
INTEGRATING COMBINATORIAL SCHEDULING WITH INVENTORY

MANAGEMENT AND QUEUEING THEORY

by

Daria Terekhov

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

c© Copyright 2013 by Daria Terekhov

Abstract
Integrating combinatorial scheduling with inventory management and queueing theory

Daria Terekhov
Doctor of Philosophy

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

2013

The central thesis of this dissertation is that by combining classical scheduling methodologies

with those of inventory management and queueing theory we can better model, understand and

solve complex real-world scheduling problems.

In part II of this dissertation, we provide models of a realistic supply chain scheduling

problem that capture both its combinatorial nature and its dependence on inventory availabil-

ity. We present an extensive empirical evaluation of how well implementations of these models

in commercially available software solve the problem. We are therefore able to address, within

a specific problem, the need for scheduling to take into account related decision-making pro-

cesses.

In order to simultaneously deal with combinatorial and dynamic properties of real schedul-

ing problems, in part III we propose to integrate queueing theory and deterministic scheduling.

Firstly, by reviewing the queueing theory literature that deals with dynamic resource allocation

and sequencing and outlining numerous future work directions, we build a strong foundation

for the investigation of the integration of queueing theory and scheduling. Subsequently, we

demonstrate that integration can take place on three levels: conceptual, theoretical and algorith-

mic. At the conceptual level, we combine concepts, ideas and problem settings from the two

areas, showing that such combinations provide insights into the trade-off between long-run and

short-run objectives. Next, we show that theoretical integration of queueing and scheduling can

lead to long-run performance guarantees for scheduling algorithms that have previously been

proved only for queueing policies. In particular, we are the first to prove, in two flow shop

environments, the stability of a scheduling method that is based on the traditional scheduling

ii

literature and utilizes processing time information to make sequencing decisions. Finally, to

address the algorithmic level of integration, we present, in an extensive future work chapter,

one general approach for creating hybrid queueing/scheduling algorithms. To our knowledge,

this dissertation is the first work that builds a framework for integrating queueing theory and

scheduling.

Motivated by characteristics of real problems, this dissertation takes a step toward extend-

ing scheduling research beyond traditional assumptions and addressing more realistic schedul-

ing problems.

iii

Acknowledgements
This research has been supported by the Natural Sciences and Engineering Research Council
of Canada, the Canadian Foundation for Innovation, the Ontario Research Fund, the Ontario
Ministry for Research and Innovation, the Ireland Industrial Development Agency, Alcatel-
Lucent, Microway Inc., IBM ILOG, SGS Doctoral Completion Award, and the Department of
Mechanical and Industrial Engineering.

There are many people who have helped me throughout my Ph.D. program - to properly
acknowledge all of you, I would likely need to write a document as long as this dissertation,
and I am not sure that the University of Toronto will approve of that. The following is therefore
just an abstract.

Firstly, I would like to thank my supervisor, Professor J. Christopher Beck, for being the
optimal supervisor for me. You have been patient and supportive throughout my Ph.D. pro-
gram, and have taught me not just how to do research and present the results, but also about
academia in general. Thank you also for giving me the opportunity to attend many confer-
ences, for arranging the summer internship at Alcatel-Lucent Bell Labs, and for helping me to
establish connections.

Next, I would like to thank Professor Douglas G. Down, for the excellent support and guid-
ance in queueing theory. I greatly appreciate all of the time you have invested in explaining
(and re-explaining!) the material that was difficult for me. Thank you very much for your help!

I would also like to thank members of my thesis committee, Professor C.-G. Lee, Professor
B. Balciouglu, Professor M. Trick and Professor T. C. Y. Chan, for comments that have helped
improve this dissertation.

Thank you also to Mustafa K. Doğru and Ulaş Özen for your guidance during my intern-
ship at Alcatel-Lucent Bell Labs and during working on the assembly scheduling paper, for
providing such an interesting scheduling problem for me to work on, and for all your advice.

I would like to thank Tony T. Tran, for doing the preliminary work for Chapter 7 (i.e., ini-
tial implementations of the polling system and dynamic flow shop, initial experiments), and
for having the insight that makespan should perform better than completionTime in the polling
system. In addition, I would like to thank you for the very helpful discussions and explanations.

iv

I would like to thank Maliheh Aramon Bajestani, for countless discussions (which, being
very loud, have likely distracted many people from their work) of everything grad school-
related, for pushing me to finish (including reminding me of due dates for my thesis chapters!)
and for being a great friend.

Thank you to Tiago S. Vaquero, for useful advice and for providing a lot of technical sup-
port for my work, ranging from installing Eclipse and LED (which I didn’t even know existed
before you showed them to me) to helping me figure out how to include Russian words in these
acknowledgements.

I would also like to thank all the friends that have supported me during the years of my
program, including my friends from the tennis club, my suitemates at Graduate House, and my
friends and colleagues at TIDEL.

Thank you to Gabriel Watson for your support, sweetness and thoughtfulness over the last
year of this program. Thank you also for cooking dinner and washing dishes when I was busy,
for the numerous thesis-related jokes, for providing me with a mouse (which really made my
work faster), for amazing quotes such as “A scheduler’s life-long challenge is that of beating
time into his/her own rules, only to find out later it was time that ruled them to dance in synch
with its beat”, and for all the fun times that allowed me to take breaks from thesis-writing.

Ñïàñèáî âñåì ðîäñòâåííèêàì çà ïîääåðæêó! Áàáà Ëþáà è Äåäà Âîâà, ÿ âûó÷è-

ëàñü íà äîêòîðà!

Thank you to my parents, for helping me to achieve my goal, for advising me and support-
ing me through the ups-and-downs of graduate school, for driving me to and from the train
station, for providing bundles of supplies, for helping me move in and out of numerous res-
idences and apartments, for assisting with optimal scheduling, for encouraging me to do my
best, and for helping me realize, that, after all, the back-room/front-room problem is not really
the most important problem in the world.

v

Contents

I Introduction 1

1 Introduction 2
1.1 Summary of Contributions . 3

1.2 Overview of Dissertation . 4

2 Motivations 8
2.1 Practical Motivation: Supply Chains . 8

2.2 Theoretical Motivation: Integration of Scheduling with Related Fields 10

2.2.1 Combining Scheduling and Inventory Management 11

2.2.2 Combining Scheduling and Queueing Theory 11

2.3 The Approach of this Dissertation . 12

2.3.1 Scheduling and Inventory Management 12

2.3.2 Scheduling and Queueing Theory . 14

2.4 Conclusion . 15

II Assembly Scheduling with Inventory Constraints 16

3 Combining Scheduling and Inventory Management: A Literature Review 17
3.1 Combinatorial Scheduling . 17

3.1.1 Fundamental Scheduling Notions . 17

3.1.2 Scheduling with an Assembly Structure Among Machines 20

3.2 Inventory Management . 21

3.2.1 Classical Inventory Management Concepts 21

3.2.2 Inventory Constraints in Scheduling 24

3.3 Summary . 25

3.4 Conclusion . 26

vi

4 Solving An Assembly Scheduling Problem Using Complete Methods 27
4.1 Problem Description . 28

4.2 Theoretical Properties . 29

4.3 Mixed-Integer Programming Models . 31

4.3.1 The timeIndexed Model . 31

4.3.2 The positionalVariables Model . 33

4.3.3 Kolisch & Hess Model . 35

4.4 Constraint Programming Model . 36

4.4.1 Background . 36

4.4.2 Model . 37

4.5 Experimental Results . 38

4.5.1 Summary of Results . 40

4.5.2 Experiment 1 . 43

4.5.3 Experiment 2 . 44

4.5.4 Experiment 3 . 44

4.5.5 Experiment 4 . 47

4.5.6 Experiment 5 . 47

4.5.7 Memory Consumption . 49

4.6 Conclusion . 49

5 Scheduling and Inventory Management Future Work 52
5.1 Better Solution Techniques . 52

5.1.1 Complete Approaches . 52

5.1.2 Heuristic Approaches . 53

5.2 Extensions . 53

5.2.1 More Complex Facility Structure . 54

5.2.2 Conceptual Questions . 54

5.2.3 Stochastic Extensions . 55

5.3 Integration of Scheduling and Inventory Management 55

5.4 Conclusion . 56

III Integrating Scheduling and Queueing Theory for Dynamic Schedul-
ing Problems 58

6 Combining Scheduling and Queueing Theory: A Literature Review 59
6.1 Queueing Theory . 61

vii

6.1.1 Queueing Theory Fundamentals . 61

6.1.1.1 Single-Station vs. Multi-Station Models 62

6.1.1.1.1 Single-Station Queueing Models 62

6.1.1.1.2 Multi-station Queueing Models 63

6.1.1.2 Single-class vs. Multi-class Systems 65

6.1.1.3 Descriptive vs. Prescriptive Models 66

6.1.2 Methodologies for Scheduling . 67

6.1.2.1 Markov Decision Processes 69

6.1.2.2 Models with Specific Structure 72

6.1.2.2.1 Priority Queues 72

6.1.2.2.2 Polling Systems 75

6.1.2.2.3 Vacation Models 81

6.1.2.2.4 Bandit Models . 82

6.1.2.3 Methods Based on Approximations and Abstractions 85

6.1.2.3.1 Approximations and Abstractions 86

6.1.2.3.2 Translation Techniques 96

6.1.2.4 Summary . 102

6.2 Dynamic Scheduling . 103

6.3 Summary of Our View on Queueing and Scheduling 105

6.4 Conclusion . 107

7 Conceptual Integration of Scheduling and Queueing Theory 109
7.1 Problem Settings . 110

7.1.1 Dynamic Flow Shop . 110

7.1.2 Polling System . 110

7.1.3 Discussion of Assumptions . 111

7.1.3.1 Available Information . 111

7.1.3.2 Problem Settings . 112

7.2 Scheduling in Polling Systems and Dynamic Flow Shops 113

7.2.1 Methods for Solving Static Sub-problems 114

7.2.2 Dynamic Flow Shop . 116

7.2.3 Polling System . 117

7.3 The makespan method vs. the completionTime method 119

7.3.1 Assumptions . 119

7.3.2 Notation . 119

7.3.3 Dynamic Flow Shop . 120

viii

7.3.4 Polling System . 122
7.4 Discussion . 126

7.4.1 Polling System vs. Dynamic Flow Shop 126
7.4.2 Queueing vs. Scheduling Methods . 127
7.4.3 Sub-problem Size Assumptions . 128

7.5 Conclusion . 129

8 Theoretical Integration of Scheduling and Queueing Theory: Stability 130
8.1 Introduction to Stability . 131
8.2 Stability of the Dynamic Flow Shop . 133

8.2.1 Two-Machine Case . 133
8.2.2 Extension . 137

8.3 Stability of the Polling System . 137
8.3.1 Formal Model . 137
8.3.2 Stability of FCFS . 139

8.3.2.1 State Definition . 139

8.3.2.2 Overall Network Dynamics 140
8.3.2.3 Proof . 142

8.3.3 Instability Example . 148
8.3.4 Stability of the makespan Approach 148

8.3.4.1 State Definition . 149
8.3.4.2 System Dynamics . 151
8.3.4.3 Proof . 151

8.4 Generalizations . 155
8.4.1 Stability of FCFS . 155

8.4.1.1 Generalized M -machine Flow Shop Server 155

8.4.1.1.1 State Definition and System Dynamics 156
8.4.1.1.2 Proof . 157

8.4.1.2 Flexible Flow Shop Server 161
8.4.2 Stability of makespan . 162

8.5 Conclusion . 162

9 Theoretical Integration of Scheduling and Queueing Theory: Fluid Analysis 164
9.1 Analysis of Fluid Limits . 165

9.1.1 Formal Definitions . 166
9.1.2 Empirical Evaluation . 167

9.1.2.1 Instances of Categories 1 and 2 168

ix

9.1.2.2 Instances of Category 3 . 169

9.1.3 Comparison of Fluid Makespans . 173

9.1.4 Comparison of Fluid Limits . 175

9.2 Insights . 176

9.2.1 Identification of A Key Algorithm Feature 177

9.2.2 Predicting Performance of Scheduling Algorithms 178

9.2.3 Stability of Non-Idling Policies in the Polling System 179

9.3 Conclusion . 183

10 Scheduling and Queueing Theory Future Work 184
10.1 Conceptual Level . 184

10.1.1 Summary of Ideas from Chapter 6 . 184

10.1.2 Extensions of Chapter 7 . 186

10.1.2.1 Combination of Problem Settings 186

10.1.2.2 Combination of Assumptions 187

10.1.3 Other Ideas for Conceptual Integration 188

10.1.3.1 Modelling Waiting . 188

10.1.3.2 Bottleneck Sub-network . 188

10.2 Theoretical Level . 189

10.2.1 Summary of Ideas from Chapter 6 . 190

10.2.2 Extensions of Chapters 8 and 9 . 190

10.2.2.1 Stability . 190

10.2.2.2 Fluid Limit Analysis . 191

10.2.3 Other Ideas for Theoretical Integration 191

10.3 Algorithmic Level . 191

10.3.1 Summary of Ideas from Chapter 6 . 192

10.3.2 A General Framework for Algorithmic Integration 193

10.3.3 Example 1: Dynamic Parallel Machine Setting 195

10.3.3.1 Without Setup Times . 195

10.3.3.2 With Setup Times . 197

10.3.4 Example 2: Dynamic Job Shop with Recirculation 198

10.4 Conclusions . 200

IV Conclusion 202

11 Conclusions and Future Work 203

x

11.1 Summary and Contributions . 203
11.1.1 Integration of Scheduling and Inventory Management 203

11.1.1.1 Modelling and Solving a Realistic Supply Chain Scheduling
Problem . 204

11.1.1.2 Basis for a General Framework 204
11.1.2 Integration of Scheduling and Queueing Theory 205

11.1.2.1 Review of Queueing Theory Methods for Scheduling 205
11.1.2.2 Conceptual Level of Integration 205
11.1.2.3 Theoretical Level of Integration 206
11.1.2.4 Other Contributions . 207

11.2 Future Work . 207
11.2.1 Modelling Uncertainty . 208
11.2.2 Investigating the Relationship Between Scheduling and Other

Decision-Making Processes . 209
11.2.3 Addressing Three Major Characteristics of Scheduling Problems To-

gether . 209
11.3 Conclusions . 210

List of Symbols 214

Bibliography 214

xi

List of Tables

4.1 Example of a PD2|rj|
∑n

j=1 wjTj problem for which there is no optimal sched-
ule that is a permutation schedule. 30

4.2 Example of a PD2|rij|
∑n

j=1 Tj problem for which there is no optimal sched-
ule that is a permutation schedule. 30

6.1 Pairs of complementary scheduling and queueing theory papers that focus on
manufacturing. 60

9.1 Data for instances 0 to 3. 168

xii

List of Figures

2.1 An Example of a Supply Chain. 9

2.2 Schematic representation of the assembly scheduling problem. 13

4.1 Permutation Schedule 1 for Example 1 (Table 4.1) 30

4.2 Permutation Schedule 2 for Example 1 (Table 4.1) 30

4.3 Non-permutation Schedule for Example 1 (Table 4.1) 30

4.4 Permutation Schedule 1 for Example 2 (Table 4.2) 31

4.5 Permutation Schedule 2 for Example 2 (Table 4.2) 31

4.6 Non-permutation Schedule for Example 2 (Table 4.2) 31

4.7 Proportion of Instances Solved to Optimality Within One Hour for Problem
Set 1. 40

4.8 Proportion of Instances Solved to Optimality Within One Hour for Problem Set 2. 40

4.9 Proportion of Instances for Which At Least One Feasible Solution Was Found
Within One Hour for Problem Set 1. 41

4.10 Proportion of Instances for Which At Least One Feasible Solution Was Found
Within One Hour for Problem Set 2. 41

4.11 Number of Instances Solved to Optimality Within One Hour for Experiment 1
Problem Set 1. 42

4.12 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 1 Problem Set 1. 42

4.13 Number of Instances Solved to Optimality Within One Hour for Experiment 1
Problem Set 2. 42

4.14 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 1 Problem Set 2. 42

4.15 Number of Instances Solved to Optimality Within One Hour for Experiment 2
Problem Set 1. 45

4.16 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 2 Problem Set 1. 45

xiii

4.17 Number of Instances Solved to Optimality Within One Hour for Experiment 2
Problem Set 2. 45

4.18 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 2 Problem Set 2. 45

4.19 Number of Instances Solved to Optimality Within One Hour for Experiment 3
Problem Set 1. 46

4.20 Number of Instances Solved to Optimality Within One Hour for Experiment 3
Problem Set 2. 46

4.21 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 3 Problem Set 2. 46

4.22 Number of Instances Solved to Optimality Within One Hour for Experiment 4
Problem Set 1. 48

4.23 Number of Instances Solved to Optimality Within One Hour for Experiment 4
Problem Set 2. 48

4.24 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 4 Problem Set 2. 48

4.25 Number of Instances Solved to Optimality Within One Hour for Experiment 5
Problem Set 1. 49

4.26 Number of Instances Solved to Optimality Within One Hour for Experiment 5
Problem Set 2. 50

4.27 Number of Times At Least One Feasible Solution Was Found Within One Hour
for Experiment 5 Problem Set 2. 50

4.28 Proportion of Instances For Which the MIP Models Ran Out Of Memory for
Problem Set 2. 50

6.1 Illustrative example. 68

7.1 Polling system with three sub-problems (each corresponding to a queue visit)
and three jobs per sub-problem. 114

7.2 Dynamic flow shop with three sub-problems and three jobs per sub-problem.
The start of a sub-problem is the start of a set of jobs on machine 1, the end of
a sub-problem is the end of a set of jobs on machine 2. 114

7.3 Mean flow times in a dynamic two-machine flow shop for FCFS, SPTsum,
completionTime and makespan models as the system load varies. 117

7.4 Mean flow times in a polling system with a two-machine flow shop server for
FCFS, SPTsum, completionTime and makespan models as the system load varies.118

xiv

8.1 Schedule for policy π for a two-machine flow shop. This figure also appears in
Chapter 7 as Figure 7.2. 134

8.2 Schedule for makespan for the same problem instance as in Figure 8.1.
134

8.3 Schedule for an idling policy π for a two-machine flow shop. 135
8.4 Schedule for makespan for the same problem instance as in Figure 8.3. 135
8.5 Schedule for FCFS for the Dynamic Flow Shop with Three Machines. 136
8.6 Schedule for makespan for the Dynamic Flow Shop with Three Machines. . . . 136
8.7 Schedule for the completionTime approach.

138
8.8 Schedule for makespan for the same problem instance as in Figure 8.7. 138
8.9 Number of Jobs at Machine 2 in Queue 1 Over Time. 149

9.1 Fluid Limits for Instance 0. 170
9.2 Fluid Limits for Instance 1. 170
9.3 Fluid Limits for Instance 2. 170
9.4 Fluid Limits for Instance 3. 170
9.5 Fluid Limits of Work Arrived at Machine 2 for Instance 4. 171
9.6 Fluid Limits of Work Present at Machine 2 for Instance 4. 171
9.7 Workload Arriving to Machine 2 for Instance 5. 172
9.8 Workload Present at Machine 2 for Instance 5. 172
9.9 Number of Jobs at Machine 2 in Queue 1 Over Time for an Example Instance.

This figure also appears as Figure 8.9. 180

xv

Part I

Introduction

1

Chapter 1

Introduction

The central thesis of this dissertation is that by combining classical scheduling methodologies
with those of inventory management and queueing theory we can better model, understand and
solve complex real-world scheduling problems. Real-world scheduling problems are combi-
natorial in nature, dynamic and affected by many sources of uncertainty, and closely related
to other decision-making processes of the environment they exist in. The classical scheduling
literature has focused on solving isolated, static and deterministic versions of these problems;
that is, problems that correspond to a snapshot of the environment at a particular point in time,
in which all relevant task characteristics are known with certainty and in which the depen-
dence on other decision-making processes is not considered. Motivated by characteristics of
real problems, this dissertation takes a step toward extending scheduling research beyond these
traditional assumptions.

Firstly, we investigate the premise that a scheduling problem rarely exists in isolation: it is
usually part of an environment in which many other complex decision-making problems need
to be solved. In manufacturing and supply chain applications, the production of items requires
raw materials and component parts. Thus, when a production schedule is created, the avail-
ability of these components has to be taken into account. When decisions regarding the timing
and quantity of component part replenishments are made, one needs to consider how and when
the components are going to be used during production. In spite of being closely related, these
scheduling and inventory decisions have mostly been addressed separately in the literature. In
this dissertation, we study a supply chain scheduling problem with both types of decisions. By
explicitly representing the dependence of scheduling on inventory replenishments, we are able
to more accurately model the real problem that motivated our study, and to address, within
a specific problem, the need for scheduling to take into account related decision-making pro-
cesses.

Secondly, we focus on two areas that have developed very different techniques for dealing

2

CHAPTER 1. INTRODUCTION 3

with resource allocation and sequencing: queueing theory and deterministic scheduling. Of
particular interest are dynamic scheduling problems, in which the set of jobs changes dynam-
ically over time. The goal in such problems is to determine how the available resources are
to be allocated among competing requests with the objective of optimizing the performance
of the system. For example, in a manufacturing facility, incoming customer orders need to be
processed on various machines. Classical scheduling research has mostly focused on devising
effective methods for dealing with the complex combinatorics of such problems while assum-
ing a static and deterministic environment. Thus, in the context of a manufacturing facility, a
typical problem considered by the scheduling community would involve sequencing the pro-
duction of a fixed set of products on the available machines. Queueing theory, on the contrary,
generally assumes a relatively simple combinatorial structure, but models the stochastic and
dynamic properties of systems. For instance, a queueing model is able to represent the arrivals
of customer orders via stochastic processes, but would not be able to capture the detailed re-
source constraints of a scheduling model. We demonstrate that integrating concepts, ideas and
methodologies from queueing theory and scheduling is beneficial for modelling, understanding
and solving scheduling problems with both a combinatorial structure and dynamic properties.

The detailed motivations for our work are presented in Chapter 2. The contributions of this
dissertation are given in the following section.

1.1 Summary of Contributions

The three main contributions of this dissertation are:

1. We make a step toward the development of a general framework for integrating schedul-
ing and inventory decision-making by presenting novel models of an assembly environ-
ment in which scheduling decisions depend on the availability of component parts.

2. We are the first to demonstrate that combining problem settings and concepts from
queueing theory and scheduling can lead to novel insights about scheduling in dynamic
environments. Specifically, we obtain a new understanding of the trade-off between
short-run and long-run objectives in dynamic scheduling.

3. We are the first to prove, in two environments, the stability of a scheduling method that
is based on the traditional scheduling literature and utilizes processing time information
to make sequencing decisions. Thus, we show that theoretical integration of queueing
and scheduling can lead to long-run performance guarantees for scheduling algorithms
that have previously been proved only for queueing policies.

CHAPTER 1. INTRODUCTION 4

In addition,

4. Using mixed-integer and constraint programming, we model and solve a scheduling
problem with inventory constraints and an assembly structure which is based on a real
supply chain problem. Our models are implemented using commercially available soft-
ware and extensively empirically evaluated. As a result, our work provides a baseline on
how well the problem can be solved without resorting to problem-specific algorithms.

5. We provide an overview of scheduling methods developed in queueing theory. By high-
lighting the differences and similarities between the ways that resource allocation and
sequencing problems are addressed in the queueing theory and scheduling literatures,
we establish a clear relationship between two fields that have developed mostly indepen-
dently. We also describe numerous opportunities for integration of queueing and schedul-
ing, which have the potential to lead to a better understanding of dynamic scheduling.
Our review of past work and future directions builds a strong foundation for the investi-
gation of the integration of queueing theory and scheduling.

6. It is shown that periodic scheduling methods can perform better than queueing-based dis-
patching rules for optimization of long-run performance. However, the choice of objec-
tive function for each sub-problem, which is a proxy measure for the long-run objective,
may not always be obvious. Thus, our work suggests that, for general dynamic schedul-
ing problems, it is important to investigate various sub-problem objective functions in
order to develop an effective scheduling method.

7. We are the first to demonstrate the applicability of the fluid model methodology for
proving stability of, and deriving new insights about, periodic scheduling policies based
on processing times.

8. We propose and study a novel scheduling environment: a polling system with a gated,
cyclic discipline and a server that is a two-machine flow shop. We prove stability of the
first-come, first-served policy and of a periodic scheduling approach in this setting, and
show that our proof extends to the case when the server is an M -machine flow shop or a
d-stage flexible flow shop with M machines at each stage.

1.2 Overview of Dissertation

There are four parts in this dissertation.

CHAPTER 1. INTRODUCTION 5

Part I: Introduction The first part of this dissertation consists of the current introductory
chapter, and Chapter 2, which presents the practical and theoretical motivations for our work.

Part II: Assembly Scheduling with Inventory Constraints Part II focuses on a scheduling
problem with inventory constraints in a small supply chain consisting of two manufacturing
facilities and a merge-in-transit facility, which is further referred to as the assembly scheduling
problem. This part shows that a realistic scheduling problem can be addressed by combining
ideas from deterministic scheduling and inventory management.

Chapter 3 provides a review of the literature on the underlying combinatorial scheduling
problem as well as on inventory management. We also survey previous work in combinatorial
scheduling with inventory constraints.

Chapter 4 presents three mixed-integer programming (MIP) models and a constraint pro-
gramming (CP) model for the assembly scheduling problem with inventory constraints, and
empirically evaluates their relative performance. Results show that when there are no com-
ponents shared among the two manufacturers, the MIP model based on time-index variables
is the best for proving optimality for problems with short processing times whereas the CP
model tends to perform better than the others for problems with a large range of processing
times. When shared components are added, the performance of all models deteriorates, with
the time-indexed MIP providing the best results.

Chapter 5 outlines directions for future work related to the assembly scheduling problem,
which include the development of better solution techniques, problem extensions and the cre-
ation of a general framework for integration of inventory management and scheduling.

Part III: Integrating Scheduling and Queueing Theory for Dynamic Scheduling Problems
Part III demonstrates that combining concepts, ideas and methodologies from queueing theory
and scheduling leads to a better understanding of realistic scheduling problems, which are both
combinatorial and dynamic in nature. This part of the dissertation is based on the view that
integration of the two areas can take place on three different levels: conceptual, theoretical and
algorithmic.

Chapter 6 is a review of queueing theory models and methods that are relevant to schedul-
ing in dynamic settings. This review highlights the similarities and differences between the
methodologies developed in queueing and scheduling, and notes opportunities for combining
the two areas. The review provides a foundation for the investigation of the integration of
queueing and scheduling.

Chapter 7 demonstrates the benefits of combining queueing and scheduling on a conceptual
level. It studies two dynamic flow shop environments: a novel polling system that is an exten-

CHAPTER 1. INTRODUCTION 6

sion of systems traditionally examined in queueing theory, and a dynamic two-machine flow
shop, which is important in scheduling as well as queueing research. In both cases, the objec-
tive is to minimize the mean flow time of jobs (i.e., the time between the arrival of a job to the
system and its completion time). Our experiments show that in the polling system, a schedul-
ing method that optimizes the makespan at each decision point provides the best performance,
while in the dynamic flow shop, an approach based on minimizing the mean flow time works
better. We formally analyze these performance differences and show that they are a function of
the specific structural properties of the scheduling problems. Our analysis shows that short-run
and long-run objectives affect our two related flow-shop environments differently.

Chapter 8 shows that theoretical integration of queueing and scheduling can lead to long-
run performance guarantees for scheduling algorithms that have previously been formulated
only for queueing policies. Specifically, it analyzes stability of the two-machine flow shop
and the polling system with a two-machine flow shop server that are presented in Chapter 7.
In the dynamic flow shop, stability of a scheduling approach that periodically solves static
deterministic sub-problems is shown using a sample path argument. In the polling system,
stability of first-come, first-served and of a periodic scheduling method is proved using the
fluid model methodology of Dai (1995). In the dynamic flow shop, we show that our sample
path proof does not extend to the case with more than two machines; in the polling system,
however, the fluid model proofs of stability extend to environments where the server is an
M -machine flow shop or a d-stage flexible flow shop with M machines.

Chapter 9 continues the theoretical integration of queueing and scheduling, proposing fluid
limit analysis as a tool for gaining insights about scheduling algorithm performance. The
chapter focuses on the fluid limits of work arriving to and present at the second machine of
a static two-machine flow shop. Analysis of these limits leads to: the identification of a key
algorithm feature responsible for optimizing makespan; observations regarding the usefulness
of fluid limits for predicting algorithm performance; and a further understanding of stability
and instability of periodic scheduling methods that employ processing time information.

Chapter 10 outlines future work on the integration of queueing theory and scheduling, clas-
sifying it according to the three levels of integration (conceptual, theoretical and algorithmic).
For the conceptual and theoretical levels, a summary of the relevant ideas from Chapter 6 is
presented first, followed by future work arising from Chapters 7, 8 and 9 and then by additional
ideas that have not been mentioned in the previous chapters. The last section of the chapter
deals with the algorithmic level of integration, outlining a general framework for creating hy-
brid queueing/scheduling models, and discussing two examples of how it can be applied.

CHAPTER 1. INTRODUCTION 7

Part IV: Conclusion In Chapter 11, which is the only chapter of Part IV, we summarize the
contributions of this dissertation, discuss ideas for combining the work presented in Parts II
and III, and conclude.

Chapter 2

Motivations

In this chapter, we provide the practical and theoretical motivations for the work presented in
this dissertation.1 The practical motivation of supply chains is presented first, followed by the
research-oriented motivation of integrating scheduling with related areas of research in Section
2.2. In Section 2.3, we briefly discuss the problems we have chosen to study in this dissertation.
The chapter concludes in Section 2.4.

2.1 Practical Motivation: Supply Chains

Consider a supply chain with M manufacturing facilities producing different types of products,
S suppliers providing component parts for these factories, and L merge-in-transit (MIT) facil-
ities, where products from different manufacturers are combined according to customer order
specifications. A schematic representation of this setting is given in Figure 2.1.

The manufacturers are focused factories.2 Thus, the production area of each facility is
separated into sub-areas according to different product families. A sub-area is composed of
several assembly lines, each of which is dedicated to a particular product type.3 Product types
are configured in different ways to create specific products. The fabrication of each product

requires component parts, which are procured from suppliers. Some types of components are
shared among several products, while others are used only by one specific product.

1Parts of this chapter have been published in a workshop paper (Terekhov et al., 2010), a conference paper
(Terekhov et al., 2012c), and a journal paper (Terekhov et al., 2012a). This material is used with permission of the
corresponding copyright holders, the Association for the Advancement of Artificial Intelligence c© and Elsevier
c©, and the papers’ co-authors.

2The term focused factory was created in the paper by Skinner (1974) and refers to grouping of products or
processes that have similar characteristics (e.g., similar manufacturing equipment or market demand) so that each
group would be produced in an isolated plant or “plant-within-plant” (Souza et al., 2001).

3Boysen et al. (2009) discuss the different types of assembly lines.

8

CHAPTER 2. MOTIVATIONS 9

Figure 2.1: An Example of a Supply Chain.

Customer orders arrive dynamically over time. A customer order typically requires prod-
ucts from several manufacturers in various quantities. Once products are completed, they are
sent to an MIT facility, where they are packaged together according to customer specifications.
Each customer order has a due date and a weight that represents its priority or the penalty that
the company has to pay if the order is delivered to the customer after the due date.

Such a setting exists, for example, in the supply chain of Alcatel-Lucent – a global corpo-
ration providing telecommunications equipment and solutions to service providers, enterprises
and governments. Network deployment projects often generate customer orders that are com-
posed of products from different families (e.g., base stations, routers) manufactured in different
plants or at different production lines in the same facility. Finished products are shipped to the
nearest MIT facility (typically a regional warehouse) close to the customer, where they are
merged into a single order with the necessary ancillary equipment like cables and connectors,
and the order is shipped out to the customer location.

In managing a supply chain such as the one described above, the goal is to achieve customer
satisfaction at minimum cost (Maravelias and Sung, 2009). It is well-known from the literature
that the efficiency of a supply chain can be improved “through proper coordination of material,
financial and information flows” (Maravelias and Sung, 2009, p. 1). Material coordination, in
turn, requires effective production scheduling. Specifically, for every arriving customer order,
it is necessary to determine the time at which manufacturing of each of the constituent products
will begin. This scheduling problem possesses the following three characteristics:

1. It is combinatorial in nature: each order is composed of multiple products, and there are
many possible ways to sequence the fabrication of these products at different facilities.

2. It is dynamic and affected by many sources of uncertainty. The dynamism of the problem

CHAPTER 2. MOTIVATIONS 10

arises from changes in the supply chain situation as orders arrive, are manufactured and
then sent to the customers. The sources of uncertainty include delays in the arrival of
component parts, machine breakdowns and adjustments in customer order specifications,
among others.4

3. It is related to other decision-making processes of the environment. For example, pro-
duction scheduling of the manufacturing facilities depends on the availability of compo-
nent parts (inventory management decisions), availability of workers (staffing decisions),
availability and routing of transportation between the manufacturers and the MIT facili-
ties (logistics decisions).5

In fact, these three characteristics are true for most real-world scheduling problems. How-
ever, classical scheduling research6 has focused mainly on addressing the combinatorics of
isolated, static, deterministic problems. Thus, the aim of this dissertation is to provide a step
toward creating methodologies to effectively address more realistic scheduling problems. We
believe that these problems cannot be solved using purely the tools of scheduling; the complex-
ity of the above characteristics warrants integration of scheduling methodologies with related
fields of study.

2.2 Theoretical Motivation: Integration of Scheduling with
Related Fields

From a research perspective, integration of scheduling methodologies with those of related
fields of study is interesting and can lead to the development of a richer framework for solving
resource allocation and sequencing problems. In this dissertation, we focus on combining
scheduling with inventory management and queueing theory.

4We employ a very general definition of the term uncertainty in this dissertation. It describes environments
that have at least one problem parameter that is not known with certainty at the time of scheduling, and includes
cases with both known and unknown distributions for values of these parameters.

5Of particular interest is the work on inventory routing (Dror and Ball, 1987; Moin and Salhi, 2006) which,
similarly to this dissertation, combines two fields of research in order to better model and solve real problems in
supply chain settings. We do not discuss this work in detail in the current dissertation, since we are combining
scheduling with inventory and queueing theory, rather than combining inventory with other areas. Investigation
of the connections between inventory routing and scheduling is an interesting direction for future work, as is
mentioned in Section 11.2.2.

6In this dissertation, we do not utilize the developments of stochastic scheduling (Pinedo, 2003; Baker and Tri-
etsch, 2009) and online scheduling (Pruhs et al., 2004; Pruhs, 2007). However, we talk about stochastic schedul-
ing as part of our future work in Sections 5.2.3 and 11.2.1. The relationship between stochastic problems and the
problem type we study in this dissertation is discussed in Section 6.3. Online scheduling is discussed in Section
6.2.

CHAPTER 2. MOTIVATIONS 11

2.2.1 Combining Scheduling and Inventory Management

As mentioned earlier, effective supply chain management necessitates proper coordination of
material flows across the supply chain (Maravelias and Sung, 2009). Such coordination in-
volves all steps in the transformation of raw materials into final products sent to the customer.
Scheduling and inventory management have addressed different aspects of this coordination.

The inventory management literature is focused on the product: it aims to determine the
quantity that should be delivered to a facility and the timing of this delivery. In inventory mod-
els, the manufacturing process of an item is typically treated as a black box which specifies the
amount of time it takes to procure an item (lead time), and/or a production cost. An inventory
model is therefore typically not concerned with the details of the production process.

The scheduling literature, on the contrary, is focused on the manufacturing process. In
particular, it deals with the allocation of resources to the items that need to be manufactured
and with the sequencing of production on each resource. Scheduling models can represent the
availability of component parts using release dates, inventory costs of finished products using
the notion of earliness, and costs of delays in delivery of completed items using the concept of
tardiness. However, they have traditionally7 not been concerned with the details of component
part procurement or with what happens to the products after they are manufactured.

Thus, inventory management and scheduling have focused on different aspects of supply
chain management. Each of these fields has traditionally included only an abstract represen-
tation of the other in its models. In this work, we partially remove the barrier between the
two areas by including a detailed representation of an inventory replenishment policy within a
scheduling model. By doing so, we are able to address a realistic scheduling problem that is
both combinatorial and dependent on another decision-making process in its environment.

2.2.2 Combining Scheduling and Queueing Theory

The problem of scheduling in a dynamic environment involves a long time horizon and has
to somehow deal with all the possible realizations of the job arrival process and of the job
characteristics. The ultimate goal in solving this problem is to construct a schedule that would
be optimal for the specific realization that actually occurs. The quality should be close to that
of the schedule that could have been constructed if all of the uncertainty had been revealed
a priori. Clearly, this is a difficult task, because to make a decision, one can use only the
information that is known with certainty at that particular decision point and the stochastic
properties of scenarios that may occur in the future. In addition, the effect of the decision on

7There has been some recent work linking inventory and scheduling, which is discussed in Chapter 3.

CHAPTER 2. MOTIVATIONS 12

both short-run and long-run performance has to be considered. To deal with such problems,
queueing theory and scheduling have adopted different approaches.

Queueing theory has taken the viewpoint that, since it is impossible to create an optimal
schedule for every single sample path in the evolution of the system, one should aim to achieve
optimal performance in some probabilistic sense (e.g., in expectation) over a long time horizon.
This goal could be attained by construction of a policy based on the global stochastic properties
of the system. For example, a policy could specify how start time decisions should be made
each time a new job arrives or a job is completed. However, the schedule resulting from such
a policy, while being of good quality in expectation, may be far from optimal for the particular
realization of uncertainty that occurs. Moreover, queueing theory generally studies systems
with simple combinatorics, as such systems are more amenable to rigorous analysis of their
stochastic properties.

In the scheduling community, a dynamic scheduling problem is generally viewed as a col-
lection of linked static problems. This viewpoint implies that methods developed for static
scheduling problems become directly applicable to dynamic ones. Such methods can effec-
tively deal with complex combinatorics and can optimize the quality of the schedules for each
static sub-problem. However, the methods based on solving linked static problems tend to
overlook the long-run performance and the stochastic properties of the system, with notable
exceptions being the work on anticipatory scheduling (Branke and Mattfeld, 2002) and online
stochastic combinatorial optimization (Van Hentenryck and Bent, 2006).

Thus, queueing theory and scheduling have differing views on dynamic problems. In this
work, we leverage these differences in order to gain a better understanding of dynamic schedul-
ing, and use the integration of the two as a means to address problems that are both combina-
torial and dynamic.

2.3 The Approach of this Dissertation

Based on our practical and theoretical motivations we chose to explore several problems in this
dissertation, each of which exhibits the realistic characteristics discussed in Section 2.1 and
provides a good basis for studying the integration of research areas presented in Section 2.2.

2.3.1 Scheduling and Inventory Management

The problem we use as a basis of our study of scheduling with inventory is a special case of the
supply chain described in Section 2.1, with two manufacturing facilities and one MIT facility.
We assume that all facilities have the same owner and that there is a centralized decision-

CHAPTER 2. MOTIVATIONS 13

Figure 2.2: Schematic representation of the assembly scheduling problem.

maker who can optimize the performance of the overall system. Adopting a high level view
of the problem, we model the two manufacturers as unary-capacity machines producing sub-

assemblies which are then sent to an assembly machine that represents the MIT facility. In
other words, a sub-assembly is assumed to be composed of the necessary quantity of prod-
ucts belonging to a customer order that need to be processed at a particular manufacturing
facility. The processing times for each sub-assembly are determined by the quantity and con-
figuration of products that are requested by the customer. We model the MIT facility as an
infinite-capacity assembly resource (or, equivalently, as a single machine with a negligible pro-
cessing time for each customer order). A customer order cannot be processed by this assembly
machine unless the two sub-assemblies have both been completed. Figure 2.2 is a schematic
representation of this setup.

To be manufactured, each sub-assembly requires component parts, the mix and quantity of
which are dependent on the type and quantity of products making up the sub-assembly. The
components may be unique to a sub-assembly, or may be shared among all or a subset of the
sub-assemblies scheduled on a machine or on both machines. Figure 2.2 depicts the different
categories of components as labelled triangles: triangle 1 represents all components that are
consumed only at machine 1, which includes components unique to particular sub-assemblies
processed on machine 1, and components shared among sub-assemblies on machine 1; triangle
2 represents all components used only at machine 2; triangle 0 corresponds to the components
shared among the two machines. All components are replenished periodically at known points
in time.

Each customer order has a due date and a weight for representing the penalty the com-
pany has to pay if the order is not completed before the due date. Given a set of n customer
orders, each consisting of two sub-assemblies with specific processing times and component
requirements, the goal of the problem is to schedule each sub-assembly on the corresponding
manufacturing machine so as to minimize the total weighted order tardiness. We refer to this

CHAPTER 2. MOTIVATIONS 14

problem as the assembly scheduling problem with inventory constraints.

Clearly, this problem is considerably simpler than the supply chain problem discussed in
Section 2.1. However, the problem exhibits two of the characteristics of real scheduling prob-
lems: it is combinatorial and related to other decision-making processes of its environment, i.e.,
inventory management. By solving it, we push scheduling research to address more realistic
problems, since we explicitly model the dependence of scheduling on the inventory replenish-
ment policy. We also take a fundamental step in the direction of creating a general framework
for making both types of decisions, since it is necessary to model and understand the effect of
a fixed replenishment policy on the construction of a schedule.

2.3.2 Scheduling and Queueing Theory

The integration of queueing theory and scheduling can take place on three levels: conceptual,
theoretical and algorithmic. At the conceptual level, we aim to combine concepts, ideas and
problem settings from the two areas. Thus, the two problems we investigate have properties
of systems typically studied in queueing theory as well as in classical scheduling research.
Specifically, we consider a flow shop and a polling system with a flow shop server. The flow
shop environment was chosen because it is one of the simplest classical systems for which
queueing theory and scheduling propose differing approaches. Similarly, replacing the single
machine server by a flow shop server in a polling system is one of the simplest ways to intro-
duce combinatorial scheduling into a pure queueing model. The two settings are dynamic and
possess an underlying combinatorial structure.

In both environments, we assume knowledge of processing time distributions and that the
actual processing time of a product becomes known with certainty at the time of the order’s
arrival. The first of these is a typical queueing assumption, while the second is a classical
scheduling one. This combination of assumptions is usually not addressed in the literature. It
is also motivated by the supply chain of Section 2.1. In particular, processing time distributions
for product types can be obtained based on historical data; at the same time, there may be
essentially no variance in the processing time of a product once its configuration is specified
by the customer.

The theoretical level of integration deals with combining methodologies and theoretical no-
tions. In particular, we introduce the queueing notion of stability into the scheduling literature.
We show that queueing methodologies can be used to obtain long-run performance guarantees
for scheduling algorithms that have previously been available only for queueing policies. This
study is based on the flow shop environments mentioned above.

The algorithmic level of integration concerns the development of hybrid queueing/scheduling

CHAPTER 2. MOTIVATIONS 15

algorithms. Our ideas for this level are discussed in terms of a wider range of problems as part
of our future work.

It is clear that the problems we study are not as complex as the supply chain problem de-
scribed in Section 2.1. However, our work shows that combining ideas, concepts and method-
ologies from queueing theory and scheduling can be beneficial for obtaining a new under-
standing of scheduling problems which are both combinatorial and dynamic. Thus, it is a step
toward developing methodologies for addressing realistic supply chain problems.

2.4 Conclusion

In this chapter, we presented the practical and theoretical motivations for this dissertation.
From the practical perspective, we know that real-world scheduling problems are combina-
torial, dynamic and uncertain, and related to other decision-making processes of their envi-
ronment. Since scheduling research has traditionally focused on combinatorial properties of
systems, there is a need to address the remaining two characteristics. From a theoretical per-
spective, we know that, within operations research, some areas of study address related prob-
lems in different ways. In particular, inventory management and scheduling have focused on
different aspects of supply chain management, while queueing and scheduling have adopted
contrasting viewpoints of dynamic scheduling problems. Motivated by practice and theoretical
research goals, we study the integration of scheduling with both inventory management and
queueing theory with the objective of addressing realistic scheduling problems.

The next part of this dissertation examines the problem described above in Section 2.3.1. In
part III, we study the combination of scheduling and queueing theory as discussed in Section
2.3.2.

Part II

Assembly Scheduling with Inventory
Constraints

16

Chapter 3

Combining Scheduling and Inventory
Management: A Literature Review

In the previous chapter, we described the supply chain scheduling problem that serves as the
motivation for the work presented in this part of the dissertation. This problem is combinatorial,
stochastic and dynamic, and involves both scheduling and inventory decisions. Due to the
problem’s complexity, in Chapter 4 we study its static and deterministic version, focusing on
the combinatorics and the impact of inventory on scheduling.

In the current chapter, we firstly review the literature on the underlying combinatorial
scheduling problem. Secondly, we present a brief overview of the work done in inventory
management. We conclude this section by surveying previous work in combinatorial schedul-
ing that involves inventory (component availability) constraints.1

3.1 Combinatorial Scheduling

We start this section by presenting fundamental scheduling notions, followed by a review of the
literature on problems having the assembly structure of the supply chain problem of interest.

3.1.1 Fundamental Scheduling Notions

Scheduling is the decision-making process of allocating scarce resources to tasks over time
with the goal of optimizing one or several objectives (Pinedo, 2003). For example, in a manu-
facturing environment, the resources are the machines, while the tasks correspond to different
steps in the production process of an item; in a university, the resources are the lecture rooms

1Parts of the work presented in this chapter have been published in a journal paper (Terekhov et al., 2012a).
This material is used with permission of the copyright holder, Elsevier c©, and the paper’s co-authors.

17

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 18

and the tasks are the lectures; in an airport, the resources are the runways and the tasks are the
take-offs and landings of planes (Pinedo, 2003, 2009). In the case of the supply chain schedul-
ing problem described in the previous chapter, the resources are the different facilities of the
supply chain, while the tasks correspond to the production of sub-assemblies or the assembly
and packaging of orders.

Since most of the early scheduling research was concerned with manufacturing environ-
ments, the terms typically used to describe a scheduling problem are based on the manufac-
turing vocabulary (Baker and Trietsch, 2009). Thus, resources are referred to as machines and
tasks as jobs. Frequently, jobs are composed of multiple production steps called operations or
activities.

A significant portion of the combinatorial scheduling literature focuses on problems which
correspond to a snapshot of the environment at a particular point in time (i.e., are static) and in
which all relevant job characteristics are known with certainty (i.e., are deterministic). These
assumptions allow for a deeper study of the combinatorics of these problems, and are the
assumptions we adopt in this part of the dissertation. The reader is referred to the books of
Pinedo (2003) and Baker and Trietsch (2009) for overviews of static, stochastic problems,
where a given set of n jobs with characteristics that are not known with certainty, but rather are
specified by probability distributions, has to be scheduled. Chapter 6 covers work on dynamic

scheduling, which considers the evolution of the system over a long period of time and takes
into account new job arrivals. Section 6.3 discusses the relationship between the various types
of scheduling problems.

Formally, a static, deterministic scheduling problem aims to determine the start times of a
set of n jobs, where each job j may be characterized by (Pinedo, 2003):

• a processing time, pij , the amount of time for which job j requires the use of machine i;

• a release date, rj , the earliest time at which the job may begin;

• a due date or deadline, dj , the date by which a job should be finished (e.g., the date the
job is promised to be sent to the customer); if dj is a due date, then the job may complete
after dj while incurring a penalty; if dj is a deadline, then the job is not allowed to
complete any later than dj;

• a weight, wj , the priority factor or cost associated with the job.

The assignment of start times to jobs is constrained by the capacity of the resources. The
scheduling horizon is assumed to be discretized into time slots.

The notation used for describing a scheduling problem is α|β|γ, where α represents the
machine environment, β represents job processing characteristics and constraints, and γ is

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 19

the objective function (Graham et al., 1979; Pinedo, 2003). The machine environment field
(α) usually states the number of machines and the relations among them. Some examples of
machine environments are (Pinedo, 2003):

• a single machine, denoted as 1;

• a flow shop, denoted as Fm, where there are m machines in series, and every job needs
to be processed on each machine and follows the same route through the machines;

• a job shop, denoted as Jm, where there are m machines and each job has its own (pre-
determined) processing route through the machines.

In this dissertation, we make the assumption, unless stated otherwise, that all machines are of
unary capacity, which implies that at most one job can be processed on a machine at any point
in time.

The job characteristic field (β) may state, for example, whether the problem involves release
dates (rj) or preemptions (prmp). If preemptions are allowed, then a job’s processing on a
machine may be interrupted by another job prior to its completion. In this dissertation, we
consider problems without preemptions only.

Following the standard notation in scheduling (Pinedo, 2003), we let Cj denote the com-
pletion time of a job (i.e., the time at which it exits the system). Some examples of typical
minimization objectives (γ) are:

• makespan, Cmax = max{C1, . . . , Cn}, the completion time of the set of n jobs;

• total weighted completion time,
∑

wjCj;

• total weighted tardiness,
∑

wjTj , where the tardiness Tj = max{Cj − dj, 0}.

An empty α field implies a single-machine environment, while an empty β refers to the fact
that preemptions are not allowed (Pinedo, 2003). Thus, F2||

∑
Cj describes a two-machine

flow shop scheduling problem with the goal of minimizing the sum of completion times.

The literature on scheduling is enormous, and, therefore, in the remainder of this chapter we
survey only the work that is directly relevant to modelling and solving the scheduling problem
with inventory constraints that was introduced in Section 2.3.1. For more details on determin-
istic scheduling, the reader is referred to the applications-oriented book of Pinedo (2009), the
theory-oriented book of Pinedo (2003), and the books by Baker and Trietsch (2009) and Leung
(2004).

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 20

3.1.2 Scheduling with an Assembly Structure Among Machines

One of the defining characteristics of our inventory and scheduling problem is the fact that
sub-assemblies produced at the two facilities have to be packaged together at the MIT facility.
Adopting a high level view of the problem, we can model the two manufacturing facilities as
unary capacity machines producing sub-assemblies which are then sent to an assembly machine
that represents the MIT facility. In the absence of inventory constraints, our problem can be
formulated as one of the following problems in the literature: order scheduling, assembly flow
shop scheduling or assembly job shop scheduling.

In order scheduling (Leung et al., 2005b; Lin and Kononov, 2007), orders are assumed to be
composed of m operations, each requiring a machine. Operations on different machines may be
performed concurrently, and an order is complete when all m operations have been performed.
The scheduling problem in such an environment has also been referred to as the concurrent

job shop scheduling problem (Roemer, 2006), the problem of scheduling customer orders (Ah-
madi and Bagchi, 1990), the open shops with jobs overlap problem (Leung et al., 2005c) and
scheduling with bundled operations (Li and Vairaktarakis, 2007). The order scheduling liter-
ature considers scheduling with identical parallel machines (Yang and Posner, 2005), any of
which can process any product of an order, and with dedicated machines (Leung et al., 2007;
Li and Vairaktarakis, 2007; Sung and Yoon, 1998). Of interest in this part of the disserta-
tion is the dedicated machine environment, denoted in the α field by PDm. The literature
includes work on complete and heuristic approaches for solving scheduling problems arising
in this environment, as well as on the development of theoretical properties. A mixed-integer
programming (MIP) formulation for this setting with the minimum total weighted completion
time objective is given by Ahmadi et al. (2005). This formulation is very similar to the posi-

tionalVariables model that we develop in Section 4.3.2. More recent work on the concurrent
open shop problem includes the paper by Mastrolilli et al. (2010) and a book chapter by Huang
and Lin (2007).

The assembly flow shop literature deals with a more general problem: it explicitly models
the assembly operation that is necessary for combining the products produced by the first-stage
parallel operations. Initial work in this area was done by Lee et al. (1993), based on two
first-stage machines and the objective of minimizing makespan, Cmax, the completion time of
the last scheduled job on the assembly machine. Potts et al. (1995) generalize many of the
results of Lee et al. to the m-machine case. Specifically, they show that to address the problem
of makespan minimization in an m-machine assembly flow shop, it is sufficient to look for
permutation schedules, i.e., ones in which the order of processing the jobs is the same on all
machines. They also prove the problem’s strong NP-completeness based on a reduction from
the 3-PARTITION problem. Following these initial results, Sun et al. (2003) focus on the

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 21

creation of better heuristics, while Hariri and Potts (1997) develop a better branch-and-bound
algorithm. Additional methods for solving assembly flow shop problems include tabu search
and particle swarm optimization (Allahverdi and Al-Anzi, 2006). The reader is referred to the
papers by Hejazi and Saghafian (2005) and Blocher and Chhajed (2008) for extensive reviews
of the literature on assembly flow shop scheduling and related problems.

Another relevant area is assembly job shop scheduling, which studies more general settings
than does assembly flow shop scheduling. The assembly flow shop scheduling literature has
mostly dealt with the examination of theoretical results, such as conditions for the optimality of
permutation schedules and development of specialized branch-and-bound methods and heuris-
tics with performance guarantees; assembly job shop scheduling has focused on the creation
of more complex models as well as heuristics or effective dispatching rules for a variety of
objectives (Yokoyama, 2008). For example, the papers by Pathumnakul and Egbelu (2006),
Thiagarajan and Rajendran (2005) and Philipoom et al. (1991) examine various dispatching
rules. McKoy and Egbelu (1998) and Pathumnakul and Egbelu (2006) give MIP formulations
for the assembly job shop problem based on extensions of the standard disjunctive formula-
tion (Pinedo, 2003) for scheduling problems. A time-indexed MIP is given by Masin et al.
(2007). Chen and Ji (2007) present a disjunctive MIP formulation for an advanced planning
and scheduling problem with orders consisting of multiple levels of production.

In addition to the assembly structure among facilities, our problem possesses another inter-
esting characteristic: scheduling of production at the manufacturers depends on the availability
of component parts from upstream suppliers. To understand this aspect of the problem, we
consult the inventory management literature, surveyed next.

3.2 Inventory Management

We start this section by presenting classical concepts in inventory management, followed by a
review of the literature which addresses inventory availability in scheduling models.

3.2.1 Classical Inventory Management Concepts

Inventory management, as defined by the American Production and Inventory Society, is a
branch of business management that deals with the planning and control of inventories (Toomey,
2000). More specifically, the role of inventory management is to maintain desired stock levels
of various products (Toomey, 2000). The goal of an inventory control system is, then, to de-
termine the timing and order quantities of replenishments for these products (Axsäter, 2006).

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 22

Inventory management is of utmost importance for managing supply chains (Axsäter, 2006),
and, therefore, is crucial for the supply chain of interest in this dissertation. Specifically, in our
setting, an inventory management policy controls the arrival of component parts to the manu-
facturers whose production we aim to schedule. Studying this problem under the assumption
of a fixed inventory policy provides a first step toward solving the more realistic problem in
which the component replenishment policy needs to be determined in addition to the schedule
of production at the manufacturers (see future work in Section 5.3). Note also that if we as-
sume that a schedule of production at the manufacturers is fixed, then we obtain an inventory
management problem in which demand for the components is defined in terms of that schedule.

In general, inventory management problems are based on four cost types (Axsäter, 2006;
Beyer et al., 2010):

• holding or carrying cost, which is the cost of keeping an item in inventory for a period of
time. It consists, for example, of the opportunity cost of tied-up capital, material handling
costs and storage costs. The holding cost is typically determined as a percentage of the
dollar value per unit of time.

• ordering or setup costs, which are fixed costs associated with an order. They are gener-
ally independent of the size of the replenishment, and may include costs for setup of a
machine as well as administrative, transportation and material handling costs.

• shortage or stockout costs, which are incurred if an item is not available when there is
customer demand for it. In such a case, the order is backlogged if the customer agrees
to wait; otherwise the order is lost. If the order is backlogged, costs are incurred due to
price discounts for late delivery, administration, material handling and transportation. In
the case of a lost order, the revenue from the sale is lost. In both cases, there is also a loss
of goodwill which can affect sales in the long run but whose cost is difficult to estimate.
In some cases, shortage costs are replaced by service level constraints, which refer to
stock availability in the expected or probabilistic sense and do not include other aspects
of service (Chen and Krass, 2001).

• purchase or production cost, which is the cost of producing or buying items. It is usually
specified as a cost per unit multiplied by the quantity produced or purchased.

According to Chen and Krass (2001), the literature on inventory management is frequently
divided into the study of full cost models and partial cost models with service level constraints.
In full cost models, the goal is to determine a policy for replenishing the inventory that min-
imizes the sum of holding, procurement2 and shortage costs. In the partial cost model, the

2Procurement costs usually refer to purchase and ordering costs combined.

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 23

goal is to find a replenishment policy that minimizes the sum of holding and procurement costs
subject to a service level constraint. As stated by Chen and Krass (2001), many authors (Book-
binder and Tan, 1988; Cohen et al., 1988; Nahmias, 1993) have noted that models with service
level constraints are more popular in real inventory systems than are full cost models. How-
ever, service level models have generally received less attention in the theoretical inventory
literature (Chen and Krass, 2001).

The inventory ordering systems studied in the literature are divided into periodic-review
and continuous-review systems. Both of these are based on the notions of inventory position

and inventory level (Axsäter, 2006), which are defined as follows:

• inventory position = stock on hand + outstanding orders - backorders,

• inventory level = stock on hand - backorders,

where the stock on hand corresponds to the physical amount of inventory available, the out-

standing orders are the replenishment orders that have not yet arrived, and the backorders are
the items that have been requested by the customer but not yet delivered.

A continuous-review inventory system is based on monitoring the inventory position con-
tinuously, while periodic review considers the inventory position only at specific given points
in time (Axsäter, 2006). Continuous review is typically used for items with low demand, while
periodic review is used for items with high demand. The distinction between continuous and
periodic-review approaches is also relevant for dynamic scheduling systems discussed in Chap-
ter 6 (see Section 6.1.2.3.2 in particular).

Typical inventory policies studied in the literature are the (R,Q) policy and the (s, S)

policy (Axsäter, 2006). Under the (R,Q) policy, a replenishment order of size Q is placed
whenever the inventory position decreases to or below the re-order point R. Under the (s, S)

policy, when the inventory position decreases to or below s, an order is made to replenish the
inventory to S. In our scheduling problem with inventory constraints, we assume a simpler
replenishment policy. That is, we assume that a fixed quantity of items arrives periodically
during our scheduling horizon. This replenishment policy is based on periodic review and
is similar to the (R,Q) policy in that a batch of Q items is ordered at every review point.
However, unlike in the (R,Q) policy, the decision to order is not dependent on the inventory
position. Considering other policies for the assembly scheduling problem is one direction for
future work discussed in Chapter 5.

As in the case of scheduling, the literature on inventory problems is very large, and hence
is not fully surveyed here. The reader is referred to the books by Axsäter (2006), Beyer et al.
(2010), Nahmias (1993), Silver et al. (1998) and Toomey (2000). In the next section, we survey
the work on scheduling models that explicitly take into account the availability of inventory.

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 24

3.2.2 Inventory Constraints in Scheduling

Inventory (component availability) constraints have been considered in both the project schedul-
ing literature and the machine scheduling literature.

Resource-constrained project scheduling problems (RCPSPs) deal with scheduling of var-
ious activities that are part of a project and related by precedence constraints. Each activity
requires resources in order to be performed. The assembly scheduling problem with inven-
tory constraints considered in this part of the dissertation can be viewed as a special case of the
RCPSP: the assembly structure can be modelled via precedence constraints between operations
on first-stage machines and the assembly machine, while each component type corresponds to
a resource. RCPSP literature surveys include those by Brucker et al. (1999), Hartmann and
Briskorn (2010), Herroelen et al. (1998) and Özdamar and Ulusoy (1995). Neumann and
Schwindt (2002) look at a project scheduling problem with cumulative resources, which are
periodically replenished and have a maximum and minimum allowable level of inventory.

Kolisch (2000) and Kolisch and Hess (2000) study assembly scheduling in the presence
of component constraints. Both papers consider a make-to-order environment in which a set
of end-products has to be assembled for customers by specific due dates. The objective is to
assign component parts to operations, and schedule operations subject to resource availability,
assembly area capacity and technological precedence constraints so as to minimize the total
weighted tardiness. Kolisch (2000) proposes a MIP model based on an RCPSP view of the
problem and a list scheduling heuristic. Kolisch and Hess (2000) develop a biased random
sampling approach and a tabu search-based large-step optimization method. Since our problem
is a special case of the problem studied in these papers, we included an adaptation of Kolisch’s
MIP model in our study.

Few papers have been published that focus on the investigation of scheduling under in-
ventory constraints in machine scheduling problems (specializations of the project scheduling
problem). One of the earliest papers on this subject is by Beck (2002), who extends the job
shop scheduling problem by representing inventory production, consumption and storage in a
constraint-directed framework. Grigoriev et al. (2005) establish the complexity of scheduling
a single machine with raw material constraints and the goal of either minimizing the num-
ber of tardy jobs or the makespan. They show that some variants of the problem are strongly
NP-hard even when unit processing times are assumed, although polynomially-solvable cases
exist. Additionally, the performance of several heuristics is compared against a MIP model for
the problem of minimizing makespan with multiple shared components.

There is also a series of papers motivated by the problem of scheduling trucks at a trans-
shipment centre. Briskorn et al. (2010) model the problem with a single gate at the centre as a
machine scheduling problem where trucks correspond to jobs and the gate corresponds to a ma-

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 25

chine. When a truck is unloaded, inventory at the centre is replenished; when items are loaded
onto a truck, inventory is being used up. This problem, like the one studied by Beck (2002), al-
lows for scheduling of replenishment activities (we assume the replenishment policy is fixed),
but we consider the more complex assembly scheduling environment. Moreover, the problem
we consider can be viewed as a special case of Briskorn et al.’s (2010) directions for future
work: we address the total weighted tardiness objective, the case when jobs have different re-
lease dates and there is more than one machine, as well as having different types of inventory
and different sub-assemblies produced on the two machines. Briskorn et al. (2009), Briskorn
and Leung (2010) and Briskorn (2010) address the same inventory-constrained single machine
scheduling environment as Briskorn et al. (2010), proposing genetic algorithm, branch-and-
bound and variable very large neighbourhood search approaches, respectively. Briskorn et al.
(2012) study properties of optimal solutions and design branch-and-bound and dynamic pro-
gramming algorithms for the single machine problem with the goal of minimizing the total
weighted completion time.

3.3 Summary

Our problem of interest is different from the literature on scheduling with an assembly struc-
ture among machines in several respects. Firstly, to our knowledge, the papers that deal with
a two-stage, two-machine structure consider neither the possibility of different operations of
a job having distinct release dates nor component availability constraints. In this sense, our
work generalizes and extends the problems that have been addressed in the order scheduling
and assembly flow shop literature. Secondly, unlike most of the work on assembly job shop
scheduling, this dissertation presents extensive experimental results comparing complete ap-
proaches. Thirdly, in addition to MIP models, we consider the use of constraint programming,
which has been shown to be effective for scheduling problems (Baptiste et al., 2006; Fox,
1983) but has not, to our knowledge, been previously compared to MIP models in the context
of assembly scheduling.

In addition, the problem we study can be seen as an extension of the problems in the ma-
chine scheduling with inventory literature. This literature has studied classical single-machine
and job-shop environments only, and has not, to our knowledge, considered assembly-type
precedences between jobs and objectives based on orders. The RCPSP literature, on the con-
trary, addresses problems that are more complex than ours due to a greater number of resources,
components and interactions between activities. Because of such complexity, Kolisch and Hess
(2000) and Kolisch (2000) concentrate on the development of heuristic approaches. For our
problem, investigation of complete methods is much more suitable, and hence is our focus.

CHAPTER 3. SCHEDULING AND INVENTORY MANAGEMENT LITERATURE REVIEW 26

3.4 Conclusion

The assembly scheduling problem with inventory constraints introduced in the previous chap-
ter combines aspects of problems studied in scheduling and inventory management research. In
this chapter, we have provided an overview of the relevant literature from both of these areas.
Specifically, we firstly presented a summary of fundamental scheduling concepts and a review
of scheduling in assembly environments. Secondly, we presented classical inventory manage-
ment notions and surveyed the literature on scheduling with inventory constraints. Finally, we
discussed how our approach differs from previous work on similar problems.

In the next chapter, we give a formal statement of the assembly scheduling problem with in-
ventory constraints. We study some of its theoretical properties, and then present three mixed-
integer programming models and a constraint programming model for solving it. We empiri-
cally evaluate the performance of the models on an extensive set of test instances. In Chapter
5, we present some ideas for future work on this problem.

Chapter 4

Solving An Assembly Scheduling Problem
Using Complete Methods

In this chapter, we consider a scheduling problem with component availability constraints in
a supply chain consisting of two manufacturing facilities and a merge-in-transit facility.1 The
realistic supply chain problem that motivates this study is presented in Chapter 2. Three mixed-
integer programming (MIP) models and a constraint programming (CP) model are compared in
an extensive numerical study. Results show that when there are no components shared among
the two manufacturers, the MIP model based on time-index variables is the best for proving
optimality for problems with short processing times whereas the CP model performs better
than the others for problems with a large range of processing times. When shared components
are added, the performance of all models deteriorates, with the time-indexed MIP providing
the best results.

This chapter has three main contributions. Firstly, we develop three MIP models and a
CP model for solving a realistic scheduling problem with inventory constraints and an assem-
bly structure. All of these models are implemented using commercially available software.
Secondly, we provide an extensive experimental evaluation of their effectiveness. Thirdly, by
explicitly modelling the dependence of scheduling decisions on the availability of component
parts, we contribute to the literature on the integration of inventory and scheduling decisions,
which is necessary for solving realistic supply chain problems.

This chapter is organized as follows. In Section 4.1, we present a detailed description of the
problem. We discuss theoretical properties of the problem in Section 4.2. Three MIP models
are given in Section 4.3 and a constraint programming model is stated in Section 4.4. In Section
4.5, experimental results are presented. Section 4.6 concludes the chapter.

1The work presented in this chapter has been published as a journal paper (Terekhov et al., 2012a). This
material is used with permission of the copyright holder, Elsevier c©, and the paper’s co-authors.

27

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 28

4.1 Problem Description

We consider an environment with m = 2 unary capacity first-stage machines2 and an infinite
capacity second-stage machine. A set of n orders (jobs) is given, such that each order j,
j = 1, . . . , n, consists of two sub-assemblies (activities). Sub-assembly i of order j, denoted
aij , has to be processed on machine i and requires pij units of time. A sub-assembly also needs
components. These components may be specific to a sub-assembly, or may be shared among
different sub-assemblies or machines.

Each activity aij has release date rij which corresponds to the time at which all component
parts that are unique to this sub-assembly (i.e., not required by any other sub-assemblies) be-
come available. For all components that are shared among the sub-assemblies processed on
the same machine or among multiple machines, it is assumed that there are R replenishments:
they occur at times 0, dH/Re, d2H/Re, . . . , d(R− 1)H/Re, where H = maxi{maxj rij +∑n

j=1 pij}. For each component type z, d(Qz − l)/Re units become available at the time of
the lth replenishment, l = 0, . . . , R − 1, with Qz denoting the total quantity of component
z necessary for processing the given n orders.3 This structure implies that the replenishment
quantities are as equal as possible regardless of whether R divides H .

Let Ai be the set of all machine-specific components for machine i, i = 1, 2. Each activity
aij requires αjz units of machine-specific component z, z ∈ Ai. Similarly, every activity aij

requires βijz units of component z, z ∈ B, where B denotes the set of components shared
among the machines.

Without component availability constraints, all jobs can be scheduled within H time units.
However, with the addition of such constraints, the start time of an activity depends on the
time at which all components necessary for its processing become available. Thus, the ac-
tual scheduling horizon is timeHorizon = H if the maximum release date is after the last
replenishment time point, and timeHorizon = d(R− 1)H/Re+

∑n
j=1 pij otherwise.

Each order j has a due date dj and a weight wj . If order j is completed after dj , its tardiness,
Tj , is the difference between its completion time, Cj , and dj; if the order is completed at or
before dj , then Tj = 0. The goal of the problem is to assign start times to the activities on each
of the first-stage machines so as to minimize the total weighted tardiness of orders,

∑n
j=1 wjTj .

This problem can be denoted as PD2|rij, components|
∑

wjTj , where components refers to
the presence of component availability constraints.4

2Our models can be easily extended to the case with more than two machines.
3Qz =

∑R−1
l=0 d(Qz − l)/Re, which is an identity expressing the partition of Qz into R as-equal-as-possible

parts in non-increasing order (Graham et al., 1988, Equation (3.24)). The identity holds since Qz is an integer and
R is a positive integer.

4Refer to Section 3.1.1 for an explanation of the three field notation for describing scheduling problems.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 29

The PD2|rij, components|
∑n

j=1 wjTj problem is a generalization of PD2 |rij|
∑n

j=1 wjTj ,
and, consequently, of PD2|rj|

∑n
j=1 wjTj , where the release dates of sub-assemblies on both

machines are identical. Furthermore, these problems generalize PD1||
∑n

j=1 Tj , which, as
noted by Leung et al. (2007), is NP-hard since it is equivalent to 1||

∑n
j=1 Tj (which has been

proved NP-hard by Du and Leung (1990)). Hence, it follows that all of its generalizations,
including PD2| rij, components |

∑n
j=1 wjTj are also NP-hard.

4.2 Theoretical Properties

Permutation schedules have been shown to be optimal for PD2||
∑n

j=1 wjTj (Cai et al., 2008;
Potts et al., 1995). Hence, a natural question is whether the addition of inventory constraints
changes this property.

For the PD2||
∑n

j=1 wjTj problem, Lemma 2.1 (ii) of the paper by Leung et al. (2005a)
states that if there exists a machine on which all jobs require a shorter processing time than
on another, then this machine can be disregarded. Our Lemma 4.2.1 is a similar result for
PD2|rij|

∑n
j=1 wjTj .

Lemma 4.2.1. Consider the PD2|rij|
∑n

j=1 wjTj problem. If r1j ≤ r2j (r2j ≤ r1j) and

p1j ≤ p2j (p2j ≤ p1j) ∀j, then machine 1 (2) can be disregarded in constructing the schedule.

It is in fact sufficient to solve the single-machine problem for machine 2 (1) and schedule jobs

on machine 1 (2) in the same order. This also corresponds to the case in which it is sufficient

to consider permutation schedules.

Proof. Suppose r1j ≤ r2j and p1j ≤ p2j ∀j. Let sij(S) and Cij(S) be the start time and
completion time of aij in a schedule S. For every schedule S that is feasible for machine 2 and
was constructed by ignoring machine 1, there is a corresponding feasible schedule on machine
1 with s1j(S) = s2j(S) ∀j. It is feasible for machine 1 since (a) s1j(S) = s2j(S) ≥ r2j ≥ r1j

and (b) for every pair of jobs j and l such that j precedes l in the schedule S, s2j(S) + p2j ≤
s2l(S), which implies that s1j(S) + p1j ≤ s2j(S) + p2j ≤ s2l(S) = s1l(S).

For every job j, C1j(S) = s1j(S) + p1j ≤ s2j(S) + p2j = C2j since s1j(S) = s2j(S) and
p1j ≤ p2j . Therefore, Tj = max{0, Cj−dj} = max{0,max{C1j, C2j}−dj} = max{0, C2j−
dj} ∀j, and the objective value of S is determined by the schedule on machine 2.

Thus, the overall optimal schedule can be constructed by finding the optimal schedule on
machine 2 and then setting the start times on machine 1 according to s1j(S) = s2j(S) ∀j. The
same logic applies to the reverse case when r2j ≤ r1j and p2j ≤ p1j ∀j. We can conclude that
under the conditions stated in the lemma, it is sufficient to consider permutation schedules.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 30

j wj rj p1j p2j dj

1 100 5 1 2 7
2 1000 1 4 2 5
3 1 0 2 2 5

Table 4.1: Example of a PD2|rj|
∑n

j=1 wjTj

problem for which there is no optimal schedule
that is a permutation schedule.

j r1j r2j p1j p2j dj

1 0 2 3 4 6
2 4 0 1 1 6

Table 4.2: Example of a
PD2|rij|

∑n
j=1 Tj problem for

which there is no optimal schedule
that is a permutation schedule.

Figure 4.1: Permutation
Schedule 1 for Example 1
(Table 4.1)

Figure 4.2: Permutation
Schedule 2 for Example 1
(Table 4.1)

Figure 4.3: Non-
permutation Schedule
for Example 1 (Table 4.1)

However, if no assumptions about processing times are made, then even in the special cases
when r1j = r2j or when the weights of all orders are identical, it is not sufficient to consider
permutation schedules for the PD2 |rij|

∑n
j=1 wjTj problem. We illustrate these observations

via two examples.

Firstly, consider the problem instance in Table 4.1, in which r1j = r2j ∀j. Since there are
3 orders, there are 3! = 6 possible permutation schedules. However, due to the high weight
and a relatively tight due date for order 2, the optimal schedule on both machines should have
order 2 scheduled first. Thus, we need to consider only two permutation schedules: 2, 1, 3
(permutation schedule 1, shown in Figure 4.1) and 2, 3, 1 (permutation schedule 2, shown in
Figure 4.2). The total weighted tardiness values of permutation schedules 1 and 2 are 4 (order
3 is tardy) and 102 (orders 1 and 3 are tardy), respectively. A non-permutation schedule with
objective value 3 is given in Figure 4.3. There is no optimal schedule for this problem instance
that is a permutation schedule.

The second example is shown in Table 4.2: the weights of all orders equal 1, but the release
dates of activities belonging to the same order are different. The two permutation schedules
are shown in Figures 4.4 and 4.5, with total weighted tardiness values of 1 and 2, respectively.
The objective value of the non-permutation schedule in Figure 4.6 is 0. This example shows
that even when all weights are 1, non-permutation schedules need to be considered.

Thus, for the PD2|rij|
∑n

j=1 wjTj problem, it is in general not correct to restrict search to
permutation schedules. Consequently, the same is true for PD2|rij, components|

∑n
j=1 wjTj .

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 31

Figure 4.4: Permutation
Schedule 1 for Example 2
(Table 4.2)

Figure 4.5: Permutation
Schedule 2 for Example 2
(Table 4.2)

Figure 4.6: Non-
permutation Schedule
for Example 2 (Table 4.2)

We propose to solve the PD2|rij, components|
∑n

j=1 wjTj problem using MIP and CP tech-
niques.

4.3 Mixed-Integer Programming Models

We consider four models for our problem: the MIP model developed by Kolisch and Hess
(2000), two MIP models based on extensions of single machine models (Keha et al., 2009), and
a constraint programming model. In this section, we present the three MIP models. As is gen-
erally the case for scheduling models, time is discretized into periods 1, 2, . . . , timeHorizon.
Each period t starts at time t− 1 and ends at time t.

4.3.1 The timeIndexed Model

The timeIndexed model is based on decision variables xijt, which equal 1 if the processing of
order j on machine i (equivalently, activity aij) starts at time t. The timeIndexed model is
presented in expressions (4.1)–(4.13).

As defined previously, Tj and wj are the tardiness and the weight of order j, respectively.
The objective in the model is to minimize the total weighted tardiness of the set of n available
orders. Equation (4.2) ensures that aij begins exactly at one point in time. In Equation (4.3),
the variables Cij , each of which represents the completion time of order j on machine i, are
defined. Constraint (4.4) states that the completion time of order j, Cj , has to be greater than
or equal to the completion time of each of its component activities. Constraint (4.5) states that
at most one aij can be started on machine i at any point in time during the scheduling horizon.
Constraints (4.6) and (4.7) ensure that each activity starts after its release date and in time for
it to be completed during the time horizon. Constraints (4.8) define the tardiness of each order
in terms of its completion time and its due date. The fact that the xijt variables are binary and
the non-negativity of the completion time variables are given in constraint (4.9).

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 32

min
n∑

j=1

wjTj (4.1)

timeHorizon−pij∑
t=0

xijt = 1, ∀ i, j (4.2)

Cij =

timeHorizon−pij∑
t=0

txijt + pij, ∀ i, j (4.3)

Cj ≥ Cij, ∀ i, j (4.4)
n∑

j=1

t∑
τ=max{t−pij+1,0}

xijτ ≤ 1, ∀ i, t (4.5)

xijt = 0 ∀ t < rij, ∀ i, j (4.6)

xijt = 0 ∀ t > timeHorizon− pij, ∀ i, j (4.7)

Tj ≥ Cj − dj, Tj ≥ 0 ∀ j (4.8)

Cj ≥ 0, Cij ≥ 0, xijt ∈ {0, 1}, ∀ i, j, t (4.9)

For each machine-specific component type z used for processing activities on machine i,
constraint (4.10) has to be included in the model. This constraint states that the number of
components used by all activities by the end of a replenishment period has to be smaller than
or equal to the number of components that have become available by that time. Constraint
(4.11) states that the total number of components of type z used by the end of the time horizon
has to be smaller than or equal to the total number of these components that becomes available
from time 0 to time timeHorizon. Constraint (4.11) is different from (4.10) because H and
timeHorizon are not the same. Constraints (4.12) and (4.13) are the equivalent of (4.10) and
(4.11) for each component z shared between machines.

For each z ∈ Ai, i = 1, 2,

n∑
j=1

⌈
H(L+1)

R

⌉
−1∑

τ=0

αjzxijτ ≤
L∑
l=0

⌈Qz − l

R

⌉
, L = 0, 1, . . . , R− 2, (4.10)

n∑
j=1

timeHorizon−1∑
τ=0

αjzxijτ ≤ Qz (4.11)

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 33

For each z ∈ B,

n∑
j=1

⌈
H(L+1)

R

⌉
−1∑

τ=0

(β1jzx1jτ + β2jzx2jτ) ≤
L∑
l=0

⌈Qz − l

R

⌉
, L = 0, . . . , R− 2 (4.12)

n∑
j=1

timeHorizon−1∑
τ=0

(β1jzx1jτ + β2jzx2jτ) ≤ Qz. (4.13)

4.3.2 The positionalVariables Model

The positionalVariables model is based on two sets of decision variables: uijk, i = 1, 2, j =

1, . . . , n, k = 1, . . . , n, and γik, i = 1, 2, k = 1, . . . , n. uijk equals 1 if order j is assigned
to position k in the processing sequence on machine i, and 0 otherwise. γik corresponds to the
completion time of the order in position k on machine i. As in the timeIndexed model, there
are two additional sets of variables, {Cij, ∀i, j} and {Tj,∀j}. Cij denotes the completion time
of aij , while Tj represents the tardiness of order j.

Constraints (4.15) and (4.16) define the completion time of the job in position k on each ma-
chine, while (4.17) and (4.18) express the relationship between the Cij and the uijk variables.
In our experiments, M is set equal to the length of the time horizon (i.e., H for the case with-
out components and timeHorizon for the case with components). The relationship between
the completion times of activities and the completion time of the order is given in expression
(4.19). Equations (4.20) and (4.21) state that there has to be a one-to-one correspondence be-
tween activities and positions in the processing sequence on each machine. Constraints (4.22)
define the tardiness of each order in terms of its completion time and its due date. The fact that
the uijk variables are binary and the non-negativity of the completion time variables are given
in constraint (4.23).

min
n∑

j=1

wjTj (4.14)

γik ≥ γi,k−1 +
n∑

j=1

pijuijk, ∀ i, k = 2, . . . , n, (4.15)

γik ≥
n∑

j=1

(pij + rij)uijk, ∀ i, k (4.16)

Cij ≥ γik −M(1− uijk), ∀ i, j, k (4.17)

Cij ≤ γik +M(1− uijk), ∀ i, j, k (4.18)

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 34

Cj ≥ Cij, ∀ i, j (4.19)
n∑

k=1

uijk = 1, ∀ i, j (4.20)

n∑
j=1

uijk = 1, ∀ i, k (4.21)

Tj ≥ Cj − dj, Tj ≥ 0, ∀ j, (4.22)

Cj ≥ 0, Cij ≥ 0, uijk ∈ {0, 1}, γik ≥ 0, ∀ i, j, k. (4.23)

Constraints (4.24)–(4.26) are necessary for all z ∈ Ai, i = 1, 2, and all z ∈ B. The first of
these states that the level of component z inventory at the end of replenishment period 0 (i.e., at
time dH

R
e), denoted I0z, is equal to the number of components available at the beginning of the

time horizon, dQz

R
e, minus the amount used during that period, used0z. Equation (4.25) states

that, at the end of the lth replenishment period, l = 1, . . . , R − 1, the inventory level, Ilz, has
to be equal to the amount that has been left over from the previous period plus the amount that
has become available at the beginning of that period, dQz−l

R
e, minus the amount used during

that period, usedlz. Constraint (4.26) ensures that all components are used by the end of the
last replenishment period, i.e., time timeHorizon.

Let δijl be 1 if aij is started in the lth replenishment period, and 0 otherwise. Expression
(4.27) states that if activity aij starts in replenishment period l, then its start time occurs at or
after the beginning of this period. Equation (4.28) ensures that aij is assigned to exactly one
replenishment period. Constraint (4.29), valid for all z ∈ Ai, i = 1, 2, and constraint (4.30),
valid for all z ∈ B, state the relationship between usedlz and δijl. The non-negativity of Ilz
and usedlz variables for all replenishment periods l and all components z is given in constraint
(4.31), together with the requirement for δijl to be binary.

I0z =
⌈Qz

R

⌉
− used0z, ∀ z, (4.24)

Ilz = I(l−1),z − usedlz +
⌈Qz − l

R

⌉
, l = 1, . . . , R− 1, ∀ z, (4.25)

IR−1,z = 0, ∀ z, (4.26)

Cij − pij ≥
R−1∑
l=0

δijl

⌈ lH
R

⌉
, ∀ i, j (4.27)

R−1∑
l=0

δijl = 1, ∀ i, j (4.28)

usedlz =
n∑

j=1

δijlαjz, ∀ l, z ∈ Ai, ∀ i (4.29)

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 35

usedlz =
n∑

j=1

2∑
i=1

δijlβijz, ∀ l, z ∈ B (4.30)

Ilz ≥ 0, usedlz ≥ 0, δijl ∈ {0, 1}, ∀z ∈ {A1 ∪ A2 ∪B}, i, j, l (4.31)

4.3.3 Kolisch & Hess Model

Kolisch and Hess (2000) propose a MIP model for a generalization of our problem. We present
this model, specialized to PD2| rij, components|

∑n
j=1 wjTj , using their original notation.

Let A be the set of orders to be processed, with each order consisting of three operations:
the first operation corresponds to processing on the first machine, the second operation cor-
responds to processing on the second machine, while the third operation is performed on the
assembly machine. Let J denote the total number of operations, that is, J = 3|A|. For each
assembly operation a, there is a set of predecessor operations, Pa, which consists of all opera-
tions that need to be performed before assembly can be started. For our problem with two first
stage machines, the set of predecessors for each assembly activity a consists of the operations
performed on machines 1 and 2.

There is a set of binary decision variables xjt, j = 1, . . . , J , such that xjt = 1 if operation
j is started at time t, and 0 otherwise. To reduce the number of xjt variables, Kolisch and Hess
(2000) first apply forward and backward recursion to compute the earliest start times, ESj ,
and the latest start times, LSj , for all operations. In our implementation, for non-assembly
operations, ESj is set to the release date of the corresponding activity, and LSj is set to
timeHorizon minus the activity’s processing time. For assembly operations, ESj is the max-
imum of the earliest completion times of the predecessors, and LSj = timeHorizon. The
xjt variables can be non-zero only for t = ESj, ESj + 1, . . . , LSj . The variable Ta denotes
the tardiness of order a. cjr is a parameter that states the resource requirement of operation
j. Specifically, cjr = 1 if operation j requires machine r, r = 1, 2, and 0 otherwise. Each
operation j requires qji units of part type i, i = 1, 2, . . . , I . The total number of parts which
become available by time t is denoted Nit. The full MIP model is given below in expressions
(4.32)–(4.39), and is further referred to as KolischModel. Since we assume that the assembly
operation takes negligible time, there is no processing time quantity in constraint (4.36), unlike
in Kolisch and Hess’ paper.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 36

min
A∑

a=1

waTa (4.32)

LSj∑
t=ESj

xjt = 1, j = 1, 2, . . . , J (4.33)

LSh∑
t=ESh

(t+ ph)xht ≤
LSa∑

t=ESa

txat, a = 3, 6, . . . , J, h ∈ Pa (4.34)

J∑
j=1

t∑
τ=max {0,t−pj+1}

cjrxjτ ≤ 1, r = 1, 2, t = 0, 1, . . . , T (4.35)

LSa∑
t=ESa

txat − da ≤ Ta, a = 3, 6, . . . , J (4.36)

t∑
τ=0

J∑
j=1

qjixjτ ≤ Nit, i = 1, . . . , I, t = 0, . . . , T (4.37)

Ta ≥ 0, a = 3, 6, . . . , J (4.38)

xjt ∈ {0, 1}, j = 1, 2, . . . , J, t = ESj, . . . , LSj (4.39)

4.4 Constraint Programming Model

4.4.1 Background

Constraint programming is a methodology developed in the artificial intelligence and computer
science communities that has been shown to be effective for a variety of scheduling problems
(Beck et al., 1998).

Constraint programming provides a flexible modelling language with no restrictions on
the type of variables and constraints, and in which problem sub-structures can be represented
using global constraints with accompanying efficient domain-reduction algorithms. Domain-
reduction, or propagation, algorithms remove values from domains of variables that are guar-
anteed to not be part of a solution to the problem. The notion of a global constraint is best
illustrated using an example: suppose we are given a set of integer variables, {x1, x2, . . . , xn},
such that each xi can take values from domain Di, and we need to ensure that the values as-
signed to the variables are all distinct. While in mathematical programming such a requirement
would need to be represented by a clique of not-equals constraints, in constraint programming,
one simply needs to use the global constraint AllDifferent. During the solution process, the

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 37

presence of AllDifferent(x1, . . . , xn) in the model would invoke an efficient inference algo-
rithm based on the idea of finding a maximal matching in a bipartite graph (van Hoeve and
Katriel, 2006). The algorithm would remove values from each Di that cannot participate in
any solution to the problem.

In order to solve a problem, constraint programming combines inference with systematic
tree search. Specifically, search is performed by assigning a value to a particular variable and by
creating branches when there are several values in the variable’s domain. The order in which
variables and values are considered plays an important role in the efficiency of the search.
Every time a variable is assigned a value, inference techniques, such as the one mentioned
above for the AllDifferent constraint, can be employed to reduce the domains of the variables
and hence speed up the search (Kumar, 1992).

4.4.2 Model

A constraint programming model for the PD2|rij, components|
∑n

j=1 wjTj problem is stated
in Equations (4.40)–(4.51). The model is implemented using IBM ILOG Scheduler 6.7, a C++
library based on IBM ILOG Solver offering features specifically for modelling and solving of
scheduling and resource allocation problems (Scheduler, 2009).

In our model, two types of resources are used: there is a unary resource for each of the first-
stage machines, and a reservoir for each component type. Reservoirs are resources with maxi-
mal and minimal capacity levels that can be replenished and consumed by activities (Scheduler,
2009). We set the level of propagation to the highest level possible (IloExtended) for all re-
sources, implying the use of disjunctive, balance and precedence graph constraints for the
unary machines, and the use of timetable and balance global constraints for the reservoirs.
The constraint disjunctive(aij, i) represents a unary-capacity single-machine scheduling prob-
lem; that is, it ensures that the start times assigned to activities aij on machine i are such that
the activities do not overlap at any point in time. The reader is referred to pages 36–39 of
the Scheduler Reference Manual (Scheduler, 2009) for details regarding the rest of the global
constraints.

The objective (4.40) is exactly the same as in the MIP models. Equation (4.41) defines Cij

as the completion time of activity aij . The next constraint makes sure that aij starts after its
release date. Constraints (4.43) and (4.44) define the completion time and the tardiness of the
order, respectively. Constraint (4.45) states that each machine is a unary capacity resource and
invokes the corresponding global constraints. In (4.46), we state that each activity has to be
processed on the corresponding unary machine for pij units of time.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 38

min
n∑

j=1

wjTj (4.40)

Cij = aij.end(), ∀ i, j (4.41)

Cij − pij ≥ rij, ∀ i, j (4.42)

Cj ≥ Cij, ∀ i, j (4.43)

Tj ≥ Cj − dj, Tj ≥ 0, ∀ j (4.44)

machinei = unaryResource, ∀ i (4.45)

aij.requires(machinei, pij), ∀ i, j (4.46)

resz = reservoir(Qz,
⌈Qz

R

⌉
), ∀ z (4.47)

repllz.startsAt(
⌈ lH
R

⌉
), ∀ z, l = 1, . . . , R− 1 (4.48)

repllz.produces(resz,
⌈Qz − l

R

⌉
), ∀ z, l = 1, . . . , R− 1 (4.49)

aij.consumes(resz, αjz), ∀ z ∈ Ai, ∀ i, j (4.50)

aij.consumes(resz, βijz), ∀ z ∈ B, ∀ i, j (4.51)

Equations (4.47)–(4.51) represent the availability and usage of component inventory. Con-
straint (4.47) defines resz as the reservoir of components of type z with a capacity of Qz and
an initial amount of dQz

R
e. Recall that a timetable and a balance constraint are associated with

each reservoir in the internal Scheduler representation. In Equation (4.48), we define a set of
replenishment activities, repllz for each z and l, that start at the corresponding replenishment
times. Constraint (4.49) states that each replenishment activity repllz produces

⌈
Qz−l
R

⌉
com-

ponents to fill the corresponding reservoir, resz. Equations (4.50) and (4.51) state that each
activity aij consumes αjz components from resz if z is a machine-specific component, and
βijz components from resz if z is a shared component.

4.5 Experimental Results

Our experimental setup is based on ideas from papers by Keha et al. (2009) and Akturk and
Ozdemir (2000), both of which address the single machine total weighted tardiness problem.
We run five types of experiments, each consisting of two problem sets as in the paper by
Keha et al. (2009). In problem set 1, processing times on each machine are taken from the
discrete uniform distribution in the range between 1 and 10, i.e., U [1, 10]. In problem set 2,
pij ∈ U [1, 100] for experiments 1 to 3, but pij ∈ U [1, 50] for experiments 4 and 5 in order

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 39

to avoid memory issues with the MIP models. The weights of the orders are drawn from
U [1, 10]. The release dates and due dates are generated in a manner similar to that of Akturk
and Ozdemir (2000). In particular, rij is taken from U [0, α

∑
j pij] with α ∈ {0.5, 1.5}. To

determine the due dates, the values of slackij , i = 1, 2, and j = 1, 2, . . . , n, are obtained from
[0, β

∑
j pij], with β ∈ {0.05, 0.25, 0.5}. The due date dj is then set to max{d1j, d2j}, where

dij = slackij + pij + rij . Component requirements are generated from U [1, 10]. Each of the
five experimental settings aims to analyze the impact of a certain factor:

• number of orders (without component availability constraints) [Experiment 1],

• number of orders (with machine specific components) [Experiment 2],

• number of machine-specific components [Experiment 3],

• number of shared components [Experiment 4],

• number of inventory replenishments (for machine-specific and shared components) [Ex-
periment 5].

A time limit of one hour was used in all experiments. The MIP models were implemented
in CPLEX 12.1 with a tree memory limit of 900 MB and the MemoryEmphasis parameter
turned on. These parameter settings were necessary due to the intensive memory requirements
of the timeIndexed model and KolischModel.5 The number of threads was set to one. The
instances for which a particular MIP model ran out of memory are reported below as instances
for which the model could not find a feasible solution.

The CP model was implemented in ILOG Solver/Scheduler 6.7, with the goal IloSequence-

Forward(env) && IloSetTimesForward(env, totalWeightedTardiness, IloSelFirstActMinEndMin).
This goal first sequences the activities on each machine and then assigns unique start times, be-
ginning with the activity that has the minimal earliest start time among activities with minimal
earliest end times (Scheduler, 2009). The objective value, represented in our implementation
by the variable totalWeightedTardiness, is bound to its minimum consistent value at the end of
the search.

The experiments were performed on a Dual Core AMD 270 CPU with 1 MB cache, 4 GB
of main memory, running Red Hat Enterprise Linux 4. Below, we present a summary of our
results, followed by the details of each experiment.

5Some runs of the KolischModel had to be stopped even before search started due to the size of the model.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 40

Figure 4.7: Proportion of Instances Solved to
Optimality Within One Hour for Problem
Set 1.

Figure 4.8: Proportion of Instances Solved
to Optimality Within One Hour for Problem
Set 2.

4.5.1 Summary of Results

Figures 4.7 and 4.8 present the proportion of instances from each experiment for which opti-
mality was proved within one hour by each of the four models. The timeIndexed model is the
best performer in all experiments for problem set 1 and also in experiments 4 and 5 for problem
set 2. The CPModel outperforms the rest of the models in experiments 1 to 3 for problem set
2.

Figures 4.9 and 4.10 show the proportion of problem instances for which at least one fea-
sible solution was found within one hour. We see that the CPModel finds a feasible solution in
all instances. The timeIndexed model finds a feasible solution in 97% of instances for problem
set 1 and in 86% of instances for problem set 2.

One important observation that can be made from the figures is that the magnitude of the
processing times can have a significant effect on the performance of the models. For the timeIn-

dexed model and KolischModel, longer processing times require a longer time horizon, and,
consequently, more binary variables, resulting in a reduction in the number of times optimality
is proved for problem set 2 of every experiment. For the positionalVariables model and CP-

Model, the magnitude of the processing times has no effect on the number of constraints or the
number of variables. This fact explains the insensitivity of the positionalVariables model’s per-
formance to the change from problem set 1 to 2. For the CPModel, a wider range of processing
times, as in problem set 2, implies that each problem instance contains both short and long jobs,
allowing the CPModel to make stronger inferences regarding the jobs’ positions in the sched-
ules in experiment 1 to 3. This effect is not seen in experiments 4 and 5 due to the addition of
shared component constraints, which deteriorate CPModel’s performance significantly.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 41

Figure 4.9: Proportion of Instances for Which
At Least One Feasible Solution Was Found
Within One Hour for Problem Set 1.

Figure 4.10: Proportion of Instances for
Which At Least One Feasible Solution Was
Found Within One Hour for Problem Set 2.

More detailed results, presented below, show that the most important parameter affecting
performance (other than the range of processing times) is the number of orders. Specifically,
for all MIP models, the number of times optimality is proved and the number of times at least
one feasible solution is found decrease as n increases. The number of times the CPModel

finds at least one feasible solution stays constant as n increases, though the number of times
optimality is proved also decreases.

Overall, our results highlight the performance of two models. The timeIndexed model
appears to be the best in terms of proving optimality when the processing times are small.
The CPModel achieves better performance when the range of processing times is increased,
provided there are no components shared between machines. The CPModel is the best in terms
of finding a feasible solution within one hour, with the timeIndexed model being a close second.

Our experiments allowed us to evaluate the performance of the models with respect to
two fundamental performance metrics, the number of feasible and optimal solutions found
within a time limit. However, this experimental data does not provide a full understanding
of the performance of the models and their implementations. Firstly, we do not experiment
with varying the emphasis of CPLEX (i.e., the MIPEmphasis parameter) from optimality to
feasibility. Clearly, having a feasibility emphasis should increase the number of times the
MIP models find feasible solutions, but at the same time is likely to decrease the number of
solutions proved optimal within the one hour time limit. In future work, it would be interesting
to investigate the impact of the solvers’ parameters on the relative performance of our models.
Secondly, there are simpler ways of finding feasible solutions: all jobs can be scheduled after
the last replenishment point or, given a sequence for the jobs, a schedule can be constructed by

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 42

Figure 4.11: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 1 Problem Set 1.

Figure 4.12: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 1 Problem Set 1.

Figure 4.13: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 1 Problem Set 2.

Figure 4.14: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 1 Problem Set 2.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 43

following this sequence and starting the activities as soon as a sufficient number of components
is available.6 Thirdly, more insights about the models can be gained by examining the quality
of the feasible solutions found.

4.5.2 Experiment 1

We vary the number of orders in the problem with release dates but without inventory con-
straints. Ten instances are considered for every combination of α and β for n ∈ {10, 20, 40, 60,
80, 100, 120} in problem set 1 and for n ∈ {10, 20, 40, 60} in problem set 2. Problem set 1
consists of 420 instances: there are two values for α, three values for β, seven values for n, and
ten instances for each combination. Problem set 2 consists of 240 instances due to a smaller
set of n values.

Problem Set 1 Figure 4.11 shows the number of instances for which the optimal solution was
found and proved within one hour by each of the four methods for problem set 1 (i.e., with
pij ∈ U [1, 10]). It can be seen that the timeIndexed model is the best performer for all values
of n. The KolischModel comes in at second place for instances with less than 80 orders, but
is outperformed by the CPModel when n reaches 80. The positionalVariables model is not as
good as the others, and cannot prove optimality for any instances with 60 or more orders.

Figure 4.12 presents the number of instances for which at least one feasible solution was
found by each model within the one hour time limit. In this respect, the CPModel is the best –
it finds a feasible solution in all problem instances. The performance of the timeIndexed model
deteriorates after n of 60. The greatest gap in performance between the MIP models and the
CPModel occurs at n = 100 and n = 120.

Problem Set 2 Figure 4.13 shows that the CPModel performs better than the timeIndexed

model for n of 10 and 60. For n of 20 and 40, the timeIndexed model is slightly better. Figure
4.14 demonstrates the superiority of the CPModel in terms of finding feasible solutions. The
positionalVariables model is the best of the MIP models for finding feasible solutions for this
problem set.

For both proving optimality and finding feasible solutions, the performance of the MIP
models deteriorates with n, and the rate of deterioration is greater with larger processing times.
The number of times optimality is proved by the CPModel decreases from n = 10 to n = 40,
but remains fairly constant thereafter. The CPModel also consistently finds at least one feasible

6Thank you to Tony T. Tran and Dr. Michael Trick for pointing out this property and these suggestions.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 44

solution for all problem instances, regardless of n.

4.5.3 Experiment 2

Experimental setup is essentially the same as in experiment 1, with n ∈ {10, 20, 40, 60} (i.e.,
240 instances) for each of the two problem sets and with one machine-specific component per
machine and two replenishments.

Problem Set 1 The results of experiments with instances where pij ∈ [1, 10] are presented in
Figures 4.15 and 4.16. As in experiment 1, the timeIndexed model dominates the others in
terms of proving optimality. The CPModel and the timeIndexed model are the best in terms of
finding feasible solutions.

Problem Set 2 Figures 4.17 and 4.18 summarize the results of this experiment. The CPModel

is the best in terms of proving optimality when n is 10 or 20. None of the models are able to
prove optimality for higher n. The CPModel is also best for finding feasible solutions.

The timeIndexed model should be the method of choice for this variation of the problem
when the range of processing times is small, while the CPModel is recommended when the
range of processing times is large.

4.5.4 Experiment 3

In experiment 3 we vary the number of machine-specific components while keeping the num-
ber of orders at 20 for problems with release dates but without shared components. Specifically,
there are one, three, five or seven components shared on each machine (Ai ∈ {1, 3, 5, 7} ∀i).
The number of replenishments is set to two. For fixed α and β, there are 40 instances, where
every four instances with one, three, five and seven components are correlated: a problem with
three components has the same parameters as a problem with one, but with requirements for
two more component types; a problem with five components per machine is exactly the same
as a problem with three, but with requirements for two more component types; etc.

Problem Set 1 The number of times optimality is proved is presented in Figure 4.19. The
timeIndexed model is the best performer. All models find a feasible solution in all problem
instances, so no graph is presented for this statistic.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 45

Figure 4.15: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 2 Problem Set 1.

Figure 4.16: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 2 Problem Set 1.

Figure 4.17: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 2 Problem Set 2.

Figure 4.18: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 2 Problem Set 2.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 46

Figure 4.19: Number of Instances Solved to Optimality Within One Hour for Experiment 3
Problem Set 1.

Figure 4.20: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 3 Problem Set 2.

Figure 4.21: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 3 Problem Set 2.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 47

Problem Set 2 The graphs for this experiment are presented as Figures 4.20 and 4.21. The
CPModel appears to be the best performer. However, none of the models achieve satisfactory
results for proving optimality.

4.5.5 Experiment 4

In experiment 4 we vary the number of shared components while keeping the number of orders
at 20 and the number of machine-specific components on each machine at one. The number of
replenishments equals two. The number of components shared between the two machines, |B|,
is one, three, five or seven. For each combination of α, β and |B|, 10 instances are generated.
Thus, there are 240 instances for problem set 1 and 240 for problem set 2.

Problem Set 1 All four models find at least one feasible solution in all problem instances.
Figure 4.22 shows the number of times that optimality was proved by each of the models. The
timeIndexed model seems to be the best performer overall, as in all other experiments with
pij ∈ U [1, 10] and a small number of orders.

Problem Set 2 The results for problem set 2 are presented in Figures 4.23 and 4.24. For proving
optimality, even the best model, timeIndexed, does not perform well. For feasibility, all models
except the KolischModel achieve consistent performance, finding at least one solution in all
cases. For KolischModel, increasing the number of shared components increases the number
of constraints and makes the model too large to be solved efficiently.

4.5.6 Experiment 5

This experiment looks at the effect of increasing the number of replenishments that occur
within the time horizon for a problem with both shared and machine-specific components. The
problem instances have 20 orders, one component shared among the two machines, one com-
ponent shared among the sub-assemblies on machine 1 and one component shared among the
sub-assemblies on machine 2. We evaluate instances with two, six, eight and ten replenish-
ments within the scheduling horizon, considering 60 instances for each of these values (10 for
each α and β). There are 240 problems in each of the two problem sets.

Problem Set 1 In this experiment, all models find at least one feasible solution for all instances
within the one-hour time limit. Figure 4.25 shows the number of times when the optimal solu-
tion was found and proved by the models. The figure shows the superiority of the timeIndexed

model over the other ones. The CPModel is the second-best performer. As the number of

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 48

Figure 4.22: Number of Instances Solved to Optimality Within One Hour for Experiment 4
Problem Set 1.

Figure 4.23: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 4 Problem Set 2.

Figure 4.24: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 4 Problem Set 2.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 49

Figure 4.25: Number of Instances Solved to Optimality Within One Hour for Experiment 5
Problem Set 1.

replenishments increases from two to six, the number of instances in which the model proves
optimality decreases. Further increases in the number of replenishments do not change the
performance of the models by much.

Problem Set 2 The results of this experiment are presented in Figures 4.26 and 4.27. None of
the models perform adequately in terms of proving optimality. All models except the Kolis-

chModel find at least one optimal solution.

4.5.7 Memory Consumption

For problem set 1, the KolischModel runs out of memory three times in experiment 2. Figure
4.28 shows the number of times each MIP model runs out of memory for problem set 2 of each
experiment. Recall that the MemoryEmphasis parameter was turned on and that a tree memory
limit of 900 megabytes was used. The statistics presented were calculated as the total number
of instances minus the number of times optimality was proved minus the number of times the
time limit was reached, and include instances where memory problems were due to the size of
the model as well as due to the size of the search tree.

4.6 Conclusion

In this chapter, we considered a supply chain scheduling problem with the objective of min-
imizing the weighted tardiness of customer orders. Each customer order is composed of two
sub-assemblies processed on dedicated machines, but joined by a common due date. Com-

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 50

Figure 4.26: Number of Instances Solved
to Optimality Within One Hour for Exper-
iment 5 Problem Set 2.

Figure 4.27: Number of Times At Least
One Feasible Solution Was Found Within
One Hour for Experiment 5 Problem Set 2.

Figure 4.28: Proportion of Instances For Which the MIP Models Ran Out Of Memory for
Problem Set 2.

CHAPTER 4. COMPLETE METHODS FOR ASSEMBLY SCHEDULING 51

ponent parts which are replenished periodically are necessary for sub-assembly fabrication.
Three MIP models and a CP model for this problem were studied. We conducted extensive
numerical experiments, which allowed us to compare the performance of the models with re-
spect to finding an optimal or a feasible solution within a given time. The results show that
a MIP model based on time-indexed binary variables is the best approach when the process-
ing times are short, while the CP model performs better for problems in which the range of
processing times is large. However, for problems with components shared between the two
machines, none of the methods perform adequately, emphasizing the importance of developing
more sophisticated algorithms. The main contributions of this chapter are the development and
extensive empirical evaluation of complete methods for the assembly scheduling problem with
inventory constraints, which is relevant for both supply chain and manufacturing settings.

Chapter 5

Scheduling and Inventory Management
Future Work

Future work on the assembly scheduling problem with inventory constraints includes the de-
velopment of better solution approaches as well as the exploration of various extensions. This
problem also serves as a step toward a general framework to address joint inventory and
scheduling decision-making.1

5.1 Better Solution Techniques

The experiments of Section 4.5 show that there is no one method that performs best over all
variations of the assembly scheduling problem with inventory. For problems involving compo-
nents shared between the machines, none of the methods are satisfactory. These results high-
light the need for the development of more effective complete approaches and the investigation
of heuristics for the PD2|rij, components|

∑
wjTj problem.

5.1.1 Complete Approaches

One way to develop better complete methods for the assembly scheduling problem with inven-
tory constraints is to use decompositions, such as logic-based Benders decomposition (LBBD)
(Hooker and Ottosson, 2003) and Lagrangian decomposition (Pirkwieser, 2006). In designing
a decomposition approach, several issues have to be acknowledged. Firstly, we would ideally
like to separate the problem of assigning components from each replenishment to activities on

1Parts of the work presented in this chapter have been published in a journal paper (Terekhov et al., 2012a).
This material is used with permission of the copyright holder, Elsevier c©, and the paper’s co-authors.

52

CHAPTER 5. SCHEDULING AND INVENTORY MANAGEMENT FUTURE WORK 53

each machine from the problem of finding the start times of these activities. Secondly, mini-
mizing the total weighted tardiness on one of the machines may not necessarily minimize the
total weighted order tardiness, due to the common due date of sub-assemblies belonging to the
same order. Additionally, separability of the sub-problem into smaller problems with strong
intra-relationships and weak inter-relationships (Cadoli and Patrizi, 2009), which can lead to
more effective approaches, is not trivial. For example, assigning activities to replenishment
time periods and then independently solving scheduling problems for each such period is not
possible: an activity should be allowed to start in one period and end in another. The idea of
having sub-problems for independent time buckets seems more appropriate if the techniques
proposed by Bock and Pinedo (2010) are employed. The approach taken by Coban and Hooker
(2010) should also be investigated. A good starting point for the development of a Lagrangian
decomposition method is the paper by Ahmadi et al. (2005), which addresses the total weighted
completion time problem with no release dates.

Another line of future research is to consider alternative CP models. For example, the CP
model used for the RCPSP by Berthold et al. (2010) may be adopted for our problem setting.
One could also experiment with the use of constraint integer programming (Berthold et al.,
2010).

5.1.2 Heuristic Approaches

It may be possible to extend the heuristics developed in previous assembly scheduling work
(Lee et al., 1993; Potts et al., 1995) to the problem with components. Development of such
methods would be especially attractive if worst-case performance guarantees, such as those
in the paper by Potts et al. (1995), could be derived. The heuristics could also be used to
find initial feasible solutions for the constraint programming model presented in Section 4.4.
Moreover, the performance of tabu-search algorithms developed by Kolisch and Hess (2000)
can be investigated.

5.2 Extensions

Numerous extensions to the assembly scheduling problem are possible, each of which would
result in a more realistic, but also more complex, problem. These can be based on settings with
more facilities, conceptual questions, and stochastic and dynamic variations of the problem.

CHAPTER 5. SCHEDULING AND INVENTORY MANAGEMENT FUTURE WORK 54

5.2.1 More Complex Facility Structure

The methods presented in the previous chapter can be extended relatively easily to the case
with more than two manufacturers, and to the case when processing at the MIT facility also
requires sequencing. Similarly, one can combine scheduling at the manufacturing facilities
with scheduling of a distribution centre, such as in the paper by Fanti et al. (2010). Given
our experimental results, it is unlikely that the models proposed in this dissertation would be
effective for these more complex problems; the use of decomposition methods and/or heuristics
would be required instead.

As outlined in Chapter 2, in the real problem that inspired the study of Chapter 4, the man-
ufacturing facilities are focused factories in which the production area is divided into sub-areas
corresponding to different product families. Each sub-area is composed of several assembly
lines. Therefore, instead of representing each manufacturer as a single machine, one may de-
velop a more detailed model that takes into account the sequencing problems on each assembly
line. Decomposition methods are likely to be needed in this case as well.

5.2.2 Conceptual Questions

The motivation for our study of the assembly scheduling problem came from a supply chain
in which the manufacturing facilities act independently and there is no synchronization of pro-
duction of sub-assemblies belonging to the same order. Therefore, on a conceptual level, it
would be interesting to investigate the effect of the company switching from allowing the fac-
tories to schedule their operations independently to solving the centralized scheduling problem
and imposing schedules on each of the facilities. Specifically, the following questions are of
interest:

1. How significant would the improvement in whole order delivery rates (as represented,
for example, by total weighted order tardiness) be?

2. Would the gains be significant enough to convince the company to switch from one
structure to the other?

3. Would the gain from centrally-imposed schedules be similarly significant in other supply
chain configurations?

Answers to these questions would also be helpful for evaluating the benefits of information
sharing if the facilities are owned by different companies.

CHAPTER 5. SCHEDULING AND INVENTORY MANAGEMENT FUTURE WORK 55

5.2.3 Stochastic Extensions

One can argue that our model of the supply chain scheduling problem is unrealistic because it is
static and deterministic. Therefore, another direction for future work is to investigate dynamic
and stochastic models.

With a fixed set of jobs, we can investigate models with stochastic processing times or mod-
els in which the quantities or timing of component replenishments are stochastic. Stochastic
processing times can model variations in the processing requirements of different configura-
tions of the same product type. The starting point for studying such problems could be the
papers by Gourgand et al. (2005), Cai and Zhou (2004) and Righter (1997). Stochastic replen-
ishment quantities and arrival times account for uncertainties in the delivery of components.
The simplest problem with such assumptions is one which has stochastic activity release dates
modelling the arrival time of unique components. To study this problem, one needs to con-
sider the literature on static problems with stochastic release dates, discussed, for example, by
Pinedo (2003). The dynamic version of the assembly scheduling problem is also of interest in
future work, as mentioned in Section 11.2.3.

5.3 Integration of Scheduling and Inventory Management

In a supply chain where component parts and the sub-assemblies using these parts are produced
by facilities belonging to the same company, or in an environment where components and sub-
assemblies are processed at the same plant, an approach is necessary that takes into account
the interdependence of inventory and scheduling decisions.

In the preceding chapter, we take an initial step toward developing a framework for integra-
tion of these decisions by studying a problem in which scheduling has to be optimized subject
to constraints from a fixed periodic inventory policy. In that problem, replenishment timing
and quantities are independent of the component inventory position at the manufacturing fa-
cilities. This independence allows us to decouple inventory and scheduling decisions, which
would not have been possible if more common policies such (R,Q) and (s, S) were employed.
For example, under an (R,Q) policy, we can make an order for Q items only when the in-
ventory position reaches a level of R or lower; this implies that the schedule of jobs up to the
replenishment time point would impact when the replenishment order would be placed.

One direction for future work is to study the more general optimization problem where at
the higher (tactical) level of decision-making, one determines the timing and quantity of re-
plenishments, whereas at the lower (operational) level, the jobs are scheduled. If the inventory
policy leads to an infeasible scheduling problem at the lower level, then this information would

CHAPTER 5. SCHEDULING AND INVENTORY MANAGEMENT FUTURE WORK 56

be communicated back to the higher level so that the inventory decisions could be adjusted.
We note that determining the theoretically optimal inventory policy type is likely be intractable
due to the complexity of the interactions between inventory and scheduling decisions; thus,
we would instead like to focus on problems in which some assumptions about a policy type
are made. In the full-cost approach,2 the objective would be to optimize a combination of
procurement, holding and weighted tardiness costs. Three variations of this problem could be
considered:

• Variation 1: the replenishment policy type and its parameters are fixed (e.g., assume an
(R,Q) policy with specific values for R and Q);

• Variation 2: the replenishment policy type is fixed, but the parameters of the policy (e.g.,
the values of R and Q) are decision variables of the problem;

• Variation 3: the replenishment policy type is not fixed, but some assumptions about it
are made. For example, we could assume a periodic review structure, and the problem
would be to optimize the timing and quantity of replenishments without being restricted
by reorder point and order-up-to level parameters such as R and S.

Alternatively, we could consider the partial cost optimization problem, whose goal would be
to minimize the inventory costs subject to a constraint ensuring that all jobs are completed
on time. As above, different types of assumptions can be made about the specification of the
replenishment policy. Grigoriev et al. (2005) propose a similar direction for future work: to
address the case where customer orders and raw material replenishments can be renegotiated,
with each order having a tardiness cost and each replenishment having an earliness cost.

When ownership of the facilities is different, a multi-agent view of the problem, such as the
one presented by Duan et al. (2012), has to be adopted. In fact, we can assume that suppliers
and manufacturers negotiate regarding the timing and size of component replenishments. When
the supplier proposes a replenishment policy, the manufacturers need to evaluate the quality of
the proposal by solving their scheduling problem, which is exactly the problem we solve in the
previous chapter.

5.4 Conclusion

The motivation for the work presented in Part II of this dissertation is the supply chain of
Alcatel-Lucent. In reality, the scheduling problem arising in this supply chain is combinato-
rial, stochastic and dynamic, and involves both scheduling and inventory decisions. Due to the

2See the literature review of Section 3.2.

CHAPTER 5. SCHEDULING AND INVENTORY MANAGEMENT FUTURE WORK 57

problem’s complexity, we have, so far, addressed its static and deterministic version, focusing
on the combinatorics and the impact of inventory constraints on scheduling. Various direc-
tions for future work, which include stochastic extensions and a framework for integration of
inventory management and scheduling, have been proposed.

Part III of this dissertation deals with solving scheduling problems that are combinatorial
and dynamic in nature, and uses developments of queueing theory and deterministic schedul-
ing. In the final part of this dissertation, we discuss future work on more complex problems
that would require the developments of both Part II and Part III.

Part III

Integrating Scheduling and Queueing
Theory for Dynamic Scheduling Problems

58

Chapter 6

Combining Scheduling and Queueing
Theory: A Literature Review

In Chapter 2, we stated that real scheduling problems are combinatorial, dynamic and uncer-
tain, and related to other processes of their environment. In Part II of this dissertation, we
addressed two of these characteristics, combinatorial complexity and dependence of schedul-
ing on other decision-making processes, within a specific realistic supply chain problem. Now,
we focus on problems that are both combinatorial and dynamic. As in Part II, addressing
both of these characteristics requires integration of methodologies from two fields, in this case
queueing theory and classical scheduling.

In the scheduling community, there has been an increasing interest in modelling and solving
of scheduling problems in which new jobs arrive over time, machines break down, and some
or all characteristics of jobs that have to be scheduled are not known with certainty at the time
when decisions have to be made (Bidot et al., 2009; Ouelhadj and Petrovic, 2009; Aytug et al.,
2005; Davenport and Beck, 2000; Suresh and Chaudhuri, 1993). The problem of scheduling in
such a dynamic and stochastic environment consists of determining an approach that dictates,
at every decision time point, how the available machine processing time is to be allocated
among competing job requests with the goal of optimizing the performance of the system.1

The techniques that have been developed by the scheduling community for problems of this
kind are generally based on various combinations of predictive approaches for constructing a
baseline schedule and reactive approaches for changing the schedule online when a disruption
occurs. In operations research, it has long been recognized that queueing theory can provide a
basis for examination of such problems as well (Conway et al., 1967). In addition, queueing
theory frequently considers the same application areas as scheduling. For example, both have
extensively studied manufacturing environments, as is demonstrated by the complementary

1This chapter assumes familiarity with fundamental scheduling notions presented in Section 3.1.1.

59

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 60

Scheduling Queueing

A survey of dynamic scheduling in manu-
facturing systems (Ouelhadj and Petrovic,
2009)

Queueing theory in manufacturing: A survey
(Govil and Fu, 1999)

Scheduling and control of flexible manufac-
turing systems: a critical review (Basnet and
Mize, 1994)

Flexible manufacturing systems: a review of
analytical models (Buzacott and Yao, 1986)

Job shop scheduling techniques in semicon-
ductor manufacturing (Gupta and Sivaku-
mar, 2006)

Queueing theory for semiconductor manu-
facturing systems: A survey and open prob-
lems (Shanthikumar et al., 2007)

Table 6.1: Pairs of complementary scheduling and queueing theory papers that focus on man-
ufacturing.

papers listed in Table 6.1.

However, to our knowledge, only a few papers (e.g., those by Nazarathy and Weiss (2010),
Bertsimas and Sethuraman (2002) and Bertsimas et al. (2003)) combine queueing and schedul-
ing ideas to address static scheduling problems, and only one recent dissertation (Tran, 2011)
proposes methods for dynamic scheduling that take advantage of developments in both of these
areas. It is true that scheduling books such as the one by Leung (2004) and Chrétienne et al.
(1995) have chapters on both deterministic scheduling and queueing approaches, but they usu-
ally make no link between queueing theory and predictive-reactive scheduling.2 Addition-
ally, except for the work of Suresh and Chaudhuri (1993), literature surveys on scheduling in
dynamic environments make no mention of queueing approaches. This characteristic of the
scheduling literature may be partially due to the fact that a significant proportion of queueing
research has dealt with the development of descriptive models for evaluation of the long-run
expected behaviour of a system, while scheduling is prescriptive in nature and frequently con-
siders only short-run performance measures. Nevertheless, there has also been a substantial
amount of work on prescriptive queueing models that aim to provide a policy for stating which
job or job class should be processed next.

In this chapter, we provide a foundation for the investigation of the integration of queueing
theory and scheduling by surveying the relevant literature. Firstly, we provide an overview of
queueing theory fundamentals and review the work done by researchers in queueing theory
that is relevant to scheduling. The literature on scheduling in the context of queueing systems

2It is important to note that in early research on resource allocation and sequencing, queueing theory and
scheduling were more unified. For example, the book Theory of Scheduling by Conway et al. (1967) contains
many fundamental results for both deterministic scheduling problems and queueing problems.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 61

is extensive, and so our review is by no means exhaustive: we omit many mathematical details
and proofs, but attempt to provide a high-level view of the relevant material. Throughout the
review, we make connections between queueing and scheduling. Secondly, we discuss methods
for dynamic environments developed by the scheduling community. Finally, we describe our
view on the relationship between queueing theory and scheduling.

6.1 Queueing Theory

We start by providing a brief introduction to queueing theory and general queueing models.
We then survey the queueing literature on making scheduling decisions.

6.1.1 Queueing Theory Fundamentals

Queueing theory can be defined as the mathematical study of waiting lines (Gross and Harris,
1998). It therefore models systems in which one or more servers (machines) at one or more ser-
vice stations process arriving customer requests (jobs).3 As stated by Gross and Harris (1998),
a mathematical model of a queue is composed of six main features.4

Arrival Pattern The main characteristic of the arrival pattern is the probability distribution
of times between successive customer arrivals. This distribution may or may not be stationary
(independent of time) and may or may not depend on the number of customers in the queue.
Customers may arrive one-by-one or in a group (batch) whose size may be determined by a
probability distribution (which could be deterministic). A customer may decide to join the
queue and stay there until receiving service, join the queue but leave without service (renege)
due to a long wait, or not join the queue at all (balk). If the system consists of more than one
waiting line, a customer may decide which queue to join and/or to switch (jockey) from one
queue to another.

Service Pattern Similarly, the service pattern is characterized by a service time distribution,
which may be stationary or non-stationary and which may or may not depend on the number

3The terms server and customer are more common in the queueing literature, while the terms machine and
job are more common in scheduling. In the subsequent description of the main features of a queue, we use
the queueing terminology. However, for the rest of the review, we employ scheduling terms, except when the
application clearly demands otherwise or when it is important to recognize that a server may be composed of
multiple machines.

4Throughout the chapter, we take many of the fundamental queueing theory concepts and results from the
book by Gross and Harris (1998), an excellent introduction to queueing theory. The reader is also referred to the
textbook by Kleinrock (1976).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 62

of customers waiting for service. Customers may be served singly or in groups whose size is
determined by a probability distribution (which could be deterministic). The service time of a
customer may become known with certainty upon arrival or at the end of service.

Queue Discipline The queue discipline is a rule that determines the order in which customers
receive service. The simplest and most common queue discipline is first-come, first-served
(FCFS). Other examples of queue disciplines include last-come, first-served (LCFS), random
selection for service (RSS) or shortest processing time (SPT) first. The queue discipline is,
essentially, a scheduling policy, and the reader may note the strong similarity between these
examples of policies and dispatching rules in the scheduling literature (Pinedo, 2009).

System Capacity A queueing system may have finite or infinite capacity. In a finite capacity
queue, there is a limit on the number of customers that can be present in the system at any point
in time, and customers who arrive at times when this limit has been reached are not allowed to
enter the system.

Number of Service Stations and Servers A queueing system may be composed of one or
more stations (stages), each of which has one or more servers (channels). A multi-station sys-
tem may be thought of as a network of interconnected nodes, with each node consisting of one
or more queues with one or more servers. When there are several servers at a station, there may
be a queue for each server, as in a supermarket, or one queue for all servers, as in the case of
a bank. In a multi-station system, the order in which customers visit the stations (the routing)
may be deterministic or stochastic. The distinction between single-station and multi-station
models is discussed in more detail below.

Additional characteristics of queueing models include the server types (see, for example,
the work on flexible servers by Ahn et al. (2002), Andradóttir et al. (2003), Gurvich and Whitt
(2009)) and the customer types served by a system, as discussed in Section 6.1.1.2. Such
characteristics affect the kinds of scheduling problems that need to be solved.

6.1.1.1 Single-Station vs. Multi-Station Models

In this section, we give some additional characteristics of single-station and multi-station
queueing models and their relation to single-machine and multi-machine scheduling problems.

6.1.1.1.1 Single-Station Queueing Models Similarly to the α|β|γ system used to describe
scheduling problems (Graham et al., 1979), a single-station queueing model is usually speci-

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 63

fied by a combination of symbols A/B/X/Y/Z, where A and B specify the inter-arrival and
service time distributions, respectively, X is the number of parallel servers, Y indicates the
capacity of the system and Z describes the queue discipline.5 Typical entries for A and B

are: D, which stands for deterministic; M , which stands for Markovian or exponential distri-
bution; GI , which stands for a general independent distribution; or G, which corresponds to
a general6 distribution. X and Y are represented by positive integers or ∞. Examples for Z
include FCFS, LCFS, RSS, priority (PR) or general discipline (GD). When the Y or Z fields
are empty, infinite capacity and FCFS discipline are assumed, respectively. For example, an
M/G/3/5/LCFS queue is a queue with Markovian arrivals (M), a general service time dis-
tribution (G), three servers, a system capacity of five jobs, and last-come, first-served order of
service.

Assuming equivalence between a server in queueing and a machine in scheduling, a single-
station model corresponds either to a single-machine or a parallel-machine scheduling environ-
ment, depending on the number of servers. If there are multiple machines, having one queue
in the system implies that any job can be processed on any machine, while having a distinct
queue attached to each server models the situation when each job has to be processed on one
specific machine.

6.1.1.1.2 Multi-station Queueing Models A queueing system with more than one service
stage is typically referred to as a queueing network or a network of queues. It consists of a
set of nodes, each of which is a (single-stage) queue. Jobs typically require service at several
nodes (stations) of the network in some order (routing).

Queueing networks in which jobs enter the system “from the outside” and leave the system
upon receiving service are referred to as open queueing networks. Models in which a finite
population of jobs circulates within the system, and there are no arrivals from or departures
to the outside, are called closed queueing networks. In semi-open networks, jobs are allowed
to enter the network when the total number in the system is less than some threshold value
(Chen and Yao, 2001). Open networks in which jobs can arrive at a node only from the outside
or from an upstream node are referred to as acyclic or feed-forward networks. This kind of a
network can therefore be analyzed in a recursive manner, starting from the upstream stations. In
networks with feedback, on the contrary, jobs may visit the same station more than once (Chen
and Yao, 2001). More complex networks may involve fork-join queues, in which an arriving
job is split into sub-jobs that have to be processed in parallel and then reassembled (Bose,
2002; Baccelli et al., 1989). The work of Baccelli and Liu (1990) introduces synchronized

5See Section 3.1.1 for a description of the α|β|γ notation for scheduling problems.
6For a general distribution, there are no assumptions regarding its precise form. Thus, results that apply to the

general distribution apply to any specific distribution.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 64

queueing networks, which can model multiprocessor systems that process programs consisting
of multiple tasks related by precedence constraints.

It has long been recognized that queueing networks are good models for dynamic job shop
environments (Jackson, 1963; Wein and Chevalier, 1992; Buzacott and Shanthikumar, 1985,
1993). Semi-open and open network models provide the most intuitive representations of dy-
namic job shops since they allow one to explicitly model the process of job arrivals. A semi-
open network can be used to represent a job shop with a strict limit on the number of jobs in the
shop, while an open network can model a system with no such limit. Closed queueing networks
can be used to model job shops in which the total number of jobs remains constant, or, in other
words, for which it is valid to assume that a new job arrives at the same instant as another job
is completed and leaves. Examples of environments that can be modelled as closed queueing
networks include production systems that have a constant work-in-process inventory or follow
a one-for-one replenishment policy (base-stock control rule) (Chen and Yao, 2001). Alterna-
tively, one can imagine that there is a fixed number of palettes circulating through the service
stations of the system, that raw materials are placed on one such palette and that these raw ma-
terials are gradually transformed into finished products as they receive processing (Williams,
1996). Acyclic networks can represent flow shops while networks with fork-join queues can
be used to model shops with assembly operations.7 Synchronized queueing networks can be
useful for machine scheduling with complex precedences among the activities, for the task
management problem described by Myers et al. (2007) and for project scheduling.

A generalization of a queueing network is referred to as a stochastic network (Kelly et al.,
1996) or a stochastic processing network (Harrison, 1996). A stochastic processing network is
defined by a set of buffers, a set of activities and a set of processors. Buffers hold jobs that have
arrived to the system and are awaiting processing. Each activity uses one or several processors
in order to process one or several jobs (which may belong to different buffers). Scheduling
in stochastic processing networks corresponds to the determination of the order of executing
the different activities on the various available processors. Stochastic processing networks can
be used to model more complex scheduling environments than those that can be modelled by
multi-class queueing networks. For example, they can allow one to represent material handling
and machine-operator interaction (Dai and Lin, 2005) or input-queued switches (Dai and Prab-
hakar, 2000). In the remainder of this literature review, we focus on queueing systems rather
than stochastic processing networks.

7In Chapter 11 we mention the investigation of fork-join queues for modelling the stochastic and dynamic
versions of the assembly setting studied in Chapter 4.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 65

6.1.1.2 Single-class vs. Multi-class Systems

In the literature, a distinction is usually made between single-class and multi-class queueing
networks. In a single-class network, jobs being processed or waiting for processing at any
given station are assumed to be indistinguishable. A multi-class system is one in which several
classes of jobs are served at each station (Harrison and Nguyen, 1993). A class is usually
defined as a combination of job type and processing stage. An instance of a job belonging to
a particular class is equivalent to an operation in scheduling terminology. The reader should
note a slight subtlety arising from these definitions. Specifically, in a single-class network,
according to the definition of a class, there are, in total, as many classes as there are stations
(Harrison and Nguyen, 1993). The term single-class refers to the fact that a single class is

served at each station.

It is important to note that the individual jobs belonging to the same class are different:
they have unique arrival times, unique processing times, and, in the case of multiple machines,
may have a unique routing. However, these differences between the jobs are simply stochastic
variations – all jobs in a class are governed by the same stochastic processes, and are, except
for these stochastic variations, indistinguishable.

In a single-class system, scheduling corresponds to determining the order in which the
jobs should be processed at each node of the network. Since the jobs are stochastically in-
distinguishable, scheduling decisions have to be based on realizations of job characteristics.
In the context of single-class systems, the queueing literature mostly focuses on the perfor-
mance evaluation of scheduling policies such as FCFS, LCFS, shortest remaining processing
time first, processor-sharing, etc. (Shanthikumar, 1982; Wolff, 1989; Harchol-Balter, 2011).
In some cases, such analysis yields very strong results, such as the optimality of the shortest
remaining processing time policy in an M/G/1 queue (Schrage, 1968; Smith, 1978).8

Scheduling in multi-class queueing networks involves the determination of a policy that
specifies which class of jobs should be processed next on each machine, and this decision may
be based on the state of the system (i.e., the total number of jobs present in the system or in each
of the classes), or the characteristics of a particular job class. Scheduling of multi-class queue-
ing networks falls under the category of models for control of multi-class queueing networks,
which are known to be mathematically challenging (Bertsimas et al., 1994). For example, the

8Interestingly, for the single-machine case the scheduling literature has parallel results: for a static determinis-
tic problem with n jobs, the shortest processing time first rule minimizes the total flow time; the weighted shortest
processing time rule minimizes the total weighted flow time (equivalently, the sum of weighted completion times)
(Pinedo, 2003; Baker and Trietsch, 2009). Similarly, Baker and Trietsch (2009) and Pinedo (2003) show that, for
a problem with n jobs and stochastic processing times (i.e., the realization of the processing time for a given oper-
ation is not known until the activity is finished), the shortest (weighted) expected processing time rule is optimal
for the (weighted) expected flow time objective.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 66

choice of job to be processed next at every station of the network at every decision time point
may depend not only on the number and characteristics of jobs present in the station’s queue,
but also on the state of the other nodes in the network.

6.1.1.3 Descriptive vs. Prescriptive Models

Queueing theory is composed of work on descriptive and prescriptive (control) models (Gross
and Harris, 1998; Stidham Jr., 2002). The goal of descriptive queueing theory is to evaluate
the performance of a queueing system based on some assumptions about its characteristics.
Typical performance measures include (Adan and Resing, 2002):

• the distributions of the amount of time spent by jobs in the system (sojourn time) and of
the jobs’ waiting time in the queue prior to receiving service (queueing time),

• the distributions of the number of jobs in the system and in the queue,

• the distribution of the amount of work in the queue, with work being defined as the sum
of the service times of the jobs waiting in the queue and the remaining (or residual)
service time of the job(s) currently receiving service,

• the distribution of the length of the busy period of a server, which is the time period
during which the server is continuously busy,

• cost-based measures such as expected holding costs (Reiman and Wein, 1998) or net
present value of the difference between rewards and costs over an infinite time horizon
(Harrison, 1975).

Most of descriptive queueing theory focuses on steady-state analysis of the system, that is, its
performance over a long period of time during which the system behaviour should stabilize.
Specifically, steady-state expected values of the above-mentioned distributions are essential for
understanding the performance of the system. Transient analysis (Grassmann, 1977; Kaczynski
et al., 2011) and evaluation of time-dependent probability distributions (Massey and Whitt,
1998) provide additional insights into system performance but are, in general, more difficult to
derive and hence rarer.

The area of queueing theory that deals with prescriptive models is frequently called the de-

sign and control of queueing systems (Tadj and Choudhury, 2005; Gross and Harris, 1998). In
both queueing design and control problems, the goal is to find optimal values for the control-

lable parameters of the queue. These parameters include: the number of machines (channels)
available for processing arriving jobs, the limit on the length of the queue(s) (system capac-
ity), the arrival rate of jobs to the queue(s), the service rates of the machine(s), as well as any

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 67

combination of these. Queueing design problems are static – once the optimal value of a con-
trollable parameter is determined, it becomes a fixed characteristic of the queue. Queueing
control problems, on the contrary, are dynamic – the goal in such problems is usually to deter-
mine an optimal action to take when the system is in a particular state. For example, consider
a retail facility with workers who have to serve stochastically-arriving customers and also per-
form back room tasks which are independent of the customer arrival process (Terekhov et al.,
2009). In order to optimize the performance of such a facility, one has to solve the queueing
design problem of finding the optimal number of cross-trained servers to employ as well as the
related queueing control problem of determining when to dynamically switch these workers
between the two task types. We refer the reader to the papers of Tadj and Choudhury (2005)
and Crabill et al. (1977), and the books by Kitaev and Rykov (1995) and Stidham (2009), for
overviews of design and control problems involving queues, and to the papers on the subject
that are cited in the beginning of Section 6.1.2.

The queueing discipline of each buffer determines the order in which arriving jobs are
processed. The queueing discipline can, in fact, be seen as a scheduling policy. Consequently,
both descriptive and prescriptive queueing models can be of use in scheduling. Descriptive
models can be helpful for analyzing the performance and deriving theoretical properties of
particular scheduling policies. Prescriptive models, on the contrary, allow one to determine
good or optimal scheduling rules. Some authors (Crabill et al., 1977) classify such models as
part of the queueing control literature.

6.1.2 Methodologies for Scheduling

Of main interest to us are models in queueing theory that can help with sequencing decisions.
We survey these models in this section. We do not review the related issues of queueing control
and design (Tadj and Choudhury, 2005; Crabill et al., 1977; Govil and Fu, 1999) such as ad-
mission control (control of arrival rates, decision to accept/reject an arriving job, appointment
scheduling) (Stidham, 1985; Fan-Orzechowski and Feinberg, 2007; Hajek, 1984; Pegden and
Rosenshine, 1990), routing control (Ephremides et al., 1980; Veatch and Wein, 1992; Gurvich
and Whitt, 2009), server assignment (Ahn et al., 2002; Andradóttir et al., 2003) and control of
service rates (Weber and Stidham Jr., 1987; Grassmann et al., 2001).

The reader should note, however, that both routing control and server assignment problems
discussed in the queueing literature can be seen as representations of scheduling problems in
dynamic parallel machine environments.9 In server assignment models, a rule for assigning

9There has also been work on establishing a duality relationship between scheduling and routing in parallel
queues (Sparaggis et al., 1993).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 68

Figure 6.1: Illustrative example.

machines to job types needs to be determined and decisions are typically made when a ma-
chine becomes free; in routing models, on the contrary, machines have their own queues and
every arriving job needs to be assigned to a machine (Righter, 1994). Investigating the rela-
tionship between such queueing design and control models and scheduling is worthwhile and
interesting, but is outside the scope of this dissertation and thus is left for future work.

This section is aimed at providing the reader with an understanding of the main method-
ological streams in queueing theory that address scheduling problems. To achieve this goal,
we classify queueing methodologies related to scheduling into three categories. Firstly, we dis-
cuss Markov Decision Processes (MDPs), which can provide the basis for proving theoretical
properties of policies as well as for computation of policy parameters. Theoretically, the MDP
approach does not need to place a-priori restrictions on the space of scheduling policies that is
considered. However, when the complexity of the problem grows, MDP approaches fail due to
the size of this space. In general, there are two ways to deal with such complexity: optimize
within a restricted policy space or solve abstractions or approximations of the problem to ob-
tain guidance for scheduling decisions in the original problem. These are the remaining two
categories we discuss. Within each of the three parts of this section, we make connections with
single-machine and multiple-machine scheduling problems and provide ideas for future work
on the integration of queueing and scheduling. We conclude by describing our global view of
the relationship between queueing theory and scheduling in Section 6.3.

For illustration purposes, we use a system that serves two types of jobs, as shown in Figure
6.1. Jobs of type A require processing at station 1 while jobs of type B need to be processed
at station 1 and then at station 2. Both stations consist of exactly one machine. There are,
therefore, three classes: class 0 corresponds to jobs of type A, class 1 to jobs of type B at
machine 1 and class 2 to jobs of type B at machine 2. We assume that class 0 jobs arrive to
the system with rate λ0 and a general inter-arrival distribution; class 1 inter-arrival times also
follow a general inter-arrival distribution, with rate λ1. The arrival rate to class 2 depends on

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 69

the arrival and processing rates of class 0 and 1, and the scheduling policy employed at machine
1. Processing times for class i are generally-distributed with rate µi. This problem setting has
been extensively studied in the queueing literature as it captures the key difficulties arising in
dynamic scheduling and control (Chen et al., 1994). The reader is encouraged to think about
the scheduling and resource allocation questions that may arise in this environment, and about
how to address them using a predictive-reactive method or other dynamic scheduling methods
surveyed in Section 6.2. In this section, we focus on the problem of sequencing type A and B

jobs at machine 1 in order to minimize the discounted total cost over an infinite time horizon,
assuming that per time unit holding costs of cA and cB are incurred for type A and B jobs,
respectively.

6.1.2.1 Markov Decision Processes

An MDP model consists of states, actions, decision points, costs, transition probability distri-
butions and an optimization criteria (Sennott, 1999).10 In the scheduling literature, it is typical
to assume that jobs belonging to the same class are distinguished from each other by their
weights, processing times and due dates; schedules are constructed based on these individual
characteristics. The MDP approach is general enough to represent scheduling problems un-
der such assumptions, with actions corresponding to the choice of the specific job to process
next, or the choice to remain idle. However, the state representation in the corresponding MDP
model would need to include all of the known job characteristics and to keep track of the pro-
cessing sequence, leading to an enormous state space that would make the problem intractable
to solve.

The queueing representation of scheduling problems is much more amenable to analysis
via MDP methods, since it assumes that jobs belonging to a particular class are stochastically
indistinguishable and scheduling decisions amount to choosing the class of jobs to be processed
next, rather than the individual job. It is usually implicit in queueing models that the job that
arrived to the chosen class first is the job that will be processed first. Thus, a state can be
defined as the number of jobs of each class present in the system; decision points can be job
completion epochs or time points when there is a job arrival and the machine is idle; an action
may be the choice to process a particular job class on a given machine or for this machine to

10Variants of MDP models are defined similarly. For example, semi-Markov decision processes (SMDPs)
generalize MDPs by representing the evolution of the system in continuous time, with the time spent by the
process in a particular state following an arbitrary probability distribution. The decision-maker is allowed or
required to choose actions whenever the system state changes (Puterman, 1994). Additional examples include
partially-observable MDPs, in which there is uncertainty about the state of the process but state information can
be acquired (Monahan, 1982), and constrained MDPs, which have constraints on the cumulative costs incurred
at any time (Yeow et al., 2006). See also the paper by Glasserman and Yao (1994), which discusses generalized
SMDPs.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 70

remain idle (Harrison, 1975). The goal is to find a policy that specifies the action to be taken
in every state of the system so that an objective is optimized.

The policies may or may not depend on the history (past states) of the system, or on the
actual time point when a decision is made. Derman (1970) classifies MDP policies in a hi-
erarchical fashion. The most general is the class C of all possible policies, that is, policies
which may be dependent on the complete history of the system. An important subclass is CM ,
which consists of all memoryless, or Markovian, policies. In such policies, it is assumed that
the probability of taking action a is a function of only the current state and the current time.
CS is a subclass of CM which consists of time invariant policies. In other words, under these
policies, the probabilities of taking a particular action are dependent only on the system state.
A special subclass of CS , CD, consists of all deterministic policies. A deterministic policy is
one in which the probability of taking a particular action a in a state i is either 0 or 1.

We now give a formal definition of an MDP with a countable state space X and action
space A based on the paper by Chen and Meyn (1999). For each state x ∈ X, there is a non-
empty subset A(x) ⊆ A, which consists of actions that are admissible when the state at time t,
denoted Φ(t), is x. Transitions in the state process Φ occur according to conditional probability
distributions {Pa(x, y)}, which define the probability that the next state is y ∈ X given that the
current state is x ∈ X and action a ∈ A is taken. A policy w can then be formally defined as a
sequence of actions {a(t) : t ∈ Z+}, where a(t) can depend only on the history of the process
{Φ(0),Φ(1), . . . ,Φ(t)} and Z+ is the set of non-negative integers. A Markov policy is of the
form w = {w0(Φ(0)), w1(Φ(1)), w2(Φ(2)), . . . } where wi, for each i, is a mapping from X to
A and wi(x) ∈ A(x) for each state x. A stationary policy is then a Markov policy with wi = w

for all i and for some fixed w. Given a one-step cost function c(Φ(t), w(Φ(t))) which states
the cost associated with taking action w(Φ(t)) in state Φ(t), one goal of the MDP may be to
find a stationary policy w which minimizes the average expected cost

J(w, x) := lim sup
n→∞

1

n

n−1∑
t=0

Ex[c(Φ(t), w(Φ(t)))]. (6.1)

After a problem is modelled as an MDP, stochastic dynamic programming methods may
be applied to either obtain numerically-optimal solutions (Sennott, 1999) or to characterize the
structure of optimal policies (Stidham and Weber, 1993). For example, one common approach
to finding the optimal policy is value iteration (Chen and Meyn, 1999), which is based on a
finite-time problem with value function

Vn(x) = minEx

[n−1∑
t=0

c
(
Φ(t), a(t)

)
+ V0

(
Φ(n)

)]
. (6.2)

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 71

The reader is referred to the books by Bertsekas (2005, 2007) for an extensive coverage of
topics related to the use of dynamic programming in optimal control problems, to the book
on MDPs by Puterman (1994) and to the book by Meyn (2008), which provides an in-depth
treatment of various topics related to scheduling in queueing systems, and talks about MDPs
in detail in Chapter 9.

Stidham and Weber (1993) state that using MDPs and dynamic programming to solve for
optimal policies in large problems (e.g., communication networks of realistic size) is usually
intractable. However, determining the structure of optimal policies for small problems can
help in the development of heuristic policies for large systems. Similarly, Glasserman and
Yao (1994) state that computation of optimal controls for MDPs is generally infeasible without
special structure, which motivates investigation of the form of optimal policies. For example,
in a switching curve policy type, one action is optimal in the states below the curve, while
another is optimal for the states above the curve (Glasserman and Yao, 1994).

For the two-station problem of Figure 6.1, the state at time t is Φ(t) = (Q0(t), Q1(t), Q2(t)),
where Qi(t) is the number of class i jobs in the system at time t. The actions are: to process
class 0 or to process class 1 at station 1, or to idle station 1. Assuming machine 2 is non-idling,
from the queueing perspective there are no scheduling decisions to be made for class 2, since
it is the only class served by machine 2; from the scheduling perspective, there is of course the
question of sequencing jobs within this class. Chen et al. (1994) use value iteration as part of
their proof of the existence of a stationary policy that is optimal for determining the actions at
machine 1. This policy switches machine 1 from processing class 1 to processing class 0 (if
there are jobs available in class 0) or to idling (if there are none) when the congestion level at
machine 2 exceeds a threshold that is a function of the state at machine 1. Thus, the policy has
a switching-curve structure, and reflects the intuition that as the congestion at station 2 grows,
it becomes less and less appealing to process class 1 jobs.

As discussed above, an MDP formulation of the problem of deciding how to allocate re-
sources to job classes can lead to both theoretical and numerical results. These results are
useful in a variety of applications, e.g., in healthcare (Patrick et al., 2008; Zonderland et al.,
2010). However, in applications where the processing time of a job can be well-estimated upon
arrival or where operational-level decisions need to be made (Zonderland et al. (2010) mention
the development of operational-level policies as future work), it is interesting to see whether
combining MDP results with detailed within-class scheduling methods or with the predictive-
reactive framework of Section 6.2 is useful.11 In addition, MDP models may provide a meta-
framework for the construction of queueing/scheduling hybrids: if a queueing algorithm and a

11In addition, in some cases using a pure queueing or MDP approach maybe intractable, as stated, for example,
in the paper by Vermeulen et al. (2009), which proposes an adaptive method for scheduling of CT-scans.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 72

scheduling algorithm are chosen, and the state of the problem is compactly represented, then
we can define an action as the choice to follow the queueing algorithm or the choice to follow
the scheduling algorithm until the next decision time point.

However, there is a fundamental difficulty with applying the MDP approach even in the
context of scheduling classes of jobs. Specifically, when buffers are infinite, the corresponding
optimization problem is infinite-dimensional; when the buffers are finite, the complexity of the
problem grows exponentially with the state space dimension (Meyn, 2001). As a result, the rest
of the queueing theory approaches for scheduling are based either on models with a specific
structure, or models which approximate or aggregate system characteristics.

6.1.2.2 Models with Specific Structure

One approach to addressing the complexity of scheduling problems is to restrict the policy
types that are considered. In this section, we discuss four major classes of models that adopt
this approach: priority queues, polling systems, vacation models and bandit models.

6.1.2.2.1 Priority Queues The simplest models in queueing theory assume a FCFS dis-
cipline: jobs are processed in the order in which they arrive. A priority queueing model is
different from a regular FCFS queue in two respects. Firstly, in a priority queueing model,
arriving jobs are divided into classes or types of different priority. This notion of priority is
analogous to that of job weights in scheduling: both are a measure of a job’s importance. Since
queueing models do not, in general, distinguish jobs based on individual characteristics, it is
natural for these models to group jobs into priority classes; in scheduling, each job may be
assigned a unique weight. Secondly, the system operates according to a “priority discipline”,
which is similar to a dispatching rule. In fact, they are based on the same idea: at a particular
decision time point, be it the completion time or the arrival time of a job, one assigns an index
to all jobs that are waiting to be processed and chooses the job with the greatest or smallest
index as the one to be served next.

The queueing literature, just like the scheduling literature on dispatching rules, makes a dis-
tinction between preemptive and non-preemptive rules, and static and dynamic rules (Jaiswal,
1968).12 For a system in which processing times become known upon arrival, an example of
a priority queueing model with a static discipline is one in which a job class with index x is
composed of all jobs that require between x and x + dx units of processing time (Adan and
Resing, 2002), and jobs are sequenced in non-decreasing order of their priority index, which
does not change throughout each job’s time in the system. For multi-class systems in which

12Jaiswal (1968) actually uses the terms exogenous and endogenous instead of static and dynamic, respectively.
However, the terms static and dynamic are also used in queueing. See, for example, the paper by Goldberg (1977).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 73

each job class k has weight/cost ck and an expected processing time of 1
µk

, a classic discipline
is the cµ rule (equivalently, weighted shortest expected processing time rule). This rule sched-
ules classes in non-increasing order of their ckµk values, and uses FCFS within each class.
Jaiswal (1982) provides several examples of dynamic priority rules from the literature. In one
of these, the instantaneous priority index of a job in class k is Ik(t) = ck−Wk(t), where Wk(t)

is amount of time a job has been waiting in the system up to time t. More generally, Ik(t) can
be a concave function of the waiting time, Ik(t) = φk

[
Wk(t)

]
.

In scheduling, a dispatching rule is generally viewed as a heuristic approach that can be
applied to a variety of scheduling problems, regardless of whether they are deterministic or
stochastic, static or dynamic. In the literature, the performance of dispatching rules is usu-
ally evaluated experimentally, although in some cases a dispatching rule can be shown to be
optimal. In addition, there is significant interest in finding rules with tight worst case bounds
on performance and polynomial running time, referred to as polynomial-time approximation
schemes (PTAS) (Schuurman and Woeginger, 1999). An example of such a dispatching rule is
the list scheduling heuristic proposed by Graham et al. (1979), in which, at a time point when a
machine completes processing, the first available job from a specified priority list is scheduled.
Following Schuurman and Woeginger (1999), we refer the reader to the papers by Hall (1997)
and Lenstra and Shmoys (1995) for overviews of PTAS.

In queueing theory, the focus has been on theoretical performance evaluation of queueing
systems operating under a particular queueing discipline and particular assumptions regarding
the inter-arrival and processing time distributions. For example, consider a single-class M/G/1

system with arrival rate λ, mean processing time E[X] and system load ρ = λE[X] (0 ≤ ρ <

1). Let f(·) denote the probability density function of the processing time distribution. It
has been shown that the distribution of the number of jobs in the system is the same for all
non-preemptive scheduling disciplines that do not use job size information (Conway et al.,
1967). As a result, the expected response time (flow time or sojourn time) E[T], defined as the
length of time between the arrival of a job and its completion, is the same for all such policies,
including RSS, LCFS and FCFS:

E[TRSS] = E[TLCFS] = E[T FCFS] = E[X] +
λE[X2]

2(1− ρ)
. (6.3)

Equation (6.3) is based on the famous Pollaczek-Khintchine formula for the expected number
of jobs in the system (Pollaczek, 1932; Khintchine, 1932). The distribution of the response
time is not the same, however, and, in particular, var(T FCFS) < var(TRSS) < var(TLCFS)

(Conway et al., 1967). The expected response time in the same system operating under the SPT

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 74

policy, which is a common rule that does use processing time information, is:

E[T SPT] = E[X] +

∫ ∞

0

E[W SPT (x)]f(x)dx, (6.4)

where E[W SPT (x)] = λE[X2]
2(1−ρ(x))2

is the time a job of size x waits before its processing is started,
and ρ(x) = λ

∫ x

0
tf(t)dt is the system load consisting of jobs of size less than x only (Phipps

Jr., 1956; Harchol-Balter, 2011).

Similar types of results can be obtained for multi-class systems. For instance, consider an
M/G/1 queue with K classes and with pk being the probability that an arriving job belongs
to class k. Lower-numbered classes have higher priorities (so, class 1 has the highest priority
and class K has the lowest), and preemptions are not allowed. The random variable Xk de-
notes the processing time of a class k job and has distribution Gk. Define X as the “overall”
processing time, drawn from distribution G =

∑K
k=1 pkGk, and ρk = λpkE[Xk] as the system

load corresponding to class k jobs only. The expected delay of class k jobs in this system has
been shown to be (Wolff, 1989):

dk =
λE(X2)

2(1−
∑

k<l ρk)(1−
∑

k≤l ρk)
. (6.5)

Recently, there has been a strong interest in the performance evaluation of a class of policies
that aims to prioritize shorter jobs in order to ensure “SMAll Response Times”; this class of
“SMART” policies was introduced by Wierman et al. (2005). In their paper, Wierman et al.
(2005) formalize the commonly used heuristic of giving priority to jobs which are short initially
or have small remaining processing times; they derive simple bounds on the mean response
time of any policy in the SMART class and tight bounds on the mean response time specifically
for the preemptive-shortest-job-first policy and SRPT. Nuyens et al. (2008) further evaluate the
performance of this policy class with respect to the tail of the processing time distribution.

In some cases, it can be shown that a queueing discipline is optimal under particular dis-
tributional assumptions. One of the most general results for a multi-class single-server system
is the optimality of the cµ rule in the class of all scheduling rules (not just priority policies)
in the M/GI/1 queue with the possibility of idling and machine breakdowns (Meilijson and
Yechiali, 1977). For our example problem, the paper by Chen et al. (1994) shows that when
c0µ0 ≤ (c1 − c2)µ1, it is optimal for class 1 (type B jobs at machine 1) to have preemptive
priority over class 0 (type A jobs at machine 1).

Prescriptive models that determine the best service discipline have been developed in the
queueing control literature (Crabill et al., 1977). For example, Robinson (1978) uses semi-
Markov decision theory to determine the optimal priority policy for deciding which of two job

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 75

types a machine should process; Jaiswal (1968) describes a dynamic programming approach
developed by Oliver and Pestalozzi (1965) to optimize processing time thresholds on which
priorities are based under the assumption that processing times become known upon arrival.
Hassin et al. (2009) address optimization of relative priorities using an achievable region ap-
proach, which is discussed in Section 6.1.2.3.1. Related work includes optimization of the
service discipline in a setting where there is uncertainty in the input data (Pardo and de la
Fuente, 2007) and determination of the optimal thresholds for switching from a preemptive to
a non-preemptive discipline (Drekic and Stanford, 2000). A general class of priority policies
called fluctuation smoothing policies is proposed by Lu et al. (1994). Queueing models with
switchover, which deal with the control of the service process and the queue discipline in the
presence of state-dependent switching costs, are reviewed by Rosa-Hatko and Gunn (1997).

Since the underlying idea of dispatching rules and priority queueing models is the same,
integration of methodologies from these two fields may be valuable. Priority queueing models
can be beneficial from the perspective of scheduling since it may be possible to cast a dispatch-
ing rule as a priority queueing discipline and apply queueing analysis in order to derive theoret-
ical performance guarantees for this rule under particular assumptions regarding the processing
time or inter-arrival time distributions. As mentioned previously, there has been a significant
amount of work in this direction (Harchol-Balter, 2011; Nuyens et al., 2008; Wierman et al.,
2005). Conversely, new priority queueing models can be developed based on dispatching rules
that have been studied in scheduling but not in queueing theory. It would be interesting to deter-
mine whether the steady state performance of composite dispatch rules, such as the Apparent
Tardiness Cost heuristic (Pinedo, 2009), could be analyzed using queueing theory.

In addition, it has been noted that any scheduling algorithm can be represented as a function
of M , P and A, where M is the decision mode, P is a priority function and A is an arbitration
rule (Jaiswal, 1982; Ruschitzka and Fabry, 1977). M defines the time points at which the
priority function P is evaluated for all jobs in the system. The job with the highest priority
value from the function P is chosen for processing. A is used to break ties between jobs with
equal priorities. Representing scheduling approaches as priority scheduling algorithms in this
manner may provide insight into the properties of these approaches, as well as serve as one
possible framework for integrating queueing and scheduling.

6.1.2.2.2 Polling Systems Another category of queueing-based models is known as “polling
systems” (Takagi, 1988; Vishnevskii and Semenova, 2006; Boon et al., 2011). In a typical
polling system, a single server has to visit and serve several queues of jobs in some order. Jobs
belonging to different queues may vary in some of their characteristics, such as their inter-
arrival time distributions. The server switching between the queues is equivalent to a machine

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 76

or a set of machines being switched between processing of different job types. The polling
system can be controlled by deciding (i) the order in which the different queues are served
(polling order), (ii) the jobs served on each visit to a queue (queue service discipline), and (iii)
the sequencing of jobs within each queue (queue service order) (Takagi, 1988; Wierman et al.,
2007). Together, these decisions prescribe the order in which the jobs should be processed,
and, thus, form a global scheduling policy.

Polling occurs in a variety of real-world applications (Boon et al., 2011), such as flexible
manufacturing (Sharafali et al., 2004). However, for problems that do not naturally possess a
polling structure, using a polling model may still be useful. For example, a frequent assumption
in polling models is the presence of switching times/costs. Therefore, such models are relevant
for single machine scheduling problems with setup times/costs and, as noted by Wierman et al.
(2007), for the stochastic economic lot scheduling problem. More generally, we can think of
the polling structure, together with decisions (i)–(iii), as a particular scheduling policy type,
which can, theoretically, be applied to a wide range of scheduling problems. Thus, in our
example problem, which does not require a polling structure, we can still apply a polling-type
scheduling policy: (i) “visit” the queues corresponding to job types A and B in a cyclic order
(A, B, A, etc.); (ii) during each visit, process jobs of the corresponding type until the queue is
empty (exhaustive queue discipline); (iii) sequence jobs within each queue in FCFS order. We
can then gain an understanding of the performance of this policy by using descriptive results
for polling models.

Consider a polling system with N queues where for each queue i, job arrivals follow a
Poisson process with rate λi, and processing times are distributed according to a distribution
Bi(·) with first moment βi and second moment β(2)

i . The load of queue i is ρi = λiβi, and
the total system load is ρ =

∑N
i=1 ρi. The server visits the queues in a cyclic order. If no

switching time is incurred when the server switches between different queues, then this system
is equivalent to an M/G/1 queue with arrival rate Λ =

∑N
i=1 λi and with the service time

distribution being defined as
∑

(λi/Λ)Bi(·). Since no work is created or destroyed in such a
system, it has to obey a conservation law (Yechiali, 1993). Thus, if E[Wi] denotes the mean
waiting time for type i jobs, then, regardless of the queueing discipline, the expected amount
of work in the system is (Schrage, 1970; Boxma and Groenendijk, 1987):

N∑
i=1

ρiE[Wi] = ρ

∑N
i=1 λiβ

(2)
i

2(1− ρ)
. (6.6)

With non-zero switching times, the above conservation law does not hold, because during
the switch-over periods the server is idle while there may be work present in the system. How-
ever, useful pseudo-conservation laws (which do depend on the service discipline) have been

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 77

developed. Suppose the switching times from queue i, i = 1, . . . , N , to queue i + 1, are inde-
pendent and identically-distributed random variables with first moment si and second moment
s
(2)
i . Given that the polling order is cyclic, the mean of the total switching time during one

cycle (length of time between visits to the same queue) is s =
∑N

i=1 si. For a system with the
cyclic polling order and the exhaustive queue discipline, it has been shown that (Boxma and
Groenendijk, 1987):

N∑
i=1

ρiE[Wi] = ρ

∑N
i=1 λiβ

(2)
i

2(1− ρ)
+ ρ

s(2)

2s
+

s

2(1− ρ)
[ρ2 −

N∑
i=1

ρ2i]. (6.7)

The first term in this expression corresponds to the total amount of work in the system without
switch-over times, while the second and third terms represent the amount of work present at an
arbitrary epoch during a switch-over period (Levy and Sidi, 1990).

In fact, there has been an extensive amount of descriptive work on polling systems under
particular assumptions regarding decisions (i)–(iii). We refer the reader to the work of Takagi
(1986), Takagi (1988) and Levy and Sidi (1990) for overviews of such work. Below, we focus
on optimization models for the three different types of decisions that need to be made in polling
models.

(i) Polling Order Similarly to dispatching rules, the polling order can be static or dy-
namic. For example, the cyclic policy, which states that the server should visit the N queues
in order 1, 2, . . . , N, 1, 2, . . . , is a static order since it is chosen prior to system operation and
is independent of the system state (Levy and Sidi, 1990). An example of a dynamic polling
order is one in which the server is assigned to the queue that contains the greatest amount of
work at a decision epoch (Levy and Sidi, 1990). Optimization of a static polling order amounts
to optimizing a pattern which repeats itself M times (referred to as a polling table) and has
the form I(1), I(2), . . . , I(M), I(1), I(2), . . . , with I(i) being the identity of the queue in the
ith position of the pattern, 1 ≤ I(i) ≤ N (Levy and Sidi, 1990). Boxma et al. (1989; 1991)
employ a three-step heuristic approach for this problem:

Step 1: Determine the relative visit frequencies fi for queues i = 1, 2, . . . , N ,

Step 2: Determine the size of the polling table, M , and the number of visits, mi, that should
be made to queue i, i = 1, . . . , N , within a cycle,

Step 3: Given the values of M , mi and fi for all i, determine the order of visits to the queues
within a cycle.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 78

Each of the three steps is itself an optimization problem. For step 1, Boxma et al. (1989)
propose to use the optimal proportions obtained from solving a related non-linear optimization
problem in a Markovian polling system. For step 2, the table size M can be chosen in such
a way that ensures that Mf1,Mf2, . . . ,MfN are integers, or within ε of an integer, and such
that the sum of these integers equals M . For step 3, the goal is to find an order in which, for
every i, the number of visits to other queues between two visits to queue i is approximately the
same; the authors use the Golden Ratio policy proposed by Hofri and Rosberg (1987). If we fix
the table size, M , steps 2 and 3 become closely related to the notion of fair sequences that has
received attention in the scheduling literature (e.g., see the book chapter by Kubiak (2004)):
given “desired” frequencies fi, we may optimize some function of the differences between the
actual number of visits, mi, and fi so as to achieve a “fair” polling order.

Now, suppose that the system state, (n1, n2, . . . , nN), where ni is the number of jobs cur-
rently present in queue i, can be observed at the beginning of each cycle. Browne and Yechiali
(1989a; 1989b) show that visiting the queues in increasing order of ni/λi minimizes the ex-
pected length of the cycle. This result holds for the two most common queue service disciplines
and is independent of the service time requirements of the queues. Therefore, we can combine
this rule with policies other than FCFS to solve more complex scheduling problems. For ex-
ample, a manufacturing facility may want to minimize the length of a production cycle but
also minimize the total job tardiness. In this case, we can use the above result to construct the
production cycle with the minimum expected length; if we can observe processing times and
due dates upon the server’s arrival to a queue, then a static, deterministic scheduling problem
can be solved to optimize the total tardiness of the current set of jobs. To our knowledge, such
an approach has not been investigated in the literature.

The reader is referred to the papers by Levy and Sidi (1990) and Yechiali (1993) for
overviews of approaches to optimization of both static and dynamic polling orders, and to
the papers by Altman and Yechiali (1993), Yechiali (1991), Borst et al. (1994) and Gaujal et al.
(2007) for additional examples. Khamisy et al. (1992) address the equivalent problem of posi-
tioning the queues on the cyclic path of the server (referred to as optimization of the network
topology) in a polling system with precedence constraints.

(ii) Queue Service Discipline The rule that is used to decide the number of jobs served
during a visit to a particular queue is the queue service discipline (Vishnevskii and Semenova,
2006). Two common queue service disciplines are the exhaustive and the gated. Under the
exhaustive discipline, a queue is served until it becomes empty. Under the gated service dis-
cipline, all jobs that are present in the queue at the start of the visit are served (all jobs that
arrive during service have to be processed in the next visit). The exhaustive policy tends to

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 79

optimize the system’s efficiency, while the gated policy is known to be fairer in its allocation
of the processing resource among different queues (Levy and Sidi, 1990; Levy, 1991).

The general idea for controlling the system via the queue service discipline is to employ
disciplines with controllable parameters that limit the amount of service each queue receives.
One option is to employ a deterministic limited policy, which has a parameter Li that repre-
sents the maximum number of jobs that should be served during a visit to queue i.13 Since
even performance evaluation of this policy is difficult, there has been work on a related alter-
native: the binomial-gated policy (Levy, 1991). In such a policy, a parameter, pi, represents the
proportion of jobs present in queue i at the start of the cycle that should be served during this
cycle. Assuming that Xi is the number of jobs in queue i when the cycle begins, the number
of jobs served is a binomial random variable with parameters Xi and pi; thus, on average, a
fraction pi of the jobs present in queue i at the beginning of the cycle will be served during the
cycle. Optimization of the system therefore amounts to finding the optimal pi values. Since one
of the main reasons this policy is considered is its analytical tractability, there is some doubt
regarding its applicability in practice.

Another way to control the service discipline is to use a Bernoulli limited policy: upon
completion of a job in queue i, the probability that the server will process a job from the same
queue is given by a parameter qi. Blanc and van der Mei (1995) study the problem of finding
qi values for all queues with the objective of minimizing the sum of steady-state mean waiting
times weighted by arbitrary strictly positive values.

van Wijk et al. (2010) propose an approach to find service disciplines that balance efficiency
and fairness. Their measure of efficiency is

∑N
i=1 ρiE[Wi]. Fairness is expressed in terms of

the differences in mean waiting times between the queues, maxi,j(E[Wi]−E[Wj]). Their goal
is to optimize a weighted combination of these objectives:

γ̃(α) := max
i,j

(E[Wi]− E[Wj]) + α
N∑
i=1

ρiE[Wi], (6.8)

for some α ∈ [0,∞), by choosing the values κi for every queue i, and implementing the
corresponding κ-gated service discipline. This discipline allocates at most κi gated service
phases to each queue i once the server arrives there. In the first phase at queue i, the server
processes all jobs present at the time of its arrival to this queue. If there are jobs present in
queue i once phase 1 is finished, the server stays at this queue and processes all jobs that have
arrived since the start of the first phase (this corresponds to phase 2). If there are jobs in queue
i when phase 2 is completed, phase 3 is started, etc., until at most κi phases are completed. At

13See the paper by Levy and Sidi (1990) for a summary of variations of the limited policy.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 80

that point, the server switches to the next queue j and serves it using at most κj phases. This
multi-phase approach is very similar to the notion of periodic scheduling, since in both cases
the system is periodically reviewed and only those jobs that have arrived by the review time
point are considered for scheduling.

(iii) Queue Service Order Work on scheduling within a given queue in polling systems
has received little attention compared to optimization of the polling order and the queue service
discipline. Fournier and Rosberg (1991) consider systems with various priority disciplines
within each queue. Wierman et al. (2007) demonstrate that the order of service within the
queue can have a significant impact on the performance of the system. They analyze policies
that use processing time information, such as SPT, as well as those that do not. For instance,
they consider a symmetric two-queue polling system with processing times and setup times
being exponentially distributed with mean 1, and with a cyclic polling order and gated service
discipline. They experimentally show that the mean waiting time under SPT is, on average
over a variety of loads, 15% lower than that of FCFS. For the same system with a more-
variable Weibull distribution, the improvement of SPT over FCFS is even greater (Wierman
et al., 2007). Boon and Adan (2009) study a polling system in which jobs within each queue
are divided into low- and high-priority classes.

Optimization of the queue service order is a promising area for scheduling techniques.
When a gated or a limited-type queue service discipline is employed, one needs to solve a
single-machine static scheduling problem at the beginning of each queue visit. If processing
times become known upon arrival, deterministic single-machine approaches may be applied; if
only expected processing times are known, then a stochastic scheduling problem needs to be
solved. These problems may be of varying complexity: minimizing flow time is polynomial
(employing SPT or expected SPT policies is optimal) while minimizing total tardiness is in
general NP-complete (Baker and Trietsch, 2009) and therefore would require a more sophisti-
cated optimization method.

Although most of the polling literature focuses on single-server and single-station models,
there have been extensions of these models to multiple-server systems (Borst, 1995; Down,
1998; Antunes et al., 2011) and networks of polling systems (Reiman and Wein, 1999; Beekhuizen
et al., 2008). Scheduling decisions in such systems are the same as in single-station, single-
server ones (the order of visiting the queues, the set of jobs served on each visit and the se-
quence in which the jobs are to be served), but they have to be made for every server and every
station, and are dependent on the locations of all servers, making the overall problem more
complex. As a consequence, there has been very little work on optimization of scheduling

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 81

decisions in such systems. An important example is the work by Browne and Weiss (1992),
who consider a polling system in which the server is composed of c parallel machines which
switch between queues as one unit. They address optimization of the polling order at the start
of each cycle with the goal of minimizing the expected cycle length (as do Browne and Yechiali
(1989a; 1989b) for a single-server system). In Chapter 7 of this dissertation, we study a polling
system in which the server is composed of two machines in tandem. We investigate the per-
formance of periodic scheduling methods in which a static deterministic scheduling problem
is solved at the beginning of each queue visit under cyclic, gated assumptions.

In summary, there are numerous avenues for integration of polling research and work in the
scheduling literature. Firstly, applying a polling-type scheduling policy to a problem implies
that a vast number of descriptive results become directly applicable. Such results may be used
as bounds on optimal schedules or within scheduling algorithms. Secondly, the division of the
scheduling policy into three levels offers a natural framework for modelling systems with dif-
ferent objectives at different decision-making levels. Scheduling approaches could also prove
useful for improving the performance of polling systems. Specifically, if we make the assump-
tion that processing times of jobs become known upon arrival, then the problem of optimizing
the sequence in which jobs are served in each queue can be turned into a static, deterministic
scheduling problem, making an abundance of scheduling work directly relevant. If the total
workload within each queue can be observed at the beginning of each cycle, then the prob-
lem of optimizing the polling order becomes that of optimizing a system with N (batch) jobs.
It would be interesting to determine whether work on lot-sizing or batch scheduling methods
would be applicable in this context. The interested reader is referred to the work by Winands
(2007) to see the connection between lot-sizing and polling systems, and is encouraged to
contrast the idea of using a batch scheduling model for the problem of optimizing the polling
order with the work on batch polling systems (Van Der Wal and Yechiali, 2003; Boxma et al.,
2008). Additionally, future work should consider the use of polling models with precedence
constraints (Khamisy et al., 1992) for modelling scheduling problems with precedences and
the task management problem described by Myers et al. (2007).

6.1.2.2.3 Vacation Models In a queueing system with vacations, the server is assumed to
take “vacations” from serving a particular queue of customers. Vacations can correspond to
breakdowns of a machine, maintenance operations, or service of other job classes (Stidham Jr.,
2002; Doshi, 1986). Consider the example of Figure 6.1. From the perspective of a class 0 job,
service of class 1 can be viewed as a machine vacation (Stidham Jr., 2002). Adopting this point
of view, one can see that determining how to allocate machine capacity among job classes is
equivalent to determining the timing and duration of vacations. In fact, a vacation model can

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 82

be seen as a special case of a polling system. Thus, we do not review vacation models in as
much detail as the work on polling systems. We note, however, that while the methodology
employed in the study of vacation models is similar to that of polling systems, some more
general results have been obtained (Stidham Jr., 2002). One of the most important results is
that the waiting time in an M/GI/1 queue with vacations follows the distribution of the sum
of two independent components: the waiting time in an M/GI/1 queue without vacations
and the equilibrium residual vacation time (Stidham Jr., 2002; Fuhrmann, 1984). Vacation
models could be useful for scheduling in the same way as work on optimization of the polling
order and queue service discipline in polling systems. In particular, it can provide high-level
guidance regarding how much time should be spent on specific class prior to taking a vacation.
A review of descriptive vacation models can be found in the paper by Doshi (1986), while
various prescriptive vacation models are discussed by Tadj and Choudhury (2005). Extensions
of vacation models to the case of multiple servers have been analyzed by, for example, Kao and
Narayanan (1991) and Chao and Zhao (1998). The book by Tian and Zhang (2006) provides a
comprehensive review of both descriptive and prescriptive vacation models.

6.1.2.2.4 Bandit Models A multi-armed bandit (MAB) problem (Gittins, 1979; Whittle,
1988; Bertsimas, 1995; Bertsimas and Niño-Mora, 1996) consists of a set of projects 1, . . . , K,
only one of which can be processed at each discrete point in time. For every time point t when
a project k in state jk(t) is being worked on, a reward, Rk

jk(t)
, is obtained. The rewards are

assumed to be additive and are discounted in time by a factor β, 0 < β < 1. The project that
is being executed changes state according to a homogeneous Markov transition rule, while the
states of the projects that are not being worked on do not change. The goal of the problem is
to determine a scheduling policy: a rule that, at each point in time, prescribes which project
should be executed and maximizes the total expected discounted reward over an infinite horizon
(Bertsimas and Niño-Mora, 1996). Interestingly, in computer science, there has been a signif-
icant interest (Streeter, 2007; Gagliolo and Schmidhuber, 2007; Cicirello and Smith, 2005;
Radlinski et al., 2005; Vermorel and Mohri, 2005) in a variation of the MAB problem in which
the distribution of rewards is not known in advance and the goal is to choose, at each iteration,
the project to execute in order to maximize the sum of collected rewards.

The initial inspiration for the study of MABs is the problem faced by a gambler in a casino
deciding which slot machine should be played (Puterman, 1994), or, equivalently, which lever
or arm of a slot machine should be pulled (Weber and Weiss, 1990). Naturally, the MAB
problem is also a representation of the situation where a decision-maker needs to choose which
project to execute at a point in time, with states defined by the projects’ levels of completion and
a reward being obtained only when a project is finished (Puterman, 1994). From the perspective

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 83

of scheduling, the MAB problem is a representation of a single machine scheduling problem
with preemptions in which the set of jobs stays fixed over time (Pinedo, 2009). The state of the
job can be the remaining processing time, which changes only when this job is the one being
processed by the machine. Bertsimas and Niño-Mora (1996) state that the MAB problem is a
special case of a dynamic and stochastic job scheduling problem. An additional application of
MABs is in sequential clinical trials where a new medical treatment is compared to an existing
one or to a placebo (Puterman, 1994).

The arm-acquiring bandit problem is an extension of the MAB problem in which a set of
new projects, A(t) arrives at time t. These jobs can be executed starting at time t + 1 and
are assumed to be independent of each other and of all the previous jobs. As in the MAB
problem, the goal is to determine a policy that specifies the project that should be executed
at each point in time (Mahajan and Teneketzis, 2007). Since each project can be viewed as a
job and each state of a job k, jk(t), can correspond to the amount of processing received by
the job up to time t, the problem can be used as a representation of a single machine dynamic
scheduling problem with preemptions. The example of Figure 6.1 can be viewed as an arm-
acquiring bandit problem if we allow preemption and if we consider jobs as being equivalent to
projects. Within the queueing literature, the MAB problem is related to polling models, since
the decision to execute a particular project can be equivalent to choosing a particular queue.

There are many other variations of MAB models, most of which can be linked to problems
from the scheduling literature. These include:

• the MAB problem with switching penalties (Mahajan and Teneketzis, 2007), correspond-
ing to a static single machine preemptive scheduling problem with switching costs.

• the MAB problem with deadlines (Niño-Mora, 2007), corresponding to a static single
machine preemptive scheduling problem with deadlines.

• the branching bandit problem (Varaiya et al., 1985; Weiss, 1988), in which projects are
classified into types according to their state and where a project is replaced by some
number of new projects of each type upon its completion. This problem allows modelling
of job arrival processes that are more general than Poisson and can be used to represent
a machine in a job shop that processes a variety of parts (Bertsimas et al., 1995).

• the restless bandit problem (Weber and Weiss, 1990; Niño-Mora, 2007), in which m

projects have to be operated at any time point; rewards may be incurred and states may
change even for projects that are not being worked on. In the literature, it is stated that
these models can represent situations where m out of K available workers always need
to be active, and their states represent their physical condition; states change regardless

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 84

of whether the worker is busy or idle (e.g., if the workers are getting rest, their physical
condition improves) (Weber and Weiss, 1990). Similarly, we can use the restless bandit
problem to model a manufacturing environment with m parallel machines; this model
would be general enough to represent deterioration and improvement in the condition
of machines. It would be interesting to determine the relationship between the restless
bandit problem and stochastic variations of resource constrained project scheduling dis-
cussed by Mercier and Van Hentenryck (2008). The restless bandit model can also be
applied in the context of the system shown in Figure 6.1, since we can think of type A

and B jobs as two projects which change state depending on the amount of processing
received and on the amount of work that arrives.

• the MAB problem with a goal state (Dumitriu et al., 2003; Katta and Sethuraman, 2005),
which is related to planning problems in artificial intelligence (Ghallab et al., 2004).

One of the biggest advantages of the MAB problem representation and its variants comes
from a powerful class of policies that have been developed for solving them. These policies
are based on a priority index that is defined for each project as a function of its state. At each
time point, the set of projects with the currently greatest priority index values is chosen for
processing (Niño-Mora, 2007).14

Interestingly, the earliest result on the optimality of priority index rules arose in the context
of a deterministic problem (Niño-Mora, 2007). Specifically, Smith (1956) showed that an index
rule is optimal for the problem of minimizing the sum of completion times of a set of jobs with
known processing times and linear holding costs (weights). In this setting, the index of a job
can be defined as the ratio of the holding cost rate per unit of time to its processing time, which
represents the cost reduction per unit of effort, or the average productivity of work on the job
(Niño-Mora, 2007). Subsequently, Rothkopf (1966) extended Smith’s result to the problem
with stochastic job durations. Cox and Smith (1961) showed the optimality of an equivalent
index rule in the context of a multi-class single-server queue with linear holding costs. The
seminal work by Klimov (1975) develops an optimal index rule for a more complex version of
this problem, one with Bernoulli feedback between job classes (Niño-Mora, 2007). From the
perspective of this dissertation, it is interesting to note that these results, currently considered
fundamental in queueing theory, have their roots in deterministic scheduling.

Both the MAB problem and the arm-acquiring bandit problem are solvable by a Gittins
index policy (Gittins, 1979; Bertsimas and Niño-Mora, 1996; Mahajan and Teneketzis, 2007),
which is a generalization of the well-known cµ-rule (also discussed in the context of priority

14These policies are of the same nature as those discussed in the priority queues section above, and they can be
similarly classified into static and dynamic policies.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 85

queues above, and in the context of fluid models and the achievable region method in Section
6.1.2.3). According to such a policy, at each time point t, one should process the job with the
highest value of the Gittins index, which represents the maximum expected discounted reward
per unit of expected discounted time due to the processing of a job (Mahajan and Teneketzis,
2007). Heuristics based on the Gittins index have also been developed for more complex prob-
lems, such as research planning (Glazebrook and Owen, 1995). For the restless bandit problem,
Whittle (1988) provides an index policy based on the solution of its relaxation, while Weber
and Weiss (1990) show that this policy is asymptotically optimal. The paper by Niño-Mora
(2007) provides a unifying approach for developing and computing index-based priority poli-
cies, illustrating a number of application areas, including scheduling in multi-class queues and
dynamic priority allocation to multiple stochastic projects. We note that MDP methods (dis-
cussed in Section 6.1.2.1) and achievable region methods (discussed below in Section 6.1.2.3)
have both been used to examine bandit problems (Puterman, 1994; Bertsimas, 1995).

The simplicity of index policies, together with their theoretical optimality in some settings,
implies that it may be useful to model part or all of a dynamic scheduling problem as a bandit
problem. For instance, a multi-armed or an arm-acquiring bandit problem could be used as
a relaxation of a non-preemptive scheduling problem that is solved at each scheduling point
in a predictive-reactive method. Alternatively, the Gittins indices of the jobs could be used
to create effective scheduling heuristics or to guide a predictive-reactive approach to more
globally optimal decisions, since these indices can be incorporated into the constraints or the
objective function of the models used to construct predictive schedules.15

6.1.2.3 Methods Based on Approximations and Abstractions

In the previous section, we discussed methods that deal with the complexity of scheduling in
queueing systems by restricting the type of policies considered. In this section, we discuss an
alternative methodology that uses approximations or abstractions of the original system. This
methodology consists of four steps:

1. modelling and development of the approximation/abstraction model for the network con-
trol problem of interest;

2. solution of the approximation/abstraction;

3. derivation of an implementable scheduling policy for the original scheduling problem
from the solution to the approximation/abstraction;

4. asymptotic performance analysis of the solution.
15Predictive-reactive methods are discussed in Section 6.2.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 86

We discuss the approximation/abstraction methods of steps 1 and 2 in the following section.
General approaches for step 3 are discussed in Section 6.1.2.3.2. Step 4 is outside the scope of
this dissertation, and the reader is encouraged to consult the papers referenced throughout this
section.

6.1.2.3.1 Approximations and Abstractions While the idea of approximating the prob-
lem of interest by a simpler one has also been used in scheduling, the characteristics that are
relaxed to develop the approximation are different than those used in queueing. In scheduling,
approximation techniques are based on relaxing precedence or no-preemption constraints; in
queueing, approximations are based on scaling time and space in order to view high level pat-
terns in the system’s behaviour. We discuss two such approximations here: Brownian models
and fluid models.

An abstraction approach that fits within the above framework is the achievable region
method. Instead of directly considering the problem of finding the optimal control policy,
it aims to find the optimal achievable objective value. To our knowledge, this methodology
has no direct equivalent in the scheduling literature, but is closely related to the idea of finding
lower and upper bounds on the objective function that are used to prune the search space in
scheduling.

Brownian Models In heavy-traffic conditions, when the utilization of a system approaches
its capacity, costs are amplified and optimal control is even more important than in under-
utilized systems (Stidham Jr., 2002). It has been shown that the queue length or the workload
process of a queueing network with balanced heavy loading16 can be approximated by a diffu-
sion process called the reflecting Brownian motion (Williams, 1996). The resulting Brownian
models have the advantages of requiring a minimum amount of data and of being based on
a compact mathematical representation (Harrison, 2003). Moreover, they can be used for net-
works with multiple classes of jobs, both feedforward and feedbackward routings and machines
subject to various types of disruptions (Chen and Yao, 2001).

Specifically, Brownian models are constructed by compressing time by a factor of n and
compressing the spatial dimensions by a factor of

√
n (Harrison, 1996). When looking at

the system on this scale, it is impossible to pay attention to detailed scheduling decisions,
but trends in the behaviour of the system become apparent. Therefore, solving the Brownian
scheduling problem amounts to determining high level properties such as conditions for idling

16For a general open network, this term refers to the situation when the load imposed on each station by some
exogenous input process is approximately equal to the capacity of that station. In a closed queueing network,
the term implies that the total population within the network is large and the relative intensities for the different
stations are approximately the same (Harrison, 1988).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 87

the machine(s). These properties can then be translated into implementable scheduling policies.
This approach is best illustrated using the two-station example presented at the beginning of
Section 6.1.2 and the paper of Harrison and Wein (1989).

Assume that the utilization of each station is close to 1 (Kelly and Laws, 1993). Let Qk =

{Qk(t), t ≥ 0} be the queue length process of job class k, k = 1, 2, 3, and let Ii(t) = {Ii(t), t ≥
0} be the total amount of time that machine i, i = 1, 2, is idle in [0, t]. The scaled versions of
these processes are Zk = {Zk(t), t ≥ 0} and Ui = {Ui(t), t ≥ 0} where:

Zk(t) =
Qk(nt)√

n
, t ≥ 0, and k = 1, 2, 3, (6.9)

Ui(t) =
Ii(nt)√

n
, t ≥ 0, and i = 1, 2. (6.10)

In order to define the Brownian model in terms of workload present in the system, let Mik

be the expected amount of time that should be given by machine i to a class k job before it
leaves the system (Harrison and Wein, 1989); denote the workload profile matrix made up of
the Mik values by M. Let {Wi(t), t ≥ 0} be the scaled workload process defined as Wi(t) =∑3

k=1 MikZk(t), t ≥ 0 and i = 1, 2. Wi(t) is therefore the total expected amount of scaled
work left for machine i at time t anywhere in the system. It has been shown by Harrison
(1988) that the sequencing problem at machine 1 is well-approximated by the Brownian control
problem of choosing processes Z and U which are right continuous with left limits and are a
solution to the following:

minimize lim
T→∞

sup
1

T
E[

∫ T

0

3∑
k=1

Zk(t)dt] (6.11)

subject to
1

2
Z1(t) +

1

2
Z2(t) = B1(t) + U1(t) for all t ≥ 0, (6.12)

Z2(t) + Z3(t) = B2(t) + U2(t) for all t ≥ 0, (6.13)

U is non-decreasing with U(0) = 0, (6.14)

Z(t) ≥ 0 for all t ≥ 0, (6.15)

Z and U are non-anticipating with respect to X, (6.16)

where X is a three-dimensional Brownian motion17 with drift vector θ and covariance matrix
Γ, B(t) = MX(t), so that B = (B1, B2) is a two-dimensional Brownian motion with drift Mθ

and covariance matrix MΓMT . The solution to this model can be obtained by solving a linear
program that is embedded in the above at every time t. In fact, there exists a solution that, with

17See Chapter 10 of the book by Ross (2003) for an introduction to Brownian motion.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 88

probability 1, simultaneously minimizes
∑3

k=1 Zk(t) for all t. This solution is (U∗,Z∗) where

U∗
i (t) = − inf

0≤s≤t
Bi(s) for i = 1, 2, (6.17)

Z∗
1(t) = [2b∗1(t)− b∗2(t)]

+, (6.18)

Z∗
2(t) = [2b∗1(t) ∧ b∗2(t)], (6.19)

Z∗
3(t) = [b∗2(t)− 2b∗1(t)]

+, (6.20)

and
∑3

k=1 Z
∗
k(t) = [2b∗1(t) ∨ b∗2(t)], t ≥ 0.

Based on the definition Wi(t) and Equations (6.12), (6.13) and (6.17), this solution can be
interpreted as follows: U∗

i (t) increases only at times t when W ∗
i (t) = 0 for i = 1, 2. Therefore,

in this solution, machine 2 incurs scaled idleness only when there are no scaled jobs of type B

anywhere in the network (Harrison and Wein, 1989). The reader is referred to the papers by
Harrison and Wein (1989) and Kelly and Laws (1993) for additional details. The interpretation
of the above solution suggests that the policy for the original network should attempt to avoid
machine 2 idleness when there are type B jobs in the system. However, finding a policy that
implements this notion in a way that is optimal for the original system is non-trivial. For
example, one intuitive implementation is a policy that always gives priority to type B jobs at
station 1. This policy, however, will tend to keep a greater total number of jobs in the system
than necessary since it will delay the processing of type A jobs, which would have otherwise
left the system faster. Thus, a better approach is a policy that gives priority to type A if the
number of jobs at station 2 is greater than some value c and gives priority to type B otherwise.
This policy balances the short-run objective of reducing the number of jobs in the system (due
to giving priority to A jobs some of the time) and the longer-run objective of avoiding idleness
at station 2. The best value of parameter c and the asymptotic behaviour of the proposed
policy (Step 4 of the above framework) are discussed by Harrison and Wein (1989). The paper
by Martins et al. (1996) provides a rigorous proof of the connection between the problem of
scheduling in this network and the diffusion process that is its heavy traffic limit.

Fluid Models Another way to approximate the problem of scheduling in a multi-class
queueing system is to relax the assumption that the system serves discrete jobs. If we consider
the behaviour of the system over a long time horizon, this makes intuitive sense – viewing
the evolution of the system at a high level would give one the impression of continuous fluids
moving through the system, rather than discrete entities. Thus, a multiclass fluid network is
different from the network it approximates because it serves continuous fluid flows rather than
discrete jobs. Scheduling of this network corresponds to real-time allocation of the available
processing capacity of each station to the various fluid classes (Chen and Yao, 1993). The fluid

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 89

solution can then be translated into scheduling decisions for the original system in both static
and dynamic conditions.

Fluid model work on classical, deterministic scheduling problems is based on the funda-
mental result that the optimal fluid makespan provides a lower bound on the optimal makespan
in a high-multiplicity18 job shop (Bertsimas and Gamarnik, 1999). The optimal fluid makespan
is, simply, equal to the workload on the bottleneck machine (i.e., the machine lower bound).
Bertsimas and Gamarnik (1999), Boudoukh et al. (2001) and Bertsimas and Sethuraman (2002)
use these results to develop heuristic algorithms that produce asymptotically optimal schedules
as the number of jobs of each class (the multiplicity) grows. Bertsimas et al. (2003) apply the
same ideas to the harder problem of minimizing inventory holding costs in a job shop. Dai
and Weiss (2002) address minimization of makespan in a more general setting: the processing
times of jobs in a class are different but follow the same distribution. Nazarathy and Weiss
(2009, 2010) study high-volume job shops, where the number of jobs is large in comparison
to the number of machines and the maximum number of activities per job, with weighted flow
time and makespan objectives, respectively.

The paper of Nazarathy and Weiss (2010), in addition, compares a typical job shop schedul-
ing problem with a multi-class queueing network problem and provides a step toward the same
goal of integration of queueing and scheduling as this dissertation. Specifically, consider the
job shop scheduling problem with N jobs and M machines. Each job j consists of rj activities.
Activity i, i = 1, . . . , rj , of job j is processed19 on machine σ(i, j) and has duration pi,j . In
a high-volume job shop, N is large, but M is fixed and rj is bounded. This problem can be
modelled as a multi-class queueing network as follows. The activities are classified into a set of
classes {1, . . . , K}. An activity of class k is processed by machine σ(k), and the set of classes
processed by machine m is denoted Km. Considering the processing times of all activities in
class k leads to a processing time distribution Gk with rate µk. Similarly, by considering the
next routing step possible after the completion of any class k activity, we can define Pk,l as
the fraction of class k activities that, upon completion, turn into class l, and 1−

∑
l Pk,l as the

fraction of class k activities that, upon completion, leave the system. Thus, the correspond-
ing multi-class queueing network consists of M machines and K classes, with jobs of class k
served according to distribution Gk and routed according to the probability matrix P defined
by the Pk,l values. The initial number of jobs in each class is Qk(0), k = 1, 2, . . . , K, with
N =

∑
k Qk(0). There are no exogenous arrivals and so this system is called a finite-horizon

multi-class queueing network (Nazarathy and Weiss, 2010).

The dynamics of the fluid model corresponding to this queueing network are based on the

18The term high-multiplicity refers to the fact that more than one job is present in each class.
19A job is allowed to visit the same machine more than once along its route.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 90

following equation:

qk(t) = qk(0)− µk

∫ t

0

uk(s)ds+
∑
l

Pl,kµl

∫ t

0

ul(s)ds, (6.21)

where qk(t) is the amount of fluid present in class k at time t and uk(s) is the instantaneous
allocation of the processing capacity of machine σ(k) to class k. This equation states that the
total amount of fluid in class k at time t is equal to the initial amount of fluid minus the amount
that has been processed up to time t, plus the amount that has arrived from other classes by
time t. Let q+k (t) be the total amount of class k fluid that still needs to flow through class k

(including fluid currently in other classes that will turn into class k eventually), and let T∗ be
the machine lower bound for the job shop. The solution to the fluid makespan minimization
problem is shown by Nazarathy and Weiss (2010) to be

uk(t) =
q+k (0)

µkT∗ (6.22)

qk(t) = qk(0)(1−
t

T∗) (6.23)

q+k (t) = q+k (0)(1−
t

T∗). (6.24)

Let Qk(t) be the number of activities that are present in the queue of machine σ(k) at time
t, and Q+

k (t) be the total number of class k activities that still need to be completed at time t

(including activities of class k that have not yet arrived at σ(k)). The jobs can then be scheduled
via an online fluid tracking policy:

for each time t and each machine i that is free
define Km(t) = {k ∈ Km : Qk(t) > 0}, the set of classes
that currently have activities available for processing at machine m

if Km(t) = ∅
idle machine m

else

process an available activity of class k∗ ∈ argmaxl∈Km(t)(
Q+

l (t)−q+l (t)

q+l (t)
+ 1)/(1− t

T∗).

Ties for k∗ as well as the choice of activity within k∗ can be decided using arbitrary rules. We
refer the reader to the paper by Nazarathy and Weiss (2010) for additional details as well as an
overview of other job-shop scheduling rules based on the solution of the fluid model. We also
refer the reader to the thesis by Raviv (2003) which demonstrates that fluid models can be used
as approximations of large instances of other hard combinatorial problems.

The fluid policy described above can be applied in a dynamic setting if the fluid model on

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 91

which it is based is adjusted to include exogenous arrival information. In this case, Equation
(6.21) becomes

qk(t) = qk(0) + λk(t)− µkTk(t) +
∑
l

Pl,kµlTl(t), (6.25)

where Tk(t) =
∫ t

0
uk(s)ds is the cumulative amount of time that station s(k) devotes to class k

in [0, t] (Chen and Yao, 1993). Suppose we would like to minimize holding costs in a network
with K classes and M machines, M ≤ K, arrival rate vector λ = (λ1, . . . , λK), service
rate vector µ = (µ1, . . . , µK) and routing matrix P. Define two additional matrices: R =

(I−PT)diag(µ), where diag(µ) is a diagonal matrix of processing rates; and the constituency
matrix C with each entry cm,k = 1 if k ∈ Km and 0 otherwise. Let 1 be a vector of 1s of the
appropriate dimension, and let 1q(t) 6=0 be an indicator function which equals 1 whenever there
is at least one non-empty queue. Define the vector q(t) = (q1(t), . . . , qK(t)). Let hk be the
per time unit cost for holding one unit of class k fluid, and h = (h1, . . . , hk) (Chen and Yao,
1993). The fluid model for the problem of optimally controlling a network is then:

min
T(t)

hq(t) (6.26)

subject to q(t) = q(0) + λt−RT(t) ≥ 0, (6.27)

T(t) is non-decreasing with T(0) = 0, (6.28)

U(t) = 1t−CT(t) is non-decreasing. (6.29)

When hk = 1 for all k, the above objective can be interpreted as the minimization of expected
throughput time (Atkins and Chen, 1995). For the example problem of Figure 6.1, q(t) =

(q0(t), q1(t), q2(t)), λ = (λ0, λ1, λ2), h = (cA, cB, cB),

P =

0 0 0

0 0 1

0 0 0

 ,

R =

1 0 0

0 1 0

0 −1 1

 ,

and

C =

(
1 1 0

0 0 1

)
.

One approach for obtaining a solution to the above fluid control problem is based on the

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 92

idea that for some (possibly small) period of time, say [0, t1], the allocation of capacity remains
a constant proportion, i.e., T (t) = xt with a fixed x for all t ∈ [0, t1] (Chen and Yao, 1993).
Each component of the vector x, xk, k = 1, . . . , K, represents the proportion of capacity that
station σ(k) should devote to processing class k fluids (Atkins and Chen, 1995) and forms the
solution to the following linear program (Atkins and Chen, 1995; Chen and Yao, 1993):

max cx (6.30)

s.t. (Rx− λ)k ≤ 0, k ∈ Π (6.31)

Cx ≤ 1 (6.32)

x ≥ 0. (6.33)

The set Π is a subset of {1, . . . , K} corresponding to classes with 0 fluid level, and c = hR.
Constraint (6.31) ensures that the fluid level for classes in the set Π does not go below 0, while
constraint (6.32) states that any chosen allocation x has to satisfy the unary capacity of each
machine. The linear program is re-solved at different decision epochs and, when the fluid
level in a particular class becomes 0, that class is added to the set Π. Atkins and Chen (1995)
create state-dependent priority rules based on the solution of the linear program and compare
their performance to traditional policies such as FCFS and SPT in four environments.20 They
conclude that the performance of fluid policies is at least comparable to classical scheduling
heuristics regardless of the distributions of processing or inter-arrival times and the traffic inten-
sities. They state that more research is necessary to highlight the advantages of these policies,
which may occur in non-stationary situations or in cases when there are machine breakdowns.

In some cases, it is possible to solve the above linear program for all possible states of the
system a-priori and use the resulting information to develop an online scheduling policy. For
example, consider a single station serving four classes, with h1 being the largest of the holding
costs. Solving the linear program for any state when there is fluid present in class 1 results in
an optimal solution x∗

1 > 0, x∗
2 = x∗

3 = x∗
4 = 0. This solution can be translated into a policy

in a straightforward manner: process class 1 jobs while there are such jobs in the system (i.e.,
give priority to class 1) (Atkins and Chen, 1995). In fact, examining the remaining states of
the system and solving the corresponding linear programs leads to the (known to be optimal)
cµ rule. Other ways of using the fluid model to determine a scheduling policy are discussed in
Section 6.1.2.3.2.

In many cases, it can be shown that the fluid model is not just an approximation of the
system of interest, but rather a formal limit of a sequence of scaled systems as the initial

20In Section 10.3, we propose to use one of the problems examined by Atkins and Chen (1995) for investigating
the algorithmic integration of queueing and scheduling.

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 93

number of jobs in the system goes to infinity. Formal fluid models are of particular importance
in stability analysis of queueing systems (Dai, 1995; Dai and Meyn, 1995). Stability analysis
consists of identifying conditions under which the number of jobs in the system is guaranteed
to remain bounded over time.21 In the queueing literature, understanding of the stability of
a system is considered to be a precursor to more detailed performance questions (Kumar and
Meyn, 1995). Moreover, it has been shown that a system may be stable under one scheduling
discipline, but not another (Kumar and Meyn, 1995; Bramson, 1994). In spite of its importance
as a measure of long-run performance, stability of periodic scheduling approaches has not
been addressed within the scheduling community prior to our work. Specifically, we introduce
stability into the dynamic scheduling literature in Chapter 8, showing stability of a method
based on periodic makespan optimization in two flow shop systems.22 Concurrently, Tran et al.
(2013) and Terekhov et al. (2012d) show stability of periodic scheduling methods in dynamic
parallel machine settings.

While several fluid-model heuristics have been developed in the literature, their perfor-
mance has not been empirically compared to predictive-reactive scheduling methods. For the
parallel machine scheduling problem, Tran (2011) and Tran et al. (2013) compare a round-robin
policy, which is derived from the solution of a fluid-model linear program, with a scheduling
approach based on periodic makespan minimization. Studies of this type for other schedul-
ing problems are necessary in order to understand the strengths and weaknesses of queueing
and scheduling approaches, and to create effective hybrids. We discuss this future research
direction in Section 10.3.

The Achievable Region Method The achievable region method is a mathematical pro-
gramming approach for solving stochastic control optimization problems (Federgruen and
Groenevelt, 1988; Bertsimas and Niño-Mora, 1996; Stidham Jr., 2002). In traditional math-
ematical programming formulations of scheduling problems, the goal is typically to determine
the start times of the jobs or their positions in the processing sequence on a machine, with con-
straints being expressed in terms of these variables. In the achievable region method, on the
contrary, the decision variables are the performance measures for each class, and constraints are
written in terms of these measures. Therefore, while the traditional methodology in schedul-
ing is to find the schedule that optimizes the performance of the system, the achievable region
approach is based on finding the optimal performance measure first, and then determining the
corresponding scheduling policy. The idea of posting constraints on the performance that is

21In contrast, in the predictive-reactive literature, a predictive schedule is called stable if it does not change
much as uncertainty is realized (Bidot et al., 2009).

22The work of Chapter 8 also appears as a paper (Terekhov et al., 2012c) and a technical report (Terekhov et al.,
2012b).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 94

achievable by a policy is similar to that of adding lower bounds on the quality of the schedule
used in the scheduling literature.

More formally, consider a queueing system with J job types. Let u be a control rule that
determines how the servers’ time is allocated among the arriving job requests. Denote the set
of all admissible control rules by U . Although the precise definition of admissibility depends
on the specific problem being addressed (Stidham Jr., 2002), it is generally required that all
control policies in U are non-anticipative (so that a decision can be based only on the current
state of the problem and its history) and non-idling (so that a machine is not allowed to be idle
if there are jobs waiting to be processed on this machine) (Dacre et al., 1999).

Define a J-dimensional system performance vector xu = (xu
1 , x

u
2 , . . . , x

u
J) associated with

every control policy u, where each xu
j is the expected value of the performance measure for

class j (Dacre et al., 1999). For example, if the goal of the problem is to minimize a weighted
combination of the expected waiting times for each class, then the performance vector will
consist of J expected waiting times, one for each class (Federgruen and Groenevelt, 1988).
The set of all admissible performance vectors, X = {xu, u ∈ U}, is called the performance

space or the achievable region of the problem. Frequently, the achievable region can be (at
least partially) characterized by constraints derived from conservation laws, which state that
the amount of work in the system due to a job class i under any policy is at least as much as
the amount of class i work under the policy that gives this class priority over all other classes
processed by a particular machine.

Suppose that the cost of running the system under the control u is denoted c(xu). The
scheduling problem of interest is therefore to find a rule, uOPT , that would state how job
classes should be assigned to machines in order to optimize the cost of running the system.
More formally, this problem is stated by Dacre et al. (1999) as

ZOPT = inf
u∈U

{c(xu)}. (6.34)

Alternatively, given X , uOPT can be determined by solving the problem

ZOPT = inf
x∈X

{c(x)}. (6.35)

In other words, instead of finding the control rule that achieves the smallest cost by solving
problem (6.34), we can first find the best possible performance vector by solving (6.35) and
then determine the optimal control associated with this performance vector. Thus, the achiev-

able region approach is composed of three steps (Dacre et al., 1999):

1. Identification of the performance space X ,

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 95

2. Solution of the mathematical programming problem (6.35),

3. Derivation of the optimal control rule u from the solution of problem (6.35).

To illustrate this approach, we consider a simplification of our example problem (Fig-
ure 6.1) which occurs if we ignore station 2. Specifically, suppose we want to find a non-
anticipative and non-idling scheduling policy u for minimizing the long-run holding costs in a
two-class M/M/1 system. Jobs of class k arrive to the system according to Poisson processes
with rate λk and are processed by the machine with exponential rate µk. For stability, the rate
at which work arrives to the system, ρ1 + ρ2 = λ1/µ1 + λ2/µ2, is assumed to be strictly less
than 1. The problem can be stated as

ZOPT = inf
u∈U

{c1Eu(N1) + c2Eu(N2)}, (6.36)

where Eu(Ni) is the expected steady-state number of class i jobs present in the system operat-
ing under policy u, and ci is the holding cost per job of class i.

In steady state, the amount of work present in this system is not dependent on the control
policy u. Thus, the following constraints may be derived:

Eu(N1)

µ1

+
Eu(N2)

µ2

=
ρ1µ

−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2
, (6.37)

Eu(N1)

µ1

≥ ρ1µ
−1
1

1− ρ1
, (6.38)

Eu(N2)

µ2

≥ ρ2µ
−1
2

1− ρ2
, (6.39)

for u ∈ U . The first equation is an expression for the expected amount of work in the system in
steady state. The second and third equations follow from the observation that the steady state
amount of class 1 work is minimized by giving priority to class 1 over class 2, and vice versa.
Defining xu

k = Eu(Nk)/µk, the problem can be written as

ZOPT = inf
x∈P

{c1µ1x1 + c2µ2x2}, (6.40)

where

P = {(x1, x2);x1 ≥
ρ1µ

−1
1

1− ρ1
, x2 ≥

ρ2µ
−1
2

1− ρ2
, x1 + x2 =

ρ1µ
−1
1 + ρ2µ

−1
2

1− ρ1 − ρ2
}. (6.41)

The minimum of this problem is attained at the point where class 1 has absolute priority
over class 2 if c1µ1 ≥ c2µ2 and at the point where class 2 has priority over class 1 if c1µ1 <

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 96

c2µ2. Since it can be easily shown that the performance space X = {(xu
1 , x

u
2), u ∈ U} is equal

to the line segment given by P , it follows that the solution to the original control problem is the
well-known cµ-rule: serve the job class with the largest ckµk value first (Dacre et al., 1999).
The reader is referred to Section 3 of the paper by Bertsimas et al. (1994) for an achievable
region analysis of our example problem with two stations.

The idea of characterizing the region of achievable performance and writing the problem in
terms of constraints on performance vectors does not appear to have been used in scheduling,
and should be explored in the future. Alternatively, the constraints developed for the achiev-
able region approach in queueing theory may be profitably integrated into dynamic scheduling
models.

Comparison of Approximation/Abstraction Models Given the description of the ap-
proximations and abstractions used in the queueing literature, a natural question is to deter-
mine when one of them is more applicable or more effective than another. To our knowledge,
this question has not received much attention in the queueing literature. We can only make
the observation that the Brownian model captures variability better than the fluid model. This
difference is due to the fact that the Brownian model is based on the Central Limit Theorem,
taking into account the first two moments23 of the given distribution, whereas the fluid model
is based on the Law of Large Numbers and thus focuses on the first moment only. Thus, the
fluid model can be thought of as a coarser approximation method, but one that is usually easier
to work with. In some cases, it is necessary to establish some specific characteristic of the
system via the fluid model before a Brownian model can be built, as can be seen in the paper
by Kang et al. (2004). For the achievable region to be effective, it should be possible to derive
constraints on the optimal performance, such as those shown by Equations (6.37)–(6.39).

6.1.2.3.2 Translation Techniques In order for the approximation/abstraction methods to
be useful in practice, their solutions need to be translated into implementable policies. One
approach, demonstrated above, is to derive policies that mimic the intuition provided by the
solutions to Brownian, fluid or achievable region models. However, there are two main issues
with this approach: it is problem-specific, and there are multiple ways of implementing the
same intuition, some of which may in reality perform better than the others (see the paper by
Maglaras (2000) for a discussion). Such issues have motivated the study of general transla-
tion mechanisms and their performance guarantees. We note, however, that the study of such
mechanisms has mostly been linked to Brownian and fluid models, and that application of

23It is theoretically possible to develop Brownian models of higher order, but results for such models are
extremely difficult to obtain, except the cases where there is state-space collapse (see, e.g., the paper by Williams
(1998)).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 97

similar principles to derive translation techniques from the achievable region method requires
additional investigation.

One approach for translation, presented in the paper by Chen and Meyn (1999), is to ini-
tialize the MDP value iteration algorithm (see Section 6.1.2.1) from the solution of the fluid
model. The rest of the general translation mechanisms can be classified into discrete-review
and continuous-review ones. Both types of methods are similar in nature to periodic scheduling
approaches (see Section 6.2) from the scheduling literature: they periodically review the status
of the system and solve a resource allocation problem that prescribes how much time should be
devoted to each class of jobs until the next review point. Thus, unlike periodic methods from
the scheduling literature, these approaches concern the allocation of capacity among job classes
rather than individual jobs. Another difference from scheduling methods is that this resource
allocation problem is usually modelled as a linear program (LP). In discrete-review methods,
the time between two review points is typically large, while in continuous-review ones, it is
made as small as possible. Discrete-review methods have the advantage of requiring fewer
optimizations, while continuous-review methods should perform better because they take the
most up-to-date information into account (Teh, 2000). A similar idea, referred to as a sequen-
tial open-loop strategy, has also been used in optimal control theory for preemptive scheduling
problems (Nash and Weber, 1982). As mentioned in Section 3.2, the inventory management
literature makes a similar distinction between periodic-review and continuous-review methods.

One general concept that is extensively used within both discrete-review and continuous-
review paradigms is that of safety stocks. Safety stocks state the amount of material that should
be present in the queues in order to avoid starvation of resources. Thus, they prevent idleness of
resources, which should be avoided to maintain stability (Meyn, 2008). Since, as discussed in
Section 6.1.2.3.1, stability has not received much attention in the scheduling literature, neither
has the use of safety stocks. Interestingly though, in the scheduling literature, Branke and
Mattfeld (2005) demonstrate that avoiding early idleness is essential for achieving good long-
run performance. Also, since the notion of safety stocks is used in inventory management, it
could be useful for the dynamic version of the assembly scheduling problem that we propose
to study in future work (see Chapter 11).

Discrete Review We discuss several discrete-review approaches: BIGSTEP, reward-based
policies and trajectory-tracking policies. According to Meyn (2008), discrete-review policies
provide “the most natural technique to translate a policy based on the fluid model or some other
idealized model for application in a physical network” (p. 129).

BIGSTEP The first discrete-review approach developed in the queueing literature is called

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 98

BIGSTEP, and was proposed by Harrison (1996) as a translation mechanism from solutions of
Brownian approximation models, discussed in Section 6.1.2.3.1, to tactical allocations of server
time. The BIGSTEP approach is defined by two parameters: l, the length of time between two
review time points, and θ = (θk), the threshold (planned safety stock) parameter vector (Teh,
2000). At every review time point (τ = 0, l, 2l, . . .), the current queue lengths q = (qk) are
observed, and an LP is formulated. This LP is called the BIGSTEP planning problem. Its
solution specifies the amount of time that should be spent on processing each job class in the
period [τ, τ + l], subject to the constraint that the number of jobs in each queue k cannot fall
below θk.

If the corresponding Brownian approximation model allows for a pathwise solution,24 then
the BIGSTEP planning problem is equivalent to the fluid model presented in Equations (6.26)–
(6.29) with time 0 corresponding to the current review point τ , and t replaced by τ + l. Since
this model requires first-moment data only, and since most dynamic control problems allow
for a pathwise solution, the BIGSTEP approach can be applied to a wide variety of problems
(Teh, 2000). If the Brownian approximation model does not have a pathwise solution, then a
second term, representing the future expected cost of server idleness, is added to the objective
in Equation (6.26). This additional term is p U (τ + l), where p is the penalty rate vector
obtained by solving the appropriate Brownian control problem.

The idea behind the BIGSTEP approach is to ensure that the number of jobs present in
each of the buffers is large enough relative to the length of the planning horizon so that the
actual sequence in which the jobs are processed within the next l time units is not important
from a tactical viewpoint (Harrison, 1996). In order to implement these tactical allocations at
the operational level, one can choose an arbitrary sequence in which to consider classes, and
process each class for the amount of time specified by the LP solution; a simple policy such
as FCFS can be used to sequence jobs within each class (Harrison, 1996). The assumption
that the details of the sequencing of individual jobs are “irrelevant” may seem unintuitive from
a scheduling perspective. However, one needs to keep in mind that the goal of BIGSTEP is
to optimize the long-run performance of the system. Naturally, in realistic applications, both
short-run and long-run performance measures are of interest, which motivates the study of
combining the BIGSTEP approach with detailed scheduling models of each time period. We
refer the reader to the paper by Harrison (1998) for an example of the application of the BIG-
STEP approach to a parallel machine system.

Reward-based Policies Maglaras (1999) extends the BIGSTEP approach to a family of

24A pathwise solution is a dynamic scheduling policy that, in the heavy traffic limit, minimizes the instanta-
neous cost rate at every time point with probability one (Teh, 2000).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 99

discrete-review methods derived from dynamic reward functions, which associate a positive
value rk(q) with every queue length vector q and each job class k. Given strictly positive
real-valued functions r(·) and l(·) and a K-dimensional vector β, at each review point tj , the
controller calculates the length of the review period and the target safety stock level to be
achieved at the end of the period. A linear program which is based on the fluid representation
of the system is then solved to determine the amount of time that should be allocated to each
class k until the next review time point. The objective function is defined in terms of the dy-
namic reward function r(·), which represents the reward rate for spending time on processing
each class. For additional details, the reader is referred to Section 3 of the paper by Maglaras
(1999). Note that, unlike in the BIGSTEP method, the length of the review time period in the
reward-based discrete-review methods grows as a function of the state size. As this happens,
the approximation described by the equations of the linear program becomes more accurate
(Maglaras, 1999).

Trajectory-tracking Policies The trajectory-tracking family of policies is also an extension
and a generalization of the BIGSTEP method (Maglaras, 2000). It is defined by the trajectory
mapping Ψ, a function l and K-dimensional vector β. The parameters l and β have the same
meaning as above. The trajectory map Ψ describes the desired behaviour to be tracked. One
option for the trajectory map is the solution of the corresponding fluid model (Maglaras, 2000).
The approach consists of three stages: initialization, planning and execution.

The initialization stage involves setting the length of the review periods and the safety
stock levels: l = l(|Q(0)|) and θ = βl, where Q(0) is the state of the system at time 0. At the
planning stage, the status of the system is reviewed at times 0 = t0 < t1 < t2 < . . . ; the queue
state observed at each review period is q = Q(tj). In step 1 of the planning stage, a target state
z for the end of the review period is chosen as z = θ + |Q(0)|Ψ(l̄; (q̄ − θ̄)+), where l̄ = l

|Q(0)|

and (q̄ − θ)+ = max{0,max{0, (q − θ)+}/|Q(0)|}. In step 2, the time allocations that will
steer the state from q to z are computed. The reader is referred to the paper by Maglaras (2000)
for details of this step.

In the execution stage, the following quantities are defined:

pk =
⌊ xk

mk

⌋
, k = 1, . . . , K, (6.42)

ui = max{0, (l + tθ − (Cx)i)
+}, i = 1, . . . , S. (6.43)

Firstly, pk jobs are processed sequentially from each class k ∈ Ci. As in the BIGSTEP method
above, it is implied that the order of processing of these jobs does not matter. Secondly, each
machine i idles for min{ui,max{0, (l + tθ − di)}}, where di is the time taken to complete

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 100

all jobs at machine i. The start of the next processing period is then defined as tj+1 = tj +

max{l+ tθ, d1, . . . , dS}. The resulting policies are asymptotically optimal under fluid scaling,
and guaranteed to be stable if the traffic intensity of each station is less than one (Maglaras,
2000). A similar idea of trajectory-tracking policies is explored by Meyn (2001).

The idea of trajectory tracking has not been explored in the scheduling literature. It would
be interesting to examine it from two perspectives: firstly, predictive-reactive methods could
be developed which aim to track the solution of the fluid model as do the trajectory-tracking
policies in queueing, and, secondly, for static problems, there may be problem relaxations,
such as preemptive versions of non-preemptive problems, that can be tracked.

Continuous Review We discuss several continuous-review approaches: discrete-review
derived, trajectory tracking and maximum pressure policies.

Discrete-review Derived Policies The work of Teh (2000) extends the idea of the BIGSTEP
method to discrete-review derived (DRD) continuous-review policies. As in the BIGSTEP
method, the goal of a DRD policy is to determine the amount of time that should be devoted
to processing a particular class of jobs in the coming time period of length l. However, in the
BIGSTEP approach, the value of l needs to be large, while Teh (2000) proposes to make l

as small as possible without forcing the time allocation variables to take on negative values.
Moreover, the value of l may change when the allocation specified by the LP solved at each
review point changes. The desired queue state at the end of the period, used in the LP formu-
lation, is obtained by solving a Brownian control problem (Teh, 2000).

Trajectory Tracking Policies Continuous-review tracking policies are proposed by Bäuerle
(2000) and by Maglaras (2003). Maglaras (2003) states that such policies consist of observing,
at each time point t, the vector of current queue lengths, q, and choosing z(q), a target position
of the system at some time point t+ l, and v(q), an allocation vector describing how to divide
the available processing capacity among the job classes so as to guide the evolution of the
system from q to z(q). A Brownian model is used in order to define z(q), while reasoning
based on fluid models (discussed in Section 6.1.2.3.1) is employed for computing the decisions
v(q) that would lead the system to z(q). The idea behind this policy type is similar to that of
state-dependent sequencing rules, except instead of priorities being switched after every state
transition, capacity allocations to different jobs classes are changed.

Paschalidis et al. (2003; 2004) define target-pursuing policies, which are similar to trajectory-
tracking policies, but utilize the solution of an achievable region problem to set one of its
parameters. Let n(t) be the vector representing the number of jobs in each class of the sys-

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 101

tem. At each time t and for a finite review interval ∆t, a target-pursuing policy minimizes
E[||n(t+∆t)− θ|| |n(t)] for some norm || · || and target θ; that is, given the number of jobs in
each class at time t, n(t), the policy minimizes the expectation (with respect to the probability
distribution of n(t+∆t)) of the norm of the difference between the number of jobs present in
each class at the next review point and the target (Paschalidis et al., 2004). Paschalidis et al.
(2004) show that setting θ = w∗, where w∗ is the lower bound on the optimal performance
obtained via an achievable region approach, often results in good performance. For example,
in the context of the problem of Figure 6.1, the best-performing target-pursuing policy is nu-
merically shown to be within 0% to 2.3% of the best-performing policy for various loads for
the weighted sum of mean queue lengths objective.

Maximum Pressure Policies Maximum pressure policies (Dai and Lin, 2005) are general-
izations of the well-studied MaxWeight policy (Tassiulas and Ephremides, 1992; Tassiulas and
Bhattacharya, 2000; Andrews et al., 2004; Stolyar, 2004). A maximum pressure policy looks
at the system state at activity completion and job arrival epochs, and determines the allocation
vector a = (aj) that maximizes the total network pressure (Dai and Lin, 2005). Each entry aj

specifies the proportion of time that should be spent on processing activity j (by the appropri-
ate server(s)) that remains valid until the next review point. More formally, one has to choose
a∗ ∈ argmaxa∈E(t) p(a, Z(t)) = Z(t) · Ra, where Z(t) is the vector of buffer levels at time
t, R = (Rij) is the input-output matrix in which each entry Rij is interpreted as the average
amount of buffer i material consumed per unit of activity j, E(t) is the set of extreme points of
the feasible region of all possible maximum pressure policies, and · denotes the inner product
between the two vectors. The set E(t) depends on whether resources can process one or several
jobs at a time (i.e., whether processor splitting is allowed or not) and on whether preemptions
are allowed or not. Maximum pressure policies are different from the above-mentioned policies
since they directly specify which job should receive processing next. They are semi-local since
the sequencing decisions for each server are based on both the state of the buffers for which the
server is responsible and the state of the downstream buffers. One of their advantages is that
they do not use any arrival rate information, which can be hard to estimate in practice (Dai and
Lin, 2005).

The work discussed above is aimed at deriving policies which are asymptotically optimal
and stable, and, given the long-run nature of these objectives, they prescribe the proportion
of each server’s capacity that should be spent on processing a particular class. In fact, it can
be shown that the detailed sequencing decisions are irrelevant for achieving these long-run
objectives. However, in real scheduling problems, one typically needs to address short-run

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 102

performance measures in addition to long-run ones. Therefore, it is worthwhile to investi-
gate different operational-level scheduling policies that can also respect the tactical allocations
provided by methods of this section.

The solutions to approximations/abstractions may also be used in the form of bounds when
operational-level schedules need to be constructed. Moreover, a model that specifies high-level
allocations could be used as part of a problem decomposition method such as the logic-based
Benders method of Hooker (2005); this idea has not been explored in the literature.

6.1.2.4 Summary

We surveyed the queueing theory literature related to scheduling, dividing it into three cat-
egories. The first is based on MDP models, which are, theoretically, powerful enough to
represent any scheduling problem. However, even when focusing on classes rather than in-
dividual jobs, MDP models become intractable as the size of the problem (i.e., the number of
classes) increases. To overcome the difficulties of large MDP models, the queueing literature
has chosen either to restrict the types of policies that are considered or to use approximations
or abstractions.

Section 6.1.2.2 reviewed the second category of models, those possessing a special struc-
ture. These include priority queues, polling systems, vacation models and bandit models. Sec-
tion 6.1.2.3 presented the general framework for the use of approximations and abstractions
which consists of four steps: modelling and development of the approximation/abstraction,
solution of this approximation/abstraction, derivation of an implementable scheduling policy
based on this solution, and asymptotic analysis of the optimality of the resulting policy. The
approximations/abstractions used in the first two steps include Brownian models, fluid models
and the achievable region approach. Methods for the derivation of implementable scheduling
policies are presented in Section 6.1.2.3.2.

One common theme throughout the literature reviewed above is that, since queueing theory
cannot deal with individual job characteristics, scheduling can be used to sequence jobs within
each class of jobs. Doing so is feasible in applications where the processing times of jobs
can be accurately estimated upon arrival (e.g., in manufacturing). We briefly investigate the
improvements in performance due to within-class sequencing in Chapter 7 and propose further
examination of this research direction in Chapter 10.

We refer the reader who is interested in a more mathematically-rigorous coverage of schedul-
ing models developed within queueing theory to the comprehensive book by Meyn (2008).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 103

6.2 Dynamic Scheduling

Recall that in Part II of this dissertation, we investigated the notion that scheduling problems
are related to other decision-making problems in their environment, focusing specifically on the
integration of inventory management decisions with scheduling. In the first chapter of that part
of the dissertation, Chapter 3, we therefore reviewed fundamental combinatorial scheduling
notions as well as the literature on scheduling in assembly environments and scheduling with
inventory constraints. In the current part of the dissertation, our focus is on addressing the
dynamism of real scheduling problems by integrating queueing theory and scheduling. Above,
we reviewed the queueing theory work related to scheduling. Now, we survey the work on
dynamic scheduling that has been developed by the scheduling community.

According to Thomas and Szczerbicka (2007), dynamic scheduling methods can be divided
into three branches.25 The first is based on dispatching rules, which, as we discussed in Section
6.1.2.2.1, are equivalent to priority queueing disciplines. In spite of this equivalence, queueing
and scheduling have very different views of these rules. In the scheduling literature, the focus
is on experimental evaluation of dispatching rules under various conditions (Panwalkar and
Iskander, 1977; Haupt, 1989). Thomas and Szczerbicka (2007) state, in addition, that such
schedulers “lack the ability to plan into the future” (p. 2). Queueing theory, in contrast, usually
studies long-run theoretical performance of priority disciplines given distributional information
about the system. Integrating the work done on priority queueing disciplines and dispatching
rules is therefore a promising direction for future work.

The second category of dynamic scheduling methods views the problem as a collection
of linked static sub-problems and utilizes the developments of combinatorial optimization
(Thomas and Szczerbicka, 2007). Examples of work on such methods include the papers by
Bierwirth and Mattfeld (1999) and Fromherz (2001). The most general framework within this
category, however, is the predictive-reactive framework of Bidot (2005) and Bidot et al. (2009).
The predictive component of a predictive-reactive approach constructs a baseline schedule for
a short period of time into the future based on known job characteristics. Frequently, the objec-
tive in creating a predictive schedule is robustness. A solution-robust schedule is one in which
the start times of jobs do not change significantly due to changes in the environment, while in a
quality-robust schedule, performance is insensitive to disruptions (Herroelen and Leus, 2005).
In order to create predictive schedules, Leon et al. (1994) incorporate a robustness term into
the objective function, Davenport et al. (2001) extend activity durations, while Dubois et al.
(1996) and Beck and Wilson (2007) minimize the possibility and the probability, respectively,

25For an alternative and more detailed classification, see the paper by Suresh and Chaudhuri (1993). For
dynamic scheduling in process industries, we refer the reader to the paper by Li and Ierapetritou (2008).

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 104

that the schedule performs worse than a certain threshold.

The reactive component states how the schedule should be modified in the case of disrup-
tions. The simplest reactive methods are rules that can be used to repair a disrupted schedule,
such as the right shift rule, which shifts the start times of all jobs forward after a change in the
environment occurs (Smith, 1994). More complex reactive approaches include rescheduling of
all or a subset of the jobs that are present but whose processing has not yet started (Sabucuoglu
and Bayiz, 2000). When rescheduling is performed, the typical goal is to ensure that the newly
generated schedule differs as little as possible from the original schedule. Thus, El Sakkout
and Wallace (2000) develop methods for minimizing the total absolute deviation in the start
times of the jobs in the two schedules, while Bean et al. (1991) reschedule in a way that, at
some point in the future, matches the previous schedule with the new schedule exactly.

Generally, scheduling methods based on periodic optimization of static problems do not
consider long-run performance measures. Thus, Branke and Mattfeld (2002, 2005) propose
anticipatory scheduling, which is based on a rolling horizon approach that anticipates future
needs by including a secondary objective within each static scheduling sub-problem. This
secondary objective, called the flexibility term, penalizes early idle times of the machines,
thus preserving machine capacity for future jobs. They show that anticipatory scheduling can
improve the system’s performance with respect to the total tardiness objective.

The third category, according to Thomas and Szczerbicka (2007), utilizes stochastic opti-
mization and sampling. A general framework within this category is online stochastic com-
binatorial optimization (OSCO) (Van Hentenryck and Bent, 2006). In OSCO, problems are
solved by online anticipatory algorithms, which are composed of a method for sampling the
distribution of future events and a method for solving deterministic problems which corre-
spond to possible realizations of the future evolution of the system. Thomas and Szczerbicka
(2007) also include the paper by Chang et al. (2000) in this third category. Chang et al. (2000)
address an oversubscribed dynamic scheduling problem with tasks of unit duration by using a
discrete-time partially-observable MDP (POMDP) model and sampling. From our perspective,
this paper is interesting because it combines a model that can be classified as being part of the
queueing literature (POMDP is a variation of the MDP model discussed in Section 6.1.2.1) with
an approach from the dynamic scheduling literature, i.e., sampling; it is also one of the rare
papers in the scheduling literature that mentions queueing work and divides jobs into multiple
classes.

A review of these three types of dynamic scheduling methods leads to the natural question
of how they compare to each other. Thus, Montana (2005) compares dispatching rules and
combinatorial optimization methods (though note that this comparison was developed prior to
the formalization of the predictive-reactive framework by Bidot et al. (2009)). In particular,

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 105

he evaluates the trade-off between the time required for the construction of a schedule and the
resulting schedule’s quality. Thomas and Szczerbicka (2007) further investigate this trade-off,
including the sampling-based algorithm of Bent and Van Hentenryck (2004) in their analysis.
More studies of this type are necessary to obtain a full understanding of dynamic scheduling.
In particular, future work needs to compare methods from the predictive-reactive framework,
OSCO, dispatching rules, various queueing policies and queueing/scheduling hybrids.

Two additional fields of study that are closely related to dynamic scheduling are: online
scheduling and real-time scheduling. While online scheduling addresses the same problems
as dynamic scheduling, it is different since, as stated by Pruhs et al. (2004), it considers a
relatively small set of algorithms and focuses on obtaining performance guarantees. The algo-
rithms listed by Pruhs et al. (2004) that have received the most attention in the online scheduling
literature can be seen as priority disciplines or dispatching rules discussed in Section 6.1.2.2.1.
An example of a method that is widely used to analyze online algorithms is competitive anal-
ysis, which aims to determine whether a particular algorithm A is c-competitive for objective
function f , i.e., whether f(A, I) ≤ cf(OPT, I) + b for any instance I , a fixed constant b and
OPT being the optimal offline algorithm for the problem (Pruhs et al., 2004). In Section 11
of his survey paper, Pruhs (2007) briefly compares competitive analysis with stochastic analy-
sis: one of the main differences between the two is that competitive analysis does not require
distributional knowledge, making it complementary to work in queueing theory. We see value
in unifying the results in the online scheduling and priority queues literatures. In future work,
we may also use online scheduling analysis for determining the value of distributional knowl-
edge in dynamic problems. Real-time scheduling is different from both dynamic scheduling
and online scheduling because it focuses on systems that have explicit timing (i.e., deadline)
requirements, which may be deterministic or probabilistic (Sha et al., 2004). The reader is
referred to Part IV of the Handbook of Scheduling (Leung, 2004) and the papers by Sha et al.
(2004) and Burns (1991). See the paper by Lehoczky (1996) for the application of queueing
theory to the real-time scheduling paradigm.

6.3 Summary of Our View on Queueing and Scheduling

In a static and deterministic environment, scheduling corresponds to determining the start times
of a given set of jobs that has to be processed on one or several machines. This problem is
combinatorial in nature, and involves a finite set of jobs with known characteristics and a finite
time period whose length is equivalent to the schedule’s horizon. In reality, such a problem
corresponds to only one possible scenario that the scheduler may be faced with at a particular
point in time, and the schedule created based on this scenario is likely to be valid for only a short

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 106

horizon. In fact, the scenario represents a realization of many stochastic processes that govern
the evolution of the system in question (e.g., inter-arrival times, processing times, etc.). From
the point of view of scheduling in dynamic and stochastic settings, static and deterministic
scheduling deals with short-run decisions based on a local, myopic view of the environment,
its combinatorial structure and realized uncertainty. The majority of the classical scheduling
literature deals exactly with such problems.

A static and stochastic problem, in which the set of jobs to be processed is fixed but the
characteristics (e.g., processing times) are stochastic also deals with a short time horizon and
adopts a myopic view of the system. Such a problem represents a particular realization of the
process of job arrivals at a specific point in time, but considers stochastic properties of the jobs.
Thus, the problem models a variety of scenarios for a particular set of jobs, and the schedule
has to be constructed in a way that not only deals with the combinatorics of the problem, but
also with its stochastic nature: since it is impossible to create a schedule that would be of
high quality in all scenarios, the goal in such problems is usually to achieve good (or optimal)
performance in a probabilistic sense (e.g., in expectation). Work on these problems is known
as stochastic scheduling (e.g., see the books by Pinedo (2003) and Baker and Trietsch (2009)),
and methods for stochastic scheduling are based on approaches for deterministic problems as
well as some probabilistic reasoning (Righter, 1994; Beck and Wilson, 2007).

The problem of scheduling in a dynamic environment involves a long time horizon and
has to somehow deal with all the possible realizations of the job arrival process and of the job
characteristics. The ultimate goal in solving this problem is to construct a schedule that would
be optimal for the specific realization that actually occurs. The quality should be close to that
of the schedule that could have been constructed if all of the uncertainty had been revealed
a priori. Clearly, this is a difficult task, because to make a decision, one can use only the
information that is known with certainty at that particular decision point and the stochastic
properties of scenarios that can occur in the future. In addition, the effect of the decision on
both short-run and long-run performance has to be considered. To deal with such problems,
queueing theory and scheduling have adopted different approaches.

Queueing theory has taken the viewpoint that, since it is impossible to create an optimal
schedule for every single sample path in the evolution of the system, one should aim to achieve
optimal performance in some probabilistic sense (e.g., in expectation) over a long time horizon.
This goal could be attained by construction of a policy based on the global stochastic properties
of the system. For example, a policy could specify how start time decisions should be made
each time a new job arrives or a job is completed. However, the schedule resulting from such
a policy, while being of good quality in expectation, may be far from optimal for the particular
realization of uncertainty that occurs. Moreover, queueing theory generally studies systems

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 107

with simple combinatorics, as such systems are more amenable to rigorous analysis of their
stochastic properties.

In the scheduling community, a dynamic scheduling problem is generally viewed as a col-
lection of linked static problems. This viewpoint implies that methods developed for static
scheduling problems become directly applicable to dynamic ones. Such methods can effec-
tively deal with complex combinatorics and can optimize the quality of the schedules for each
static sub-problem. However, they tend to overlook the long-run performance and the stochas-
tic properties of the system, with notable exceptions being the work on anticipatory scheduling
(Branke and Mattfeld, 2002, 2005) and online stochastic combinatorial optimization (Van Hen-
tenryck and Bent, 2006).

Queueing theory methods for scheduling are based on reasoning about the stochastic pro-
cesses underlying the system, and aim to achieve good performance, in a probabilistic sense,
over the variety of possible scenarios that may occur. However, they are not able to deal with
individual job characteristics. They can be only approximate for problems with a complex
combinatorial structure or asymptotically optimal when the number of jobs in the system be-
comes so large as to make the combinatorics irrelevant. Queueing methods may also result in
policies that, at a particular point in time, may suggest a decision that may not be desirable
from a realistic perspective: for example, a policy may state that jobs of priority 1 should al-
ways be scheduled ahead of jobs of priority 2, leading to a build-up of priority 2 jobs in the
system and to the dissatisfaction of the customer corresponding to priority 2 jobs. In contrast,
predictive-reactive methods are based on solving static problems and then using reactive ap-
proaches online in case there are disruptions that have not been anticipated by the baseline
schedule. Their focus is on individual job characteristics, and their advantages come from their
ability to optimize the short-run performance of the system.

From the dynamic scheduling perspective, the strengths of queueing theory and scheduling
can be seen as being complementary. We believe that integrating the two may allow us to
develop both a better understanding of, and more effective solution techniques for, scheduling
in dynamic and stochastic environments, because we can more effectively reason about the
long run using queueing theory and about the short run using scheduling methods. In this
dissertation, we propose one possible framework for integration of the two areas.

6.4 Conclusion

As stated in Chapter 2, real scheduling problems are combinatorial, dynamic and uncertain, and
related to other decision-making processes of an environment. In this part of the dissertation,
we study scheduling problems that are both combinatorial and dynamic by combining queueing

CHAPTER 6. SCHEDULING AND QUEUEING THEORY LITERATURE REVIEW 108

theory and scheduling. Therefore, in the current chapter we surveyed the literature on queueing
theory, starting with fundamental notions and then proceeding to discuss methods specifically
developed for scheduling. We then briefly surveyed work on dynamic scheduling developed
within the scheduling community. Furthermore, we provided our view on various types of
scheduling problems and their relationship to queueing theory, which serves as a motivation
for the rest of this part of the dissertation.

Our investigation of queueing and scheduling takes place on three levels, conceptual, theo-
retical and algorithmic. In the next chapter, we provide one example of work on the conceptual
level. We describe two flow shop settings, and demonstrate how integration of concepts and
ideas from queueing and scheduling leads to the development of new insights about dynamic
scheduling. In Chapter 8, we demonstrate how queueing and scheduling can be integrated on
a theoretical level. Specifically, we prove stability of periodic scheduling methods based on
makespan minimization. In Chapter 9, we continue the investigation of the theoretical level by
proposing to use fluid limit analysis as a tool for analyzing scheduling algorithms. Chapter 10,
the final chapter of Part III, discusses future work on both the conceptual and theoretical levels.
In addition, it provides one possible framework for integration of queueing and scheduling on
the algorithmic level, and gives two examples of how this framework can be applied.

Chapter 7

Conceptual Integration of Scheduling and
Queueing Theory

In this chapter, we analyze two dynamic flow shop environments: a novel polling system that is
an extension of systems traditionally examined in queueing theory and a dynamic two-machine
flow shop, which is important in scheduling research.1 In both cases, the objective is to mini-
mize the mean flow time of jobs (i.e., the time between the arrival of a job to the system and
its completion time). Our experiments suggest that in the polling system, a scheduling method
that optimizes the makespan at each decision point provides the best performance, while in
the dynamic flow shop, an approach based on minimizing the mean flow time directly at each
decision point works better. We provide a mathematical characterization of these performance
differences in terms of the structural properties of the scheduling problems. We demonstrate
that in the polling system there is a conflict between short-run and long-run objectives, while
in the dynamic flow shop, optimizing the short-run objective periodically is consistent with the
long-run performance goal.

This chapter demonstrates that combining problem settings, ideas and concepts from queue-
ing theory and scheduling can lead to novel insights about scheduling in dynamic environ-
ments. Specifically, we obtain a new understanding of the trade-off between short-run and
long-run objectives in dynamic scheduling. We also show that periodic scheduling methods
can perform better than queueing-based dispatching rules for optimization of long-run perfor-
mance, although the choice of objective function for each sub-problem may not be obvious.

We start this chapter with formal descriptions of the two systems of interest. In Section
7.2, scheduling approaches for these systems are presented, together with experimental results.

1The work presented in this chapter has been published as a workshop paper (Terekhov et al., 2010), has been
included in a conference paper (Terekhov et al., 2012c), and is part of a working journal paper (Terekhov et al.,
2012d). The material included in the conference paper (Terekhov et al., 2012c) is used with permission of the
copyright holder, the Association for the Advancement of Artificial Intelligence c©, and the paper’s co-authors.

109

CHAPTER 7. CONCEPTUAL INTEGRATION 110

A detailed analysis of the performance differences between two of these methods is given in
Section 7.3. We compare the two systems of interest and discuss our assumptions in Section
7.4. Section 7.5 concludes the chapter.

7.1 Problem Settings

We study two related dynamic scheduling environments: a two-machine flow shop and a
polling system with a flow shop-like server. The goal, in both systems, is to assign start times
to all jobs in a way that minimizes the mean job flow time over a long time horizon. A job’s
flow time is defined as the difference between the job’s completion time on the second machine
and its arrival time to the system.

7.1.1 Dynamic Flow Shop

In a two-machine dynamic flow shop, jobs arrive according to some stochastic process over
time and must be processed first on machine 1 and then on machine 2. We assume that the inter-
arrival distribution is general with rate λ, while the processing time distributions for machine
1 and 2 are general with rates µ1 and µ2, respectively. Thus, the load for machine 1 is ρ1 = λ

µ1

and the load for machine 2 is ρ2 = λ
µ2

. Both ρ1 and ρ2 are assumed to be less than 1, as this is
a necessary and sufficient condition for ensuring that the number of jobs in the system remains
bounded over time.2

Processing times of a job on both machines become known at the instant of its arrival to
the system. Both machines are of unary capacity. Preemptions are not allowed. The queues
in front of machine 1 and machine 2 are both assumed to be of infinite size. In the queueing
literature, this system is known as a tandem queue (Towsley and Baccelli, 1991) or network of
queues in series (Gross and Harris, 1998).

7.1.2 Polling System

Polling systems are also dynamic environments: jobs arrive at random points in time and, under
one set of queueing assumptions, the processing times of these jobs become known upon their
arrival. As already stated in Section 6.1.2.2.2, polling systems usually consist of a single server
and multiple job types. Each arriving job has to wait for processing in the queue corresponding
to its specific type. The server visits these queues in a particular order and serves a subset of the
jobs during each visit. A variety of policies for the order in which the queues should be visited

2It is a necessary condition since each machine individually behaves as a single-server queue. A proof of its
sufficiency is presented in Section 8.2.

CHAPTER 7. CONCEPTUAL INTEGRATION 111

and for deciding the number of jobs that should be served on each visit have been considered in
the literature (Levy and Sidi, 1990; Takagi, 2000). We assume that the server visits the queues
in a cyclic manner. During each visit, the server employs a gated discipline: it processes all
jobs that are present at the time of the server’s arrival to the given queue. Preemptions are not
allowed. Unlike in standard queueing models, we assume that the server of the polling model
consists of two machines in series (a two-machine flow shop).

We assume that the inter-arrival distribution for each queue b, b = 1, 2, . . . , B, is general
with rate λb. The processing time distributions are general with rates µ1b and µ2b for machines
1 and 2, respectively. We assume that ρ1b = λb

µ1b
< 1 and ρ2b = λb

µ2b
< 1 for all b, as this

assumption is necessary to ensure that the number of jobs in the system stays bounded.3 Due
to the assumption of a gated policy, upon arrival to a queue, the server is faced with a static
two-machine flow shop scheduling problem.

7.1.3 Discussion of Assumptions

In this section, we discuss the assumptions made in the above problem settings that are moti-
vated by the queueing literature as well as those that are motivated by the scheduling literature.
We also justify why we look at dynamic flow shops and polling systems.

7.1.3.1 Available Information

The above systems are based on a combination of assumptions from the queueing theory liter-
ature and from the scheduling literature. In queueing theory, it is typically assumed that jobs
arrive according to some stochastic process, while in classical scheduling models, a set of jobs
is present at time 0 and there are no arrivals. As in queueing, we assume that we know the dis-
tribution of the inter-arrival times, but our scheduling framework (described in the following
section) takes advantage of the fact that if we look at the system at any one point in time, we
will see a static set of jobs, i.e., a classical scheduling model.

Similarly, queueing models usually assume that the distribution of job durations is known,
but the actual processing time of a job is not available until its completion time.4 In the classical
scheduling literature, exact processing times of jobs are assumed known prior to construction of
a schedule, and durations of jobs processed on the same machine are, in general, not identical.
The queueing assumptions can be justified by many application areas in which data collected

3It is a necessary condition since each machine individually can be viewed as a single-server queue. A suffi-
cient condition for stability is presented and proven in Section 8.3.

4One exception is the deterministic distribution, under which the durations of all jobs are assumed to be
identical.

CHAPTER 7. CONCEPTUAL INTEGRATION 112

over time can be used to determine the distributions. The scheduling assumptions are moti-
vated by manufacturing and computer applications. In manufacturing, several configurations
of the same product may be processed on a machine. There may be so little variance in the pro-
duction time of a particular configuration as to make this time essentially deterministic; each
configuration may require a different amount of processing time. In computer applications,
different users may submit tasks with varying demands for the same resource. Characteristics
of these tasks, such as file sizes, may be used to accurately estimate the amount of processing
required.5 To link the queueing and scheduling assumptions, we assume that the processing
times that become known upon arrival are realizations drawn from the corresponding distribu-
tions.

7.1.3.2 Problem Settings

The polling model was inspired by the need to create an initial theoretical basis for studying
the integration of ideas from queueing theory and scheduling, and it provides one of the sim-
plest possible environments for doing so. However, there has been some previous work on
polling models with coupled servers. Specifically, Borst (1995) and Browne and Weiss (1992)
both study systems in which there are multiple parallel machines serving the queues as one unit.
Such models are motivated by, for example, distributed systems in which jobs enter queues that
correspond to “front-end” systems and are processed by a server composed of multiple com-
puters connected by some communication medium (“back-end” systems) (Borst, 1995). Our
model assumes that, instead, the computers are divided into clusters which process sub-tasks of
jobs in a flow-shop manner; the server switches between queues as one unit since each queue
may correspond to a user who gets exclusive rights to the resources once its service is started.
Katayama (1992) also examines a tandem processing structure combined with polling, by look-
ing at cyclic-service tandem queueing systems with multi-class customers. Their model, unlike
ours, assumes that all jobs arrive at queue 0 first and then either return to queue 0 or move to
the second stage of processing at one of N subsequent queues; there is a single server that
attends queues 0 to N in a cyclic order.

Our model also possesses characteristics of manufacturing environments in which each
queue corresponds to a unique product type or to a specific customer. Each product requires
processing on the given set of machines as in a flow shop. In this application, the fact that the
first machine may be idle while the second machine is finishing jobs from the current set can
be due to a joint resource (e.g., space that is used to store products that have been processed

5The problem setting where jobs arrive to the system dynamically and job processing times become known
with certainty upon arrival is known as the online-time setting in the online scheduling literature (Pruhs et al.,
2004). One application mentioned by Pruhs et al. (2004) is a web server serving static documents.

CHAPTER 7. CONCEPTUAL INTEGRATION 113

on machine 1, or a conveyor belt that cannot be switched to a different queue until all of the
current items have been processed) or the necessity to reprogram/reconfigure both machines at
the same time before switching to the next queue. Extending our model to include setup times
can naturally model systems with multi-stage production processes where the whole production
area needs to be cleaned.

Unlike the polling model with a two-machine flow shop server, the dynamic flow shop
environment is not novel. Both static (Hejazi and Saghafian, 2005; Della Croce et al., 1996;
Xia et al., 2000; Park et al., 1984; Dudek et al., 1992; Gupta and Stafford Jr., 2006; Framinan
et al., 2005) and dynamic (Sarper and Henry, 1996; Park, 1988; El-Bouri et al., 2008) flow
shops have been extensively studied in the scheduling literature. Tandem queues (i.e., flow
shops under typical queueing assumptions) have received significant attention in the queueing
literature (Towsley and Baccelli, 1991; Gross and Harris, 1998; Johri and Katehakis, 1988;
Andradóttir and Ayhan, 2005). It should be noted that for both the dynamic flow shop and the
polling system, a static deterministic two-machine flow shop scheduling problem is embedded
at every time point. However, the higher-level structure of multiple queues in the polling system
makes the two systems different. We can also think of scheduling the dynamic flow shop as
being the problem that the server would encounter if it was serving a particular queue of the
polling system under an exhaustive6 discipline.

7.2 Scheduling in Polling Systems and Dynamic Flow Shops

We can schedule jobs in the systems described above via periodic scheduling strategies: at
a given point in time, we review the jobs present in the system or a particular queue of the
system, create a schedule for these jobs, and once this schedule is executed, review the status
of the system again. We examine two queueing-based and two scheduling-based methods
for creating each sub-schedule in both polling systems and dynamic flow shops. The time
at which scheduling happens, however, is different in the two environments. In the polling
system, the server switches from one queue to the next only after all of the jobs present upon
its arrival to the queue have been processed on both machines; the validity of this assumption
is discussed in the previous section. The start time of every new sub-problem is equal to the
completion time of the last job in the previous sub-problem, as shown in Figure 7.1. In a
dynamic flow shop without a polling structure, such an assumption is unreasonable since it
would create unnecessary idle time on machine 1. Thus, in a dynamic flow shop, scheduling is

6Under the exhaustive discipline, the server processes jobs from one queue until this queue becomes empty.
Refer to Section 6.1.2.2.2 for a review of the literature related to different queue service disciplines in polling
systems.

CHAPTER 7. CONCEPTUAL INTEGRATION 114

Figure 7.1: Polling system with three sub-problems (each corresponding to a queue visit) and
three jobs per sub-problem.

Figure 7.2: Dynamic flow shop with three sub-problems and three jobs per sub-problem. The
start of a sub-problem is the start of a set of jobs on machine 1, the end of a sub-problem is the
end of a set of jobs on machine 2.

performed once all jobs of the previous sub-problem have been processed on the first machine,
as illustrated by Figure 7.2. This difference may seem minor, but as we show below it has a
significant impact on the analysis of the two systems.

7.2.1 Methods for Solving Static Sub-problems

To our knowledge, policies for the polling system discussed in this chapter have not been
examined in the queueing literature. We are also unaware of any queueing policy that has been
proven to be optimal for the flow time objective, even in the expected sense, for a dynamic
two-machine flow shop under our assumptions. Thus, we consider two queueing approaches
for which theoretical results are available for systems related to ours. Specifically, the two
queueing policies we use to solve each sub-problem are first-come, first-served (FCFS) and
shortest total processing time first (SPTsum).

CHAPTER 7. CONCEPTUAL INTEGRATION 115

Under FCFS, the jobs are processed in non-decreasing order of their arrival times to the
queue. Towsley and Baccelli (1991) show that FCFS achieves the smallest expected flow time
in a two-machine dynamic flow shop in the class of work-conserving, non-preemptive policies
that do not use processing time information.

Employing SPTsum means that all jobs present in the queue at the time of scheduling are
processed in non-decreasing order of the sum of their durations on machine 1 and machine 2.
This policy choice is motivated by the fact that, in the case when the server is a single unary
resource, shortest processing time first minimizes the expected flow time in queueing systems
with a single queue or with a polling structure under a cyclic, gated service discipline (Wierman
et al., 2007). Wierman et al. show that such a policy can outperform FCFS by as much as 15%
in a gated, cyclic polling system.

From the perspective of scheduling, each static queue sub-problem presents an opportunity
for optimization. Since minimizing flow time under the above assumptions is equivalent to
minimizing the total completion time, a natural choice of objective to be optimized in a sub-
problem is the sum of completion times of activities on the second machine. We refer to this
model as the completionTime model. Optimizing the total completion time will lead to the best
short-run performance but, given the dynamics of the system, may not result in the best mean
flow time in the long run. The completionTime model also has a computational disadvantage:
minimizing the sum of completion times in a two-machine flow shop is NP-hard (Pinedo,
2003).

The fourth method we employ is motivated by a combination of queueing-based reasoning
and the fact that scheduling methods can be used to optimize local queue performance. Specif-
ically, suppose that we minimize the makespan for the set of jobs present in the queue, with
makespan being defined as the difference between the end time of the job that is scheduled in
the last position on machine 2 and the start time of the job that is scheduled in the first position
on machine 1. Minimizing makespan may lead to a schedule with a sub-optimal mean flow
time for the sub-problem, since minimizing mean flow time is not equivalent to minimizing
makespan. However, the minimum makespan schedule may allow jobs in subsequent sub-
problems to start earlier than under the completionTime approach. Earlier start times for all
jobs would imply lower total completion times for all future sub-problems and, therefore, bet-
ter long-run performance. Moreover, the optimal makespan schedule for a static two-machine
flow shop can be found using a polynomial-time algorithm – Johnson’s rule (Conway et al.,
1967).

Johnson’s rule divides jobs into two sets: set I consists of all jobs whose processing time
on machine 1 is less than or equal to its processing time on machine 2, and set II consists
of all the remaining jobs. Set I is processed before set II. Johnson’s rule creates permutation

CHAPTER 7. CONCEPTUAL INTEGRATION 116

schedules, that is, schedules in which the order of jobs is the same on both machines. Within
set I, jobs are sequenced in non-decreasing order of the processing time on machine 1, while
within set II, jobs are sequenced in non-increasing order of the processing times on machine 2.
The scheduling approach that uses Johnson’s rule to solve each sub-problem will be referred
to as the makespan approach.

Below we present experiments comparing the performance of FCFS, SPTsum, makespan

and completionTime models in our two problems of interest. The completionTime model was
implemented via constraint programming in Ilog Scheduler 6.5 and uses the completion global
constraint (Kovács and Beck, 2011). The remaining methods were implemented using C++. In
these experiments, the completionTime model was run with a time limit of one second per sub-
problem in order to ensure reasonable run-times for our experiments. With a time limit, this
approach is not guaranteed to find the optimal sub-problem schedule. We do not take algorithm
run-time into account in any of our results. Preliminary experiments with a time limit of five
seconds showed identical performance.

7.2.2 Dynamic Flow Shop

To evaluate the performance of our four methods in a dynamic flow shop, we considered a sys-
tem with exponentially distributed inter-arrival times and exponentially distributed processing
times with the same means on both machines. We fixed the arrival rate, λ, to 10, and varied
the load on the system by changing the rates of the processing time distributions from 100 to
10.53. The results of these experiments are shown in Figure 7.3. Each point in the figure rep-
resents the mean flow time over 100 instances of 55,000 jobs each. Preliminary experiments
with uniformly distributed processing times showed similar results.

Figure 7.3 shows that there is no significant difference between the methods. The com-

pletionTime approach has a slight advantage over the others for loads of 0.7 and less, while
SPTsum is slightly better for loads of 0.8 and greater. The makespan model is marginally
better than FCFS and completionTime at loads above 0.8.

SPTsum is the best-performing model for loads above 0.8, when the static sub-problems
become large. These observations are supported by the results of Xia et al. (2000), who have
shown that SPTsum is asymptotically optimal for the static average completion time objective
as the number of jobs in a two-machine flow shop increases. It was not clear, a-priori, that
applying this method to each sub-problem would result in the best long-run behaviour for
high loads. In our study, we have not compared our periodic methods to the dispatching rules
evaluated by Sarper and Henry (1996), who empirically show that ordering the jobs in non-
decreasing order of processing times at each machine (i.e., SPT at each machine) results in

CHAPTER 7. CONCEPTUAL INTEGRATION 117

0.2 0.4 0.6 0.8

0
10

0
20

0
30

0

Queue Load

M
ea

n
F

lo
w

 T
im

e

Mean Flow Times for Various Queue Loads

FCFS
makespan
SPT_sum
completionTime

Figure 7.3: Mean flow times in a dynamic two-machine flow shop for FCFS, SPTsum, com-
pletionTime and makespan models as the system load varies.

lowest mean flow times at loads of 0.8 and 0.9; comparison of our methods to such dispatching
rules is left for future work. FCFS is the worst performer over all loads, due to the fact that it
is the only method that does not use processing time information.

7.2.3 Polling System

In order to understand the performance of the four methods in a polling system with a flow-
shop server, we simulated five symmetrical systems with B = 5 queues and with a fixed arrival
rate of λb = 1 for all b. In each system, the processing times are exponentially distributed with
the same means on both machines for all queues (i.e., µ1b = µ2b = µ for all b). As the mean
processing times increase in the different experimental conditions, the load on the system,

CHAPTER 7. CONCEPTUAL INTEGRATION 118

0.3 0.4 0.5 0.6 0.7 0.8

0
50

0
10

00
15

00
20

00

System Load

M
ea

n
F

lo
w

 T
im

e

Mean Flow Times for Various Queue Loads

FCFS
makespan
SPT_sum
completionTime

Figure 7.4: Mean flow times in a polling system with a two-machine flow shop server for
FCFS, SPTsum, completionTime and makespan models as the system load varies.

defined as
∑B

b=1 max{ρ1b, ρ2b} = 5ρ1b, increases. Thus, in order to observe the variation in
performance as the load changes, we considered systems with µ ∈ {16, 12, 10, 8, 6}.

Figure 7.4 shows the mean flow times for the completionTime model with a one-second
time limit, FCFS, SPTsum and the makespan model as the system load increases. Every point
in this figure represents the mean flow time over 100 problem instances, each consisting of
25,000 jobs (5000 per queue). The figure shows that, for loads of 0.5 or less, the performance
of the four methods is almost identical, although makespan has a slight advantage over the
other three approaches. For loads greater than 0.5, makespan also achieves the lowest mean
flow times. Moreover, the difference in performance between makespan and the other methods
grows as the load increases. FCFS results in the highest flow times, and SPTsum performs

CHAPTER 7. CONCEPTUAL INTEGRATION 119

better than completionTime when the load is 0.85. For an asymmetrical system consisting of
five queues with different loads, the results match the pattern of Figure 7.4.

7.3 The makespan method vs. the completionTime method

In our analysis, we focus on understanding the performance differences between the makespan

and completionTime models only. Since both approaches are based on periodic scheduling, we
evaluate the overall impact of the differences between the two in each sub-problem solution.

7.3.1 Assumptions

To simplify our analysis, unless stated otherwise, we assume that the arrival processes are such
that exactly n jobs are available at the time when a sub-schedule needs to be constructed. In
the polling system, this assumption guarantees that both models solve exactly the same sub-
problems (which is always true in the dynamic flow shop). Our results also hold if we assume
that at least n jobs are available at the start of each sub-problem, the queue service discipline
is limited-n rather than gated and the same set of jobs is selected by both makespan and com-

pletionTime at each polling instant.7 In both the dynamic flow shop and the polling system,
these assumptions imply that, as soon as a sub-problem ends, the next one starts immediately.
In other words, in the dynamic flow shop, machine 1 never idles, and in the polling system, at
least one of the two machines is always busy. We discuss these assumptions and their impli-
cations in Section 7.4.3. We assume that all processing times are finite, but do not make any
other assumptions about their distributions.

7.3.2 Notation

Let the processing time of job j on machine m be denoted by pmj . Let Ĉj be the completion
time of job j in the schedule constructed by the completionTime model for the particular sub-
problem to which j belongs, assuming that the completionTime model solves this sub-problem
to optimality. Similarly, let CM

j be the completion time of job j in the minimum makespan
schedule provided by the makespan model for the same sub-problem. We denote the comple-
tion time of job j in an arbitrary schedule by Cj .

Given that there are n jobs per sub-problem, we assume that the jobs of sub-problem i, i ≥
0, are indexed from in+1 to (i+1)n.8 Thus, for sub-problem i, i ≥ 0, the sum of completion

7Under a limited-n discipline, at most n jobs can be processed during a queue visit (sub-problem). Refer to
Section 6.1.2.2.2 for a review of the literature related to different queue service disciplines in polling systems.

8We relax this assumption in Section 7.4.3.

CHAPTER 7. CONCEPTUAL INTEGRATION 120

times for the completionTime model (i.e., the optimal sum of completion times) is
∑(i+1)n

j=in+1 Ĉj ,
and the sum of completion times for the makespan model is

∑(i+1)n
j=in+1 C

M
j . Similarly, the

makespan obtained from solving the ith problem using the completionTime model is denoted
Ĉmaxi

, while the makespan from the makespan model (i.e., the optimal makespan) is denoted
CM

maxi
. The makespan of an arbitrary schedule is denoted by Cmaxi

.

Let ∆i(
∑

Cj) =
∑(i+1)n

j=in+1 C
M
j −

∑(i+1)n
j=in+1 Ĉj be the difference in the total completion

time between the completionTime and the makespan models for the ith sub-problem. Let
∆i(Cmax) = CM

maxi
− Ĉmaxi

be the difference in the makespan values, for the ith sub-problem,
between the two models. Consider a problem with T sub-problems, which are numbered
0, 1, . . . , T − 1. The difference in the sum of completion times for T sub-problems is

T−1∑
i=0

∆i(
∑

Cj) =
T−1∑
i=0

(i+1)n∑
j=in+1

CM
j −

T−1∑
i=0

(i+1)n∑
j=in+1

Ĉj. (7.1)

Additionally, denote by C0
j the end time of job j under the assumption that the first job

of the sub-problem to which j belongs starts at time 0, which can be viewed as a temporal
mapping of the completion time. More formally, if si denotes the start of the sub-problem i

to which job j belongs, then Cj = si + C0
j . For example, in the polling system of Figure 7.1,

C7 = 17, s2 = 14 and C0
7 = 3. In the dynamic flow shop of Figure 7.2, C7 = 14, s2 = 9 and

C0
7 = 5. We refer to the values of C0

j as the original completion times and the values of Cj as
the actual completion times. Thus, Ĉ0

j and CM,0
j denote the original completion times of job j

if the completionTime and the makespan policy are employed, respectively.

Since the makespan policy optimizes the makespan of each sub-problem and since the sub-
problem’s makespan is independent of the previous sub-problems, it follows that ∆i(Cmax) ≤
0. Similarly, the completionTime model, theoretically, results in the optimal sum of completion
times, and hence ∆i(

∑
C0

j) ≥ 0. It is not obvious, however, that ∆i(
∑

Cj), which is based
on the actual completion times, is greater than or equal to 0, since actual completion times are
influenced by the previous sub-problems.

7.3.3 Dynamic Flow Shop

In the dynamic flow shop the sub-problems overlap: at a given point in time, machine 1 may be
processing a job from sub-problem i while machine 2 is still processing jobs from sub-problem
i − 1. This overlap is taken into account when a static sub-problem is solved, and, therefore,
is included in the calculation of C0

j . This allows the completion time of job j belonging to
sub-problem i > 0 to be written simply as Cj =

∑in
l=1 p1l +C0

j . That is, the actual completion
time of job j is its original completion time shifted forward in time by the sum of the machine

CHAPTER 7. CONCEPTUAL INTEGRATION 121

1 processing times of all previous sub-problems. For example, in Figure 7.2 we see that the end
time of every job belonging to sub-problem 1 is shifted by 4 time units, while the end times of
jobs in sub-problem 2 are shifted by 9 units.

From the empirical results of Sections 7.2.2 and 7.2.3, it became clear that optimizing
the total completion time of each sub-problem does not lead to the best long-run flow time
performance in all environments due to the periodic nature of the methods. Moreover, Figure
7.3 does not provide a complete representation of how well the completionTime model performs
compared to the other methods, since the sub-problem is not always solved to optimality within
the given time limit. We establish the superiority of the theoretical completionTime model in
the subsequent theorem.

Theorem 7.3.1. In a dynamic two-machine flow shop under the assumptions of Section 7.3.1,

if n is finite, then optimizing the total completion time of each sub-problem leads to a smaller

sum of completion times over T time periods than minimizing each sub-problem’s makespan.

That is,
∑T−1

i=0

∑(i+1)n
j=in+1 Ĉj ≤

∑T−1
i=0

∑(i+1)n
j=in+1 C

M
j , or, equivalently,

∑T−1
i=0 ∆i(

∑
Cj) ≥ 0.

Proof. Equation (7.1) can be written in terms of C0
j and CM0

j as follows:

T−1∑
i=0

∆i(
∑

Cj) =
T−1∑
i=1

[(i+1)n∑
j=in+1

(CM
j − Ĉj)

]

=
T−1∑
i=1

[(i+1)n∑
j=in+1

[
(

in∑
l=1

p1l + CM,0
j)− (

in∑
l=1

p1l + Ĉ0
j)
]]

=
T−1∑
i=1

[(i+1)n∑
j=in+1

[
CM,0

j − Ĉ0
j

]]
=

T−1∑
i=1

[
∆i(
∑

C0
j)
]
, (7.2)

where the third equality follows from the fact that both the completionTime and the makespan

approach solve exactly the same sub-problems, implying that the sum of machine 1 processing
times is the same under both. The final expression shows that the total difference in the sum of
actual completion times over T time periods is the same as the total difference in the sum of
original completion times over T periods. We know that ∆i(

∑
C0

j) ≥ 0 for all i by the fact
that the theoretical completionTime model finds the optimal sum of completion times schedule.
Therefore,

∑T−1
i=0 ∆i(

∑
Cj) ≥ 0, which means that optimizing the total completion time of

each sub-problem will always lead to a better overall sum of completion times than minimizing
each sub-problem’s makespan.

CHAPTER 7. CONCEPTUAL INTEGRATION 122

The results of Figure 7.3 are consistent with Theorem 7.3.1, since they show that the model
that achieves the smallest mean flow times in the long run is the one that finds the best sum of
completion times schedules for each sub-problem. For loads of 0.7 or less, this is the comple-

tionTime model. For all higher loads, the completionTime model run with a time limit is not
always able to find the optimal solution. From our experimental results it is clear that SPTsum

finds better total completion time schedules when the value of n is not too small, leading to its
overall best performance in terms of the long-run mean flow time.

A simple corollary of Theorem 7.3.1 concerns the limiting behaviour of the difference
between the two models as T goes to ∞.

Corollary 7.3.1. limT→∞
∑T−1

i=0 ∆i(
∑

Cj) ≥ 0.

Proof. Since ∆i(
∑

C0
j) ≥ 0, it follows that

lim
T→∞

T−1∑
i=0

∆i(
∑

Cj) = lim
T→∞

T−1∑
i=1

∆i(
∑

C0
j) ≥ 0.

When ∆i(
∑

C0
j) = 0 for all i, limT→∞

∑T−1
i=0 ∆i(

∑
Cj) = 0. Whether the series converges

or diverges depends on the properties of ∆i(
∑

C0
j) and can be determined via standard con-

vergence methods (see, e.g., the textbook of Stewart (1999)).

Whether the series is convergent or divergent depends on whether the ∆i(
∑

C0
j) are bounded

for all i, which in turn depends on the distributions of the processing times. We leave further
investigation of this question for future work.

The main message of the above analysis is that, under the assumptions of Section 7.3.1,
but regardless of the processing time distributions and regardless of T and n, the comple-

tionTime model will perform better than makespan for the total completion time objective
for the dynamic two-machine flow shop. We conjecture that the same is true for the M -
machine dynamic flow shop. In such an environment, we can still write the completion time
as Cj =

∑in
l=1 p1l + C0

j where C0
j is the completion time of job j on the last machine given

that the sub-problem starts at time 0 and overlapping jobs of sub-problem i − 1 are taken into
account. Thus, we can describe the M -machine dynamic flow shop with M > 2 using the
differences in the sum of completion times and makespans of static sub-problems, similarly to
the two-machine case.

7.3.4 Polling System

We view the global polling system schedule as a sequence of n-job sub-schedules, which allows
us to disregard the information about the queue to which a particular sub-problem belongs and

CHAPTER 7. CONCEPTUAL INTEGRATION 123

makes our analysis simpler and independent of the polling order.

Given that the server switches between queues (and sub-problems) at the completion time
of the last job on the second machine, every Cj in the dynamic problem can be represented
in terms of C0

j and the sum of the makespans of the preceding sub-problems. That is, if job j

belongs to sub-problem i, i ≥ 1, then, under the assumptions of 7.3.1, Cj =
∑i−1

k=0 Cmaxk
+C0

j :
the actual completion time of job j is its original completion time shifted forward in time by
the sum of the makespans of all previous sub-problems. For example, in Figure 7.1 we see that
the end time of every job belonging to sub-problem 1 is shifted by 5 time units, while the end
times of jobs in sub-problem 2 are shifted by 14 units. Equation (7.1) can be written in terms
of C0

j and CM0
j as follows:

T−1∑
i=0

∆i(
∑

Cj) = n
T−1∑
i=1

i−1∑
k=0

CM
maxk

+
T−1∑
i=0

(i+1)n∑
j=in+1

CM0
j

− n

T−1∑
i=1

i−1∑
k=0

Ĉmaxk
−

T−1∑
i=0

(i+1)n∑
j=in+1

Ĉ0
j (7.3)

= n[(T − 1)∆0(Cmax) + (T − 2)∆1(Cmax) + . . .

+ ∆(T−2)(Cmax)] + ∆0(
∑

C0
j) + · · ·+∆T−1(

∑
C0

j). (7.4)

Thus, we can calculate the difference in the sum of completion times for T periods by evalu-
ating T static sub-problems under the assumption that each sub-schedule is started at time 0.
When

∑T−1
i=0 ∆i(

∑
Cj) ≤ 0, we know that the makespan model is as good as or better than

the completionTime model for the objective of minimizing the total completion time over T
time periods. From Equation (7.4) we see that this condition depends on the values of n and T ,
and the magnitude of the differences in the sums of completion times and in the makespans of
the sub-problems. Specifically, as n and T grow, n[(T − 1)∆0(Cmax) + · · · +∆(T−2)(Cmax)]

decreases since ∆i(Cmax) ≤ 0 ∀i. However, an increase in T also leads to a greater number
of ∆i(

∑
C0

j)’s in Equation (7.4), which in general could be much larger than the values of
|∆i(Cmax)|.

Our empirical results suggest that, in the polling system, minimizing the makespan of each
sub-problem should always lead to better performance than minimizing the sum of completion
times of the sub-problem (i.e., a result similar to the one of Theorem 7.3.1, with the roles of
completionTime and makespan reversed). However, this turns out to not be the case in general.
Specifically, for a finite T and n, it is possible to construct an example where minimizing each
sub-problem’s makespan results in a worse overall sum of completion times than minimizing
each sub-problem’s sum of completion times. One such example occurs when the makespan

CHAPTER 7. CONCEPTUAL INTEGRATION 124

and completionTime models produce schedules with equal makespans and equal sums of com-
pletion times for all but the last sub-problem of the scheduling horizon, as formally stated in
Proposition 7.3.1.

Proposition 7.3.1. If ∆i(Cmax) = 0 and ∆i(
∑

C0
j) = 0 for i = 0, 1, . . . , T − 2, but

∆T−1(Cmax) < 0 and ∆T−1(
∑

C0
j) > 0, then

∑T−1
i=0 ∆i(

∑
Cj) > 0, implying that the com-

pletionTime model results in a smaller overall sum of completion times for any finite T and

any finite number of jobs per sub-problem, n.

Proof. The result follows simply from Equation (7.4):

T−1∑
i=0

∆i(
∑

Cj) = n[(T − 1)∆0(Cmax) + (T − 2)∆1(Cmax) + . . .

+ ∆(T−2)(Cmax)] + ∆0(
∑

C0
j) + · · ·+∆T−1(

∑
C0

j)

= 0 + ∆T−1(
∑

C0
j)

= ∆T−1(
∑

C0
j) > 0. (7.5)

The next question of interest is the limiting behaviour of the difference between the two
models. Firstly, we present in Proposition 7.3.2 one set of conditions under which the dif-
ference between makespan and completionTime grows in favour of makespan as T → ∞.
Specifically, this case occurs if the schedules provided by the two models differ in their sum of
completion times and makespans for sub-problem 0 only. This result occurs due to the fact that
a shorter makespan in the initial sub-problem allows all subsequent jobs to start earlier under
the makespan approach than under completionTime; the effect of the positive difference in the
total completion time of sub-problem 0 does not propagate.

Proposition 7.3.2. If ∆0(Cmax) < 0 and ∆0(
∑

C0
j) > 0, but ∆i(Cmax) = 0 and ∆i(

∑
C0

j) =

0 for all i ≥ 1, then for any finite n, limT→∞
∑T−1

i=0 ∆i(
∑

Cj) = −∞.

Proof. The result follows simply from Equation (7.4):

lim
T→∞

T−1∑
i=0

∆i(
∑

Cj) = lim
T→∞

[n[(T − 1)∆0(Cmax) + (T − 2)∆1(Cmax) + . . .

+ ∆(T−2)(Cmax)] + ∆0(
∑

C0
j) + · · ·+∆T−1(

∑
C0

j)]

= lim
T→∞

[n(T − 1)∆0(Cmax) + ∆0(
∑

C0
j)]

= −∞, (7.6)

CHAPTER 7. CONCEPTUAL INTEGRATION 125

where the last equality follows from the fact that both ∆0(Cmax) and ∆0(
∑

C0
j) are finite and

∆0(Cmax) < 0.

More generally, if the difference in the sum of completion times between the two models is
bounded and there is a non-zero probability that ∆i(Cmax) < 0 for an infinite number of sub-
problems, then, as the number of sub-problems, T , increases, the makespan model becomes
better than the completionTime model with respect to the overall total sum of completion times.

Theorem 7.3.2. If ∆i(
∑

C0
j) ≤ −φ∆i(Cmax) for all i, where 1 ≤ φ < ∞, and P (∆i(Cmax) <

0) > 0 for an infinite number of sub-problems, then limT→∞
∑T−1

i=0 ∆i(
∑

Cj) = −∞.

Proof. Firstly, we derive a bound on
∑T−1

i=0 ∆i(
∑

Cj):

T−1∑
i=0

∆i(
∑

Cj) = n[(T − 1)∆0(Cmax) + (T − 2)∆1(Cmax) + . . .

+ ∆(T−2)(Cmax)] + ∆0(
∑

C0
j) + · · ·+∆T−1(

∑
C0

j)

≤ n[(T − 1)∆0(Cmax) + (T − 2)∆1(Cmax) + . . .

+ ∆(T−2)(Cmax)]− φ∆0(Cmax)− φ∆1(Cmax)− · · · − φ∆T−1(Cmax)

= (n(T − 1)− φ)∆0(Cmax) + (n(T − 2)− φ)∆1(Cmax) + . . .

+ (n− φ)∆(T−2)(Cmax)− φ∆T−1(Cmax). (7.7)

Since φ and ∆T−1(Cmax) are finite, and since our assumption that P (∆i(Cmax) < 0) > 0 for
an infinite number of sub-problems implies that there will be an infinite number of non-zero
∆i(Cmax) values, taking the limit as T → ∞ of Expression (7.7) results in −∞. Since Expres-
sion (7.7) is an upper bound on

∑T−1
i=0 ∆i(

∑
Cj), it follows that limT→∞

∑T−1
i=0 ∆i(

∑
Cj) =

−∞.

The assumption that ∆i(
∑

C0
j) ≤ −φ∆i(Cmax) for all i, where 1 ≤ φ < ∞, holds if

the number of jobs in sub-problem i and all their processing times are finite, regardless of the
distribution.9 The proof of Theorem 7.3.2 suggests that the difference between the two models
grows at a faster rate when n is larger (but still finite).

Therefore, the conclusions of our investigation are consistent with our motivations for con-
sidering methods based on optimizing makespan and total completion time and with the em-
pirical results of Figure 7.4. Indeed, as the number of sub-problems increases, the makespan

9We assume that ∆i(Cmax) = 0 implies that the schedules produced by makespan and completionTime are
the same, also implying ∆i(

∑
C0

j) = 0. In practice, makespan and completionTime could produce schedules that
would be the same with respect to one objective but not the other. It is easy to modify the algorithms to prevent
such occurrences.

CHAPTER 7. CONCEPTUAL INTEGRATION 126

model, which considers long-run objectives, can achieve significant gains over the completion-

Time model, which optimizes short-run behaviour.

The above analysis shows that, under the assumptions of Section 7.3.1, in the dynamic
flow shop, the completionTime model always performs better than the makespan model. While
not always true for a finite number of sub-problems, the difference between the two models
is reversed in favour of makespan as the number of sub-problems increases to infinity in the
polling system.

Another important parameter for both the polling system and the dynamic flow shop is
the number of jobs per sub-problem, n. It is therefore interesting to consider the value of
limn→∞

∑T−1
i=0 ∆i(

∑
Cj). In fact, the exact value of this limit depends on the distribution

of the processing times, since the values of ∆i(
∑

Cj) are distribution-dependent. For the
dynamic two-machine flow shop under our assumptions, however, it holds trivially that limn→∞∑T−1

i=0 ∆i(
∑

Cj) ≥ limn→∞∆0(
∑

C0
j) ≥ 0 since ∆0(

∑
C0

j) ≥ 0 for any n by definition. For
the polling system, this argument does not hold since

∑T−1
i=0 ∆i(

∑
Cj) can be negative when

∆0(
∑

C0
j) ≥ 0, and we leave the investigation of the properties of this limit for future work.

7.4 Discussion

In this section, we provide some discussion of our results and assumptions.

7.4.1 Polling System vs. Dynamic Flow Shop

Equations (7.2) and (7.4), together with our empirical results, explain the differences in the
behaviour of the makespan and the completionTime models in the dynamic flow shop and in
the polling system. They also lead to several insights regarding dynamic scheduling.

Firstly, in the case of the polling system, our analysis demonstrates a conflict between
short-run and long-run objectives. That is, minimization of the sum of completion times at
each scheduling point results in the best performance for the current sub-problem, but leads
to poor performance in the long run. Minimization of the makespan, on the contrary, leads
to sub-optimal sum of completion time values for each sub-problem, but results in significant
overall mean flow time improvements. In dynamic two-machine flow shops there is no conflict
between the way in which we have attempted to optimize long-run and short-run objectives:
minimizing the total completion time of each sub-problem leads to better long-run mean flow
time than does minimizing makespan. These observations demonstrate the importance of con-
sidering both short-run and long-run objectives when designing a scheduling algorithm for any

CHAPTER 7. CONCEPTUAL INTEGRATION 127

dynamic scheduling problem.

Secondly, we see that the difference between the performance of different periodic schedul-
ing methods in the two systems is induced by the change in the time point at which a new sub-
problem is solved. Recall that in the dynamic flow shop, scheduling occurs at the completion
time of the previous sub-problem on machine 1, while in the polling system, it occurs at the
completion time of the previous sub-problem on machine 2. This disparity in the review time
point can be viewed as the result of either a structural difference in the systems or a change in
the design of the periodic scheduler. Structurally, the two systems differ because the dynamic
flow shop has one queue (serving one customer or producing one product type), while the
polling system has multiple (serving multiple customers or producing multiple product types).
Alternatively, we can think of the review time point as being a parameter in the design of the
periodic scheduling approach. Thus, we could have, for example, solved the dynamic flow
shop problem instances by reviewing the system status at the completion time of sub-problems
on machine 2, as in the polling system. We therefore conclude that, when one attempts to
create a scheduling approach for a dynamic system, one needs to keep in mind that changes in
both the system structure and the parameters of the approach can have a significant effect on
how the trade-off between short-run and long-run objectives affects the system’s performance.

Thirdly, the choice of objective function for each sub-problem, which is a proxy measure
for the long-run objective, may not always be obvious and is dependent on system structure.
Thus, our work suggests that, for general dynamic scheduling problems, it is important to in-
vestigate various objective functions in order to develop an effective scheduling method. Our
results also indicate that, in a polling system with a flow shop-like server, an approach that
would find, for each sub-problem, the minimum makespan schedule with the smallest total
completion time would outperform the methods we presented here. This hierarchical objective
function would have the long-run focus of the makespan model, but would also be better than
makespan in the short-run. In a dynamic flow shop, an approach that finds the optimal comple-
tion time schedule with the smallest makespan is of interest. However, our results imply that
this approach would provide only marginal improvements over the completionTime model. It
would also be interesting to investigate weighted combinations of objectives.10

7.4.2 Queueing vs. Scheduling Methods

Additionally, the polling system results suggest that periodic scheduling methods can perform
better than queueing-based dispatching rules for optimization of long-run performance, since
makespan significantly outperforms FCFS with respect to mean flow time. We discuss our

10Thank you to Dr. Michael Trick for this suggestion.

CHAPTER 7. CONCEPTUAL INTEGRATION 128

plans for further investigation of the relative performance of queueing and scheduling algo-
rithms, and their hybrids, in Section 10.3.

7.4.3 Sub-problem Size Assumptions

One simplifying assumption that we made in the analysis of Section 7.3 is that every sub-
problem consists of exactly n jobs. Suppose now that the number of jobs changes, and denote
the number of jobs in sub-problem i by ni. Then in the dynamic flow shop without any addi-
tional assumptions and in the polling system under the assumption that both the makespan and
the completionTime models encounter exactly the same sub-problems, one needs to substitute
ni for each occurrence of n in the calculations of ∆i(

∑
C0

j) and ∆i(Cmax); the equivalents of
all results of Section 7.3 would hold.

We also assume that a new set of n jobs is available whenever the previous sub-problem
ends. This assumption prevents the occurrence of idle times between sub-problems. Specif-
ically, in the polling system, it implies that there will be no idle times between the end of a
sub-problem on machine 2 and the start of the next sub-problem on machine 1; in the dynamic
flow shop, idle times between the end of a sub-problem on machine 1 and the start of the next
sub-problem on machine 1 are prevented. In the general case, it is possible for such idle times
to occur since the arrival process is stochastic, and Equations (7.2) and (7.4) would have to be
modified to include the sum of all idle times. For arrival processes such as the Poisson pro-
cess, the probability of getting no arrivals during a sub-problem would decrease as its length
increases. We conjecture that the majority of results based on Equations (7.2) and (7.4) would
not change due to the inclusion of idle times, though they might require the assumption of an
upper bound on the total idle time.

Consider now our assumption that the two models solve exactly the same sub-problems. In
the dynamic flow shop, this is in fact always true, since a new schedule is created when the
last job in the previous sub-problem is completed on machine 1, which occurs at the same time
in both the completionTime and the makespan models. In the polling system, the scheduling
time point directly depends on the makespans of all previous sub-problems. Thus, a difference
between the makespans resulting from the makespan and the completionTime models may
imply that the makespan model will solve more sub-problems with a smaller number of jobs.
The original situation in which the two approaches have to solve different sub-problems can
happen only if the arrival rate and |∆i(Cmax)| values are sufficiently high: there has to exist
some sub-problem i such that there is at least one job in the queue at the completion of this
sub-problem under both models and there is an additional arrival in the time interval between∑i

k=0 C
M
maxk

and
∑i

k=0 Ĉmaxk
. After this case occurs, it is likely that the sub-problems would

CHAPTER 7. CONCEPTUAL INTEGRATION 129

continue being different when the arrival rates are high. Equation (7.4) would not be directly
applicable if the two models encountered different problems, but it would be an approximation
of the actual difference in the sum of completion times. The insight gained from this equation,
namely that the makespans of the sub-problems have a direct effect on the sum of completion
times, would still hold.

Therefore, our assumptions regarding the fixed sub-problem size for both models greatly
simplify the analysis while still providing us with a good understanding of how the makespan

and completionTime methods work for our systems of interest.

7.5 Conclusion

We investigated two dynamic environments: a two-machine flow shop, which has received
significant attention in scheduling research, and a polling system with a flow shop server, an
extension of systems typically studied in queueing theory. Based on analysis and experiments,
and using ideas from both queueing theory and scheduling, we obtained new insights regard-
ing the solution of dynamic scheduling problems by a periodic scheduling approach. Firstly,
we demonstrated that it is important to evaluate the trade-off between short-run and long-
run objectives in dynamic scheduling. In the polling system, minimizing makespan at each
scheduling point leads to better mean flow time over a long horizon than does minimizing
flow time itself or using simple queueing policies. The opposite is true in a dynamic flow
shop without a polling structure. Secondly, our polling system results suggest that periodic
scheduling methods can perform better than queueing-based dispatching rules for optimization
of long-run performance. However, the choice of objective function for each sub-problem may
not always be obvious. Thus, this chapter demonstrates that combining ideas, concepts and
problem settings from queueing theory and scheduling can lead to a better understanding of
dynamic scheduling.

In the next chapter, we consider the theoretical integration of queueing and scheduling.
Specifically, we focus on the queueing notion of stability, and prove stability of FCFS and
makespan in both the dynamic flow shop and the polling system with a flow shop server.

Chapter 8

Theoretical Integration of Scheduling and
Queueing Theory: Stability

Stability analysis consists of identifying conditions under which the number of jobs in a system
is guaranteed to remain bounded over time. In this chapter,1 we analyze stability of the two-
machine flow shop and the polling system with a flow shop server that have been presented
in the previous chapter. In the dynamic flow shop, stability of a scheduling approach that
periodically solves static deterministic sub-problems is shown using a sample path argument.
In the polling system, stability of FCFS and of a periodic scheduling method is proven using
the fluid model methodology of Dai (1995).

This chapter demonstrates that theoretical integration of queueing and scheduling can lead
to long-run performance guarantees for scheduling algorithms that have previously been avail-
able only for queueing policies. In particular, in two environments, we prove stability of a
scheduling method that is based on the traditional scheduling literature and utilizes processing
time information to make sequencing decisions.

In more detail, the contributions of this chapter are:

1. We introduce long-run stability to combinatorial scheduling and prove that a periodic
scheduling approach based on makespan minimization is stable in the dynamic flow shop
environment.

2. We prove stability of FCFS in a polling system with a gated, cyclic discipline and a
server that is a two-machine flow shop. We show that this proof extends to the case when
the server is an M -machine flow shop or a d-stage flexible flow shop with M machines

1Parts of this chapter appear as a technical report (Terekhov et al., 2012b) and as a conference paper (Terekhov
et al., 2012c). The material included in the conference paper (Terekhov et al., 2012c) is used with permission of
the copyright holder, the Association for the Advancement of Artificial Intelligence c©, and the paper’s co-authors.

130

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 131

at each stage. Moreover, our proofs imply that all non-idling policies that do not utilize
processing time information are stable under the stability condition of FCFS.2

3. We prove stability of a periodic scheduling method that minimizes makespan of each
static sub-problem for a polling system with a two-machine flow shop server. This proof
extends to the case when the server is an M -machine flow shop or a d-stage flexible flow
shop with M machines at each stage.

4. We demonstrate the applicability of the fluid model methodology for proving stability of
scheduling policies based on processing times.

This chapter is organized as follows. Firstly, we provide a brief introduction to stability.
Section 8.2 discusses the stability of FCFS and makespan in the dynamic flow shop. The proof
of stability of the makespan approach is shown using a sample path argument. Section 8.3
proves stability of FCFS and makespan in the polling system using the fluid model methodol-
ogy of Dai (1995). We conclude the chapter in Section 8.5.

8.1 Introduction to Stability

Informally, a system is stable if its queues remain bounded over time.3 In queueing theory,
establishing the stability of a system is considered a precursor to more detailed analysis (Kumar
and Meyn, 1995). In early queueing work it was believed that to ensure a stable system, it was
necessary and sufficient to have the load of each machine, defined as the ratio of the arrival rate
to the processing rate, be strictly less than 1 (Dai and Weiss, 1996).

However, a series of papers (Lu and Kumar, 1991; Bramson, 1994; Seidman, 1994) pro-
vided counter-examples which demonstrated that this load condition is not always sufficient
(Dai and Weiss, 1996). In particular, the stability of a system is dependent on the scheduling
policy it employs: for a given set of problem parameters (arrival and processing rates), one pol-
icy may stabilize the system while another might not. Knowledge of whether a system is stable
for a given job arrival rate, processing rate and scheduling policy is essential for practical ap-
plications. For instance, processes in semi-conductor manufacturing are frequently modelled
as reentrant lines (Kumar, 1994), and Dai and Weiss (1996, p. 27) state that “stability is a

2Thank you to Dr. Timothy C. Y. Chan for this observation.
3In the scheduling literature, a predictive schedule is called stable if the schedule executed online is close to

the planned schedule (Bidot et al., 2009). Similarly, in scheduling under uncertainty, stability analysis concerns
the identification of the range of values that the processing times may take while the given schedule remains
optimal (Sotskov et al., 2010). We do not use these definitions here, instead adopting the meaning of stability
from queueing theory.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 132

first issue one needs to address if one wishes to study optimal or near-optimal scheduling of a
reentrant line.”

Formally, a system operating under a particular queueing discipline is stable if the Markov
process that describes the dynamics of the system is positive Harris recurrent (Dai, 1995).
Positive Harris recurrence implies the existence of a unique stationary distribution. Due to
the considerable notation required, we do not formally define positive Harris recurrence here,
but instead refer the reader to the papers by Dai (1995), Dai and Meyn (1995) and Bramson
(2008). In the case when the state space of the Markov process is countable4 and all states
communicate, positive Harris recurrence is equivalent to the more widely-known concept of
positive recurrence (Bramson, 2008). A Markov chain is positive recurrent if every state s is
positive recurrent: the probability that the process starting in state s will return to s is 1, and the
expected time to return to this state is finite (Ross, 2003). In particular, this property guarantees
that the system will empty.

Except for the stability of FCFS in a two-machine flow shop, the stability problems we
address are different from those in the literature for two reasons. Firstly, our polling system
with a two-machine flow shop server can be viewed as a hybrid of two well-studied systems,
a tandem queue and a polling system with a single-machine server. Secondly, for both the
dynamic flow shop and the polling system, we consider scheduling policies which assume
knowledge of the processing times and are based on the notion of periodic scheduling and
makespan minimization. As far as we are aware, neither the stability of the hybrid system
nor the stability of the periodic scheduling method with makespan minimization have been
addressed in the queueing literature. We are unaware of any work on the stability analysis of
scheduling policies based on exact knowledge of processing times.

In this chapter, we assume the problem definitions presented in Section 7.1. However, we
make some additional assumptions on the inter-arrival and processing time distributions that
are standard in the queueing literature dealing with stability analysis (Dai, 1995):

• For each queue, the sequences of processing times for machine 1 and machine 2, and the
sequence of inter-arrival times, are independent and identically distributed sequences.
They are also mutually independent.

• Mean processing times and mean inter-arrival times for all queues are finite.

• The inter-arrival times are unbounded and continuous.

These assumptions are satisfied by commonly used distributions such as the exponential dis-
tribution. In order to avoid introducing too much notation, we do not state these assumptions

4This process is referred to as a continuous-parameter Markov chain in the book by Gross and Harris (1998).

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 133

formally here. Instead, they are formally defined, using the notation relevant to the polling
system proofs, in Section 8.3.1.

8.2 Stability of the Dynamic Flow Shop

We firstly prove stability of the dynamic flow shop with two machines. Subsequently, we
briefly investigate the case with M machines.

8.2.1 Two-Machine Case

In the dynamic flow shop with two machines, the following theorem holds:

Theorem 8.2.1. If λ
min{µ1,µ2} < 1, then the tandem queue with the periodic FCFS policy is

stable.

This result follows trivially from the fact that for the dynamic flow shop, the periodic FCFS

policy is equivalent to the “standard”, non-periodic implementation of FCFS, and the fact that,
under our assumptions, the tandem queue is a generalized Jackson network. Stability of such
networks under the condition that the load of each machine is strictly less than 1 has been
proven previously by various methods, such as the fluid model methodology of Dai (1995).
The same methodology can be used to show the stability of FCFS in an M -machine flow shop
under the condition that λ

minm∈{1,...,M}{µm} < 1.

For the makespan policy, we prove a result which holds for every sample path in the evo-
lution of the system. Let s∗i and t∗i be the time points at which sub-problem i starts on machine
1 and completes on machine 2, respectively, under the makespan approach. Let vi and vπi be
the total processing time of all jobs completed by time t∗i under the makespan policy and an
arbitrary policy π, respectively. Following the queueing literature, we further refer to vi and vπi

as the work completed by time t∗i .

Lemma 8.2.1. The amount of work completed by t∗i is maximized by the makespan policy. That

is, vi ≥ vπi for all i and all non-idling π.

Proof. For any arbitrary non-idling policy π, vπi can be written as v1,πi + v2,πi , where v1,πi is the
amount of work completed by t∗i on machine 1 and v2,πi is the amount of work completed by
t∗i on machine 2. (In Figure 8.1, t∗0 is 5, v1,π0 = 5 and v2,π0 = 3.) For the makespan approach,
we use the notation without the superscript π, i.e., vi = v1i + v2i . In the dynamic flow shop, the
amount of work completed by t∗i on machine 1 is the same for any non-idling policy. Thus, it
remains to prove that v2i ≥ v2,πi . We prove this by induction.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 134

Figure 8.1: Schedule for policy π for a two-machine flow shop. This figure also appears in
Chapter 7 as Figure 7.2.

Figure 8.2: Schedule for makespan for the same problem instance as in Figure 8.1.

Base Case: v20 ≥ v2,π0 since any policy other than makespan can complete the set of initial jobs
only at the same time as makespan (t∗0) or later.
Inductive Hypothesis: Assume the property is true for t∗i , that is, v2i ≥ v2,πi .
Inductive Step: We need to show the same property for t∗i+1, i.e., that v2i+1 ≥ v2,πi+1. For the
makespan approach, v2i+1 = v2i +γ((s∗i , s

∗
i+1]), where γ((s∗i , s

∗
i+1]) is the total machine 2 work-

load that arrives in the time period (s∗i , s
∗
i+1] and, therefore, is the workload that is processed in

the sub-problem starting at s∗i+1 and ending at t∗i+1.

By the induction hypothesis, we know that at t∗i , v
2
i ≥ v2,πi . The amount of work processed

on machine 2 by time t∗i+1 by policy π, v2,πi+1, equals the amount of work processed by π by time
t∗i plus some fraction of the difference in the amount of work completed by π and makespan

by t∗i plus some fraction of the amount of machine 2 work that arrives in (s∗i , s
∗
i+1]. Thus,

v2,πi+1 ≤ v2,πi + (v2i − v2,πi) + γ((s∗i , s
∗
i+1]) = v2i + γ((s∗i , s

∗
i+1]) = v2i+1.

For example, consider the schedules in Figures 8.1 and 8.2: s∗0 = 0, s∗1 = 4, s∗2 = 9, t∗0 = 5,

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 135

Figure 8.3: Schedule for an idling policy π for a two-machine flow shop.

Figure 8.4: Schedule for makespan for the same problem instance as in Figure 8.3.

t∗1 = 11, t∗2 = 14, v22 = v21 + γ((s∗1, s
∗
1]) = 9 + 3 = 12, v2,π2 = 7 + (9− 7) + 1 ≤ 12.5

The lemma does not hold if π is idling since an idling policy may create a better schedule
by waiting and taking more jobs into account. Consider the system with sub-problem 0 as in
the above examples. Suppose at time 4, there is an arrival of job J4 with p14 = 5 and p24 = 1;
at time 5, there is an arrival of job J5 with p14 = 1 and p24 = 5. Figure 8.3 shows the schedule
corresponding to a policy π that idles machine 1 for one time unit from 4 to 5 even though a
job is available for processing. Figure 8.4 displays the schedule corresponding the non-idling
makespan approach. We see that at t∗1 = 10, vπ1 = 7 + 9 ≤ 7 + 7 = v1. One explanation for
this counter-example is presented in Section 9.2.1.

Theorem 8.2.2. If λ
min{µ1,µ2} < 1 then the tandem queue with the periodic makespan policy is

stable.

Proof. We know that FCFS is stable under the given condition. By Lemma 8.2.1, at every
5We assume that J7, J8 and J9 arrive in time period (4, 9].

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 136

Figure 8.5: Schedule for FCFS for the Dynamic Flow Shop with Three Machines.

Figure 8.6: Schedule for makespan for the Dynamic Flow Shop with Three Machines.

sub-problem completion time, the makespan approach has finished at least as much work as
FCFS. Therefore, the tandem queue with the periodic makespan policy is stable under the same
condition as FCFS.

The theorem provides a sufficient condition for stability of the tandem queue under the
periodic makespan policy. From the literature, we know that λ

µ1
< 1 and λ

µ2
< 1 is a necessary

condition for stability of this system. Since ensuring that λ
min{µ1,µ2} < 1 is the same as ensuring

λ
µ1

< 1 and λ
µ2

< 1, we see that λ
min{µ1,µ2} < 1 is actually a necessary and sufficient condition

for stability of the tandem queue under the makespan policy.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 137

8.2.2 Extension

Lemma 8.2.1 does not hold for an M -machine flow shop when M > 2. To illustrate this fact,
consider the problem instance in Figures 8.5 and 8.6. In this example, sub-problem 0 consists
of jobs J0 and J1, and both the makespan policy and FCFS construct the same schedule, with
t∗0 = 7. The second sub-problem consists of J2 and J3, and the two policies result in different
schedules. At t∗0 = 7, the amount of work completed by makespan is v0 = 12, whereas the
amount of work completed by FCFS is vπ0 = 13. Therefore, in this case, v0 < vπ0 , which shows
that it is possible that the amount of work completed by t∗i is not maximized by the makespan

policy. We nonetheless conjecture that Theorem 8.2.2 extends to the case with more than two
machines and can be proven using a fluid model approach. We leave this investigation for
future work.

8.3 Stability of the Polling System

As mentioned previously, the stability of polling systems with a two-machine flow shop server
and processing times that become known upon arrival of jobs to the system has not been ad-
dressed in the literature. For a summary of results on the stability of polling systems with a
single-machine server, the reader is referred to pages 10 and 11 of the review by Takagi (1988).
In particular, a cyclic gated polling system with B queues and FCFS policy employed within
each queue is stable if and only if ρ =

∑B
k=1

λk

µk
< 1.

The sample path result of Lemma 8.2.1 does not hold in our polling system. This can
be illustrated by Figures 8.7 and 8.8, which show schedules for the completionTime and the
makespan approaches for an example instance with jobs J0, J1, J2 available at time 0, J3
arriving at time 13 and J4 arriving at time 14. Under the makespan approach, sub-problem
0 completes at time 13 and so sub-problem 1 consists of J3 only; when the completion-

Time method is used, sub-problem 0 completes at time 14, so sub-problem 1 consists of both
jobs J3 and J4. Thus, by time t∗1 = 18, the total amount of work completed is 23 for the
makespan model and 25 for the completionTime approach. However, stability of both FCFS

and makespan is proven using the fluid model methodology in the subsequent sections. In
order to apply this methodology, we firstly present a formal model of the polling system.

8.3.1 Formal Model

Consider a polling system with B queues, and K = 2B classes. The server visits the queues in
a cyclic manner and uses a gated discipline within each queue. Classes served at machine 1 in
queues 1, 2, . . . , B are numbered 1, 2, . . . , K

2
; classes served at machine 2 in queues 1, 2, . . . , B

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 138

Figure 8.7: Schedule for the completionTime approach.

Figure 8.8: Schedule for makespan for the same problem instance as in Figure 8.7.

are numbered K
2
+ 1, K

2
+ 2, . . . , K. We use notation similar to that of Dai (1995) to further

describe the system. Jobs arrive at class k, k = 1, 2, . . . , K
2

, according to exogenous arrival
processes with inter-arrival times ξk = {ξk(j), j ≥ 1}, where j is the job number. The pro-
cessing times of class k jobs are ηk = {ηk(j), j ≥ 1} for k = 1, 2, . . . , K. As in the paper by
Dai (1995), we make the following assumptions on the inter-arrival and processing times:

1. ξ1, ξ2, . . . , ξK , η1, η2, . . . , ηK are mutually independent i.i.d. sequences;

2. E[ξk(1)] < ∞ for k ∈ {1, 2, . . . , K
2
} and E[ηk(1)] < ∞ for k = 1, 2, . . . , K;

3. Inter-arrival times are unbounded and spread-out: for each k ∈ {1, 2, . . . , K
2
}, there

exists an integer ck > 0 and some function pk(x) ≥ 0 on R+ with
∫∞
0

pk(x)dx > 0, such
that

P{ξk(1) ≥ x} > 0 for any x > 0 and (8.1)

P{a ≤
ck∑
j=1

ξk(j) ≤ b} ≥
∫ b

a

pk(x)dx for any 0 ≤ a < b. (8.2)

These assumptions allow us to apply Theorem 4.2 of the paper by Dai (1995), which states
that if a fluid limit model of a particular queueing discipline is stable, then the Markov chain

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 139

describing the dynamics of the underlying system is positive Harris recurrent under this dis-
cipline. As noted above, positive Harris recurrence implies stability of the original queueing
system. We further denote E[ξk(1)] =

1
λk

and E[ηk(1)] =
1
µk

.6

The server is composed of two machines in tandem: every job needs to be processed first
by machine 1 and then by machine 2. Let s(k) denote the machine that processes class k. Class
l, for l = 1, 2, . . . , K

2
, is served by machine 1 (s(l) = 1), and, upon completion on machine

1 turns into class k = l + K
2

, which is served by machine 2 (s(k) = 2). Cm denotes the
set of classes served by machine m, so that C1 = {1, . . . , K

2
} and C2 = {K

2
+ 1, . . . , K}. If

1
µk

≥ 1
µ(k+B)

for class k, k = 1, 2, . . . , K
2

, then machine 1 is the bottleneck for the corresponding
queue b = k; otherwise, machine 2 is the bottleneck for this queue.7 The probability that a
class l job, upon completion, turns into a class k job is Φl

k(j), and equals 1 if k = l+ K
2

, and 0
otherwise.

Let sb,i be the start time of sub-problem i in queue b when FCFS is used to schedule jobs
within the sub-problems. (We number sub-problems starting at 0 for each queue.) Let τb,i
and tb,i be the completion times of sub-problem i in queue b on machine 1 and machine 2,
respectively. By the nature of a two-machine flow shop, τb,i < tb,i.

8.3.2 Stability of FCFS

In this section, we use the fluid methodology of Dai (1995) to prove stability of FCFS in the
system described above. We start by providing a representation for the underlying Markov
process and defining the overall network dynamics. The proof of stability is divided into two
parts: we first consider the fluid dynamics of each individual sub-problem and then combine
them via a function that represents the total workload on the bottleneck machine.

8.3.2.1 State Definition

The underlying Markov process is based on the following state representation:

X(t) = (J(t),Q1(t),Q2(t),A(t),M(t)), (8.3)

where

• J(t) is the queue being served at time t,

6Note that, unlike in the previous chapter and unlike in the previous section, the subscript k on µ now refers
to the class (not machine).

7Since classes served by machine 1 and queues are numbered in exactly the same way, we use the two inter-
changeably.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 140

• Q1(t) = (v1(t), N1(t)), where v1(t) is the residual processing time on machine 1, and
N1(t) is the total number of jobs in the current sub-problem on machine 1,

• Q2(t) = (v2(t), Q2(t)), where v2(t) is the residual processing time on machine 2, and
Q2(t) is the total number of jobs at machine 2,

• A(t) = (a1(t), a2(t), . . . , aB(t)), where ab(t) is the residual inter-arrival time to queue b,

• M(t) = (M1(t),M2(t), . . . ,MB(t)), where Mb(t) is the total number of jobs at queue b

that are going to be part of the next sub-problem.

In the case of inter-arrival times being exponentially distributed for all queues, A(t) does not
need to be included in the state definition.

Let the state space be denoted by X and the initial state of the network be x ∈ X . X ⊂
Z3+B

+ × R2+B
+ , where Z+ is the set of non-negative integers and R+ denotes the non-negative

real numbers. The notation |x| is used to describe the “norm” of x, defined as the sum of the
norms of all components of x.

8.3.2.2 Overall Network Dynamics

In order to state the overall network dynamics, we use some additional notation:

• Ex
k (t) := maxj≥1{ξk(1) + · · ·+ ξk(j) ≤ t}. That is, Ex

k (t) is the cumulative number of
external arrivals to the system (i.e., to class k) by time t, k = 1, 2, . . . , K

2
,

• Sx
k (t) := maxj≥1{ηk(1) + · · · + ηk(j) ≤ t} is the cumulative number of departures

(service completions) from class k, k = 1, 2, . . . , K, if the server is busy for t time units
in [0, t],

• T x
k (t) is the cumulative time that server s(k) has spent on class k jobs in [0, t], for k =

1, 2, . . . , K,

• Ixm(t) is the cumulative idle time of machine m, m = 1, 2,

• Qx
k(t) is the total number of jobs (waiting or in service, and part of the current or next

sub-problem) in class k, k = 1, 2, . . . , K, at time t.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 141

The overall dynamics of the system are:

Qx
k(t) = Qx

k(0) + Ex
k (t) +

K∑
l=1

Φl
k(S

x
l (T

x
l (t)))− Sx

k (T
x
k (t)), (8.4)

k = 1, . . . , K

Qx(t) = (Qx
1(t), . . . , Q

x
K(t))

T ≥ (0, . . . , 0)T (8.5)

T x(·) = (T x
1 (t), . . . , T

x
K(t))

T is non-decreasing in t (8.6)

T x(0) = (0, . . . , 0)T (8.7)

Ixm(t) = t−
∑
k∈Cm

T x
k (t) is non-decreasing in t, m = 1, 2 (8.8)

Ṫ x
k (t) = 1 iff sb,i ≤ t ≤ τb,i for some i, (8.9)

k = 1, 2, . . . ,
K

2
, k belonging to queue b

∫ ∞

0

(
∑
k∈C2

Qx
k(t))dI

x
2 (t) = 0. (8.10)

Equation (8.4) states that, given an initial system state x, the number of jobs in class k at time t
equals the initial number of jobs at time 0 plus all of the external and internal arrivals to class k
by time t, minus the jobs that have left class k by t. Equation (8.5) ensures that the number of
jobs at each class is non-negative. Equations (8.6) and (8.7) state that the cumulative busy time
for each class is non-decreasing and initially equal to 0, respectively. Equation (8.8) defines
the cumulative idle time of each machine as the difference between the total elapsed time and
the total time that machine m has been busy. Equation (8.9) is a non-idleness condition for
machine 1: the instantaneous allocation of time to class k (Ṫ x

k (t) is the derivative of T x
k (t) with

respect to t) is equal to 1 only for those time points t that occur within some sub-problem on
machine 1. Equation (8.10) is a non-idleness condition for machine 2: the idleness of machine
2 can increase only if it is not processing any jobs and there are no jobs waiting.

We cannot derive a fluid limit model that would represent the overall system dynamics
directly from the system dynamics equations above because we cannot apply the Strong Law
of Large Numbers to derive the appropriate limits for all quantities. Specifically, there is a
dependence between the departure process of machine 1 and the processing times on machine
2: the processing times on machine 2 in sub-problem i influence when the next sub-problem
will start on machine 1 and therefore the number of jobs that will be processed in the subsequent
sub-problem on both machine 1 and machine 2.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 142

In order to examine the dynamics of each individual sub-problem, we define the following
“sub-problem equivalents” of the above notation. For sub-problem i:

• Sx,i
k (t) := maxj≥1{ηk(1) + · · · + ηk(j) ≤ t} is the cumulative number of departures

(service completions) from class k, k = 1, 2, . . . , K, if the machine s(k) is busy for t
time units in [sb,i, sb,i + t], and where we assume that the indexing of jobs is restarted
from 1 at the beginning of each sub-problem,

• T x,i
k (t) is the cumulative time that machine s(k) has spent on class k jobs in [sb,i, t], for

k = 1, 2, . . . , K and sb,i ≤ t ≤ tb,i,

• Ix,im (t) is the cumulative idle time of machine m, m = 1, 2, in [sb,i, t], sb,i ≤ t ≤ tb,i,

• Qx,i
k (t) is the total number of jobs in class k, k = 1, 2, . . . , K, that are part of the current

sub-problem at time t, sb,i ≤ t ≤ tb,i.

We now state and prove the stability condition for FCFS.

8.3.2.3 Proof

Theorem 8.3.1. If
∑B

k=1
λk

min{µk,µk+B} < 1 then the polling system described above is stable

under FCFS.

Proof. Suppose the initial state of the system is x, queue 1 is the initial queue to receive ser-
vice, and there are y0 jobs present at the queue at time 0 (y0 at machine 1, 0 at machine 2).

We are going to focus on this initial sub-problem and ignore new arrivals to the system.
Thus, for t ∈ [s1,0, t1,0], where s1,0 = 0, the dynamics of sub-problem 0 (ignoring arrivals) are:

Qx,0
1 (t) = y0 − Sx,0

1 (T x,0
1 (t)) (8.11)

Qx,0
(B+1)(t) = Sx,0

1 (T x,0
1 (t))− Sx,0

(B+1)(T
x,0
(B+1)(t)) (8.12)

Qx,0
1 (t) ≥ 0, Qx,0

(B+1)(t) ≥ 0 (8.13)

T x,0(·) = (T x,0
1 (·), T x,0

(B+1)(·)) is non-decreasing (8.14)

T x,0
1 (s1,0) = 0, T x,0

(B+1)(s1,0) = 0 (8.15)

Ix,01 (t) = t− T x,0
1 (t) is non-decreasing (8.16)

Ix,02 (t) = t− T x,0
(B+1)(t) is non-decreasing (8.17)∫ τ1,0

s1,0

Qx,0
1 (t)dIx,01 (t) = 0 (8.18)∫ t1,0

s1,0

Qx,0
(B+1)(t)dI

x,0
2 (t) = 0. (8.19)

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 143

Equation (8.11) states that the number of jobs present in class 1 (i.e., at machine 1 of queue
1) that are part of sub-problem 0 equals the initial number of jobs, y0, minus the number of
departures by time t. Equation (8.12) defines the number of jobs present in class B + 1 (i.e.,
at machine 2 of queue 1) at time t in terms of the difference between the number of jobs that
have arrived at this class by time t and the number of jobs that have left this class by time
t. Equation (8.13) states the fact that the queue lengths cannot be negative. Equations (8.14)
and (8.15) ensure that the cumulative time spent on class k by machine s(k) is non-decreasing
and equal to 0 at the start of sub-problem 0, respectively. Equations (8.16) and (8.17) define
the cumulative idleness of the two machines by time t. Equations (8.18) and (8.19) are the
non-idleness constraints.

Since jobs within the sub-problem are scheduled using the FCFS policy, there is no depen-
dence between the processing times and the order in which the jobs are scheduled. Within a
sub-problem, there is also no dependence between the processing times on machine 2 and the
start of jobs on machine 1 (such dependence would arise, e.g., under Johnson’s rule, or if we
were considering the joint dynamics of two or more sub-problems, as mentioned in Section
8.3.2.2). Thus, we can apply the Strong Law of Large Numbers to obtain a fluid limit model.

Specifically, we consider the processes Q̄x,0
k (t) and T̄ x,0

k (t) for k = 1 and k = B + 1,
defined as

Q̄x,0
k (t) =

1

|x|
Qx,0

k (|x|t) and T̄ x,0
k (t) =

1

|x|
T x,0
k (|x|t). (8.20)

If we let y0 → ∞ while keeping the remaining components of x constant, we obtain an unde-
layed fluid limit (Q̄0

1(t), Q̄
0
(B+1)(t), T̄

0
1 (t), T̄

0
(B+1)(t)). The fluid limit is a solution to Equations

(8.21)–(8.29) (Dai, 1995). s̄b,i denotes the start time of sub-problem i in queue b on the fluid
scale. τ̄b,i and t̄b,i denote the completion times of sub-problem i on the fluid scale on machine
1 and machine 2, respectively. Note that s̄1,0 = 0. As a result of our assumptions and scaling,

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 144

Q̄0
1(0) = 1 and Q̄0

(B+1)(0) = 0.

Q̄0
1(t) = 1− µ1T̄

0
1 (t) (8.21)

Q̄0
(B+1)(t) = µ1T̄

0
1 (t)− µ(B+1)T̄

0
(B+1)(t) (8.22)

Q̄0(t) = (Q̄0
1(t), Q̄

0
(B+1)(t))

T ≥ 0 (8.23)

T̄ 0(·) = (T̄ 0
1 (·), T̄ 0

(B+1)(·)) is non-decreasing (8.24)

T̄ 0
1 (s̄1,0) = 0, T̄ 0

(B+1)(s̄1,0) = 0 (8.25)

Ī01 (t) = t− T̄ 0
1 (t) is non-decreasing (8.26)

Ī02 (t) = t− T̄ 0
(B+1)(t) is non-decreasing (8.27)∫ τ̄1,0

s̄1,0

Q̄0
1(t)dĪ

0
1 (t) = 0 (8.28)∫ t̄1,0

s̄1,0

Q̄0
(B+1)(t)dĪ

0
2 (t) = 0 (8.29)

We can now analyze the behaviour of this sub-problem on the fluid scale. There two possible
cases: either 1

µ1
≥ 1

µ(B+1)
so that machine 1 is the bottleneck, or 1

µ1
< 1

µ(B+1)
so that machine 2

is the bottleneck.

Case 1: Machine 1 Bottleneck Firstly, since the service discipline is non-idling, Equation
(8.21) implies that Q̄0

1(
1
µ1
) = 0. In other words, the queue of machine 1 empties at time 1

µ1
, or,

equivalently, machine 1 completes sub-problem 0 at 1
µ1

.

Secondly, we consider the behaviour of machine 2. Let ˙̄T i
k(t) =

d
dt
T̄ i
k(t) if this derivative

exists. For t ∈ [0, 1
µ1
), ˙̄T 0

1 (t) = 1 since machine 1 is non-idling and there is work in its queue,

while for t ∈ [1
µ1
, t̄1,0], ˙̄T 0

1 (t) = 0 since machine 1 finishes sub-problem 0 at t = 1
µ1

and there
are no new arrivals within the sub-problem. It is known that

(a) if Q̄0
(B+1)(t) > 0 for t ∈ [0, 1

µ1
), then ˙̄T 0

(B+1)(t) exists and equals 1, and ˙̄Q0
(B+1)(t) =

µ1
˙̄T 0
1 (t)− µ(B+1)

˙̄T 0
(B+1)(t) = µ1 − µ(B+1) < 0.

(b) if Q̄0
(B+1)(t) > 0 for t ∈ [1

µ1
, t̄1,0], then ˙̄T 0

(B+1)(t) exists and equals 1, and ˙̄Q0
(B+1)(t) =

µ1
˙̄T 0
1 (t)− µ(B+1)

˙̄T 0
(B+1)(t) = −µ(B+1) < 0.

Given properties (a) and (b), and the fact that Q̄0
(B+1)(0) = 0, it follows that Q̄0

(B+1)(t) ≡ 0 for
0 ≤ t ≤ t̄1,0 by Lemma 5.2 of Dai (1995).

Therefore, on the fluid scale, when sub-problem 0 of queue 1 finishes on machine 1, it also
finishes on machine 2, i.e., t̄1,0 = 1

µ1
.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 145

Case 2: Machine 2 Bottleneck Machine 1 will complete sub-problem 0 of queue 1 at time
1
µ1

and Q̄0
1(t) will be 0 for 1

µ1
≤ t ≤ t̄1,0. (Also, ˙̄T 0

1 (t) = 1 for 0 ≤ t < 1
µ1

, ˙̄T 0
1 (t) = 0 for

1
µ1

≤ t ≤ t̄1,0.) Machine 2 will complete sub-problem 0 of queue 1 at time 1
µB+1

. Hence,
t̄1,0 =

1
µB+1

and Q̄0
1(t̄1,0) = Q̄0

(B+1)(t̄1,0) = 0.

For both cases, we have shown that Q̄0
1(t̄1,0) = 0 and Q̄0

(B+1)(t̄1,0) = 0. Now, we show that
this implies that, on the fluid scale, the next sub-problem starts immediately.

Since Q̄0
1(t̄1,0) = 0 and Q̄0

(B+1)(t̄1,0) = 0, we know that at τ1,0, there is a finite number of
jobs, γ, present at machine 2. For τ1,0 ≤ t ≤ t1,0, machine 2 operates as a non-idling single-
server queue with a finite number of jobs present at τ1,0, and no new arrivals. Therefore, these
γ jobs are going to be finished in a finite amount of time (t1,0 − τ1,0 is finite), which implies
that, on the fluid scale, the next sub-problem is going to start immediately (e.g., s̄2,0 = t̄1,0 if
there are at least two queues and the second queue is not empty at t̄1,0).

For each subsequent sub-problem i, a fluid model can be constructed similarly by assuming
that we set the initial number of jobs (on the original scale) to Qx

k(sb,i) and applying the same
scaling as for sub-problem 0.

We now need to show that there exists a time t∗ at which the fluid level in all queues
becomes 0 and stays at 0. We do so by using a function that represents the total bottleneck
workload at time t and by considering the overall system dynamics, not just individual sub-
problems.

Recall that the above sub-problem analysis assumes that, at the start of each sub-problem,
there is a set of jobs that needs to be processed – jobs that have arrived at the corresponding
queue since the time the previous sub-problem for this queue started. We can look at this arrival
process and characterize its behaviour on the fluid scale. Specifically, we know that Ex

k (t) is
the number of arrivals by time t to class k and, if we apply the same scaling as used above in
the sub-problem analysis, we obtain

Ēx
k (t) =

1

|x|
Ex

k (|x|t) and lim
|x|→∞

1

|x|
Ex

k (|x|t) = λkt. (8.30)

Let Bm denote the set of queues for which machine m is the bottleneck. We can then define
the total bottleneck workload at time t as

z̄(t) =
∑
k∈B1

Q̄k(t)

µk

+
∑
k∈B2

Q̄k(t) + Q̄k+B(t)

µk+B

. (8.31)

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 146

If the derivative of z̄(t) exists, then it is defined as

˙̄z(t) =
∑
k∈B1

˙̄Qk(t)

µk

+
∑
k∈B2

˙̄Qk(t) +
˙̄Qk+B(t)

µk+B

. (8.32)

Suppose Q̄k(t) > 0 for at least one k. Then it must be that the server is at one of these
queues, e.g., queue b∗ (corresponding to classes k∗ = b∗ and k∗ +B).

If the server is at queue b∗ at time t, then for all queues b 6= b∗, there can be no fluid leaving
the queue at t, but there is arriving fluid, so that ˙̄Qk(t) = λk and ˙̄Qk+B(t) = 0 for classes k and
k +B that are part of queue b.

If queue b∗ ∈ B1, then ˙̄T i
k∗(t) =

˙̄Tk∗(t) = 1 for t ∈ [s̄b∗,i, t̄b∗,i). In this case,

˙̄Qk∗(t) = λk∗ − µk∗
˙̄Tk∗(t) (8.33)

= λk∗ − µk∗ , (8.34)

and

˙̄z(t) =
λk∗ − µk∗

µk∗
+

∑
k∈B1\k∗

λk

µk

+
∑
k∈B2

λk

µk+B

(8.35)

=
λk∗

µk∗
− 1 +

∑
k∈B1\k∗

λk

µk

+
∑
k∈B2

λk

µk+B

(8.36)

< 0, since
B∑

k=1

λk

min{µk, µk+B}
< 1. (8.37)

If queue b∗ ∈ B2, then for t ∈ [s̄b∗,i, τ̄b∗,i), ˙̄T i
k∗(t) =

˙̄Tk∗(t) = 1 and ˙̄T i
k∗+B(t) =

˙̄Tk∗+B(t) =

1. In this case,

˙̄Qk∗(t) = λk∗ − µk∗
˙̄Tk∗(t) (8.38)

= λk∗ − µk∗ (8.39)
˙̄Qk∗+B(t) = µk∗

˙̄Tk∗(t)− µk∗+B
˙̄Tk∗+B(t) (8.40)

= µk∗ − µk∗+B, (8.41)

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 147

and

˙̄z(t) =
(λk∗ − µk∗) + (µk∗ − µk∗+B)

µk∗+B

+
∑
k∈B1

λk

µk

+
∑

k∈B2\k∗

λk

µk+B

(8.42)

=
λk∗

µk∗+B

− 1 +
∑
k∈B1

λk

µk

+
∑

k∈B2\k∗

λk

µk+B

(8.43)

< 0, since
B∑

k=1

λk

min{µk, µk+B}
< 1. (8.44)

If queue b∗ ∈ B2, then for t ∈ [τ̄b∗,i, t̄b∗,i), ˙̄T i
k∗(t) =

˙̄Tk∗(t) = 0 and ˙̄T i
k∗+B(t) =

˙̄Tk∗+B(t) =

1, so

˙̄Qk∗(t) = λk∗ − µk∗
˙̄Tk∗(t) (8.45)

= λk∗ (8.46)
˙̄Qk∗+B(t) = µk∗

˙̄Tk∗(t)− µk∗+B
˙̄Tk∗+B(t) (8.47)

= −µk∗+B, (8.48)

and

˙̄z(t) =
λk∗ − µk∗+B

µk∗+B

+
∑
k∈B1

λk

µk

+
∑

k∈B2\k∗

λk

µk+B

(8.49)

=
λk∗

µk∗+B

− 1 +
∑
k∈B1

λk

µk

+
∑

k∈B2\k∗

λk

µk+B

(8.50)

< 0, since
B∑

k=1

λk

min{µk, µk+B}
< 1. (8.51)

We have shown that ˙̄z(t) < 0 whenever there exists at least one k such that Q̄k(t) > 0.
This is equivalent stating that ˙̄z(t) < 0 whenever z(t) > 0. It follows that z̄(t) ≡ 0 for
t ≥ z̄(0)

1−
∑B

k=1
λk

min{µk,µk+B}
by Lemma 5.2 of Dai (1995).

Consequently, there is a time point t∗ = z̄(0)

1−
∑B

k=1
λk

min{µk,µk+B}
at which the total bottle-

neck workload in the system reaches 0 and after which it remains at 0. This implies that if∑B
k=1

λk

min{µk,µk+B} < 1, then the system is stable.

The above proof applies to any non-idling policy that does not use processing time informa-
tion. In particular, under any such policy, we can write the fluid model of the system dynamics
for one sub-problem in the same way as for FCFS, since there is neither dependence between

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 148

the processing times and the order in which the jobs are scheduled nor dependence between
the processing times on machine 2 and the start of jobs on machine 1. The steps of the proof
remain the same because on the fluid scale, there is no difference in the behaviour of non-idling
policies that do not use processing times.

8.3.3 Instability Example

After proving stability of FCFS and observing that the same proof applies to all non-idling
policies that do not use processing time information, a natural question is whether all non-
idling policies (i.e., even those using processing times) are stable under the stability conditions
of FCFS. Consider a polling system with five queues: at time 0, there are 1000 jobs in queue 1,
and no jobs in the other queues. Jobs arrive at each queue according to (independent) Poisson
processes with rate 1. Processing times are exponentially distributed with rate 6. Therefore,
for each machine and a given queue, the load is 1

6
< 1, and the load on the system is 5(1

6
) =

0.833 < 1. In Figure 8.9, we show the number of jobs in queue 1 over time for four policies:
FCFS, makespan, SPTsum and reverse. The reverse policy is a modification of Johnson’s rule:
set II is scheduled before set I (i.e., in reverse order as compared to Johnson’s rule).

In Figure 8.9, we see that all policies initially have a large number of jobs at machine
2 in queue 1 – this corresponds to the sub-problem containing the initial 1000 jobs. Under
FCFS, makespan and SPTsum there is little variation in the number of jobs at machine 2 after
approximately 150,000 time units: these policies keep the number of jobs below 25. For the
reverse policy, on the contrary, the number of jobs in sub-problems following the first one
grows over time. After 250,000 time units, the number of jobs in queue 1 is greater than in
the initial sub-problem. The figure therefore suggests that the number of jobs in queue 1 for
FCFS, makespan and SPTsum will remain bounded, corresponding to stable behaviour; for the
reverse policy, the increasing number of jobs in queue 1 suggests instability and indicates that
not all non-idling policies are stable when FCFS is stable. We formally prove the instability of
reverse for the system described in this example in Section 9.2.3 of the next chapter.

8.3.4 Stability of the makespan Approach

In the previous section, we have proved stability of FCFS in a polling system with a two-
machine flow shop server. We have subsequently shown that non-idling policies that use pro-
cessing time information may be unstable under the stability conditions of FCFS. Now, we
investigate the stability of the makespan approach.

Let smakespan
b,i be the start time of sub-problem i in queue b when makespan is used to

schedule jobs within the sub-problems. Recall that the makespan approach uses Johnson’s rule

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 149

0 50000 100000 150000 200000 250000 300000

0
50

10
0

15
0

20
0

25
0

30
0

Time

N
um

be
r

of
 J

ob
s

in
 Q

ue
ue

 1
FCFS
makespan
SPT_sum
reverse

Figure 8.9: Number of Jobs at Machine 2 in Queue 1 Over Time.

to minimize the makespan of each sub-problem. Let τmakespan
b,i and tmakespan

b,i be the completion
times of sub-problem i in queue b on machine 1 and machine 2, respectively. By the nature of
a two-machine flow shop, τmakespan

b,i < tmakespan
b,i . Similarly, sFCFS

b,i denotes the start of the ith
sub-problem of queue b under FCFS, and τFCFS

b,i and tFCFS
b,i denote the completion time of the

ith sub-problem of queue b on machine 1 and machine 2, respectively, under FCFS.

We use square brackets to denote the position of a job in the sequence specified by the
policy. For example, η1([7]) is the machine 1 processing time of the job sequenced in the
seventh position of the current sub-problem.

8.3.4.1 State Definition

Under the makespan approach, the state representation is more complex than under FCFS,
since it is necessary to keep track of the processing times of the jobs at each machine. The

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 150

state representation is as follows:

X(t) = (J(t),Q1(t),Q2(t),A(t),M(t)), (8.52)

where

Q1(t) = (v1(t), η1([L1(t) + 2]), . . . , η1([L1(sJ(t),i) +QJ(t)(sJ(t),i)])) (8.53)

Q2(t) = (v2(t), η2([L2(t) + 2]), . . . , η2([L1(t)])) (8.54)

and

• J(t) is the queue being served at time t,

• vm(t) is the residual processing time on machine m,

• Lm(t) is the number of jobs processed on machine m by time t,

• The vector Q1(t) states the processing times of jobs, on machine 1, of the current sub-

problem in the sequence in which these jobs will be processed: v1(t) is the remaining
processing time of the job currently being processed on machine 1 (the job that is in
position L1(t) + 1 of the overall schedule); η1([L1(t) + 2]) is the processing time of the
job in the next position in the schedule for the current sub-problem. The last job in this
vector for machine 1 is the job in position L1(sJ(t),i) + QJ(t)(sJ(t),i), since L1(sJ(t),i) is
the number of jobs completed by the start of the current sub-problem and QJ(t)(sJ(t),i)

is the number of jobs in the queue of machine 1 at that time point,

• The vector Q2(t) states the processing times of jobs, on machine 2, in the sequence in
which these jobs will be processed: v2(t) is the remaining processing time of the job
currently being processed on machine 2 (the job in position L2(t) + 1 of the overall
schedule); η2([L2(t) + 2]) is the processing time of the job in the next position in the
schedule for the current sub-problem. The last job in this vector for machine 2 is the job
in position L1(t) since L1(t) jobs have arrived at machine 2 by t,

• A(t) = (a1(t), a2(t), . . . , aB(t)), where ab(t) is the residual inter-arrival time to queue b,

• M(t) = (M1(t),M2(t), . . . ,MB(t)), where Mb(t) is the total number of jobs at queue b

that are going to be part of the next sub-problem.

In the case of inter-arrival times being exponentially distributed for all queues, A(t) does
not need to be included in the state definition.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 151

Let the state space be denoted by X and the initial state of the network be x ∈ X . X ⊂
(R∞

+)2 × ZB
+ × RB

+, where R∞
+ is the set of sequences taking values is R∞

+ , Z+ is the set of
non-negative integers, R+ denotes the non-negative real numbers. The notation |x| is used to
describe the “norm” of x, defined as the sum of the norms of all components of x.

8.3.4.2 System Dynamics

We use the same notation as in Section 8.3.2.2 with one exception. Instead of Sx
k (t), we define

Dx
k(t) := maxj≥1{ηk([1])+ · · ·+ηk([j]) ≤ t} as the cumulative number of departures (service

completions) from class k, k = 1, 2, . . . , K, by time t if Johnson’s rule is employed. The
system dynamics can then be represented as:

Qx
k(t) = Qx

k(0) + Ex
k (t) +

K∑
l=1

Φl
k(D

x
l (t))−Dx

k(t), (8.55)

k = 1, . . . , K

Ṫ x
k (t) = 1 iff smakespan

b,i ≤ t ≤ τmakespan
b,i for some i, (8.56)

k = 1, 2, . . . ,
K

2
, k belonging to queue b

Equations (8.5)− (8.8), (8.10) (8.57)

In other words, the system dynamics are identical to those under FCFS, except that Dx
k(t)

is used instead of Sx
k (t) in Equation (8.4) (resulting in Equation (8.55)) and the notation in

Equation (8.9) is changed to reflect the makespan policy (resulting in Equation (8.56)). The
sub-problem equivalents of the above notation are defined in the same way as in Section 8.3.2.2.

8.3.4.3 Proof

Theorem 8.3.2. If
∑B

k=1
λk

min{µk,µk+B} < 1, then the system is stable under the makespan ap-

proach.

Proof. Suppose the initial state of the system is x, queue 1 is the initial queue to receive ser-
vice, and there are y0 jobs present at the queue at time 0 (y0 at machine 1, 0 at machine 2).

We are going to focus on this initial sub-problem and ignore new arrivals to the system.
Thus, for t ∈ [smakespan

1,0 , tmakespan
1,0], where smakespan

1,0 = 0, the dynamics of sub-problem 0

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 152

(ignoring arrivals) are:

Qx,0
1 (t) = y0 −Dx,0

1 (t) (8.58)

Qx,0
(B+1)(t) = Dx,0

1 (t)−Dx,0
(B+1)(t) (8.59)

Qx,0
1 (t) ≥ 0, Qx,0

(B+1)(t) ≥ 0 (8.60)

T x,0(·) = (T x,0
1 (·), T x,0

(B+1)(·)) is non-decreasing (8.61)

T x,0
1 (smakespan

1,0) = 0, T x,0
(B+1)(s

makespan
1,0) = 0 (8.62)

Ix,01 (t) = t− T x,0
1 (t) is non-decreasing (8.63)

Ix,02 (t) = t− T x,0
(B+1)(t) is non-decreasing (8.64)∫ τmakespan

1,0

smakespan
1,0

Qx,0
1 (t)dIx,01 (t) = 0 (8.65)

∫ tmakespan
1,0

smakespan
1,0

Qx,0
(B+1)(t)dI

x,0
2 (t) = 0 (8.66)

Consider the processes Q̄x,0
k (t) and T̄ x,0

k (t) for k = 1 and k = B + 1, defined as

Q̄x,0
k (t) =

1

|x|
Qx,0

k (|x|t) and T̄ x,0
k (t) =

1

|x|
T x,0
k (|x|t). (8.67)

If we let y0 → ∞ while keeping the remaining components of x constant, we obtain an unde-
layed fluid limit (Q̄0

1(t), Q̄
0
(B+1)(t), T̄

0
1 (t), T̄

0
(B+1)(t)).

s̄makespan
b,i denotes the start time of sub-problem i in queue b on the fluid scale. τ̄makespan

b,i

and t̄makespan
b,i denote the completion times of sub-problem i on the fluid scale on machine 1 and

machine 2, respectively. Note that s̄makespan
1,0 = 0. As a result of our assumptions and scaling,

Q̄0
1(0) = 1 and Q̄0

(B+1)(0) = 0.

Although we cannot write down an explicit set of equations for the fluid model because of
the dependency between the departure process from machine 1 and processing times, we can
still analyze some of the behaviour of this sub-problem on the fluid scale.

We know that on the original scale,

• τmakespan
1,0 = τFCFS

1,0 since the amount of work present at the start of the sub-problem is
independent of the scheduling policy and both FCFS and makespan are non-idling,

• tmakespan
1,0 ≤ tFCFS

1,0 since the makespan approach results in the smallest possible sub-
problem length (makespan value) for a given set of jobs,

• τmakespan
1,0 < tmakespan

1,0 since we are considering a two-machine flow shop.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 153

On the fluid scale, similar properties are true:

• τ̄makespan
1,0 = τ̄FCFS

1,0 , (Property 1)

• t̄makespan
1,0 ≤ t̄FCFS

1,0 , (Property 2)

• τ̄makespan
1,0 ≤ t̄makespan

1,0 . (Property 3)

Property 1 and 2 are true since they are true on the original scale. Property 3 is slightly different
from the corresponding characteristic on the original scale (τmakespan

1,0 < tmakespan
1,0) since it is

based on fluids rather than discrete jobs.

We divide further analysis of sub-problem 0 into two cases: either 1
µ1

≥ 1
µ(B+1)

so that
machine 1 is the bottleneck, or 1

µ1
< 1

µ(B+1)
so that machine 2 is the bottleneck.

Case 1: Machine 1 Bottleneck Since τ̄FCFS
1,0 = 1

µ1
and t̄FCFS

1,0 = 1
µ1

, and by Properties 1 to 3,
we know that

1

µ1

= τ̄makespan
1,0 ≤ t̄makespan

1,0 ≤ t̄FCFS
1,0 =

1

µ1

. (8.68)

Consequently, τ̄makespan
1,0 = t̄makespan

1,0 = 1
µ1

. Therefore, Q̄0
1(

1
µ1
) = 0 and Q̄0

B+1(
1
µ1
) = 0 under

makespan, just like under FCFS. (While under FCFS we can show that Q̄0
B+1(t) ≡ 0 for

0 ≤ t ≤ 1
µ1

, problem instance 4 of Section 9.1.2 and Figure 9.6 provide an example of where
this is not true for the makespan approach.)

Since Q̄0
(B+1)(τ̄

makespan
1,0) = 0, we know that at τmakespan

1,0 , there is a finite number of jobs, γ,
present at machine 2. For τmakespan

1,0 ≤ t ≤ tmakespan
1,0 , machine 2 operates as a non-idling single-

server queue with a finite number of jobs present at τmakespan
1,0 , and no new arrivals. Therefore,

these γ jobs are going to be finished in a finite amount of time (tmakespan
1,0 − τmakespan

1,0 is finite),
which implies that, on the fluid scale, the next sub-problem is going to start immediately (e.g.,
s̄makespan
2,0 = t̄makespan

1,0 assuming the system has at least 2 queues, and queue 2 is not empty at
t̄makespan
1,0).

Case 2: Machine 2 Bottleneck By Property 1 and the fact that τ̄FCFS
1,0 = 1

µ1
, we know that

machine 1 will complete sub-problem 1 of queue 1 at time 1
µ1

. Q̄0
1(t) will be 0 for 1

µ1
≤ t ≤

t̄makespan
1,0 since there are no arrivals to this sub-problem.

From Property 2 and the fact that t̄FCFS
1,0 = 1

µ(B+1)
, it follows that

t̄makespan
1,0 ≤ t̄FCFS

1,0 =
1

µ(B+1)

. (8.69)

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 154

At the start of sub-problem 0 of queue 1, there is 1
µB+1

machine 2 work to be done during
the sub-problem. Thus, the smallest amount of time in which this work can be completed is
also 1

µB+1
(which can happen if and only if machine 2 is kept busy for that amount of time). As

a consequence, we can strengthen the above to:

1

µ(B+1)

≤ t̄makespan
1,0 ≤ 1

µ(B+1)

. (8.70)

Thus, sub-problem 0 of queue 1 ends at 1
µ(B+1)

, i.e., at the same time as under FCFS.

Since Q̄1(τ̄
makespan
1,0) = 0, we know there is a time point s∗1 < τmakespan

1,0 when there is a
finite number of jobs, γ1, present at machine 1. For s∗1 ≤ t ≤ tmakespan

1,0 , machine 1 operates as
a non-idling single-server queue with a finite number of jobs present at s∗1, and no new arrivals.
Therefore, these γ1 jobs are going to be finished in a finite amount of time (τmakespan

1,0 − s∗1 is
finite). Since this is the case and since Q̄(B+1)(t̄

makespan
1,0) = 0, we know that there is a time

point τmakespan
1,0 ≤ s∗2 < tmakespan

1,0 when there is a finite number of jobs, γ2, present at machine
2. For s∗2 ≤ t ≤ tmakespan

1,0 , machine 2 operates as a non-idling single-server queue with a finite
number of jobs present at s∗2, and no new arrivals. Therefore, these γ2 jobs are going to be
finished in a finite amount of time (tmakespan

1,0 − s∗2 is finite), which implies that, on the fluid
scale, the next sub-problem is going to start immediately (e.g., s̄makespan

2,0 = t̄makespan
1,0 assuming

the system has at least two queues, and queue 2 is not empty at t̄makespan
1,0).

For each subsequent sub-problem i, we can provide the same type of analysis by setting the
initial fluid level appropriately (i.e., to reflect the arrivals since the start of the last visit to the
same queue) and applying the same scaling as for sub-problem 0.

We have shown that on the fluid scale, given the same amount of work, the FCFS and the
makespan policy complete a sub-problem in the same length of time. Since the initial amount
of work present in the system would be the same regardless of whether FCFS or makespan is
applied, it follows that on the fluid scale each sub-problem would have the same length under
makespan and under FCFS. Therefore, makespan is stable under the same condition as FCFS,
that is, when

∑B
k=1

λk

min{µk,µB+k}
< 1.

The structure of the above proof implies that for any non-idling policy π, if we can show
that the makespan of sub-problem 0 on the fluid scale is the same as for FCFS, then this policy
can be shown stable under the same condition as FCFS.8 A similar idea is used in Section 9.2.3
to determine stability conditions for a wide range of policies.

8Thank you to Maliheh Aramon Bajestani for this observation.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 155

8.4 Generalizations

We now examine the stability of FCFS and makespan in generalizations of the polling system
considered above.

8.4.1 Stability of FCFS

Theorem 8.3.1 can be generalized to the case in which the server is an M -machine flow shop
or a d-stage flexible flow shop with M machines at each stage. Moreover, the stability results
that hold for FCFS are also true for any non-idling policy that does not use processing time
information. In the proofs below, we use the notation of the previous sections, unless otherwise
specified.

8.4.1.1 Generalized M -machine Flow Shop Server

In an M -machine flow shop, each job requires processing on M machines in the same order.
A polling system with an M -machine flow shop server is therefore a simple extension of our
polling system in which the two-machine server is replaced by an M -machine server. A further
extension is a polling system with a generalized M -machine flow shop server, in which each
queue may utilize a different subset of the M machines (but all jobs within that queue go
through the machines in the same order).

The set of classes belonging to queue b is denoted by Sb. Each job in queue b consists of
|Sb| activities and there is a one-to-one correspondence between activities and classes within a
given queue. In total, there are K =

∑B
b=1 |Sb| classes. Each class k is served by exactly one

of the M machines, so |Sb| ≤ M . Since the number of classes depends on the queue and each
class is served by exactly one machine, the number of machines utilized by different queues
may be different. We assume that there is at least one queue that utilizes all M machines.

Classes within each queue are numbered in the order in which they receive processing.
Classes within queue 1 are numbered 1, 2, . . . , |S1|, classes within queue 2 are numbered |S1|+
1, |S1| + 2, . . . , |S1| + |S2|, etc., so that classes within queue b, 2 ≤ b ≤ B, are numbered
|Sb−1|+ 1, |Sb−1|+ 2, . . . , |Sb−1|+ |Sb|. Routing is deterministic, so that upon completion, an
activity of class k turns into an activity of class l = k+1 for k, l ∈ Sb. A job leaves the system
once its last activity is finished (i.e., for queue 1, this happens when the job exits class |S1|; for
queue b, 2 ≤ b ≤ B, this happens when the job exits class |Sb−1|+ |Sb|). Thus, Φl

k(j) = 1 for
k = l + 1 and k, l ∈ Sb, and 0 otherwise.

It is possible for ξk(j) ≡ 0 for all j and some k, in which case the external arrival process
to class k is null. A denotes the set of classes with non-null exogenous arrivals. We assume

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 156

that there is exactly one non-null exogenous arrival process to a queue. Thus, there are B

non-null arrival processes in total, and A = {1, |S1| + 1, |S2| + 1, . . . , |SB−1| + 1}. The only
assumptions we make regarding the inter-arrival and service times are assumptions (1.2)–(1.5)
of Dai (1995), which are restated in Section 8.3.1.

As before, sb,i and tb,i denote the start time and completion time, respectively, of sub-
problem i in queue b when FCFS is used to schedule jobs within the sub-problems. We denote
by τmb,i the completion time of sub-problem i in queue b on machine m. The stability condition
for the polling system with a generalized M -machine flow shop server is given in the following
theorem.

Theorem 8.4.1. If
∑

k∈A
λk

minl∈{Sb|k∈Sb}{µl}
< 1, then the polling system with a generalized

M -machine flow shop server is stable under FCFS.

8.4.1.1.1 State Definition and System Dynamics The state for this system is defined as in
Section 8.3.2.1, with the exception that now we let Qm(t) = (vm(t), Nm(t)), be the state of
machine m, where vm(t) is the residual processing time for machine m, and Nm(t) is the total
number of jobs in the current sub-problem of machine m, for m = 1, . . . ,M . The state space
is X ⊂ ZB+M+1

+ × RB+M
+ .

The dynamics of the system are described using the notation of Section 8.3.2.2, with one
small change that Ex

k (t), the cumulative number of external arrivals to the system, is now
defined for k ∈ A. The overall dynamics of the system are then:

Ixm(t) = t−
∑
k∈Cm

T x
k (t) is non-decreasing in t, (8.71)

m = 1, 2, . . . ,M (8.72)

Ṫ x
k (t) = 1 iff sb,i ≤ t ≤ τmb,i for some i, s(k) = m, k ∈ A (8.73)∫ ∞

0

(
∑
k∈Cm

Qx
k(t))dI

x
i (t) = 0, for m = 1, 2, . . . ,M, k /∈ A (8.74)

Equations (8.4) − (8.7) (8.75)

We cannot derive a fluid limit model that would represent the overall system dynamics directly
from the system dynamics equations above because we cannot apply the Strong Law of Large
Numbers to derive the appropriate limits for all quantities. Specifically, there is a dependence
between the departure process of machine 1 and the processing times on the other machines.
For example, consider sub-problem i in which machine m is the last machine utilized, and the
subsequent sub-problem i + 1 in which machine 1 is the first machine: the processing times
on machine m in sub-problem i influence when the next sub-problem will start on machine 1

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 157

and therefore the number of jobs that will be processed in sub-problem i+ 1 on both machine
1 and machine m.

8.4.1.1.2 Proof The formal proof of stability is very similar to the proof of Theorem 8.3.1,
and is given below. We omit the first part of the proof (the statement of the system dynamics
and the fluid limit derivations) due to this similarity.

Proof. As in the proof of Theorem 8.3.1, the fluid dynamics equations for one sub-problem
are:

Q̄0
1(t) = 1− µ1T̄

0
1 (t) (8.76)

Q̄0
k(t) = µk−1T̄

0
k−1(t)− µkT̄

0
k (t), k = 2, . . . , |S1| (8.77)

Q̄0(t) = (Q̄0
1(t), . . . , Q̄

0
|S1|(t))

T ≥ 0 (8.78)

T̄ 0(·) = (T̄ 0
1 (·), . . . , T̄ 0

|S1|(·)) is non-decreasing (8.79)

T̄ 0
1 (s̄1,0) = 0, . . . , T̄ 0

|S1|(s̄1,0) = 0 (8.80)

Ī01 (t) = t− T̄ 0
1 (t) is non-decreasing (8.81)

Ī0k(t) = t− T̄ 0
k (t) is non-decreasing, k = 2, . . . , |S1| (8.82)∫ τ̄

s(k)
1,0

s̄1,0

Q̄0
k(t)dĪ

0
s(k)(t) = 0, k = 1, . . . , |S1| − 1 (8.83)∫ t̄1,0

s̄1,0

Q̄0
|S1|(t)dĪ

0
s(|S1|)(t) = 0 (8.84)

We can now analyze the behaviour of this sub-problem on the fluid scale. Let the class
served by the bottleneck machine be k̂. The amount of time it takes to drain all class l fluid of
this sub-problem depends on the position of l in the route of jobs of the current queue:

• Class l = 1: The length of the sub-problem on machine 1 (class 1) is always 1
µ1

since
the policy is non-idling and the fluid level is 1 at the beginning of the sub-problem.

• Class l ∈ S1 such that 2 ≤ l < k̂: There are two9 cases:

– If µl−1 ≥ µl, then work is arriving to machine s(l) at rate µl−1/µl ≥ 1. Since FCFS

is non-idling, this implies that the length of the sub-problem for class l is 1
µl

.

– If µl−1 < µl, then work is arriving to machine s(l) at rate µl−1/µl < 1. This
implies10 that

9The relation between any pair of consecutive machines is the same as between machines 1 and 2 in the proof
for the two-machine case (Section 8.3). That is, if µl−1 ≤ µl, machine l − 1 is the bottleneck for this pair of
machines, and vice versa, if µl−1 > µl, then machine l is the bottleneck for this pair.

10More details for why this is true can be found in the two-machine proof of Section 8.3.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 158

(a) Q̄l(t) ≡ 0 for s1,0 ≤ t ≤ t1,0, and
(b) the sub-problem will complete on machine s(l) at the same time as on machine
s(l − 1).

• Bottleneck class l = k̂, k̂ ≥ 2: The rate at which work arrives at class k̂ is µˆ̂
k
/µk̂,

where ˆ̂
k is the class with the greatest mean processing time from {1, . . . , k̂− 1} (i.e., the

“bottleneck” among all the classes preceeding the actual bottleneck k̂). Since µk̂ ≤ µk

for all k ∈ S1, the rate at which work arrives at the bottleneck class k̂ is greater than or
equal to 1. Since the machine is non-idling and the rate at which work arrives is greater
than 1, the length of the sub-problem on the bottleneck machine s(k̂) is 1

µk̂
.

• Class l ∈ S1 such that k̂ < l ≤ |S1|: Since µk̂ ≤ µk for all k ∈ S1, the rate at which
work arrives at class l is µk̂/µl < 1. It can therefore be shown that
(a) Q̄l(t) ≡ 0 for s1,0 ≤ t ≤ t1,0, and
(b) the sub-problem will complete on machine s(l) at the same time as on the bottleneck
machine.

Hence, t1,0 = (µk̂)
−1. By using the same argument as in the proof of Theorem 8.3.1, we find

that, on the fluid scale, the next sub-problem is going to start immediately after the end of the
current sub-problem. For each subsequent sub-problem i, a fluid model can be constructed
similarly by assuming that we set the initial number of jobs to Qx

k(sb,i) and applying the same
scaling as for sub-problem 0.

We now need to show that there exists a time t∗ at which the fluid level in all queues
becomes 0 and stays at 0. We do so by using a function that represents the total bottleneck
workload at time t and by considering the dynamics of the overall system, not just each sub-
problem. We know that Ex

k (t) is the number of arrivals by time t to class k and, if we ap-
ply the same scaling as used above in the sub-problem, we obtain Ēx

k (t) = 1
|x|E

x
k (|x|t) and

lim|x|→∞
1
|x|E

x
k (|x|t) = λkt.

Let β = {1, 2, . . . , B}, the set of all queues in the system. We can then define the total
bottleneck workload at time t as

z̄(t) =
∑
b∈β

∑
k∈Sb

Q̄k(t)

min{l∈Sb} µl

. (8.85)

If the derivative of z̄(t) exists, then it is defined as

˙̄z(t) =
∑
b∈β

∑
k∈Sb

˙̄Qk(t)

min{l∈Sb} µl

. (8.86)

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 159

Suppose Q̄k(t) > 0 for at least one k. Then it must be that the server is at one of these queues,
say queue b∗. If the server is at queue b∗ at time t, then for all queues b 6= b∗, there can be no
fluid leaving the queue at t, but there is arriving fluid, so that ˙̄Qk(t) = λk, k ∈ Sb ∩ A, and
˙̄Ql(t) = 0 for classes l ∈ Sb. In other words,

˙̄z(t) =
∑
k∈Sb∗

˙̄Qk(t)

min{l∈Sb} µl

+
∑

b∈β\b∗

∑
k∈Sb

˙̄Qk(t)

min{l∈Sb} µl

(8.87)

=
∑
k∈Sb∗

˙̄Qk(t)

min{l∈Sb} µl

+
∑

b∈β\b∗

∑
k∈Sb∩A

λk

min{l∈Sb} µl

. (8.88)

It is easiest to divide the analysis into two cases: when the bottleneck class k̂ in queue b∗ has a
non-null exogenous arrival process (i.e., k̂ ∈ A), and when it does not.

Case 1: If class k̂ ∈ A, then ˙̄T i
k̂
(t) = ˙̄Tk̂(t) = 1 for t ∈ [s̄b∗,i, t̄b∗,i) (since in this case the

length of the sub-problem on the fluid scale is exactly the length of time necessary to process
all the work in the bottleneck class). In this case,

˙̄Qk̂(t) = λk̂ − µk̂
˙̄Tk̂(t) (8.89)

= λk̂ − µk̂, (8.90)

and ˙̄Qk(t) = 0 for k ∈ Sb\k̂ (see analysis above). Therefore,

˙̄z(t) =
∑
k∈Sb∗

˙̄Qk(t)

min{l∈Sb} µl

+
∑

b∈β\b∗

∑
k∈Sb∩A

λk

min{l∈Sb} µl

(8.91)

=
λk̂ − µk̂

µk̂

+
∑

b∈β\b∗

∑
k∈Sb∩A

λk

min{l∈Sb} µl

(8.92)

=
λk̂ − µk̂

µk̂

+
∑

k∈A\k̂

λk

minl∈{Sb|k∈Sb} µl

(8.93)

=
λk̂

µk̂

− 1 +
∑

k∈A\k̂

λk

minl∈{Sb|k∈Sb} µl

(8.94)

< 0, since
∑
k∈A

λk

minl∈{Sb|k∈Sb} µl

< 1. (8.95)

Case 2: If k̂ 6∈ A, then the values of ˙̄Qk(t) are 0 for all k > k̂, but may be non-zero for

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 160

k < k̂.11 In this case,

∑
k∈Sb∗

˙̄Qk(t)

min{l∈Sb} µl

=
∑
k≤k̂

˙̄Qk(t)

min{l∈Sb} µl

. (8.96)

˙̄Qk(t) is defined as follows:

• If k is the initial class of the queue, k ∈ A, then ˙̄Qk(t) = λk − µk for t ∈ [s̄b∗,i, τ̄
s(k)
b∗,i),

and ˙̄Qk(t) = λk for t ∈ [τ̄
s(k)
b∗,i , t̄b∗,i).

• If k = k̂, ˙̄Qk(t) = µk−1 − µk for t ∈ [s̄b∗,i, τ̄
s(k)
b∗,i), and ˙̄Qk(t) = −µk for t ∈ [τ̄

s(k)
b∗,i , t̄b∗,i).

• If k is not the initial class and not the bottleneck class, then there are two possibilities.

If µk−1 ≤ µk, then ˙̄Qk(t) = 0 for all t ∈ [s̄b∗,i, t̄b∗,i) and the (internal) arrival rate to the
next class l > k s.t. ˙̄Ql(t) 6= 0 is equal to the processing rate in the previous class j < k

for which ˙̄Qj(t) 6= 0. If µk−1 > µk, then ˙̄Qk(t) = µk−1 − µk for all t ∈ [s̄b∗,i, τ̄
s(k)
b∗,i) and

˙̄Qk(t) = −µk for all t ∈ [τ̄
s(k)
b∗,i , t̄b∗,i).

Note that, due to the flow shop structure and the fact that classes are numbered according to
the order in which they receive processing, τ̄ s(k)b∗,i ≤ τ̄

s(l)
b∗,i for k < l.

Therefore, for any t ∈ [s̄b∗,i, t̄b∗,i) (any time point within sub-problem i at queue b∗),∑
k≤k̂

˙̄Qk(t) = λκ − µk̂, where κ denotes the class of queue b∗ with a non-zero exogenous
arrival process. Hence,

˙̄z(t) =
∑
k∈Sb∗

˙̄Qk(t)

min{l∈Sb} µl

+
∑

b∈β\b∗

∑
k∈Sb∩A

λk

min{l∈Sb} µl

(8.97)

=
λκ − µk̂

µk̂

+
∑

k∈A\k̂

λk

minl∈{Sb|k∈Sb} µl

(8.98)

=
λκ

µk̂

− 1 +
∑

k∈A\k̂

λk

minl∈{Sb|k∈Sb} µl

(8.99)

< 0, since
∑
k∈A

λk

minl∈{Sb|k∈Sb} µl

< 1. (8.100)

For example, consider the case with 5 machines in queue 1 and µ1 ≥ µ2, µ2 < µ3,
µ3 ≥ µ4 and µ5 = max{µ1, µ2, µ3, µ4, µ5}. In this case, for t ∈ [s̄1,i, τ̄

s(1)
1,i), ˙̄Q1(t) = λ1 − µ1,

˙̄Q2(t) = µ1 − µ2, ˙̄Q3(t) = 0, ˙̄Q4(t) = µ3 − µ4 = µ2 − µ4 and ˙̄Q5(t) = µ4 − µ5, so that the

11The fact that ˙̄Qk(t) = 0 follows from the argument described in the proof for the two-machine system in
Section 8.3.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 161

numerator of the first sum in Equation (8.97) becomes λ1 − µ5.

We have shown that if
∑

k∈A
λk

minl∈{Sb|k∈Sb} µl
< 1 then in both cases 1 and 2, ˙̄z(t) < 0.

Therefore, ˙̄z(t) < 0 whenever there exists at least one k such that Q̄k(t) > 0. This is equivalent
stating that ˙̄z(t) < 0 whenever z(t) > 0. It follows that z̄(t) ≡ 0 for t ≥ z̄(0)

1−
∑

k∈A
λk

minl∈{Sb|k∈Sb}
µl

by Lemma 5.2 of Dai (1995).

Consequently, there is a time point t∗ = z̄(0)

1−
∑

k∈A
λk

minl∈{Sb|k∈Sb}
µl

at which the total bottle-

neck workload in the system reaches 0 and after which it remains at 0. This implies that if∑
k∈A

λk

minl∈{Sb|k∈Sb} µl
< 1, then the system is stable.

8.4.1.2 Flexible Flow Shop Server

A flexible flow shop is a generalization of the flow shop and parallel machine environments:
there are d stages in series, and, at every stage, there are M parallel identical machines. Every
job needs to be processed at stage 1, stage 2, etc. as in a flow shop. At every stage, the
job requires exactly one machine and since the machines are identical, any of them can be
employed (Pinedo, 2003).12 Thus, another extension of the polling system discussed in Section
8.3 is a polling system with a flexible flow shop server.

In a flexible flow shop, each stage can be viewed as a G/G/M queue. Each stage corre-
sponds to a class. If the processing rate of every machine at stage s is µs and there are n jobs
present at this stage, then the overall processing rate of the corresponding class k is µk = nµs

if 1 ≤ n ≤ M and µk = Mµs if n > M . The stability condition for this system is the same as
for the system with a generalized M -machine flow shop server:

Theorem 8.4.2. If
∑

k∈A
λk

minl∈{Sb|k∈Sb}{µl}
< 1, then the polling system with a flexible d-stage

flow shop server with M machines at each stage is stable under FCFS.

The proof of this theorem is essentially identical to the one used for the polling system with
a generalized M -machine server, except that the machines in that proof have to now be treated
as stages. The main observation that allows the proof to be easily extended is that, to derive
the fluid limit, we take the initial number of jobs in the system to infinity, implying that on the
fluid scale, the processing rate at stage s is Mµs. Thus, to ensure the validity of the proof, we
need to set µk = Mµs.

12Such a flexible flow shop with M machines and processing rate µs for every machine of stage s is not
equivalent to the flow shop that has a single machine at every stage with processing rate Mµs. For example, if
there is exactly one job at stage s and M ≥ 2, the expected processing time of this job will be 1

µs
in the flexible

flow shop model, but 1
Mµs

in the single-machine flow shop.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 162

If we relax the assumption that the number of machines at every stage is the same, then,
on the original scale, there is some ambiguity regarding the definition of a bottleneck ma-
chine/stage. For instance, suppose we have a system with two stages. At stage 1, there is one
machine with a processing rate of 5. At stage 2, there are two machines, each with a processing
rate of 3. Thus, if we define a bottleneck stage as a stage which has the smallest processing rate
per machine, then in our example, the bottleneck is stage 2. Alternatively, we can define the
bottleneck to be the stage with the smallest overall processing rate; this definition would imply
stage 1 is the bottleneck in our example. On the fluid scale, this ambiguity disappears since it
is assumed that a very large number of jobs is initially present in the system and the second of
our two definitions has to be employed. Given this definition, we see that the stability condition
and its proof become identical to those of the case with the same number of machines at each
stage.

Finally, if we change the assumption of parallel machines to cooperating machines,13 as in
the paper by Andradóttir et al. (2003), then, even on the original scale, every stage s with M

machines is equivalent to a server with processing rate Mµs. Therefore, Theorem 8.4.2 also
holds, with µl set to the appropriate Mµs, regardless of whether the number of machines varies
between stages.

8.4.2 Stability of makespan

As for FCFS, generalizing the proof of stability to the case where the server is an M -machine
flow shop with M > 2 or a d-stage flexible flow shop is straightforward. This may appear
surprising: in neither of these environments does the optimal makespan possess the structure
provided by Johnson’s rule for the two-machine case; finding the optimal is, in fact, NP-hard
(Pinedo, 2003). However, the proof does not explicitly utilize the structure within the schedule,
only the fact that the schedule is guaranteed to have the minimum makespan. Therefore, for
these environments, the difficulty of obtaining the minimum makespan has no effect on the
stability proof.

8.5 Conclusion

In this chapter we analyzed the stability of two scheduling methods in the systems presented
in the previous chapter. Specifically, we proved stability of the makespan method in a dynamic
flow shop using a sample path argument. We showed stability of FCFS and makespan in a
polling system with a two-machine flow shop server. These proofs of stability extend to the

13It is probably more reasonable to think of cooperating servers rather than machines.

CHAPTER 8. THEORETICAL INTEGRATION: STABILITY 163

case when the server is a flow shop with M machines or a flexible flow shop with d stages and
M machines at each stage. Both proofs employed the fluid model methodology of Dai (1995).
Thus, we introduced long-run stability into combinatorial scheduling and demonstrated that
stability of a method from the traditional scheduling literature that uses exact processing time
information can be formulated and proved. We therefore demonstrated that theoretical long-run
performance guarantees can be obtained for periodic scheduling methods.

This chapter creates a connection between work in dynamic scheduling, which has not
considered stability, and work in queueing theory, which has developed formal methodologies
for proving stability of particular scheduling disciplines, thereby integrating queueing theory
and scheduling on a theoretical level. In the next chapter, we show that additional insights
can be gained from such integration. Specifically, we analyze the fluid limits associated with
different scheduling policies and further examine the stability of non-idling policies in the
polling system with a two-machine flow shop server.

Chapter 9

Theoretical Integration of Scheduling and
Queueing Theory: Fluid Analysis

In the previous chapter, we showed that fluid model methodology can be used to prove stability
of periodic scheduling methods in both the dynamic flow shop and the polling system with a
flow shop server. In the current chapter, we continue our investigation of the theoretical level
of integration by analyzing, for different policies, the fluid limits of work arriving to machine
2 and of work present at machine 2 within one (static) sub-problem. This analysis leads to:

• identification of a key feature of the scheduling algorithm that minimizes makespan;

• observations regarding the use of fluid limits for predicting algorithm performance;

• understanding of stability for a variety of periodic scheduling approaches.

To our knowledge, the only paper that applies fluid model methodology to static scheduling
problems in which all jobs may be distinct is by Nazarathy and Weiss (2010). They use the
fluid representation of the problem to develop an asymptotically-optimal scheduling heuristic.
Our work, on the contrary, proposes fluid analysis of known scheduling algorithms as a tool for
gaining a better understanding of how these algorithms perform both with respect to a classical
scheduling objective in static problems and with respect to stability in dynamic problems.

This chapter consists of two main sections. In Section 9.1, we provide an analysis of
fluid limits. The majority of our evaluation is empirical, although some theoretical results
are presented. In Section 9.2, we describe the insights gained from our analysis. Section 9.3
concludes the chapter.

164

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 165

9.1 Analysis of Fluid Limits

We focus on the behaviour of fluid limits in one of the sub-problems encountered by a periodic
scheduling approach in a dynamic two-machine flow shop or in a polling system with a two-
machine flow shop server.1 We investigate the fluid limits of work arriving to machine 2 and
of work present at machine 2 for seven policies:

• FCFS, which processes jobs in non-decreasing order of their arrival times to the queue.

• SPTsum, which processes jobs in non-decreasing order of the sum of their durations on
machine 1 and machine 2.

• makespan, which minimizes the makespan of each sub-problem by employing Johnson’s
rule. This rule divides jobs into two sets: set I consists of all jobs whose processing
time on machine 1 is less than or equal to its processing time on machine 2, and set II
consists of all the remaining jobs. Set I is processed before set II. Johnson’s rule creates
permutation schedules, that is, schedules in which the order of jobs is the same on both
machines. Within set I, jobs are sequenced in non-decreasing order of the processing
times on machine 1, while within set II, jobs are sequenced in non-increasing order of
the processing times on machine 2.

• J|FCFS, which denotes Johnson’s FCFS, operates like Johnson’s rule in that it divides
jobs in two sets based on processing times and schedules set I before set II, but processes
jobs within each set in FCFS order.

• reverse, which schedules set II of Johnson’s rule before set I. Within each set, jobs are
processed in the same order as under Johnson’s rule.

• reverse|FCFS is the same as reverse in that it schedules set II before set I. However, it
sequences jobs in FCFS order within each set.

• reverseMakespan, which maximizes the makespan by sequencing jobs in the order that
is opposite from Johnson’s rule (Kim, 1993). This means that set II is scheduled before
set I; within set II, jobs are processed in shortest-processing time order on machine 2,
and within set I, jobs are processed in longest-processing time order on machine 1.

We assume that all of these policies construct permutation schedules, that is, schedules in which
jobs are sequenced in the same order on machine 1 and 2. Due to their complexity, we leave
the investigation of the fluid limits of the completionTime model, which minimizes the sum of

1Analysis of one sub-problem corresponds to analysis of a static two-machine flow shop problem.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 166

completion times of a given set of jobs, for future work. Given that SPTsum is asymptotically
optimal for the average completion time objective in a static two-machine flow shop as the
number of jobs increases (Xia et al., 2000), it would be interesting to determine whether the
fluid limits of SPTsum are similar to those of completionTime.

9.1.1 Formal Definitions

We start by formally defining the fluid limits of work arriving to machine 2 and of work present
at machine 2 within one sub-problem. Assuming the state definition of Section 8.3.2.1, we
denote the state at the start of the sub-problem by x. This state is characterized by y0 jobs at
machine 1, with all the other components, including the number of jobs at machine 2, being 0.
As before, the mean processing time on machine m is denoted E[ηm(1)] =

1
µm

.
Dx,π

m (t) denotes the cumulative number of departures from machine m by time t under
policy π given initial state x. This quantity is dependent on the scheduling policy since the
scheduling policy defines the order in which jobs leave machine 1.

Let Ex,π
2 (t) be a function that represents the cumulative workload arriving to machine 2

from machine 1 in [0, t] under policy π given initial state x:

Ex,π
2 (t) =

Dx,π
1 (t)∑
h=1

η2([h]), (9.1)

where [h] represents the hth position in the schedule constructed by π. Let Wx,π
2 (t) represent

the work present at machine 2 at time t:

Wx,π
2 (t) = Ex,π

2 (t)−
Dx,π

2 (t)∑
h=1

η2([h]). (9.2)

We are interested in evaluating the undelayed2 fluid limits of the processes defined in Equa-
tions (9.1) and (9.2). Thus, we take the limit as |x| goes to ∞ by letting y0 → ∞ while keeping
the remaining components of x constant:

Ēπ
2 (t) = lim

|x|→∞

1

|x|
Ex,π
2 (|x|t), (9.3)

W̄π
2 (t) = lim

|x|→∞

1

|x|
Wx,π

2 (|x|t). (9.4)

The fluid limits under FCFS are dependent only on the means of the processing time distribu-

2See the work of Dai (1995), Dai and Meyn (1995) for formal definitions of delayed and undelayed fluid
limits.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 167

tions:

Ēπ
2 (t) =

µ1

µ2

t, (9.5)

W̄π
2 (t) =

µ1

µ2

t− 1. (9.6)

The rest of the policies use detailed processing time information, making it difficult to evaluate
their fluid limits analytically. We therefore investigate their behaviour empirically below.

9.1.2 Empirical Evaluation

Our empirical evaluation is based on three categories of problem instances:

• Category 1: the processing time of job j on machine 1 is smaller than or equal to its
processing time on machine 2, η1(j) ≤ η2(j), for all j;

• Category 2: the processing time of job j on machine 1 is greater than its processing time
on machine 2, η1(j) > η2(j), for all j;

• Category 3: there is at least one job j such that η1(j) ≤ η2(j) and at least one job l such
that η1(l) > η2(l).

Category 1 instances consist only of jobs that belong to set I of Johnson’s rule, and category
2 instances consist only of jobs of set II. Category 3 instances contain both set I and II jobs.
Throughout this chapter, we refer to a job j that satisfies the property η1(j) ≤ η2(j) as a set I
job and to a job j that satisfies η1(j) > η2(j) as a set II job.

We evaluate six instances in total: two from category 1, two from category 2, and two
from category 3. In instances 0 to 3, which are listed in Table 9.1, there are two job types,
A and B, each occurring with equal probability and having deterministic processing times.
Since all A jobs are identical and all B jobs are identical, we denote their processing times by
ηm(A) and ηm(B), respectively, for machine m. Instance 4 is based on a two-point distribution:
P (η1(j) = 1) = 0.5, P (η1(j) = 3) = 0.5, P (η2(j) = 1) = 0.5 and P (η2(j) = 2) = 0.5.
Thus, four job types are possible: A with processing times (η1(A), η2(A)) = (1, 1), B with
processing times (1, 2), C with processing times (3, 1), and D with processing times (3, 2).
Type A and B jobs are part of set I of Johnson’s rule, while C and D belong to set II. Instance
5 has exponentially distributed processing times and was empirically evaluated in Chapter 7.

The instances of each category can be distinguished based on their consistency: if placing
the jobs in non-decreasing order of the processing times on machine 1 also results in the jobs
being ordered in non-decreasing order of the processing times on machine 2, i.e., if η1(j) ≤

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 168

η1(l) implies η2(j) ≤ η2(l) ∀ j, l, then we call the corresponding problem instance consistent.
As shown in Table 9.1, instances 0 and 2 are consistent; the other instances we consider are
inconsistent.

Instance (η1(A), η2(A)) (η1(B), η2(B)) type µ1 µ2 consistent?

0 (1, 2) (2, 300) 1 2
3

1
151

yes

1 (1, 300) (2, 2) 1 2
3

1
151

no

2 (300, 2) (2, 1) 2 1
151

2
3

yes

3 (300, 1) (3, 2) 2 2
303

2
3

no

Table 9.1: Data for instances 0 to 3.

In our evaluation of the fluid limits, we assume that one unit of fluid is present at machine
1 at time 0, with equal proportions of fluid belonging to each of the fluid types that are part of
the instance.

9.1.2.1 Instances of Categories 1 and 2

Instances 0 to 3 consist of jobs belonging to only one set of Johnson’s rule, so the reverse policy
is equivalent to the makespan policy, while J|FCFS and reverse|FCFS are both equivalent to
FCFS. The fluid limits of work arriving to machine 2 are piecewise linear functions for all
policies since all A jobs are identical and all B jobs are identical. The rate at which work
arrives at machine 2 is the ratio of the machine 2 and machine 1 processing rates.

Consider instance 0 as an example. The rate at which work arrives at machine 2 is 2 for
type A fluid and 150 for type B. Using SPTsum and makespan yields the same schedule:
all jobs of type A are scheduled before any jobs of type B. The amount of time it takes for
machine 1 to process all fluid of this sub-problem is 0.5(1) + 0.5(2) = 1.5 since the initial
fluid level of each type is 0.5 and since the machine is non-idling. Once all work of the current
sub-problem has arrived at machine 2, the function Ēπ

2 (t) remains constant until the end of the
sub-problem, which occurs at 151 for instance 0. Assuming the fluid level at machine 2 is
initially 0, Equation (9.3) for π =makespan and π = SPTsum is the piecewise linear function:

Ēπ
2 (t) =


2t, 0 ≤ t ≤ 0.5,

150t− 74, 0.5 ≤ t ≤ 1.5,

151, 1.5 ≤ t ≤ 151.

(9.7)

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 169

The reverseMakespan policy constructs the opposite sequence, resulting in the function:

ĒreverseMakespan
2 (t) =


150t, 0 ≤ t ≤ 1,

2t+ 148, 1 ≤ t ≤ 1.5,

151, 1.5 ≤ t ≤ 151.

(9.8)

The fluid limits for instances 1 to 3 are calculated similarly. The graphs of the functions
corresponding to instances 0 to 3 are presented in Figures 9.1–9.4.

The fluid limits of work present at machine 2 are calculated based on Equations (9.2) and
(9.4). For instances of category 1, the arrival rate of work to machine 2 is always greater than
or equal to 1, implying that machine 2 is always busy and that the rate at which work leaves
machine 2 is 1. As a result, for instances 0 and 1, W̄reverseMakespan

2 (t) = Ēπ
2 (t)−t. For instance

0, the total amount of machine 2 work is 0.5(2) + 0.5(300) = 151. Since machine 2 is always
fully utilized, the sub-problem finishes at time 151 for all policies that we consider. The fluid
limit of work present at machine 2 for instance 0 is the following piecewise linear function for
π = makespan and π = SPTsum:

W̄π
2 (t) =


t, 0 ≤ t ≤ 0.5,

149t− 74, 0.5 ≤ t ≤ 1.5,

151− t, 1.5 ≤ t ≤ 151.

(9.9)

For reverseMakespan, the fluid limit is defined by the function:

W̄reverseMakespan
2 (t) =


149t, 0 ≤ t ≤ 1,

t+ 148, 1 ≤ t ≤ 1.5,

151− t 1.5 ≤ t ≤ 151.

(9.10)

For type 2 instances the rate at which work arrives at machine 2 is always less than 1, implying
that work leaves machine 2 instantaneously as it arrives. We do not present the graphs of the
functions corresponding to the work present at machine 2 for instances 0 to 3 since for type 1
instances the slope of the W̄π

2 (t) functions is different from the slope of Ēπ
2 (t) by −1, while for

type 2 instances the fluid level of work present at machine 2 is always 0.

9.1.2.2 Instances of Category 3

Next, we evaluate fluid limits for two instances of category 3, which contain jobs of both
set I and set II of Johnson’s rule. For instance 4, we obtain piecewise linear functions as
for instances 0 to 3, with the exception that there are more “pieces” since there are more job
types. In addition, each of the seven policies described earlier results in a different processing

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 170

Figure 9.1: Fluid Limits for Instance 0. Figure 9.2: Fluid Limits for Instance 1.

Figure 9.3: Fluid Limits for Instance 2. Figure 9.4: Fluid Limits for Instance 3.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 171

Figure 9.5: Fluid Limits of Work Arrived at
Machine 2 for Instance 4.

Figure 9.6: Fluid Limits of Work Present at
Machine 2 for Instance 4.

sequence and hence different fluid limit functions. These are shown in Figures 9.5 and 9.6.

The next instance we consider has exponentially distributed processing times and was em-
pirically evaluated in Chapter 7. With the exponential assumptions, it is more difficult to ana-
lyze the fluid limits of policies that use processing time information than when the processing
times are deterministic or determined by a two-point distribution. Therefore, we do not present
exact fluid limits for makespan, SPTsum, reverse and reverseMakespan: we leave the evalua-
tion of the exact limits for these policies for future work. However, in Figure 9.7, we show the
workload arriving to machine 2 for the initial sub-problem of a particular instance with expo-
nentially distributed processing times and a large number of jobs initially present in the system,
which gives an indication of the fluid trajectories for makespan, SPTsum, reverse and FCFS.
In Figure 9.8, we show the workload present at machine 2 over time for the same sub-problem.

We now consider the fluid limit for J|FCFS, which is easier to evaluate since scheduling the
jobs in FCFS order in each set implies that we can directly apply the Law of Large Numbers.
The probability that job j falls into set I is p = P (η1(j) ≤ η2(j)) =

µ1

µ1+µ2
, while the probability

that job j will be in set II is 1− p = P (η1(j) > η2(j)) =
µ2

µ1+µ2
. Denote the rate of processing

for set I jobs as µ̃1 for machine 1 and µ̃2 for machine 2. Similarly, let the processing rate for
set II jobs be µ̂1 and µ̂2 for machine 1 and 2, respectively. Equations (9.11)–(9.14) provide
definitions for these processing rates in terms of µ1 and µ2.

E(η1(j)|η1(j) ≤ η2(j)) =
1

µ1 + µ2

=
1

µ̃1

(9.11)

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 172

0 5000 10000 15000 20000 25000

0
50

00
10

00
0

15
00

0
20

00
0

Time

W
or

kl
oa

d
A

rr
iv

in
g

to
 M

ac
hi

ne
 2

FCFS
makespan
SPT_sum
reverse

Figure 9.7: Workload Arriving to Machine 2 for Instance 5.

0 5000 10000 15000 20000 25000

0
20

00
40

00
60

00
80

00

Time

W
or

kl
oa

d
P

re
se

nt
 a

t M
ac

hi
ne

 2

FCFS
makespan
SPT_sum
reverse

Figure 9.8: Workload Present at Machine 2 for Instance 5.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 173

E(η2(j)|η1(j) ≤ η2(j)) =
2µ2 + µ1

µ2(µ1 + µ2)
=

1

µ̃2

(9.12)

E(η1(j)|η1(j) > η2(j)) =
2µ1 + µ2

µ1(µ1 + µ2)
=

1

µ̂1

(9.13)

E(η2(j)|η1(j) > η2(j)) =
1

µ1 + µ2

=
1

µ̂2

(9.14)

Let EI
2 (t) and EII

2 (t) be the workload arrival processes to machine 2 for set I and set II, re-
spectively. Then, using the definitions above, we find that their derivatives are ˙̄EI

2 (t) =
µ̃1

µ̃2
and

˙̄EII
2 (t) = µ̂1

µ̂2
.

In this section, we evaluated the fluid limits of six problem instances with various charac-
teristics. We compare the fluid makespans of different policies in Section 9.1.3 and the fluid
limits of work arriving to machine 2 in Section 9.1.4. Our evaluation and comparison serve as
the basis for the insights we provide in Section 9.2.

9.1.3 Comparison of Fluid Makespans

One observation we make from the above examples is that the fluid makespan for instances of
category 1 and 2 is always the same for all policies we consider. We now state this property
in Proposition 9.1.1 and prove it. We denote by C̄π

max the fluid makespan of a static problem
instance under policy π.

Proposition 9.1.1. If a given static problem instance belongs to category 1 or 2, then C̄π
max is

the same for all non-idling π.

Proof. If η1(j) ≤ η2(j), for all jobs j belonging to a problem instance (i.e., category 1), then
the rate at which work arrives at machine 2 is always greater than or equal to 1, regardless
of the scheduling policy. Combining this property with the fact that machine 2 is non-idling,
we see that work leaves machine 2 at rate 1 regardless of the policy. Thus, on the fluid scale,
the length of the sub-problem is equal to the length of the sub-problem on machine 2 for all
non-idling policies.

If η1(j) > η2(j), for all j (category 2 instance), then the rate at which work arrives at
machine 2 is always less than 1. Hence, irrespective of the policy, machine 2 is not fully
utilized, and the length of the sub-problem is defined by the length of time it takes to process
all fluid on machine 1. Thus, on the fluid scale, the length of the sub-problem is the same under
all non-idling policies.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 174

Figures 9.6 and 9.8 show that for category 3 instances, the fluid makespans of different
non-idling policies may be different. We now formally establish the relationship between the
fluid makespans of the seven policies of interest to us.

Proposition 9.1.2. For a given static problem instance,

C̄makespan
max = C̄J |FCFS

max = C̄FCFS
max ≤ C̄reverseMakespan

max = C̄reverse|FCFS
max = C̄reverse

max . (9.15)

Proof. The fact that C̄makespan
max = C̄FCFS

max was shown in the proof of Proposition 8.3.2 in the
previous chapter. C̄makespan

max = C̄
J |FCFS
max and C̄reverseMakespan

max = C̄
reverse|FCFS
max = C̄reverse

max

since all of these policies divide jobs into set I and II in the same way and the fluid makespans
of each set are the equal by Proposition 9.1.1.

To prove the inequality of Expression (9.15), note that the fluid makespan of the makespan

policy provides a lower bound on the fluid makespan of any policy, since this policy minimizes
the makespan on the original scale. Instance 4 and Figure 9.6 provide an example of a problem
instance where the inequality is strict. The inequality becomes an equality for problems of
category 1 and 2, as shown by Proposition 9.1.1, and illustrated by instances 0 to 3.

In fact, the above proposition and its proof imply that non-idling policies that divide jobs
into two sets as does Johnson’s rule can be placed into two classes based on their fluid makespan.
That is, all non-idling policies that schedule set I before set II result in the same fluid makespan
as the makespan policy, while all policies that schedule set II before set I yield the same fluid
makespan as reverseMakespan.

The above results have a direct implication for the polling system with a flow shop server.
In this system, we know that the arrival process is independent of the scheduling policy and that
a new sub-problem is constructed when the previous one completes on machine 2. By Propo-
sition 9.1.2, we know that the first sub-problem completes at the same time for makespan,
J|FCFS, FCFS and all other non-idling policies that schedule set I before set II. Thus, at the
next review point, exactly the same sub-problem is solved by all these methods. By repeatedly
applying Proposition 9.1.2, we see that all policies of this class find exactly the same fluid
makespan for every sub-problem. The same is true for reverseMakespan, reverse|FCFS, re-

verse and all other non-idling policies that schedule set II before set I. The order of jobs within
each set has no effect on the fluid makespan.

The above examination of fluid limits is important since it allows us to gain an understand-
ing of the performance of policies that use processing time information that could not have
been obtained via standard scheduling analysis tools. In particular, we have identified two
classes of policies that, in general, result in different fluid makespans; we have also identified a
condition under which the two classes perform identically (i.e., when an instance is of category

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 175

1 or 2). Since differences on the fluid scale imply significant differences on the original scale,
our results lead to two conclusions. Firstly, without using interchange arguments or doing an
experimental evaluation as would have been necessary if a pure scheduling perspective was
taken, we establish that policies that schedule set I before set II achieve significantly lower
makespans for static two-machine flow shop problems than those that schedule set II before set
I. Secondly, by combining the static problem result with the analysis of Section 7.3.4, we find
that policies that schedule set I before set II also perform significantly better in terms of the
long-run mean flow time in a polling system with a two-machine flow shop server. We discuss
additional insights gained from looking at the fluid limits in Section 9.2.

9.1.4 Comparison of Fluid Limits

Next, we investigate the relationship among the fluid limits of different policies. Firstly, by
looking at Figures 9.1–9.8, we see that the fluid limits of both the work arriving to machine
2 and the work present at machine 2 are dependent on the underlying distributions and the
scheduling policies employed. This observation suggests a further investigation of the rela-
tionship between the shapes of the fluid limits and the scheduling policies may be interesting.

Secondly, we conjectured that Ēmakespan
2 (t) ≥ ĒJ |FCFS

2 (t) ≥ ĒFCFS
2 (t) ≥ ĒreverseMakespan

2 (t),
∀t.3 The examples of the previous section show that our conjectures that Ēmakespan

2 (t) ≥
ĒJ |FCFS
2 (t) and ĒFCFS

2 (t) ≥ ĒreverseMakespan
2 (t) do not hold in general. In particular, in Fig-

ures 9.1 and 9.3 (instances 0 and 2), we see that the curve for makespan is below those of FCFS

(which, in these cases, is identical to J|FCFS) and reverseMakespan. However, we can prove
part of this relationship under the assumption of exponentially distributed processing times.

Proposition 9.1.3. Assume that the processing times in either the dynamic flow shop with

two machines or the polling system with a two-machine flow shop server are exponentially

distributed. Then, ĒJ |FCFS
2 (t) ≥ ĒFCFS

2 (t), ∀t.

Proof. The initial sub-problem starts at time 0 and is exactly the same under all policies. Let
s̄0 be the completion time, on the fluid scale, of set I under J|FCFS during this sub-problem.
Then, for all t in the interval [0, s̄0], ĒJ |FCFS

2 (t) = µ̃1

µ̃2
t ≥ µ1

µ2
t = ĒFCFS

2 (t).

Since machine 1 is non-idling, all policies complete the current sub-problem on machine 1
at the same time on the fluid scale, t̄0. In other words, ĒJ |FCFS

2 (t̄0) = ĒFCFS
2 (t̄0).

Since ĒJ |FCFS
2 (t) and ĒFCFS

2 (t) are non-decreasing, their values at t̄0 are equal, and there
exists a time point s̄∗ within the sub-problem such that ĒJ |FCFS

2 (s̄∗) ≥ ĒFCFS
2 (s̄∗), then, for

3Recall that Ēπ
2 (t) represents the amount of work that has arrived at machine 2 by time t under policy π, on

the fluid scale.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 176

every time point in [s̄0, t̄0], the amount of work that has arrived at machine 2 under J|FCFS is
greater than or equal to the amount of work that has arrived under FCFS.

In the polling system, we know, by Proposition 9.1.2, that the sub-problems for FCFS and
J|FCFS are identical on the fluid scale. In the dynamic flow shop, we know that the set of
jobs that belong to a particular problem is independent of the scheduling policy; thus, there
is also no difference among the policies in the fluid level at the start of a given sub-problem.
Since in both systems the amount of work present at the beginning of every sub-problem is
the same under FCFS and J|FCFS, we know that the above argument applies to every sub-
problem. We therefore conclude that ĒJ |FCFS

2 (t) ≥ ĒFCFS
2 (t), ∀t, in both the polling system

with a two-machine flow shop server and a dynamic two-machine flow shop.

Based on Figure 9.7, we conjecture that the rest of the inequalities hold in the case of ex-
ponentially distributed processing times. Investigation of this conjecture is left for future work
since it would require the derivation of exact fluid limits for makespan and reverseMakespan,
which is beyond the scope of this dissertation.

Thirdly, notice that for instance 0, the SPTsum and makespan curves are the same, while
for instance 1, the SPTsum curve is identical to that of reverseMakespan. These observations
suggest that the shape of the fluid limits is dependent not only on the category of the instance
(which is based on the relationship between the magnitudes of the processing times on machine
1 and 2) but also on its consistency. It appears that for category 1 instances, the SPTsum and
makespan fluid limits are the same when the processing times are consistent. Instances 2 and 3
suggest the opposite behaviour for category 2 instances: the SPTsum and makespan curves are
the same when the processing times are inconsistent and different when the processing times
are consistent.

Next, consider the fluid limits of the work present at machine 2. In Figure 9.6, the maximum
of W̄π

2 (t) occurs at time 0.5 for policies that schedule set I ahead of II and at time 2 for policies
that do the opposite. In Figure 9.8, we see a similar pattern in behaviour: the maximum occurs
early in the schedule for makespan, while for reverse it happens at the time when the fluid
level under the makespan policy has already reached 0. This behaviour reflects the fact that
policies that schedule set I before set II maximize the utilization of machine 2 and hence result
in smaller makespan values both on the original scale and the fluid scale.

9.2 Insights

Below, we discuss the insights gained from analyzing the behaviour of different policies on the
fluid scale. Firstly, we demonstrate how fluid limit analysis can help identify key algorithmic

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 177

features. Secondly, we consider the relationship between the shape of the fluid limits and
minimization of makespan. Finally, we look at the stability of the non-idling policies we have
investigated above.

9.2.1 Identification of A Key Algorithm Feature

On the fluid scale, some details of the underlying system dynamics are not visible; the most
significant features, however, become apparent. We have shown in Section 9.1.3 that all non-
idling policies that divide jobs into two sets as does Johnson’s rule can be categorized into two
classes based on their fluid makespans: one consisting of policies that schedule set I before set
II (plus FCFS), and the other consisting of policies that schedule set II before set I. The order
in which the jobs are scheduled within each set has no effect on the fluid makespans. Since
any difference on the fluid scale implies a significant difference on the original scale, these
results suggest that appropriate division of jobs into two sets based on processing times and the
order in which these sets are scheduled have a greater influence on the makespan than does the
detailed sequencing within each set.

Identifying the division of jobs as a key feature of Johnson’s rule suggests that we can use
fluid analysis to determine whether a similar type of division in a system with more than two
machines has the same significance for minimizing makespan. If such a division is identified,
it can lead to the development of polynomial-time approximation algorithms for problems with
more than two machines. It would then be interesting to determine if the difference in perfor-
mance on the fluid level can allow us to find performance guarantees for these approximations.

Our observation that placing set II before set I can result in a large increase in makespan
also has implications for scheduling in the dynamic flow shop. In this system, we know that
a new sub-problem starts as soon as the previous sub-problem finishes on machine 1. If we
assume that the instance parameters are such that most sub-problems consist of both set I and
set II jobs, then we know that when one sub-problem completes and another starts, set II from
sub-problem i is scheduled before set I of sub-problem i+ 1. From the perspective of the total
makespan over the two sub-problems i and i + 1, this is equivalent to using one of the reverse
policies. Thus, to improve the total makespan over multiple sub-problems, we could adopt the
following strategy: review the status of the system at the completion of set I of the current
sub-problem; if any new set I jobs are present, these should be scheduled before any set II jobs.
In this approach, however, we would need to determine some threshold on the number of set
II jobs at which processing of set II should begin. Additionally, these observations imply that
an idling policy may actually perform better than a non-idling policy since waiting an extra
time unit may imply the arrival of a set I job that could be scheduled ahead of a previously-

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 178

arrived set II job. See the discussion following Lemma 8.2.1 for an example. Interestingly, Tran
(2011) and Tran et al. (2013) use a similar observation to improve scheduling performance in
a dynamic parallel machine environment with setup times.4 In particular, one of their methods
reviews the status of the system earlier than the end of the already-scheduled set of jobs: the
status is reviewed when the current schedule prescribes a machine to switch from processing
one class of jobs to another; if any of the newly-arrived jobs are of the class that the machine
has just been working on, then a setup time can be avoided by scheduling these jobs ahead of
those belonging to another class. We conjecture that similar types of rules for reviewing the
system earlier can be developed for other dynamic settings.

9.2.2 Predicting Performance of Scheduling Algorithms

In this section, we investigate whether fluid limit analysis can help predict the performance of
scheduling algorithms with respect to the makespan objective.

While intuitively it seems that the policy that sends work to machine 2 at the greatest
possible rate on the fluid scale should be the one that minimizes makespan, instances 0 and
2 show that this is not necessarily true for category 1 and 2 instances, respectively. For these
instances, the actual shape of the curve for fluid arriving to machine 2 has no effect on the fluid
makespan since it does not change the proportion of time when machine 2 is busy. However,
the shape of the curve does reflect differences in detailed scheduling on the original level,
which also affect the makespan values. The discrepancy between intuition and the behaviour
seen for instances 0 and 2 can be explained as follows. If we schedule, from set I, the job
with the smallest processing time on machine 1 first, then on the original scale we ensure that
machine 2 becomes busy as soon as possible, regardless of the job’s machine 2 processing time.
However, if we attempt to maximize the workload arrival rate from machine 1 to machine 2
on the fluid scale, then we may need to violate the SPT order on machine 1. We conclude that
for instances of category 1 and 2, observing equal fluid makespans tell us that the difference in
makespans on the original scale is small, but the behaviour of the fluid curves does not give us
more information.

For instances of category 3, if we can show, for a particular problem instance, that the
inequality in Expression (9.15) is strict, we can infer a significant difference in performance on
the original scale between the two classes of non-idling policies that we introduced in Section
9.1.3. Instance 4, which is based on a two-point distribution, and instance 5, which is based
on exponentially distributed processing times, provide examples where this property holds (see

4We discuss this work in Section 10.3.3.2.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 179

Figures 9.6 and 9.8). In instance 5, the fluid makespan5 for the makespan policy for the first
sub-problem (given an initial fluid level of 1) is 1

6
, and for reverse is 1

4
. The difference in actual

makespans is 17699.7 for makespan versus 25625.3 for reverse. From Section 7.3.4, we know
that in the polling system such differences propagate and result in smaller mean flow times for
the makespan approach.

Figure 9.8 also suggests that if both set I and II jobs are present, then the graphs of
W̄makespan

2 (t) and W̄reverseMakespan
2 (t) provide the two extremes of the fluid shapes that can

occur. We conjecture that, given a fluid limit curve between these two extremes, we can predict
the performance of the corresponding policy with respect to the makespan objective based on
how close the curve is to the fluid limits of makespan and reverseMakespan. For example,
suppose we are given the fluid curves of SPTsum and FCFS as in Figure 9.8. Based on the
observation we just made, we would predict that FCFS performs slightly better than SPTsum

since it has somewhat bigger spikes initially (i.e., closer to makespan), while SPTsum appears
to leave more workload for later, as does reverse. We then find that the actual makespan of the
sub-problem is 17951.9 for FCFS and 18189.8 for SPTsum. Clearly, this example is not strong
enough to provide conclusive evidence (recall also that Figure 9.8 does not show that exact
fluid limits) and hence the generality of our observation requires further investigation, which
we leave for future work.

In future work, we would also like to determine whether analysis of the fluid limits can help
us predict the performance of algorithms with respect to the sum of completion times objective.

9.2.3 Stability of Non-Idling Policies in the Polling System

In the previous chapter, we established stability of FCFS and makespan policies for the polling
system with a flow shop server. In this section, we supplement those results and thus provide a
more complete picture of stability of non-idling policies that utilize processing time informa-
tion in a polling system with a two-machine flow shop server.

Firstly, based on the result of Proposition 9.1.2, we know that the two classes of policies
that we identified in Section 9.1.3 have identical stability regions.

Corollary 9.2.1. The stability regions of reverse, reverseMakespan, reverse|FCFS and all

other non-idling policies that schedule set II of Johnson’s rule before set I are the same. The

stability regions of FCFS, makespan, makespan|FCFS and all other non-idling policies that

schedule set I of Johnson’s rule before set II are the same.

5The fluid makespan is not evident from Figure 9.8 since this figure is based on a particular instance and does
not display the true fluid limits. The calculation of fluid limits is evident from Equations (9.16) and (9.21), which
are presented in the next section.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 180

0 50000 100000 150000 200000 250000 300000

0
50

10
0

15
0

20
0

25
0

30
0

Time

N
um

be
r

of
 J

ob
s

in
 Q

ue
ue

 1
FCFS
makespan
SPT_sum
reverse

Figure 9.9: Number of Jobs at Machine 2 in Queue 1 Over Time for an Example Instance. This
figure also appears as Figure 8.9.

Proof. The corollary follows from Proposition 9.1.2, the fact that all of the considered policies
are non-idling, and that the arrival rate to the system is independent of the policy.

Secondly, in the special case when sub-problems are category 1 or 2 instances, the follow-
ing proposition is true.

Proposition 9.2.1. In the polling system with a two-machine flow shop server, if for every

sub-problem it holds that either η1(j) ≤ η2(j), for all j, or η1(j) > η2(j), for all j, then all

non-idling policies are stable under the same condition as FCFS and makespan.

Proof. From Proposition 9.1.1, we know that if a sub-problem consists only of set I or only
of set II jobs, then on the fluid scale, the length of the sub-problem is the same under all non-
idling policies. We also know that the arrival process is not dependent on the scheduling policy.
Therefore, if the length of the first sub-problem on the fluid scale is the same under all non-
idling policies, then it follows that the subsequent sub-problem has the same length on the fluid

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 181

scale as well. Thus, assuming that every sub-problem consists either of set I jobs only or of set
II jobs only, we know that all non-idling policies encounter exactly the same sub-problems, and
that their lengths, on the fluid scale, are identical to those of FCFS and makespan. Thus, when
all sub-problems consist exclusively of jobs from set I or jobs from set II, then all non-idling
policies are stable under the same condition as makespan and FCFS.

Figure 8.9 of the previous chapter, repeated here as Figure 9.9, suggests that for category
3 instances, not all non-idling policies are stable under the same condition. We now formally
prove that the system depicted in Figure 9.9, and other systems with similar parameters, are
indeed unstable under the reverse policy.

The system depicted in Figure 9.9 is a symmetric polling system with a two-machine flow
shop server and with processing times that are exponentially distributed with equal means on
machines 1 and 2 (1/µ1 = 1/µ2). Since the system is symmetric (i.e., the processing and
arrival rates are not queue dependent), we use notation that is slightly different (and simpler)
than that used in the previous chapter. We number the sub-problems starting from 0. At the
start of sub-problem i on the fluid scale, the fluid level under policy π is denoted by Q̄π

i and the
fluid makespan of the corresponding sub-problem is equal to C̄π

maxi
. We denote the fluid level

present in set I of sub-problem i by Q̄π,I
i and in set II by Q̄π,II

i . If FCFS is employed, then the
fluid makespan of sub-problem i is

C̄FCFS
maxi

=
Q̄FCFS

i

µ1

. (9.16)

Since µ1 = µ2, by using Equations (9.11)–(9.14) we find that

1

µ̃2

=
1

µ̂1

=
3

2µ1

. (9.17)

If reverse is employed, the fluid makespan of sub-problem i is

C̄reverse
maxi

=
Q̄reverse,I

i

µ̃2

+
Q̄reverse,II

i

µ̂1

(9.18)

=
3Q̄reverse,I

i

2µ1

+
3Q̄reverse,II

i

2µ1

(9.19)

=
3

2µ1

(Q̄reverse,I
i + Q̄reverse,II

i) (9.20)

=
3

2µ1

Q̄reverse
i . (9.21)

We now state and prove the instability result of interest to us.

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 182

Theorem 9.2.1. Consider a symmetric polling system with B queues and a two-machine flow

shop server. The arrival rates to the queues are general with rate λ and the processing times

are exponentially distributed with rate µ1 on both machines. If 3Bλ
2µ1

> 1 then the system is

unstable under the reverse policy.

Proof. We compare the given system to an equivalent polling system with arrival rate λFCFS =
3λ
2

(the rest of the parameters remain the same) operating under FCFS. We show that the
amount of fluid present at the start of sub-problem i, for all i, is the same for the original
system with arrival rate λ under reverse and the equivalent system with arrival rate λFCFS un-
der FCFS, i.e., Q̄reverse

i = Q̄FCFS
i , where the notation Q̄π

i represents the fluid level at the start
of sub-problem i under policy π in the equivalent system with the adjusted arrival rate.6 We
denote the length of sub-problem i under policy π in the equivalent system by C̄π

maxi
.

Assume that, at time 0, there is one unit of fluid in the original system and in the equivalent
system with adjusted arrival rate. We show by induction that Q̄reverse

i = Q̄FCFS
i for all i.

Base Case: Q̄reverse
0 = Q̄FCFS

0 = 1 and Q̄reverse
s = Q̄FCFS

s = 0 for all s < 0.
Inductive Hypothesis: Assume that Q̄reverse

k = Q̄FCFS
k for all k < i.

Inductive Step:

Q̄FCFS
i =

3λ

2
(C̄FCFS

maxi−1
+ C̄FCFS

maxi−2
+ C̄FCFS

maxi−3
+ C̄FCFS

maxi−4
+ C̄FCFS

maxi−5
) (9.22)

=
3λ

2

1

µ1

(Q̄FCFS
i−1 + Q̄FCFS

i−2 + Q̄FCFS
i−3 + Q̄FCFS

i−4 + Q̄FCFS
i−5) (9.23)

where the second equality is based on the calculation of fluid makespan of Equation (9.16).
Similarly,

Q̄reverse
i = λ(C̄reverse

maxi−1
+ C̄reverse

maxi−2
+ C̄reverse

maxi−3
+ C̄reverse

maxi−4
+ C̄reverse

maxi−5
) (9.24)

= λ
3

2µ1

(Q̄reverse
i−1 + Q̄reverse

i−2 + Q̄reverse
i−3 + Q̄reverse

i−4 + Q̄reverse
i−5). (9.25)

It follows that Q̄FCFS
i = Q̄reverse

i .
Therefore, the fluid level at the start of every sub-problem in the two systems is the same.

As a consequence, we know that if the equivalent system with adjusted arrival rate under FCFS

is unstable, then so is the original system under reverse. It follows from Proposition 8.3.1 that
the equivalent system is unstable under FCFS if B λFCFS

µ1
= 3Bλ

2µ1
> 1. Hence, the original

system under reverse is unstable if this condition holds also.

In the example of Figure 9.9, B = 5, λ = 1, µ1 = 6 and so 3Bλ
2µ1

= 15
12

> 1, implying
instability of the system if the reverse policy is used. As a consequence of Corollary 9.2.1, the

6This notation is necessary since Q̄FCFS
i 6= Q̄FCFS

i .

CHAPTER 9. THEORETICAL INTEGRATION: FLUID ANALYSIS 183

system is also unstable under reverseMakespan, reverse|FCFS and all other non-idling policies
that schedule set II before set I.

In summary, the results proven in this section define stability properties of a large group
of policies that are dependent on processing time information, which has not previously been
done. Our work also demonstrates two general approaches for proving stability or instability
of periodic scheduling methods: compare, on the fluid scale, either the sub-problem length
or the amount of fluid present at the start of each sub-problem for the scheduling method of
interest and a simpler policy known to be stable or unstable. These approaches are important
for developing a further understanding of stability of periodic scheduling policies that utilize
processing time information. One of the next steps in the study of stability of periodic schedul-
ing methods is investigating the stability of the completionTime policy, which does not have a
specific structure that can be utilized nor a property that makes it easily comparable to FCFS.

9.3 Conclusion

Continuing the integration of scheduling and queueing theory on the theoretical level, in this
chapter we proposed to use fluid limit analysis as a tool for investigation of scheduling algo-
rithm performance. Specifically, we studied the fluid limits of work arriving to machine 2 and
present at machine 2 in a two-machine flow shop under six different assumptions regarding
processing times. These fluid limits helped us to gain several insights. First, we showed that
division of jobs into two sets based on processing times is a key component of Johnson’s rule,
having a significant effect on makespan. Second, we made observations regarding the useful-
ness of fluid limit analysis for prediction of policy performance with respect to the makespan
objective. Third, a better understanding of fluid limits allowed us to prove the stability of
various non-idling periodic scheduling methods that utilize processing time information.

Thus, this chapter provided additional evidence of the potential of applying queueing theory
methodologies to scheduling. In the next chapter, we present future work on the integration of
queueing theory and scheduling.

Chapter 10

Scheduling and Queueing Theory Future
Work

In this dissertation, we have adopted the viewpoint that integration of queueing and scheduling
can occur on three different levels: conceptual, theoretical and algorithmic. The current chapter
outlines directions for future work on each of these levels.

Some ideas for integration of queueing and scheduling were discussed in the literature
review chapter (Chapter 6). In the current chapter, we classify these ideas according to the
three-level framework but do not repeat the details. Additionally, we present extensions re-
sulting from the work presented in Chapters 7, 8 and 9, as well as other ideas for integration
that fit into the three-level framework and have not been mentioned in the literature review.
We discuss the algorithmic level of integration in more detail than the other levels, outlining a
general method for creating hybrid models, and discussing two examples of how the method
can be applied, one of which has already appeared.

10.1 Conceptual Level

The conceptual level of integration of queueing and scheduling focuses on combining problem
settings, concepts and assumptions from the two areas. Further work in this direction can result
in a richer framework for modelling real-world problems and can lead to new insights about
dynamic scheduling.

10.1.1 Summary of Ideas from Chapter 6

The following ideas for future work on the conceptual level were proposed in the literature
review chapter:

184

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 185

• continuation of the work by Harchol-Balter (2011), Nuyens et al. (2008) and Wierman
et al. (2005) on using queueing analysis to derive theoretical performance guarantees for
dispatching rules under particular distributional assumptions (Section 6.1.2.2.1);

• development of new priority queueing models based on dispatching rules (e.g., compos-
ite dispatching rules such as the Apparent Tardiness Cost heuristic (Pinedo, 2009)) and
their analysis (Section 6.1.2.2.1);

• development of a general framework for integrating queueing and scheduling based on
the observation that any scheduling algorithm can be represented as a function of M , P
and A, where M is the decision mode, P is a priority function and A is an arbitration
rule (Jaiswal, 1982; Ruschitzka and Fabry, 1977) (Section 6.1.2.2.1);

• study of problems that require optimization of polling order together with optimization of
within-queue sequencing (e.g., simultaneously minimizing the expected length of a pro-
duction cycle and the total job tardiness in a manufacturing facility) (Section 6.1.2.2.2);

• investigation of how polling models can represent systems with different objectives at
different decision-making levels (Section 6.1.2.2.2);

• investigation of polling systems under the limited-k discipline where the k jobs are se-
lected using rules other than FCFS (Section 6.1.2.2.2);

• improvement of polling system performance by employing scheduling approaches to
optimize within-queue scheduling (Section 6.1.2.2.2);

• further investigation of the link between lot-sizing and polling systems (Winands, 2007),
and the use of lot-sizing or batch scheduling methods for optimization of polling order
within polling systems (Section 6.1.2.2.2);

• investigation of the use of polling models with precedence constraints (Khamisy et al.,
1992) for modelling scheduling problems with precedences and the task management
problem (Myers et al., 2007) (Section 6.1.2.2.2);

• study of the relationship between the restless bandit problem and stochastic variations
of resource constrained project scheduling discussed by Mercier and Van Hentenryck
(2008) (Section 6.1.2.2.4);

• comparison of the results from the online scheduling literature and the study of priority
queues (Section 6.2);

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 186

• investigation of the links between queueing design and control models in which the goal
is to find optimal values for controllable queue parameters other than the order of service
(see Section 6.1.1.3) and scheduling (Section 6.1.2).

10.1.2 Extensions of Chapter 7

Extensions of the work in Chapter 7 are based on combining problem settings and assumptions
from queueing and scheduling.

10.1.2.1 Combination of Problem Settings

One direction for future work is to explore variations of the system introduced in Chapter 7,
which is a hybrid of a classical polling system from the queueing literature and a flow shop,
which has received significant attention in scheduling.

As indicated in Section 6.1.2.2.2, polling systems can be controlled by choosing the polling
order, the queue service discipline and the service order within a queue. In our work, we have
assumed that both the polling order and the queue service discipline are fixed, and focused on
the optimization of the service order within each queue. It would be interesting to relax this
assumption and study optimization of the polling order, the queue service discipline as well as
combinations of the three types of decisions in a polling system with a flow shop server.

Additionally, we could study a polling system with a more complex machine structure
within the server, such as a job shop. We conjecture that if the gated discipline is used, then
minimizing the makespan of each sub-problem would lead to smaller overall mean flow times
than minimizing the flow time of each sub-problem or using queueing policies, regardless of
the combinatorial structure of the server. As a result, the trade-off between short-run and long-
run performance measures discussed in Section 7.3 would also be observed for a polling system
with a server that is combinatorially more complex than a flow shop. Research on polling sys-
tems with such servers has several drawbacks, however. Firstly, finding the optimal makespan
for each sub-problem may become impractical since an increase in a sub-problem’s complexity
could lead to significantly longer run times. Secondly, based on the above conjecture, it seems
unlikely that we could obtain any new significant insights from the study of polling systems
with more complex servers. It would, however, be fruitful to identify practical applications of
polling systems with complex servers (e.g., one potential application1 may be in polymeriza-
tion plants (Terrazas-Moreno et al., 2008)), determine whether the insights gained from abstract
models would be useful for these applications, and investigate any related questions.

1This suggestion is due to Dr. Mark Boddy.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 187

10.1.2.2 Combination of Assumptions

In Chapter 7 we used a combination of assumptions from queueing and scheduling: we as-
sumed knowledge of inter-arrival and processing time distributions, as in queueing theory, and
we assumed that the processing time of a job becomes known with certainty upon its arrival to
the system, as in scheduling. This combination of assumptions is of both theoretical and prac-
tical significance. From the theoretical perspective, there has not been much previous work on
this “middle ground” between queueing and scheduling assumptions, although there has been
a significant amount of work on the extremes (i.e., knowledge of distributions only, or knowl-
edge of exact processing times only). From the practical perspective, there exist applications
(e.g., in manufacturing and computer processing) with dynamic arrivals and well-estimated
processing times. Thus, it would be interesting to examine a wider range of problems under a
combination of queueing and scheduling assumptions.

One example of such a problem is from the paper by Atkins and Chen (1995). In this
problem, three machines serve six job classes: machine 1 serves classes 1 and 2, machine
2 serves classes 3 and 4, and machine 3 serves classes 5 and 6. Jobs arrive to the different
classes according to stochastic processes with known inter-arrival rates. When a job of class k
completes processing, it turns into class l with a given probability pkl. Each class is processed
by the corresponding machine, with processing times being drawn from known distributions
with class-dependent processing rates. If, in addition, we assume that once a job arrives its
exact route through the system and its processing times on all machines become known with
certainty, then we obtain a hybrid of a queueing network and a job shop with recirculation.2

We can study three variations of this problem:

1. All jobs have the same weight, regardless of their class membership. The objective is to
optimize, over the long run, the mean flow time of jobs.

2. All jobs belonging to the same class have the same weight. The objective is to optimize,
over the long run, the mean weighted flow time of jobs.

3. Each job has a weight that is not dependent on its class membership and which becomes
known upon its arrival to the system. The objective is to minimize the mean weighted
flow time of jobs over a long time horizon.

This problem setting borrows several assumptions from queueing theory that are usually
not made in classical scheduling models:

• knowledge of inter-arrival and processing time distributions,
2In scheduling, recirculation means that a job may be processed by a particular machine more than once

(Pinedo, 2003).

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 188

• division of jobs into classes,

• knowledge of the routing matrix, which states the probability with which a job of class
k turns into a job of class l.

In addition, it uses a classical scheduling assumption that is not typically made in queueing
models: knowledge of a job’s route through the system and its exact processing times on each
machine become known upon the job’s arrival. Thus, from the scheduling perspective this
problem setting is the dynamic version of a job shop with recirculation and with the additional
distributional knowledge. From the queueing perspective, it is an open queueing network with
realizations of all stochastic job characteristics becoming known at the arrival of the job, rather
than at its departure. As far as we are aware, such problems have not been addressed in the
literature.

10.1.3 Other Ideas for Conceptual Integration

In this section, we present other conceptual differences between queueing and scheduling,
and discuss how these differences can be leveraged for obtaining new insights about dynamic
scheduling.

10.1.3.1 Modelling Waiting

Both queueing and scheduling models represent environments in which tasks need to be pro-
cessed by a set of resources. Classical scheduling models focus on how the resources are
utilized by the jobs and do not include an explicit representation of the queue these jobs form
while waiting for processing. Queueing theory, on the contrary, reasons about the waiting jobs
and makes sequencing decisions based on the queue’s state. For example, it may prescribe a
machine to switch from one class of jobs to another when the length of the queue of the sec-
ond class exceeds some threshold value. We could therefore investigate hybrid models with an
explicit representation of both the state of the queue and the detailed sequencing decisions on
the resource. Such models would require scheduling approaches that would be able to reason
about both aspects of the problem.

10.1.3.2 Bottleneck Sub-network

In most environments studied by queueing and scheduling, there are machines which are more
critical than others, either because they are in greater demand by the jobs or because they are

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 189

slower.3 In both queueing and scheduling, such machines are typically referred to as bottleneck

machines. In scheduling, it is well-known that an environment with a complicated machine
setup but a single bottleneck may be modelled as a single machine scheduling problem. There
also exist scheduling methods based on the bottleneck concept (Adams et al., 1988; Beck and
Fox, 2000). Similarly, in queueing theory, bottlenecks have been used as part of decomposition
approaches such as the Sequential Bottleneck Decomposition method of Dai et al. (1994).

Bottleneck machines are exactly the ones at which large queues tend to form, where the
majority of waiting time is incurred, and where scheduling should have the biggest impact
(Ravikumar and Narahari, 1994). This observation suggests dealing with the bottleneck sub-
network using scheduling models, while representing the rest of the system using queueing.
This hybrid representation of a system has several advantages. Firstly, by focusing on the
combinatorics of the bottlenecks, we are likely to get significant improvements in performance.
Secondly, detailed scheduling of a sub-network should require less computational effort than
detailed scheduling of the whole network.

We could argue, on the contrary, that queueing theory should be used to derive a policy
for controlling the bottleneck sub-network while the rest of the system can be represented via
scheduling models. Such an approach may be necessary because in practice it may be impossi-
ble to use detailed scheduling models of the bottleneck sub-network due to time constraints.4 In
addition, queueing theory could be used to analyze the stability of the bottleneck sub-network.

In both of these hybrid models some method of communication between the queueing and
the scheduling sub-models is necessary for obtaining a representation of the overall system.
For example, we can use queueing theory to determine the arrival process of jobs from the
non-bottleneck part of the system to the bottleneck sub-network; this arrival process can then
be used by the scheduling model as input.

10.2 Theoretical Level

The theoretical level of integration focuses on combining theoretical notions from queueing
and scheduling. In Chapter 8 we showed that the queueing notion of stability is an impor-
tant and interesting performance measure for dynamic scheduling problems, and that queueing
methodologies can be applied to prove stability of periodic scheduling methods. In Chapter 9,
we analyzed different periodic scheduling approaches using fluid limits. It would be interest-
ing to pursue both a further study of stability and fluid limits in dynamic scheduling, and an

3We can relate this notion of being critical to the queueing notion of offered work load rate, which is the ratio
of the arrival rate to the processing rate (Gross and Harris, 1998).

4The idea of looking at the bottleneck sub-network using one approach, and at the rest of the system using
another was suggested by my thesis committee during the qualifying exam meeting.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 190

examination of other theoretical notions from the two areas.

10.2.1 Summary of Ideas from Chapter 6

The following ideas for future work on the theoretical level have been proposed in the literature
review chapter:

• investigation of the steady-state performance of composite dispatching rules (Section
6.1.2.2.1);

• application of descriptive results from polling systems to the development of bounds on
optimal schedules and within scheduling algorithms (Section 6.1.2.2.2).

10.2.2 Extensions of Chapters 8 and 9

Below, we discuss future work arising from Chapters 8 and 9.

10.2.2.1 Stability

One direct next step from the work presented in Chapter 8 is the investigation of our conjec-
ture that Theorem 8.2.2 can be shown true for the case with more than two machines using a
fluid model approach. Stability analysis of SPTsum and completionTime, the remaining two
methods presented in Chapter 7, is also of interest. Proving stability of the completionTime

approach may prove to be especially challenging since it possesses neither a specific structure
that can be utilized in the proof nor a property that makes it easily comparable to FCFS.

Conceptual integration could motivate additional stability questions. For example, we
could investigate stability of the FCFS and makespan policies assuming that a limited-k, rather
than a gated, queue service discipline is adopted in the polling system. Specifically of interest
is the question of whether the stability conditions would be identical for the two policies. In
the case of the limited-1 discipline, the FCFS and makespan policies are equivalent, and so,
trivially, they would be stable under the same condition. As soon as k is increased to two,
however, it becomes possible for FCFS and makespan to encounter different sub-problems,
which eliminates the possibility of proving strong sample paths results of the type presented in
Lemma 8.2.1. We conjecture that the equivalent of Lemma 8.2.1 holds if one of the following
two conditions for ensuring that the two methods will solve exactly the same sub-problems is
true: (1) the arrival rate is such that exactly k jobs are always available at the end of every
sub-problem, or (2) there are k or more jobs available at the end of every sub-problem and the
two methods select, out of the available jobs, exactly the same k jobs.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 191

More generally, we hope this dissertation will serve as a motivation for stability analysis of
more complex scheduling methods based on processing times (e.g., a method which minimizes
flow time within each static sub-problem using a mixed-integer or a constraint programming
approach). Such analysis will provide important long-run guarantees for the periodic approach
to dynamic scheduling problems. If a given periodic scheduling technique is shown to be
unstable, it then becomes interesting to determine if augmenting the technique with reasoning
based on queueing theory could lead to a stable method.

10.2.2.2 Fluid Limit Analysis

In Chapter 9, we looked at the fluid limits of work arriving to machine 2 and work present
at machine 2 for various policies. While our analysis yielded some insights and showed po-
tential for fluid analysis to be used as a tool in evaluation of scheduling algorithms, several
parts of our work are not conclusive. In particular, in future work we would like to obtain
stronger results regarding how well the fluid limits can predict the performance of methods
with respect to makespan and total completion time objectives. Additionally, we would like to:
further investigate the relationship between the fluid limits of work arriving to machine 2 that
is discussed in Section 9.1.4; derive exact limits of policies dependent on processing times; de-
termine whether the fluid limits of SPTsum and completionTime models are similar; determine
whether our analysis can be extended to problems with more than two machines and whether
it can lead to the development of polynomial-time approximation algorithms.

10.2.3 Other Ideas for Theoretical Integration

Another direction for further research is the investigation of other theoretical queueing notions
that could be borrowed by scheduling and of theoretical notions existing in the scheduling lit-
erature that may be of interest in queueing. The goal of such an investigation would be to
formalize dynamic scheduling methodologies and results, and to develop a theoretical under-
standing of when various predictive-reactive methods would perform better than queueing-type
priority rules, or vice versa, and why.

10.3 Algorithmic Level

As discussed in Chapter 6, scheduling algorithms developed within queueing theory are typ-
ically concerned with the allocation of resources to job classes rather than with detailed se-
quencing decisions. They are likely to optimize long-run objectives but may perform poorly

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 192

for a given short time horizon. Scheduling methods, in contrast, focus on sequencing and opti-
mization of short-run performance but may be myopic. Thus, combining algorithmic compo-
nents from queueing theory and scheduling could lead to the development of hybrid algorithms
for effectively addressing dynamic scheduling problems.

10.3.1 Summary of Ideas from Chapter 6

The following ideas for integration of queueing and scheduling on the algorithmic level have
been proposed in the literature review chapter:

• empirical comparison of the performance of queueing policies (e.g., priority policies,
fluid model-based heuristics), predictive-reactive scheduling methods, online stochastic
combinatorial optimization methods and hybrid algorithms, similar in style to the algo-
rithmic work of Tran (2011) (Sections 6.1.2.2.2, 6.1.2.3.1, 6.1.2.3.2 and 6.2);

• examination of the MDP model as a meta-framework for the construction of queue-
ing/scheduling hybrids: if a queueing algorithm and a scheduling algorithm are chosen,
and the state of the problem is compactly represented, then we can define an action as the
choice to follow the queueing algorithm or the choice to follow the scheduling algorithm
until the next decision time point (Section 6.1.2.1);

• investigation of whether it is useful to model part or all of a dynamic scheduling problem
as a bandit problem and to incorporate Gittins indices into the constraints or the objective
function of the models used to construct predictive schedules (Section 6.1.2.2.4);

• investigation of the applicability of the achievable region approach in scheduling (e.g.,
for derivation of performance bounds) (Section 6.1.2.3.1);

• derivation of new constraints for the achievable region approach based on techniques
from scheduling (Section 6.1.2.3.1);

• investigation of operational-level scheduling policies that can also respect the tactical
allocations provided by queueing methods (e.g., Markov Decision Process approaches,
fluid models, Brownian models) (Sections 6.1.2.1 and 6.1.2.3.1), similar to the inves-
tigation of Aramon Bajestani et al. (2012) which combines higher-level maintenance
decisions with lower-level operational ones;

• investigation of translation mechanisms from the queueing approximations and abstrac-
tions to implementable policies (this is closely related to the direction mentioned in the
previous point) (Section 6.1.2.3.2);

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 193

• investigation of the idea of tracking for scheduling: firstly, predictive-reactive methods
could be developed which aim to track the solution of the fluid model as do the trajectory-
tracking policies in queueing, and, secondly, for static problems, there may be problem
relaxations, such as preemptive versions of non-preemptive problems, that can be tracked
(Section 6.1.2.3.2);

• use of a model that specifies high-level resource allocations as part of a problem de-
composition method such as the logic-based Benders method of Hooker (2005) (Section
6.1.2.3.2); the work of Aramon Bajestani and Beck (2011, 2013) on the use of Benders
decomposition in problems with maintenance and scheduling decisions would be useful
in the study of this direction.

Another avenue for future work is to continue the empirical study of Chapter 7, comparing
our proposed periodic scheduling methods to dispatching rules discussed by Sarper and Henry
(1996) and investigating the performance of periodic methods with multiple objectives (see
Section 7.4.1).

10.3.2 A General Framework for Algorithmic Integration

One general framework for developing hybrid queueing/scheduling algorithms is based on the
progressive scheduling approach of Bidot (2005). Hybrids created using this framework build
the schedule incrementally: the status of the system is reviewed at various points in time and a
static scheduling problem consisting of all or a subset of the unscheduled jobs is solved at each
review point. This framework can be described in terms of three steps:

1. Use one of the queueing theory approaches described in Chapter 6. Typically, queueing
methodologies for scheduling result either in an implementable policy (e.g., a priority
rule such as shortest processing time first) or in a high-level solution that cannot be
directly implemented (e.g., proportions of time that each machine should spend on each
job class). Both the policy and the high-level solution can be used as input data for the
hybrid method.

2. Define an approach for progressively5 constructing the schedule, which includes

(a) Determining the reasoning horizon for selecting the data on which to reason.

(b) Determining a rule for choosing the subset of jobs that will be scheduled at each
review point. Some possible approaches are:

5The progressive scheduling approach was proposed by Bidot et al. (2009). It is presented here in a slightly
different manner than in the work by Bidot (2005) and Bidot et al. (2009).

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 194

• take all of the unscheduled jobs that have arrived to the system by the current
review time point. This is, essentially, the equivalent of the gated queue ser-
vice discipline used in polling systems (see Section 6.1.2.2.2 for a discussion of
policies in polling systems).

• select, according to some rule (e.g., FCFS), a subset of k jobs from the set
of all unscheduled jobs. This is the equivalent of the limited-k queue service
discipline studied in the polling literature.

• if the queueing approach of Step 1 provides the proportions of time that should
be allocated to each class, then select as many unscheduled jobs of a given
class as is allowable by the corresponding proportion. The jobs may be selected
according to FCFS or according to a more complicated rule. For example, we
may select the jobs using the weighted shortest processing time rule with the
“weight” of a job j being t − rj where t is the end of the current scheduling
period and rj is the arrival time (release date) of job j. This way of defining the
weight of a job implies that jobs that have been waiting for processing longer
than others will tend to be selected earlier.

(c) Determining when decisions should be made. The decisions can be made at equally-
spaced points in time (e.g., every hour), whenever the uncertainty level of the avail-
able information becomes low enough or whenever the anticipation horizon becomes
small enough. The anticipation horizon is defined by Bidot et al. (2009) as the time
period between the current time and the time of the last scheduled activity. The ap-
proach that reviews the status of the system at equally-spaced points in time does
not require an execution-monitoring system, whereas the other two approaches do.
Queueing information (e.g., from fluid models) can also be used for determining
when the status of the system should be reviewed.

(d) Defining the commitment horizon, which includes choosing the set of jobs for which
the decisions made will not be reconsidered during execution (Bidot et al., 2009).
We can do so using the rules outlined in Step 2(b).

3. Create the sub-problem to be solved at each review point of the progressive scheduling
approach by defining the objective and the constraints. The structure of both is dependent
on the short-run and long-run performance goals, and on the type of information provided
by the queueing approach of Step 1.

Below, we discuss two examples of how this framework can be applied. The first example
is from the dissertation by Tran (2011), and is also part of a working journal paper (Terekhov

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 195

et al., 2012d) and a conference paper (Tran et al., 2013), and deals with scheduling in a dynamic
parallel machine setting.6 The second one concerns the dynamic job shop with recirculation.

10.3.3 Example 1: Dynamic Parallel Machine Setting

Work in the direction of algorithmic integration that was done concurrently with the work for
the present dissertation focused on the dynamic parallel machine scheduling problem (Tran,
2011; Tran et al., 2013; Terekhov et al., 2012d), which can alternatively be referred to as the
problem of routing in a queueing network with flexible servers. In this problem, jobs from
different classes arrive over time and have to be assigned to one of a set of parallel machines.
The processing times of these jobs are dependent both on their class and the machine they are
assigned to. As in Chapter 7, it is assumed that the processing times of a job on all machines
become known upon its arrival to the system. The goal of the problem is to assign jobs to
machines in order to minimize the mean flow time. Tran (2011) empirically evaluates pure
scheduling, pure queueing and queueing/scheduling methods for solving this problem without
and with setup times.

10.3.3.1 Without Setup Times

Consider the problem discussed above and assume that no setup times are incurred when two
jobs of different classes have to be processed on the same machine.

Pure Scheduling Approaches The first scheduling approach considered by Tran (2011) is a
greedy heuristic which assigns an arriving job to the machine that would result in the smallest
possible flow time for this job given all the jobs already scheduled.

The second method, referred to as MinMksp, is a periodic scheduling approach similar to
the makespan method presented in Section 7.2: the status of the system is reviewed periodically
and a static scheduling problem with the makespan objective is solved. However, in this case
minimizing the makespan, Cmax, of each sub-problem requires the solution of a mixed integer
program (MIP). If J ′ denotes the set of jobs belonging to the current sub-problem, and M is
the set of parallel machines, then this MIP is stated as follows:

6This material is included with permission of the author.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 196

min Cmax (10.1)

s.t.
|J ′|∑
j=1

xijpij + vi ≤ Cmax, i ∈ M (10.2)

|M |∑
i=1

xij = 1, j ∈ J ′ (10.3)

xij ∈ {0, 1}, j ∈ J ′, i ∈ M, (10.4)

where pij is the processing time of job j on machine i, and vi is the remaining processing time
on machine i corresponding to jobs from the previous sub-problem. The decision variable in
the problem is xij , which equals 1 if job j is assigned to machine i and 0 otherwise. Once the
jobs are assigned based on the solution of this MIP, they are sequenced in FCFS order on each
machine.

Pure Queueing Approaches The pure queueing approach that Tran (2011) utilizes is due to
the paper by Andradóttir et al. (2003), which uses a fluid model-based linear program (LP)
to determine the proportion of time, δik, that a machine i should spend on a class k so as to
maximize the total arrival rate that the system can handle while remaining stable.7 Based on
these proportions, Andradóttir et al. (2003) define a round-robin policy for assigning the jobs to
machines, while Al-Azzoni and Down (2008) define an LP-based affinity scheduling (LPAS)
heuristic.

Queueing/Scheduling Hybrid The hybrid queueing/scheduling approach proposed by Tran
(2011) utilizes both the optimal δik values, and the MIP in Equations (10.1)–(10.4). Specifi-
cally, the hybrid is a periodic scheduling approach which solves, at each review time point, the
following MIP:

min αCmax + (1− α)

|M |∑
i=1

|K|∑
k=1

cik (10.5)

s.t. Constraints (10.2) to (10.4) (10.6)∑
j∈Sk

xijpij − δ∗ik

|J ′|∑
j=1

xijpij ≤ cik, k ∈ K, i ∈ M, (10.7)

cik ≥ 0, k ∈ K, i ∈ M, (10.8)

7See Section 6.1.2.3.1 for a discussion of fluid models and stability, and Chapters 8 and 9 for more detailed
examples of the use of fluid models.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 197

where cik is the deviation between the assignment of class k to machine i and δ∗ik, α is a param-
eter that represents the importance of deviation from δ∗ik versus the importance of makespan
minimization, Sk is the set of jobs belonging to class k and K is the set of all classes. The
objective function quantifies the trade-off between what the scheduling algorithm suggests in
order to reach the short-run goal of minimizing Cmax and what the queueing approach suggests
in order to ensure stability in the long run. Constraint (10.7) states that cik is greater than or
equal to the difference between the actual amount of time assigned to class k and the amount
of time that queueing suggests should be devoted to this class on machine i.

The hybrid algorithm proposed by Tran (2011) fits into the framework of Section 10.3.2
as follows. In Step 1, the fluid model-based LP is chosen as the queueing approach. As
mentioned earlier, solving this LP provides the proportions of time that should be spent on
each class in order to maximize the arrival rate that can be handled by the system. In Step 2, a
periodic approach similar to the one used for scheduling in the dynamic flow shop of Chapter
7 is employed. Tran (2011) defines a scheduling period as the time that elapses from when
the scheduler evaluates the system until any of the machines is once again available. Thus,
the anticipation horizon is the time window between the earliest time point when one of the
machines becomes available and the end time of the last scheduled job from the same sub-
problem. The data that is used for reasoning consists of the set of unscheduled jobs and the
jobs of the previous sub-problem that are still in progress at the given review point. Decisions
are made about all the unscheduled jobs that are present in the system. The reasoning and the
commitment horizons are both equal to the temporal window between a given review time point
and the completion time of the last scheduled job from the set considered at that review point.
In Step 3, the sub-problem is defined via Equations (10.5)–(10.8). In this case, the objective
focuses on the balance between minimizing Cmax and the deviation from the queueing solution,
and a constraint is needed to define the deviation.

Tran’s experiments showed that the hybrid model performs better than the pure queueing
and pure scheduling approaches described above. At heavy loads, the hybrid model finds
mean flow times that are up to 50% lower than the next best model. We refer the reader to
the dissertation by Tran (2011) and the working paper by Terekhov et al. (2012d) for detailed
results.

10.3.3.2 With Setup Times

Tran (2011) and Tran et al. (2013) address the dynamic parallel machine scheduling problem
with setup times that are dependent on both the resource and the job sequence. As for the
problem without setup times, they compare the round-robin policy developed by Andradóttir
et al. (2003) with a scheduling approach based on periodic makespan minimization.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 198

Tran (2011) also proposes four variations of a hybrid approach, referred to as Tracking,
Restricted, Reschedule and Restricted + Reschedule. The Tracking approach is exactly the
same as the hybrid approach used in the problem without setups, described in Section 10.3.3.1.
The Restricted model operates similarly, but allows a job to be assigned to a resource only if
the corresponding proportion δ∗ik is non-zero. From the perspective of the framework of Section
10.3.2, the only difference between Tracking and Restricted is in how the information from the
queueing approach of Step 1 is incorporated into the sub-problem developed in Step 3 (i.e.,
another constraint is added in the Restricted case).

The Reschedule method redefines the end of a scheduling period to be the earliest of the
times that any of the resources become idle or the time when the resource is scheduled to
switch to another class. To avoid the situation where a job class would not receive processing
for a long time, the maximum number of jobs from class k that can be scheduled on machine i

consecutively is set to lik, which is a parameter of the round-robin policy of Andradóttir et al.
(2003). Thus, compared to the Tracking hybrid, the Reschedule one uses different anticipation
and commitment horizons, and has an extra constraint on the number of consecutive jobs from
the same class. Another characteristic that distinguishes the Reschedule method from all of
the hybrids described above is that it uses both the proportions of time generated by the fluid
model-based LP and the parameters of a queueing policy based on the same LP. The Restricted

+ Reschedule method is a combination of the Restricted and Reschedule hybrids.

Experiments showed that all four versions of the hybrid approach perform better than the
pure scheduling method. However, the Tracking, Restricted and Reschedule methods are out-
performed by the pure queueing approach, the round-robin policy of Andradóttir et al. (2003).
Nevertheless, using the Restricted + Reschedule approach results in up to a 60% improvement
in mean flow time compared to either the pure scheduling or the pure queueing approach. These
results demonstrate that queueuing/scheduling hybrids can perform better than pure queueing
or pure scheduling methods. However, creating effective hybrid queueing/scheduling methods
is non-trivial and requires analysis and experimentation with the specific problem of interest.

10.3.4 Example 2: Dynamic Job Shop with Recirculation

The work of Tran (2011) provides a basis for integrating queueing and scheduling algorithms.
However, the problem addressed in that work deals with the assignment of arriving jobs to
machines, rather than with sequencing of jobs on a machine,8 and studies the parallel ma-
chine environment, with each job consisting of just one activity (i.e., there are no precedence

8Tran (2011) uses FCFS to sequence jobs on each machine.

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 199

constraints). In order to more fully understand the interaction of queueing and scheduling al-
gorithms, and examine the performance of queueing and scheduling hybrids, we propose an
empirical evaluation of these three types of methods in the dynamic job shop with recirculation
discussed in Section 10.1.2.2, which involves sequencing decisions and jobs consisting of more
than one activity.

Pure Scheduling Approach A periodic scheduling approach similar to the one described in
Section 7.2 can be used. Specifically, this approach would be based on reviewing the status of
the system at the earliest time point when one of the machines completes a sub-problem.

Pure Queueing Approaches As indicated in Chapter 6, there is a variety of queueing ap-
proaches that can be used to obtain scheduling policies. As a first step, we propose to focus
on fluid models. For the problem described in Section 10.1.2.2, Atkins and Chen (1995) solve
the fluid model-based LP stated in Equations (6.30)–(6.33) of Section 6.1.2.3.1 for each of
26 states of the system. The state is defined as a six-dimensional vector, where each entry is
either a 0, corresponding to an empty class queue, or a +, representng a positive number of
jobs in the respective class queue. The solution of each LP is a vector x = (x1, . . . , xk), where
xk represents the proportion of capacity that station σ(k) should devote to processing class k
fluids. To create an implementable policy from this fluid model solution, we can consider four
approaches:

• The solution can be interpreted as a priority rule. In some cases, doing so is trivial as
the solution suggests that all of the server’s capacity should be allocated to exactly one
class. For example, when there are jobs present in all six classes, the optimal solution of
the above-mentioned LP is x = (+, 0,+, 0,+, 0), where + represents a positive number.
This solution suggests that classes 1, 3 and 5 should receive greater priority at stations 1,
2 and 3, respectively, than the other classes those stations are serving (Atkins and Chen,
1995). In fact, by similarly interpreting the solution of the LP for all possible states of the
system, the following policy is obtained: at machine 1, class 1 is always given priority
over class 2; at machine 3, class 5 always has priority over class 6; and at machine 2,
priority is given to class 3 if the queue of class 5 is not empty and to class 4 otherwise
(Atkins and Chen, 1995).

In the general case, the solution of the LP may suggest that some amount of processing
time should be spent on more than one class. In this case, priority could be given to the
class with the largest proportion or the choice could be made probabilistically.

• The solution can be transformed into a policy using discrete-review trajectory tracking:

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 200

a goal state is set and capacity is allocated in such a way as to reach this state (Maglaras,
2000). The status of the system is reviewed periodically. Specifically, at a time point
when the decision to process a job has to be taken, the first job from a class that has the
greatest current deviation from the fluid solution can be chosen.

• A “roulette-wheel” approach can be used: given the fluid solution specifying the proba-
bility of serving each class, the job should be chosen probabilistically at every decision
time point (e.g., completion of a job on a machine).

Queueing/Scheduling Hybrids To develop hybrid approaches, we can follow the general
framework proposed in Section 10.3.2, using any of the above pure queueing approaches for
Step 1 and using the periodic scheduling method for Step 2. In Step 3, we can use a variety
of ways for incorporating queueing information, which depend on the choice made in Step 1.
Some options include:

• applying a queueing approach to obtain start times for all jobs and then defining, for
every job, the deviation between the start time assigned by the queueing solution and the
start time suggested by the scheduling approach. This deviation term can then be utilized
as part of the objective function in the same way as the class allocation deviations are
used by Tran (2011).

• determining the pure queueing and the pure scheduling solutions and then combining
the two to form a better schedule for the sub-problem. Various methods from the meta-
heuristic literature, where there has been work on combining different solutions to derive
a new one should be investigated (e.g., path relinking (Glover et al., 2000)).

10.4 Conclusions

As stated in Chapter 2, real scheduling problems are combinatorial, dynamic and uncertain,
and related to other decision-making problems. In Part III of this dissertation, we provided a
new framework for addressing problems that are combinatorial and dynamic. This framework
is based on the integration of classical scheduling and queueing theory on three levels, concep-
tual, theoretical and algorithmic. The conceptual level is examined in the context of flow shops
in Chapter 7, while examples of theoretical integration are given in Chapters 8 and 9. In the
current chapter, we discussed ideas for future work on both the conceptual and the theoretical
levels. For the algorithmic level, we presented one possible framework for the creation of hy-
brid queueing/scheduling algorithms, and two examples of the use of this framework. Further

CHAPTER 10. SCHEDULING AND QUEUEING THEORY FUTURE WORK 201

work in the direction of combining queueing and scheduling could be motivated by specific
applications, such as the ones arising in healthcare or manufacturing.

In the next part of the dissertation, we propose future work ideas that combine the de-
velopments of Parts II and III, summarize the contributions of our work and conclude the
dissertation.

Part IV

Conclusion

202

Chapter 11

Conclusions and Future Work

In this final chapter, we summarize the work presented in previous chapters, re-state the major
contributions of this dissertation and state directions for future work that are based on combi-
nations of ideas from Parts II and III.

11.1 Summary and Contributions

Real-world scheduling problems are combinatorial, dynamic and uncertain, and closely related
to other decision-making processes of their environment. However, classical scheduling has
focused on solving isolated, static, deterministic versions of these problems. In this disserta-
tion, we showed that integration of scheduling with related fields of study provides a means to
address scheduling problems under more realistic assumptions. Firstly, by combining schedul-
ing with ideas from inventory management, we were able to more accurately model a specific
supply chain setting, and to partially deal with the need for scheduling to take into account re-
lated decision-making processes. Secondly, by combining concepts, ideas and methodologies
from queueing theory and scheduling, we gained a better understanding of the dynamic aspects
of real scheduling problems.

11.1.1 Integration of Scheduling and Inventory Management

Part II of this dissertation addressed, within a small but realistic supply chain setting, the neces-
sity to model the relationship between combinatorial scheduling problems and other decision-
making processes, and took a step toward developing a framework for integrating scheduling
and inventory decisions.

203

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 204

11.1.1.1 Modelling and Solving a Realistic Supply Chain Scheduling Problem

In Chapter 4, we provided three mixed-integer programming (MIP) models and a constraint
programming (CP) model for a small supply chain with two manufacturing facilities that pro-
duce distinct products, and a merge-in-transit facility that packages these products together
according to customer order specifications. Since manufacturing requires component parts,
we explicitly modelled their availability. Specifically, we assumed that a fixed periodic re-
plenishment policy is known and added constraints to our models to ensure that production of
an item will not start until all components become available. These constraints model three
types of components: those required by a particular product at a particular manufacturer, those
shared among multiple products at a particular manufacturer, and those shared between the two
manufacturers.

Our models were implemented using commercially available software and extensively em-
pirically evaluated. We therefore provided a baseline on how well the given problem can be
solved without resorting to problem-specific algorithms. The empirical evaluation of Chapter
4 showed that, in terms of finding a feasible solution within one hour, the CP model is the best,
with the MIP model based on time-indexed variables being a close second. When there are no
components shared among the two manufacturers and the processing times are short, this MIP
model is the best performer in terms of proving optimality; with a larger range in processing
times, the CP model is the best. For problems with shared components, the time-indexed MIP
is the best-performing model for proving optimality, although the performance of all models
deteriorates significantly, indicating a need, in future work, to investigate more sophisticated
approaches.

11.1.1.2 Basis for a General Framework

We created a basis for a general modelling framework for environments where it is necessary
to determine the timing and quantity of component replenishments and the schedule of jobs
that utilize these components. Models of such environments need to explicitly represent the
influence of inventory decisions on scheduling and vice versa. In Part II of this dissertation, we
demonstrated how to incorporate the effect of inventory availability on scheduling into mixed-
integer programming and constraint programming models. We assumed a fixed replenishment
policy that is not dependent on the inventory position and optimized the scheduling objective
of total weighted tardiness. In Chapter 10, we outlined further steps in the development of a
general framework, including investigation of problems whose goal is to optimize a combina-
tion of procurement, holding and weighted tardiness costs or to minimize the inventory costs
subject to a constraint ensuring that all jobs are completed on time, under increasingly general

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 205

assumptions regarding the inventory policy.

11.1.2 Integration of Scheduling and Queueing Theory

In Part III of this dissertation, we developed a three-level framework for integration of queueing
and scheduling, and demonstrated, on two of these levels, the benefits of such integration for
dealing with dynamic aspects of real-world scheduling problems. This framework was built on
a thorough review of the queueing literature. We concluded Part III with an outline of future
work directions for each of the three levels of integration.

11.1.2.1 Review of Queueing Theory Methods for Scheduling

In Chapter 6, we reviewed the queueing theory literature that deals with scheduling problems.
Our review classified the queueing work on scheduling into three categories: direct approaches
based on Markov decision processes, models possessing special structure, and approxima-
tions/abstractions. Throughout the review, we discussed similarities and differences between
queueing and scheduling approaches, bridging the gap between two areas that have developed
independently. We also indicated specific ways in which the developments of queueing can be
useful to scheduling and vice versa, which should be explored in future work. Thus, our review
built a strong foundation for integrating queueing theory and scheduling.

11.1.2.2 Conceptual Level of Integration

We demonstrated that integrating queueing and scheduling on the conceptual level leads to
novel insights about scheduling in dynamic environments. To investigate this level, we con-
sidered two related environments that are dynamic and possess an underlying combinatorial
structure. In addition to studying the classical dynamic flow shop, we proposed and investi-
gated a novel scheduling environment: a polling system with a gated, cyclic discipline and a
server that is a two-machine flow shop. In both systems we made the classical queueing as-
sumption of knowing the distribution of processing times prior to scheduling, and the classical
scheduling assumption that a job’s processing time becomes known with certainty upon its
arrival to the system.

In both settings, we empirically evaluated the performance of four periodic scheduling
approaches for the problem of minimizing mean flow time. Our experiments showed that
in the polling system, the method that optimizes the makespan of each sub-problem is the
best, while in the dynamic flow shop, an approach based on minimizing the mean flow time
directly at each decision point is the best performer. These results demonstrated that in the
polling system, there is a conflict between short-run and long-run objectives: minimization

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 206

of the makespan leads to sub-optimal sum of completion time values for each sub-problem,
but results in significant overall mean flow time improvements. In dynamic two-machine flow
shops there is no such conflict: minimizing the total completion time of each sub-problem leads
to better long-run mean flow time than does minimizing makespan. These results demonstrated
the importance of considering both short-run and long-run objectives in dynamic scheduling.

Subsequently, we formally analyzed the performance differences between the method that
periodically optimizes makespan and the method that periodically optimizes the sum of com-
pletion times under the assumption that all sub-problems consist of the same number of jobs.
We formally showed that the theoretical completionTime model always performs better than the
makespan model with respect to the sum of completion times in the dynamic flow shop. In the
polling system, assuming that both models encounter the same sub-problems and some other
mild conditions, we showed that the opposite occurs: the makespan model outperforms the
theoretical completionTime model with respect to total completion time as the number of sub-
problems goes to infinity. We then stated how the results generalize if the various assumptions
made in our analysis are removed.

We observed that the difference in the performance of different methods in the two systems
is induced by the change in the review time point. Therefore, we concluded that the design
of dynamic scheduling algorithms needs to take into account that changes in both the system
structure and the parameters of the approach can have a significant effect on how the trade-off
between short-run and long-run objectives affects system performance.

Additionally, we showed that periodic scheduling methods can perform better than queueing-
based dispatching rules for optimization of long-run performance. However, it may not always
be obvious how to choose the objective function for each sub-problem so that the long-run
objective could be met.

11.1.2.3 Theoretical Level of Integration

On the theoretical level of integration, we introduced the notions of stability and fluid limit
analysis to the combinatorial scheduling literature. In particular, we analyzed stability of the
two-machine flow shop and the polling system with a flow shop server. In the dynamic flow
shop, we used a sample path argument to show that a scheduling approach that periodically
solves static deterministic sub-problems and optimizes their makespan is stable under the same
condition as first-come, first-served (FCFS). In the polling system, we proved stability of both
FCFS and a periodic scheduling method that optimizes the makespan of every sub-problem
using the fluid model methodology of Dai (1995). Thus, by proving stability of a schedul-
ing method that is based on the traditional scheduling literature and utilizes processing time
information to make sequencing decisions in both systems, we showed that theoretical integra-

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 207

tion of queueing and scheduling can lead to long-run performance guarantees for scheduling
algorithms that have previously been proved only for queueing policies.

Additionally, we showed that the sample path argument does not extend to a dynamic flow
shop with more than two machines. For the polling system, we extended the proofs of stability
of FCFS and makespan to the case when the server is an M -machine flow shop or a d-stage
flexible flow shop with M machines at each stage.

Furthermore, we proposed fluid limit analysis as a tool for investigation of the performance
of scheduling algorithms. We demonstrated that for policies based on processing time infor-
mation, the fluid limits of work arriving to machine 2 and work present at machine 2 retain
more information about the schedule and the distribution of processing times than those of
FCFS. Our analysis allowed us to obtain three insights. Firstly, we identified the division of
jobs into two sets based on processing times and the order in which these sets are sequenced
as being key for optimization of makespan in a two-machine flow shop. Secondly, we made
observations regarding the relation between fluid limits and a method’s ability to optimize the
makespan and the sum of completion times. Finally, for the polling system with a two-machine
flow shop server, we established stability of several policies and showed that not all non-idling
policies are stable under the stability conditions of FCFS and makespan.

11.1.2.4 Other Contributions

In Chapter 10 we outlined numerous directions for future work on integrating queueing and
scheduling. Most importantly, we introduced one possible framework for the creation of hybrid
queueing and scheduling algorithms, establishing a general basis for the algorithmic level of
integration. We illustrated this framework in a parallel machine setting from the work by Tran
(2011) and in a dynamic job shop with recirculation.

11.2 Future Work

In order to further progress in the development of models of real scheduling problems, in future
work it is necessary to study

1. problems with uncertain1 characteristics as well as complex combinatorics,

2. the relationship between scheduling and decision-making processes other than inventory
management,

1Recall that we employ a very general definition of the term uncertainty in this dissertation. It describes
environments that have at least one problem parameter that is not known with certainty at the time of scheduling,
and includes cases with both known and unknown distributions for values of these parameters.

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 208

3. all major characteristics of real scheduling problems within one framework.

The reader is also referred to Chapter 5 for future work directions stemming from Part II of
this dissertation and to Chapter 10 for future work resulting from Part III.

11.2.1 Modelling Uncertainty

In dynamic problems, the environment changes as jobs arrive, are processed and then sent
to a different facility or to the customer. The sources of uncertainty include delays in the
arrival of component parts, machine breakdowns, adjustments in customer order specifications,
and changes in due dates, among others. In addition, in some applications, the processing
times of jobs may not be known with certainty prior to their completion. For example, Manitz
(2008) states that, from the point of view of the machine, configurable products correspond to
stochastic processing times, since each configuration takes a slightly different amount of time
to process.

In both Part II and Part III, we assumed exact knowledge of all job parameters at the time
of scheduling. Thus, we see as the next step the investigation of the problems we studied in
this dissertation under the assumption that some characteristics of the jobs are not known with
certainty at the time of the job’s arrival but their distributions are available. Assembly-type
scheduling environments with stochastic characteristics but without inventory have been con-
sidered in the literature. For example, see the work on assembly-like queues (Harrison, 1973),
fork-join systems (Ko and Serfozo, 2004), in-forests (Rothblum and Sethuraman, 2008; Liu and
Towsley, 1994), parallel bulk-service queues with correlated arrivals (Iravani et al., 2004), syn-
chronized queues (Gallien and Wein, 2001), assembly lines with a synchronization constraint
(Manitz, 2008) and stochastic assembly/disassembly systems (Righter, 1997). There has also
been work on inventory management in assemble-to-order settings (Doğru et al., 2010). A
challenge for future work, then, is to model the effect of inventory availability on schedul-
ing problems with stochastic characteristics. Secondly, it would be interesting to determine
whether it would be useful to create periodic scheduling methods that solve a stochastic rather
than a deterministic problem at each review time point.

The same problems could be investigated under the assumption that the distribution of job
characteristics (e.g., processing times) is not known, but that there is a lower and an upper
bound on the parameter values (Sotskov et al., 2010). Work from the artificial intelligence
literature focusing on simple temporal networks with uncertainty (Dechter et al., 1991; Cesta
and Oddi, 1996; Morris et al., 2001) could be useful in such an investigation as well.

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 209

11.2.2 Investigating the Relationship Between Scheduling and Other
Decision-Making Processes

In Part II, we made an initial step toward creating models that take into account the relationship
between scheduling and inventory. As mentioned in Chapter 2, there are other decision-making
processes that have an impact on scheduling, especially in supply chain settings (see Figure 1
of the paper by Moin and Salhi (2006)). In future work, we would therefore like to investigate
the relationship between scheduling and other decision-making processes, such as staffing and
logistics.

These other decision-making processes are themselves inter-related. For example, there has
been a substantial interest in problems that involve both routing and inventory decisions (Dror
and Ball, 1987; Moin and Salhi, 2006).2 In future work, it would be interesting to incorporate
scheduling into models that already take into account more than one decision-making process
(e.g., integrate scheduling with inventory routing models). In addition, inventory routing work
can provide general insights about integrating several decision-making processes within supply
chain contexts. For instance, the paper by Dror and Ball (1987) considers both short-run and
long-run costs in inventory routing models; it would therefore be interesting to contrast their
insights and results with those we obtained in Chapter 7.

11.2.3 Addressing Three Major Characteristics of Scheduling Problems
Together

Likely the most unrealistic assumption of the assembly scheduling problem of Chapter 4 is
that of considering a fixed set of n orders. Although this might be a reasonable simplification
in some cases, a more realistic problem representation would take into account the fact that
orders arrive at random points in time and that the number and types of products required are
not known until the order’s arrival. This is exactly the problem we would like to investigate in
future work. Addressing this problem would require combining the work we have presented
in Parts II and III of this dissertation, as well as investigating work on fork-join queues (Ko
and Serfozo, 2004) and order scheduling in an online setting (Garg et al., 2007). It would
also be interesting to study the dynamic version of the assembly scheduling problem in which
there could be changes in the inventory replenishment policy over time. These problems would
possess three major characteristics of real scheduling problems: complex combinatorics, dy-
namism and relation to another decision-making process. Thus, investigation of such problems
would lead to further progress being made toward the goal of effectively addressing realistic

2Thank you to Dr. Michael Trick for bringing the inventory routing work to my attention.

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 210

scheduling problems.

11.3 Conclusions

The central thesis of this dissertation is that by combining classical scheduling methodologies
with those of inventory management and queueing theory we can better model, understand
and solve complex real-world scheduling problems. In the first part of this dissertation, we
provided models of a realistic supply chain scheduling problem that captured its combinatorial
nature as well as its dependence on inventory availability. We presented an extensive empirical
evaluation of how well implementations of these models in commercially available software
solve the problem. In the second part of this dissertation, we demonstrated that integrating
queueing and scheduling leads to novel insights about, and a better understanding of, problems
that have a combinatorial structure and are dynamic. To our knowledge, this dissertation is the
first work that builds a framework for integrating queueing theory and scheduling. Motivated
by characteristics of real problems, this dissertation took a step toward extending scheduling
research beyond traditional assumptions and addressing more realistic scheduling problems.

List of Symbols

A . page 35
Ai . page 28
A(t) . pages 139, 150
A . page 155
a . page 35
aij . page 28
B . pages 28, 111
Bm .page 145
b . page 111
b∗ . page 146
Cj . pages 28, 119
Ĉj , CM

j . page 119
Cij . page 31
Cmaxi

. page 120
Ĉmaxi

, CM
maxi

. page 120
C0

j . page 120
Ĉ0

j . page 120
CM,0

j . page 120
Cm . page 139
cjr . page 35
Dx

k(t) . page 151
dj . page 28
Ex,π
2 (t) . page 166

Ex
k (t) . page 140

ESj . page 35
H . page 28
I . page 35
Ilz .page 34

211

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 212

Ixm(t) . page 140
Ix,im (t) . page 142
i . pages 28, 119
J . page 35
J(t) . pages 139, 150
j . pages 28, 119
K . page 137
k∗ . page 146
LSj . page 35
l . page 28
M . page 133
M(t) . pages 139, 150
m .pages 28, 119
Nit . page 35
n . pages 28, 119
ni . page 128
Pa .page 35
PD2|rij, components|

∑
wjTj . page 28

pij . page 28
pmj . page 119
Qx

k(t) . page 140
Qx,i

k (t) . page 142
Q̄i

k(t) .page 143
Qz . page 28
Q1(t), Q2(t) . pages 139, 150
qji .page 35
R . page 28
r . page 35
rij .page 28
repllz . page 38
resz . page 38

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 213

Sb . page 155
Sx
k (t) . page 140

Sx,i
k (t) . page 142

s∗i . page 133
s(k) . page 139
sb,i . page 139
sπb,i . page 148
s̄b,i . page 143
s̄πb,i . page 152
T . page 120
Ta . page 35
Tj . page 28
T x
k (t), Ṫ

x
k (t) . page 140

T x,i
k (t) . page 142

T̄ i
k(t) . page 143
˙̄T i
k(t) . page 144

t . page 31
t∗i . page 133
tb,i . page 139
tπb,i . page 149
t̄b,i, t̄πb,i . page 143
timeHorizon . page 28
usedlz . page 34
uijk . page 33
vi, vπi . page 133
v1i , v2i , v1,πi , v2,πi . page 133
Wx,π

2 (t) . page 166
wj .page 28
X(t) . page 139
X , x . page 140
xjt . page 35
xijt . page 31
z . page 28
z̄(t), ˙̄z(t) . page 145

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 214

α . page 39
αjz . page 28
β .page 39
βijz . page 28
γik . page 33
δijl . page 34
∆i(Cmax) . page 120
∆i(
∑

Cj) . page 120
∆i(
∑

C0
j) . page 120

ηk, ηk(j) . page 138
λ, λb . page 110
µ . page 117
µ1, µ2 . page 110
µk . page 139
µ1b, µ2b . page 111
ξk, ξk(j) . page 138
π . page 133
ρ1, ρ2 .page 110
ρ1b, ρ2b . page 111
τb,i . page 139
τπb,i . page 149
τmb,i . page 156
τ̄b,i . page 143
τ̄πb,i . page 152
Φl

k(j) . page 139

Bibliography

Adams, J., E. Balas, D. Zawack. 1988. The shifting bottleneck procedure for job shop schedul-
ing. Management Science 34 391–401.

Adan, I., J. Resing. 2002. Queueing Theory. Department of Mathematics and Computing
Science, Eindhoven University of Technology. Available online at http://www.win.tue.nl/˜
iadan/queueing.pdf.

Ahmadi, R., U. Bagchi, T. A. Roemer. 2005. Coordinated scheduling of customer orders for
quick response. Naval Research Logistics 52 493–512.

Ahmadi, R. H., U. Bagchi. 1990. Scheduling of multi-job customer orders in multi-machine
environments. ORSA/TIMS .

Ahn, H. S., I. Duenyas, M. E. Lewis. 2002. Optimal control of a two-stage tandem queuing
system with flexible servers. Probability in the Engineering and Informational Sciences 16
453–469.

Akturk, M. S., D. Ozdemir. 2000. An exact approach to minimizing total weighted tardiness
with release dates. IIE Transactions 32 1091–1101.

Al-Azzoni, I., D. G. Down. 2008. Linear programming-based affinity scheduling of inde-
pendent tasks on heterogeneous computing systems. IEEE Transactions on Parallel and

Distributed Systems 19 1671–1682.

Allahverdi, A., F. S. Al-Anzi. 2006. A PSO and Tabu search heuristics for the assembly
scheduling problem of the two-stage distributed database application. Computers and Oper-

ations Research 33 1056–1080.

Altman, E., U. Yechiali. 1993. Cyclic Bernoulli polling. Mathematical Methods of Operations

Research 38 55–76.

Andradóttir, S., H. Ayhan. 2005. Throughput maximization for tandem lines with two stations
and flexible servers. Operations Research 53 516–531.

215

BIBLIOGRAPHY 216

Andradóttir, S., H. Ayhan, D. G. Down. 2003. Dynamic server allocation for queueing net-
works with flexible servers. Operations Research 51 952–968.

Andrews, M., K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, P. Whiting. 2004.
Scheduling in a queueing system with asynchronously varying service rates. Probability

in the Engineering and Informational Sciences 18 191–217.

Antunes, N., C. Fricker, J. Roberts. 2011. Stability of multi-server polling system with server
limits. Queueing Systems 11 229–235.

Aramon Bajestani, M., J. C. Beck. 2011. Scheduling an aircraft repair shop. Proceedings of the

twenty-first International Conference on Automated Planning and Scheduling (ICAPS’11).
10–17.

Aramon Bajestani, M., J. C. Beck. 2013. Scheduling a dynamic aircraft repair shop with limited
repair resources. Journal of Artificial Intelligence Research To Appear.

Aramon Bajestani, M., J. C. Beck, D. Banjevic. 2012. Integrated maintenance planning and
production scheduling under deteriorating machine conditions. Working Paper.

Atkins, D., H. Chen. 1995. Performance evaluation of scheduling control of queueing net-
works: Fluid model heuristics. Queueing Systems 21 391–413.

Axsäter, S. 2006. Inventory Control. 2nd ed. Springer.

Aytug, H., M. Lawley, K. McKay, S. Mohan, R. Uzsoy. 2005. Executing production schedules
in the face of uncertainties: A review and future directions. European Journal of Operational

Research 161 86–110.

Baccelli, F., Z. Liu. 1990. On the execution of parallel programs on multiprocessor systems – a
queuing theory approach. Journal of the Association for Computing Machinery 37 373–414.

Baccelli, F., W. A. Massey, D. Towsley. 1989. Acyclic fork-join queuing networks. Journal of

the Association for Computing Machinery 36 615–642.

Baker, K. R., D. Trietsch. 2009. Principles of Sequencing and Scheduling. John Wiley & Sons.

Baptiste, P., P. Laborie, C. Le Pape, W. Nuijten. 2006. Constraint-based scheduling and plan-
ning. F. Rossi, P. van Beek, T. Walsh, eds., Handbook of Constraint Programming, chap. 22.
Elsevier, 761–799.

Basnet, C., J. H. Mize. 1994. Scheduling and control of flexible manufacturing systems: a
critical review. International Journal of Computer Integrated Manufacturing 7 340–355.

BIBLIOGRAPHY 217

Bäuerle, N. 2000. Asymptotic optimality of tracking policies in stochastic networks. Annals

of Applied Probability 10 1065–1083.

Bean, J. C., J. R. Birge, J. Mittenthal, C. E. Noon. 1991. Match-up scheduling with multiple
resources, release dates and disruptions. Operations Research 39 470–483.

Beck, J. C. 2002. Heuristics for scheduling with inventory: Dynamic focus via constraint
criticality. Journal of Scheduling 5 43–69.

Beck, J. C., A. J. Davenport, E. D. Davis, M. S. Fox. 1998. The ODO project: Toward a unified
basis for constraint-directed scheduling. Journal of Scheduling 1 89–125.

Beck, J. C., M. S. Fox. 2000. Dynamic problem structure analysis as a basis for constraint-
directed scheduling heuristics. Artificial Intelligence 117 31–81.

Beck, J. C., N. Wilson. 2007. Proactive algorithms for job shop scheduling with probabilistic
durations. Journal of Artificial Intelligence Research 28 183–232.

Beekhuizen, P., D. Denteneer, J. Resing. 2008. Reduction of a polling network to a single node.
Queueing Systems 58 303–319.

Bent, R., P. Van Hentenryck. 2004. Regrets only! Online stochastic optimization under time
constraints. Proceedings of the Nineteenth National Conference on Artificial Intelligence

(AAAI’04). 501–506.

Berthold, T., S. Heinz, M. E. Lübbecke, R. H. Möhring, J. Schulz. 2010. A constraint inte-
ger programming approach for resource-constrained project scheduling. A. Lodi, M. Mi-
lano, P. Toth, eds., Proceedings of the Seventh International Conference on Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

(CPAIOR’10). 313–317.

Bertsekas, D. P. 2005. Dynamic Programming and Optimal Control: Volume I. 3rd ed. Athena
Scientific.

Bertsekas, D. P. 2007. Dynamic Programming and Optimal Control: Volume II. 3rd ed. Athena
Scientific.

Bertsimas, D. 1995. The achievable region method in the optimal control of queueing systems:
Formulations, bounds, policies. Queueing Systems 21 337–389.

Bertsimas, D., D. Gamarnik. 1999. Asymptotically optimal algorithms for job shop scheduling
and packet routing. Journal of Algorithms 33 296–318.

BIBLIOGRAPHY 218

Bertsimas, D., D. Gamarnik, J. Sethuraman. 2003. From fluid relaxations to practical algo-
rithms for high-multiplicity job-shop scheduling: the holding cost objective. Operations

Research 51 798–813.

Bertsimas, D., J. Niño-Mora. 1996. Conservation laws, extended polymatroids and multiarmed
bandit problems; a polyhedral approach to indexable systems. Mathematics of Operations

Research 21 257–306.

Bertsimas, D., I. C. Paschalidis, J. N. Tsitsiklis. 1994. Optimization of multiclass queueing net-
works: Polyhedral and nonlinear characterizations of achievable performance. The Annals

of Applied Probability 4 43–75.

Bertsimas, D., I. C. Paschalidis, J. N. Tsitsiklis. 1995. Branching bandits and Klimov’s prob-
lem: Achievable region and side constraints. IEEE Transactions on Automatic Control 40
2063–2075.

Bertsimas, D., J. Sethuraman. 2002. From fluid relaxations to practical algorithms for job shop
scheduling: the makespan objective. Mathematical Programming 92 61–102.

Beyer, D., F. Cheng, S. P. Sethi, M. Taksar. 2010. Markovian demand inventory models, In-

ternational Series in Operations Research and Management Science, vol. 108. Springer
Verlag.

Bidot, J. 2005. A general framework integrating techniques for scheduling under uncertainty.
Ph.D. thesis, Ecole Nationale d’Ingénieurs de Tarbes.

Bidot, J., T. Vidal, P. Laborie, J. C. Beck. 2009. A theoretic and practical framework for
scheduling in a stochastic environment. Journal of Scheduling 12 315–344.

Bierwirth, C., D. C. Mattfeld. 1999. Production scheduling and rescheduling with genetic
algorithms. Evolutionary computation 7 1–17.

Blanc, J. P. C., R. D. van der Mei. 1995. Optimization of polling systems with Bernoulli
schedules. Performance Evaluation 22 139–158.

Blocher, J. D., D. Chhajed. 2008. Minimizing customer order lead-time in a two-stage assem-
bly supply chain. Annals of Operations Research 161 25–52.

Bock, S., M. Pinedo. 2010. A decomposition scheme for single stage scheduling problems.
Journal of Scheduling 13 203–212.

BIBLIOGRAPHY 219

Bookbinder, J. H., J. Y. Tan. 1988. Strategies for the probabilistic lot-sizing problem with
service-level constraints. Management Science 34 1096–1108.

Boon, M. A. A., I. J. B. F. Adan. 2009. Mixed gated/exhaustive service in a polling model with
priorities. Queueing Systems 63 383–399.

Boon, M. A. A., R. D. Van der Mei, E. M. M. Winands. 2011. Applications of polling systems.
Surveys in Operations Research and Management Science 16 67–82.

Borst, S. C. 1995. Polling systems with multiple coupled servers. Queueing systems 20 369–
393.

Borst, S. C., O. J. Boxma, J. H. A. Harink, G. B. Huitema. 1994. Optimization of fixed time
polling schemes. Telecommunication Systems 3 31–59.

Bose, S. K. 2002. An Introduction to Queueing Systems. Springer.

Boudoukh, T., M. Penn, G. Weiss. 2001. Scheduling jobshops with some identical or similar
jobs. Journal of Scheduling 4 177–199.

Boxma, O., J. Van Der Wal, U. Yechiali. 2008. Polling with batch service. Stochastic Models

24 604–625.

Boxma, O. J., W. P. Groenendijk. 1987. Pseudo-conservation laws in cyclic-service systems.
Journal of Applied Probability 24 949–964.

Boxma, O. J., H. Levy, J. A. Weststrate. 1989. Optimization of polling systems. Tech. Rep.
BS-R8932, Department of Operations Research, Statistics, and System Theory, CWI Centre
for Mathematics and Computer Science, Amsterdam, The Netherlands.

Boxma, O. J., H. Levy, J. A. Weststrate. 1991. Efficient visit frequencies for polling tables:
minimization of waiting cost. Queueing Systems 9 133–162.

Boysen, N., M. Fliedner, A. Scholl. 2009. Sequencing mixed-model assembly lines: Survey,
classification and model critique. European Journal of Operational Research 192 349–373.

Bramson, M. 1994. Instability of FIFO queueing networks. The Annals of Applied Probability

414–431.

Bramson, M. 2008. Stability of queueing networks. Probability Surveys 5 169–345.

Branke, J., D. C. Mattfeld. 2002. Anticipatory scheduling for dynamic job shop problems.
Proceedings of the ICAPS’02 Workshop on On-line Planning and Scheduling. 3–10.

BIBLIOGRAPHY 220

Branke, J., D. C. Mattfeld. 2005. Anticipation and flexibility in dynamic scheduling. Interna-

tional Journal of Production Research 43 3103–3129.

Briskorn, D. 2010. Variable very large neighborhood algorithms for truck sequencing at trans-
shipment terminals. Working Paper, Instituten für Betriebswirtschaftslehre der Universität

Kiel .

Briskorn, D., B.-C. Choi, K. Lee, J. Leung, M. Pinedo. 2009. Genetic algorithms
for inventory constrained scheduling on a single machine. Tech. Rep. 649, Insti-
tuten für Betriebswirtschaftslehre der Universität Kiel. Available at http://www.bwl.uni-
kiel.de/bwlinstitute/Prod/team/briskorn/ga2009.pdf.

Briskorn, D., B.-C. Choi, K. Lee, J. Leung, M. Pinedo. 2010. Complexity of single machine
scheduling subject to nonnegative inventory constraints. European Journal of Operational

Research 207 605–619.

Briskorn, D., F. Jaehn, E. Pesch. 2012. Exact algorithms for inventory constrained
scheduling on a single machine. Journal of Scheduling To Appear, available online at
http://www.springerlink.com/content/9w02v25070241840/fulltext.pdf.

Briskorn, D., J. Leung. 2010. Branch and bound algorithms for minimizing maximum lateness
of trucks at a transshipment terminal. Working Paper, Instituten für Betriebswirtschaftslehre

der Universität Kiel .

Browne, S., G. Weiss. 1992. Dynamic priority rules when polling with multiple parallel servers.
Operations Research Letters 12 129–137.

Browne, S., U. Yechiali. 1989a. Dynamic priority rules for cyclic-type queues. Advances in

Applied Probability 21 432–450.

Browne, S., U. Yechiali. 1989b. Dynamic routing in polling systems. Teletraffic Science for

New Cost-Effective Systems, Networks and Services, ITC-12 1455–1466.

Brucker, P., A. Drexl, R. Möhring, K. Neumann, E. Pesch. 1999. Resource-constrained project
scheduling: Notation, classification, models, and methods. European Journal of Operational

Research 112 3–41.

Burns, A. 1991. Scheduling hard real-time systems: a review. Software Engineering Journal 6
116–128.

Buzacott, J. A., J. A. Shanthikumar. 1993. Stochastic Models of Manufacturing Systems. Pren-
tice Hall.

BIBLIOGRAPHY 221

Buzacott, J. A., J. G. Shanthikumar. 1985. On approximate queueing models of dynamic job
shops. Management Science 870–887.

Buzacott, J. A., D. D. Yao. 1986. Flexible manufacturing systems: a review of analytical
models. Management Science 32 890–905.

Cadoli, M., F. Patrizi. 2009. On the separability of subproblems in Benders decompositions.
Annals of Operations Research 171 27–43.

Cai, X., X. Zhou. 2004. Deterministic and stochastic scheduling with teamwork tasks. Naval

Research Logistics 51 818–840.

Cai, X. Q., J. Chen, Y. B. Xiao, X. L. Xu. 2008. Product selection, machine time allocation, and
scheduling decisions for manufacturing perishable products subject to a deadline. Computers

and Operations Research 35 1671–1683.

Cesta, A., A. Oddi. 1996. Gaining efficiency and flexibility in the simple temporal problem.
L. Chittaro, S. Goodwin, H. Hamilton, A. Montanari, eds., Proceedings of the Third Inter-

national Workshop on Temporal Representation and Reasoning (TIME-96). IEEE Computer
Society Press, Los Alamitos, CA.

Chang, H. S., R. Givan, E. K. P. Chong. 2000. On-line scheduling via sampling. The 5th Inter-

national Conference on Artificial Intelligence Planning and Scheduling Systems (AIPS’00)

62–71.

Chao, X., Y. Q. Zhao. 1998. Analysis of multi-server queues with station and server vacations.
European Journal of Operational Research 110 392–406.

Chen, F. Y., D. Krass. 2001. Inventory models with minimal service level constraints. European

Journal of Operational Research 134 120–140.

Chen, H., P. Yang, D. D. Yao. 1994. Control and scheduling in a two-station queueing network:
Optimal policies and heuristics. Queueing Systems 18 301–332.

Chen, H., D. D. Yao. 1993. Dynamic scheduling of a multiclass fluid network. Operations

Research 41 1104–1115.

Chen, H., D. D. Yao, eds. 2001. Fundamentals of Queueing Networks. Springer.

Chen, K., P. Ji. 2007. A mixed integer programming model for advanced planning and schedul-
ing (APS). European Journal of Operational Research 181 515–522.

BIBLIOGRAPHY 222

Chen, R.-R., S. Meyn. 1999. Value iteration and optimization of multiclass queueing networks.
Queueing Systems 32 65–97.

Chrétienne, P., E. G. Coffman Jr., J. K. Lenstra, Z. Liu, eds. 1995. John Wiley & Sons Ltd.

Cicirello, V. A., S. F. Smith. 2005. The max K-armed bandit: A new model of exploration
applied to search heuristic selection. Proceedings of Twentieth National Conference on Ar-

tificial Intelligence (AAAI’05). 1355–1361.

Coban, E., J. N. Hooker. 2010. Single-facility scheduling over long time horizons by logic-
based Benders decomposition. A. Lodi, M. Milano, P. Toth, eds., Proceedings of the Seventh

International Conference on Integration of AI and OR Techniques in Constraint Program-

ming for Combinatorial Optimization Problems (CPAIOR’10). 87–91.

Cohen, M. A., P. R. Kleindorfer, H. L. Lee. 1988. Service constrained (s, S) inventory systems
with priority demand classes and lost sales. Management Science 34 482–499.

Conway, R. W., W. L. Maxwell, L. W. Miller. 1967. Theory of Scheduling. Addison-Wesley.

Cox, D. R., W. L. Smith. 1961. Queues. Methuen.

Crabill, T., D. Gross, M. Magazine. 1977. A classified bibliography of research on optimal
design and control of queues. Operations Research 25 219–232.

Dacre, M., K. Glazebrook, J. Niño-Mora. 1999. The achievable region approach to the optimal
control of stochastic systems. Journal of the Royal Statistical Society: Series B 61 747–791.

Dai, J. G. 1995. On positive harris recurrence of multiclass queueing networks: A unified
approach via fluid limit models. The Annals of Applied Probability 5 49–77.

Dai, J. G., W. Lin. 2005. Maximum pressure policies in stochastic processing networks. Op-

erations Research 53 197–218.

Dai, J. G., S. P. Meyn. 1995. Stability and convergence of moments for multiclass queueing
networks via fluid limit models. IEEE Transactions on Automatic Control 40 1889–1904.

Dai, J. G., V. Nguyen, M. I. Reiman. 1994. Sequential bottleneck decomposition: an approxi-
mation method for generalized Jackson networks. Operations Research 42 119–136.

Dai, J. G., B. Prabhakar. 2000. The throughput of data switches with and without speedup. Pro-

ceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM’00), vol. 2. IEEE, 556–564.

BIBLIOGRAPHY 223

Dai, J. G., G. Weiss. 1996. Stability and instability of fluid models for reentrant lines. Mathe-

matics of Operations Research 21 115–134.

Dai, J. G., G. Weiss. 2002. A fluid heuristic for minimizing makespan in job shops. Operations

Research 50 692–707.

Davenport, A. J., J. C. Beck. 2000. A survey of techniques for schedul-
ing with uncertainty. Tech. rep., University of Toronto. Available at:
http://www.tidel.mie.utoronto.ca/publications.php.

Davenport, A. J., C. Gefflot, J. C. Beck. 2001. Slack-based techniques for robust schedules.
Proceedings of the Sixth European Conference on Planning (ECP-2001).

Dechter, R., I. Meiri, J. Pearl. 1991. Temporal constraint networks. Artificial Intelligence 49
61–95.

Della Croce, F., V. Narayan, R. Tadei. 1996. The two-machine total completion time flow shop
problem. European Journal of Operational Research 90 227–237.

Derman, C. 1970. Finite State Markovian Decision Processes. Academic Press.

Doshi, B. 1986. Queueing systems with vacations – a survey. Queueing Systems 1 29–66.

Doğru, M. K., M. I. Reiman, Q. Wang. 2010. A stochastic programming based inventory
policy for assemble-to-order systems with application to the W model. Operations Research

58 849–864.

Down, D. 1998. On the stability of polling models with multiple servers. Journal of Applied

Probability 35 925–935.

Drekic, S., D. A. Stanford. 2000. Threshold-based interventions to optimize performance in
preemptive priority queues. Queueing Systems 35 289–315.

Dror, M., M. Ball. 1987. Inventory/routing: Reduction from an annual to a short-period prob-
lem. Naval Research Logistics 34 891–905.

Du, J., J. Y.-T. Leung. 1990. Minimizing total tardiness on one machine is NP-hard. Mathe-

matics of Operations Research 15 483–495.

Duan, L., M. K. Doğru, U. Özen, J. C. Beck. 2012. A negotiation framework for linked com-
binatorial optimization problems. Journal of Autonomous Agents and Multi-Agent Systems

25 158–182.

BIBLIOGRAPHY 224

Dubois, D., H. Fargier, H. Prade. 1996. Possibility theory in constraint satisfaction problems.
Applied Intelligence 6 287–309.

Dudek, R. A., S. S. Panwalkar, M. L. Smith. 1992. The lessons of flowshop scheduling re-
search. Operations Research 40 7–13.

Dumitriu, I., P. Tetali, P. Winkler. 2003. On playing golf with two balls. SIAM Journal on

Discrete Mathematics 16 604–615.

El-Bouri, A., S. Balakrishnan, N. Popplewell. 2008. Cooperative dispatching for minimizing
mean flowtime in a dynamic flowshop. International Journal of Production Economics 113
819–833.

El Sakkout, H., M. Wallace. 2000. Probe backtrack search for minimal perturbation in dynamic
scheduling. Constraints 5 359–388.

Ephremides, A., P. Varaiya, J. Walrand. 1980. A simple dynamic routing problem. Automatic

Control, IEEE Transactions on 25 690–693.

Fan-Orzechowski, X., E. A. Feinberg. 2007. Optimality of randomized trunk reservation for
a problem with multiple constraints. Probability in the Engineering and Informational Sci-

ences 21 189–200.

Fanti, M. P., G. Stecco, W. Ukovich. 2010. Scheduling the internal operations in distribution
centers with buffer constraints. 6th Annual IEEE Conference on Automation Science and

Engineering (CASE). IEEE, 75–80.

Federgruen, A., H. Groenevelt. 1988. Characterization and optimization of achievable perfor-
mance in general queueing systems. Operations Research 36 733–741.

Fournier, L., Z. Rosberg. 1991. Expected waiting times in polling systems under priority
disciplines. Queueing Systems 9 419–440.

Fox, M. S. 1983. Constraint-directed search: A case study of job-shop scheduling. Ph.D.
thesis, Carnegie Mellon University, Intelligent Systems Laboratory, The Robotics Institute,
Pittsburgh, PA. CMU-RI-TR-85-7.

Framinan, J. M., R. Leisten, R. Ruiz-Usano. 2005. Comparison of heuristics for flowtime
minimisation in permutation flowshops. Computers and Operations Research 32 1237–
1254.

BIBLIOGRAPHY 225

Fromherz, M. P. J. 2001. Constraint-based scheduling. Proceedings of the 2001 American

Control Conference (ACC’01), vol. 4. IEEE, 3231–3244.

Fuhrmann, S. W. 1984. A note on the M/G/1 queue with server vacations. Operations Research

32 1368–1373.

Gagliolo, M., J. Schmidhuber. 2007. Learning restart strategies. Proceedings of the of the

Twenty First International Joint Conference on Artificial Intelligence (IJCAI’07). 792–797.

Gallien, J., L. M. Wein. 2001. A simple and effective component procurement policy for
stochastic assembly systems. Queueing Systems 38 221–248.

Garg, N., A. Kumar, V. Pandit. 2007. Order scheduling models: Hardness and algorithms.
FSTTCS 2007. Springer-Verlag, 96–107.

Gaujal, B., A. Hordijk, D. van der Laan. 2007. On the optimal open-loop control policy for
deterministic and exponential polling systems. Probability in the Engineering and Informa-

tional Sciences 21 157–187.

Ghallab, M., D. Nau, P. Traverso. 2004. Automated Planning: Theory and Practice. Morgan
Kaufman.

Gittins, J. C. 1979. Bandit processes and dynamic allocation indices. Journal of the Royal

Statistical Society: Series B (Methodological) 41 148–177.

Glasserman, P., D. D. Yao. 1994. Monotone optimal control of permutable GSMPs. Mathe-

matics of Operations Research 19 449–476.

Glazebrook, K. D., R. W. Owen. 1995. Gittins-index heuristics for research planning. Naval

Research Logistics 42 1041–1062.

Glover, F., M. Laguna, R. Martı́. 2000. Fundamentals of scatter search and path relinking.
Control and Cybernetics 29 653–684.

Goldberg, H. M. 1977. Analysis of the earliest due date scheduling rule in queueing systems.
Mathematics of Operations Research 2 145–154.

Gourgand, M., N. Grangeon, S. Norre. 2005. Markovian analysis for performance evaluation
and scheduling in m machine stochastic flow-shop with buffers of any capacity. European

Journal of Operational Research 161 126–147.

Govil, M. K., M. C. Fu. 1999. Queueing theory in manufacturing: A survey. Journal of

Manufacturing Systems 18 214–240.

BIBLIOGRAPHY 226

Graham, R. L., D. E. Knuth, O. Patashnik. 1988. Concrete Mathematics: A Foundation for

Computer Science. 1st ed. Addison-Wesley Publishing Co.

Graham, R. L., E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan. 1979. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics 5 287–326.

Grassmann, W., X. Chen, B. R. K. Kashyap. 2001. Optimal service rates for the state-dependent
M/G/1 queues in steady-state. Operations Research Letters 29 57–63.

Grassmann, W. K. 1977. Transient solutions in Markovian queueing systems. Computers &

Operations Research 4 47–53.

Grigoriev, A., M. Holthuijsen, J. van de Klundert. 2005. Basic scheduling problems with raw
material constraints. Naval Research Logistics 52 527–535.

Gross, D., C. Harris. 1998. Fundamentals of Queueing Theory. John Wiley & Sons, Inc.

Gupta, A. K., A. I. Sivakumar. 2006. Job shop scheduling techniques in semiconductor manu-
facturing. The International Journal of Advanced Manufacturing Technology 27 1163–1169.

Gupta, J. N. D., E. F. Stafford Jr. 2006. Flowshop scheduling research after five decades.
European Journal of Operational Research 169 699–711.

Gurvich, I., W. Whitt. 2009. Scheduling flexible servers with convex delay costs in many-server
service systems. Manufacturing & Service Operations Management 11 237–253.

Hajek, B. 1984. Optimal control of two interacting service stations. IEEE Transactions on

Automatic Control 29 491–499.

Hall, L. A. 1997. Approximation algorithms for scheduling. D. S. Hochbaum, ed., Approxi-

mation algorithms for NP-hard problems, chap. 1. PWS Publishing Company, 1–45.

Harchol-Balter, M. 2011. Queueing disciplines. Wiley Encyclopedia of Operations Research

and Management Science .

Hariri, A. M. A., C. N. Potts. 1997. A branch and bound algorithm for the two-stage assembly
scheduling problem. European Journal of Operational Research 103 547–556.

Harrison, J. M. 1973. Assembly-like queues. Journal of Applied Probability 10 354–367.

Harrison, J. M. 1975. Dynamic scheduling of a multiclass queue: Discount optimality. Oper-

ations Research 23 270–282.

BIBLIOGRAPHY 227

Harrison, J. M. 1988. Brownian models of queueing networks with heterogeneous customer
populations. W. Fleming, P. L. Lions, eds., Stochastic Differential Systems, Stochastic Con-

trol Theory and Applications. Springer-Verlag, 147–186.

Harrison, J. M. 1996. The BIGSTEP approach to flow management in stochastic processing
networks. F. P. Kelly, S. Zachary, I. Ziedins, eds., Stochastic Networks: Theory and Appli-

cations, chap. 4. Oxford University Press, 57–90.

Harrison, J. M. 1998. Heavy traffic analysis of a system with parallel servers: Asymptotic
optimality of discrete-review policies. The Annals of Applied Probability 8 822–848.

Harrison, J. M. 2003. A broader view of Brownian networks. The Annals of Applied Probability

13 1119–1150.

Harrison, J. M., V. Nguyen. 1993. Brownian models of multiclass queueing networks: current
status and open problems. Queueing Systems 13 5–40.

Harrison, J. M., L. M. Wein. 1989. Scheduling networks of queues: Heavy traffic analysis of a
simple open network. Queueing Systems 5 265–280.

Hartmann, S., D. Briskorn. 2010. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research 207
1–14.

Hassin, R., J. Puerto, F. R. Fernández. 2009. The use of relative priorities in optimizing the
performance of a queueing system. European Journal of Operational Research 193 476–
483.

Haupt, R. 1989. A survey of priority rule-based scheduling. OR Spectrum 11 3–16.

Hejazi, S. R., S. Saghafian. 2005. Flowshop-scheduling problems with makespan criterion: a
review. International Journal of Production Research 43 2895–2929.

Herroelen, W., B. De Reyck, E. Demeulemeester. 1998. Resource-constrained project schedul-
ing: a survey of recent developments. Computers and Operations Research 25 279–302.

Herroelen, W., R. Leus. 2005. Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165 289–306.

Hofri, M., Z. Rosberg. 1987. Packet delay under the golden ratio weighted TDM policy in a
multiple-access channel. IEEE Transactions on Information Theory 33 341–349.

BIBLIOGRAPHY 228

Hooker, J. N. 2005. A Hybrid Method for Planning and Scheduling. Constraints 10 385–401.

Hooker, J. N., G. Ottosson. 2003. Logic-based Benders’ decomposition. Mathematical Pro-

gramming 96 33–60.

Huang, H. L., B. M. T. Lin. 2007. Concurrent openshop problem to minimize the weighted
number of late jobs. Eugene Levner, ed., Multiprocessor Scheduling, Theory and Applica-

tions, chap. 12. InTech, 215.

Iravani, S. M. R., K. L. Luangkesorn, D. Simchi-Levi. 2004. A general decomposition algo-
rithm for parallel queues with correlated arrivals. Queueing Systems 47 313–344.

Jackson, J. R. 1963. Jobshop-like queueing systems. Management Science 10 131–142.

Jaiswal, N. K. 1968. Priority Queues. Academic Press.

Jaiswal, N. K. 1982. Performance evaluation studies for time-sharing computer systems. Per-

formance Evaluation 2 223–236.

Johri, P. K., M. N. Katehakis. 1988. Scheduling service in tandem queues attended by a single
server. Stochastic Analysis and Applications 6 279–288.

Kaczynski, W. H., L. M. Leemis, J. H. Drew. 2011. Transient queueing analysis. INFORMS

Journal on Computing To Appear.

Kang, W., F. P. Kelly, N. H. Lee, R. J. Williams. 2004. Fluid and Brownian approximations
for an internet congestion control model. 43rd IEEE Conference on Decision and Control,
vol. 4. 3938–3943.

Kao, E. P. C., K. S. Narayanan. 1991. Analyses of an M/M/N queue with servers’ vacations.
European Journal of Operational Research 54 256–266.

Katayama, T. 1992. Performance analysis and optimization of a cyclic-service tandem queue-
ing system with multi-class customers. Computers and Mathematics with Applications 24
25–33.

Katta, A.-K., J. Sethuraman. 2005. A note on bandits with a twist. SIAM Journal on Discrete

Mathematics 18 110–113.

Keha, A. B., K. Khowala, J. W. Fowler. 2009. Mixed integer programming formulations for
single machine scheduling problems. Computers & Industrial Engineering 56 357–367.

BIBLIOGRAPHY 229

Kelly, F. P., C. N. Laws. 1993. Dynamic routing in open queueing networks: Brownian models,
cut constraints and resource pooling. Queueing Systems 13 47–86.

Kelly, F. P., S. Zachary, I. Ziedins, eds. 1996. Stochastic Networks: Theory and Applications.
Oxford University Press.

Khamisy, A., E. Altman, M. Sidi. 1992. Polling systems with synchronization constraints.
Annals of Operations Research 35 231–267.

Khintchine, A. Y. 1932. Mathematical theory of stationary queues. Matematicheskii Sbornik

39 73–84. In Russian.

Kim, Y. D. 1993. A new branch and bound algorithm for minimizing mean tardiness in two-
machine flowshops. Computers and Operations Research 20 391–401.

Kitaev, M. Y., V. V. Rykov. 1995. Controlled Queueing Systems. 1st ed. CRC-Press.

Kleinrock, L. 1976. Queueing Systems, Volume 1 and 2. Wiley.

Klimov, G. P. 1975. Time-sharing service systems I. Theory of Probability and its Applications

19 532–551. Translated from Russian.

Ko, S.-S., R. F. Serfozo. 2004. Response times in M/M/s fork-join networks. Advances in

Applied Probability 36 854–871.

Kolisch, R. 2000. Integrated scheduling, assembly area- and part-assignment for large-scale,
make-to-order assemblies. International Journal of Production Economics 64 127–142.

Kolisch, R., K. Hess. 2000. Efficient methods for scheduling make-to-order assemblies under
resource, assembly area and part availability constraints. International Journal of Production

Research 38 207–228.

Kovács, A., J. C. Beck. 2011. A global constraint for total weighted completion time for unary
resources. Constraints 16 100–123.

Kubiak, W. 2004. Fair sequences. J. Y.-T. Leung, ed., Handbook of Scheduling: Algorithms,

Models and Performance Analysis, chap. 19. CRC Press, 19–1–19–21.

Kumar, P. R. 1994. Scheduling semiconductor manufacturing plants. IEEE Control Systems

Magazine 14 33–40.

Kumar, P. R., S. P. Meyn. 1995. Stability of queueing networks and scheduling policies. IEEE

Transactions on Automatic Control 40 251–260.

BIBLIOGRAPHY 230

Kumar, V. 1992. Algorithms for constraint satisfaction problems: A survey. AI Magazine 13
32–44.

Lee, C.-Y., T. C. E. Cheng, B. M. T. Lin. 1993. Minimizing the makespan in the 3-machine
assembly-type flowshop scheduling problem. Management Science 39 616–625.

Lehoczky, J. P. 1996. Real-time queueing theory. Proceedings of the 17th IEEE Real-Time

Systems Symposium. 186–195.

Lenstra, J. K., D. B. Shmoys. 1995. Computing near-optimal schedules. P. Chrétienne, E. G.
Coffman Jr., J. K. Lenstra, Z. Liu, eds., Scheduling Theory and Its Applications, chap. 1.
John Wiley & Sons Ltd, 1–14.

Leon, V. J., S. D. Wu, R. H. Storer. 1994. Robustness measures and robust scheduling for job
shops. IIE Transactions 26 32–43.

Leung, J. Y.-T., ed. 2004. Handbook of Scheduling: Algorithms, Models, and Performance

Analysis. CRC Press.

Leung, J. Y.-T., H. Li, M. Pinedo. 2005a. Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling 8 355–386.

Leung, J. Y.-T., H. Li, M. Pinedo. 2005b. Order scheduling models: An overview. G. Kendall,
E. K. Burke, S. Petrovic, M. Gendreau, eds., Multidisciplinary Scheduling: Theory and

Applications. Springer, 37–53.

Leung, J. Y.-T., H. Li, M. Pinedo. 2007. Scheduling orders for multiple product types to
minimize total weighted completion time. Discrete Applied Mathematics 155 945–970.

Leung, J. Y.-T., H. Li, M. Pinedo, C. Sriskandarajah. 2005c. Open shops with jobs overlap–
revisited. European Journal of Operational Research 163 569–571.

Levy, H. 1991. Binomial-gated service: A method for effective operation and optimization of
polling systems. IEEE Transactions on Communications 39 1341–1350.

Levy, H., M. Sidi. 1990. Polling systems: Applications, modeling, and optimization. IEEE

Transactions on Communications 38 150–1760.

Li, C.-L., G. Vairaktarakis. 2007. Coordinating production and distribution of jobs with
bundling operations. IIE Transactions 39 203–215.

Li, Z., M. Ierapetritou. 2008. Process scheduling under uncertainty: Review and challenges.
Computers & Chemical Engineering 32 715–727.

BIBLIOGRAPHY 231

Lin, B. M. T., A. V. Kononov. 2007. Customer order scheduling to minimize the number of
late jobs. European Journal of Operational Research 183 944–948.

Liu, Z., D. Towsley. 1994. Stochastic scheduling in in-forest networks. Advances in Applied

Probability 26 222–241.

Lu, S. C. H., D. Ramaswamy, P. R. Kumar. 1994. Efficient scheduling policies to reduce mean
and variance of cycle-time in semiconductor manufacturing plants. IEEE Transactions on

Semiconductor Manufacturing 7 374–388.

Lu, S. H., P. R. Kumar. 1991. Distributed scheduling based on due dates and buffer priorities.
IEEE Transactions on Automatic Control 36 1406–1416.

Maglaras, C. 1999. Dynamic scheduling in multiclass queueing networks: Stability under
discrete-review policies. Queueing Systems 31 171–206.

Maglaras, C. 2000. Discrete-review policies for scheduling stochastic networks: Trajectory
tracking and fluid-scale asymptotic optimality. The Annals of Applied Probability 10 897–
929.

Maglaras, C. 2003. Continuous-review tracking policies for dynamic control of stochastic
networks. Queueing Systems 43 43–80.

Mahajan, A., D. Teneketzis. 2007. Multi-armed bandit problems. A. O. Hero III, D. A.
Castañón, D. Cochran, K. Kastella, eds., Foundations and Applications of Sensor Manage-

ment. Springer, 121–151.

Manitz, M. 2008. Queueing-model based analysis of assembly lines with finite buffers and
general service times. Computers and Operations Research 35 2520–2536.

Maravelias, C. T., C. Sung. 2009. Integration of production planning and scheduling:
Overview, challenges and opportunities. Computers & Chemical Engineering 33 1919–
1930.

Martins, L. F., S. E. Shreve, H. M. Soner. 1996. Heavy traffic convergence of a controlled,
multiclass queueing system. SIAM Journal on Control and Optimization 34 2133–2171.

Masin, M., M. O. Pasaogullari, S. Joshi. 2007. Dynamic scheduling of production-assembly
networks in a distributed environment. IIE Transactions 39 395–409.

Massey, W. A., W. Whitt. 1998. Uniform acceleration expansions for Markov chains with
time-varying rates. Annals of Applied Probability 8 1130–1155.

BIBLIOGRAPHY 232

Mastrolilli, M., M. Queyranne, A. S. Schulz, O. Svensson, N. A. Uhan. 2010. Minimizing the
sum of weighted completion times in a concurrent open shop. Operations Research Letters

38 390–395.

McKoy, D. H. C., P. J. Egbelu. 1998. Minimizing production flow time in a process and
assembly job shop. International Journal of Production Research 36 2315–2332.

Meilijson, I., U. Yechiali. 1977. On optimal right-of-way policies at a single-server station
when insertion of idle times is permitted. Stochastic Processes and Their Applications 6
25–32.

Mercier, L., P. Van Hentenryck. 2008. Amsaa: A multistep anticipatory algorithm for online
stochastic combinatorial optimization. Proceedings of the 5th International Conference on

Integration of AI and OR techniques in constraint programming for combinatorial optimiza-

tion problems (CPAIOR’08). 173–187.

Meyn, S. P. 2001. Sequencing and routing in multiclass queueing networks. Part I: Feedback
regulation. SIAM Journal on Control and Optimization 40 741–776.

Meyn, S. P. 2008. Control Techniques for Complex Networks. Cambridge University Press.

Moin, N. H., S. Salhi. 2006. Inventory routing problems: a logistical overview. Journal of the

Operational Research Society 58 1185–1194.

Monahan, G. E. 1982. A survey of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science 28 1–16.

Montana, D. 2005. A comparison of combinatorial optimization and dispatch rules for online
scheduling. Proceedings of the 2nd Multidisciplinary International Conference on Schedul-

ing: Theory and Applications (MISTA’05). Citeseer, 353–362.

Morris, P., N. Muscettola, T. Vidal. 2001. Dynamic control of plans with temporal uncertainty.
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJ-

CAI’01).

Myers, K., P. Berry, J. Blythe, K. Conley, M. Gervasio, D. McGuinness, D. Morley, Pfeffer A.,
M. Pollack, M. Tambe. 2007. An intelligent personal assistant for task and time management.
AI Magazine 28 47–61.

Nahmias, S., ed. 1993. Production and Operations Management. Irwin.

BIBLIOGRAPHY 233

Nash, P., R. R. Weber. 1982. Sequential open-loop scheduling strategies. M. A. H.
Dempster, Lenstra J. K., A. H. G. Rinnooy Kan, eds., Deterministic and Stochas-

tic Scheduling: proceedings of the NATO Advanced Study and Research Institute

on Theoretical Approaches to Scheduling Problems. D. Reidel Publishing Company,
385–397. Available online at http://www.statslab.cam.ac.uk/˜rrw1/publications/Nash%20-
%20Weber%201982%20Sequential%20open-loop%20scheduling%20strategies.pdf.

Nazarathy, Y., G. Weiss. 2009. Near optimal control of queueing networks over a finite time
horizon. Annals of Operations Research 170 233–249.

Nazarathy, Y., G. Weiss. 2010. A fluid approach to large volume job shop scheduling. Journal

of Scheduling 13 509–529.

Neumann, K., C. Schwindt. 2002. Project scheduling with inventory constraints. Mathematical

Methods of Operations Research 56 513–533.

Niño-Mora, J. 2007. Dynamic priority allocation via restless bandit marginal productivity
indices. Top 15 161–198.

Nuyens, M., A. Wierman, A. P. Zwart. 2008. Preventing large sojourn times with SMART
scheduling. Operations Research 56 88–101.

Oliver, R. M., G. Pestalozzi. 1965. On a problem of optimum priority classification. Journal

of the Society for Industrial and Applied Mathematics 13 890–901.

Ouelhadj, D., S. Petrovic. 2009. A survey of dynamic scheduling in manufacturing systems.
Journal of Scheduling 12 417–431.

Özdamar, L., G. Ulusoy. 1995. A survey on the resource-constrained project scheduling prob-
lem. IIE Transactions 27 574–586.

Panwalkar, S. S., W. Iskander. 1977. A survey of scheduling rules. Operations Research 25
45–61.

Pardo, M. J., D. de la Fuente. 2007. Optimizing a priority-discipline queueing model using
fuzzy set theory. Computers and Mathematics with Applications 54 267–281.

Park, Y. B. 1988. An evaluation of static flowshop scheduling heuristics in dynamic flowshop
models via a computer simulation. Computers & Industrial Engineering 14 103–112.

Park, Y. B., C. D. Pegden, E. E. Enscore. 1984. A survey and evaluation of static flowshop
scheduling heuristics. The International Journal of Production Research 22 127–141.

BIBLIOGRAPHY 234

Paschalidis, I. C., C. Su, M. C. Caramanis. 2003. Target-pursuing policies for open multiclass
queueing networks. Proceedings of the Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications (INFOCOM’03), vol. 1. 196–206.

Paschalidis, I. C., C. Su, M. C. Caramanis. 2004. Target-pursuing scheduling and routing
policies for multiclass queueing networks. IEEE Transactions on Automatic Control 49
1709–1722.

Pathumnakul, S., P. J. Egbelu. 2006. An algorithm for minimizing weighted earliness penalty
in assembly job shops. International Journal of Production Economics 103 230–245.

Patrick, J., M. L. Puterman, M. Queyranne. 2008. Dynamic multipriority patient scheduling
for a diagnostic resource. Operations Research 56 1507–1525.

Pegden, C. D., M. Rosenshine. 1990. Scheduling arrivals to queues. Computers and Operations

Research 17 343–348.

Philipoom, P. R., R. S. Russell, T. D. Fry. 1991. A preliminary investigation of multi-attribute
based sequencing rules for assembly shops. International Journal of Production Research

29 739–753.

Phipps Jr., T. E. 1956. Machine repair as a priority waiting-line problem. Operations Research

4 76–85.

Pinedo, M. L. 2003. Scheduling: Theory, Algorithms, and Systems. 2nd ed. Prentice-Hall.

Pinedo, M. L. 2009. Planning and Scheduling in Manufacturing and Services. Springer.

Pirkwieser, S. 2006. A Lagrangian decomposition approach combined with metaheuristics
for the knapsack constrained maximum spanning tree problem. Master’s thesis, Institute of
Computer Graphics and Algorithms, Vienna University of Technology.

Pollaczek, F. 1932. Lösung eines geometrischen wahrscheinlichkeitsproblems. Mathematische

Zeitschrift 35 230–278. In German.

Potts, C. N., S. V. Sevast’janov, V. A. Strusevich, L. N. Van Wassenhove, C. M. Zwaneveld.
1995. The two-stage assembly scheduling problem: complexity and approximation. Opera-

tions Research 43 346–355.

Pruhs, K. 2007. Competitive online scheduling for server systems. ACM SIGMETRICS Per-

formance Evaluation Review 34 52–58.

BIBLIOGRAPHY 235

Pruhs, K., J. Sgall, E. Torng. 2004. Online scheduling. J. Y.-T. Leung, ed., Handbook of

Scheduling: Algorithms, Models and Performance Analysis, chap. 15. CRC Press, 15–1 –
15–43.

Puterman, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley & Sons, Inc.

Radlinski, F., R. Kleinberg, J. Thorsten. 2005. Learning diverse rankings with multi-armed
bandits. Proceedings of Twenty Fifth International Conference on Machine Learning

(ICML’08). 1355–1361.

Ravikumar, K., Y. Narahari. 1994. Dynamic scheduling in manufacturing systems using Brow-
nian approximations. Sadhana (Academy Proceedings in Engineering Sciences) 19 891–939.

Raviv, T. 2003. Fluid approximation and other methods for hard combinatorial optimization
problems. Ph.D. thesis, Technion-Israel Institute of Technology, Haifa, Israel.

Reiman, M. I., L. M. Wein. 1998. Dynamic scheduling of a two-class queue with setups.
Operations Research 532–547.

Reiman, M. I., L. M. Wein. 1999. Heavy traffic analysis of polling systems in tandem. Opera-

tions Research 47 524–534.

Righter, R. 1994. Scheduling. M. Shaked, J. G. Shanthikumar, eds., Stochastic Orders and

Their Applications. Academic Press, 381–432.

Righter, R. 1997. A generalized Johnson’s rule for stochastic assembly systems. Naval Re-

search Logistics 44 211–220.

Robinson, D. 1978. Optimization of priority queues – a semi-Markov decision chain approach.
Management Science 24 545–553.

Roemer, T. 2006. A note on the complexity of the concurrent open shop problem. Journal of

Scheduling 9 389–396.

Rosa-Hatko, W., E. A. Gunn. 1997. Queues with switchover – a review and critique. Annals

of Operations Research 69 299–322.

Ross, S. M. 2003. Introduction to Probability Models, chap. 6 – Continuous-Time Markov
Chains. Academic Press, 349–399.

Rothblum, U. G., J. Sethuraman. 2008. Stochastic scheduling in an in-forest. Discrete Opti-

mization 5 457–466.

BIBLIOGRAPHY 236

Rothkopf, M. H. 1966. Scheduling with random service times. Management Science 12 707–
713.

Ruschitzka, M., R. S. Fabry. 1977. A unifying approach to scheduling. Communications of the

ACM 20 469–477.

Sabucuoglu, I., M. Bayiz. 2000. Analysis of reactive scheduling problems in a job-shop envi-
ronment. European Journal of Operational Research 126 567–586.

Sarper, H., M. C. Henry. 1996. Combinatorial evaluation of six dispatching rules in a dynamic
two-machine flow shop. Omega 24 73–81.

Scheduler. 2009. IBM ILOG Scheduler 6.7 User’s Manual and Reference Manual. IBM ILOG.

Schrage, L. 1968. A proof of the optimality of the shortest remaining processing time disci-
pline. Operations Research 16 687–690.

Schrage, L. 1970. An alternative proof of a conservation law for the queue G/G/1. Operations

Research 18 185–187.

Schuurman, P., G. J. Woeginger. 1999. Polynomial time approximation algorithms for machine
scheduling: Ten open problems. Journal of Scheduling 2 203–213.

Seidman, T. I. 1994. “First come, first served” can be unstable! IEEE Transactions on Auto-

matic Control 39 2166–2171.

Sennott, L. I. 1999. Stochastic Dynamic Programming and the Control of Queueing Systems.
John Wiley & Sons, Inc.

Sha, L., T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, A. K. Mok. 2004. Real time scheduling theory: A historical perspective. Real-

time systems 28 101–155.

Shanthikumar, J. G. 1982. On reducing time spent in M/G/1 systems. European Journal of

Operational Research 9 286–294.

Shanthikumar, J. G., S. Ding, M. T. Zhang. 2007. Queueing theory for semiconductor manu-
facturing systems: A survey and open problems. IEEE Transactions on Automation Science

and Engineering 4 513–522.

Sharafali, M., H. C. Co, M. Goh. 2004. Production scheduling in a flexible manufacturing
system under random demand. European Journal of Operational Research 158 89–102.

BIBLIOGRAPHY 237

Silver, E. A., D. F. Pyke, R. Peterson. 1998. Inventory Management and Production Planning

and Scheduling. Wiley.

Skinner, W. 1974. The focused factory. Harvard Business Review 52 113–121.

Smith, D. R. 1978. A new proof of the optimality of the shortest remaining processing time
discipline. Operations Research 26 197–199.

Smith, S. F. 1994. OPIS: A methodology and architecture for reactive scheduling. M. Zweben,
M. S. Fox, eds., Intelligent Scheduling, chap. 2. Morgan Kaufmann Publishers, San Fran-
cisco, 29–66.

Smith, W. E. 1956. Various optimizers for single-stage production. Naval Research Logistics

Quarterly 3 59–66.

Sotskov, Yu. N., N. Yu. Sotskova, T.-C. Lai, F. Werner. 2010. Scheduling Under Uncer-

tainty: Theory and Algorithms. Belorussian Science. Available from http://www.math.uni-
magdeburg.de/w̃erner/sot-sot-lai-werner.pdf.

Souza, G. C., H. M. Wagner, D. C. Whybark. 2001. Evaluating focused factory benefits with
queuing theory. European Journal of Operational Research 128 597–610.

Sparaggis, P. D., C. G. Cassandras, D. Towsley. 1993. On the duality between routing and
scheduling systems with finite buffer space. IEEE Transactions on Automatic Control 38
1440–1446.

Stewart, J. 1999. Calculus. Brooks/Cole Publishing Company.

Stidham, Jr. S. 1985. Optimal Control of Admission to a Queueing System. IEEE Transactions

on Automatic Control AC-30 705–713.

Stidham, Jr. S., R. Weber. 1993. A Survey of Markov decision models for control of networks
of queues. Queueing Systems 13 291–314.

Stidham, S. S. 2009. Optimal Design of Queueing Systems. CRC-Press.

Stidham Jr., S. 2002. Analysis, design, and control of queueing systems. Operations Research

50 197–216.

Stolyar, A. L. 2004. Maxweight scheduling in a generalized switch: State space collapse and
workload minimization in heavy traffic. The Annals of Applied Probability 14 1–53.

BIBLIOGRAPHY 238

Streeter, M. 2007. Using online algorithms to solve NP-hard problems more efficiently in
practice. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Sun, X., K. Morizawa, H. Nagasawa. 2003. Powerful heuristics to minimize makespan in fixed,
3-machine, assembly-type flowshop scheduling. European Journal of Operational Research

146 498–516.

Sung, C. S., S. H. Yoon. 1998. Minimizing total weighted completion time at a pre-assembly
stage composed of two feeding machines. International Journal of Production Economics

54 247–255.

Suresh, V., D. Chaudhuri. 1993. Dynamic scheduling – a survey of research. International

Journal of Production Economics 32 53–63.

Tadj, L., G. Choudhury. 2005. Optimal design and control of queues. Sociedad de Estadı̀stica

e Investigación Operativa, Top 13 359–412.

Takagi, H. 1986. Analysis of Polling Systems. MIT Press.

Takagi, H. 1988. Queueing analysis of polling models. ACM Computing Surveys 20 5–28.

Takagi, H. 2000. Analysis and application of polling models. Performance Evaluation: Origins

and Directions. Lecture Notes in Computer Science, Springer, 423–442.

Tassiulas, L., P. P. Bhattacharya. 2000. Allocation of interdependent resources for maximal
throughput. Stochastic Models 16 27–48.

Tassiulas, L., A. Ephremides. 1992. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transac-

tions on Automatic Control 37 1936–1948.

Teh, Y. C. 2000. Dynamic scheduling for queueing networks derived from discrete-review
policies. D. R. McDonald, S. R. E. Turner, eds., Analysis of Communication Networks: Call

Centres, Traffic, and Performance. AMS Bookstore, 73–95.

Terekhov, D., J. C. Beck, Kenneth N. Brown. 2009. A constraint programming approach for
solving a queueing design and control problem. INFORMS Journal on Computing Published
online in Articles in Advance.

Terekhov, D., M. K. Doğru, U. Özen, J. C. Beck. 2012a. Solving two-machine assembly
scheduling problems with inventory constraints. Computers and Industrial Engineering 63
120–134.

BIBLIOGRAPHY 239

Terekhov, D., D. G. Down, J. C. Beck. 2012b. Stability of a polling system with a flow-shop
server. Tech. Rep. MIE-OR-TR2012-01, Department of Mechanical and Industrial Engineer-
ing, University of Toronto. Available from http://www.mie.utoronto.ca/labs/ORTechReps/.

Terekhov, D., T. T. Tran, J. C. Beck. 2010. Investigating two-machine dynamic flow shops
based on queueing and scheduling. Proceedings of ICAPS’10 Workshop on Planning and

Scheduling Under Uncertainty.

Terekhov, D., T. T. Tran, D. G. Down, J. C. Beck. 2012c. Long-run stability in dynamic
scheduling problems. Proceedings of the 22nd International Conference on Automated Plan-

ning and Scheduling (ICAPS’12).

Terekhov, D., T. T. Tran, D. G. Down, J. C. Beck. 2012d. A three-level framework for integra-
tion of queueing theory and scheduling. Working Paper .

Terrazas-Moreno, S., A. Flores-Tlacuahuac, I. E. Grossmann. 2008. Simultaneous design,
scheduling, and optimal control of a methyl-methacrylate continuous polymerization reactor.
AIChE Journal 54 3160–3170.

Thiagarajan, S., C. Rajendran. 2005. Scheduling in dynamic assembly job-shops to minimize
the sum of weighted earliness, weighted tardiness and weighted flowtime of jobs. Computers

and Industrial Engineering 49 463–503.

Thomas, M., H. Szczerbicka. 2007. Evaluating online scheduling techniques in uncertain en-
vironments. Proceedings of the 3rd Multidisciplinary International Scheduling Conference

(MISTA’07).

Tian, N., Z. G. Zhang. 2006. Vacation Queueing Models: Theory and Applications. Springer.

Toomey, J. W. 2000. Inventory Management: Principles, Concepts and Techniques. Kluwer
Academic Publishers.

Towsley, D., F. Baccelli. 1991. Comparisons of service disciplines in a tandem queueing net-
work with real time constraints. Operations Research Letters 10 49–55.

Tran, T. T. 2011. Using queueing analysis to guide combinatorial scheduling in dynamic envi-
ronments. Master’s thesis, Department of Mechanical and Industrial Engineering, University
of Toronto.

Tran, T. T., D. Terekhov, D. G. Down, J. C. Beck. 2013. Hybrid queueing theory and scheduling
models for dynamic environments with sequence-dependent setup times. Proceedings of the

23rd International Conference on Automated Planning and Scheduling (ICAPS’13).

BIBLIOGRAPHY 240

Van Der Wal, J., U. Yechiali. 2003. Dynamic visit-order rules for batch-service polling. Prob-

ability in the Engineering and Informational Sciences 17 351–367.

Van Hentenryck, P., R. Bent. 2006. Online Stochastic Combinatorial Optimization. MIT Press.

van Hoeve, W.-J., I. Katriel. 2006. Global constraints. F. Rossi, P. van Beek, T. Walsh, eds.,
Handbook of Constraint Programming, chap. 6. Elsevier, 169–208.

van Wijk, A. C. C., I. Adan, O. J. Boxma, A. Wierman. 2010. Fairness and efficiency for
polling models with the κ-gated service discipline. Working Paper .

Varaiya, P., J. Walrand, C. Buyukkoc. 1985. Extensions of the multiarmed bandit problem: the
discounted case. IEEE Transactions on Automatic Control 30 426–439.

Veatch, M. H., L. M. Wein. 1992. Monotone control of queueing networks. Queueing Systems

12 391–408.

Vermeulen, I. B., S. M. Bohte, S. G. Elkhuizen, H. Lameris, P. J. M. Bakker, H. L. Poutré.
2009. Adaptive resource allocation for efficient patient scheduling. Artificial Intelligence in

Medicine 46 67–80.

Vermorel, J., M. Mohri. 2005. Multi-armed bandit algorithms and empirical evaluation. Pro-

ceedings of the 16th European Conference on Machine Learning (ECML’05). 437–448.

Vishnevskii, V. M., O. V. Semenova. 2006. Mathematical methods to study the polling systems.
Automation and Remote Control 67 173–220.

Weber, R. R., S. Stidham Jr. 1987. Optimal control of service rates in networks of queues.
Advances in Applied Probability 19 202–218.

Weber, R. R., G. Weiss. 1990. On an index policy for restless bandits. Journal of Applied

Probability 637–648.

Wein, L. M., P. B. Chevalier. 1992. A broader view of the job-shop scheduling problem.
Management Science 38 1018–1033.

Weiss, G. 1988. Branching bandit processes. Probability in the Engineering and Informational

Sciences 2 269–278.

Whittle, P. 1988. Restless bandits: Activity allocation in a changing world. Journal of Applied

Probability 25A 287–298.

BIBLIOGRAPHY 241

Wierman, A., M. Harchol-Balter, T. Osogami. 2005. Nearly insensitive bounds on SMART
scheduling. ACM SIGMETRICS Performance Evaluation Review 33 205–216.

Wierman, A., E. Winands, O. Boxma. 2007. Scheduling in polling systems. Performance

Evaluation 64 1009–1028.

Williams, R. J. 1996. On the approximation of queueing networks in heavy traffic. F. P. Kelly,
S. Zachary, I. Ziedins, eds., Stochastic Networks: Theory and Applications, chap. 3. Oxford
University Press, 35–56.

Williams, R. J. 1998. Diffusion approximations for open multiclass queueing networks: suffi-
cient conditions involving state space collapse. Queueing Systems 30 27–88.

Winands, E. M. M. 2007. Polling, production and priorities. Ph.D. thesis, Technische Univer-
siteit Eindhoven.

Wolff, R. W. 1989. Stochastic modeling and the theory of queues. Prentice Hall.

Xia, C. H., J. G. Shanthikumar, P. W. Glynn. 2000. On the asymptotic optimality of the SPT
rule for the flow shop average completion time problem. Operations Research 48 615–622.

Yang, J., M. E. Posner. 2005. Scheduling parallel machines for the customer order problem.
Journal of Scheduling 8 49–74.

Yechiali, U. 1991. Optimal dynamic control of polling systems. Queueing, Performance and

Control in ATM (ITC-13) 205–217.

Yechiali, U. 1993. Analysis and control of polling systems. Performance Evaluation of Com-

puter and Communication Systems 630–650.

Yeow, W.-L., C.-K. Tham, W.-C. Wong. 2006. Hard constrained semi-Markov decision pro-
cesses. Proceedings of the Twenty-First National Conference on Artificial Intelligence

(AAAI’06). 549–555.

Yokoyama, M. 2008. Flow shop scheduling with setup and assembly operations. European

Journal of Operational Research 187 1184–1195.

Zonderland, M. E., R. J. Boucherie, N. Litvak, C. L. A. M. Vleggeert-Lankamp. 2010. Planning
and scheduling of semi-urgent surgeries. Health Care Management Science 13 256–267.

