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Abstract

Exact and Heuristic Approaches to Batching-and-Scheduling for the Composites Manufacturing

Problem

Tanya Y. Tang

Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering

University of Toronto

2020

The process of manufacturing composite materials is a complex problem that lacks robust and scal-

able solutions. This thesis aims to characterize that process and offer solutions by defining and solving

a novel optimization problem, the Composites Manufacturing Problem (CMP), and its abstraction,

the Two-Stage Bin Packing and Hybrid Flowshop Scheduling Problem (2BPHFSP). The CMP involves

batching and scheduling jobs in a four-stage flowshop with time-varying resource requirements. The

2BPHFSP offers a simplified version of the CMP which allows us to focus on the key complexities

of the CMP and deepens our understanding of the problem. By extending state-of-the-art techniques

from a wide literature body, we construct solution approaches using techniques from Mixed Integer Pro-

gramming, Constraint Programming, Logic-Based Benders Decomposition, heuristic algorithms, genetic

algorithms, and constrained-clustering algorithms. Empirical analyses were performed for both problems

on randomly generated instances based on real data from our industrial collaborator.
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Chapter 1

Introduction

Composite materials are created when two or more constituent materials are combined to form a new

material with different characteristics than any of its individual components. One of the significant

innovations in aerospace manufacturing came in the 1940’s when fibreglass, a composite material made

of polymeric materials and glass fibres, was first used in the Boeing 707 passenger jet [103]. From the

1970’s, carbon fibre reinforced polymer (CFRP), a composite material made of polymeric materials and

carbon fibres, started to replace fibreglass as the main composite material used in airplane manufactur-

ing [103]. Today, the Airbus A350 XWB is comprised of 52% CFRP [90]. The growing need for CFRP

has placed more pressure on the manufacturing processes that create airplane composite parts such as

fuselages and wings. Due to the complexity of these processes, the aerospace industry often faces massive

delays which can cost billions of dollars [110]. Companies have been trying to improve process efficiency

for years [46] but many manufacturing facilities are still struggling to effectively schedule activities in

the composites manufacturing process. Thus, in conjunction with our industrial partner, we have iden-

tified an important industrial problem that, to the best of our knowledge, does not have a well-tested,

state-of-the-art solution approach.

This thesis aims to define and characterize a novel optimization problem arising from

the production of composite materials and develop scalable solution approaches. To accom-

plish this goal, we first define the Composites Manufacturing Problem (CMP), which consists of four

stages in the manufacturing process: tool preparation, layup, autoclave curing, and demould. Then, we

define an abstraction of the CMP, the Two-Stage Bin Packing and Hybrid Flowshop Scheduling Problem

(2BPHFSP) to help us better understand the inherent problem structure. We present an extensive set

of solution approaches for each problem, utilizing techniques from Mixed Integer Programming (MIP),

Constraint Programming (CP), Logic-based Benders Decomposition (LBBD), heuristics, metaheuristics,

and constrained clustering. Empirical analyses are performed for both problems to understand the ben-

efits and drawbacks of each approach.

Results from the 2BPHFSP imply that strictly exact methods such as monolithic MIP and CP models

or LBBD models are most likely unable to produce good schedules for real-life instances due to their

size and complexity. However, a hybrid approach comprised of a heuristic and a CP model performed

very well and showed high scalability. Results from the CMP further support this observation, where

1
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Tool 
Preparation Layup Curing Demould

Tools are Reused
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Downstream for 

Further Processing
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Tool Batches are 
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Figure 1.1: Summary of the CMP process.

a similar hybrid approach using a heuristic and a CP model consistently performed better than all of

the other models. Other non-exact approaches, such as genetic algorithms and constrained clustering,

performed slightly worse than the heuristic-CP hybrid, but still appear to be much more robust than

the exact approaches.

1.1 Background and Problem Characteristics

A composite material is made up of two or more constituent materials that remain distinct and separate

in the final material. The process of making the composite material used in aerospace manufacturing,

CFRP, consists of combining a binding polymer with carbon fibre and several optional additives [114].

The most common binding polymer is epoxy, which is a type of reactive polymer that starts as a liquid

but hardens once it is cured using heat or a catalytic reaction. If carbon fibres are added to the epoxy

before curing, the resulting material, CFRP, has an extremely high strength-to-weight ratio and stiffness

(rigidity), two highly desirable properties in an airplane [114]. Carbon fibre can reduce the weight of an

airplane by up to 20%, saving an estimated $1 million dollars per kilogram over the lifetime of the plane

[22]. Some other materials that can be added along with carbon fibres include aramids, glass fibres,

silica, and carbon nanotubes [114].

The manufacturing method most airplane manufacturers use to make CFRP parts is moulding, where

sheets of carbon fibre cloth are layered with other optional materials and liquid epoxy into a mould in

the shape of the final product(s) [114]. The mould is then air-cured, or, more often, heat-cured in an

autoclave. Parts must be taken out of a mould after curing in a stage called demould, and then the

mould is cleaned in a process called tool preparation before it can be reused again. Thus, we have a

four-stage process surrounding the curing of a composite part in an autoclave: moulds (hereby referred

to as tools) are first cleaned in Tool Preparation, then layers of raw materials and epoxy are placed in

the mould in a process called Layup, the laid up tools go into an autoclave for Curing, and finally the

parts are removed from their tools in Demould. This four-stage manufacturing process is the core of the

scheduling problem in the CMP and is summarized in Figure 1.1.

One of the challenges of composites manufacturing is that the moulds are scarce resources due to

their high cost. Another complicating factor in filling moulds with epoxy and raw materials is the ex-

istence of caps or covers that secure the part in its tool. We refer to these caps as Top Tools and the
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tool that contains parts as the Bottom Tool. Top tools and bottom tools work together to hold a part

in place during layup and curing, and only certain top tools can be used with certain bottom tools.

The combination of top and bottom tools containing one or more parts can be considered a tool batch.

Multiple tool batches can be processed simultaneously in an autoclave, given that there is enough space

in the autoclave. A group of tool batches can then be considered an autoclave batch. These batches

therefore form a hierarchical structure, where parts are first batched into tool batches and then tool

batches into autoclave batches. This two-stage hierarchical batching process is the core of the batching

problem in the CMP.

In summary, the CMP is characterized by two integrated processes: batching parts and tools at

the same time as they are being processed in sequential stages. The theoretical separability of these

two processes, contrasted with their inherent connectedness when making decisions, is a major theme

throughout this thesis.

1.2 Thesis Outline

Chapter 2 formally defines and provides notation for the Composites Manufacturing Problem (CMP).

The chapter closes with an analysis of real-life data provided by our industrial partner and an explana-

tion of how instances used in our numerical experiments are generated.

Next, Chapter 3 first provides a literature review on problems related to the CMP, spanning the fields

of batch scheduling, bin packing, resource-constrained project scheduling, and constrained clustering.

Then we introduce the fundamentals of several solution techniques: MIP, CP, decomposition models,

and heuristics.

Chapter 4 introduces and formally defines the Two-Stage Bin Packing and Hybrid Flowshop Schedul-

ing Problem (2BPHFSP), an abstraction of the CMP that removes several problem complexities. The

purpose of this chapter is to explore the inherent structure of the CMP and to understand how dif-

ferent decisions influence each other. Five approaches are developed and described: Mixed Integer

Programming (MIP), Constraint Programming (CP), an Earliest-Due Date (EDD) heuristic, and two

Logic-based Benders Decomposition (LBBD) models. Numerical results from testing the five approaches

on randomly generated problem instances are discussed and analyzed. Lastly, two hybrid approaches

are created based on the best performing approaches and tested on the same sets of problem instances.

The LBBD models performed the best overall but do not appear to be very scalable. However, a hybrid

approach using the EDD heuristic combined with CP performs comparably to LBBD and exhibits high

scalability.

Chapter 5 takes the solution approaches tested in Chapter 4 and the information we learned about

the problem itself to create similar models and algorithms for the CMP. We focus on scaling up the

complexity in this chapter and perform experiments on smaller-than-production size instances. Four

approaches are created: MIP packing with CP scheduling, CP packing with CP scheduling, an LBBD

model, and an EDD heuristic algorithm for packing with CP scheduling. As in Chapter 4, we show

numerical results obtained from testing the approaches on randomly generated problem instances and
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analyze each approach’s performance. The EDD heuristic with CP outperformed all other models by

a significant margin, implying that we should not attempt to scale the other models to solve larger

instances.

Chapter 6 takes the best approach from Chapter 5, the EDD packing heuristic with CP scheduling,

creates and describes five new approaches, and tests these six approaches on production-scale instances.

The five new approaches are: EDD packing with a parallel scheduling heuristic, EDD packing with a

genetic algorithm, constrained clustering packing with CP scheduling, constrained clustering packing

with a parallel scheduling heuristic, and constrained clustering with a genetic algorithm. The numerical

results in this chapter show how different techniques might perform if implemented in an actual plant.

Similarly to Chapter 5, the EDD heuristic with CP outperforms all other models. Finally, we analyze

and discuss the inherent bottlenecks in the system and how they may impact the lower bounds of our

approaches. We found two notable bottlenecks, a small bottleneck formed by the stage-specific resources

in the layup stage, and a large bottleneck formed by a few tools that are fully utilized across almost the

entire schedule horizon.

The thesis concludes with Chapter 7 which summarizes the results and conclusions made throughout

the chapters and discusses directions for future research.

1.3 Contributions

The following list describes the main contributions of this thesis.

• We introduced two novel optimization problems motivated by real-world composites manufactur-

ing: the Two-Stage Bin Packing and Hybrid Flowshop Scheduling Problem (2BPHFSP) and the

Composites Manufacturing Problem (CMP).

• We developed seven solution approaches to the 2BPHFSP and nine solution approaches to the CMP

using techniques from Mixed Integer Programming (MIP), Constraint Programming (CP), Logic-

based Benders Decomposition (LBBD), heuristic algorithms, genetic algorithms, and constrained

clustering algorithms.

• We performed empirical analyses on both problems and found that the overall best-performing

approach to be a hybrid approach of a heuristic algorithm and CP.

• We discovered the existence of bottleneck resources in the CMP which imply that our best solutions

to the CMP are reasonably close to optimal.

This thesis also provides general research value in several important optimization fields. First, the

decomposition models developed for this thesis can be used as a blueprint for any optimization problem

where the difficulty lies in connecting a batching problem with a scheduling problem. For example, such a

situation may arise in batch chemical manufacturing where the orders fulfilled by each batch of chemicals

need to be determined in conjunction with when these batches are scheduled to be created [20]. Second,

the approach taken by the MIP model developed for the Pattern Bin Packing problem, introduced and

explained in Chapter 4, can be applied to set partitioning problems. And lastly, we showed the mapping

between size-constrained clustering and the one-stage bin packing problem in Chapter 6.



Chapter 2

Problem Preliminaries

In this chapter, we formally define our problem of interest, the Composites Manufacturing Problem

(CMP). Furthermore, we will discuss some key complexities of the CMP that cause this problem to be

more complex and layered than most existing problems of a similar nature in literature. This chapter

closes with an overview of the real-world data provided by our industrial collaborator.

2.1 Problem Definition

Let us first define the inputs to the CMP. We are given a set of jobs J that need to be processed se-

quentially in four stages: tool preparation, layup, curing, and demould. Tool preparation and demould

are auxiliary activities that take up a negligible amount of time compared to layup and curing, which

dominate the process. Each job has a due date dj and a processing time for each stage ptstagej where

stage ∈ {prep, layup, cure, demould}. A job produces one distinct vehicular part at the end of the de-

mould stage that is sent to downstream processes for finishing and assembly. This high level process is

shown in Figure 2.1.

We have a set of non-identical, renewable resources called tools that are divided into bottom tools

N and top tools T . Each job needs to be processed in all four stages accompanied by one bottom tool

Stage 1: 
Tool Prep

Stage 2: 
Layup

Stage 3: 
Curing

Stage 4: 
Demould

Raw Materials Downstream 
Stages

Dominating Stages

Job

Desired Part:

Due Date: dj

ptjProcessing Times:

Figure 2.1: Job routing through the CMP.
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Job Type 15001298

Tool Combination 1 =

(Bottom Tool 1293, Top Tool 950)

Tool Combination 5 =

(Bottom Tool 1292, Top Tool 950)

Bottom Tool Top Tool

Mapped 
Combination

Mapped 
Combination

Final Product

Capacity: 4 Top Tools

Minimum Fill: 4 Top Tools

Capacity: 2 Top Tools

Minimum Fill: 0 Top Tools

Capacity: 1 Job

Minimum Fill: 0 Jobs

Capacity: 1 Job

Minimum Fill: 0 Jobs

To use 
Combination 5, at 
least 4 of job type 
15001298 must 

exist in the 
instance to fill 4 
top tools and 

subsequently fill all 
four slots on the 

bottom tool

Figure 2.2: Connections between tool combinations, jobs, and tools.

and one top tool. Let us denote a pair of one bottom tool b and one top tool o as a tool combination

c = (b, o). Each job is mapped to one or two tool combinations; a job j can only be processed by one

of its mapped combinations c ∈ Cj . Each top tool contains one or more slots to hold assigned jobs, and

each bottom tool contains one or more slots to hold top tools. If either a top or bottom tool has multiple

slots, the tool may also have a minimum capacity requirement which enforces that the tool can only be

used if all of its slots are used. For example, if a bottom tool b has three slots to hold top tool o and a

minimum capacity requirement of three, we can only use b if we have enough jobs to fill three o tools

and thus fill all three slots on b. Figure 2.2 shows an example that illustrates the connections between

tool combinations, jobs, and tools.

Let us denote each filled bottom tool as a tool batch. Tool batches are formed in the tool prepa-

ration and layup stages. During tool preparation, bottom and top tool slots are cleaned and prepared

to process assigned jobs. The total processing time for a tool batch in tool preparation is the sum of

tool preparation processing times of jobs in the batch, as slots are cleaned and prepared sequentially.

Processing times are sequence independent, so the order of preparation does not matter. Next, in the

layup stage, sheets of raw materials such as carbon fibre or fibreglass are layered in the mould slots along

with an epoxy resin. Similar to tool preparation, slots are laid up sequentially with no particular order,

so the total layup time for a tool batch is the sum of layup processing times of jobs in the batch. After

layup, we have a complete tool batch consisting of one bottom tool, at least one top tool, and at least

one job.

Next, complete tool batches are cured in autoclaves (industrial ovens) where the laid-up materials

and epoxy resin are bound to form a new composite material. Autoclaves are very large, so multiple tool

batches can be cured at the same time. In addition, the extreme temperature and pressure conditions
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+
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Figure 2.3: Detailed look at stages of the CMP.

within autoclaves during the curing process require large amounts of energy to maintain, so it is desirable

to cure as many tool batches at the same time as possible to reduce the number of autoclave operational

hours. Another constraint is that each tool batch needs to be cured using a certain autoclave cycle type

that is predetermined based on the selected tool combination. Cycle type determines the temperature,

pressure, and time needed to completely cure tool batches. Each cycle type can only be run on a specific

autoclave, so only tool batches with the same cycle type can be cured together. We know the size of

each tool batch, determined by its bottom tool. The sum of the sizes of the tool batches being cured

simultaneously cannot exceed the autoclave’s capacity. A group of tool batches being processed together

in an autoclave is therefore denoted as an autoclave batch.

The last stage is demould, where completed jobs are removed from their tool slots and sent to down-

stream processes. This stage is very similar to tool preparation and layup, jobs are removed sequentially

with no particular order and the total demould time is the sum of demould processing times of jobs in

the tool batch. After jobs are removed, the bottom and top tools of a tool batch can be cleaned and

reused to make new tool batches. The completion time of a job is after it has been removed from its

tool batch in demould, and can be compared to its due date to obtain job tardiness. Figure 2.3 shows a

more detailed view of the CMP stages.

Throughout all four stages, we need to use machine resources. Tool preparation, layup, and demould

machines are specific sections of the shop floor, and curing machines are autoclaves. Each tool batch

takes up one floor section in tool preparation, layup, and demould, and each autoclave batch takes up

one autoclave in curing. Tool batches also require labour resources during tool preparation, layup and

demould. Machine and labour resources are predetermined for each tool combination, therefore, we can
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Figure 2.4: Sample resource capacities over time.

easily ascertain the resources required by each tool batch. We are also given the schedules of machines

and labour teams, which are renewable resources with time-varying capacities. For example, one au-

toclave machine may not be operational during weekends, or we may have five units of labour type 25

from Monday to Thursday but only two units from Friday to Sunday. As aforementioned, tools are also

renewable resources, but have constant capacities. Therefore, the CMP utilizes three distinct sets of

resources: tools, machines, and labour. Figure 2.4 shows an example of resource capacity over time in

the CMP.

The CMP is a highly specialized and complex variation of traditional batch scheduling. Tool batch

processing times in tool preparation, layup, and demould are sums of processing times of its jobs. Thus,

we can consider these stages to be batching steps that fall under the family batch scheduling model (see

Section 3.2.1). After layup, each tool batch must then be cured in an autoclave simultaneously with

other tool batches. We can consider this step to be another batching step that falls under the batching

machines model (see Section 3.2.1).

We can also consider the CMP as the union of two distinct problems, multi-stage bin packing (see

Section 3.2.2), and hybrid flow-shop scheduling [83]. Multi-stage bin packing encompasses the batching

steps, i.e. jobs into top tools, top tools into bottom tools to form tool batches, and tool batches into

autoclave batches, constrained by tool slot availabilities and autoclave capacities. A solution to the

multi-stage bin packing problem then forms the parameters of the hybrid flow-shop scheduling problem.

Each tool batch must be scheduled in tool preparation, layup, and demould, each autoclave batch must

be scheduled in curing, and precedence exists between stages.
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Formal Definition. Now, let us formally define the problem. We are given a set of jobs J , each job

j in J is associated with the parameter set {dj , ptprepj , ptlayupj , ptcurej , ptdemouldj , Cj}: dj is the due date,

ptstagej is the processing time in each stage, and Cj is the set of allowed tool combinations. Table 2.1

contains a summary of the general notation introduced in this chapter.

A tool combination is formed of one top tool from the set of top tools T and one bottom tool from

the set of bottom tools N . Each top tool o ∈ T is associated with the parameter set {capo,mino, qo}:
capo is the capacity (i.e. the maximum number of jobs that can be slotted into this top tool), mino

is the minimum capacity requirement (i.e. the minimum number of jobs that need to be slotted into

this top tool if used), and qo is the available quantity. Each bottom tool b ∈ N is associated with

the parameter set {capb,minb, qb, sb}: capb is the capacity (i.e. the maximum number of top tools

that can be slotted into this bottom tool), minb is the minimum capacity requirement (i.e. the min-

imum number of top tools that need to be slotted into this bottom tool if is used), qb is the avail-

able quantity, and sb is the size.1 Each tool combination c ∈ C is associated with the parameter

set {mprep
c ,mlayup

c ,mcure
c ,mdemould

c , lprepc , llayupc , ldemouldc , lqprepc , lqlayupc , lqdemouldc , acc}: mstage
c is the re-

quired machine at each stage, lstagec is the required labour team type at the appropriate stages, lqstagec

is the required quantity of labour teams at the appropriate stages, and acc is the autoclave cycle type.

There are two more types of resources: machines and labour teams. qmn and qln represent the available

quantity of machine m and labour team l at time period n. We can split the entire set of machines M
into the set of tool preparation machinesMprep, the set of layup machinesMlayup, the set of autoclaves

Mcure, and the set of demould machines Mdemould. We can also split the entire set of labour teams L
into the set of tool preparation labour teams Lprep, the set of layup labour teams Llayup, and the set of

demould labour teams Ldemould.

The result of batching is a set of tool batches B1 and a set of autoclave batches B2. Each tool batch

k ∈ B1 contains a set of jobs and each autoclave batch i ∈ B2 contains a set of tool batches.

2.1.1 Key Complexities

We can summarize the CMP with four key complexities:

1. The multi-stage bin packing problem consists of packing jobs into tool batches defined by tool

combinations, then packing tool batches into autoclave batches. This problem is further compli-

cated by the presence of autoclave cycle types, where tool batches can only be processed in an

autoclave batch with other tool batches that have the same cycle type. Thus, we need to solve a

separate multi-stage bin packing problem for each subset of tool batches with the same cycle type.

2. A job can only be assigned to one of its mapped tool combinations. Some tool combinations are

formed using tools with a non-zero minimum fill requirement. Thus, depending on the instance,

we may not be able to use some tool combinations because there are not enough jobs to fill such

a tool batch.

3. A subset of machines in the tool preparation, layup, and demould stages contain multiple cells,

1Top tools are slotted into bottom tools so we do not have to represent the size of top tools.
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Table 2.1: General notation.

Parameter Description

j ∈ J Set of jobs
k ∈ B1 Set of tool batches
i ∈ B2 Set of autoclave batches
c ∈ C Set of tool combinations
c ∈ Cj Set of tool combinations mapped to job j
o ∈ T Set of top tools
b ∈ N Set of bottom tools
m ∈M Set of machines
l ∈ L Set of labour teams
n ∈ H Set of time periods
dj Due date of job j

ptprepj Processing time of job j in tool preparation

ptlayupj Processing time of job j in layup

ptcurej Processing time of job j in curing
ptdemouldj Processing time of job j in demould
capo Capacity of top tool o
mino Minimum fill requirement of top tool o
qo Quantity of top tool o
capb Capacity of bottom tool b
minb Minimum fill requirement of bottom tool b
qb Quantity of bottom tool b
sb Size of bottom tool b

mprep
c Required tool preparation machine for tool combination c

mlayup
c Required layup machine for tool combination c

mcure
c Required curing machine for tool combination c

mdemould
c Required demould machine for tool combination c
lprepc Required tool preparation labour team for tool combination c
llayupc Required layup labour team for tool combination c
ldemouldc Required demould labour team for tool combination c
lqprepc Required tool preparation labour team units for tool combination c
lqlayupc Required layup labour team units for tool combination c
lqdemouldc Required demould labour team units for tool combination c
acc Autoclave cycle type of tool combination c
qmn Available quantity of machine m during time period n
qln Available quantity of labour team l during time period n
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i.e. multiple tool batches can be processed simultaneously. Thus, we can describe the scheduling

aspect of the CMP as a multi-stage hybrid flowshop scheduling problem.

4. There are three types of resources: tools, machines, and labour teams. Bottom tools exist in

limited quantities and can be represented as constant-capacity resources. We can assume top tools

exist as unlimited resources; top and bottom tools are always used in tandem and bottom tools

are responsible for the tool availability bottleneck. Machines and labour teams have changing

quantities available over time and can be represented as resources with time-varying capacities. If

a tool is used by a tool batch, the tool is used from the beginning of the tool preparation stage

to the end of the demould stage for that tool batch. Machines and labour teams are used for the

duration of their associated stage.

2.2 Data Overview

This section looks at the parameters that characterize the operational data provided by our industrial

partner. We can separate these parameters into five categories that completely define the environment

that a job is processed within.

1. A list of all possible jobs that may be present in an order list. There are a total of 395 distinct

jobs and each job produces a distinct vehicular part. For each job, we know the set of mapped

tool combinations and its size. The estimated size of a job is an estimation of how much space a

job is likely to take up within an autoclave batch after it has been packed into a tool batch. Table

2.2 shows a sample list.

2. A list of all top and bottom tools along with their sizes, capacities, available quantities, and

minimum capacity requirements. There is a total of 429 bottom tools and 793 top tools. The

capacity of a top tool is the number of slots available to hold jobs, whereas the capacity of a

bottom tool is the number of slots available to hold top tools. Therefore, if a top tool has capacity

2 and a bottom tool has capacity 3, the bottom tool can hold a maximum of 6 jobs. However, the

majority of tools have a capacity of 1. Due to the configuration of tool batches where top tools are

fixed on top of bottom tools, only bottom tools possess a size parameter. Therefore, a tool batch

inherits its size from its bottom tool. This size will be used to determine how many tool batches

can fit within an autoclave. Figure 2.5 provides an overview of tool parameters. We can see that

most tools, regardless of being a bottom or top tool, exist as a single tool with a capacity of 1.

This implies that most tool batches will be a single job batched with one top tool and one bottom

tool.

3. Tool combinations have some of the most important parameters, giving us the exact machines and

labour teams, along with the number of labour team units, required for processing in each stage.

Table 2.3 shows a sample list.

4. The machine parameters describe all available machines at each stage and their capacities. There

are 9 tool preparation machines, 16 layup machines, 12 autoclave machines, and 10 demould

machines. Each autoclave can process one autoclave batch at a time and has a limit on the

autoclave batch size. This limit cannot be exceeded by the sum of tool batch sizes for any autoclave

batch. On the other hand, non-autoclave machines do not have size limitations, one tool batch
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Table 2.2: Sample list of job parameters.

Job Type Mapped Tool Combinations Combination Tools Size

14000365 Combination 1 Bottom Tool 1200, Top Tool 950 1000
14001006 Combination 10 Bottom Tool 1141, Top Tool 1001 400
14001006 Combination 11 Bottom Tool 1140, Top Tool 800 400

... ... ... ...

Min Capacity Requirement Tool Capacity = 1 Available Tool Qty = 1
0

50

100
Bottom Tools

Min Capacity Requirement Tool Capacity = 1 Available Tool Qty = 1
0

50

100
Top Tools
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Figure 2.5: Overview of tool parameters, analysis showing which parameter values are the most common.
Tools with a capacity equal to 1 are not included in the percentage of tools with a minimum capacity
requirement.

is treated as one unit regardless of its size. Some non-autoclave machines are also capable of

processing multiple tool batches at once. As described in the previous section, any non-autoclave

machine is merely a section on the shop floor. Figure 2.6 shows how such a machine exists in real

life.

5. We have the weekly availabilities of machines and labour teams. A week is split into 49 shifts and

the parameters tell us how many units of the machine or labour team are available during every

shift. Table 2.4 shows a sample list.

2.2.1 Instance Generation

Our industrial partner also provided a sample order of 4565 jobs. On average, an order contains 4000

jobs, so we cannot create sample instances to test our models and algorithms by splitting the sample

order directly. Thus, to produce instances with a similar distribution as the real-world dataset, we create

bootstrap instances by sampling with replacement from the real-world dataset. Each job in an instance

is also assigned a due date in number of weeks, sampled from a uniform distribution from 1 to 4. Table

2.5 shows a sample instance of 10 jobs.
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Table 2.3: Sample list of tool combination parameters.

Combination Prep ... Demould

Machine Labour Qty ... Machine Labour Qty

Combination 1 =
(Bottom Tool 1200,

Top Tool 950)
Tool Prep 869 Team 1159 2 ... Demould 878 Team 1301 3

Combination 2 =
(Bottom Tool 1840,

Top Tool 1002)
Tool Prep 869 Team 1169 1 ... Demould 878 Team 1159 1

Combination 3 =
(Bottom Tool 1423,

Top Tool 901)
Tool Prep 980 Team 2164 2 ... Demould 878 Team 1329 1

... ... ... ... ... ... ... ...

Layup 957 Layup 480 Layup 351

…

Layup Shop

Capacity: 9 Tool Batches Capacity: 9 Tool Batches Capacity: 4 Tool Batches

Figure 2.6: Layout of non-autoclave machines within a layup shop.

Table 2.4: Sample list of machine/labour team weekly availabilities

Machine/Team
Day 1 - 0:00

to 4:59
Day 1 - 5:00

to 6:29
...

Day 7 -
17:30 to

22:29

Day 7 -
22:30 to

23:59

Team 1159 1 1 ... 3 3
... ... ... ... ... ...

Tool Prep 859 0 0 ... 10 10
... ... ... ... ... ...
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Table 2.5: Sample instance of 10 randomly generated jobs.

Job Type Due Date

15003215 Week 1
15003209 Week 3
15001667 Week 2
15002220 Week 3
14004521 Week 4
14003764 Week 3
15003215 Week 1
15001667 Week 4
15003209 Week 1
15003209 Week 2

2.3 Summary

In this chapter, we introduced and formally defined the Composites Manufacturing Problem (CMP).

The CMP is a complex problem that spans multiple stages and uses multiple resources, with problem

instances that contain 4000 jobs on average. We summarized the CMP using four key complexities: the

multi-stage bin packing nature of the batching steps, the minimum fill requirements of some tools, the

multi-capacity nature of resources, and the time-varying capacities of some resources.

The following chapter presents a literature review of existing problems, models, and algorithms

that can be related to the CMP as well as some solution techniques that are commonly used to solve

hard combinatorial problems like the CMP. However, due to the complexity of the CMP, we are most

likely unable to apply out-of-the-box techniques to solve the problem as is. Thus, we will first focus on

understanding the underlying problem structures of the CMP better by solving an abstraction in Chapter

4. This abstraction will contain some of the key complexities described in this chapter, namely the multi-

stage bin packing and multi-capacity resources. Results from modelling and solving the abstracted

problem can help guide us in developing solutions for the full problem. Then, Chapter 5 will focus on

solving the CMP with its full complexity on smaller problem instances, and finally, Chapter 6 will turn

to solving the CMP with its full complexity on full-scale problem instances.



Chapter 3

Literature Review

This chapter first introduces relevant works in four areas related to the composites manufacturing prob-

lem (CMP): batch scheduling, bin packing, project scheduling, and constrained clustering. Then we

present the foundational ideas and theories behind four important techniques used to solve discrete opti-

mization problems: Mixed Integer Programming (MIP), Constraint Programming (CP), decomposition

methods, and heuristics.

3.1 Composites Manufacturing

A few authors have tackled problems related to composites manufacturing in some form over the past

two decades. To the best of our knowledge, composites manufacturing first appeared in literature when

Hindle and Duffin [59] presented a simulation-based system to schedule the composites manufactur-

ing process. However, they do not define the CMP nor do they provide the actual simulation model;

the paper’s main focus is on explaining how the system can aid facilities to improve production efficiency.

Collart [33] appears to have been the first to formally define a scheduling problem related to com-

posites manufacturing. However, their definition makes two assumptions about tools that drastically

reduce the problem complexity, namely that each job can only be processed using one type of tool and

that a tool can only process one job at a time. Collart presents a monolithic mixed integer programming

(MIP) model along with a decomposition model that uses MIP to pack batches and simulated annealing

to schedule batches. The MIP and decomposition models were both able to solve instances with up to

260 autoclave batches over four weeks. Azami et al. [6] presents another MIP model and a genetic algo-

rithm to solve the same problem as Collart [33]. The MIP model was tested on instances with up to 100

jobs and the genetic algorithm was tested on instances with up to 300 jobs. However, the assumptions

in the problem definition render these models inadequate for our problem.

Most recently, Hueber et al. [64] developed a custom branch-and-bound algorithm, named APOLLO

(Autoclave Production Order, Layup and Logistics Optimization), for scheduling the layup and curing

stages of a composites manufacturing process. They showed that APOLLO was able to schedule one

week’s worth of orders, however, the calculation times are extremely long, e.g. five days of computation

time to schedule four batches to optimality.

15
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We do not compare the approaches developed in this thesis against existing models in literature as

their assumptions do not fit our problem. Thus, we can conclude that the CMP as defined in this thesis

is a novel optimization problem.

Due to the lack of proper models that solve the CMP in its entirely, we look at similar but more

well-researched classes of problems. Next, we present a discussion of related problems that could be

projected onto the CMP along with their associated solution techniques; we review exact models as well

as heuristic/metaheuristic algorithms for these problems.

3.2 Related Problems

Batch scheduling encompasses a large family of models that share the characteristic that jobs must be

processed together in some manner [101]. All four stages of the CMP can be considered batch schedul-

ing, as jobs are processed sequentially in tool preparation, layup, and demould and jobs are processed

simultaneously in curing. Alternatively, the batching aspect in batch scheduling can be transformed into

an equivalent bin packing problem [78].

There are also other bodies of literature with connections to the CMP that are less obvious. Project

scheduling [25] is a tremendously popular area of research, and we can map the time-varying availability

of resources in the CMP (machines and labour teams) to the time-varying resource capacities found in

project scheduling. Another area of research that can be connected to the CMP is constrained clustering

[11]. If we think of an autoclave batch as a cluster of tool batches, the batching problem of tool batches

to autoclave batches can be mapped to a clustering problem with constraints on cluster size and the

cardinality of tools within clusters.

We present notable works from each of these four bodies of literature along with their common

solution techniques.

3.2.1 Batch Scheduling

Batch scheduling has been separated into two main classes of problems: the Family Batching Model

and the Batching Machines Model, as categorized by Potts and Kovalyov [101]. In the family batching

model, jobs that share certain characteristics belong to predefined families with no setup costs required

to sequentially process jobs within the same family. Thus, a batch in this context is a set of jobs that

are scheduled contiguously on a machine with a single setup. Under the batching machines model, jobs

are processed simultaneously on the same machine. The most common application of the batching ma-

chines model is in semiconductor manufacturing, where the ‘burn in’ operation to cure circuit boards is

performed simultaneously for many boards in the same oven [94].

In addition to the family batching model and the batching machines model categories, batch schedul-

ing problems can be characterized as single-machine, parallel-machine or shop problems. Table 3.1

presents papers in literature that fall within each category.
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Table 3.1: Categorization of batch scheduling problems.

Single Machine Parallel Machines Shop

Family Batching
Model

[95, 47, 35, 93, 36] [7, 95] [76, 122, 113]

Batching Machines
Model

[26] [26, 15] [119, 80, 50, 117, 97, 54, 87, 74]

Family Batching Model. The single-machine variant of the family batching model with different

objectives has been studied for many years. For example, Monma and Potts [95] showed that in an

optimal schedule for the total weighted completion time objective, the shortest weighted processing time

(SWPT) priority rule applies within each family. However, these basic problems are still NP-complete

[101] as, for example, the families need to be sequenced. Multiple formulations of exact algorithms such

as dynamic programming [47] and branch-and-bound [35] have been developed through the years for

such problems. Heuristic approaches have also been studied, such as genetic algorithms [93] and vari-

ants of neighbourhood search heuristics [36]. Algorithms developed for the single machine case have been

extended to accommodate other variants of the family batching model, such as parallel machines and

multi-machine shop problems [101], and many MIP formulations have also been developed for variants

of the family batching model. Balakrishnan et al. [7] presented a MIP model alongside a Benders de-

composition model for the objective of minimizing weighted earliness/tardiness with parallel machines.

Kurz and Askin [76] developed MIP and heuristic approaches for minimizing makespan in a flow shop.

The body of literature surrounding family batching is extremely broad and much of the work is

summarized in three comprehensive survey papers by Allahverdi et al. [2], Potts and Kovalyov [101],

and Allahverdi et al. [3], arguably the most influential papers in the field of batch scheduling.

Batching Machines Model. Many algorithms of the same nature as the ones previously described

for the family batching model have also been developed for the batching machines model. For the

single-machine case, Brucker et al. [26] showed that the optimal schedule is where batches are created

when jobs are ordered by the shortest processing time (SPT) priority rule and adjacent ordered jobs

are grouped to form batches. Much of the early work in batching machines was introduced by Brucker

et al. [26], including dynamic programming formulations for the single-machine and parallel machines

cases with different objective functions.

One of the first MIP models developed to solve a batching machines problem was presented by

T’kindt et al. [119], where binary decision variables choose between permutations of job sequences in

a two-machine flowshop with one batching machine. Building on that, Liao and Liao [80] present MIP

models that solve a two-machine flowshop problem where both machines are batching machines. Many

more variants on batching machine flowshop problem exist, including setup times or costs [50], trans-

portation considerations between stages [117], parallel machines [15], and release dates [97].

Some recent work on batching machines has seen the application of Constraint Programming (CP)

to these scheduling problems. Ham et al. [54] present a CP approach using existing global constraints
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to solve a parallel batching machine problem where jobs have release times, non-identical sizes, and

incompatible families. An alternate approach was taken by Malapert et al. [87] where they developed

a novel global constraint called sequenceEDD that minimizes the maximal lateness for a single batching

machine where jobs have non-identical sizes. Kosch and Beck [74] presented a MIP model for the same

batching machines problem as Malapert et al. that outperformed sequenceEDD.

In general, exact algorithms or models have been developed for many of the variants that can arise

from the categorized problems in Table 3.1, e.g. jobs with release dates, incompatible job families,

multiple stages, etc. However, almost all of these variants are too abstract to be useful for our application.

Thus, to the best of our knowledge, the CMP or problems of similar complexity have not been solved in

batch scheduling literature.

3.2.2 Bin Packing

Bin packing is one of the most famous combinatorial optimization problems and solution techniques

to its variants and applications have been studied for decades [68]. Many surveys have been published

throughout the years [84, 28, 32], most recently by Delorme et al. [40]. The basic, one-stage bin packing

problem (BPP) is defined as follows: we are given a set of j ∈ J items with non-identical sizes and an

unlimited number of identical bins that each have a capacity c; the objective is to pack all j ∈ J items

into bins such that the sum of sizes of items in each bin does not exceed the bin capacity and the number

of bins used is minimized.

Next, we present a basic MIP model of the BPP. Let yi ∈ {0, 1} be a set of binary variables where

yi = 1 if bin i ∈ I is used in the solution and 0 otherwise. Let xi,j ∈ {0, 1} be a second set of binary

variables where xi,j = 1 if item j is packed into bin i and 0 otherwise. Lastly, we define wj to be the

size of an item j.

min
∑
i∈I

yi (3.1)

s.t.
∑
i∈I

wjxi,j ≤ cyi ∀i ∈ I (3.2)∑
i∈I

xi,j = 1 ∀j ∈ J (3.3)

yi ∈ {0, 1} ∀i ∈ I; xi,j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J

Constraint (3.2) enforces capacity constraints on each bin and constraint (3.3) makes sure each item

is assigned to exactly one bin.

Variants on the BPP include multi-dimensional bin packing [84], bin packing with cardinality con-

straints instead of capacity constraints [75], bin covering [5], etc. Table 3.2 presents a selection of papers

in literature that fall within popular bin packing categories.

Martello and Toth [92] presented the most powerful branch-and-bound algorithm for the BPP, called

MTP. However, branch-and-price subsequently became the most popular exact algorithm for solving the
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Table 3.2: Categorization of bin packing problems.

Problem Characteristic Existing Literature

One-Dimensional [92, 52, 106, 112, 24]
Cardinality-Constrained [69, 75, 24]

Multi-Dimensional [16, 84, 91, 44, 85]

BPP. The literature on branch-and-price for bin packing is large and a full summary is beyond our scope;

some important papers include Belov and Scheithauer’s branch-and-price algorithm for the BPP and the

two-dimensional capacity-constrained bin packing problem [16], Desaulniers et al.’s generic framework

for cutting planes in branch-and-price [41], and Ben Amor and Valerio de Carvalho’s survey on column

generation [17]. Krause et al. [75] analyzed several approximation algorithms for the one-dimensional

cardinality-constrained bin packing problem and found them to all have an asymptotic worst-case per-

formance ratio of 2. Kellerer and Pferschy [69] built on the work by Krause et al. and presented a new

heuristic with an asymptotic worst-case bound of 3/2. Brandao and Pedroso [24] presented an arc flow

formulation capable of being applied to the BPP and cardinality-constrained bin packing problems.

Two-dimensional bin packing is a well-studied variant. Here we are given a set of j ∈ J items that

now have a width wj and a height hj . Our set of bins i ∈ I also has a width W and a height H. The

objective is the same as the BPP, but we now have two dimensions of capacity constraints. Lodi et al.

[84] presented a survey on exact and heuristic methods to solve the two-dimensional bin packing problem.

Much of the work categorized by Lodi et al. are either exact algorithms, such as branch-and-bound, or

approximation algorithms, such as constructive heuristics or metaheuristics. Some MIP models have also

been developed; the first one was presented by Gilmore and Gomory [48] and uses a column generation

approach based on enumerating all the possible packing patterns of items in a single bin. The other

type of multi-stage bin packing, the three-dimensional bin packing problem, has also been solved using

branch-and-bound [91], local search [44], and numerous other approaches.

A special case of the two-dimensional bin packing problem occurs when items need to be packed “by

levels.” A level is formed by dividing the bin into horizontal strips and items packed within each strip

are only constrained by their widths. This special case is important to this thesis as it can be projected

onto the hierarchical batching of the CMP. Lodi et al. [85] presented a MIP model with a polynomial

number of variables and constraints for the two-dimensional level bin packing problem. Without loss of

generality, they assumed that:

1. The leftmost item packed in each level is the tallest of all items in the level.

2. The bottommost level packed in each bin is the tallest of all levels in the bin.

3. Items are sorted by height in descending order.

A level is then defined as being initialized by the lowest-indexed, and thus tallest, item assigned to the

level, and a bin is initialized by the lowest-indexed, and thus tallest, level assigned to the bin. There are

four sets of decision variables: two sets associated with packing items into levels and two sets associated
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with packing levels into bins.

yi =

{
1 if item i initializes level i

0 otherwise
∀i ∈ I (3.4)

xi,j =

{
1 if item j initializes level i

0 otherwise
j > i ∀i ∈ {0, ..., |I| − 1} (3.5)

qk =

{
1 if level k initializes bin k

0 otherwise
∀k ∈ K (3.6)

zk,i =

{
1 if level i is allocated to bin k

0 otherwise
i > k, ∀k ∈ {0, ..., |K| − 1} (3.7)

The MIP model is defined as follows.

min
∑
k∈K

qk (3.8)

s.t.

j−1∑
i=1

xi,j + yj = 1 ∀j ∈ J (3.9)

|I|∑
j=i+1

wjxi,j ≤ (W − wi)yi ∀i ∈ {0, ..., |I| − 1} (3.10)

i−1∑
k=1

zk,i + qi = yi ∀i ∈ I (3.11)

|K|∑
i=k+1

hizk,i ≤ (H − hk)qk ∀k ∈ {0, ..., |K| − 1} (3.12)

yi ∈ {0, 1} ∀i ∈ I; xi,j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J ; qk ∈ {0, 1} ∀k ∈ K

zk,i ∈ {0, 1} ∀k ∈ K, ∀i ∈ I

Constraint (3.9) makes sure each item is packed once, and either initializes a level or gets packed into

an already initialized level. Constraint (3.10) imposes the width constraint on each level. Constraint

(3.11) makes sure each used level is packed once, and either initializes a bin or gets packed into an

already initialized bin. Constraint (3.12) imposes the height constraint on each level.

Lodi et al. [85] prove a number of lower bounds and provide constraints for several variants on the two-

dimensional level bin packing problems. Puchinger and Raidl [105] improved the MIP models developed

by Lodi et al. and extended the model to fit the three-dimensional case. More recent work on higher

dimensional bin packing problems have focused on approximation algorithms [29]; some approaches using

machine learning have also been proposed in the last few years [89].

3.2.3 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) consists of scheduling a set of activities

j ∈ J that have precedence and resource utilization constraints [25]. We have a set of renewable re-

sources r ∈ R and each resource has a maximum capacity Kr. Activity j has a set of preceding activities
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Resource Constrained 
Project Scheduling

Preemptive Scheduling

Activity Characteristics

Time-Varying Requests

Setup Times

Resource Characteristics

Renewable/Cumulative

Partially Renewable

Time-Varying Capacities

Nonrenewable

Preemptive activities can be 
interrupted in the middle of 

processing

An activity may need 
some resources to be 
set up before it can 

be processed

An activity’s required resource 
usage changes over its 

processing time

A resource has a fixed capacity 
that never changes despite how 

many activities have used it

A resource has an initial capacity 
that gets used up with every 

scheduled activity

A resource’s capacity changes 
over time

A resource may change from 
renewable to nonrenewable 

depending on the time period

Figure 3.1: Characteristics of popular variants to the RCPSP.

Table 3.3: Solution techniques for the RCPSP.

Solution Technique Existing Literature

Integer Programming [104, 96]
Constraint Programming [9, 57, 82]
Other Exact Approaches [19]

Heuristics [14, 70, 118, 21, 39]
Metaheuristics [55, 4, 45, 42]

Pj and takes up kj,r units of resource r while being processed.

Several survey papers exist on project scheduling, the most recent one being a review on the variants

and extensions of the RCPSP by Hartmann and Briskorn [56]. Pritsker et al. [104] presented the first

mathematical model to solve the RCPSP using linear programming (LP). More recently, hybrid exact

models have shown promising results. Berthold et al. [19] hybridized LP, CP, and satisfiability testing

(SAT) into a single branch-and-bound algorithm. The problem is modelled using CP and the search

process is enhanced with LP relaxation bounds and conflict analysis. CP is naturally suited to mod-

elling the RCPSP due to the availability of interval variables and the cumulative global constraint [9].

However, the most common approach to solve the RCPSP is to use one of the two best known heuristics

for project scheduling: the serial scheduling scheme, proposed by Kelley [70] and the parallel scheduling

scheme, proposed by Brooks and also termed the “Brooks algorithm” [14]. Figure 3.1 shows several

popular variants on the RCPSP and Table 3.3 presents existing literature for the RCPSP categorized

by solution technique.

The serial method [70] consists of |J | stages where, in each stage, one activity is selected and

scheduled. We maintain two disjoint sets of activities through the stages: the scheduled set Sn, which
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contains all activities scheduled so far that make up the partial schedule at stage n, and the decision

set Dn, which contains activities that have all their predecessors in the scheduled set. At stage n, an

activity is selected from Dn using some priority rule and scheduled at its earliest possible time then

moved to Sn. Any activity not in either activity set that now has fulfilled precedence is then added to

Dn. Algorithm 1 formally describes the serial scheduling scheme. Let Kr,t be the leftover capacity of

renewable resource r in period t, At be the set of activities being processed in period t ∈ T , and FTj be

the finish time of activity j. Kr,t and Dn are defined as follows:

Kr,t = Kr −
∑
j∈At

kj,r (3.13)

Dn = {j | j /∈ Sn,Pj ⊆ Sn} (3.14)

Algorithm 1: Serial Scheduling Scheme

Result: Feasible schedule using the serial scheduling scheme
n← 1;
Sn ← ∅;
while |Sn| < J do

update Dn and Kr,t∀t ∈ T ∀r ∈ R;
j∗ ← selected activity using some priority rule;
FTj∗ = min{t | t > max{FTi | i ∈ Pj∗}+ dj∗ , kj∗,r ≤ Kr,τ , τ ∈ {t− dj∗ + 1, ..., t}, r ∈ R};
Sn+1 ← Sn ∪ {j∗};
n← n+ 1;

end

The parallel method [14] also consists of at most |J | stages. Each stage n is associated with a

schedule time tn where tm ≤ tn for all stages m < n. The set of scheduled activities is split into two

subsets. The first, called the complete set Cn contains any activity that was scheduled and has completed

processing before tn. The second, called the active set An, contains any activity that was scheduled but

is still being processed at tn. The set of decision activities, Dn now holds unscheduled activities that

are available for scheduling with respect to precedence and resource capacity constraints. tn is equal to

the earliest completion time of activities in the active set of the previous stage. Algorithm 2 formally

describes the parallel scheduling scheme. In each stage n, we update tn and all activity sets. Then,

activities in Dn are chosen using some priority rule and scheduled to start at tn one by one until Dn is

empty. Dn is thus redefined as follows:

Dn = {j | j /∈ {Sn ∪ An},Pj ⊆ Cn, kj,r ≤ πKr∀r ∈ R} (3.15)

Many other heuristic methods that build on the serial and parallel scheduling schemes have also

been developed. These heuristics range from metaheuristics such as genetic algorithms [55], tabu search

[4], variable neighbourhood search [45], and scatter search [42] to multi-pass methods where multiple

schedules are generated using priority rules [118, 21, 39]. According to a survey of heuristic solution

techniques for the RCPSP conducted by Kolisch and Hartmann [72], the four best heuristics are all

variations of genetic algorithms.
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Algorithm 2: Parallel Scheduling Scheme

Result: Feasible schedule using the parallel scheduling scheme
n← 1;
tn ← 0;
An ← ∅;
Cn ← ∅;
while |An ∪ Cn| < |J | do

update tn, An, Cn, Dn, and πKrforallr ∈ R;
while Dn 6= ∅ do

j∗ ← selected activity using some priority rule;
FTj∗ ← tn + dj∗ ;
An ← An ∪ {j∗};

end
n← n+ 1;

end

3.2.4 Constrained Clustering

Clustering is the task of dividing a set of data points into clusters such that points in the same cluster

are more similar to each other than to points not in that cluster [127]. Clusters can be formed using

several approaches. Xu and Tian [126] give a comprehensive survey of clustering algorithms and how

they may be classified.

One recently defined variant on clustering is known as constrained clustering [11], or semi-supervised

clustering. Traditionally, we do not know anything about relationships between points or how clusters

should be formed in unsupervised clustering. However, there are many applications where we know that,

for example, certain points should not be in the same cluster or clusters should be close to a certain size.

This information can be used to guide the clustering algorithm in quickly finding better clusters

that adhere to the known constraints. The most common algorithm for unsupervised clustering is the

k-means algorithm [86] and the most common algorithms for constrained clustering are modifications of

the k-means algorithm. The first modified k-means clustering algorithm, denoted as COP-KMEANS,

for constrained clustering was proposed by Wagstaff et al. [124]. Table 3.4 presents existing literature in

constrained clustering categorized by types of constraint and Algorithm 3 formally defines the k-means

algorithm.

Algorithm 3: K-means Algorithm

Result: Clusters of points using k-means
P is the set of points to be clustered;
k ← initial number of clusters;
C ← randomly select k points from P to act as cluster centroids;
while clusters not converged and iterations ≤ max do

compute the sum of squared distance between data points and all cluster centroids;
assign data points to their closest cluster based on the previously calculated distances;
update cluster centroids to be the average location of all data points assigned to the cluster;

end
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Table 3.4: Types of constraints in constrained clustering.

Type of Constraint Existing Literature

Pairwise Constraints [124, 12, 129, 38, 79]
Cluster Size Constraints [115, 8, 131, 130]

Cluster Cardinality Constraints [109, 128]

Most of the work on constrained clustering has been focused on integrating pairwise constraints

between points [11]: a Must-Link constraint says that two points must be in the same cluster and a

Cannot-Link constraint requires those two points to be in different clusters. Two popular modified k-

means algorithms that consider pairwise constraints are Partial Constrained k-means (PCKmeans) [12]

and Partial Closure-Based Constrained k-means (PCCKmeans) [129]. Other approaches for pairwise

constraints include CP [38] and spectral regularization [79].

Several authors have recently introduced constraints on cluster size and distribution where the size of

a cluster is the number of points in the cluster and the distribution refers to the set of all cluster sizes. It

is beneficial for many applications to be able to find balanced clusters, where clusters have very similar

sizes. Various approaches to tackling the size constraints have been proposed, such as graph partitioning

[115], using frequency sensitive competitive learning methods [8], and MIP [131]. Zhang et al. [130]

presented a modified k-means algorithm, denoted as KmeansS, to consider cluster size constraints and,

to the best of our knowledge, also presented the first algorithm, PCS, that integrated pairwise and size

constraints. The PCS algorithm extends the PCKmeans algorithm to include size constraints.

3.2.5 Summary of Related Problems

We have reviewed the available literature in several disjoint fields of study. Each of these fields can be

connected to the problem of scheduling in composites manufacturing in some aspect, implying that the

solution techniques presented in this chapter may be combined and extended to fit the constraints of

composites manufacturing. Figure 3.2 provides an overview of the connections between fields and the

CMP.

At the top level in Figure 3.2, we can see that the batching and scheduling components of the CMP

together can be constructed as a batch scheduling problem. Referring to Table 3.1, the CMP would

be categorized as a four-stage hybrid flowshop where tool preparation, layup, and demould fall under

the family batching model and curing falls under the batching machines model. However, we can also

separate the CMP into individual batching and scheduling problems. The batching subproblem can be

mapped to bin packing and constrained clustering. Referring to Table 3.2, batching in the CMP would

be categorized as a two-dimensional level bin packing problems with both capacity (autoclave sizes) and

cardinality constraints (tool quantities). Table 3.4 shows that batching in the CMP would be a con-

strained clustering problem with both size and cardinality constraints. The scheduling subproblem can

be mapped to a resource-constrained project scheduling problem. Referring to Figure 3.1, scheduling in

the CMP would have renewable resources and time-varying capacities.
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Scheduling in Composites 
Manufacturing

Batching and Scheduling

Batching Scheduling

Constrained 
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Project Scheduling

Batch 
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batching subproblem

RCPS problems can be 
transformed into 

scheduling subproblem

Batch Scheduling problems 
can be transformed to fit 

composites manufacturing

Figure 3.2: Overview of how different fields connect to the CMP.

Exact methods such as MIP, CP, and exact algorithms as well as heuristic methods of all varieties

have been developed for all of the problems referenced in this chapter. However, to the best of our

knowledge, no method utilizing CP or decomposition has been developed for complex batch scheduling

problems such as the CMP. In addition, it appears that there have not been any attempts at combining

techniques from batch scheduling, bin packing, project scheduling, and clustering in one piece of work.

3.3 Solution Technique Preliminaries

Next, we present some solution approaches and concepts required to understand the models and al-

gorithms discussed in the majority of this thesis. Scheduling is the study of how to allocate scarce

resources to jobs over time. The CMP can be considered a scheduling problem where jobs are competing

for tool, machine, and labour resources within a constrained structure defined by resource availability

and batching requirements. Thus, we will also discuss common methods for applying each approach to

scheduling problems.
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3.3.1 Mixed Integer Programming

One of the most popular approaches to solving discrete optimization problems is using Mixed Integer

Programming (MIP). A MIP model in canonical form is expressed as [99]:

max cx+ c′y

s.t. Ax+ Cy ≤ b

x ∈ Zn

Where b is a vector, A and C are matrices, x is a vector of size n representing the integer decision

variables, y is a vector of size m representing the continuous decision variables, and cx + c′y is the

objective function. If the set of integer variables x is empty, then the model can be classified as a Linear

Programming model, and if the set of continuous variables y is empty, then the model can be classified as

a Integer Programming model. The most popular method of solving MIP models is branch-and-bound

[77], an exact tree search algorithm. Commercial solvers such as CPLEX [66], Gurobi [53], and Google

OR-tools [100] implement their own versions of branch-and-bound.

There are two types of MIP models commonly used to solve scheduling problems: disjunctive models

and time-indexed models. A Disjunctive model [88, 81] typically involves two sets of decision variables.

First, {sj | j ∈ J , sj ≥ 0} are continuous variables that represent the start times of jobs in the set of

all jobs J . Second, {zj,k | j, k ∈ J , zj,k ∈ {0, 1}} are binary integer variables (i.e. variables that can

only take values from {0, 1}) that represent the decision to schedule job j before job k. zj,k = 1 if job

j completes before job k starts and zj,k = 0 otherwise. A disjunctive MIP model uses the following

constraints to ensure jobs do not overlap on a machine:

sj ≥ sk + pk −M × zj,k ∀j, k ∈ J , j ≤ k (3.16)

sk ≥ sj + pj −M × (1− zj,k) ∀j, k ∈ J , j ≤ k (3.17)

Where pj (pk) is the processing time of job j (k) and M is a sufficiently large number. Constraint

(3.16) ensures that the start time of j is after the end time of k if zj,k = 0. Constraint (3.17) ensures

that the start time of k is after the end time of j if zj,k = 1. Constraints (3.16) and (3.17) are also

known as big-M constraints.

The second type of MIP model commonly used for scheduling is the Time-Indexed model [23, 73].

The disjunctive model focused on deciding when to schedule jobs based on their order, i.e. job j comes

before job k or vice versa. The time-indexed model decides when the schedule jobs based on available

time slots in the schedule. Here, we have a set of binary variables {xj,t | j ∈ J , t ∈ T } where xj,t = 1

if job j is scheduled to start at time t and xj,t = 0 otherwise. The set T contains the discretized time

periods {0, 1, ..., T} that make up the fixed scheduling horizon. A time-indexed MIP model uses the

following constraints to ensure jobs do not overlap on a machine:



Chapter 3. Literature Review 27

T−pj+1∑
t=0

xj,t = 1 j ∈ J (3.18)

∑
j∈J

t∑
t′=t−pj+1

xj,t′ ≤ 1 ∀t ∈ T (3.19)

Where pj is the processing time of job j. Constraint (3.18) makes sure each job is scheduled to start

once. Constraint (3.19) makes sure that at any time, at most one task is scheduled.

One drawback to using MIP for scheduling problems is that MIP models usually have poor scalability

and are ill-suited to representing more complex scheduling constraints, such as multi-capacity resources

or multi-stage shop problems. We are limited by the restrictions of MIP variables and constraints.

3.3.2 Constraint Programming

Constraint Programming (CP) is an approach developed by the artificial intelligence community and

established as a successful paradigm for solving hard combinatorial optimization problems including

scheduling problems [108, 9]. To use CP as a solution technique, problems with objective functions are

first defined as constraint optimization problems (COP) [9]. Formally, a COP consists of a four-tuple

(X , D, C, Z) where X = {x1, x2, ..., xn} is a set of n decision variables, D = {D1, D2, ..., Dn} are the

domains of the variables in X , C = {c1, c2, ..., cm} is a set of m constraints acting on variables in X ,

and Z is the objective function to be minimized or maximized. A solution to the COP is a complete

assignment of values to variables in X that satisfies all constraints in C and evaluates Z to its global

minimum or maximum value.

Like MIP, a COP can be solved using branch-and-bound [58]. One of the central ideas of the CP

methodology is applying constraint propagation algorithms at each node in the branch-and-bound search

tree to perform domain reduction and enforce consistency [62]. Strong propagation algorithms can sig-

nificantly reduce the search tree size by pruning large subtrees.

A constraint system C can be consistent in several aspects. Arc consistency is the most basic form

of consistency; the variables xi and xj are considered to be arc-consistent with a binary constraint

Ck(xi, xj) ∈ C if, for every value a in Di (the domain of xi), there exists a value b in Dj (the domain of

xj) such that (a, b) satisfies Ck(xi, xj), and vice versa [108]. If two variables are not arc-consistent with

some constraint, we can remove values that do not satisfy the above condition from the domains of those

variables until they either become arc-consistent or we prove the problem is infeasible by removing all

values from one of the domains. Figure 3.3 shows how two variables can be pruned to be arc-consistent

with a binary constraint. A constraint propagation algorithm can make the entire COP arc-consistent

by repeating this process for all variable pairs until we cannot prune values from any more domains.

Basic arc consistency for binary constraints can be extended to all constraints, known as generalized

arc-consistency [108].

More specialized constraint propagation algorithms, known as global constraints [107], have also

been developed throughout the years. Such algorithms focus on exploiting certain problem structures
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Figure 3.3: Enforcing arc consistency between two variables and their binary constraint.

that commonly appear in combinatorial optimization problems. For example, the allDifferent global

constraint enforces that each variable in a given set {x1, x2, ..., xm} must take on a distinct value by

enforcing generalized arc-consistency over the given variables and their constraints.

After consistency is maintained at a node, we can heuristically give a value to an unassigned variable

and continue to the next node in the search process where we can apply propagation again. However, if

a variable ends up with an empty domain, the current node is infeasible and can be pruned, along with

its subtree.

CP has been successful in solving many different types of scheduling problems [10]. An interval

variable represents an interval of time during which a job is processed. Formally, an interval variable a

is a variable whose domain dom(a) is a subset of {⊥}∪{[s, e) | s, e ∈ Z, s ≤ e} [67]. An interval variable

is absent when a = ⊥ and the variable is present when a = [s, e). The availability of interval variables

in many modern CP solvers allows us to easily model complex scheduling problems [10]. We can enforce

constraints on start and end times of interval variables without having to create the complex auxiliary

variables necessary when modelling with MIP.

In addition, there are many global constraints that can be used to model complex scheduling be-

haviours. For example, cumulative constraints, introduced by Aggoun and Beldiceanu [1], can be used

to model multi-capacity resources and are based on applying inequality constraints to a cumulative

function expression. A cumulative function expression F is the algebraic sum of multiple elemen-

tary function expressions where each elementary function expression represents either a consumption

or restoration of resources by an interval variable [111]. Figure 3.4 shows examples of elementary func-

tion expressions and how they can be summed together. The alwaysIn global constraint, written as

alwaysIn(F, u, v, hmin, hmax) is a cumulative constraint that takes a cumulative function expression F

and makes sure any value of F must always fall within the range [hmin, hmax] anywhere on the time in-

terval defined by [u, v). There are many other global constraints that can be applied to interval variables

[13, 123], making CP an attractive choice for solving scheduling problems.
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Figure 3.4: Elementary function expressions: pulse, stepAtStart, and stepAtEnd and an example of
how the cumulative constraint alwaysIn is used to constrain resource usage over time. Interval variables
a, b, and c use the same resource, which has a capacity of 3, and are scheduled from {0, T}.

3.3.3 Decomposition Techniques

Techniques that decompose a large problem into subproblems have been studied for years across many

fields of study [121]. We can categorize decomposition techniques as general or problem-specific. In

integer programming, Dantzig and Wolfe presented the famous Dantzig-Wolfe decomposition technique

[37] and Benders followed with the classical Benders decomposition technique [18]. The third well-known

decomposition algorithm in integer programming is Lagrangian decomposition, proposed by Guignard

and Kim [51]. These decomposition techniques are general and can be applied to any problem with a

suitable structure as defined in their respective problem definitions. In contrast, Potts and Wassenhove

[102] presented one of the first problem-specific decomposition algorithms for job shop scheduling where

an algorithm is used to separate the problem into subproblems and those subproblems are then solved

using dynamic programming. Ovacik and Uzsoy [98] compiled a review on problem-specific decomposi-

tion methods designed for job shop scheduling problems.

Decomposition techniques have also been developed specifically for the application of the batching

machines model. Sung et al. [116] proposed a heuristic decomposition algorithm to solve a flowshop

consisting of n batching machines in series. The heuristic decomposes the problem into two-stage flow-

shop subproblems that are solved using dynamic programming.

Logic-based Benders decomposition (LBBD) was introduced and formally developed by Hooker [61].

This technique is unique in that, like classical Benders decomposition, the format is general and can be

applied to any problem with the correct structure. However, the structure criteria is much looser for

LBBD and the division of subproblems is reliant on exploiting problem-specific characteristics. Next,

we will formally define the LBBD technique based on Hooker [61].



Chapter 3. Literature Review 30

Let us consider a general optimization problem:

min{f(x) | C(x), x ∈ D} (3.20)

where C(x) is the constraint set containing variables x ∈ X and D is the domain of x. We define the

inference dual as another optimization problem with the objective of finding the tightest lower bound v

on the primal objective:

max

{
v | C(x)

P

` (f(x) ≥ v), v ∈ R, P ∈ P
}

(3.21)

where C(x)
P

` (f(x) ≥ v) says that proof P implies the expression f(x) ≥ v from constraint set C(x).

Any solution v to the inference dual is therefore a lower bound on the primal objective. We now define

the LBBD technique as applied to a problem of the form:

min{f(x, y) | C(x, y), C
′
(x), x ∈ D§, y ∈ D†} (3.22)

where the set C
′
(x) is the subset of constraints that only contain the variable x. If we fix the variable

x to be x, we end up with a subproblem of the original problem:

min{f(x, y) | C(x, y), y ∈ D†} (3.23)

We define the inference dual of the subproblem as:

max

{
v | C(x, y)

P

` (f(x, y) ≥ v), v ∈ R, P ∈ P
}

(3.24)

If we assume v∗ is the optimal solution to the subproblem and proof P ∗ implies the bound f(x, y) ≥
v∗, then this same proof may also imply a bound for other fixed values of x. Thus, a Benders cut is

defined as z ≥ Bx(x) where z is the primal objective and Bx(x) = v∗. A Benders cut is added to the

master problem at each iteration of the procedure; the master problem at iteration k is thus defined as:

zk = min{z | C
′
(x), z ≥ Bxi(x), i ∈ {1, ..., k}, x ∈ D§} (3.25)

where xi is the solution in iteration i to the master problem. The LBBD procedure terminates when the

optimal value of the master problem and the optimal value of any previously solved subproblem are equal.

LBBD has been applied to many scheduling problems [63, 31]. Hooker [63] formulated LBBD ap-

proaches for assigning then scheduling a set of tasks in a set of facilities with three different objectives:

minimizing cost, minimizing makespan, and minimizing total tardiness. The master problem consists

of assigning tasks to facilities and then the remaining constraints decompose into several subproblems,

each one responsible of scheduling tasks in a facility. As aforementioned, LBBD is reliant on exploiting

problem-specific characteristics, and we see this when each of the three objectives necessitates the de-

velopment of unique Benders cuts and proofs.

Emde et al. [43] applied LBBD to the single batching machine problem with objective of minimizing

maximal lateness. The master problem is formulated using MIP and finds an assignment of jobs to
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batches without any scheduling considerations. The subproblem finds the minimum maximal lateness

given the fixed assignment of jobs to batches from the master and is solved using an algorithm. To the

best of our knowledge, there do not appear to be any other attempts at using LBBD to solve batch

scheduling problems.

3.3.4 Heuristics

A common drawback of exact solution approaches like MIP and CP is scalability. The methodical search

process of branch-and-bound takes longer to execute as problem instance sizes grow. Ultimately, many

MIP and CP models are unable to find good solutions within a reasonable time limit when faced with

real-world instances [64]. This drawback has motivated the development of heuristic techniques that

do not provide any optimality guarantees but are often much faster than exact models. Most heuristic

algorithms are ad-hoc approaches that look to exploit specific structures inherent to the problems they

are solving [27]. Metaheuristics [49] make up a class of more general heuristic methods that can be

applied to many different problems. Popular metaheuristics include simulated annealing, tabu search,

and genetic algorithms.

One of the most widely used metaheuristics is a Genetic Algorithm. Introduced by Holland [60], ge-

netic algorithms are inspired by the theory of evolution and use biologically inspired operations such as

reproduction, mutation, and survival of the fittest to generate high-quality solutions from an initial pool

of lower-quality solutions. For the remainder of this section, we will provide a more in-depth explanation

on the basics of genetic algorithms to provide the necessary background for understanding a solution

approach introduced in Chapter 6.

There are five phases in a basic genetic algorithm:

1. Initialize population

2. Define and apply a fitness function

3. Select reproducing pairs

4. Reproduce by crossover

5. Mutate reproduced children

The first step is to initialize the population with a set of individuals, where each individual represents

a unique solution to the problem being solved. An individual is characterized by a set of parameters

known as genes that corresponds to the decision variables of the problem. For example, if a problem

has a set of binary decision variables {x ∈ {x0, x1, x2, x3} | x ∈ {0, 1}}, then a gene would correspond

to one of {x0, x1, x2, x3} and each gene can only take on values from {0, 1}. The set of genes belonging

to an individual is also known as a chromosome.

Next, a fitness function needs to be defined that takes an individual’s chromosome as the input and

gives the individual’s “fitness” as the output. A fitness function is analogous to the objective function

of a MIP or CP model. Fitter individuals have a higher probability of being selected in phase 3 to re-

produce. Each reproducing pair, known as parents, produce two offspring by exchanging genes through
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Figure 3.6: Example of genetic mutation of a chromosome with binary encoding.

a crossover operation. The most basic crossover operation is one-point crossover, shown in Figure 3.5.

Offspring produced in phase 4 are subject to mutation of their genes with some probability. Figure 3.6

shows an example of a mutation in a chromozome. Mutation occurs to prevent premature convergence

and provide slight perturbations that maintain genetic diversity. Once all reproducing pairs produce

offspring, the same fitness function as defined in phase 2 is applied to new individuals in the population.

Then, a certain number of the least fit individuals are removed and phases 3 to 5 are repeated for the

new population. A genetic algorithm terminates if the population converges (i.e. offspring are no longer

significantly different from the previous generation).

A binary encoding of genes, as shown in the preceding example, is often the best choice when

developing the genetic representation. However, for scheduling problems, it is not clear in advance

which encoding strategy is best [125]. A popular encoding strategy is an operation-based representation,

where the a gene (j,m) represents the order which job j is processed on machine m. For example if

gene (1, 5) has an index of 3 in its chromosome, its corresponding solution would have job 1 scheduled in

third place after two other jobs on machine 5. Werner [125] provides a comprehensive survey of genetic
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algorithms and their applications to scheduling problems.

3.4 Summary

In this chapter, we presented background on problems related to the composites manufacturing prob-

lem (CMP) and common methodologies for solving combinatorial problems. First, we introduced re-

lated problems from the areas of batch scheduling, bin packing, constrained clustering, and resource-

constrained project scheduling. All four areas of research can be mapped to the CMP or a subproblem

of the CMP. The foundations of Mixed Integer Programming (MIP) and Constraint Programming (CP)

were explained, with extra commentary on how MIP and CP are commonly used to solve scheduling

problems. We also presented an overview of decomposition approaches, focusing on Logic-based Benders

Decomposition, and closed the chapter with a presentation of heuristic methods, focusing on genetic

algorithms.



Chapter 4

Solving an Abstraction of the

Composites Manufacturing Problem

This chapter formally defines an abstraction of the Composites Manufacturing Problem (CMP) and

presents five solution techniques: Mixed Integer Programming (MIP), Constraint Programming (CP),

two variations of Logic-based Benders Decomposition (LBBD), and an Earliest Due Date heuristic

(EDD). We show the full models/algorithms for each solution technique, then close the chapter with

numerical results and an analysis and discussion of those results.

4.1 Abstracted Problem Definition

The full CMP is a complex and multi-layered problem that is difficult to model, thus, it is worthwhile

to define an abstracted problem to test different solution approaches. This abstracted problem will

include the key complexities of the problem, namely the bin packing and hybrid flow shop scheduling

aspects of the CMP, and will only focus on the dominating stages of the CMP (layup and curing). We

designate the abstracted problem to be the Two-Stage Bin Packing and Hybrid Flowshop Scheduling

Problem (2BPHFSP).

The 2BPHFSP is described as follows. We are given a set of jobs J , a set of empty tool batches

B1, and a set of empty autoclave batches B2. There exists three sets of resources: an unlimited set of

tools T , a set of unary-capacity stage 1 machinesM1, and a set of unary-capacity stage 2 machinesM2.

Each job j ∈J is associated with a one-dimensional size parameter sj , a due date dj , and a processing

time pj , and each tool t ∈ T is associated with a one-dimensional size parameter vt. Each job must be

assigned to a tool batch, and each tool batch must be assigned to a specific tool such that the sum of

job sizes in that tool batch is less than or equal to the size of the assigned tool. The size of a tool batch

k ∈B1 is the size of its assigned tool. Each tool batch must be aggregated into autoclave batches such

that the sum of tool sizes is less than or equal to the autoclave capacity.

The upper bound on the number of tool batches and autoclave batches is the number of jobs, where

each job is assigned to its own tool batch and each tool batch is assigned to its own autoclave batch.

Thus, we create |J | empty batches in each of B1 and B2. However, we almost always find solutions that

34
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Figure 4.1: Job flow in the 2BPHFSP.

use fewer batches, so we denote any non-empty batch as open.

Once packing is completed, we need to schedule each open tool batch on a stage 1 machine and each

open autoclave batch on a stage 2 machine. As defined for the CMP, the processing time of a tool batch

is the sum of processing times of its jobs. The processing time of an autoclave batch is simplified from

the CMP to be uniform across all batches, thus ignoring cycle types. There are precedence constraints

between the end of tool batches and the start of their assigned autoclave batches. Figure 4.1 shows the

flow of a job in the 2BPHFSP.

The objective of 2BPHFSP is to minimize a weighted sum of the number of open autoclave batches

and job tardiness. We minimize the number of open autoclave batches to decrease autoclave operational

costs, and we minimize job tardiness to ensure parts are delivered to downstream machines on time.

Although we are relaxing many aspects of the CMP, such as the existence of slots on tools and the limits

on resources (i.e. tools, labour, etc.), the 2BPHFSP encompasses the major ideas from items 1 and 3

from the key complexities presented in Section 2.1.1.

4.2 Solution Approaches

In this section, we present the mathematical models and pseudocode for our five approaches.

4.2.1 Mixed Integer Programming

First, we present the monolithic mixed integer programming formulation, designated as MIP. We chose

to pursue a time-indexed formulation [23] due to the multi-capacity nature of the two stages. There

are two sets of binary decision variables that are related to bin packing and two sets of binary decision

variables that are related to flow shop scheduling. Model variables and parameters are shown in Table

4.1.
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Table 4.1: MIP parameters and variables.

Parameter Description

j ∈ J Set of jobs
k ∈ B1 Set of tool batches
i ∈ B2 Set of autoclave batches
t ∈ T Set of tools
n ∈ H Set of time points
sj Size of job j
pj Processing time of job j
dj Due date of job j
vt Size of tool t
V 1 Maximum capacity of tool batches
V 2 Maximum capacity of autoclave batches
P 2 Processing time of autoclave batches
C1 Number of stage 1 machines
C2 Number of stage 2 machines
αj Weighting for tardiness of job j in the objective function
β Weighting for an open autoclave batch in the objective function

Variable Description

xj,k Binary variable, 1 if job j is in tool batch k, 0 otherwise
yk,t,i Binary variable, 1 if tool batch k in on tool t and in autoclave batch i, 0 otherwise
γk,n Binary variable, equals 1 if tool batch k starts at time n
σi,n Binary variable, equals 1 if autoclave batch i starts at time n
ak,n Binary variable, equals 1 if tool batch k ends at time n
bi,n Binary variable, equals 1 if autoclave batch i ends at time n
τk Size of tool assigned to tool batch k
fj Final end time of job j
lj Tardiness of job j
ok Indicator if tool batch k is open
qi Indicator if autoclave batch i is open
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The bin packing variables consists of two sets of binary decision variables. The first set contains

two-indexed variables that assign of jobs to tool batches, xj,k. The second set contains three-indexed

variables that assign tool batches to tools as well as autoclave batches, yk,t,i. This separation of stages is

inspired by the multi-stage bin packing model presented by Puchinger et al. [105] (see Section 3.2.2). In

particular, their model uses indicators to represent if a bin is open. Therefore, we introduce two sets of

binary indicator variables, ok and qi, that equal 1 if tool batch k or autoclave batch i is open, respectively.

The scheduling variables consist of two sets of binary decision variables that determine the start

times of tool and autoclave batches. Each stage has multiple identical unary-stage machines, so we

can represent each stage as a multi-capacity resource. Two sets of binary variables are introduced as

auxiliary variables to indicate the end times of tool and autoclave batches, depending on the start time

and processing time of each batch. To model the multi-capacity nature of each stage in the flow shop

in a time-indexed MIP model (see Section 3.3.1), we must add constraints that limit the total number

of batches processed at any time point to be less than the respective stage’s capacity. These constraints

are written using sums of the binary variables indicating start and end times.

This model will be presented in two sections. The first section will only contain packing constraints

and the second section will only contain scheduling constraints.

min β
∑
i∈B2

qi +
∑
j∈J

αj lj (4.1)

s.t.
∑
k∈B1

xj,k = 1 ∀j ∈ J (4.2)

ok ≥ xj,k ∀j ∈ J ∀k ∈ B1 (4.3)

ok ≤
∑
j∈J

xj,k ∀k ∈ B1 (4.4)

∑
t∈T

∑
i∈B2

yk,t,i = ok ∀k ∈ B1 (4.5)

qi ≥
∑
t∈T

yk,t,i ∀k ∈ B1 ∀i ∈ B2 (4.6)

qi ≤
∑
k∈B1

∑
t∈T

yk,t,i ∀i ∈ B2 (4.7)

ok ≥ ok+1 ∀k ∈ {0, ..., |B1| − 1} (4.8)

qi ≥ qi+1 ∀i ∈ {0, ..., |B2| − 1} (4.9)

τk =
∑
t∈T

∑
i∈B2

vtyk,t,i ∀k ∈ B1 (4.10)

∑
j∈J

sjxj,k ≤ τk ∀k ∈ B1 (4.11)

∑
t∈T

∑
k∈B1

vtyk,t,i ≤ V 2 ∀i ∈ B2 (4.12)

xj,k ∈ {0, 1} ∀j ∈ J , ∀k ∈ B1; yk,t,i ∈ {0, 1} ∀k ∈ B1, ∀t ∈ T , ∀i ∈ B2

τk ∈ {0, ...V 1} ∀k ∈ B1; ok ∈ {0, 1} ∀k ∈ B1; qi ∈ {0, 1} ∀i ∈ B2
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Constraint (4.2) assigns each job to one tool batch. Constraints (4.3) and (4.4) enforce that the

indicator variable ok is equal to 1 if tool batch k is open, and equal to 0 otherwise. Constraint (4.5) as-

signs each open tool batch to one autoclave batch. Constraints (4.6) and (4.7) enforce that the indicator

variable qi is equal to 1 if autoclave batch i is open, and equal to 0 otherwise. Constraints (4.8) and

(4.9) open tool and autoclave batches in order of index, to reduce symmetry. Constraint (4.10) defines

each tool batch’s size, and Constraint (4.11) makes sure the sum of job sizes in each tool batch is less

than or equal to its size. Constraint (4.12) constrains the sum of tool sizes in each autoclave batch to

be less than the autoclave capacity.

Next, we present the scheduling constraints.∑
n∈H

γk,n = ok ∀k ∈ B1 (4.13)∑
n∈H

ak,n = ok ∀k ∈ B1 (4.14)∑
n∈H

nak,n =
∑
n∈H

nγk,n +
∑
j∈J

pjxj,k ∀k ∈ B1 (4.15)

∑
n∈H

σi,n = qi ∀i ∈ B2 (4.16)∑
n∈H

bi,n = qi ∀i ∈ B2 (4.17)∑
n∈H

nbi,n =
∑
n∈H

nσi,n + P 2 ∀i ∈ B2 (4.18)

∑
n∈H

nσi,n ≥
∑
n∈H

nak,n − |H|

(
1−

∑
t∈T

yk,t,i

)
∀k ∈ B1, ∀i ∈ B2 (4.19)∑

k∈B1

∑
n∗∈I

(γk,n∗ − ak,n∗) ≤ C1 I = {0, ..., n}, ∀n ∈ H (4.20)

∑
i∈B2

∑
n∗∈I

(σi,n∗ − bi,n∗) ≤ C2 I = {0, ..., n}, ∀n ∈ H (4.21)

fj ≥
∑
n∈H

nbi,n − |H|

(
2− xj,k −

∑
t∈T

yk,t,i

)
∀j ∈ J , ∀k ∈ B1, ∀i ∈ B2 (4.22)

lj ≥ fj − dj ∀j ∈ J (4.23)

γk,n ∈ {0, 1} ∀k ∈ B1, ∀n ∈ H; ak,n ∈ {0, 1} ∀k ∈ B1, ∀n ∈ H; σi,n ∈ {0, 1} ∀i ∈ B2, ∀n ∈ H

bi,n ∈ {0, 1} ∀i ∈ B2, ∀n ∈ H; fj ∈ {0, ...|H|} ∀j ∈ J ; lj ∈ {0, ...|H|} ∀j ∈ J

Constraints (4.13) to (4.15) make sure each tool batch starts and ends once, and is processed for

the appropriate length of time. Constraints (4.16) to (4.18) make sure each autoclave batch starts and

ends once, and is processed for the appropriate length of time. Constraint (4.19) says that each tool

batch must finish processing before its associated autoclave batch can start. Constraint (4.19) is a big-M

constraint with M = |H| because the packing decisions determine which batches need to have precedence.

If a tool batch k is packed into an autoclave batch i, then the two constraints need to be enforced for

(k, i). However, the two constraints for all {(k, i∗) | i∗ ∈ B2, i∗ 6= i} should not be enforced. Therefore,

(4.19) needs to be a big-M constraint. Constraints (4.20) and (4.21) enforce that the total number of
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Table 4.2: CP variables.

Variable Description

xj,k Interval variable for job j in tool batch k
yk,i Interval variable for tool batch k in autoclave batch i
γk Interval variable for tool batch k
σi Interval variable for autoclave batch i
tk Tool assigned to tool batch k
τk Size of tool assigned to tool batch k
lj Tardiness of job j

tool batches or autoclave batches being processed at one time is at most the respective stage’s capacity.

Constraint (4.22) defines the final end time, i.e. the time at which its autoclave batch is completed, for

each job. Constraint (4.23) defines job tardiness.

4.2.2 Constraint Programming

Next, we present the monolithic constraint programming formulation, designated as CP. This model

uses two sets of interval decision variables for bin packing and two sets of interval decision variables for

scheduling. Model variables are shown in Table 4.2; see Table 4.1 for model parameters.

The first set of bin packing variables are optional two-indexed interval variables, xj,k. We assign

job j to a tool batch k by forcing one variable from {xj,k | k ∈ B1} to be present for each job j. The

same concept is applied to the second set of bin packing variables, yk,i, where tool batch k is assigned to

autoclave batch i when yk,i is present. We use two sets of single-index interval variables for scheduling

batches on the horizon H, γk for tool batches and σi for autoclave batches. We also define a set of

variables tk that assigns tool batch k to a specific tool so we can calculate the size of k, τk. Figure 4.2

uses an example to illustrate the connections between variables in the monolithic CP model.

Similar to the monolithic MIP model, this model will be presented in two sections. The first section

will focus on packing and the second section will focus on scheduling.
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The interval variables for job 1 in tool batch 1, job 2 in tool batch 1, and 
job 3 in tool batch 2 are present, all other interval variables are absent
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associated jobs, tool batch 3 is empty so the interval variable is absent
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Batch

The interval variable for auto batch 1 synchronizes 
with any associated tool batches, auto batch 2 is 

empty so the interval variable is absent

Figure 4.2: Connections between variables and their meanings in the monolithic CP model.

min β
∑
i∈B2

presenceOf(σi) +
∑
j∈J

αj lj (4.24)

s.t.
∑
k∈B1

presenceOf(xj,k) = 1 ∀j ∈ J (4.25)

∑
i∈B2

presenceOf(yk,i) = presenceOf(γk) ∀k ∈ B1 (4.26)

presenceOf(γk) ≥ presenceOf(γk+1) ∀k ∈ {0, ..., |B1| − 1} (4.27)

presenceOf(σi) ≥ presenceOf(σi+1) ∀i ∈ {0, ..., |B2| − 1} (4.28)

τk = element({vt | t ∈ T }, tk) ∀k ∈ B1 (4.29)∑
j∈J

sj × presenceOf(xj,k) ≤ τk ∀k ∈ B1 (4.30)

∑
k∈B1

τk × presenceOf(yk,i) ≤ V 2 ∀i ∈ B2 (4.31)

tk ∈ {0, ...T } ∀k ∈ B1; τk ∈ {0, ...V 1} ∀k ∈ B1

Constraint (4.25) assigns each job to one tool batch. Constraint (4.26) assigns each open tool batch

to one autoclave batch. Constraints (4.27) and (4.28) enforce that tool and autoclave batches are opened

in order of index, to reduce symmetry. Constraint (4.29) is an element constraint, and picks the tool

size parameter associated with tool tk ∈ T to assign to tool batch k.1 Constraint (4.30) makes sure the

sum of job sizes in each tool batch is less than its tool size. Constraint (4.31) constrains the sum of tool

sizes in each autoclave batch to be less than the autoclave capacity.

1An alternative approach is to create tool batches with predefined tools. However, this approach expands the number
of possible tool batches from |J | to |J ||T |.
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The standard global packing constraint does not allow the size of an item to depend on other deci-

sion variables, and therefore cannot be used for two-stage bin packing. Thus, we choose to use interval

variables for the packing stage to easily connect them with the corresponding scheduling variables via

existing global constraints.

Next, we present the scheduling constraints.

sizeOf(xj,k) = pj ∀j ∈ J ∀k ∈ B1 (4.32)

span (γk, {xj,k | j ∈ J }〉) ∀k ∈ B1 (4.33)

sizeOf(γk) =
∑
j∈J

pj × presenceOf(xj,k) ∀k ∈ B1 (4.34)

sizeOf(yk,i) = P 2 ∀k ∈ B1 ∀i ∈ B2 (4.35)

synchronize(σi, {yk,i | i ∈ B2}) ∀i ∈ B2 (4.36)

alwaysIn

∑
k∈B1

pulse(γk, 1), 0, |H|, 0, C1

 (4.37)

alwaysIn

∑
i∈B2

pulse(σi, 1), 0, |H|, 0, C2

 (4.38)

endBeforeStart(γk, yk,i) ∀k ∈ B1, ∀i ∈ B2 (4.39)

lj ≥ endOf(σi)− dj ∀j ∈ J | j assigned to i (4.40)

lj ∈ {0, ...|H|} ∀j ∈ J

Constraint (4.32) sets the processing time of each job. Constraints (4.33) and (4.34) make sure jobs

in a tool batch are scheduled sequentially without overlapping. The actual sequence of jobs in a tool

batch does not matter because their processing times are not sequence-dependent, and jobs cannot leave

the first stage until the entire tool batch is processed. Thus, a no-overlap constraint is unnecessary.

Constraint (4.35) sets the processing time of each tool batch. Constraint (4.36) makes sure all tool

batches in the same autoclave batch are processed simultaneously. Constraints (4.37) and (4.38) enforce

that the total number of tool batches or autoclave batches being processed at one time is at most the

respective stage’s capacity. Constraint (4.39) says that each tool batch must finish processing before its

associated autoclave batch can begin processing. Constraint (4.40) defines job tardiness.

4.2.3 Logic-based Benders Decomposition

We introduce a three-stage decomposition that separates the 2BPHFSP into a one-stage bin packing

problem, a pattern bin packing problem, and a two-stage hybrid flow shop scheduling problem, which

will be denoted as the m-master problem, the m-subproblem, and the subproblem, respectively. If we

can solve these problems iteratively while adding cuts, we may be able to converge to the optimal or a

near-optimal solution within a reasonable time limit. This decomposition is shown in Figure 4.3.

The two loops in Figure 4.3 show the order in which the problems are solved. The m-master problem

is a one-stage bin packing problem which packs jobs into capacity-constrained autoclave batches, while
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Master 
Problem

Subproblem

M-Master Problem

M-Subproblem

1-Stage Bin Packing

Pattern Bin Packing

2-Stage Hybrid Flow Shop Scheduling

CutsSolution

Solution

Loop 1 Loop 2

Cuts

Figure 4.3: Decomposition flow between problems, each iteration of loop 2 finds a feasible solution to
the entire problem.

minimizing the number of open autoclave batches. The m-master problem solution is therefore a set

of open autoclave batches. We chose to batch jobs into autoclave batches directly because part of the

objective is to minimize the number of open autoclave batches, and the job-to-autoclave batching is a

relaxation of the two-stage batching requirement.

A feasible packing of jobs in an autoclave batch may not be feasibly partitionable into tool batches

as jobs may not fit perfectly on tools. The m-subproblem attempts to find such a feasible partitioning

for each autoclave batch. We denote this constrained partitioning problem as the Pattern Bin Packing

Problem. If we find a feasible packing for all autoclave batches, we schedule the tool and autoclave

batches in the subproblem. If no feasible packing exists for an autoclave batch, a feasibility cut is added

to the m-master problem.

Once we reach and solve the subproblem, there are two approaches to adding optimality cuts to the

master problem. One approach is to merely cut off the incumbent solution and rerun the algorithm to

obtain a different feasible solution. The problem with this approach is that we would need to traverse

the entire search space to prove optimality, as we are not adding any direct lower bounds on tardiness.

Therefore, for the second approach, we will solve for lower bounds on total tardiness by fixing one

autoclave batch at a time and solving a relaxed scheduling problem. We add these lower bounds, along

with the first approach’s optimality cut, to the m-master problem. Lastly, we can add an upper bound

on total tardiness in the m-master problem based on total tardiness for each subproblem solution. Next,

we formally present the mathematical models for this decomposition.

M-Master Problem. he m-master problem is modelled with CP. It is not common to use CP to

model a bin packing master problem, however, in this particular decomposition, we need to use CP in

order to capitalize on its global constraints. The feasibility cuts that are added from the m-subproblem

to the m-master problem, which will be explained in subsequent pages, take the form of a CP global
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Table 4.3: LBBD m-master problem variables.

Variable Description

xj Autoclave batch index that job j is packed into
θi Sum of job sizes in autoclave batch i
q Number of open autoclave batches

constraint called the Global Cardinality Constraint.

The objective is to minimize the number of open autoclave batches. Model variables are shown in

Table 4.3; see Table 4.1 for model parameters.

min q (4.41)

s.t. pack
(
{θi | i ∈ B2}, {xj | j ∈ J }, {sj | j ∈ J }

)
(4.42)

q = max ({xj | j ∈ J }) (4.43)

xj ∈ {0, ...|B2|} ∀j ∈ J ; θi ∈ {0, ...V 2} ∀i ∈ B2; q ∈ {0, ...|B2|}

Constraint (4.42) is a global constraint which packs jobs in set J into autoclave batches in set B2

while keeping the sum of job sizes in each autoclave batch below the autoclave capacity. Constraint

(4.43) defines the number of open batches.

M-Subproblem. The m-subproblem is modelled with MIP and two sets of binary decision variables.

The first set creates tool batches from jobs and the second set assigns each tool batch to a tool. The

objective function minimizes the total sum of tool sizes.

This MIP formulation is based on models presented by Emde et al. [43] (see Section 3.3.3) and Kosch

and Beck [74] (see Section 3.2.1). Consider a tool batch k that contains the set of jobs J ∗, let j
′

be the

job with the lowest index in J ∗. We denote job j
′

as the representative job of tool batch k and create

decision variables yj,j′ that assign jobs to representative jobs instead of directly to tool batches. If job

j is assigned to the tool batch with representative job j
′
, then yj,j′ is equal to 1, otherwise, yj,j′ = 0.

Therefore, every yj′ ,j′ = 1 indicates an open tool batch.

Only jobs from the same autoclave batch can be assigned to the same tool batches, so we define a

|J | by |J | matrix A, where entry Aj,j′ is equal to 1 if job j and job j
′

are in the same autoclave batch

in the m-master problem solution, and equal to 0 otherwise. Model variables are presented in Table 4.4;

see Table 4.1 for model parameters.
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Table 4.4: LBBD m-subproblem variables.

Variable Description

yj,j′ Binary variable, equals 1 if job j is in tool batch defined by job j
′
, 0 otherwise

zj′ ,t Binary variable, equals 1 if the tool batch defined by job j
′

is on tool t

τj′ Size of tool for the tool batch defined by job j
′

ρj′ Processing time of tool batch defined by job j
′

a Binary variable, equals 1 if there exists an infeasible autoclave batch

min
∑
j′∈J

τj′ (4.44)

s.t.
∑
j′∈J

yj,j′ = 1 ∀j ∈ J (4.45)

yj,j′ ≤ Aj,j′ ∀j, j
′
∈ J (4.46)

yj,j′ = 0 ∀j, j
′
∈ J : j < j

′
(4.47)

yj,j′ ≤ yj′ ,j′ ∀j, j
′
∈ J (4.48)∑

t∈T
zj′ ,t = yj′ ,j′ ∀j

′
∈ J (4.49)

τj′ =
∑
t∈T

vtzj′ ,t ∀j
′
∈ J (4.50)

τj′ ≥
∑
j∈J

sjyj,j′ −
∑
j∈J

sj(1− yj,j′ ) (4.51)

ρj′ =
∑
j∈J

pjyj,j′ ∀j
′
∈ J (4.52)

yj,j′ ∈ {0, 1} ∀j, j
′ ∈ J ; zj′ ,t ∈ {0, 1} ∀j

′ ∈ J , ∀t ∈ T

τj′ ∈ {0, ...V 1} ∀j′ ∈ J ; ρj′ ∈ {0, ...,
∑
j∈J pj} ∀j

′ ∈ J

The objective function minimizes the sum of tool sizes, which in turn finds the partitioning of jobs

within the autoclave batch with the least wasted space (i.e. extra space jobs cannot fill on a tool).

Constraint (4.45) makes sure each job is assigned to one tool batch. Constraints (4.46) and (4.47)

enforce assignment restrictions. If job j
′

defines a tool batch, it is forced by Constraint (4.47) to be the

lowest indexed job in that tool batch, so Constraint (4.48) tightens the linear relaxation. Each open

tool batch is associated with a job j
′
, and only jobs with a higher index than j

′
can be assigned to the

tool batch associated with j
′
. Job j and job j

′
can only be assigned together if both jobs have been

assigned to the same autoclave batch in the m-master problem solution, i.e. if Aj,j′ = 1. Constraint

(4.49) makes sure each open tool batch is assigned to a specific tool. Constraints (4.50) and (4.51) define

and constrain each tool batch’s tool size to be larger than its sum of job sizes. Constraint (4.52) defines

the processing time for each tool batch.

Feasibility Cuts. Once the m-subproblem is solved to optimality, if the sum of tool sizes for autoclave

batch i∗ is larger than the autoclave capacity then i∗ is an infeasible batch. Cuts are added to prevent

the subset of jobs in each infeasible autoclave batch from being packed together again. Let B̂2 be the

set of infeasible autoclave batches from the incumbent m-master problem solution, and let J i∗ be the
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Table 4.5: LBBD subproblem parameters and variables.

Parameter Description

k ∈ B1∗ Set of open tool batches

i ∈ B2∗ Set of open autoclave batches
(k, i) ∈ E∗ Tool and autoclave batches that are associated with

each other obtained from master problem solution
(j, i) ∈ F∗ Jobs and autoclave batches that are associated with

each other obtained from master problem solution
ρ∗k Processing time of tool batch m from master problem solution

Variable Description

γk Interval variable for tool batch k
σi Interval variable for autoclave batch i
lj Tardiness of job j

set of jobs assigned to batch i∗ ∈ B̂2.

These cuts are written as a global cardinality constraint (GCC) for each infeasible autoclave batch.

The standard GCC format is gcc({cards}, {vals}, {vars}) where sets {cards} and {vals} are the same

size. Over the set of variables in {vars}, each value val[i] should only be taken cards[i] times; cards[i]

can be a single value or a range of values. Using GCC cuts also removes symmetrical solutions arising

from batch indexing. Constraint (4.53) forms the feasibility cut.

gcc
(
{[0, ..., |J i

∗
| − 1], ...}, {1, ..., |B2|}, {xj | j ∈ J i

∗
}
)

∀i∗ ∈ B̂2 (4.53)

Subproblem. The subproblem is modelled using CP and has two sets of interval decision variables,

one to schedule tool batches and one to schedule autoclave batches. The objective is to minimize the

sum of job tardiness. Model variables and parameters are presented in Table 4.5.

min
∑
j∈J

αj lj (4.54)

s.t. sizeOf(γk) = ρ∗k ∀k ∈ B1∗ (4.55)

sizeOf(σi) = P 2 ∀i ∈ B2∗ (4.56)

endBeforeStart (γk, σi) ∀(k, i) ∈ E∗ (4.57)

alwaysIn

∑
k∈B1

pulse(γk, 1), 0, |H|, 0, C1

 (4.58)

alwaysIn

∑
i∈B2

pulse(σi, 1), 0, |H|, 0, C2

 (4.59)

lj = endOf(σi)− dj ∀(j, i) ∈ F∗ (4.60)

lj ∈ {0, ...|H|} ∀j ∈ J

Constraints (4.55) and (4.56) define the interval variable lengths for tool and autoclave batches, re-
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spectively. Constraint (4.57) makes sure any autoclave batch starts after all its associated tool batches

have finished processing. Constraints (4.58) and (4.59) enforce resource capacities for each stage. Con-

straint (4.60) defines job tardiness.

No-good Optimality Cuts: Approach 1. Once the subproblem is solved after a loop 2 cycle, a

feasible solution to the entire problem has been found. Thus, to start the cycle again, the incumbent

solution must be removed from the search space. Due to the fact that only one autoclave batch needs

to be changed to cut off the incumbent solution, we need to add a disjunction to require at least one

autoclave batch to be different. GCC constraints cannot be disjoined in the solver we are using [65].

Thus, we introduce a new set of binary variables, ωi∗ ∈ {0, 1}, where i∗ ∈ B2∗ is the set of open autoclave

batches.

The binary variable ωi∗ is set to be equal to 1 if autoclave batch i∗ is required to be different in

subsequent solutions, and equal to 0 otherwise. If autoclave batch i∗ is forced to be different, then

constraints must be added such that only a strict subset of jobs in that batch can be assigned to the

same autoclave batch. We add a set of counting constraints that limit how many times each autoclave

batch index can be assigned in the set of decision variables belonging to jobs in that batch. Then, a final

constraint needs to be added to enforce that at least one binary variable out of the set {ωi∗ | i∗ ∈ B2∗} is

equal to 1, forcing the incumbent solution to change. These constraints remove the incumbent solution

as well as any symmetrical solutions that arise from batch indexing. Constraints (4.61) and (4.62) form

the No-good Optimality Cuts.

(ωi∗ == 1)→
(
count({xj | j ∈ J i

∗
}, i) ≤ |J i

∗
| − 1

)
i ∈ B2, i∗ ∈ B2∗ (4.61)∑

i∗∈B2∗

ωi∗ ≥ 1 (4.62)

ωi∗ ∈ {0, 1} ∀i∗ ∈ B2∗

Dual Optimality Cuts: Approach 2. As aforementioned, we have a feasible solution once the sub-

problem is solved after a loop 2 cycle. If we add the set of tardiness variables, lj , to the master problem,

we can put lower bounds on tardiness based on the master problem packing decisions and a global upper

bound. For example, if we are on iteration m, consider a specific subset of jobs in an autoclave batch

J i∗ , a lower bound on tardiness given that batch decision Ti∗ , and the best upper bound so far, U . If

there are master problem solutions containing the grouping of jobs J i∗ in a batch where the lower bound

on tardiness is larger than U because of the contribution from Ti∗ , then adding that lower bound from

iteration m will cut off a portion of the search space. Therefore, being able to find these lower bounds

may help us go through fewer iterations of loop 2.

To find a lower bound on tardiness based on batch decisions from the master problem, it is necessary

to solve a relaxed version of the subproblem. First, we formally define this problem, which we denote as

the relaxed scheduling problem (RSP). The objective is the same as the subproblem, which is a weighted

sum of tardiness. One autoclave batch and its associated tool batches are chosen to be fixed from the

incumbent master problem solution. However, we no longer consider the existence of any other batches,

and instead, each job not in a fixed batch is processed once in the first stage then once in the second
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Table 4.6: RSP parameters and variables.

Parameter Description

k∗ ∈Bi∗ Set of fixed tool batches in autoclave batch i∗

i∗ Fixed autoclave batch i∗

j ∈J Set of all jobs
j ∈J + Set of jobs that are not in any fixed batches

(j, k∗) ∈ G Jobs and fixed tool batches that are associated with each other
n ∈ H Set of time points
dj Due date of job j
sj Size of job j
pj Processing time of job j
θi∗ Sum of job sizes in fixed autoclave batch i∗

V 2 Maximum capacity of autoclave batches
P 2 Processing time of autoclave batches
C1 Number of stage 1 machines
C2 Number of stage 2 machines
αj Weighting for tardiness of job j in objective function

Variable Description

γj Interval variable for job j in stage 1
σj Interval variable for job j in stage 2
Γk∗ Interval variable for fixed tool batch k∗ in stage 1
Σi∗ Interval variable for fixed autoclave batch i∗ in stage 2
lj Tardiness of job j

stage. We model the first stage as a multi-capacity machine and each single job or fixed tool batch

occupies one unit of capacity during processing. The second stage is also a multi-capacity machine, but

each single job occupies sj units of space during processing and the fixed autoclave batch occupies V 2

units of space during processing. The second stage machine has a constant capacity of C2 × V 2. There

are precedence constraints between the stages of each job. The RSP is a relaxation of the 2BPHFSP, so

the optimal objective value found by the RSP is a valid lower bound to the 2BPHFSP.2 Model variables

and parameters are shown in Table 4.6.

The CP model for the RSP is presented next.

min
∑
j∈J

αj lj (4.63)

s.t. sizeOf(γk∗) =
∑

(j,k∗)∈G

pj ∀k∗ ∈ Bi
∗

(4.64)

sizeOf(σi∗) = P 2 (4.65)

sizeOf(Γj) = pj ∀j ∈ J + (4.66)

sizeOf(Σj) = P 2 ∀j ∈ J + (4.67)

endBeforeStart (γk∗ , σi∗) ∀k∗ ∈ Bi
∗

(4.68)

endBeforeStart (Γj ,Σj) ∀j ∈ J + (4.69)

2Only the optimal objective value found by the RSP is a valid lower bound, so for any instance the RSP is unable to
prove optimality, we cannot add any cuts.
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alwaysIn

 ∑
j∈J+

pulse(Γj , 1) +
∑

k∗∈Bi∗

pulse(γk∗ , 1), 0, H, 0, C1

 (4.70)

alwaysIn

 ∑
j∈J+

pulse(Σj , sj) + pulse(σi∗ , θi∗), 0, H, 0, V
2 × C2

 (4.71)

lj ≥ endOf(Σj)− dj ∀j ∈ J + (4.72)

lj ≥ endOf(γk∗)− dj ∀(j, k∗) ∈ G (4.73)

lj ∈ {0, ...|H|} ∀j ∈ J

Constraints (4.64) and (4.65) set the processing times of the fixed batches. Constraints (4.66) and

(4.67) set the processing times of jobs not in fixed batches. Constraint (4.68) sets precedence between

the fixed tool and autoclave batches. Constraint (4.69) makes sure jobs are processed in the first stage

before progressing to the second stage. Constraints (4.70) and (4.71) enforce the capacity of each stage.

Constraints (4.72) and (4.73) define job tardiness.

Once we solve the RSP to optimality with a fixed autoclave batch i∗ and its associated tool batches,

k ∈Bi∗ , the objective value is a lower bound on tardiness, designated as Ti∗ . We need to add a cut to

the master problem that says if the same grouping of jobs in i∗ appears again, the tardiness term in the

master problem objective must be at least Ti∗ . The RSP needs to be solved for each active autoclave

batch in the incumbent master solution. Let j ∈J i∗ be the set of jobs that are in i∗, with decision

variables {xj | j ∈ J i
∗}. Let m represent the current iteration, and let Um represent the upper bound

from iteration m. Constraints (4.74) and (4.75) form the Dual Optimality Cuts.

(
count

(
{xj | j ∈ J i

∗
}, i
)

== |J i
∗
|
)
→

∑
j∈J

αj lj ≥ Ti∗

 ∀i ∈ B2 (4.74)

∑
j∈J

αj lj ≤ Um (4.75)

We can now consider two LBBD approaches, where the first LBBD approach, designated as LBBD1,

follows the loops shown in Figure 4.3 and only optimality cuts from the first approach are added after

loop 2 completes. The second LBBD approach, designated as LBBD2, also follows the loops in Figure

4.3, however, after loop 2 completes and the approach 1 cuts are added, we enter an auxiliary loop where

we repeatedly solve the RSP while fixing a single autoclave batch from the incumbent solution. This

modified decomposition flow is shown in Figure 4.4.

The two LBBD models presented in this section will always converge. The number of feasible solutions

to the 2BPHFSP is finite; the subproblem cuts remove feasible solutions from the search space and do

not allow the master problem to revisit solutions. Therefore, given enough time, both LBBD models will

exhaust the search space. However, the unidirectional flow of the LBBD models from the master problem

to the subproblem does not allow the model to consider any trade-offs between tool batch partitioning

decisions and tardiness. For example, suppose there are several feasible tool batch partitionings for a

given m-master problem solution. The m-subproblem will find one of those partitionings and since the

packing is now feasible, the model will move onto the subproblem to find the best schedule given the
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Figure 4.4: Modified decomposition flow between problems to add dual optimality cuts, loop 3 is the
auxiliary loop where the RSP is solved for each autoclave batch from the incumbent solution.

incumbent packings. However, it may be the case that another one of the feasible tool batch partitionings

will result in a better schedule, but the LBBD models will not backtrack to try all the partitionings.

Thus, unlike the monolithic models, the LBBD models do not provide any guarantees on optimality.

Theoretical Results. To close this section, we formally prove the validity of the cuts used by the

decomposition approaches. To prove a cut is valid, we must first prove the incumbent solution is removed

from the search space when the cut is applied and we must then prove the cut does not remove any

globally optimal solutions when applied [30, 120].

First, we added a cut from the m-subproblem into the m-master problem for each infeasible autoclave

batch from the m-master problem solution. Lemma 4.2.1 proves that the infeasible solution is removed

from the search space if the cut is applied.

Lemma 4.2.1. Given a solution with an infeasible autoclave batch i∗, Cut (4.53) removes i∗ from the

search space.

Proof. Cut (4.53) removes i∗ from the search space. Suppose we have an infeasible autoclave batch i∗

containing the set of jobs J i∗ . The decision variables associated with jobs in i∗, {xj | j ∈ J i
∗} take

on values ranging from {1, ..., |B2|}, where |B2| is the total number of autoclave batches available. If

{xj | j ∈ J i
∗} are assigned to the same autoclave batch, then, in any solution where these jobs are

grouped into an autoclave batch, one of the values from {1, ..., |B2|} appears |J i∗ | times. Cut (4.53)

explicitly removes all such solutions.

We also need to prove that the cut does not remove any globally optimal solutions from the search

space, this is shown in Lemma 4.2.2.

Lemma 4.2.2. Cut (4.53) does not remove any globally optimally solutions from the search space.
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Proof. Suppose we have a globally optimal solution S to the 2BPHFSP containing autoclave batch i
′
,

which contains the same jobs as infeasible autoclave batch i∗. If we let {xj′ | j ∈ J } be the set of decision

variables that assign jobs to autoclave batches for solution S, then all variables in the set {xj′ | xj = i∗}
are equal to i

′
. Constraint (4.42) is violated by autoclave batch i∗ as

∑
j∈J |xj=i∗

sj > V 2. Similarly, the

sum
∑
j∈J |xj=i

′ sj is also greater than the capacity V 2. Therefore, S is infeasible due to this capacity

constraint violation and cannot be a globally optimal solution.

Lemmas 4.2.1 and 4.2.2 can be combined into a single theorem, as follows.

Theorem 4.2.3. Given a solution with an infeasible autoclave batch i∗, Cut (4.53) is sufficient to remove

any solution containing that grouping of jobs from the search space.

Proof. Follows directly from Lemmas 4.2.1 and 4.2.2.

Next, let us examine the optimality cuts added from the subproblem to the master problem. Propo-

sition 4.2.1 shows the incumbent solution will be removed from the solution space if the optimality cuts

are applied.

Proposition 4.2.1. Given a feasible solution, cuts (4.61) and (4.62) are sufficient to remove the in-

cumbent solution from the search space.

Proof. Suppose the incumbent solution has |B2∗| open autoclave batches, where each autoclave batch

i ∈ {1, ..., |B2∗|} is associated with binary variable ωi. If ωi∗ = 1, autoclave batch i∗ cannot appear in

any subsequent solutions. If the sum of ωi over all i ∈ B2∗ is equal to 0, meaning ωi = 0 ∀i ∈ B2∗, all of

the disjunctions from Constraint (4.61) are inactive so no constraints are imposed on the set of decision

variables {xj | j ∈ J }. Now, suppose the sum of ωi over all i ∈ B2∗ is equal to 1 because ωi∗ = 1. Then,

Constraint (4.61) adds the following constraints to the master problem.

count({xj | j ∈ J i
∗
}, i) ≤ |J i

∗
| − 1 ∀i ∈ B2, (4.76)

where J i∗ is the set of jobs in autoclave batch i∗ for which ωi∗ = 1. If J i∗ were to appear again in

any autoclave batch of subsequent solutions, Constraint (4.76) would be violated as count({xj | j ∈
J i∗}, i) = |J i∗ | > |J i∗ | − 1. Thus, no solution containing autoclave batch i∗ can appear again in

subsequent solutions. Note that it is possible that exactly one autoclave batch from the incumbent

solution can be changed to form a new distinct solution, as shown by example in Figure 4.5. Therefore,

if we forbid at least one autoclave batch from appearing again using cuts (4.61) and (4.62), we will

successfully remove the incumbent solution from the search space.

The last set of cuts we presented in this section are the dual optimality cuts added by the subproblem

to the master problem after solving the RSP. The RSP is a relaxation of the 2BPHFSP, thus, if we can

solve the RSP to optimality, that optimal objective is a valid lower bound to the 2BPHFSP and can be

added as optimality cuts to the master problem.

4.2.4 Earliest Due Date Heuristic

We developed a greedy heuristic based on the Earliest Due Date priority rule, designated as EDD, that

finds feasible solutions in polynomial time. EDD is described by Algorithm 4 and involves assigning

jobs to tool batches, assigning tool batches to autoclave batches, and lastly, scheduling both tool and
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Figure 4.5: Example showing exactly one autoclave batch from the incumbent solution changing to give
a new solution.

autoclave batches. For the two assignment portions of the algorithm, items (jobs or tool batches) are

sorted in increasing order of due date then packed into bins (tool batches or autoclave batches) based

on a first-fit decreasing (FFD) algorithm. The scheduling portion iterates through the list of packed au-

toclave batches in increasing order of due date and schedules the autoclave batch and its associated tool

batches on the earliest available machines, while maintaining precedence between stages. Parameters

used by the algorithm are presented in Table 4.7.

For both assignment portions, we iterate through a list of jobs or tool batches sorted by increasing

due date. In each iteration, we remove a job or tool batch from its list and pack it into a tool batch or

autoclave batch. To potentially find better solutions, instead of picking the first item from the list, we

randomly selected an item from the first L items of the list. Then, we repeatedly run the algorithm for

a number of iterations and pick the best solution at the end. By perturbing the selection step slightly,

we will hopefully find better solutions compared to only selecting the first item every time.
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Algorithm 4: EDD

Result: Feasible solution to the 2BPHFSP
for each repetition do

sort J by order of increasing due date;
while J not empty do

j ← randomly selected job from first L items of J ;
if B1 empty or j does not fit in any open batch then

create new tool batch k and add to B1, assign j to k;
else

assign j to first k ∈ B1 with enough space;
end

end
sort B1 in order of increasing due date;
while B1 not empty do

k ← randomly selected tool batch from first L items of B1;
if B2 empty or k does not fit in any open batch then

create new autoclave batch object i and add to B2, assign k to i;
else

assign k to first i ∈ B2 with enough space;
end

end
sort B2 in order of increasing due date;
while B2 not empty do

i ← randomly selected autoclave batch from first L items of B2;
sort tool batches in i in order of decreasing processing time;
for k ∈ sorted tool batches of i do

m1 ← GetNextFreeMachine(M1);
schedule k next on m1;

end
m2 ← GetNextFreeMachine(M2);
schedule i next on m2 after end of all k in i;

end
add solution to solution list;

end
pick best solution from solution list;
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Table 4.7: EDD parameters.

Parameter Description

j ∈J Set of jobs
k ∈B1 Set of tool batches
i ∈B2 Set of autoclave batches
t ∈T Set of tools
sj Size of job j
pj Processing time of job j
dj Due date of job j
vt Size of tool t
V 2 Maximum capacity of autoclave batches
P 2 Processing time of autoclave batches
C1 Number of stage 1 machines
C2 Number of stage 2 machines
R Replications
L List randomization length

4.3 Numerical Results

Our five approaches were tested on 11 sets of 30 randomly generated problem instances, ranging from 5

jobs to 100 jobs per instance. Job parameters were sampled from the following probability distributions.

• dj ∼ round(Unif(10, α∗202 ))

• pj ∼ round(Unif(5, 20))

• sj ∼ 50 + round(Exp(0.1)× 30)× 10 | sj <= 300

where α is equal to the number of jobs per instance.

The same system parameters were used across all instances: stage 1 has 4 machines, stage 2 has 2

machines, an autoclave in stage 2 has capacity 400, the curing time for an autoclave batch is 60 minutes,

and there are 10 tools, each with their own size parameter ranging from 150 to 300. All CP and MIP

models were implemented in Java using CPLEX Optimization Studio 12.9. Each approach was given a

60-minute time limit to solve an instance.

Time Limits on Decomposition Components. First, we tested the difference between enforcing

and not enforcing a 10-minute time limit on the individual components of the decomposition models,

i.e. the m-master problem, m-subproblem, and subproblem search processes are all terminated after 10

minutes if optimality is not proven yet, and the best feasible solution so far is selected. Figure 4.6 com-

pares the number of instances for which each model was able to find a feasible solution. Figure 4.7 shows

the percent difference in the best objective value the time-limited model was able to find compared to

its respective non-time-limited model. Negative values indicate instances where the time-limited models

gave better, i.e. lower, objective values. Figure 4.7 also shows the percent increase in the number of

loop 2 iterations the time-limited models was able to complete in one hour.
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Figure 4.6: Number of instances solved using LBBD1 and LBBD2 with time-limited and non-time-limited
components.
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of feasible solutions found), compared to non-limited models.
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Figure 4.8: Percentage of instances where all components were solved to optimality compared to the
percentage of instances where they were not all solved to optimality.

There is almost no difference in the number of instances solved between the time-limited model and

the non-limited model. These results also show that LBBD1 and LBBD2 have extremely similar perfor-

mance, which will be further discussed in later paragraphs. The time-limited models were able to find

slightly better solutions for most instance sizes as shown in Figure 4.7. However, this is an insignificant

variation in objective value, with less than 0.3% increase or decrease across all instances. If we look

at instances with 40 to 80 jobs per instance, the time-limited models complete more loop 2 iterations

compared to the non-limited models. Within this instance size range, the non-limited models are only

able to complete one or two loop 2 iteration for many instances. However, the time-limited models can

complete up to six loop 2 iterations and provide a bigger pool of solutions to choose from.

We can take a closer look at the transition point where placing a time limit on components starts to

affect solution quality. Figure 4.8 shows the percentage of instances where a component was not solved

to optimality for LBBD1 and LBBD2. We can clearly see that the transition point occurs at 40 jobs

per instance. The subproblem is the bottleneck and it becomes difficult to prove optimality within 10

minutes starting at 40 jobs per instance. Due to the slight increase in solution quality when a time

limit is added, as well as the propensity of the algorithm to time out globally within the subproblem,

it is necessary to impose time limits on the components. The rest of this section will only consider the

time-limited models.

Overall Comparison of Solution Approaches. CP, MIP, and EDD were tested on the same set

of instances as LBBD1 and LBBD2. MIP could not find feasible solutions for any instance, therefore,

MIP will no longer be considered as a solution approach. Figure 4.9 compares the number of instances

solved using each approach. CP is clearly the worst performing model, scaling poorly compared to the

decomposition models. EDD found feasible solutions for all instances.

Recall the RSP was defined and solved as part of LBBD2, providing a lower bound on tardiness given

a single fixed autoclave packing. We can also find a global lower bound using the RSP with no fixed
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Figure 4.9: Number of instances solved using each approach.

Table 4.8: Average optimality gap for solutions found using each approach.

Jobs per Instance CP LBBD1 LBBD2 EDD

5 0.50 0.52 0.52 0.49
10 0.48 0.49 0.49 0.53
15 0.66 0.59 0.60 0.68
20 0.85 0.59 0.59 0.74
25 0.87 0.69 0.70 0.82
30 N/A 0.73 0.74 0.85
40 N/A 0.82 0.81 0.91
50 N/A 0.87 0.87 0.94
60 N/A 0.90 0.90 0.96
80 N/A 0.95 0.95 0.98
100 N/A 0.96 0.96 0.98

packings; every job is scheduled once in the first stage then once in the second stage. The optimality

gap for a solution can be calculated by Equation (4.77).

Optimality Gap =
Objective Value−Optimal Objective Value of the RSP

Optimal Objective Value of the RSP
(4.77)

Table 4.8 shows the average optimality gaps for each solution approach. There are a few instances

for which the RSP was not able to prove optimality within one hour. These instances are not included

in any average optimality gap calculations. Furthermore, only instances where the particular solution

approach was able to find a solution was included in the average for that approach.

Figure 4.10 visualizes the optimality gaps of each solution approach. We can see from Figures 4.10a

and 4.10b that CP is more often than not finding worse quality solutions or no solution at all compared to

LBBD1 and LBBD2. Figure 4.10c further exemplifies that the two decomposition models have almost

identical performance. The optimality gaps of LBBD1 and LBBD2 are very similar, implying that

there is no clear benefit being provided by the dual optimality cuts. Figure 4.10d compares the EDD

optimality gap against the best, i.e. lowest, non-heuristic optimality gap. Surprisingly, EDD performs

well in comparison to non-heuristic methods, despite the fact that EDD is a very simple heuristic. Also,

EDD found solutions within seconds for each instance, solving many instances the non-heuristic methods

could not.
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Figure 4.10: Comparison of optimality gaps.
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Figure 4.11: Number of loop 1 and loop 2 iterations and the ratio of loop 2 to loop 1 iterations for
LBBD1 and LBBD2.

Comparing LBBD1 and LBBD2. As aforementioned, the dual optimality cuts do not appear to

have a clear benefit on performance. The purpose of the dual optimality cuts is to provide more in-

formation about lower bound in return for spending time solving the RSP. We can take a closer look

at this trade-off by visualizing the number of loop 1 and loop 2 iterations performed by LBBD1 and

LBBD2 as shown in Figure 4.11. LBBD1 and LBBD2 follow a similar pattern through the increasing

instance sizes. However, LBBD2 goes through notably fewer loop 1 and loop 2 iterations before 40 jobs

per instance. This result is most likely due to the time taken up by solving the RSP. The optimality gaps

for LBBD1 and LBBD2 have insignificant differences before 40 jobs per instances, so we can conclude

that the improvement gained by receiving lower bounds from the RSP is nullified by the significantly

lower number of feasible solutions found compared to LBBD1.

After 40 jobs per instance, the number of loop 1 and loop 2 iterations are almost the same for both

models. This result is most likely due to the fact that any improvement or loss from solving the RSP

is overshadowed by the fact that CP is no longer able to prove optimality for the subproblem within

10 minutes. Figure 4.12 plots the normalized solution quality over time for both decompositions to

further support the previous statement. Each point represents a feasible solution for one instance. The

normalized solution quality with respect to the best solution for the given instance, also referred to as

the relative gap, of each feasible solution is calculated by Equation (4.78).

Relative Gap =
Feasible Solution Objective Value− Best Solution Objective Value

Best Solution Objective Value
(4.78)

As previously discussed, 40 jobs per instance is the transition point where the subproblem cannot be

solved to optimality within 10 minutes. After 40 jobs per instance, both decompositions show a pattern

of having solutions clustered around 600, 1200, 1800, 2400, and 3000 seconds. The master problem

components can still solve within seconds, but the subproblem is given a time limit of 10 minutes, or

600 seconds. For each loop 2 iteration, there is only one set of dual optimality cuts added. When the

model is only able to complete an average of six loop 2 iterations, the meagre number of dual optimality

cuts provides negligible improvement in the search process. On the other hand, the large amount of time

spent on solving the subproblem overshadows the amount of time spent on solving the RSP, creating a

net zero effect of the dual optimality cuts. Thus, for the sake of simplicity, dual optimality cuts should
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Figure 4.12: Normalized solution quality over time.

not be used when the decomposition structure developed in this chapter is applied to the full problem.

Figure 4.11 also shows the ratio of loop 2 to loop 1 iterations. LBBD1 and LBBD2 follow the same

pattern through the increasing instance sizes. When problem instances are small, both models are able

to find a feasible packing within loop 1 after one or two iterations. Thus, there is also a 1 to 1 ratio of

the two loops. However, as instance sizes grow, the algorithm becomes more and more likely to keep

iterating within loop 1 without finding a feasible packing, as evidenced by the ratio of loop 2 to loop

1 iterations following an exponential decrease. In fact, all of the instances with 40 or more jobs where

either LBBD model was not able to find a feasible solution for were caused by the algorithm never

being able to exit loop 1. We can conclude that as the problem size increases, the number of possible

autoclave packings increases exponentially, and only a few infeasible autoclave batches are being cut

from the solution space at each loop 1 iteration by the m-subproblem. This conclusion implies that this

decomposition structure cannot find solutions efficiently for instance sizes larger than 100 jobs.
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Table 4.9: Contingency tables summarizing counts for categories in which LBBD1 or LBBD2 found
higher quality solutions.

Model
Low Size High Size

Low Time High Time Low Time High Time

LBBD1 56 33 2 2
LBBD2 66 56 5 3

Model
Low Time High Time

Low Date High Date Low Date High Date

LBBD1 27 26 19 21
LBBD2 43 33 25 29

Model
Low Size High Size

Low Date High Date Low Date High Date

LBBD1 53 36 2 2
LBBD2 68 53 5 5

4.3.1 Statistical Analysis

Performance Patterns from LBBD1 and LBBD2. We previously presented evidence that the

dual optimality cuts do not provide any benefits to overall performance. However, previous results do

not show any affinities either decomposition model may have towards certain types of problem instances.

For each instance tested, we can classify it according to three factors, job size, job processing time, and

job due date. For each factor, an instance can be classified as low (i.e. there exists more jobs in the

instance with below average job size, processing time, or due date) or high (i.e. there exists more jobs

in the instance with above average job size, processing time, or due date). Then, we can count, for each

two-factor combination of classifications, how many instances LBBD1 or LBBD2 found better solutions

for. Table 4.9 shows the contingency tables summarizing these counts.

χ2 tests can be performed on the information in the contingency tables to determine if there are

any significant interaction effects between factors. Each contingency table in Table 4.9 contains three

factors: model type and two from job size, processing time, and due date. We perform a three-way χ2

analysis for each table and test for complete independence between all three factors, as well as conditional

independence for each pair of factors. The null hypothesis in each test is that the factors being tested

are fully independent. Test results are summarized in Table 4.10. Each test for independence results in

failure to reject the null hypothesis, meaning neither decomposition model has a particular affinity to

solving particular types of instances. This analysis shows that the dual optimality cuts do not provide

any benefits overall, but we also cannot predict situations where the cuts may be useful.

Effect of Instance Characteristics on Performance. The problem instances used so far in exper-

iments were randomly generated. Thus, we cannot make any statements about how any of the tested

approaches may perform if given hard instances. Thus, we created 12 classes of 25-job instances that

contained different proportions of jobs with special parameters: high size, high processing time, and

early due date. Each class has a different frequency of special jobs; class characteristics are shown in
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Table 4.10: χ2 test results.

Statistic Complete Independence
Conditional Independence

Model Size Processing Time

χ2 2.17 2.17 0.83 1.81
Degrees of Freedom 4 3 3 3

Critical χ2 7.81 9.49 9.49 9.49
Conclusion FTR FTR FTR FTR

Statistic Complete Independence
Conditional Independence

Model Processing Time Due Date

χ2 1.67 0.46 1.62 1.49
Degrees of Freedom 4 3 3 3

Critical χ2 7.81 9.49 9.49 9.49
Conclusion FTR FTR FTR FTR

Statistic Complete Independence
Conditional Independence

Model Size Due Date

χ2 1.60 1.27 1.31 0.55
Degrees of Freedom 4 3 3 3

Critical χ2 7.81 9.49 9.49 9.49
Conclusion FTR FTR FTR FTR

Table 4.11.3

LBBD1 and EDD showed the most promise of all the approaches. Thus, we tested the newly gener-

ated instances with LBBD1 and EDD. The approaches performed similarly in terms of finding feasible

solutions with the exception of class b2. LBBD1 was not able to find solutions for 40% of instances

because it could not find a feasible packing. Only 50% of jobs in the instance have large sizes, so the

m-master problem opens too few autoclave batches. Then, it becomes difficult to partition jobs onto

tools in the m-subproblem such that the sum of tool sizes is within the autoclave capacity.

To test for interaction effects, we perform three three-way analysis of variance (ANOVA) tests on

the objective values found using each model type on each instance class. Each test involves ignoring

one aspect in the class descriptions, e.g. the first ANOVA test involves ignoring job sizes and only con-

sidering instances from class descriptions that contain either high processing times or early due dates.

ANOVA results are summarized in Table 4.12, 4.13, and 4.14. The null hypothesis for an ANOVA

test is that the mean is the same for all groups. Rejecting this null hypothesis means that the factor

level significantly affects the group mean. Tests for which the null hypothesis is rejected are highlighted.

A clear conclusion from the ANOVA tests is that the solution approach, LBBD1 vs. EDD, contributes

the least to variance in group means. This further shows that EDD is performing very well for a simple

heuristic. The highest contribution to variance in all three ANOVA tests comes from the frequency of

special jobs. Job size also contributes more to variance compared to processing time and due date, as

3Each category within the description of special jobs has two levels; the frequency of special jobs has three levels.
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Table 4.11: Class characteristics of newly generated instances.

Class Name
Description of Special Jobs

Frequency of Special Jobs
Size Processing Time Due Date

a1 High High Normal Low
a2 High High Normal Medium
a3 High High Normal High
b1 Normal High Early Low
b2 Normal High Early Medium
b3 Normal High Early High
c1 High Normal Early Low
c2 High Normal Early Medium
c3 High Normal Early High
d1 High High Early Low
d2 High High Early Medium
d3 High High Early High

Table 4.12: ANOVA test results, ignoring effect of job sizes.

Factor Degrees of Freedom F-Value PR(>F)

Single Factor Independence: Description of Special Jobs

desc 2 0.67 0.52

Single Factor Independence: Frequency of Special Jobs

freq 2 422.26 1.49e-44

Single Factor Independence: Solver Type

solver 2 2.18 0.14

Two Factor Independence: Description + Frequency of Special Jobs

desc 2 9.74 1.68e-04
freq 2 529.43 4.16e-46

desc:freq 4 1.93 0.11

Two Factor Independence: Description of Special Jobs + Solver Type

desc 2 0.69 0.50
solver 1 2.18 0.14

desc:solver 2 0.0043 0.96

Two Factor Independence: Frequency of Special Jobs + Solver Type

freq 2 609.79 1.48e-49
solver 1 37.28 3.37e-08

freq:solver 2 1.33 0.27

All Factor Independence

desc 2 17.84 5.69e-07
freq 2 901.00 3.58e-50

solver 1 57.30 1.22e-10
desc:freq 4 3.47 1.21e-02

desc:solver 2 0.36 0.70
freq:solver 2 2.58 8.30e-02

desc:freq:solver 4 0.067 0.99



Chapter 4. Solving an Abstraction of the Composites Manufacturing Problem 63

Table 4.13: ANOVA test results, ignoring effect of job processing times.

Factor Degrees of Freedom F-Value PR(>F)

Single Factor Independence: Description of Special Jobs

desc 2 11.63 3.50e-05

Single Factor Independence: Frequency of Special Jobs

freq 2 56.83 2.46e-16

Single Factor Independence: Solver Type

solver 2 2.67 0.11

Two Factor Independence: Description + Frequency of Special Jobs

desc 2 124,15 5.77e-25
freq 2 332.61 6.58e-39

desc:freq 4 42.08 9.25e-19

Two Factor Independence: Description of Special Jobs + Solver Type

desc 2 11.46 4.1e-05
solver 1 2.93 9.08e-02

desc:solver 2 0.024 0.98

Two Factor Independence: Frequency of Special Jobs + Solver Type

freq 2 59.98 1.04e-16
solver 1 6.87 1.05e-02

freq:solver 2 0.19 0.83

All Factor Independence

desc 2 218.35 1.43e-30
freq 2 600.08 2.34e-44

solver 1 64.69 1.67e-11
desc:freq 4 76.54 1.24e-24

desc:solver 2 0.97 0.38
freq:solver 2 1.35 2.65

desc:freq:solver 4 0.49 7.43
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Table 4.14: ANOVA test results, ignoring effect of job due dates.

Factor Degrees of Freedom F-Value PR(>F)

Single Factor Independence: Description of Special Jobs

desc 2 12.45 1.80e-05

Single Factor Independence: Frequency of Special Jobs

freq 2 59.79 5.31e-17

Single Factor Independence: Solver Type

solver 2 2.25 0.14

Two Factor Independence: Description + Frequency of Special Jobs

desc 2 183.15 1.38e-30
freq 2 476.41 3.65e-45

desc:freq 4 60.18 2.35e-23

Two Factor Independence: Description of Special Jobs + Solver Type

desc 2 12.33 2.1e-05
solver 1 2.63 0.11

desc:solver 2 0.021 0.98

Two Factor Independence: Frequency of Special Jobs + Solver Type

freq 2 61.79 3.68e-17
solver 1 5.48 2.17e-02

freq:solver 2 0.15 0.86

All Factor Independence

desc 2 365.85 4.06e-38
freq 2 960.78 3.90e-52

solver 1 82.03 1.84e-13
desc:freq 4 121.73 5.26e-31

desc:solver 2 0.99 0.38
freq:solver 2 1.87 0.16

desc:freq:solver 4 0.63 0.64
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evidenced by the failure to reject conclusion in testing for independence in the description of special jobs.

Overall, there are two important conclusions from testing these new problem instances and performing

ANOVA: LBBD1 and EDD have fairly consistent performance with different instance classes, and EDD

has strong performance for a simple heuristic compared to a complex decomposition model.

4.3.2 Heuristic-CP Hybrid Techniques

The strong performance of EDD leads to the obvious next step of combining EDD with a CP model to try

and make improvements given a feasible solution. We hereby present two heuristic-CP hybrid techniques

which combine EDD with one of the models from the previous section. First, we can warm-start CP

using the EDD solution, denoted as WCP. However, this approach may face the same scaling challenges

as CP did. Therefore, we can also take the EDD solution, fix the packings, and use the CP schedul-

ing model from the decomposition subproblem to try and improve the schedule, denoted as EDD-CP. It

may be the case that only trying to improve the schedule will be enough to obtain good enough solutions.

WCP and EDD-CP were tested on the same set of instances as in the original numerical results

and given a one hour time limit. Both methods found feasible solutions for each given instance. We

can calculate how much improvement CP was able to provide in the two hybrid approaches by using

Equation (4.79), where z(EDD) is the EDD solution objective value and z(CP) is the improved objective

value.

Relative Decrease =
z(EDD)− z(CP)

z(EDD)
(4.79)

Figure 4.13 plots the relative gain in solution quality (i.e. decrease in objective value) from both

methods. WCP can make large improvements to the EDD solution up to 60 jobs per instance, where its

performance starts to degrade, whereas EDD-CP shows gradually improving performance from 5 to 100

jobs per instance. We generated larger problem instances of size 110, 120, and 130 to further test WCP

and EDD-CP. Figure 4.13a shows that EDD-CP’s performance plateaus after 100 jobs per instance.

WCP was not able to solve any problems larger than 100 jobs per instance due to high memory usage.

Therefore, EDD-CP is clearly the more robust and promising approach to solving the full problem.

4.3.3 Summary

We can summarize the overall performance of CP, LBBD1, LBBD2, EDD, WCP, and EDD-CP in Figures

4.14 and 4.15. Figure 4.14a summarizes how many instances each solution technique was able to solve

over the 11 instance sets, and Figure 4.14b summarizes the average time each solution technique spends

to find the best solution within one hour. Figure 4.15 shows the average average optimality gap achieved

within one hour for each solution technique, where the optimality gap is calculated using Equation (4.77).
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(a) EDD-CP
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(b) WCP

Figure 4.13: Relative decrease in objective value after using CP to improve the heuristic solution; average
decrease is shown by the dotted line. The blue data points show results from larger instances that WCP
was not able to solve.
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Figure 4.14: Number of instances solved and average time to find the best solution within one hour for
all tested approaches.
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Figure 4.15: Average optimality gap for all tested approaches.
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4.4 Conclusions

The Composites Manufacturing Problem (CMP) is a complex, real-world problem with multiple layers

of decisions. In this chapter, we formally defined an abstraction of the CMP called the Two-Stage Bin

Packing and Hybrid Flowshop Scheduling Problem (2BPHFSP). Through modelling, analysis, and ex-

perimentation, the 2BPHFSP helped us to better understand some of the core complexities of the CMP

as well as how to partition the problem into more manageable pieces. This knowledge will be essential

to developing accurate and lightweight solution techniques to the CMP in the following chapters.

We developed five different approaches to solve the 2BPHFSP: Mixed Integer Programming (MIP),

Constraint Programming (CP), two variations of Logic-based Benders Decomposition (LBBD1, LBBD2),

and an Earliest Due Date heuristic (EDD). Each approach was tested on 11 sets of 30 instances, ranging

from 5 to 100 jobs per instance. CP was able to find solutions for the smaller instances, but scaled

poorly, while MIP was not able to find solutions for any instances. LBBD1 and LBBD2 performed the

best, with insignificant differences in performance between the two variations. The LBBD approaches

scaled better than CP, but still did not find feasible solutions for certain instances with 40 or more jobs.

EDD was able to find a feasible solution within seconds for every instance, and often found solutions of

comparable quality to LBBD1 and LBBD2, especially for larger instances.

To further investigate the high performance of EDD, two heuristic-CP approaches were tested on

the same sets of problem instances. First, the heuristic solution was used to warm-start the CP model

(WCP), and second, the packing from the heuristic solution was fixed and the scheduling subproblem

from the LBBD models was used to improve the heuristic solution schedule (EDD-CP). Both methods

were able to find feasible solutions for every instance. WCP performed better than EDD-CP within the

range of problem instances tested, but showed signs of decreasing performance at around 50 to 60 jobs

per instance. EDD-CP does not appear to have decreased performance up to 130 jobs per instance.

Overall, the most interesting conclusion is the comparable performance of heuristic techniques to

the mathematical formulations, especially with larger instances. The complexity of the problem lends

itself to CP, but scaling is an issue for complete approaches, especially as real-world instances contain

4000 jobs on average. The next two chapters will focus on considering some complexities of the original

problem that were abstracted away, and increasing instance sizes to match the real world. The success

shown by EDD and the hybrid heuristic-CP approaches suggests that complex problems such as the

CMP pose a challenge for the development of robust and efficient exact methods. Thus, we will focus

on developing heuristic-based approaches.



Chapter 5

Scaling Up: Complexity

The next step in our investigation of for the Composites Manufacturing Problem (CMP) is to include the

key complexities that were relaxed in the abstracted problem. Thus, all models presented in this chapter

solve the full problem defined in Chapter 2. We present the full models/algorithms for four solution

techniques: Mixed Integer Programming (MIP) packing with Constraint Programming (CP) scheduling,

CP packing with CP scheduling, Logic-based Benders Decomposition (LBBD), and an Earliest Due Date

(EDD) packing heuristic with CP scheduling. Numerical results and a discussion of the results close the

chapter.

5.1 Solution Approaches

Unlike the abstracted problem, the full problem as defined in Chapter 2 is too large and complex to be

modelled using a single model. Thus, we split the problem into its packing and scheduling components.

Separating the problem results in a loss of guarantee of optimality. However, based on the results of

Chapter 4, optimality does not seem to be a realistic goal. We extend the packing portions of the

MIP, CP, and EDD approaches defined in Chapter 4 and designate these packing models as MIP-pack,

CP-pack, and EDD-pack.

For the scheduling component, numerical results from Chapter 4 showed that a MIP scheduling model

is very unlikely too perform competitively with other approaches. A time-indexed MIP model is too

large to solve such a complex problem. Also, the scheduling portion of the EDD heuristic from Chapter

4 cannot be extended as it is based on single-machine stages. Thus, we can only extend the scheduling

portion of the CP model from Chapter 4 to be a scheduling model for the CMP, designated as CP-sched.

As we have a CP packing model and a CP scheduling model, an LBBD model with a similar structure

and similar optimality cuts to the LBBD1 model from Chapter 4 can be formulated for the full problem,

designated as LBBD. Adding cuts between the packing and scheduling models theoretically allows us to

prove optimality, given enough time. However, the results of Chapter 4 imply that we most likely need

to add time limits on the subproblems, which again removes the guarantee of optimality. In conclusion,

we can create four different combinations of packing and scheduling components, labelled as Models 0

to 3 and shown in Table 5.1.

68
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Table 5.1: Overview of models and algorithms (Models 0 to 3).

Scheduling

P
a
ck

in
g

Constraint Programming
(CP-sched)

Constraint Programming
(CP-pack)

Model 0 (with LBBD cuts);
Model 1

Mixed Integer Programming
(MIP-pack)

Model 2

Earliest Due Date Packing
Heuristic (EDD)

Model 3

There are an exponential number of job-to-batch packings that result in the same number of au-

toclave batches being formed. In this chapter, we are separately solving the packing and scheduling

aspects of the problem. Thus, two unique packing solutions with the same number of autoclave batches

may have different sums of tardiness after being scheduled, as jobs require multiple resources during

processing in each stage and some resources have time-varying capacities. Figure 5.1 shows an example

of how tardiness is affected by batch assignments and how start times can be delayed as a result of how

jobs are assigned to batches.

We need a method that allows us to predict the “goodness” of a packing with respect to its even-

tual tardiness without having to schedule the packing. A natural idea is to push the packing model

towards finding packings where jobs in a batch have similar due dates. However, based on the data, job

due dates in production are very concentrated around specific dates (see Section 2.2). Thus, there may

be hundreds of jobs with the same due date. An alternative measure of job closeness needs to be defined.

A relaxed CP scheduling problem was defined in Chapter 4 to find a global lower bound on tardiness.

We can define a similar relaxed scheduling problem, designated as RSP, for the full problem to use as

a packing guide. If two jobs are scheduled to end close together by the RSP, we can anticipate that

they are likely to be scheduled close together in a full schedule. Thus, it is heuristically advantageous to

batch them together. We first solve each problem instance using the RSP to obtain an ordering of jobs

based on their RSP end times, then use that ordering to guide the packing models. This procedure is

illustrated in Figure 5.2.

5.1.1 Relaxed Scheduling Problem

In the RSP, all packing constraints are relaxed and jobs are scheduled individually. Each job is assigned

a bottom tool to be used from the beginning of tool preparation to the end of demould, and assigned

one machine and one labour team for each relevant stage. In tool preparation, layup, and demould, each

job uses one machine and its required number of labour teams throughout its processing time. These

machines and labour teams are constrained by their availabilities over the schedule horizon. In the full

problem, jobs are processed in autoclaves simultaneously with other jobs as part of an autoclave batch.

In the RSP, each job takes up a certain amount of space in an autoclave. There is one autoclave ma-
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Figure 5.1: An example of the impact of packing decisions on scheduling decisions. In (a), we see an
autoclave batch containing three tool batches with its best possible schedule. In (b), we see the same
autoclave batch except tool batch 2 now contains jobs 30 and 98. All five jobs now have earlier end
times as the new tool batch 2 can be scheduled earlier in the layup stage due to its different resource
constraints.

Original Problem Instance Solve using RSP Problem Instance with RSP 
Information

Solve using 
Models 0 - 3

Each job has a due date in 
terms of number of weeks

Each job has a due date in 
terms of number of weeks and 
a rank value that corresponds 

to its scheduled end time in the 
RSP solution

1 2 3 4

Figure 5.2: Using the RSP to obtain an ordering of jobs to be used during packing.
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Layup Machine

Bottom Tool
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Figure 5.3: Sample scheduled job by the RSP in layup and curing alongside resource usage profiles; the
bottom tool is still in use before layup and after curing. Dotted lines represent the maximum capacity
of the resource.

chine available for each autoclave cycle type so the machines are constrained by their available volume

throughout the schedule horizon. Figure 5.3 shows an example of how a job might be scheduled through

the four stages and how that corresponds to resource usage.

We model and solve the RSP using a two-stage procedure:

1. Jobs are assigned to tool combinations based on a priority selection process to determine which

machines and labour teams are required for processing. Each job j has a list of tool combinations.

We calculate the ratio of bottom tool size over the total number of job slots present in any tool

batch using that combination. From the allowed tool combinations of j, we choose the combination

with the lowest size-to-slot ratio; if any ties exist, the one with the highest quantity of bottom

tools available is chosen to break the tie. After the assignment, we now also know the machines

and labour teams required as each tool combination comes with its own set of required resources

for each stage.

2. The remaining scheduling problem is modelled using CP. There are four sets of interval variables

corresponding to a job in each of the four stages. Each job is associated with an interval variable

that spans its stage-specific interval variables. The objective of this model is to find the schedule

with the minimum sum of job tardiness. Model variables and parameters are shown in Table 5.2.

Next, the model is presented in its entirety.
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Table 5.2: RSP parameters and variables.

Parameter Description

j ∈ J Set of jobs
b ∈ N Set of bottom tools

m ∈Mprep Set of tool preparation machines
m ∈Mlayup Set of layup machines
m ∈Mcure Set of curing machines

m ∈Mdemould Set of demould machines
l ∈ Lprep Set of tool preparation labour teams
l ∈ Llayup Set of layup labour teams
l ∈ Ldemould Set of demould labour teams
n ∈ H Set of time periods
sj Size of job j
dj Due date of job j
bj Bottom tool of tool combination assigned to job j
capb Capacity of bottom tool b, i.e. maximum number of jobs that can fit on tool
qb Quantity of bottom tool b available

mprep
j Tool preparation machine based on tool combination assigned to job j

mlayup
j Layup machine based on tool combination assigned to job j

mcure
j Curing machine based on tool combination assigned to job j

mdemould
j Demould machine of job j
lprepj Tool preparation labour team of job j

llayupj Layup labour team of job j

ldemouldj Demould labour team of job j
lqprepj Quantity of tool preparation labour teams required to process job j

lqlayupj Quantity of layup labour teams required to process job j

lqdemouldj Quantity of demould labour teams required to process job j
qmn Quantity (or volume if autoclave) of machine m available at time period n
qln Quantity of labour team l available at time period n

Variable Description

prepj Interval variable of job j in tool preparation
layupj Interval variable of job j in layup
curej Interval variable of job j in curing

demouldj Interval variable of job j in demould
totj Interval variable spanning all interval variables of job j
tj Tardiness of job j
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min
∑
j∈J

tj (5.1)

s.t. endBeforeStart(prepj , layupj) ∀j ∈ J
(5.2)

endBeforeStart(layupj , curej) ∀j ∈ J
(5.3)

endBeforeStart(curej , demouldj) ∀j ∈ J
(5.4)

span(totj , {prepj , demouldj}) ∀j ∈ J
(5.5)

alwaysIn

 ∑
j∈{J |bj=b}

pulse(totj , 1), 0, |H|, 0, capb × qb

 ∀b ∈ N

(5.6)

alwaysIn

 ∑
j∈{J |mprep

j =m}

pulse(prepj , 1), n, 0, qmn

 ∀m ∈Mprep, ∀n ∈ H

(5.7)

alwaysIn

 ∑
j∈{J |mlayup

j =m}

pulse(layupj , 1), n, 0, qmn

 ∀m ∈Mlayup, ∀n ∈ H

(5.8)

alwaysIn

 ∑
j∈{J |mcure

j =m}

pulse(autoj , sj), n, 0, q
m
n

 ∀m ∈Mcure, ∀n ∈ H

(5.9)

alwaysIn

 ∑
j∈{J |mdemould

j =m}

pulse(demouldj , 1), n, 0, qmn

 ∀m ∈Mdemould, ∀n ∈ H

(5.10)

alwaysIn

 ∑
j∈{J |lprepj =l}

pulse(prepj , lq
prep
j ), n, 0, qln

 ∀l ∈ Lprep, ∀n ∈ H

(5.11)

alwaysIn

 ∑
j∈{J |llayup

j =l}

pulse(layupj , lq
layup
j ), n, 0, qln

 ∀l ∈ Llayup, ∀n ∈ H

(5.12)

alwaysIn

 ∑
j∈{J |ldemould

j =l}

pulse(demouldj , lq
demould
j ), n, 0, qln

 ∀l ∈ Ldemould, ∀n ∈ H

(5.13)
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tj ≥ endOf(demouldj)− dj ∀j ∈ J
(5.14)

tj ∈ {0, ...|H|} ∀j ∈ J

Constraints (5.2) to (5.4) enforce sequencing constraints on the stage-specific interval variables. Tool

preparation before layup, layup before curing, and curing before demould. Constraint (5.5) connects the

stage-specific interval variables to the spanning interval variable for each job. This connection is required

by Constraint (5.6) which uses one slot of a bottom tool for the entire time a job is being processed.

Constraint (5.6) also enforces that only the available quantity of tool slots can be used at any point in

time. Constraints (5.7) to (5.13) enforce resource availabilities for machines and labour teams. With the

exception of Constraint (5.9), which deals with autoclave machines, all the constraints enforce that only

the available quantity of machines or labour teams can be used at any point in time. This availability

changes throughout the horizon due to predefined shift changes and machine downtime. Constraint (5.9)

is slightly different as it enforces that only the available capacity, rather than quantity, of each autoclave

machine can be used at any point in time. Constraint (5.14) defines job tardiness.

Once jobs are scheduled using the RSP, we define rspj to be the RSP rank of job j and equate rspj

to the end time of job j in the demould stage. An ordered list of jobs according to their RSP ranks

rspj0 ≤ rspj1 ≤ rspj2 ≤ ... would then be equal to {j0, j1, j2, ...}.

5.1.2 Constraint Programming Packing

First, let us describe the packing problem being solved by CP-pack. The first step is to assign jobs to tool

combinations. Each tool combination can fit a predetermined number of jobs, so we need to calculate

how many tool combinations need to be “opened” to fit all of its assigned jobs. The eventual objective

of the packing component is to minimize the number of autoclave batches so we should choose tool

combinations with smaller sizes if possible. Each open tool combination sets the foundation for one tool

batch and jobs should be partitioned into tool batches such that jobs with similar rspj values are batched

together. A tool batch k then inherits the average RSP rank of its jobs, rspk = 1
|{j in k}|

∑
j∈{j in k} rspj .

Next, tool batches with the same autoclave cycle need to be assigned to autoclave batches. As aforemen-

tioned, the main objective is to minimize the number of autoclave batches, but we also have a secondary

objective of minimizing the distribution of tool batch RSP ranks within each autoclave batch.

This complex packing is difficult to express in a monolithic model, so we defined CP-pack to be the

following sequence that takes jobs as an input and outputs autoclave batches:

1. Pack all jobs with only one mapped tool combination that contains one job slot, creating a set of

single-job tool batches. These assignment are not heuristically determined. Any job j with only

one tool combination option needs to be assigned to that tool combination. Furthermore, as the

tool combination only has room for one job, there is no other option for j aside from being batched

into a tool batch by itself. Thus, these single-job tool batches will exist in any feasible solution.

2. Assign remaining jobs to tool combinations using CP with the objective of minimizing the ratios

of bottom tool size to the total number of job slots over the assigned combinations.
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Figure 5.4: Fixing tool batch infeasibility arising from minimum fill requirements. The tool batches
on the left are formed as a result of step 2 in the packing sequence. However, the bottom tool has a
minimum fill requirement that is not satisfied by tool batch 2. After repairing the batches with step 3
in the packing sequence, the top tool batch remains unchanged, but the jobs in tool batch 2 have been
reassigned to a different tool combination, forming tool batches 3 and 4 which are feasible.

3. Repair tool packing. We relaxed the minimum tool fill requirement in step 2 so there may be tool

combinations where we have assigned jobs that cannot fill the minimum number of slots required

to open a new tool batch. Based on the characteristics of job-to-tool-combination mappings in the

data, we know that if a job has more than one possible tool combination it can be assigned to, it is

guaranteed that a least one of those combinations either does not have a minimum fill requirement

or is a single-job combination (i.e. only has one slot available). Thus, if we end up with a set

of jobs that cannot fill the chosen tool combination to its minimum level, we are able to choose

the alternate combination. This step guarantees that all tool batches will be feasible. Figure 5.4

explains how this repair process happens.

4. Assign tool batches to autoclave batches using CP with a primary objective of minimizing the

number of autoclave batches and a secondary objective of minimizing the distribution of tool

batch RSP rankings within each autoclave batch.

The model variables and parameters for step 2, the job-to-tool-combination packing problem, are

shown in Table 5.3.

min
∑
c∈C

rc × λc (5.15)

s.t. allowedAssignments(cj , {c | Cj}) ∀j ∈ J (5.16)

count(xj , c) ≤ capcb × capco × λc ∀c ∈ C (5.17)

xj ∈ {0, ...|C |} ∀j ∈ J ; λc ∈ {0, ...|J |} ∀c ∈ C

Constraint (5.16) makes sure each job can only be assigned to one of its mapped tool combinations.

Constraint (5.17) determines the number of tool batches that have to be opened for each tool combina-
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Table 5.3: CP job-to-tool-combination packing parameters and variables.

Parameter Description

j ∈ J Set of jobs
c ∈ C Set of tool combinations
c ∈ Cj Set of tool combinations mapped to job j
rc Ratio of bottom tool size to number of available slots for tool combination c
capcb Number of available slots in bottom tool b of combination c = (b, o)
capco Number of available slots in top tool o of combination c = (b, o)

Variable Description

xj Tool combination that job j is assigned to
λc Number of tool combinations c that were opened

Table 5.4: CP tool-batch-to-autoclave-batch packing parameters and variables.

Parameter Description

k ∈ B1∗ Set of packed tool batches
i ∈ B2 Set of autoclave batches
b ∈ N ∗ Set of bottom tools used by tool batches
σk Size of tool batch k
bk Bottom tool of tool batch k
rspk RSP rank of tool batch k
ack Autoclave cycle type required by tool batch k
aci Predefined autoclave cycle type of autoclave batch i
qb Quantity of bottom tool b available

Variable Description

yk Autoclave batch that tool batch k is assigned to
vi Size of autoclave batch i
φi Lowest RSP rank of all tool batches in autoclave batch i
πi Highest RSP rank of all tool batches in autoclave batch i
a Number of autoclave batches that were opened

tion. The count constraint counts the number of jobs have been assigned to a combination c and the

expression capcb× capco gives us the number of available slots on a tool batch using combination c. Thus,

we constrain capcb × capco × λc to be greater than the number of jobs assigned to c so λc then gives us

the minimum number of tool batches using c that have to be opened.

Model variables and parameters for step 4, the tool-batch-to-autoclave-batch packing problem, are

shown in Table 5.4.
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Table 5.5: MIP job-to-tool-combination packing variables.

Variable Description

xj,c Equal to 1 if job j is assigned to tool combination c, otherwise equal to 0
λc Number of tool combination c that were opened

min a+
∑
i∈B2

(πi − φi) (5.18)

s.t. pack
(
{vi | i ∈ B2, {yk | k ∈ B1∗}, {σk|k ∈ B1∗}

)
(5.19)

allowedAssignments
(
yk, {i ∈ B2 | ack = aci}

)
∀k ∈ B1∗ (5.20)

a = |B1∗| − |{B2 | vi > 0}| (5.21)

GCC
(
{0, ..., qb}, {0, ..., |B2|}, {yk | b = bk}

)
∀b ∈ N ∗ (5.22)

element
(
{φi | i ∈ B2}, yk

)
≤ rspk ∀k ∈ B1∗ (5.23)

element
(
{πi | i ∈ B2}, yk

)
≥ rspk ∀k ∈ B1∗ (5.24)

yk ∈ {0, ...|B2|}; vi ∈ {0, ...capacity of aci}

φi, πi ∈ {rspk | k ∈ B1∗} ∀i ∈ B2; a ∈ {0, ...|B2|}

Constraint (5.19) packs tool batches into autoclave batches while enforcing autoclave capacity limits.

Constraint (5.20) only allows tool batches to be assigned to autoclave batches with the same cycle type.1

Constraint (5.21) defines the number of open autoclave batches. Constraint (5.22) makes sure only the

available number of bottom tools are present in any autoclave batch. Constraints (5.23) and (5.24)

define the minimum and maximum tool batch RSP rankings in an autoclave batch.

5.1.3 Mixed Integer Programming Packing

MIP-pack follows the same packing sequence as described in Section 5.1.2, with the two mathematical

models formulated using MIP.

Model variables for step 2, the job-to-tool-combination packing problem, are shown in Table 5.5; see

Table 5.3 for model parameters.

min
∑
c∈C

rc × λc (5.25)

s.t.
∑
c∈C

xj,c = 1 ∀j ∈ J (5.26)∑
{c∈C|c/∈Cj}

xj,c = 0 ∀j ∈ J (5.27)

∑
j∈J

xj,c ≤ capcb × capco × λc ∀c ∈ C (5.28)

xj,c ∈ {0, 1} ∀j ∈ J , ∀c ∈ C ; λc ∈ {0, ...|J |} ∀c ∈ C

1The initial set of empty autoclave batches is the same size as the set of packed tool batches as the worst case scenario
has each tool batch assigned to its own autoclave batch. Thus, each empty autoclave batch corresponds to a tool batch
and inherits its autoclave cycle type.
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Table 5.6: MIP tool-batch-to-autoclave-batch packing variables.

Variable Description

xk,i Equal to 1 if tool batch k is assigned to autoclave batch i, otherwise equal to 0
γi Equal to 1 if autoclave batch i is open, otherwise equal to 0
vi Size of autoclave batch i
φi Lowest RSP rank of all tool batches in autoclave batch i
πi Highest RSP rank of all tool batches in autoclave batch i
a Number of open autoclave batches

Constraint (5.26) assigns each job to one tool combination. Constraint (5.27) makes sure jobs are

only assigned to mapped tool combinations. Constraint (5.28) counts the number of tool batches that

have to be opened based on how many jobs have been assigned to each tool combination.

Model variables and parameters for step 4, the tool-batch-to-autoclave-batch packing problem, are

shown in Table 5.6; see Table 5.4 for model parameters.

min a+
∑
i∈B2

(πi − φi) (5.29)

s.t.
∑
i∈B2

xk,i = 1 ∀k ∈ B1∗ (5.30)

∑
{i∈B2|ack 6=aci}

xk,i = 0 ∀k ∈ B1∗ (5.31)

γi ≥ xk,i ∀k ∈ B1∗ ∀i ∈ B2 (5.32)

a ≥
∑
i∈B2

γi (5.33)

vi =
∑
k∈B1∗

σk × xk,i ∀i ∈ B2 (5.34)

∑
{k∈B1∗|bk=b}

xk′ ,i ≤ qb ∀b ∈ N ∗, ∀i ∈ B2 (5.35)

φi ≤ rspk +M (1− xk,i) ∀k ∈ B1∗, ∀i ∈ B2 (5.36)

πi ≥ rspk −M (1− xk,i) ∀k ∈ B1∗, ∀i ∈ B2 (5.37)

xk,i ∈ {0, 1} ∀k ∈ B1, ∀i ∈ B2; γi ∈ {0, 1} ∀i ∈ B2; a ∈ {0, ...|B2|}

vi ∈ {0, ...capacity of aci} ∀i ∈ B2; φi, πi ∈ {rspk | k ∈ B1∗} ∀i ∈ B2

Constraint (5.30) assigns each tool batch to one autoclave batch. Constraint (5.31) makes sure tool

batches are only assigned to an autoclave batch with the same cycle type. Constraint (5.32) defines the

indicator variable that equals 1 if an autoclave batch is open. Constraint (5.33) defines the number of

open autoclave batches. Constraint (5.34) defines the size of each autoclave batch. Constraint (5.35)

makes sure only the available quantity of bottom tools is used in an autoclave batch. Constraints (5.36)

and (5.37) define the minimum and maximum tool batch RSP ranks within an autoclave batch.
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5.1.4 Earliest Due Date Packing

The EDD packing algorithm follows a similar sequence as the packing portion of the EDD algorithm

used to solve the abstracted problem (see Section 4.2.4). First, jobs are packed into tool batches. Jobs

are sorted by increasing due date and then, within each block of jobs with the same due date, by RSP

ranking. To form a tool batch, we first randomly select a job j from the first L items of J , where L is

a predetermined length of randomization. Let c be a tool combinations from Cj , the set of mapped tool

combinations to j, where capcb×capco is the total number of slots in a tool batch using c and sb is the size

of the bottom tool in c. We define the bottom tool size per slot ratio as equal to sb
capcb×capco

and assign j

to the tool combination with the smallest bottom tool size per slot from Cj . If any ties exist, we select

the tool combination with the highest quantity of bottom tools available. The selected tool combination

forms the foundation of the current tool batch k. We iterate through the remaining jobs in order and

add any jobs that can fit into empty slots in k. Once we are no longer able to add jobs, if k does not

meet the minimum fill requirement, all jobs from k are added back into J and the tool combination is

removed from Cj . Packing proceeds until all jobs are assigned to a tool batch. Each job j is guaranteed

to have a tool combination with no minimum fill requirement in Cj , thus, we are guaranteed to be able

to pack all jobs into tool batches using this procedure.

The list of tool batches sorted by increasing RSP rank is denoted by B1. To form an autoclave

batch, we first randomly select a tool batch k from the first L items of B1. The autoclave cycle type

of k determines the cycle type of the current autoclave batch. Then, we iterate through the remaining

tool batches and add any tool batches with a matching cycle type to the current autoclave batch until

either the autoclave batch is full or there are no more eligible tool batches remaining. Note that tool

batches are also added to an autoclave batch only if adding the tool batch does not exceed any available

tool quantities. Packing proceeds until all tool batches are assigned to an autoclave batch. We are

guaranteed to be able to pack all tool batches as in the worst case scenario, a tool batch can be assigned

to its own autoclave batch. Algorithm 5 formally describes this packing procedure.

5.1.5 Constraint Programming Scheduling

Given the tool batches and autoclave batches produced by a packing approach, we now need to schedule

these batches in the four stages of the CMP. Each tool batch needs to be scheduled once in tool prepara-

tion, layup, and demould, and each autoclave batch needs to be scheduled once in curing. The objective

of the scheduling problem is to minimize the sum of job tardiness. We chose this objective due to the

fact that reducing tardiness can be directly correlated to reducing cost. Model variables and parameters

are shown in Table 5.7.



Chapter 5. Scaling Up: Complexity 80

Algorithm 5: EDD Packing

Result: Feasible packing
for each repetition do

while J not empty do
sort J by increasing due date;
j ← randomly selected job from first L items of J ;
create new tool batch k and add to B1;
pick the tool combination c with the smallest bottom tool size per slot ratio out of the
set c ∈ Cj ;

assign tool batch k to use combination c;
remove j from J and assign to k;
iterate through J and add jobs that are also mapped to c to k until all job slots in k are
filled or no more eligible jobs are left

remove all jobs added to k from J
if k does not meet minimum fill then

add all jobs from k back into J ;
remove tool combination c from Cj ;

end

end
while B1 not empty do

sort B1 by increasing RSP rank;
k ← randomly selected tool batch from first L items of B1;
create new autoclave batch i and add to B2;
set the cycle type of autoclave batch i to be equal to the cycle type required by tool
batch k;

remove k from B1 and assign to i;
iterate through B1, if a tool batch k∗ has the same cycle type as i and adding k∗ will not
exceed any available tool quantities in i, add k∗ to i and remove from B1;

end
add packing solution to solution list;

end
pick best packing solution from solution list2;
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Table 5.7: CP scheduling parameters and variables.

Parameter Description

j ∈ J Set of jobs
k ∈ B1 Set of tool batches
i ∈ B2 Set of autoclave batches
b ∈ N Set of bottom tools

m ∈Mprep Set of tool preparation machines
m ∈Mlayup Set of layup machines
m ∈Mcure Set of curing machines

m ∈Mdemould Set of demould machines
l ∈ Lprep Set of tool preparation labour teams
l ∈ Llayup Set of layup labour teams
l ∈ Ldemould Set of demould labour teams
n ∈ H Set of time periods
dj Due date of job j
kj Tool batch that job j is assigned to
bk Bottom tool of tool batch k
ik Autoclave batch that tool batch k is assigned to
qb Quantity of bottom tool b available

mprep
k Tool preparation machine of tool batch k

mlayup
k Layup machine of tool batch k

mcure
i Curing machine of autoclave batch i

mdemould
k Demould machine of tool batch k
lprepk Tool preparation labour team of tool batch k

llayupk Layup labour team of tool batch k
ldemouldk Demould labour team of tool batch k
lqprepk Quantity of tool preparation labour teams required to process tool batch k

lqlayupk Quantity of layup labour teams required to process tool batch k
lqdemouldk Quantity of demould labour teams required to process tool batch k

qmn Quantity of machine m available at time period n
qln Quantity of labour team l available at time period n

Variable Description

prepk Interval variable for tool batch k in tool preparation
layupk Interval variable for tool batch k in layup
curei Interval variable for curing common to all tool batches in autoclave batch i

demouldk Interval variable for tool batch k in demould
totk Interval variable spanning all interval variables of tool batch k
tj Tardiness of job j
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min
∑
j∈J

tj (5.38)

s.t. endBeforeStart(prepk, layupk) ∀k ∈ B1

(5.39)

endBeforeStart(layupk, {curei | i = ik}) ∀k ∈ B1

(5.40)

endBeforeStart({curei | i = ik}, demouldk) ∀k ∈ B1

(5.41)

alwaysIn

 ∑
k∈{B1|b=bk}

pulse(totk, 1), 0, |H|, 0, qb
 ∀b ∈ N

(5.42)

alwaysIn

 ∑
k∈{B1|m=mprep

k }

pulse(prepk, 1), n, 0, qmn

 ∀m ∈Mprep, ∀n ∈ H

(5.43)

alwaysIn

 ∑
k∈{B1|m=mlayup

k }

pulse(layupk, 1), n, 0, qmn

 ∀m ∈Mlayup, ∀n ∈ H

(5.44)

alwaysIn

 ∑
i∈{B2|m=mcure

i }

pulse(autok, 1), n, 0, qmn

 ∀m ∈Mcure, ∀n ∈ H

(5.45)

alwaysIn

 ∑
k∈{B1|m=mdemould

k }

pulse(demouldk, 1), n, 0, qmn

 ∀m ∈Mdemould, ∀n ∈ H

(5.46)

alwaysIn

 ∑
k∈{B1|l=lprepk }

pulse(prepk, lq
prep
k ), n, 0, qln

 ∀l ∈ Lprep, ∀n ∈ H

(5.47)

alwaysIn

 ∑
k∈{B1|l=llayup

k }

pulse(layupk, lq
layup
k ), n, 0, qln

 ∀l ∈ Llayup, ∀n ∈ H

(5.48)

alwaysIn

 ∑
k∈{B1|l=ldemould

k }

pulse(demouldk, lq
demould
k ), n, 0, qln

 ∀l ∈ Ldemould, ∀n ∈ H

(5.49)

tj ≥ endOf({demouldk | k = kj})− dj ∀j ∈ B1

(5.50)

tj ∈ {0, ...|H|} ∀j ∈ J
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Figure 5.5: Two-stage decomposition flow between problems.

Constraints (5.39) to (5.41) enforce sequencing between tool preparation, layup, curing, and demould

activities. Constraint (5.42) makes sure only the available quantity of bottom tools are used at any point

in time. Constraints (5.43) to (5.49) make sure only the available quantity of machines and labour teams

within a time period is used during that time period. Constraint (5.50) defines job tardiness.

Logic-based Benders Decomposition Cuts. We can use the CP packing model presented in Sec-

tion 5.1.2 with the above CP scheduling model to form a two-stage Logic-based Benders Decomposition

(LBBD) where the master problem consists of the tool-batch-to-autoclave-batch packing and the sub-

problem consists of the entire scheduling problem. Figure 5.5 shows the decomposition flow.

After the packing and scheduling is done, we can add optimality cuts of a similar form as the no-good

optimality cuts defined for the abstracted problem to re-solve the problem from the master problem (see

Section 4.2.3). Note that results from Chapter 4 show the dual bounds of Section 4.2.3 do not improve

the search process in any meaningful way, so we only use the no-good optimality cuts for this LBBD

model. We introduce a new set of binary variables ωi∗ ∈ {0, 1} where i∗ ∈ B2∗ is the set of open autoclave

batches. In the abstracted problem, we cut job to autoclave batch assignments after every cycle. But

since we are now assigning tool batches to autoclave batches, we need to modify the cuts accordingly.

We set ωi∗ = 1 if autoclave batch i∗ is required to be different and then enforce that only strict subsets of

tool batches in that autoclave batch can appear together again. At least one {ωi∗ |i∗ ∈ B2∗} is required

to be equal to 1. Constraints (5.51) and (5.52) form the no-good optimality cuts.

(ωi∗ == 1)→
(
count({yk | k ∈ B1,i

∗
}, i) ≤ |B1,i

∗
− 1|

)
∀i ∈ B2, ∀i∗ ∈ B2∗ (5.51)∑

i∗∈B2∗

ωi∗ ≥ 1 (5.52)

ωi∗ ∈ {0, 1} ∀i∗ ∈ B2∗
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Figure 5.6: Comparison of average sum of tardiness between solution techniques.

5.2 Numerical Results

The four solution techniques presented in this chapter were tested on 3 sets of 30 problem instances with

100, 300 and 500 jobs per instance, respectively. Problem instances were sampled using the technique

described in Section 2.2.1. All models and algorithms were implemented in Java and all mathematical

models were implemented using CPLEX Optimization Studio 12.9. Models 1 to 3 were given a thirty

minute time limit for packing and a thirty minute time limit for scheduling to solve an instance. Model 0,

the LBBD approach, was given a sixty minute total time limit and the master problem and subproblem

were individually given two minute time limits.

Overall Comparison of Solution Approaches. All four solution techniques were able to find fea-

sible solution for all instances. Figure 5.6 compares the average sum of tardiness found by the different

techniques..

It is difficult to compare solution techniques by looking at the 100 job and 300 job instances as the

tardiness values are so low. However, when we get to the 500 job instances, we can see that Model 0

has the worst performance, followed by Models 1 and 2, then Model 3, which has the best peformance.

Model 2 finds slightly better schedules with MIP-pack and CP-sched than Model 1 which uses CP-pack

and CP-sched; this result weakly implies that MIP may be more capable of finding better solutions to

complex packing problems than CP. However, the discrepancy is small and ultimately does not motivate

any investigation into the differences between MIP and CP. The more interesting result from Figure 5.6

is the impressive performance of Model 3. The average sum of tardiness for instances with 500 jobs is

significantly lower for Model 3 than all other techniques. We can hypothesize that because the number

of open autoclave batches still falls within the same general range for Models 1, 2, and 3, the distribution

of jobs amongst batches, which we denote as packing quality, is most likely accounting for the difference

in tardiness.
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Figure 5.7: Connection between number of autoclave batches and sum of tardiness.

Figure 5.7 gives a more detailed look at the number of autoclave batches compared to tardiness for

each instance. The tardiness of Model 0 solutions falls within the same range as Model 1 and 2 solu-

tion tardiness despite the larger number of open autoclave batches. Model 0 cycles between the master

problem and subproblem 15 times within the one hour limit to solve an instance. Figure 5.8 shows

how much tardiness varies throughout these 15 iterations for a few sample instances. This variance

supports our previous hypothesis about the packing quality also having an impact on tardiness. Model

0 is able to find different distributions of jobs across batches by iterating between the master problem

and subproblem, thus finding better schedules compared to other models that open same number of

open autoclave batches. However, the large number of autoclave batches opened by Model 0 offsets

this ability to improve tardiness as the number of autoclave batches is still positively correlated with

tardiness, which is why the average tardiness for Model 0 in Figure 5.6 is the highest. Therefore, Model

0 is still considered to be the worst-performing model.

In conclusion, we have a clear ranking of solutions: Model 3, using EDD-pack and CP-sched, is the

best technique so far while Model 0, the LBBD model, is the worst. Models 1, using CP-pack and CP-

sched, and 2, using MIP-pack and CP-sched, are almost indistinguishable from each other and perform

significantly worse than Model 3.

Quality over Time. Figure 5.9 shows schedule quality, i.e. sum of tardiness, over time. Each point

represents a time where a better quality solution was found using CP-sched for Models 1, 2, and 3.

Model 0 was not included due to its smaller, two minute time limit on CP-sched. Figure 5.9 supports the

hypothesis of CP-sched stagnating almost immediately after starting. There are still minor improvements

in tardiness being made throughout the thirty minutes, however, these improvements appear to be

negligible.
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Figure 5.8: Variance of tardiness from different schedules found by Model 0 within one hour.
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Figure 5.9: Schedule quality over time with CP-sched. Note that solutions to instances with 100 jobs
were solved within a few seconds so graphs for the 100 job instances were not includes in this figure.
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Figure 5.10: Connection between the distribution of RSP ranks within autoclave batches and sum of
tardiness for Models 1, 2, and 3.

Packing Quality. We have mentioned that packing quality may be a contributing factor to schedule

tardiness. One characterization of packing quality is the distribution of RSP rankings within autoclave

batches. The RSP distribution of an autoclave batch is the difference between the highest and lowest

job RSP rankings amongst jobs in the batch. If an autoclave batch only contains one job, then the RSP

distribution is not counted in calculations. Figure 5.10 shows the distribution of RSP ranks within au-

toclave batches between Models 1, 2, and 3 and its impact on sum of tardiness. We can see that packing

quality with respect to RSP distributions is positively correlated with schedule tardiness. EDD-pack is

able to find packings with lower RSP distributions and CP-sched is subsequently able to find schedules

with lower tardiness. MIP-pack and CP-pack appear to be packing batches with higher RSP distribu-

tions, which correlates with increased tardiness in schedules from CP-sched. The clusters of Model 3

solutions have a lower average and standard deviation of RSP distributions compared to Models 1 and 2.

In conclusion, we can see that both the number of autoclave batches and the quality of autoclave

batches opened by a packing model contribute to eventual schedule tardiness. The instances tested

in this chapter are too small for us to provide any conclusive statements, so this connection between

autoclave batches and tardiness will be explored more deeply in the next chapter.
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Figure 5.11: Percentage of tardy jobs per instance found by all solution techniques.

Job Tardiness. Lastly, we look at the percentage of jobs that are tardy across the different solution

techniques in Figure 5.11. We can see that as the range of percentages only differs slightly between

techniques, and Model 3 outperforms the other models again. The data presented in Figure 5.11 does

not have a clear enough correlation such that we can predict how many jobs might be tardy given a

certain instance size.

5.3 Conclusions

This chapter explored the efficacy of four solution techniques extended from models developed in Chap-

ter 4. Each solution technique is the combination of one packing model and one scheduling model:

a Logic-based Benders Decomposition (LBBD), Mixed Integer Programming packing (MIP-pack) with

Constraint Programming scheduling (CP-sched), Constraint Programming packing (CP-pack) with CP-

sched, an Earliest Due Date packing heuristic (EDD-pack) with CP-sched. These four approaches, along

with their variables, parameters, and formulations were presented in this chapter. Each approach was

tested on 3 sets of 30 instances containing 100, 300, and 500 jobs per instance, respectively. EDD-pack

with CP-sched performed the best while LBBD performed the worst. MIP-pack with CP-sched per-

formed slightly better than CP-pack with CP-sched but both were eclipsed by EDD-pack with CP-sched.

The connection between autoclave batch characteristics and schedule tardiness was explored. Data

showed a strong connection between schedule tardiness and both the number of autoclave batches and

the quality of autoclave batches found by packing. It was shown that the distribution of job RSP rank-

ings within autoclave batches had a positive correlation with sum of tardiness in the eventual schedule.

This correlation is further explored in the next chapter with larger problem instances. Another charac-

terization of the results showed that the percentage of tardy jobs within a given instance does not vary
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significantly between solution techniques. EDD-pack with CP-sched performs slightly better than the

other techniques, with 0% to 9% of jobs being tardy for instances with 500 or fewer jobs.

Overall, we can conclude from this chapter that EDD-pack with CP-sched is the most likely candidate

so far in producing high quality production-scale schedules. Although the other solution techniques were

able to solve all the instances in this chapter, they exhibited worse performance and scalability than

EDD-pack with CP-sched. This result is similar to what we found in Chapter 4, where the hybrid

heuristic-CP approach that uses a CP scheduling model to improve a feasible EDD solution performed

well and showed the greatest scalability. Thus, EDD-pack with CP-sched will be the only model from

this chapter tested on production-scale instances in the next chapter.



Chapter 6

Scaling Up: Size

The instances solved in Chapter 5 are much smaller than the problems solved in practice: 4000 job

instances with due dates from 1 to 4 weeks. In this chapter, we test the best solution technique from

Chapter 5, an Earliest Due Date (EDD) packing heuristic with Constraint Programming (CP) schedul-

ing on the full size instances. We also present a new packing algorithm, size-constrained clustering, and

two new scheduling algorithms, a parallel scheduling algorithm and a genetic algorithm. The numer-

ical results presented in this chapter are for problems of the same complexity and scale as real-world

production instances.

6.1 Solution Approaches

After representing the full complexity of the problem in Chapter 5, our next step is to investigate solu-

tion techniques for increasingly larger problem instances. As demonstrated in the results of Chapter 5,

the EDD packing algorithm consistently outperforms the Mixed Integer Programming and Constraint

Programming (CP) packing models. Thus, we only test the EDD packing and CP scheduling models for

scalability in this chapter. Due to the efficacy of a greedy heuristic against exact methods, we will also

introduce and test heuristic algorithms for packing and scheduling.

We develop a learning-based packing technique by using techniques from the constrained clustering

community. If each autoclave batch is thought of as a cluster of tool batches, size-constrained clustering

[130] (SCC) can be used to enforce autoclave capacities as well as the frequency of bottom tools within

clusters (autoclave batches). We designate this packing technique as SCC-pack.

The scheduling problem is similar to a problem within project scheduling literature, known as the

Time-Varying Resource-Constrained Project Scheduling Problem [71]. We implement a modified version

of a heuristic technique for this problem, known as the parallel scheduling scheme [14]. There has also

been success in project scheduling literature in using a genetic algorithm to determine the activity list

that is taken as an input by the parallel scheduling scheme [55]. Thus, we will test two new scheduling

techniques, designated as PS-sched and PS-GA-sched.

90



Chapter 6. Scaling Up: Size 91

Table 6.1: Overview of models and algorithms.

Scheduling

P
a
ck

in
g

Constraint
Programming

(CP)

Parallel Scheduling
Scheme (PS)

Genetic Algorithm
(PS-GA)

Earliest Due Date
Packing Heuristic

(EDD)
Model 3 Model 4 Model 5

Constrained
Clustering (SCC)

Model 6 Model 7 Model 8

Therefore, in this chapter we have two packing techniques, EDD-pack and SCC-pack, and three

scheduling techniques, CP-sched, PS-sched, and PS-GA-sched. We test every combination of packing

and scheduling techniques, resulting in a total of six distinct models, numbered as Models 3 to 81, that

take an input of jobs and produce an output of scheduled batches. Table 6.1 shows an overview of these

models and their techniques.

The purpose of this chapter is to compare the performance of our best solution approach so far, EDD-

pack with CP-sched, against several non-exact methods from different bodies of literatures. In Chapter 5,

we showed the superiority of EDD-pack with CP-sched against other combinations using exact modelling

techniques, but this approach has not yet been tested against other non-exact approaches.

6.1.1 Size-Constrained Cluster Packing

SCC-pack is inspired by the KmeansS algorithm [130] for size-constrained clustering (see Section 3.2.4).

Before clustering, we batch jobs into tool batches. Thus, we re-use the first section of Algorithm 5

(Section 5.1.4) to obtain a set of feasible tool batches. Each tool batch then represents one point, and

an autoclave batch subsequently represents a cluster of points. The location of a point is given by the

RSP rank of the point’s associated tool batch (see Section 5.1.1). Due to the fact that packing is com-

pletely disjoint for each distinct autoclave cycle type, the following clustering algorithm is performed

independently for each cycle type.

As with any k-means based algorithm, we need to first determine a starting value of k and obtain an

initial clustering of points with k centroids. The minimum number of clusters we can have is bounded

by the number of bottom tools that exist. Given a bottom tool b with quantity 1, if 10 tool batches

are formed using b, we need to have at least 10 autoclave batches to feasibly pack those tool batches

without using more than the existing number of bottom tools in any autoclave batch. Thus, the lower

bound on the number of autoclave batch is calculated using the following equation.

LB = max

({
|{k ∈ B1 | bk = b}|

qb
| ∀b ∈ N

})
(6.1)

1We start numbering the models at 3 to remain consistent with the numbering of models in Chapter 5, where Model 3
refers to the model with EDD-pack and CP-sched
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where k ∈ B1 is the set of tool batches, bk is the tool batch being used by tool batch k, and qb is the

available quantity of bottom tool b.

To obtain an initial clustering of points, we use the classic k-means algorithm [86] to find a clustering

with k equal to the lower bound. Since k is the lower bound, all k clusters are guaranteed to be non-

empty in any feasible solution. Thus, we force each cluster to contain at least one point. Once an initial

clustering is obtained, we iterate through the clusters, modify centroids, and then reassign points to

their new closest centroids. To satisfy the limit on the quantities of bottom tools, we reassign each point

to their closest centroid with less than the available quantity of the point’s bottom tool. For example,

we may have a point p representing a tool batch with bottom tool b but point p’s two closest clusters

already have two points each with bottom tool b and there are only two units of b in inventory. Thus,

point p needs to be assigned to its third closest cluster.

When a cluster c is infeasible, i.e. larger than its constrained size, there exists a collection of sets

of points {Pi | i = 0, ..., n} where for each set Pi, if points in the set are removed from the cluster,

the cluster becomes feasible. We need to find the value i∗ such that points in Pi∗ are further away

from the centroid of c than points in any other set Pi, i 6= i∗. When we find our desired set of points

Pi∗ , we need to adjust the centroid of c to move away from the points in Pi∗ . At each iteration, if a

cluster is infeasible, the centroid needs to be modified. We stop the clustering algorithm when cluster

centroids stay constant over multiple iterations. Thus, we are guaranteed one of two options: if k clus-

ters are not enough to feasibly contain all points, we are left with an incomplete clustering and need

to repeat the entire process with k + 1 clusters; if cluster centroids do not change over multiple itera-

tions, the clustering is feasible with respect to all size constraints. We can always find a feasible solution

as in the worst case, k is equal to the number of tool batches and each point is assigned to its own cluster.

Now, let us formally define the centroid modification procedure as presented in Algorithm 6.2 Given

a cluster (autoclave batch), an in-class point refers to any point (tool batch) within that cluster. Point

coordinates refer to its tool batch’s RSP rank, so the centroid of a cluster is the average of all tool batch

RSP ranks assigned to the autoclave batch represented by the cluster. If a cluster contains more volume

than its capacity, then the farthest points from the cluster centroid which, when removed, make the

cluster feasible are labelled as the farthest in-class (FI) points. Let the set of points Pi∗ be the farthest

in-class (FI) points of a cluster. Each FI point is paired with a virtual point called a virtual FI (VFI)

point. A VFI point is a dummy point that adds weight in the opposite direction as its FI point with

respect to the cluster centroid. Thus, when we update the centroid location, we use the VFI points to

move the centroid away from the cluster’s FI points. If y ∈ FI(Xh) is the set of FI points in cluster Xh

and x ∈ Xh is the set of all points in cluster Xh, the following equation defines the VFI point z for any

FI point y.

z = 2×
∑
x∈{Xh\FI(Xh)} x

|Xh \ FI(Xh)|
− y ∀y ∈ FI(Xh) (6.2)

If a cluster contains VFI points z ∈ VFI(Xh), its centroid can be updated with the following equation

2This centroid modification procedure with equations (6.2) and (6.3) was presented by Zhang et al. [130].
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Algorithm 6: SCC Packing

Result: Feasible packing using SCC-pack
let C hold future clusters;
for each autoclave cycle do
P ← points (tool batches) to be clustered;
k ← lower bound on number of clusters (autoclave batches);
while feasible clusterings not found do

perform regular k-means to initialize clusters, ensure that each cluster out of k has at
least one point;

while iterations ≤ maxIter do
add points from P to their closest cluster with less than the available number of
tools, ensure that each cluster out of k has at least one point;;

for each cluster do
detect FI points;
for each FI point do

calculate VFI point using Equation (6.2);
end

end
if no FI points detected then

feasible clustering have been found;
add all clusters to C;

else
for each cluster do

reset cluster centroids using Equation (6.3);
end

end

end
if iterations = maxIter and clusters not feasible then

k ← k + 1;
end

end

end
return C as packed autoclave batches;
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Figure 6.1: FI and VFI points in a cluster. In (a), the points β and µ are the farthest points in the
cluster defined by centroid a which if removed, will make the cluster feasible. Thus, in (b), we see the
VFI points µ

′
and β

′
as calculated by Equation (6.2) are on the other side of the cluster as the original

FI points. Thus, when the centroid is updated with Equation (6.3), the centroid moves towards the VFI
points and away from the FI points. Then, we see that in (c), the two original FI points are now closer
to other cluster centroids and have thus been removed from their original cluster. Then, the cluster with
new centroid a

′
is now feasible.

where γ is the penalty factor for modifying cluster centroids. Note that even though the set of VFI points

z ∈ VFI is calculated by finding the VFI point for every FI point y ∈ FI(Xh), we do not care which

VFI point is associated with which FI point.

µh =

∑
x∈Xh

x+ γ
∑
z∈VFI(Xh)

z

|Xh|+ γ|VFI(Xh)|
(6.3)

Figure 6.1 shows how FI and VFI points are detected and calculated as well as how they contribute

to updating the cluster centroid.

Zhang et al. [130] detected FI points by cluster size in terms of number of points in a cluster. How-

ever, we need to introduce new detection criteria as our clusters, representing autoclave batches, are not

constrained by the number of points but by the total size of the points added together. Thus, for each

cluster, we calculate the sum of point sizes (i.e. sum of tool batch sizes) and determine if it is larger

than the autoclave capacity of the current cycle type. For example, if the autoclave capacity is 1000 and

the sum of point sizes is 1200, then the farthest points from the centroid that add up to at least 200

are labelled as FI points. Then, we use Equation 6.2 to calculate the VFI points associated with our

labelled FI points and Equation 6.3 to update the centroid location.

This process of finding FI/VFI points and updating centroids is repeated until either no clusters have

FI points or we reach a threshold of iterations. If the maximum number of iterations is reached without

finding a solution with only feasible clusters, we increase k by one and repeat the process. In the worst

case scenario, we assign one point (tool batch) to one cluster (autoclave batch), so this algorithm will

always converge.
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Figure 6.2: Checking and scheduling activities on resource horizons. When the demould activity is
scheduled, the earliest time for which a future activity is scheduled on this bottom tool resource is
moved to the end of the scheduled activity.

6.1.2 Parallel Scheduling

The PS-sched algorithm is inspired by the parallel scheduling scheme from project scheduling literature

[34] (see Section 3.2.3). Similar to the interval variables used in CP-sched, we define an activity element

that corresponds to a batch being processed in one stage. Thus, each tool batch has three activities for

tool preparation, layup, and demould, respectively, and each autoclave batch has one activity for curing.

We know the processing time of these activities and the required resources from the packing decisions.

First, we sort the set of autoclave batches by RSP rank, where an autoclave batch’s RSP rank is the

average of its jobs’ RSP ranks. In the classic parallel scheduling scheme, at the start of each iteration,

all activities with fulfilled precedence are added to the queue and scheduled with a certain priority.

Then, the schedule horizon is updated to the earliest finish time of the recently scheduled activities. The

PS-sched algorithm is motivated by the idea of choosing a set of activities then scheduling them without

regard for activities not in the set.

Thus, at each iteration, we randomly select an autoclave batch i from the first L items of B2. We

schedule all tool preparation, layup, curing, and demould activities for that autoclave batch without

considering activities from other batches. Because there is precedence between stages, we have to create

two lists. One to initially hold all tool prep activities associated with tool batches in i, and the second to

hold the remaining layup, curing, and demould activities. For each activity in the first list, we find the

earliest time that the activity can be scheduled while taking into account all of its required resources and

schedule the activity to start at that time. Figure 6.2 clarifies this check and schedule procedure. Then,

we look through the second list and add any activities with now fulfilled precedence to the first list.

These actions are repeated until all activities for autoclave batch i have been scheduled and we reach

the end of one iteration. We repeat this iterative process until the activities for all autoclave batches

have been scheduled. Algorithm 7 formally describes this scheduling procedure.
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Algorithm 7: PS Scheduling

Result: Feasible schedule using PS-sched
given a set of packed autoclave batches B2;
for each repetition do

reset all horizons of bottom tools, machines, and labour teams used by any batch;
let I contain activities that are able to be scheduled;
let A contain successors of activities in I;
sort B2 by RSP rank;
while B2 not empty do

i← randomly selected autoclave batch from first L items of B2;
add all tool preparation activities to I;
add all layup, curing, and demould activities to A;
remove i from B2;
while I not empty do

a← randomly selected activity from first L items of I;
e← earliest time where all resource horizons used by a is available;
while a is not scheduled do

if associated horizons of a can be scheduled from e then
schedule a with start time of e;
if a is demould activity then

update earliest start times of all bottom tool horizons associated with i to
end of a;

end

end
e← next time period;

end
move any activities from A with fulfilled precedence to I;

end

end
add scheduling solution to solution list;

end
pick best scheduling solution from solution list;
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6.1.3 Genetic Algorithm with Parallel Scheduling

The order in which autoclave batches are schedulled has a large impact on the resulting schedule tar-

diness as resource horizons get pushed back with every autoclave batch that is scheduled. Therefore,

once an autoclave batch is fully scheduled, any resource used by that batch can now only be used after

the end of the batch. A genetic algorithm can therefore be used to try and find better autoclave batch

orderings through merging the best orderings together over several generations.

The approach used by PS-GA-sched is inspired by a genetic algorithm introduced by Hartmann [55]

(see Section 3.2.3) that uses a permutation based representation of activities, referred to as activity

lists. Within the context of the CMP, an activity list is an ordered list of autoclave batches. Each

individual within the population of PS-GA-sched is one activity list, thus, each gene refers to one au-

toclave batch. Individuals in PS-GA-sched are scheduled using Algorithm 7 without randomization in

selecting autoclave batches; batches are scheduled in the exact order that they appear in the activity list.

First, we randomly generate a set of individuals (activity lists) to create the initial population. When

generating an individual, we start with an empty activity list. Then, we randomly select an autoclave

batch from all autoclave batches that have not yet been added to the activity list and append the selected

batch to the end of the activity list. We repeat this selection process until all autoclave batches have been

added to the activity list. Then, we apply PS-sched to obtain the fitness of the newly created activity

list (sum of job tardiness) and add the new individual into the population. After n individuals have

been created in this manner, we have the starting population and can begin the reproduction process.

For each generation, we sort the individuals in the population by decreasing fitness, where a fitter

individual has a lower sum of job tardiness than a less fit individual. We keep the first n individuals

in the population and discard the rest. From the remaining n individuals, we randomly create pairs of

individuals for reproduction. Each pair of individuals, x and y, produce two new individuals, a and b,

using the two-point crossover method. In two-point crossover, we randomly draw two unique integers α

and β, where 0 ≤ α < β < n. The activity list of a consists of combining x’s activity list subsequence

from indices i = 0, ..., α, with y’s activity list subsequence from indices i = α+ 1, ..., β, and x’s activity

list subsequence from indices i = β + 1, ..., n. The activity list of b consists of combining y’s activity list

subsequence from indices i = 0, ..., α, with x’s activity list subsequence from indices i = α+ 1, ..., β, and

y’s activity list subsequence from indices i = β+ 1, ..., n. To account for possible repetitions and missing

batches in the children’s activity lists, we add a repair step after both children have been produced.

First, any repeated autoclave batches are removed, and second, any missing batches are appended to

the end of the children’s activity lists.

There is also a certain probability of mutation for newly reproduced individuals, where two genes

(autoclave batches) are randomly selected and swapped with probability m. Finally, each child is sched-

uled using PS-sched and added to the population. After g generations have passed, the fittest individual

is kept as the best solution. Algorithm 8 formally describes this genetic algorithm.



Chapter 6. Scaling Up: Size 98

Algorithm 8: PS-GA Scheduling

Result: Feasible schedule using PS-GA-sched
n← number of individuals in population;
I ← randomly initialized population (each individual is a unique autoclave batch ordering);
schedule each individual in population using PS-sched;
g ← number of generations;
for 1 to g do

sort I by fitness (tardiness);
keep best n individuals from I and discard the rest;
for each randomly chosen pair of individuals from I do

use two-point crossover to produce two children;
remove repeated autoclave batches and append missing autoclave batches;
for each child do

if a Unif(0, 1) ≤ m then
swap two randomly chosen genes in child;

end

end
add children to I schedule each child using PS-sched;

end

end
keep fittest individual from I;

6.2 Numerical Results

The six solution techniques presented in this chapter were tested on 4 sets of randomly generated 30

problem instances with 1000, 2000, 3000, and 4000 jobs per instance, respectively. Refer to Section 2.2.1

for the instance generation process. All models and algorithms were implemented in Java and CP-sched

was implemented using CPLEX Optimization Studio 12.9. EDD-pack and PS-sched were repeatedly

executed 100 times for each instance, keeping the best solution. Runtime for EDD-pack and PS-sched

includes all 100 runs. SCC-pack was given a maximum iteration threshold of 400. PS-GA-sched was

parametrized with 20 individuals per population, a 25 generation limit, and a mutation probability of

5%. CP-sched was given a thirty minute time limit.

Overall Comparison of Solution Approaches. All six solution techniques were able to find feasi-

ble solutions for all instances. Figure 6.3 compares the average sum of tardiness found by the different

techniques. Models 3 and 6 both use CP-sched for the scheduling component and they also produce, on

average, the best quality schedules with respect to average tardiness. Models 3, 4, and 5 (using EDD-

pack) produce better quality schedules than their counterparts in Models 6, 7, and 8 (using SCC-pack),

respectively. Thus, we can conclude that EDD-pack and CP-sched are still the best choices for packing

and scheduling.

Models 5 and 8, using PS-GA-sched, performed better than Models 4 and 7, using PS-sched. Thus,

the genetic algorithm presented in Algorithm 8 did improve the performance of PS-sched over 25 gen-

erations. However, PS-GA-sched uses much more time than CP-sched to achieve the same solution

qualities and CP-sched finds better schedules within thirty minutes. Models 4 and 7 have the worst

performance, implying that pushing back the earliest start time after every demould activity is removing

a non-negligible amount of schedule time that could have accommodated unscheduled batches. On the
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Figure 6.3: Comparison of average sum of tardiness between solution techniques.

other hand, CP-sched is constantly shuffling interval variables around and trying to determine if intervals

could be feasibly moved to an earlier time.

As in Chapter 5, we plot the connection between the number of autoclave batches opened and

schedule tardiness in Figure 6.4. There is a strong correlation between the number of batches and

schedule tardiness, however, there is still a non-negligible discrepancy in tardiness between models,

implying that the number of batches is not the only factor that impacts tardiness. For example, looking

at Models 3 and 6 in Figure 6.4, we can see that both models find solutions with around the same

number of autoclave batches, but CP-sched (Model 3) finds better solutions. This pattern repeats for

the other two pairs of models where each pair uses the same scheduling model, Model 4 vs. Model 7 and

Model 5 vs. Model 8. These patterns imply that packing quality is continuing to contribute to tardiness

in larger problem instances, extending the observations we made for Figure 5.7.

Packing Quality. Figure 6.5 shows the connection between RSP distributions within autoclave batches

and tardiness.

We can see that there is a fairly consistent trend in the standard deviation of RSP distribution

amongst autoclave batches within a certain instance against tardiness. Thus, we can conclude that the

standard deviation of RSP distributions is another positive correlating factor to tardiness. However, the

relationship between the mean RSP distribution and tardiness shows two distinct trends, each correlat-

ing to one type of packing model. SCC-pack appears to be packing batches with a lower mean RSP

distribution but achieving higher tardiness. We can further explore this discrepancy by looking at how

balanced the autoclave batches are with respect to unfilled capacity.

Figure 6.6 shows how unfilled autoclave capacity contributes to tardiness. Similar to Figure 6.5’s

relationship between mean RSP distribution and tardiness, we can see two distinct trends in Figure 6.6.

If ufi is the unfilled capacity of autoclave batch i, calculated by ufi = vi−
∑
k∈{B1|k assigned to i} σk (See

Table 5.4 for notation), then we define the balance of autoclave batches in an instance as equal to the
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Figure 6.4: Connection between number of autoclave batches and sum of tardiness.

standard deviation of the set {ufi | i ∈ B2}. The EDD-pack models have a higher standard deviation of

unfilled capacity compared to the SCC-pack models, meaning that SCC-pack finds much more balanced

batches than EDD-pack. However, it appears that balanced batches are actually undesirable compared

to imbalanced batches. This result corroborates the trend in Figure 6.5, Models 3, 4, and 5 find more

imbalanced batches with a higher mean RSP distribution as more jobs in a batch means a higher dif-

ference between the minimum and maximum RSP ranks. Thus, another measure of packing quality is

the balance of jobs across batches. This measure can be considered a weak negative correlating factor

to tardiness, where a more balanced packing is likely to increase tardiness. One possible explanation

for this trend is that imbalanced batches might utilize resources more efficiently. The larger variation in

autoclave batch sizes means we have some autoclave batches that take up longer periods in the schedule

and some that take up shorter periods. Thus, we may be able to fill gaps in the schedule better because

we have a selection of short and long batches to choose from.

In conclusion, we have extracted two measures of packing quality: the standard deviation of RSP

distributions within autoclave batches and the balance of the autoclave batches. The measures have

a stronger positive correlation and a weak negative correlation with tardiness, respectively. Including

the very strong positive correlation of the number of autoclave batches to tardiness, we now have three

predictors of tardiness given a packing solution.

We can perform a three-way analysis of variance (ANOVA) test on the effects of these three pre-

dictors on tardiness. To control for the effects of different scheduling models, we only use experimental

results from Model 3 and Model 6, both of which use CP-sched. Let us refer to the standard deviation

of RSP distributions amongst autoclave batches as the RSP range of an instance, and let us refer to the

standard deviation of unfilled capacity amongst autoclave batches as the balance of an instance. Table
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Figure 6.5: Connection between RSP distribution within autoclave batches and sum of tardiness.
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Figure 6.6: Connection between packing balance and sum of tardiness.
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Table 6.2: ANOVA parameters for analysing the effects of packing on tardiness.

Factor Level
Number of Autoclave

Batches
RSP Range Balance

1 Low (70 - 163) Low (5610 - 21678) Low (7107 - 8263)
2 Medium (163 - 256) Medium (21678 - 37745) Medium (8263 - 9419)
3 High (256 - 349) High (37745 - 53813) High (9419 - 10575)

Table 6.3: ANOVA results for analysing the effects of packing on tardiness.

Factor Degrees of Freedom F-Value PR(>F)

Number of Autoclave Batches 2 679.78 8.34e-97
RSP Range 1 73.30 1.67e-15

Balance 2 15.18 6.47e-07
RSP Range * Balance 2 4.49 1.22e-02

Number of Autoclave Batches * Balance 4 0.42 0.79

6.2 shows an overview of the ANOVA parameters and the range of values contained in each level. We

determined that there is very strong multi-collinearity between the number of autoclave batches and

the RSP range. Violating the assumption of no multi-collinearity means that we should not test the

interaction between these two factors as a source of variation. Thus, we tested sources of variation from

each of the factors individually, as well as from the interaction between RSP range and balance and the

interaction between the number of autoclave batches and balance.

The ANOVA results are summarized in Table 6.3, tests for which the null hypothesis is accepted,

proving that the factor level does not significantly affect tardiness, are in gray. There is a clear hierarchy

in the level of correlation, the number of autoclave batches has the highest impact on tardiness, followed

by RSP range, then balance. The interaction between RSP range and balance has a slight effect on

tardiness, while we reject the null hypothesis for the interaction between the number of autoclave batches

and balance. In conclusion, the three predictors individually contribute almost all of the variance, thus

proving their correlations with tardiness.

Quality over Time. Figure 6.7 shows schedule quality over time. We can see that increasing the

number of jobs per instance does not change the trend we saw in Figure 5.9; almost all of the major

increases in schedule quality happen within the first few minutes of solve time. There are small improve-

ments made throughout the entire thirty minutes, but are almost negligible in comparison to the initial

improvement.

6.3 Bottleneck Analysis

We have characterized the impact of packing on tardiness via three correlating factors. In this section,

we examine resource utilization.

Figure 6.8 shows the 25-percentile to 75-percentile of job idle times. The idle time of a job between

stages is calculated by taking the difference between the job’s start time in the succeeding stage and the
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Figure 6.7: Schedule quality over time with CP-sched.

job’s end time in the preceding stage. The range of idle times from tool preparation to layup and from

curing to demould are quite small, especially in comparison to the range of idle times from layup to

curing. A likely explanation for this discrepancy is that layup processing times are usually several times

longer than curing times, and up to tens of times longer than tool preparation or demould times. We

can see that the Model 3 graphs in Figure 6.8 show the least amount of idle time of all models, which

corresponds with Model 3’s better performance compared to other approaches. Ultimately, Figure 6.8

implies that layup or curing resources may be a bottleneck in the schedule.

However, Figure 6.8 does not distinguish between the lag due to jobs having to wait for other jobs

in the same batch to finish in layup vs. the lag due to jobs having to wait for their autoclave to become

available. To make sure that the lag we are seeing from Figure 6.8 is in fact being caused by the layup

stage, we need to separate these two contributors to idle time into the curing lag and the layup lag. The

curing lag is calculated by taking the difference between the latest end time of a job in layup within

an autoclave batch and the start of the autoclave batch in curing. The layup lag is calculated by sub-

tracting the curing lag from the difference between the end time of a job and the start of its autoclave

batch in curing. Layup lag points show the maximum, average, and minimum lag across jobs within a

single autoclave batch between layup and curing. Autoclave lag points show the maximum, average, and

minimum lag across autoclave batches within a single instance. These lag points are plotted in Figure

6.9. We can see that the average layup lag is higher than even the maximum autoclave lag, implying

that layup resources form a bottleneck in the schedule.

To determine how much of a bottleneck the layup stage is, we can calculate the propagated tardi-

ness at the end of tool preparation, the first stage. We define propagated tardiness as the difference

between the end time of a job in tool preparation and a back-propagated due date for the job in the

tool preparation stage. Given a job’s real due date at the end of demould, we subtract its processing

times in demould, curing, and layup from the real due date to get an estimated due date at the end

of tool preparation. If a job’s estimated tardiness at the end of tool preparation is much smaller than

the its real tardiness, then the bottleneck in layup is most likely the main bottleneck in the system. On
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Figure 6.8: Average idle time between stages, error bars show 25-percentile to 75-percentile of idle times.
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the other hand, if a job’s propagated tardiness is close to its real tardiness, there is most likely another

bottleneck with a larger impact than the layup stage. We can see from Figure 6.10 that the latter is

true, implying the existence of a tighter bottleneck. This conclusion is further supported by Figure 6.11

which shows that tool preparation machines and labour teams have very low usage ratios over the entire

schedule. These low ratios imply that the small difference between a job’s propagated and real tardiness

cannot be explained by a lack of resources in tool preparation.

The next step in our bottleneck analysis is to analyze tool usage. Tools are stage-independent re-

sources, so we can calculate the usage of tools over the entire schedule. If any tools have close to 100%

utilization, those tools would create a much bigger bottleneck than any stage-dependent resources. First,

Figure 6.12 shows the distribution of tool usage across batches, we see that a few tools are much more

popular than the rest. Let us take the five most popular tools and calculate their utilization, shown in

Figure 6.13. The two most popular tools have extremely high usage ratios, meaning that these tools are

almost constantly in use. When there is little idle time in the schedule where these tools are unused, it is

very hard to improve the schedule as there is not enough room to push activities earlier in the schedule.

We are left with a large bottleneck that cannot be removed unless the distribution from which instances

are generated changes and we no longer have a few tools that are so popular. This result, combined with

the Model 3 graphs from Figure 6.8, imply that the schedules found with Model 3 are reasonably close

to optimal.3 If this conclusion is true, then we can greatly improve solutions to the CMP with better

system design or an increase in the capacity of bottleneck resources.

In conclusion, we found two bottlenecks inherent to the availability of resources: a small bottleneck

due to layup resources (machines and labour teams) and a much larger bottleneck due to the popularity

of a few tools causing almost 100% utilization of those tools.

Job Tardiness. Figure 6.14 shows the percentage of tardy jobs within a schedule. Looking at Model

3, the best performing model, we can see that at 4000 jobs, the percentage of tardy jobs ranges between

50% and 60%. These percentages are fairly high, but the previous results in Figures 6.7, 6.8, and 6.13

imply that unless the distribution of jobs from which instances are generated changes or the capacities

of bottleneck resources change, 50% is most likely the lower bound on the percentage of tardy jobs in a

4000 job schedule.

6.4 Conclusions

This chapter tested six solution techniques made up of two packing approaches and three scheduling

approaches on real-world sized instances, thus completing the scaling up of both complexity and size.

One packing model, an Earliest Due Date packing heuristic (EDD-pack), and one scheduling model, a

Constraint Programming scheduling model (CP-sched), were presented in Chapter 5. One more packing

model, a size-constrained clustering algorithm (SCC-pack), and two more scheduling models, a paral-

lel scheduling algorithm (PS-sched) and a genetic algorithm (PS-GA-sched) both inspired by project

scheduling literature, were presented in this chapter. Each approach was tested on 4 sets of 30 instances

3Note that this claim of optimality is conditional on the exact process parameters our instances were based on. If the
proportion of tools or the availability of machines were to change, the system bottlenecks may change and our approaches
may be able to find better schedules.
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Figure 6.10: Propagated tardiness at the end of the tool preparation stage. Due dates are back-
propagated through the stages and propagated tardiness is calculated by taking the difference between
the end of the job in tool preparation and its propagated tool preparation due date. Points show
propagated tardiness and lines show the actual tardiness calculated at the end of demould.
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Figure 6.11: Usage ratios of tool preparation machines and labour teams.
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Figure 6.12: Tool popularity across batches for EDD-pack and SCC-pack.

containing 1000, 2000, 3000, and 4000 jobs per instances, respectively. EDD-pack with CP-sched per-

formed the best again while SCC-pack with PS-sched performed the worst. The genetic algorithm in

PS-GA-sched managed to improve the performance of PS-sched over 25 generations, however, still does

not reach the same level of performance as CP-sched.

We extracted three predictors for schedule tardiness based on packing decisions and statistical tests

confirm that these predictors significantly affect tardiness. The number of opened autoclave batches has

a positive correlation with tardiness. There is also a positive correlation between the standard devia-

tion of RSP distributions within autoclave batches and tardiness. Lastly, there is a negative correlation

between the balance of jobs across autoclave batches and tardiness. These three predictors would be

very useful in any continuation of model development for this problem. Ideally, we would develop future

models that take advantage of these predictors and their correlations to, for example, pack batches with

all three correlating factors included in the objective function.

Next, we discovered two bottlenecks inherent in the scheduling resources. Out of the stage-specific

resources, i.e. machines and labour teams, the layup resources form a small bottleneck. Jobs oftentimes

have to wait after layup for other jobs in the same autoclave batch to finish processing in layup before

they can all proceed to be cured in autoclaves. Thus, if we can increase the available quantity of layup

resources, we may be able to mitigate this bottleneck. A large bottleneck comes from the most popular

tools that are shown to have almost 100% utilization. Thus, there is little idle space within the schedule

for any tool batches using these tools, which makes improving the schedule very difficult and implies

that our best solutions to the CMP are reasonably close to optimal. We end up with a likely lower
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Figure 6.13: Tool usage ratios for the top five most popular tools.
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Figure 6.14: Percentage of tardy jobs within a schedule.

bound of 50% on the percentage of jobs that will end up being tardy in the 4000 job instances.

There is much room for future work with respect to the problem of scheduling in composites man-

ufacturing. We have characterized the connections between packing and scheduling in this complicated

problem and identified bottlenecks in the system. EDD-pack with CP-sched proved to be the most

robust model developed to date. Future work could focus on improving the EDD-pack algorithm with

additional heuristic guidance based on the tardiness predictors presented in this chapter, or focus on

developing a lower bound for CP-sched such that we can obtain some measure of optimality. Another

possible direction is developing an exact scheduling model that focuses on making decisions around the

bottlenecks and a heuristic algorithm that then schedules remaining jobs and makes repairs.



Chapter 7

Concluding Remarks

This chapter concludes this thesis by presenting a summary of the previous chapters along with major

conclusions, followed by some directions for potential future work.

7.1 Summary and Contributions

In this thesis, we formally defined a novel optimization problem, the Composites Manufacturing Prob-

lem (CMP), as well as its abstraction, the Two-Stage Bin Packing and Hybrid Flowshop Scheduling

Problem (2BPHFSP). The CMP is a real-life batching and scheduling problem that almost all aerospace

manufacturers face across the world. We were given an sample order of jobs by our industrial partner

that we used to generate bootstrap instances for the CMP. Problem instances for the 2BPHFSP were

randomly generated from uniform distributions. One contribution of this work is bringing attention to

these two problems, as well as describing the full complexity of the CMP.

We presented five approaches to solve the 2BPHFSP: Mixed Integer Programming (MIP), Constraint

Programming (CP), two Logic-based Benders Decompositions (LBBD) with different optimality cuts,

and an Earliest-Due Date (EDD) heuristic. We tested these approaches on instances containing 5 to 100

jobs.

The two LBBD models had the best performance, but showed a negligible difference between them-

selves. After conducting statistical tests, we concluded that neither set of optimality cuts are strong

enough to do much more than cut off the incumbent solution. The EDD heuristic performed surprisingly

well, and was also able to solve all instances as opposed to the LBBD models, which were not able to

solve some instances with more than 40 jobs. We also tried to improve an EDD heuristic solution using

CP in two ways: warm-starting the monolithic CP model and using a CP scheduling model to improve

the schedule given a fixed packing; the two heuristic-CP approaches demonstrated the highest potential

for scalability.

We presented nine overall approaches to solve the CMP, where each overall approach is either made

up of one packing model/algorithm and one scheduling model/algorithm or the approach is an LBBD

model. We developed four packing models/algorithm: MIP, CP, an EDD heuristic algorithm, and
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a constrained clustering algorithm; we developed three scheduling models/algorithms: CP, a parallel

scheduling algorithm, and a genetic algorithm. We also developed a preprocessing step where we solve

the instance using a Relaxed Scheduling Problem (RSP) to obtain the order of a job in the RSP solution.

This order, denoted as the RSP rank, is then used to guide packing decisions to batch jobs with similar

RSP ranks together. We tested these approaches on instances with up to 4000 jobs; a 4000 job instance

represents the size of an average real-life instance.

The approach using the EDD packing algorithm with the CP scheduling model had the best per-

formance across all instance sizes. The CP scheduling model is most likely outperforming the other

scheduling models due to its ability to reason about where jobs are scheduled and backtrack on bad

decisions. The parallel scheduling algorithm and genetic algorithm, on the other hand, rely on a moving

horizon that updates its earliest start time every time an autoclave batch is fully scheduled. Therefore,

we are unable to take advantage of empty spaces in the schedule after the horizon has been updated past

those spaces. The results also showed that packing decisions influence the schedule tardiness through

three correlating factors: the number of autoclave batches in the packing solution, the distribution of

RSP ranks within an autoclave batch, and the distribution, or balance, of jobs across autoclave batches.

We discovered two sets of bottleneck resources: the labour teams and machines in layup as well as tools.

These bottlenecks imply that the best solutions to the CMP are reasonably close to optimal.

7.2 Future Work

The results of Chapter 4 show that the EDD heuristic performed better than the monolithic MIP and

CP models, and it performed comparably to the LBBD models. Thus, we believe that there are most

likely more sophisticated decompositions or exact algorithms/models that can be developed.

For both the CMP and the 2BPHFSP, we did not develop any theorems about the connections be-

tween the packing and scheduling decisions. In Chapter 6, we presented some analysis on how packing

decisions may impact the eventual schedule tardiness. An important direction for future work is to

pose and prove some theoretically sound statements about the nature of the connection between pack-

ing and scheduling decisions. Such a connection could then be used to construct separate packing and

scheduling approaches where we know beforehand how packing decisions will affect the resulting schedul-

ing problem. This lack of connection was one of the biggest weaknesses of the models in Chapters 5 and 6.

We also showed in Chapter 6 that there are severe inherent bottlenecks in the system, specifically the

availability of tools. Thus, a new optimization problem could be posed that attempts to determine the

best collection of tools a plant should have on hand based on how often the tools are used and their cost.

This problem would be applicable to plants that are looking to update their resources or new plants

that are looking to purchase their first set of tools.

The genetic algorithm of Hartmann [55] tested in Chapter 6 was taken from resource-constrained

project scheduling literature. In recent years, several new metaheuristics have been developed that

out-perform the genetic algorithm. The results in Chapter 6 showed that the genetic algorithm per-

formed comparably to the CP scheduling model. Therefore, it would be interesting to test some newer
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metaheuristics and see if they can outperform CP.

7.3 Conclusion

The goal of this thesis is to present the CMP, a novel problem, and the 2BPHFSP, its abstraction, and

develop and investigate several solution approaches to each problem. The CMP is a complex problem

with many layers of decisions while the 2BPHFSP is emblematic of the types of abstracted problems

researchers tend to solve in place of the real-life problem. However, we believe that tackling the real

problem is crucial to being able to use mathematical techniques to improve processes; it is not enough

to stop at solving the abstracted problems. We presented five approaches to solve the 2BPHFSP, nine

approaches to solve the 2BPHFSP, and empirical analysis on randomly generated instances for both

problems. We demonstrated that ad-hoc heuristic algorithms and CP are good approaches to solve both

problems.

We believe the work completed in this thesis is a comprehensive attempt at solving a complex and

intricate real-life problem by developing sophisticated models and utilizing techniques from a broad range

of sources. We also completed an extensive analysis of results that exposed many hidden connections

and inherent structures of the problem.
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