smallest hyper-rectangle whose edges are parallel to the axes of the coordinate system and that
includes the hyper-ellipsoid E = ky �Axk22  �, the lower bound lb and the upper bound ub that define the
bounding rectangle can be computed by solving the following problems:

lbj = min
x2Rn

eT
j x subject to ky �Axk2 

p
�, (3.1)

ub
j = max

x2Rn
eT

j x subject to ky �Axk2 
p

�. (3.2)

The above problems can be solved with QCP approaches. Chang & Golub [1] proposed an efficient way to
compute the smallest hyper-rectangle. We first solve the problem in (3.2) for ub

j , and the lower bound lbj can be
obtained by using the symmetric property of an ellipsoid. Let p = Ax� y, the problem (3.2) becomes

ub
j = max

p
eT

j A�1(p + y)

= max
p

eT
j A�1p + eT

j A�1y subject to kpk2 
p

�. (3.3)

By the Cauchy-Schwarz inequality, we have

eT
j A�1p 

���A�T ej

���
2
kpk2 

���A�T ej

���
p

�. (3.4)

The first inequality becomes an equality if and only if p = cA�T ej for some non-negative scalar c. The second
inequality becomes equality if and only if kpk2 =

p
�. Therefore, p is the minimizer for (3.3) when p =

p
�A�T ej/

���A�T ej

���
2
. Substituting p into (3.3), we have

ub
j =

p
�
���A�T ej

���
2

+ eT
j A�1y. (3.5)

From the symmetry property of an ellipsoid, we have

lbj = �
p

�
���A�T ej

���
2

+ eT
j A�1y. (3.6)
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Figure 5.1: A 2D example that shows the tangent box of the ellipsoid and bounds consistency of the
ellipsoid constraint.

no further reduction can be inferred on the domains of xi,∀i 6= j, the mathematical model for achieving

bounds consistency for xj can be defined as follows:

lBC
j = min

x∈Rn
e>j x subject to ‖y −Ax‖2 ≤

√
β, l ≤ x ≤ u, (5.4)

uBC
j = max

x∈Rn
e>j x subject to ‖y −Ax‖2 ≤

√
β, l ≤ x ≤ u. (5.5)

Note that ej ∈ Rn is the unit vector in the j-th direction, i.e., the j-th column of an identity matrix

with size n. The problems (5.4) and (5.5) are quadratically constrained programming (QCP) optimiza-

tion problems, which can be solved with QCP solvers such as CPLEX. However, it is computationally

expensive, since at least 2n QCPs have to be solved in each iteration.

This approach is essentially a QCP version of optimization-based bound tightening (OBBT) as used

in the MINLP literature [64]. While typically performed with linear constraints, OBBT is often only

done at the root node of the search tree as it is too expensive to perform at every node. Convex QCPs

can be solved in polynomial time using iterative approaches such as the interior point method [118].

5.4.2 Axis-Aligned Tangent Box Filtering (BOX)

The simplest way to tighten the domains of the variables is to compute the tangent box of the hyper-

ellipsoid defined in Equation (5.2), where the edges of the box are parallel to the axes of the coordinate

system. As a 2D example, the dotted box in Fig. 5.1 shows the tangent box. The lower bound lb and

the upper bound ub that define the tangent box can be computed by solving the following problems:

lbj = min
x∈Rn

e>j x subject to ‖y −Ax‖2 ≤
√
β, (5.6)

ubj = max
x∈Rn

e>j x subject to ‖y −Ax‖2 ≤
√
β. (5.7)

Chang & Golub [42] proposed an efficient way to solve the above problems. We first solve the problem

in (5.7) for ubj , and the lower bound lbj can be obtained by using the symmetric property of an ellipsoid.
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Let p = Ax− y, the problem (5.7) becomes

ubj = max
p
e>j A

−1(p+ y)

= max
p
e>j A

−1p+ e>j A
−1y subject to ‖p‖2 ≤

√
β. (5.8)

By the Cauchy-Schwarz inequality, we have

e>j A
−1p ≤

∥∥∥A−>ej
∥∥∥

2
‖p‖2 ≤

∥∥∥A−>ej
∥∥∥
√
β.

The first inequality becomes an equality if and only if p = cA−>ej for some non-negative scalar c.

The second inequality becomes equality if and only if ‖p‖2 =
√
β. Therefore, p is the minimizer for (5.8)

when p =
√
βA−>ej/

∥∥∥A−>ej
∥∥∥

2
. Substituting p into (5.8), we have

ubj =
√
β
∥∥∥A−>ej

∥∥∥
2

+ e>j A
−1y. (5.9)

From the symmetry property of an ellipsoid, we have

lbj = −
√
β
∥∥∥A−>ej

∥∥∥
2

+ e>j A
−1y. (5.10)

5.4.2.1 Computing the Reduced Intersecting Ellipsoid EF

When a variable is fixed during the search, e.g., xi = vi, the dimension of the ellipsoid is reduced by

one. Geometrically, we need to find the one-dimension-smaller ellipsoid that intersects at xi = vi and

‖y −Ax‖22 ≤ β. We propose a general way to compute the reduced intersecting ellipsoid with any

number of fixed variables.

Let F be the set of the variables that are fixed and let Ã = [Aj ] ,∀j 6= F , ȳ = y−∑i∈F Aivi and the

QR factorization of Ã be Ã =
[
Q̃1 Q̃2

] [R̃
0

]
, the reduced intersecting ellipsoid EF can be computed

as follows:

EF =
∥∥∥ỹ − R̃x̃

∥∥∥
2

2
≤ β̃, (5.11)

where x̃ is the vector of the unknown variables of the reduced ellipsoid, ỹ = Q̃
>
1 ȳ and β̃ = β−‖ȳ‖22+‖ỹ‖22.

The derivations on R̃ and ỹ are straightforward so we only explain β̃ as follows. We know that

‖y −Ax‖22 =
∥∥∥ȳ − Ãx̃

∥∥∥
2

2
=

∥∥∥∥∥

[
Q̃
>
1

Q̃
>
2

]
ȳ −

[
R̃

0

]
x̃

∥∥∥∥∥

2

2

.

It follows that

‖y −Ax‖22 −
∥∥∥Q̃>1 ȳ − R̃x̃

∥∥∥
2

2
=
∥∥∥Q̃>2 ȳ

∥∥∥
2

2
= ‖ȳ‖22 −

∥∥∥Q̃>1 ȳ
∥∥∥

2

2
.

We assume that β and β̃ constraints are satisfied at equality as this corresponds to the largest

ellipsoids defined by our inequalities and therefore ensures that no valid values are pruned. Since

β = ‖y −Ax‖22 and β̃ =
∥∥∥Q̃>1 ȳ − R̃x̃

∥∥∥
2

2
, we have β̃ = β − ‖ȳ‖22 + ‖ỹ‖22.

At each node of the tree, we can first compute the reduced ellipsoid EF w.r.t. the variables that are

already fixed with Equation (5.11), then apply Equations (5.9) and (5.10) to compute the axis-aligned
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tangent box. The algorithm propagates when variables are instantiated or β is reduced. Because our

CP search instantiates a variable at each node, the propagation is active at each node.

5.4.2.2 Complexity of the BOX Filtering Algorithm

The filtering algorithm reduces the domains of all the variables based on β with O(n3) time-complexity.

First, computing the reduced ellipsoid takes O(n3), as the QR factorization is required. Second, com-

puting the tangent box takes O(n3), as the complexity is dominated by computing the matrix inverse

A−1.2 Therefore the total time complexity for filtering the domain for all the variable is O(n3).

5.4.2.3 Improving the Complexity

We end this section with a note on improving the complexity of the filtering algorithm. Let (lFj )b be

the lower bound of the reduced ellipsoid, we have (lFj )b = −
√
β̃
∥∥∥R̃−>ej

∥∥∥
2

+ e>j R̃
−1
ỹ. It is observed

that the quantities β̃, R−1, and ỹ change between the parent node and the child node in a search tree.

We can use two incremental updating strategy to efficiently modify the QR factorization and the matrix

inverse to avoid recomputing these quantities from scratch.

Updating β̃ and ỹ. When a variable xi is fixed, it is equivalent to deleting the i-th column in the

matrix at the parent node. We can update the QR factorization using the standard technique [71] at

the child node and compute the new β̃ and ỹ in O(n2) time-complexity.

Updating R̃
−1

. Khan [84] proposed an efficient way to update the inverse of the matrix multiplication

(R̃
>
R̃)−1 when a column is deleted (i.e., a variable is fixed, in our case) in R̃ with O(n2) time-complexity.

We can use this strategy to update (R̃
>
R̃)−1 at the child node. Then we can recover the quantities∥∥∥R̃−>ej

∥∥∥
2

=

√∥∥∥e>j (R̃
>
R̃)−1ej

∥∥∥
2

and R̃
−1
ỹ = (R̃

>
R̃)−1R̃

>
ỹ.

With the above updating mechanism, the complexity of computing the tangent box can be reduced

to O(n2). We note that our current implementation involves copying data between the reversible data

structure in CP Optimizer and the GNU Scientific Library (GSL) that we use for the linear algebra

operations, which creates a significant overhead. Therefore while the theoretical results are established,

we do not report our running times with this updating mechanism. A more efficient data structure that

avoids copying between the two representations is required to efficiently implement this approach.

5.4.3 Approximate Bounds Consistency (ABC) Filtering

Before we introduce the next filtering algorithm, our notation is summarized as follows:

• [lj , uj ]: The interval domain (local bounds) of variable xj .

• [lbj , u
b
j ]: The tangent box derived with Equation (5.9) and (5.10) of the ellipsoid E defined in

Equation (5.2).

• vj : A value that is within xj ’s domain, i.e., vj ∈ ID(xj) = [lj , uj ].

2Note that in our implementation, the inverse is computed by solving the linear system Ax = I for efficiency and
reliability. However, this computation still has worst-case complexity of O(n3).
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li# ui#

lj#

lbj#

ubj#

uj#

tlij#

tuij#

P(ε)ij#

(a) The case that li ≤ ui ≤ tlij .

li# ui#

lbj#

ubj#

tlij#

tuij#

P(ε)ij#

(b) The case that li ≤ tlij ≤ ui.

Figure 5.2: The 2D projection of the hyper-ellipsoid onto the xixj plane.

It is observed that if l ≤ lb ≤ ub ≤ u, then the tangent box defines the bounds of the variables. However,

a pair of bounds may lead to reductions in other variable domains. For example, in Fig. 5.2-a, the bounds

li and ui have the effect of increasing the lower bound lbj to lj and decreasing the upper bound ubj to uj .

To perform stronger domain reductions on the ellipsoid, first we need to determine the set of variables

that can be used to infer reductions on the lower bounds or upper bounds of the variables. We explain

the propagation algorithm below for the lower bound only since the propagation on the upper bound

can be derived in a symmetric manner.

Proposition 1. Let P (E)ij be the ellipse defined by the projection of the hyper-ellipsoid (Equation 5.2)

onto the xixj plane. Then the variable xi can be used to infer domain reductions on xj’s lower bound if

and only if li ≤ ui ≤ tlij or tlij ≤ li ≤ ui, where tlij is the xi value at the intersection of xj = lbj and the

projected ellipse P (E)ij.

Proof. If li ≤ tlij ≤ ui (Fig. 5.2-b), we can set xi = tlij , so that xj = lbj , thus no domain reduction can

be inferred to xj ’s lower bound. In the other two cases where li ≤ ui ≤ tlij (Fig. 5.2-a) or tlij ≤ li ≤ ui,

since xj is forced to take a value that is greater than lbj , we can increase xj ’s lower bound.

We refer to tlij and tuij as the touching points.

5.4.3.1 Computing the Touching Points

The touching points can be computed easily as a by-product of computing the axis-aligned tangent box

(5.9) and (5.10). Since p =
√
βA−>ej/

∥∥∥A−>ej
∥∥∥

2
uniquely defines the minimizer for the upper bound

ubj , let x∗ be the solution to the equation p = Ax− y. We have:

(tuj )> = [tu1j , . . . , t
u
j−1,j , t

u
j+1,j , . . . , t

u
nj ]
> = [x∗1, . . . , x

∗
j−1, x

∗
j+1, . . . , x

∗
n]>

Note that tuj is a n− 1 dimensional vector and x∗j = ubj . Using the symmetry property of the ellipsoid,

tlj can be computed by reflecting tuj about the center of the ellipsoid.

The complexity of computing the touching points for all the variables, i.e., tlj , t
u
j ,∀j, is O(n3), as x∗

can be computed in O(n2) for each variable, given that A−1 is known.
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Proposition 2. If xi can be used to increase xj’s lower bound lj according to Proposition 1, the value

vdi that should be used to increase lj is defined as

vd
i =

{
li, if (tlij − li)2 ≤ (tlij − ui)2.

ui, otherwise.

Proof. Since P (E)ij is convex and xj achieves its minimum lbj at xi = tlij , for any point xj in P (E)ij , we

have xj strictly larger than lbj if xi takes any value other than tlij . That is, xj increases strictly when

xi moves away from tlij . Therefore, the value (li or ui) that achieves the minimum of the expression

min((tlij − ui)2, (tlij − li)2) determines xj ’s lower bound.

As Fig. 5.2-a depicts, we choose ui in this example, as using li removes the valid value lj .

Using Proposition 1 and 2, we can identify the set of variables and their values that can be used to

increase the lower bound of a variable.

Definition 5.4.2. For each variable xj , let S l
j (Su

j ) be the set of all the variables that can be used to

infer domain reductions on xj ’s lower (upper) bound.

Definition 5.4.3. An assignment A: xi 7→ ID(xi), i ∈ Sl
j or Su

j is said to be a determining assignment

when A(xi) = vdi .

When a variable takes a determining assignment, we can compute the reduced intersecting ellipsoid

using the method in Section 5.4.2.1. The complete filtering algorithm for pruning the lower bound of a

variable is presented in Algorithm 3. The upper bound pruning can be derived in a symmetric manner.

Algorithm 3 ABC filtering for xj

1: Data: The local bounds: l1, . . . , ln, u1, . . . , un, the tangent box for the ellipsoid E : lb1, . . . , l
b
n,

ub1, . . . , u
b
n, the touching points tlij , β

2: Results: The filtered lower bound l′j
3: Initialization: Set l′j = −∞, F = {}
4: if uj < lbj then
5: The constraint is not satisfiable
6: else
7: Compute the set Sl

j and the associated assignments A(xi), ∀i ∈ Sl
j

8: for each i ∈ Sl
j do

9: Let F = {i}, compute the reduced intersecting ellipsoid EF
10: Compute the tangent box (lFj )b of EF
11: Set l′j = max((lFj )b, l′j)
12: end for
13: if ui < l′j then
14: The constraint is not satisfiable
15: else
16: Set l′j = max((l′j , lj)
17: end if
18: end if

5.4.3.2 Complexity of the ABC Filtering Algorithm

The filtering algorithm reduces the domain of a single variable in O(n3) time-complexity. First, com-

puting the tangent box takes O(n3) (or O(n2) if we use the updating strategy in Section 5.4.2.3). The
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touching points require O(n2) as explained previously. In line 7, the sets Sl
j can be computed in O(n).

The for-loop at Line 8 requires O(n3), as Line 9 and 10 require O(n2) for computing the reduced ellipsoid

(by updating the QR factorization) and the tangent plane for each of the i in Sl
j . Therefore the total

time-complexity for filtering the domain for one variable is O(n3).

The complexity for filtering all the variables is therefore O(n4), which is the complexity when Sl
j ,∀j,

contains n−1 variables. However, it is beneficial to have more variables in the set, as more and stronger

pruning might be done.

5.4.4 Relative Strength of the Three Filtering Algorithms

It is clear that the ABC filtering algorithm is at least as strong as the BOX filtering algorithm, since

ABC uses the tangent box as the starting point. The QCP filtering is at least as strong as ABC. ABC

only considers the 2D projection of the hyper-ellipsoid onto each xixj plane, i.e., xj is only tightened

using the bounds of each xi, independently. However, it is also possible to perform a higher dimensional

projection of the hyper-ellipsoid and use the bounds of more than one variable together to do bound

tightening. Consider the 3D projection of the hyper-ellipsoid and the reasoning among xi, xj , xk. It

is possible to use xi and xk, together, to tighten xj , given that xi and xk intersects inside the hyper-

ellipsoid. For this reason, ABC only achieves BC when |Sl
j | = 1, |Su

j | = 1,∀j, and the tangent box only

achieves BC when |Sl
j | = 0, |Su

j | = 0,∀j.

5.4.5 Filtering Algorithm for the Axis-Aligned Ellipsoid (AAE)

We end this section with a note on a property of the ellipsoid constraint. Sections 5.4.1 to 5.4.3 define

the filtering algorithms for problems with a general strictly convex ellipsoid structure. In particular, the

filtering algorithm deals with a rotated ellipsoid structure, i.e., the off-diagonal entries of H in Equation

(5.3) are not necessarily all equal to zero. For the axis-aligned ellipsoid, i.e., the matrix H is a diagonal

matrix, bounds consistency can be achieved in a similar way as in the linear constraint using the lower

and upper bounds of the variables. We describe an algorithm to solve the QCP formulation exactly for

the axis-aligned ellipsoid by analyzing the feasible region defined by the quadratic constraint and the

variable bounds as follows. First, we rewrite Equation (5.2) as
∑n

i=1(aiixi− yi)2 ≤ β. Reorganizing the

inequality with respect to xj , we have

(ajjxj − yj)2 ≤ β −
n∑

i=1,i6=j

(aiixi − yi)2. (5.12)

The QCP formulation for the axis-aligned ellipsoid can therefore be rewritten as follows:

lBC
j = minxj , subject to (5.12) and l ≤ x ≤ u.

uBC
j = maxxj , subject to (5.12) and l ≤ x ≤ u.

We show how to compute the lower bound lBC
j first. Since we aim at minimizing xj , the right hand side

of Equation (5.12) should be maximized in order to achieve the largest quantity for (ajjxj − yj)2, or,
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xj . Therefore we have

(ajjxj − yj)2 ≤ β −min

n∑

i=1,i6=j

(aiixi − yi)2 = β −
n∑

i=1,i6=j

min (aiixi − yi)2, (5.13)

where

min (aiixi − yi)2 =





0, if li ≤ yi

aii
≤ ui.

(aiili − yi)2, if yi

aii
< li.

(aiiui − yi)2, if ui <
yi

aii
.

Note that the equality holds in Equation (5.13) because all the xi terms in the summation are completely

independent of each other. It follows that

lBC
j =

−
√
β −∑n

i=1,i6=j min(aiixi − yi)2

ajj
+

yj
ajj

.

From the symmetry property of an ellipsoid, we have

uBC
j =

√
β −∑n

i=1,i6=j min(aiixi − yi)2

ajj
+

yj
ajj

.

Note that if the quantity in the square root expression is less than zero, i.e., β−∑n
i=1,i6=j min(aiixi−yi)2 <

0, then the constraint is immediately unsatisfiable.

The complexity of the algorithm is O(n2) for filtering all the variables. In our implementation, we

can detect such axis-aligned ellipsoids and apply this algorithm instead of the ones for rotated ellipsoids.

5.5 Branching Rules

We propose variable and value ordering rules inspired by the search strategy of DEBS. Recall that the

static variable ordering in DEBS tries to minimize the branching factor at the top of the tree so that it

is easier to find feasible solutions. In CP, this is the same as statically choosing a variable with minimum

domain size. We therefore use the standard dynamic variable selection rule that chooses a variable

with the smallest domain, as dynamic variable ordering heuristics are generally superior to their static

counterparts [133]. The value ordering rule in DEBS always assigns a variable to the integer value closest

to the center of the ellipsoid of the objective function so that the search greedily chooses the best integer

value at the current node with the hope of finding good feasible solution quickly. In our implementation,

suppose xj is the variable chosen for branching, we first compute the center of the ellipsoid cj in the

j-th dimension given the reduced ellipsoid, and then round it to the nearest integer. When the search

backtracks, we assign xj to the next nearest integer to cj , and so on.

5.6 Experimental Results

Experimental Setup. We design two experiments. The goal of the first experiment is to evaluate the

impact of our filtering algorithms and the branching heuristics compared to a default CP model. The

second experiment compares our new CP approach to the best known exact approaches for IQCPs.
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For the first experiment, we use IBM ILOG CP Optimizer v12.6.3 with its default settings. The four

filtering algorithms, i.e., BOX, ABC, QCP, and AAE are implemented in CP Optimizer as customized

global constraints. The branching rules are implemented as customized variable and value choosers

(denoted with the symbol “+b” in our results). We use CPLEX v12.6.3 for solving the QCPs. We

report the arithmetic mean CPU time “time” in seconds, and the arithmetic mean number of choice

points “chpts” to find and prove optimality for each problem set.

For the second experiment, we use CPLEX v12.6.3,3 BARON v16.4.7 (using CPLEX v12.6.3 as its

LP/MIP solver) and the SDP solver BiqCrunch downloaded from the website [88] for comparison. Since

there are four versions of the SDP solver that deal with problem-specific structures, the SDP results

presented are the best version for each individual problem instance, representing the “virtual best” SDP

solver. All solvers are executed with their default settings. The DEBS algorithm is written in C.

The CPU time limit for each run on each problem instance is 3600 seconds. All experiments were

performed on a Intel(R) Xeon(R) CPU E5-1650 v2 3.50GHz machine (in 64 bit mode) with 16GB

memory running MAC OS X 10.9.2 with one thread.

5.6.1 Problem Sets

We experiment on medium size problems in five problem classes. The problem size of each set is chosen

with the aim for a mix of solvable and non-solvable instances across the default CP Optimizer and the

three filtering algorithms.

Binary Quadratic Programming (BQP) Problem. The BQP problem is defined as:

min
x∈{0,1}

1

2
x>Hx+ f>x,

where H ∈ Rn×n and f ∈ Rn. BQPs arise in many combinatorial optimization problems such as task

allocation [100], quadratic assignment [57], and max-cut problems [87]. We experiment on the Carter

type problems [40] divided into four sub-sets of instances with size 40 (p = 0.2), 40 (p = 0.3), 50 (p = 0.2)

and 50 (p = 0.3), respectively, where p is a problem generation parameter that controls the magnitude

of the diagonal entries.

Exact Quadratic Knapsack Problem (EQKP). The EQKP [99] is defined as:

min
x∈C

1

2
x>Hx+ f>x, C = {x ∈ {0, 1} : c>1 x = K, c>2 x ≤ B},

where H ∈ Rn×n, f ∈ Rn, c1 ∈ Rn is a vector equal to ones, c2 ∈ Rn
+, K ∈ Z+, B ∈ R+. The objective

is to minimize a quadratic function subject to a cardinality constraint and a knapsack constraint. The

EQKP is a extension of the BQP, maximum diversity problem [106], quadratic knapsack problem [39],

and exact linear knapsack problem [38]. EQKPs arise in a wide range of real world applications such

as wind farm optimization [147, 163]. We experiment on the EQKP and a variation in Section 3.3 with

binary domains xj ∈ {0, 1} relaxed to xj ∈ {0, 1, 2}. We use three sub-sets of the instances with size 10,

20 and 30.

3A major improvement was made in solving IQCPs in CPLEX v12.6.3 [31].
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Box-constrained ILS (BILS) Problem. The BILS problem can be defined as:

min
x∈C
‖y −Ax‖22 , C = {x ∈ Zn : l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}.

The problem minimizes a least squares expression subject to general integer bounds. Such problems exist

in elevator scheduling [94] and signal processing [43]. We generate problems the same way as Chang et

al. [43], with medium size variable domains (0 ≤ xi ≤ 10,∀i) and medium level of noise (σ = 0.05). We

use five sub-sets of the instances with size 10, 20, 30, 40 and 50.

Box-constrained and Ellipsoid-constrained ILS (BEILS) Problem. The BEILS problem can

be defined as:

min
x∈C
‖y −Ax‖22 , C = {x ∈ Zn : ‖Ax‖22 ≤ α, l ≤ x ≤ u, l ∈ Zn, u ∈ Zn},

where α is a constant. In addition to the least squares objective function, the BEILS problem is also

subject to a least squares constraint. Such problem can exist in signal processing [48]. We generate

problems the same way as those in Chang et al. [42] on the ellipsoid-constrained ILS problem then add

medium size variable domains (−10 ≤ xi ≤ 10,∀i). We use five sub-sets of the instances with size 10,

20, 30, 40 and 50.

Quadratic Lateness Scheduling Problem (QLSP). The QLSP can be defined as:

min

n∑

j=1

(Sj + pj − dj)2, s.t. disjunctive({S1, ..., Sn}, {p1, ..., pn}), Sj ≥ 0,∀j,

where Sj , pj , and dj are the start time, processing time, and due date of job j. The QLSP is a single

machine scheduling problem with the goal of minimizing the sum of the quadratic lateness of the jobs.

We generate problems the same way as those in Schaller [135]. We use four sub-sets of the instances

with size 5, 10, 15 and 20.

Each problem set includes 10 instances of each size, e.g., the BQP problems includes 4 sub-sets of size

10 for 40 instances.

5.6.2 Results of Experiment 1

We present the results of Experiment 1 in Tables 5.1 and 5.2. From Table 5.1, it is clear that the

ellipsoid constraint significantly improves the performance of the default CP Optimizer for the BQPs,

the BILS problems, and the BEILS problems both in terms of running time and number of choice points.

Without the reasoning from the ellipsoid constraint, the default CP Optimizer cannot prove optimality

for any instances of these three problem types. For the EQKPs, the ellipsoid constraint (BOX) is able

to decrease the number of choice points by a factor of 1.5 for the {0,1} problems and almost a factor of

2 for the {0,1,2} problems. But the extra computation makes the running time worse than that of the

default CP Optimizer.

For QLSPs, CPO achieves the best average running time. Interestingly, for the instances where

all the filtering algorithms are able to prove optimality, the number of choice points is the same for
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CPO BOX ABC QCP AAE

Problem time chpts time chpts time chpts time chpts time chpts

BQP - - 11.12 17169 1204.8985 10565 - - N/A N/A
BILS - - 44.61 61552 871.8084 19229 2810.0140 3836 N/A N/A

BEILS - - 362.1494 167162 1480.6864 10301 3092.1438 1637 N/A N/A
EQKP{0,1} 23.48 667740 44.09 426255 745.7987 60789 2494.7767 2494 N/A N/A

EQKP{0,1,2} 83.98 1803982 99.70 932035 481.4490 63177 2256.9557 2273 N/A N/A
QLSP 136.34 962400 166.16 962400 754.0785 438394 2432.9850 8631 139.09 962400

Table 5.1: A comparison of default CP Optimizer and the four filtering algorithms. The running times
are reported in seconds. Bold numbers indicate the best approach for a given problem set. The symbol
‘-’ means that no problem instances were solved to optimality within 3600 seconds. The superscripts
indicate the percentage of instances solved to optimality within 3600 seconds. If no superscript is
indicated, all of the instances are solved. The symbol ‘N/A’ indicates that the problem cannot be solved
with the filtering algorithm.

CPO+b BOX+b ABC+b QCP+b AAE+b

Problem time chpts time chpts time chpts time chpts time chpts

BQP - - 8.28 12611 1099.8292 12575 3595.853 1069 N/A N/A
BILS - - 0.06 225 5.21 228 314.16 221 N/A N/A

BEILS - - 0.47 426 213.47 394 1713.8982 360 N/A N/A
EQKP{0,1} 16.40 247896 24.84 193269 578.7490 72134 1868.7157 2550 N/A N/A

EQKP{0,1,2} 50.04 521037 46.77 269937 407.5990 39076 2304.0160 2365 N/A N/A
QLSP 20.63 347665 31.47 347665 602.7790 265252 2249.5750 8516 22.29 347665

Table 5.2: A comparison of default CP Optimizer and the three filtering algorithms with the branching
rules. All notations are the same as in Table 1.

all the filtering algorithms. Our preliminary investigation shows that the disjunctive constraint has

a significant impact on reducing variable domains for the QLSP, therefore determining the number of

choice points regardless of the strength of propagation of the ellipsoid constraint. It is worth pointing

out that the convex ellipsoid structure of the QLSP has a simple axis-aligned structure. We report the

running time of the three filtering algorithms for rotated ellipsoids, nonetheless, to show the additional

running time incurred. In practice, we can automatically identify the axis-aligned property and avoid

applying these inference algorithms for this type of problem. In addition, our investigation shows that

the default CPO propagation does not achieve BC for axis-aligned ellipsoids.

Among the three filtering algorithms for rotated ellipsoids, BOX performs the best in terms of running

time to prove optimality. ABC and QCP both find better primal solutions in fewer nodes but BOX finds

better solutions in less time. On problems where all three algorithms are able to prove optimality, the

tree size of BOX is about 15% larger than that of ABC and QCP. This result is somewhat surprising and

suggests that variable fixing leads to strong inference. We observe that the reduced ellipsoid obtained

after fixing a variable often has a much tighter tangent box on the unfixed variables compared to that of

the original ellipsoid. However, we also observe that ABC can sometimes achieve one order of magnitude

improvement in tree size compared to BOX on some larger instances. We would like to investigate the

problem characteristics that result in such difference. In addition, it is possible to improve the time

complexity of ABC to O(n3) by heuristically choosing only one variable that leads to the most domain
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reduction from the set S l
j (Su

j ). In the future, we would like to investigate such heuristics that achieve a

good balance between filtering power and time complexity. Note that the lower number of choice points

for ABC and QCP are misleading because neither prove optimality for all instances within the time

limit. However they are good indicators on the number of nodes that can be visited when these two

algorithms are applied.

From Table 5.2, it is observed that the new branching rules greatly improve the number of choice

points, the running time, and the percentage of optimal solutions found for most approaches. However

CPO still cannot prove optimality for the BQPs, the BILS problems, and the BEILS problems. The most

significant reduction is observed on the BILS problem and the BEILS problem, followed by the QLSP,

where the variable domains are much larger than the other two types of problems: a good branching

strategy apparently is especially important for problems with large domains. It is particularly striking

to see that the BILS problems are solved at least five orders of magnitude faster by CP through the use

of the ellipsoid constraint and the branching rule.

5.6.3 Results of Experiment 2

In this section, we compare our best CP results (using the BOX filtering for rotated ellipsoids and the

AAE for axis-aligned ellipsoids with the branching rules) with the best known exact approaches. From

Table 5.3, it is observed that our new CP approach significantly outperforms the general MINLP solver

BARON and it is competitive with state-of-the-art MIP solver CPLEX, running at the same order of

magnitude as CPLEX for BQPs and BILS problems. While our CP approach is one order of magnitude

slower than CPLEX for EQKPs, it is almost two orders of magnitude faster for BEILS problems and

it is significantly better for QLSPs. The reason that CPLEX performs particularly poorly on QLSPs is

that the modeling of the disjunctive relationship among the jobs involve big-M constraints, which result

in weak dual bounds. As future work, we would like to apply our CP approach to more complicated

scheduling problems, where quadratic component is only one of many components.

CPO BEST CP CPLEX BARON DEBS SDP

Problem time time time time time time

BQP - 8.28 37.06 38.03 0.24 0.69
BILS - 0.06 0.02 2715.0426 0.01 N/A

BEILS - 0.47 14.79 3248.2516 N/A N/A
EQKP{0,1} 23.48 24.84 4.49 6.23 0.24 114.01

EQKP{0,1,2} 83.98 46.77 4.27 429.6293 0.34 3593.552

QLSP 136.34 22.29 1588.1565 1855.0250 N/A N/A

Table 5.3: A comparison of default CP Optimizer and our best setting: BOX+b for rotated ellipsoids
and AAE+b for axis-aligned ellipsoids. All notations are the same as in Table 1. The symbol “N/A”
indicates that the problem cannot be solved with the approach.

The SDP approach, while being the state of the art for the BQPs, is limited to problems with binary

domains. For example, it cannot be used to solve the {0, 1, 2} EQKPs without transforming the problem

back to binary domains at the cost of introducing additional variables. Nevertheless, we perform this

transformation using the standard technique by representing the integer variables with their binary

expansion [55]. Results show that the SDP approach does not solve the relaxed EQKPs efficiently due
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to the very slow improvement of the dual bound. Similarly, DEBS cannot be applied to all the problem

classes due to its specialized nature. In contrast, BARON is the most general solver tested here (along

with CPO) and these results on strictly convex IQCPs do not reflect its more general problem solving

power [145].

Parameter Tuning for CPLEX. As CPLEX clearly outperforms the other general solvers in our

experiment, we aim at achieving the best performance of CPLEX and compare to our best CP setting.

Specifically, we investigate a crucial aspect of modern MIP solvers: parameter tuning. Parameter tuning

targets finding the best set of parameters for a specific class of problems and therefore may drastically

improve performance.

We use CPLEX’s parameter tuning tool as follows. First, we classified the instances into five cate-

gories based on problem types, i.e., one category for each problem type. We assume that the problem

characteristic are different between these problem types therefore avoiding potential performance loss

when using the tuning tool. We set a total tuning time of two days, with 3600 seconds per run. All

the training instances are also used as the testing instances. This approach obviously biases the results

in favour of the tuned parameters, however, we did this as we were seeking to evaluate the maximum

improvement we could expect from tuning.

In additional to using CPLEX’s tuning tool, we also experiment with two different node processing

strategies. CPLEX can be set to solve a regular linear relaxation or a quadratic relaxation at each node

for IQCPs. Since neither of these two strategies dominates each other in general [47], we experiment

with both. All the rest of the parameters are kept default.

Default Linear Quadratic Tuned Virtual Best BEST CP

Problem time time time time time time

BQP 37.06 37.66 37.65 37.06 33.23 8.28
BILS 0.02 0.01 0.01 0.01 0.01 0.06

BEILS 14.79 85.96 10.48 9.90 4.26 0.47
EQKP{0,1} 4.49 4.52 4.52 2.70 2.62 24.84

EQKP{0,1,2} 4.27 4.16 4.16 5.74 4.13 46.77
QLSP 1588.1565 1648.8765 1652.0363 1588.1565 1582.2068 22.29

Table 5.4: A comparison of five different CPLEX settings and our best CP setting. The notations
“Linear” and “Quadratic” denote the two different node processing strategies. The notation “Virtual
Best” is the best version of CPLEX for each individual problem instance.

Table 5.4 shows that CPLEX’s tuning tool reduces the mean running time for the BEILS problems

by a factor of 1.5 and the {0,1} EQKPs by a factor of 1.7, but increases the running time for the {0,1,2}
problems by a factor of 1.3. For the BQPs and the QLSPs, the tuning tool does not find parameter

settings different from the default so the performance remains unchanged. We conclude that though

parameter tuning is an effective technique, our results indicate that it is unlikely to make orders of

magnitude improvement or to make a significant portion of the non-solvable problems solvable.

Comparing the two node processing strategies, results show that solving the quadratic relaxation

yields much better performance than the linear relaxation for the BEILS problems, but slightly under-

performs on the QLSPs. It is worth noting that the default setting is able to make good decision on

dynamically choosing the type of relaxation.
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Finally, we look at the performance of the “virtual best” CPLEX solver, which is the best setting

of CPLEX for each individual problem instance. The virtual best solver shows a more significant

improvement on the BEILS problems, reducing the running time by a factor of 3.5 compared to the

default setting. However, when compared to our best CP setting, the relative performance remains the

same: our CP approach performs better on the BQPs, BEILS problems, and QLSPs.

5.7 Conclusion

We propose a CP-based approach to solve strictly convex IQCPs via a novel ellipsoid constraint with

three different filtering algorithms and variable/value ordering heuristics. The constraint and branching

heuristics are based on the geometry of the strictly convex quadratic function. We experiment with a

variety of problems and show significant improvement over the default CP Optimizer and competitive

results to general state-of-the-art solvers CPLEX and BARON.

For future work, it is interesting to experiment with our filtering algorithms on other problem types.

Although ABC and QCP perform worse than BOX for the problem types tested here, it is possible that

ABC and QCP can perform better for problems where variable fixings do not take place frequently.

For the same reason it is also interesting to implement the filtering algorithms in a MIP-based solver

such as SCIP [155] where branching is typically done by partitioning variable domains instead of fixing

variables. In general, our technique can be integrated with other solvers provided they represent bounds

on variables and have an“inference loop”. It may also be interesting to design an adaptive strategy to

select different filtering algorithms at different levels of the tree, e.g., apply QCP and ABC near the top

of the tree and apply BOX elsewhere.

As for implementation, though we have established the theoretical foundation of the updating strat-

egy, our current implementation creates a significant overhead because of the data copying between the

reversible data structure in CP Optimizer and the GNU Scientific Library (GSL) that we use for the

linear algebra operations. One possible solution is to implement the linear algebra operations using the

reversible data structure, thus avoiding the memory copying. In addition, currently we use matrices to

store the information used for updating. Ideally, we would like to design more efficient data structure

that only keeps track of the minimum amount of information required for the updating mechanism.

More broadly, we propose that it may be possible to develop CP as a basis for MINLP. MINLPs are

challenging optimization problems that arise in many industrial applications. As CP is not dependent

on a strong linear relaxation to bound the search, it may be valuable to study inferences that can be

made for common non-linear constraints as we have done here. We hope that this work might serve as

a step in this direction.
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Conclusion

In this chapter, we provide a summary and restate the contributions of this dissertation. We conclude

with some potential future research topics.

6.1 Summary

In this dissertation we study exact methods for solving the strictly convex integer quadratically con-

strained problem (IQCP), an important class of optimization problems that has numerous applications

in industry and theoretical science. We exploit the similarities among three tree search algorithms, i.e.,

discrete ellipsoid-based search (DEBS), mixed integer programming (MIP), and constraint program-

ming (CP) and integrate their techniques to develop efficient hybrid algorithms for solving IQCPs. We

demonstrate the state-of-the-art performance of our hybrid algorithms by comparing them to the best

known exact methods in the literature. In the following paragraphs, we summarize our investigation on

different approaches of hybridizing the techniques from DEBS, MIP and CP.

In Chapter 1, we introduce the IQCP and provide an overview on the exact methods for solving the

IQCP. We describe the current status of DEBS, MIP and CP and identify the strengths and weaknesses

of each approach, thus motivating the importance of developing efficient hybrid algorithms. We then

provide an outline of our research and describe the main contributions of this dissertation.

In Chapter 2, we provide the necessary notations and key concepts needed in this dissertation. We

formally define the IQCP and introduce the mutual reformulation of the IQCP and the integer least

squares (ILS) problem, demonstrating the theoretical foundation of our hybrid algorithms. We then

review the solving techniques of MIP, CP, and DEBS for IQCPs, which is, to the best of our knowledge,

the first time in the literature that anyone has taken a broader view of the problem that is often studied

independently by different research fields. We end this chapter with an overview of how the existing

literature relates to our new approaches for solving IQCPs.

In Chapter 3, we first show how DEBS can be incorporated into a MIP solver as a component en-

hancement to strengthen three key aspects of modern MIP solvers: presolving, cutting planes, and primal

heuristics. Our hybrid algorithm achieves the state of the art for the binary quadratic programming

(BQP) problem, an important class of problems in OR, and three types of the ILS problems that fre-

quently arise in communications applications. A major advantage of our hybrid algorithm is that, unlike

the specialized BQP solvers that can only solve problems with binary variables, our hybrid algorithm
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can be applied to a much larger class of problems that involve general integer variables.

We then show how DEBS can be incorporated in CP as a node processing enhancement to strengthen

the filtering power of CP for IQCPs. Since DEBS can be regarded as a specialized CP search with its

own branching heuristics and propagation rules tailored for strictly convex quadratic functions, we use

this insight to integrate linear constraints into DEBS so that the domains of the variables are further

reduced by the intervals implied by the linear constraints. This work is the first that generalizes DEBS

to incorporate general linear constraints, greatly broadening the class of problems that DEBS can solve.

As test set, we experiment with the exact quadratic knapsack problem (EQKP) and a variation and

demonstrate state-of-the-art performance.

The hybridization in Chapter 4 is done by integrating DEBS, MIP and CP together in the constraint

integer programming (CIP) paradigm. We augment the spread global constraint with techniques be-

yond its traditional filtering algorithm, i.e., novel relaxations and cutting planes that are derived based

on the combinatorial structure of the spread constraint and the geometric reasoning from DEBS. We

apply our CIP approach to the variance minimization problem with the application to two load balancing

problems: the load balancing nurse-to-patient assignment problem (NPAP) and the balanced academic

curriculum problem (BACP). Together with the augmented gcc constraint and problem specific branch-

ing heuristics, our CIP model outperforms both our new mixed integer quadratic programming (MIQP)

model in CPLEX and the previous best known CP model for the NPAP. For the BACP, both our new

CIP and MIQP models outperform the previous best known CP model.

Building upon the previous chapters, in Chapter 5 we develop a novel CP approach to solve general

IQCPs, allowing any side constraints that fit in the CP framework. We propose a novel global constraint,

the ellipsoid constraint that propagates based on strictly convex quadratic constraints. We formally

define the classical bounds consistency notation for the ellipsoid constraint and propose three filtering

algorithms, each with different filtering power and time complexity. Despite the natural limitation

of integer domains in CP, our filtering algorithms can be applied to variables with real domains, thus

broadening its application to approaches that support real variables, such as MIP solvers. We implement

the filtering algorithms and the accompanying branching heuristics in IBM ILOG CP Optimizer and

experiment with five sets of benchmark instances. Our results show orders of magnitude improvement

over the default CP Optimizer. When compared with the best known algorithms in the literature, our

results demonstrate that the new CP approach is competitive and achieves a new state of the art for

some problem domains.

The central thesis of this dissertation is that integrating techniques from DEBS, MIP and CP results

in efficient hybrid algorithms that perform better than using each method individually for solving IQCPs.

Abundant geometric information can be extracted from DEBS and formulated as inference techniques

that can be used in any tree search algorithm to prune search space.

6.2 Contributions

The main contributions of this dissertation are summarized as follows:

• State-of-the-Art Hybrid Algorithms:

– Strictly Convex Quadratically Constrained Problems with Variable Bounds: We

propose a novel hybrid algorithm that integrates MIP and DEBS to solve the class of problems
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with strictly convex quadratic constraints and variable bounds. The key idea is to incorpo-

rate DEBS-based presolving, cutting planes, and a primal heuristic to enhance MIP solvers.

We demonstrate the performance of our hybrid algorithms on the binary quadratic program-

ming problems and the integer least squares problems, which have significant influence in the

research fields of OR and communications, respectively.

– Strictly Convex Quadratically Constrained Problems with Linear Constraints:

We propose a novel CP and DEBS hybrid algorithm to solve strictly convex quadratically

constrained problems with linear constraints. The key idea is to integrate linear constraints

into DEBS so that the domains of the variables are not only reduced by the the bounding

ellipsoid but also by the linear constraints. Results on the test set, the exact quadratic

knapsack problem and a variation, show state-of-the-art performance.

– Variance Minimization Problems: We propose a three-way hybrid algorithm that com-

bines MIP, CP and DEBS for variance minimization problems and implement our algorithm

in the constraint integer programming solver, SCIP. The key idea is to augment the tradi-

tional spread global constraint with MIP’s relaxation and cutting planes techniques, which

are derived from the combinatorial structure of the spread constraint and the geometric

reasoning from DEBS. Results on two load balancing problems show that our CIP approach

outperforms the best known CP approach in the literature.

• A New Global Constraint for Strictly Convex IQCPs: We propose a novel global constraint,

the ellipsoid constraint, that filters w.r.t. strictly convex quadratic constraints. Our novel CP

approach that combines the ellipsoid constraint and a pair of variable/value ordering heuristics

brings CP within an order of magnitude of the state-of-the-art techniques for the IQCPs tested.

Our CP approach also achieves the state of the art when compared with non-problem specific

solvers such as CPLEX on some problem domains, showing the potential of developing CP as a

basis for mixed integer nonlinear programming (MINLP) problems.

• Bridging Different Research Fields for Solving IQCPs: For the first time in the literature,

we bring together the research of the OR, CP, and communications communities. We conduct

extensive experiments that compare their traditional approaches and our novel hybrid algorithms,

identifying key characteristics impacting the performance of each approach. We believe such a

connection between different research fields can provide new insights into IQCPs and may inspire

future innovation.

6.3 Future Work

As more immediate future work has been presented in their respective chapters (e.g., Sections 3.4, 4.8 and

5.7), here, we take a broader view and propose several lines of research that could be further explored.

6.3.1 CP as a Basis for MINLP

We have developed state-of-the-art hybrid algorithms for solving strictly convex IQCPs in this disser-

tation, nevertheless, our ultimate goal is to solve an even larger class of problems, beyond IQCPs. We

propose that it may be possible to develop CP as a basis for mixed integer nonlinear programming
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(MINLP). MINLPs are challenging optimization problems that arise in many industrial applications.

The greatest challenges for solving MINLPs efficiently come from the higher order nonlinearity and the

nonconvexity. Current MINLP solvers are based on mixed integer linear programming techniques and

their performance depends heavily on the strength of the outer-approximated linear relaxations of the

nonlinear functions. As CP is not dependent on a strong linear relaxation to bound the search, it may

be valuable to investigate inferences that can be made for common nonlinear constraints, similar to what

we have done for the strictly convex quadratic constraint.

In order to generalize our CP approach from the pure integer case to the mixed integer case, the

filtering algorithms need to make correct inference both on integer and continuous variables so that they

can be executed at each node of the search tree. One interesting question arises as to when the relaxed

problems should be solved. In the MIP literature, a relaxed problem is solved at each node of the tree,

however, it may be advantageous to delay solving the relaxed problems until after all the integer variables

have been instantiated. As shown in some communications applications [44], a potential benefit of this

approach is that a majority of the sub-problems might be pruned early in the search due to constraint

propagation, thus avoiding solving a large number of the time-consuming relaxed problems. It may

therefore also be of interest to develop branching heuristics that lead to fewer relaxed problems that

need to be solved.

One of the barriers for MIP, and possibly for CP, to solve general MINLPs is nonconvexity. In CP,

bounds consistency implicitly works with convex interval domains. A nonconvex constraint may results

in many domain holes so that maintaining bounds consistency might not achieve meaningful filtering. To

overcome the nonconvexity, it may be possible introduce the convex reformulation techniques [26] from

the OR literature so that it may be easier to compute the rigorous enclosure of a nonlinear constraint.

In the quadratic case, for example, convexity theory [34] states that the matrix that describes the

quadratic terms of a strictly convex quadratic function is positive definite, meaning that it has only

positive eigenvalues. Therefore, if we compute the eigenvalues and fix the variables that correspond

to the non-positive eigenvalues, the resulting sub-problem consists of only strictly convex quadratic

functions, which can then be filtered with our ellipsoid constraint. As an important application,

we would like to investigate problems with the second-order cone constraint [103], which has only one

negative eigenvalue. The problem becomes a strictly IQCP after fixing a single variable that corresponds

to the negative eigenvalue. In addition, new enumeration techniques such as spatial branching [23] in the

OR literature could be introduced to CP to efficiently handle the branching of the continuous variables in

nonconvex constraints. It may also be possible to bound a nonlinear constraint with a known structure

where the filtering algorithms are already available, e.g. using a minimum volume ellipsoid that encloses

some nonlinear constraint.

Another important aspect is the extension of the classical consistency notions in CP for more ap-

propriately defining the inference power of the filtering algorithms for nonlinear constraints. In the OR

literature, the filtering algorithms in MINLP solvers are usually not executed until they reach a certain

level of consistency [126], since it may be excessively computationally expensive. In accordance to what

we have shown in Chapter 5, achieving bounds consistency for a strictly convex quadratic constraint

is already difficult without using the time-consuming optimization-based bound tightening techniques.

Therefore, it is also important to develop more light-weight filtering algorithms that achieve a balance

between filtering power and time-complexity.
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6.3.2 New Mechanisms in CP

Hybrid Propagation and Branching Mechanisms. We propose that it may be possible to design

efficient hybrid propagation mechanism in CP. Inspired by DEBS, which only filters the variable that is

being considered at the current decision level, we can apply filtering algorithms selectively to only the

variable that has been selected but not assigned a value yet. For the ellipsoid constraint, for example,

filtering selectively reduces the time complexity by one order of magnitude (e.g., the BOX filtering is

O(n2) for a single variable, as opposed to O(n3) for all the variables). A potential advantage of filtering

selectively is that, if the domain reductions of the variables other than the one to be instantiated are not

contributing much to a domain wipe-out, substantial time can be saved from filtering these variables,

while preserving most of the filtering power. In the future, we would also like to generalize the idea of

selective filtering to some common global constraints. We believe that a hybrid propagation mechanism

that combines the traditional propagation mechanism and the selective filtering is a promising direction

for achieving a better performance.

It is also interesting to design hybrid branching mechanisms in CP, e.g., instead of fixing variables,

we can branch in a similar way as MIP by partitioning variable domains, which may lead to better

performance for some filtering algorithms. For example, as shown in Chapter 5, although ABC and

QCP perform worse than BOX for the problem types tested in this dissertation, we suspect that ABC

and QCP can perform better when branching by partitioning. Therefore, we propose that it may also

be possible to design an adaptive branching strategy to select different filtering algorithms and different

branching mechanism, at different depths of the tree, e.g., apply the more expensive but potentially

more powerful filtering algorithms near the top of the tree and apply lighter weight filtering algorithms

elsewhere.

For both hybrid mechanisms, efficient heuristics and machine learning techniques could be explored

to adaptively select the best branching and propagation mechanisms on the fly.

Global Inference and Dual Bounding Mechanisms. One of the main challenges for solving

MINLPs with CP is the lack of a global view on the entire problem [150], such as the dual bound-

ing mechanism in MIP. We propose that it may be possible to use the multi-valued decision diagram

(MDD) [9] to make stronger inference from a global perspective and as a general dual bounding mech-

anism for MINLPs. A MDD is a graphical data structure originally introduced to compactly represent

Boolean functions [8]. More recently, MDDs have been applied to enhance propagation and provide an

optimization based bound in CP [19]. We believe that it is a promising direction to represent the system

of nonlinear constraints as MDDs to obtain tighter bounds on the objective function. We would also like

to investigate MDD-based filtering algorithms for common nonlinear constraints. Finally, as MDDs have

only been known to be applied to discrete optimization, it is also of great interest to formally extend

the MDD for problems with both integer and continuous variables.
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Additional Results of Chapter 3

A.1 Complete Results of the ILS Problems
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c = 3

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.01 0.07 0.02 0.01 0.01 0.01 0.01 0.01 0.01
20 0.01 0.01 0.13 0.01 0.01 0.01 0.01 0.01 0.01
30 0.01 0.01 0.17 0.01 0.01 0.01 0.01 0.01 0.03
40 0.02 0.03 2.22 0.01 0.01 0.01 0.01 0.01 0.02
50 0.02 0.02 0.98 0.01 0.01 0.52 0.01 0.01 0.77
60 0.03 0.04 6.49 0.01 0.01 7.52 0.01 0.01 2.12
70 0.04 0.06 6.08 0.01 0.01 119.85 0.01 0.02 1.32
80 0.06 0.11 15.93 0.01 0.01 206.00 0.01 0.02 1.71
90 0.07 0.09 11.76 0.01 0.01 83.71 0.01 0.01 0.21

100 0.07 0.12 190.05 0.01 0.01 147.26 0.01 0.01 0.43

c = 10

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
20 0.01 0.01 0.11 0.01 0.01 0.01 0.01 0.01 0.01
30 0.01 0.01 0.11 0.01 0.01 0.01 0.01 0.01 0.02
40 0.02 0.01 0.78 0.01 0.01 0.01 0.01 0.01 0.03
50 0.02 0.02 1.30 0.01 0.01 0.21 0.01 0.01 0.60
60 0.03 0.04 4.96 0.01 0.01 7.63 0.01 0.01 1.08
70 0.04 0.05 4.39 0.01 0.01 33.80 0.01 0.02 0.82
80 0.06 0.07 37.74 0.01 0.01 228.31 0.01 0.02 0.51
90 0.07 0.09 56.76 0.01 0.01 216.00 0.01 0.02 0.46

100 0.09 0.09 38.94 0.01 0.01 72.01 0.01 0.02 0.06

c = 100

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01
20 0.01 0.01 0.19 0.01 0.01 0.01 0.01 0.01 0.01
30 0.01 0.01 0.27 0.01 0.01 0.01 0.01 0.01 0.01
40 0.02 0.03 0.62 0.01 0.01 0.01 0.01 0.01 0.04
50 0.03 0.03 3.27 0.01 0.01 0.21 0.01 0.01 0.59
60 0.02 0.04 1.39 0.01 0.01 7.63 0.01 0.01 2.50
70 0.04 0.09 5.23 0.01 0.01 33.80 0.01 0.01 0.89
80 0.05 0.09 7.57 0.01 0.01 128.31 0.01 0.01 2.64
90 0.06 0.10 12.08 0.01 0.01 116.00 0.01 0.13 2.47

100 0.07 0.09 20.88 0.01 0.01 172.01 0.01 0.02 0.44

Table A.1: Average running time for the unconstrained problems.
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c = 3

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
20 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
30 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
40 0.02 0.02 0.02 0.01 0.01 0.42 0.01 0.01 0.19
50 0.03 0.02 0.02 0.01 0.01 12.33 0.01 0.01 0.20
60 0.03 0.04 0.05 0.01 0.01 65.28 0.01 0.01 0.55
70 0.04 0.05 0.08 0.01 0.01 118.64 0.01 0.01 0.47
80 0.06 0.06 0.10 0.01 0.01 398.29 0.01 0.01 0.64
90 0.06 0.08 0.12 0.01 0.01 228.42 0.01 0.01 0.90

100 0.08 0.07 0.17 0.01 0.01 188.14 0.01 0.01 0.25

c = 10

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01
20 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.17
30 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.19
40 0.03 0.04 0.09 0.01 0.01 0.01 0.01 0.01 0.17
50 0.03 0.02 0.10 0.01 0.01 74.35 0.01 0.01 0.44
60 0.04 0.03 0.16 0.01 0.01 116.69 0.01 0.01 1.24
70 0.05 0.05 0.37 0.01 0.01 380.12 0.01 0.01 2.68
80 0.07 0.06 0.49 0.01 0.01 561.25 0.01 0.01 1.89
90 0.08 0.08 0.62 0.01 0.01 288.02 0.01 0.01 3.21

100 0.08 0.10 0.87 0.01 0.01 545.64 0.01 0.01 0.77

c = 100

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.11
20 0.01 0.01 0.13 0.01 0.01 0.01 0.01 0.01 0.35
30 0.01 0.01 0.14 0.01 0.01 0.04 0.01 0.01 0.23
40 0.02 0.02 0.13 0.01 0.01 0.22 0.01 0.01 0.99
50 0.02 0.03 0.37 0.01 0.01 6.26 0.01 0.01 4.90
60 0.03 0.04 0.84 0.01 0.01 172.89 0.01 0.01 150.22
70 0.05 0.06 3.44 0.01 0.01 360.01 0.01 0.01 77.16
80 0.05 0.09 3.64 0.01 0.01 432.01 0.01 0.01 73.46
90 0.06 0.09 5.39 0.01 0.01 504.08 0.01 0.01 150.38

100 0.08 0.10 9.83 0.01 0.01 216.02 0.01 0.01 85.12

Table A.2: Average running time for the box-constrained problems.
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α = 0.5n

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.04 0.04 0.09 0.01 0.01 0.01 0.01 0.01 0.01
20 0.16 0.16 0.65 0.01 0.01 0.01 0.01 0.01 0.01
30 0.33 0.44 2.27 0.01 0.01 0.01 0.01 0.01 0.10
40 0.84 1.11 10.02 0.01 0.01 0.01 0.01 0.01 0.01
50 1.79 2.17 34.40 0.01 0.01 0.06 0.01 0.01 0.38
60 2.53 3.88 125.85 0.01 0.01 0.01 0.01 0.01 0.55
70 3.91 5.73 212.39 0.01 0.01 6.53 0.01 0.01 0.07
80 5.55 8.70 888.61 0.01 0.01 72.00 0.01 0.01 0.44
90 7.09 12.10 1130.79 0.01 0.01 0.01 0.01 0.01 0.05

100 10.04 15.72 2929.4 0.01 0.01 216.13 0.01 0.01 0.68

α = n

n MIP DEBS HYBRID

σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5 σ = 0.01 σ = 0.05 σ = 0.5

10 0.40 0.26 0.24 0.01 0.01 0.01 0.01 0.01 0.01
20 22.62 21.23 20.97 0.01 0.01 0.01 0.01 0.01 0.01
30 1744.49 1667.28 1275.03 0.01 0.01 0.01 0.01 0.01 0.01
40 3600 3600 3600 0.01 0.01 0.01 0.01 0.01 0.02
50 3600 3600 3600 0.01 0.01 0.09 0.01 0.01 0.35
60 3600 3600 3600 0.01 0.01 0.37 0.01 0.01 0.18
70 3600 3600 3600 0.01 0.01 1.89 0.01 0.01 0.26
80 3600 3600 3600 0.01 0.01 97.85 0.01 0.01 0.44
90 3600 3600 3600 0.01 0.01 128.69 0.01 0.01 0.43

100 3600 3600 3600 0.01 0.01 203.46 0.01 0.01 0.17

Table A.3: Average running time for the ellipsoid-constrained problems.
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A.2 Noise Analysis for the BQPs

The σ values of each problem type

min mean max

Carter 5.71 50.32 96.87
William 5.36 36.94 87.28
bqp50 29.67 55.11 82.06

bqp100 25.60 57.21 97.91
gka 26.38 60.46 128.68
gkb 7.25 17.17 35.41
gkd 44.97 67.75 103.29

Table A.4: The minimum, average, and maximum noise of each problem type of the BQPs.
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