
MIXED-INTEGER LINEAR PROGRAMMING MODELS FOR LEAST-COMMITMENT
PARTIAL-ORDER PLANNING

by

Buser Say

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

c© Copyright 2017 by Buser Say

Abstract

Mixed-Integer Linear Programming Models for Least-Commitment Partial-Order Planning

Buser Say
Master of Applied Science

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

2017

The central thesis of this dissertation is that the Mixed-Integer Linear Programming (MILP) technology can

be effective in producing a least commitment partial-order plan (POP). A POP is a set of actions and ordering

constraints between some pairs of actions such that every linear execution of actions that is consistent with the

ordering constraints achieves the goals of the planning problem. In the context of Automated Planning, least

commitment approach aims to generate POPs that delay the decisions of a plan to its execution time, allowing an

autonomous agent to be flexible in terms of how the POP is executed. In this dissertation, we formally define the

least commitment POP of a planning problem as a plan with the minimum total action cost and maximum number

of linearizations. We formulate this problem as a MILP model and investigate the efficiency of solving it using

the commercial MILP solvers.

ii

Acknowledgements

I would like to express my gratitude to a number of people who have helped me throughout my M.A.Sc.
program and I will take this opportunity to briefly acknowledge them.

First, I would like to thank my co-supervisors Professor J. Christopher Beck and Professor Andre A. Cire for
their continuous support, guidance and patience throughout my M.A.Sc. program. Having you as my mentors
have expanded my horizon as a researcher and solidified my decision to purse a career in academia. I feel
privileged to have worked with both of you.

I would like to thank my committee members Professor Sheila McIlraith and Professor Scott Sanner for their
time and commitment.

I would like to thank my friends at the Toronto Intelligent Decision Engineering Laboratory (TIDEL), Tony,
Wen-Yang, Kyle, Margarita, Chang and Eldan, for insightful discussions, sharing ideas and many cups of coffee.

Finally, I would like to thank my mother and my father for their unconditional love, confidence and support.
Without their sacrifices, I would not be where I am today.

iii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Overview of Dissertation . 2

1.3 Summary of Contributions . 2

2 Literature Review 4
2.1 Automated Planning . 4

2.2 Classical Planning . 5

2.2.1 Model Assumptions . 5

2.2.2 Different Solution Definitions . 6

2.2.3 Different Planning Objectives . 8

2.3 Solution Techniques . 8

2.3.1 Compilation Techniques for Classical Planning . 9

2.3.2 Heuristic Search in Classical Planning . 9

2.3.3 Decomposition Techniques for Classical Planning . 12

2.4 Mixed-Integer Linear Programming as a Compilation Technique 12

2.4.1 Propositional Representation . 13

2.4.2 Multi-valued Representation . 17

2.5 Mixed-Integer Linear Programming for Heuristic Search . 19

2.5.1 Step Optimal Heuristic Planning . 19

2.5.2 Cost-Optimal Heuristic Planning . 19

2.6 Mixed-Integer Linear Programming in Decomposition Techniques 22

2.6.1 Column Generation . 23

2.6.2 Logic-based Benders decomposition . 24

2.7 Partial-Order Planning . 26

2.7.1 Partial-Order Planners . 26

2.7.2 Partial-Order Relaxation . 27

3 Mixed-Integer Linear Programming Models for Optimizing Partial-Order Plan Flexibility 30
3.1 Introduction . 30

3.2 Least Commitment Flexible POPs . 31

3.3 Proxy Measures of POP Flexibility . 32

3.3.1 Order Flexibility . 32

3.3.2 Temporal Flexibility . 33

iv

3.3.3 Dominance Relations Among Proxy Functions . 33
3.4 The OMILP

C Model . 36
3.5 The OMILP

O and T MILP Models . 37
3.6 Valid Inequalities . 37
3.7 Computational Results . 39

3.7.1 Experiment 1: Comparing Proxy Functions . 40
3.7.2 Experiment 2: Solving LCFPs . 42

3.8 Conclusion . 48

4 Mixed-Integer Linear Programming Models for Least Commitment Flexible Partial-Order Plan-
ning 50
4.1 Introduction . 50
4.2 Cost-Optimal Planning . 51

4.2.1 Master Problem . 51
4.2.2 Subproblem . 52
4.2.3 Benders Cuts: Modified Generalized Landmark Constraints 54
4.2.4 Updating the set of Actions A . 54
4.2.5 Using the Incumbent Information . 54
4.2.6 The Cost-Optimal Logic-Based Benders Decomposition: POPLBBD 54
4.2.7 Comparison to Previous Logic-Based Benders Decompositions 55
4.2.8 Proof of Correctness . 56
4.2.9 Example: Solving a Simple Planning Problem with POPLBBD 58

4.3 Optimal Least Commitment Flexible Planning . 59
4.4 Computational Results . 59
4.5 Discussion And Future Work . 62
4.6 Conclusion . 63

5 Conclusions and Future Work 64
5.1 Summary and Contributions . 64

5.1.1 Mixed-Integer Linear Programming Models for Optimal Least Commitment Flexible Partial-
Order Plan of an Initial Plan . 64

5.1.2 A Logic-Based Benders Decomposition for Finding A Least Commitment Flexible Partial-
Order Plan . 65

5.2 Future Work . 65
5.2.1 Improvement of the SAT Model . 65
5.2.2 Pre-Processing for Partial-Order Relaxation Problem . 66
5.2.3 Investigation of Order Counting Heuristics . 66
5.2.4 Conflict-Directed Clause Learning for MILP-based Partial-Order Formulations 66

5.3 Conclusion . 66

Bibliography 66

v

List of Tables

3.1 Solution quality in terms of linearizations (logarithmic) in Experiment 1. 41
3.2 Solution quality in terms of total action cost. 43
3.3 Solution quality in terms of linearizations (logarithmic). 43

4.1 Coverage of problem instances across International Planning Competition 2011 sequential optimal
track benchmarks. 60

vi

List of Figures

2.1 High-Level Visualization of Automated Planning. 5
2.2 Different Solution Definitions. 6
2.3 Organization of the heuristic search planning. 10
2.4 Organization of different MILP models that are used in the literature to solve the planning problem

as a compilation technique. 13
2.5 Network representation of a state variable c ∈ C with the domain D(c) = {f, g, h} during steps

t and t+ 1 for the Single State-Change Formulation [11]. 17

3.1 min. |OC |; max. T . Left: min. |OC |, |OO| = 5, |OC | = 7, T = 16, L = 15. Right: max. T ,
|OO| = 5, |OC | = 8, T = 18, L = 16. 34

3.2 max. T ; min. |OC | and max. T ; min. |OO|. Left: min. |OC | or min. |OO|, |OO| = 3,
|OC | = 3, T = 14, L = 20. Right: max. T , |OO| = 4, |OC | = 4, T = 15, L = 18. 35

3.3 min. |OO| ; min. |OC | and min. |OO| ; max. T . Left: min. |OC | or max. T , |OO| = 4,
|OC | = 5, T = 4, L = 2. Right: min. |OO|, |OO| = 3, |OC | = 6, T = 0, L = 1. 35

3.4 min. |OC | ; min. |OO|. Left: min. |OO|, |OO| = 4, |OC | = 7, T = 10, L = 6. Right: min.
|OC |, |OO| = 5; |OC | = 6, T = 8, L = 5. 35

3.5 Mutual threat constraint example. 38
3.6 Number of linearizations between temporal flexibility and closed ordering flexibility (in logarith-

mic scale) in Experiment 1. 41
3.7 Performance profile (in log scale) for Experiment 1. 42
3.8 Performance profile (in log scale) for Experiment 2. 44
3.9 Run time comparison between T MILP+S and OmaxSAT

C (in logarithmic scale). 45
3.10 Run times ofOmaxSAT

C and T MILP+S and number of actions in the original plan (in logarithmic scale). 46
3.11 Run time performance of T MILP+S and number of threat ordering constraints (in logarithmic scale). 47
3.12 Effect of Constraints (3.15)-(3.24) on base models. 48

4.1 On the left: The planning problem represented by the table. On the right: The action-cost optimal
POP for the example planning problem. 58

4.2 Performance profile (in log scale) for different decomposition models. 61
4.3 Run time comparison between POPLBBD and POPLBBD

2 (in logarithmic scale). 62

vii

Chapter 1

Introduction

The central thesis of this dissertation is that the Mixed-Integer Linear Programming (MILP) technology can be
effective in generating least commitment partial-order plans. A partial-order plan (POP) is a set of actions and
ordering constraints between some pairs of actions such that every linear execution of actions that is consistent
with the ordering constraints is a solution to the planning problem. Therefore, a POP compactly represents a set
of linearly executable plans i.e., linearizations. Least commitment planning aims to generate POPs that delay the
decisions of a plan to its execution time, allowing an agent to be flexible in terms of how it executes the given POP.
We define the least commitment flexible POP (LCFP) of a planning problem as the valid POP with the minimum
total action cost and maximum number of linearizations. In this dissertation, we model the problem of finding
a least commitment flexible POP as a mixed-integer linear optimization model and investigate the efficiency of
solving it using the commercial MILP solvers. In particular, we show that the set of conditions that are used to
validate a POP (i.e., the necessary conditions of a POP) can be encoded as a set of linear constraints and the least
commitment objective can be encoded as a linear objective. In this dissertation, we address two problems:

1. Finding a LCFP given an input set of actions that form a valid plan: Actions from an initial plan can
be removed and/or reordered to find a POP with minimum total action cost and maximum number of
linearizations [54]. We contribute to the least commitment planning literature by developing a partial-order
relaxation approach based on a MILP model.

2. Formalization and investigation of the complete least commitment flexible partial-order planning problem:
Instead of finding the LCFP of an initial plan, we find the LCFP for the complete planning problem. We
formalize the least commitment flexible planning problem and solve it using a logic-based Benders decom-
position (LBBD), also based on the MILP technology.

1.1 Motivation

Our main motivation is to generate POPs that provide execution flexibility for an agent. Least commitment
planning captures an important aspect of POP flexibility by delaying some action ordering decisions to execution
time. The recent success of the MILP-based heuristic sequential planners [64, 21] provides the motivation to build
a POP planner based on the MILP technology. In further detail, the motivations for the work that is presented in
this dissertation are as follows.

1. The Exploration of MILP Models for Planning - MILP is among the state-of-the-art solution techniques

1

CHAPTER 1. INTRODUCTION 2

to many combinatorial optimization problems that exhibit similar characteristics to planning, such as vehi-
cle routing [19], scheduling [49] and traveling salesman [52] problems. The extensive literature on these
hard problems show that different formulations can dramatically improve both the solution quality and the
computation time of the MILP models. While there has been work on MILP models for various planning
problems, improving formulations via the introduction of stronger constraints and more expressive variables
has received little attention from the planning community. In particular, we investigate the following:

• Utilization of non-binary decision variables, linear constraints and objective functions to reduce the
size of state-of-the-art formulations in planning [56, 72],

• Representation of the necessary conditions of a plan as linear constraints to improve the performance
of the existing formulations [9, 64, 41, 42, 72].

2. The Formalization and the Optimization of the Complete Least Commitment Flexible Planning Prob-
lem - Least commitment planning is often used either inside a partial-order planner to delay the immediate
commitment decisions (i.e., do not make a planning commitment unless the commitment contributes to the
validity of the POP) [51, 61, 78, 79], or as the partial-order relaxation of an initial plan [3, 26, 56, 72]. Even
for the limited planning problems solved in the latter, the optimization of such least commitment objectives
yields very challenging problems [1, 26, 56, 54, 72]. The literature lacks the methods for optimally solving
the least commitment flexible planning problem. To our knowledge, we present the first POP planner that
optimizes this complex objective.

1.2 Overview of Dissertation

The outline of the dissertation is as follows.
Chapter 2 reviews the classical planning literature with the emphasis on the different solution definitions,

planning objectives and solution techniques. This chapter provides an exhaustive coverage of the use of the MILP
technology in solving the classical planning problems.

In Chapter 3, we address the problem of finding a partial-order relaxation of an input sequential plan using
MILP technology. We investigate three different proxy functions to optimize the flexibility of a POP. Compared
to the state-of-the-art MaxSAT model [56], we empirically show that two of our MILP models result in POPs
with equivalent or slightly higher solution qualities with savings of approximately one order of magnitude in
computation time. This work is presented at the Twenty-Second European Conference on Artificial Intelligence

[72].
In Chapter 4, we examine the problem of finding the least commitment flexible plan for the complete planning

problem. First, we focus on finding an action cost-optimal POP to the complete planning problem using a logic-
based Benders decomposition approach [39, 21]. Then, we extend this work to find the least commitment flexible
POP to the complete planning problem. To our knowledge, we present the first POP planner that optimizes the
least commitment flexible planning objective for the complete planning problem.

Chapter 5 concludes the content presented in this dissertation and provides areas of future work that can stem
from the research that is presented in this dissertation.

1.3 Summary of Contributions

The contributions of this dissertation are as follows.

CHAPTER 1. INTRODUCTION 3

We investigate three different proxy functions to maximize the number of linearizations in a POP: two from the
POP literature and a third novel function based on the temporal flexibility criteria from the scheduling literature.
We optimize these functions using three MILP models. Further we strengthen these models by introducing valid
linear inequalities. We show empirically that two of our strengthened MILP models results in equivalent or slightly
better solution quality with savings of on average one order of magnitude in computation time, compared to the
state-of-the-art MaxSAT model [56].

We formalize the least commitment flexible planning problem that consists of two criterion: the minimization
of the total action cost and then the maximization of the number of linearizations in a POP. We first investigate the
optimization of the total action cost of a POP using two MILP-based decompositions. Then we extend one of our
planners to optimize the least commitment flexible planning problem. We show empirically that the optimization
of the total action cost using our planners result in similar performance to the state-of-the-art LBBD-based se-
quential planner [21]. We further provide preliminary results on the optimization of the least commitment flexible
planning problem. To our knowledge, we are the first to optimize this complex objective for partial-order plans.

Chapter 2

Literature Review

This chapter describes the literature of automated planning with the focus on the classical planning problems.
The purpose of this literature review is threefold: (1) to present the formal definitions and the notations used for
classical planning, (2) to provide a summary of the various solution techniques developed over the last 50 years,
and (3) to cover and analyze the use of the Mixed-Integer Linear Programming (MILP) models to solve classical
planning problems. In Section 2.1, classical planning is introduced in the context of the automated planning. In
Section 2.2, classical planning and proposed solution approaches are formally described. In Sections 2.3-2.6,
solution techniques that utilize MILP are described. Finally in Section 2.7, methods for generating a partial-order

plan (POP) are described.

2.1 Automated Planning

Planning is the reasoning portion of acting: the process of selecting and organizing actions to achieve some
prestated goals [58, 21]. Automated planning is the area of research in Artificial Intelligence that studies the
theoretical and computational aspects of planning. A model is a conceptual device to represent the main elements
of a problem. A model can be used to explain basic definitions, clarify restrictive assumptions, and can give
rise to different solution techniques with respect to different objectives. A classical planning problem is an
axiomatization of the actions and their effects, as well as the description of current state and the goals of that
must be achieved in the real-world [54]. An instance of a classical planning problem, denoted by the symbol Π,
is a model of the real-world planning problem. A plan π is a solution to Π, and corresponds to an ordered set of
actions that achieve all the goals of Π. Given Π, a planner generates a plan π that is executed by a controller. The
controller executes π and sends feedback to the planner. The feedback typically includes observations about the
state of the real world, the execution progress of π, and external/internal changes/events that effect the real world.
Given the feedback, the planner monitors the execution of π by deciding whether Π still represents the real world
or not. If there are significant discrepancies found between the real world and Π, and π is no longer a solution to
the real world problem, a new Π′ is modeled and a new plan π′ is generated. Figure 2.1 summarizes the high-level
interaction between the planner and the controller. This dissertation focuses on the generation of flexible π that is
robust to some of the external/internal changes/events that effect Π.

4

CHAPTER 2. LITERATURE REVIEW 5

Figure 2.1: High-Level Visualization of Automated Planning.

2.2 Classical Planning

A classical planning problem is a tuple Π = 〈F,A, I,G〉 where F is a set of fluent symbols, A is a set of ground
actions, I ⊆ F is the initial state, and G ⊆ F is the goal state [30, 29]. A complete state sc ⊆ F specifies the
values of all the fluents f ∈ F such that, f = true if and only if f ∈ sc, and f = false otherwise. A partial state

sp ⊆ F only specifies the values of a subset of fluents f ∈ F that must be true such that, f = true if f ∈ sp, and
f = true/false otherwise. In classical planning, I is a complete state and G is a partial state. Each action a ∈ A
is associated with three sets of fluents, PREa, ADDa, and DELa, representing the preconditions, add effects,
and delete effects of a, respectively. An action a is executable in state s ⊆ F if and only if PREa ⊆ s. The
execution of an action a results in the state s′ = (s ∪ ADDa) \DELa. We denote by pref , addf , and delf the
set of actions that have fluent f as precondition, that add f , and that delete f , respectively. A plan is a solution to
Π and corresponds to a set of linearly executable actions (a1, a2, . . . , am) such that, when starting from the initial
state I , executing each action in sequence results in a state s∗ containing all fluents required in the goal G, i.e.
G ⊆ s∗ [14]. Finally, we use A for set of actions since a plan can contain duplicates of an action a ∈ A where
every action a in the set A is uniquely named [54].

2.2.1 Model Assumptions

Modeling the real world by Π requires various restrictive assumptions. The organization and the content of the
assumptions used in this dissertation closely follow [58] and are listed below:

1. Π has a finite number of states: the number of reachable states in Π is bounded by a finite number (i.e.
2|F |). The implication is that the execution of an action does not change the sets F or A.

2. All the effects of a ∈ A are deterministic: the execution of an action a ∈ A in state s always results in the
same state s′ = (s ∪ADDa) \DELa.

3. All states of Π are fully observable: all the values of fluents f ∈ F are known in the initial state I by the
planner. Together with Assumption 2, this assumption means that all the other states can be predicted with
certainty.

4. All states of Π remain static with respect to internal events: the internal dynamics of the real world planning
problem is not modeled by Π. Only the controller can change the state of Π and occurrence of internal events

CHAPTER 2. LITERATURE REVIEW 6

Figure 2.2: Different Solution Definitions.

that can effect the state of the world are ignored.

5. A solution to Π must be a sequentially ordered plan: the planner is restricted to generate only sequentially
ordered plans.

6. The goals of Π are explicitly specified by G: A solution to Π is defined as any π that reaches the goal state
G from the initial state I .

7. The execution of a ∈ A is instantaneous: the action duration is abstracted from the set of actions A.

8. Π is static during the generation and the execution of a plan with respect to external events. This assumption
is also known as offline planning and assumes that external events that might occur in the real world do not
change Π. As a result, the external events are ignored.

Several interesting modifications are obtained by relaxing some of the assumptions listed above. In particular,
the relaxation of Assumptions 5 and 6 allow the planner to generate plans with different solution definitions and
different planning objectives, respectively.

2.2.2 Different Solution Definitions

A plan in its most general form is a structure for a set of actions. This structure may contain ordering constraints
between some pairs of actions and temporal constraints on some subset of actions and goals. This dissertation
assumes implicit time (i.e. assumption 7), and focuses only on the ordering structure of a plan. As summarized
in Figure 2.2, depending on the ordering structure of the actions and whether a pair of unordered actions can be
executed in parallel or not, plans can be grouped under sequential or partial-order plans, or parallel sequential or
partial-order plans [1].

CHAPTER 2. LITERATURE REVIEW 7

Sequential Plans

A sequential plan orders all pairs of actions. Formally, a sequential plan π corresponds to a sequence of executable
actions (a1, a2, . . . , am) such that, when starting from the initial state I , executing each action in sequence results
in a state s∗ containing all fluents required in the goal G, i.e. G ⊆ s∗ [30, 58]. A sequential plan contains
exactly one sequentially executable plan. A controller that receives a sequential plan does not have any execution

flexibility to decide on the ordering of the actions during execution.

Partial-order Plans

A partial order plan (POP) corresponds to a set of actions and ordering constraints between the pairs of actions
such that executing actions in any sequence consistent with the ordering constraints results in a state s∗ containing
all fluents required in the goalG, i.e. G ⊆ s∗ [71, 58, 54]. While this definition is intuitive, its validation procedure
(i.e., checking whether all execution sequences correspond to a sequential plan) is not tractable. Therefore, the
standard definition of a POP uses two additional concepts that are associated with its validation procedure, namely:
causal links and threats.

A POP is a tuple π = 〈A,O,K〉 where A is the set of actions of the plan, O ⊆ A × A is a set of ordering
constraints, and K is a set of causal links without threats. Given actions a1, a2 ∈ A and a fluent f ∈ F ,
κ(a1, a2, f) is a causal link for π if a1 adds the fluent f required by a2 in all executions of π [44]. The causal
link κ(a1, a2, f) ∈ K implies a1 ≺ a2 ∈ O, where a1 ≺ a2 ∈ O indicates an ordering constraint between
actions a1, a2 ∈ A. Moreover, K is a set of causal links for π if, for every κ(a1, a2, f) ∈ K, we have a1 ∈ addf ,
a2 ∈ pref , and there does not exist κ(ai, a2, f) ∈ K for any ai ∈ addf [44]. An action a3 ∈ A is a threat to a
causal link κ(a1, a2, f) ∈ K if a3 ∈ delf , a3 ≺ a1 6∈ O and a2 ≺ a3 6∈ O [58].

A POP imposes only action orderings necessary for achieving a goal, as opposed to a total ordering of actions
as enforced in a sequential plan. Equivalently, a POP represents a set of sequential plans, or linearizations, all
including the same actions but under different orderings. POPs provide execution flexibility to the controller,
which can dynamically commit to the sequence of actions during the execution of the plan [56]. Note that a POP
assumes the linear execution of all actions, including the pairs that are not ordered with an ordering constraint.

Parallel Sequential Plans

A set of actions S can be executed in parallel if the execution of the actions result in the same state independent
of whether actions a ∈ S are executed in sequence or in parallel [1]. A parallel sequential plan π corresponds
to a sequentially ordered sets of parallel actions (S1, S2, . . . , Sm), such that, when starting from the initial state
I , executing each parallel action set in sequence results in a state s∗ containing all fluents required in the goal
G, i.e. G ⊆ s∗ [1]. A parallel sequential plan is also known as a step-based plan where each index t of the
set of parallel actions St denotes a step of a plan and t is an element of the numerically ordered set of steps
t ∈ T (m) = {1, 2, . . . ,m} such that the horizon m denotes the last element of T (m).

Parallel Partial-order Plans

A parallel partial-order plan is a tuple π = 〈A,O,K,#〉 where 〈A,O,K〉 is a POP and # ∈ ((A×A)−O) is a
set of non-concurrency relations defined between pairs of unordered actions a1 ⊥ a2 ∈ # [1]. A non-concurrency
relation # explicitly defines which pairs of unordered actions must be executed in a sequence [1]. Note that #

does not contain any information about which pairs of unordered actions must be executed in parallel [1].

CHAPTER 2. LITERATURE REVIEW 8

This dissertation assumes that a pair of unordered actions must be executed in sequence. Without relaxing
the assumption on instantaneous actions (i.e. assumption 7), the parallel execution property does not add any
practical information to the execution of a plan, that is, executing a pair of instantaneous unordered actions in
sequence, as opposed to parallel, is equivalent in terms of the resulting states as well as the total execution time.
The main reason why parallel planning techniques have received so much attention in classical planning is because
it reduces the size of the search space using a method called planning graphs [6].

2.2.3 Different Planning Objectives

The controller may require plans with high solution quality. Therefore, it may be desirable to optimize the solution
quality of a plan with respect to more complex objectives, such as plans that require the minimum cost to execute
and/or plans that provide the maximum flexibility with respect to the execution order of actions.

Cost-Optimal Planning

Cost-optimal planning is finding a plan to a planning problem with minimum total action cost. Let ca be a non-
negative cost associated with each action a ∈ A. The cost of a plan π = 〈A,O〉 is the sum of all the action costs
such that c(π) =

∑
a∈A ca. A plan is cost-optimal if and only if there does not exist another plan with lower total

action cost.

Least Commitment Planning

Least commitment planning refers to delaying the ordering decisions between pairs of actions to execution time
unless they contribute to the validity of the plan [51, 54]. The notion of least commitment planning is relevant to
the ordering structure of a plan. Since the ordering structure depends on the set of actions, it is more natural to
think about least commitment planning given a set A. Least commitment planning with respect to a set of actions
is discussed in more detail in Section 2.7.2. We extend this notion in Chapters 3 and 4.

Step Optimal Planning

Step optimal planning is finding a parallel sequential plan π = (S1, S2, . . . , Sm) with the minimum number of
sets of parallel actions (i.e. minimum m value). It is common to combine step optimal planning with cost-optimal
planning such that, given the minimum m that allows a parallel sequential plan to be generated, the objective is
to find the cost-optimal plan with respect to m. Note that finding the cost-optimal plan with respect to m does
not correspond to finding the cost-optimal plan for Π. However due to the success of parallel sequential planners
[47, 25, 69, 11, 70, 40], it is desirable to optimize such complex objectives.

2.3 Solution Techniques

The solution techniques used in classical planning are motivated by the inherent difficulty in generating valid
plans to Π. For the classical planning problem Π, the computational complexity of plan-existence (i.e. whether a
plan π exists for Π) is EXPSPACE-complete and plan-length (i.e. whether a plan π with at most m steps exists
for Π) is NEXPTIME-complete [58]. As a result of these complexity results, the state-of-art planners solve Π

using algorithms and procedures that show good experimental performance [58].

CHAPTER 2. LITERATURE REVIEW 9

2.3.1 Compilation Techniques for Classical Planning

A bounded classical planning problem Πm is the problem of finding a parallel sequential plan π = (S1, S2, . . . , Sm)

for Π [58] with fixed horizon m. The main idea behind compilation techniques is to solve Πm incrementally with
m, until a step optimal plan to Π is found. Typically, the horizon m is initially set to 1, and incremented by one
every time Πm is proven to be infeasible, until a step optimal plan is found. The state-of-the-art parallel sequential
planners solve multiple Πm with different horizon m values in parallel, and allocate computation power that is a
function of m [68].

The Constraint Satisfaction Problem (CSP) is a general paradigm for representing a problem using a set of
decision variablesX with their respective domainsD(X), and a set of constraints C such that a solution to CSP is
a feasible value assignment to every decision variable in the set X from their respective domains D(X) satisfying
every constraint in the set C [58]. Typically, the bounded problem Πm can be mapped into a CSP where the sets
X , D(X) and C have one of the following properties:

1. X is a finite set of discrete decision variables and C is a finite set of constraints. The bounded classical
planning problem Πm can be represented using two sets of decision variables; one action selection variable
Xt, t ∈ T (m) with finite domain D(Xt) = {v1, . . . v|A|} where each value, va, corresponds to the exe-
cution of action a ∈ A, and a state variable Yt, t ∈ T (m + 1) with finite domain D(Yt) = {w1, . . . wk}
where each value wf corresponds to the truth of f ∈ F at step t [58]. In addition, two types of constraints
are used to describe Πm. The first type of constraint represents the initial state I and the goal state G of
Πm. The second type of constraint relates Xt to both Yt and Yt+1, by encoding the conditions under which
action a is executable and its execution effects, respectively ∀a ∈ A, t ∈ T (m). This structure of CSP can
be efficiently solved using Constraint Programming techniques [43].

2. X is a finite set of boolean decision variables and C is a finite set of boolean constraints. This problem rep-
resentation is also known as Propositional Satisfiability Problem. The bounded classical planning problem
Πm can be represented using two sets of boolean decision variables; one action selection variableXa,t such
that Xa,t = true if and only if action a ∈ A is executed at step t ∈ T (m), and one state-based variable
Yf,t such that Yf,t = true if and only if fluent f ∈ F is true at the beginning of step t ∈ T (m) [58].
The equivalent linear representation of the boolean constraints that are used to describe Πm as a Propo-
sitional Satisfiability Problem are presented in Section 2.4.1 under the state-based and the state-change
formulations [77]. Propositional Satisfiability Problem can be efficiently solved using SAT techniques [23].
Notable SAT-based planners include SATPLAN [47], Blackbox [48] and others [69, 70, 40].

3. X is a finite set of real continuous or integer decision variables and C is a finite set of linear constraints.
This structure is solved efficiently using MILP and is discussed in Section 2.4.

2.3.2 Heuristic Search in Classical Planning

Heuristic search [59] is a method for exploring a search space S based on a heuristic function h(s) that approx-
imates the distance from a state in the search space s ∈ S to a solution s∗ ∈ S. Heuristic search can be used
to solve the classical planning problem by mapping the states and the solutions in the search space s, s∗ ∈ S to
either:

1. the complete states sc ⊆ F that are reached by executing sequences of actions, and paths of states that start
from the initial state I and end at the goal state G (also known as heuristic state-space planning), or

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.3: Organization of the heuristic search planning.

2. the tuples 〈A,O,K〉 such that the sets A, O and/or K might be missing some elements qualify as POPs
(also known as heuristic plan-space planning).

Figure 2.3 summarizes the differences between the heuristic state-space planning and the heuristic plan-space
planning.

Heuristic State-Space Planning

In state-space planning, each state s ∈ S corresponds to a complete state sc ⊆ F that is reached by executing a
sequence of actions seqs = (a1, a2, . . . , am), starting from the initial state I . The heuristic function h(s) typically
approximates either the number of steps, or the total action cost that is required to reach the goal state G from
the complete state s = sc [58]. Function g(s) either returns the exact number of steps, or the total action cost
that is required to reach the complete state s = sc from the initial state I [58]. The heuristic state-space planners
iteratively expand the state s ∈ S with the best f(s) = g(s) + h(s) value into new states s′ ∈ S by adding
executable actions am+1 ∈ A at the end of seqs = (a1, a2, . . . , am), until the goal state G is reached such that
s′ = (s∪ADDam+1

)\DELam+1
, seqs′ = (a1, a2, . . . , am, am+1) andG ⊆ s′. The majority of the state-of-the-

art planners such as HSP [10], Fast Forward [37], Fast Downward [35], and YAHSP [76] are heuristic state-space
planners.

Heuristic Plan-Space Planning

In plan-space planning, each state s ∈ S corresponds to a tuple Ts = 〈A,O,K〉 such that the setsA, O and/or K
might be missing some actions a /∈ A, ordering constraints a1 ≺ a2 /∈ O, and/or causal-links κ(a1, a2, f) /∈ K to
form a valid POP for Π. Within the heuristic search, the heuristic function h(s) typically approximates the distance
between the state s ∈ S and the goal state G using a weighted sum of the total number of additional elements
required to complete the tuple Ts to a POP [58]. The heuristic plan-space planners iteratively add elements to the
setsA, O and/or K of Ts with the best f(s) value, until a POP π to Π is found. The heuristic plan-space planners
such as VHPOP [79] have not been competitive with the heuristic state-space planners because the distance to

CHAPTER 2. LITERATURE REVIEW 11

the goal state G can be approximated much more accurately from a complete state sc ⊆ F , compared to a partial
state sp ⊆ F [54].

The next two sections present two powerful methods for obtaining a numerical value for h(s), namely: solving
the delete relaxation [41] and the extraction of landmarks of Π [65, 80, 32].

Delete Relaxation

The delete relaxation [13] of the planning problem Π = 〈F,A, I,G〉 transforms Π to Πr+ such that all the delete
effects of a ∈ A are removed. The delete relaxed plan πr+ is a plan to Πr+, and finding a πr+ with the optimal
total action cost h+ is NP-hard [13]. In practice, various approximations to h+ are experimentally shown to be an
extremely powerful tool to guide the heuristic search of a planner for three main reasons [33, 10, 37, 35, 67, 64,
41]. The first reason is the strength of the polynomial approximations, such as hadd and hmax to the calculation
of the optimal h+ [33]. The calculation of such approximations provides accurate heuristic function h(s) value
estimations. The second reason is the extraction of the useful actions from a πr+, that is the actions from a delete
relaxed plan πr+ typically provide actions that are part of some feasible plan π to the original planning problem
[37, 41]. The heuristic state-space planners select the next action to be applied to a state s ∈ S from such useful
actions from πr+ [37]. The third reason is the utilization of delete relaxed plans πr+ in other heuristic-related
computations, such as the extraction of landmarks, and the computation of mutually exclusive fluents and actions
[65, 37].

Landmarks

A causal landmark is a fluent f ∈ F that must be true in at least one state of any valid plan π [65, 80]. Similarly, an
action landmark is an action a ∈ A that must be included at least once in any valid plan π [32]. The extraction of a
causal landmark for fluent f ∈ F can be achieved by proving that the planning problem Π = 〈F,A\pref , I\f,G〉
is infeasible. Similarly, the extraction of action landmark for action a ∈ A can be achieved by proving that the
planning problem Π = 〈F,A\a, I,G〉 is infeasible. The parameters used for landmarks are as follows.

• LF denotes the set of causal landmarks.

• LA denotes the set of action landmarks.

Complete and sound landmark extraction is known to be PSPACE-complete [65]. Therefore heuristic landmark
extraction is usually performed on a relaxation of the original planning problem Π, such as the relaxed-planning
graphs [38] and the domain transition graphs of multi-valued state variables [66]. After extraction, the landmarks
provide a very powerful tool to guide the heuristic search of a planner for two main reasons [45]. The first reason
is the additional information that can be obtained from the ordering of the landmarks [38]. For example, if a fluent
is a causal landmark f ∈ LF such that there exists an action landmark a ∈ (LA ∪ pref), it must be true that the
fluent f must be achieved before the action a is achieved in every plan π. This information is used in the state-
of-the-art heuristic planners to decompose the original planning problem Π into much smaller subproblems, such
that the goals of the subproblems correspond to the achievement of the ordered set of landmarks [38]. The second
reason is the accurate heuristic function h(s) value estimation from different states s ∈ S of Π [45]. For example,
a heuristic estimate on the cost-optimal plan π to Π is obtained from adding up the action costs of all action
landmarks plus the minimum cost of adding every causal landmark such that

∑
a∈LA ca+

∑
f∈LF mina∈addf {ca}

[45]. The state-of-the-art cost-optimal heuristic planners use the landmark extraction and the heuristic function
f(s) calculation technique LM-CUT [36] to guide their heuristic search [63].

CHAPTER 2. LITERATURE REVIEW 12

2.3.3 Decomposition Techniques for Classical Planning

Decomposition techniques partition an original problem P into subproblems with substantially smaller complex-
ities than that of P . Chen et al. [15] discuss how the heuristic search and the compilation techniques can be
viewed as search space partitioning. Heuristic search recursively partitions the search space S into independent
subproblems until a feasible solution is found. In contrast, the compilation techniques use solvers (e.g. MILP and
SAT solvers) that employ search space partitioning. Constraint partitioning decomposes the constraints of the
original problem into a conjunction of subproblems where constraints are disjoint, but search spaces may overlap.
The two most common methods of decomposing Π into subproblems using constraint partitioning are:

1. Hierarchical Task Network (HTN) Planning [28],

2. Partitioning the goals g ∈ G of Π into separate subproblems (e.g. SGPlan [15], Fragment-based planner
[22], etc.).

HTN [28] is a specification for recursively decomposing Π into smaller subtasks until all the subtasks correspond
to an action a ∈ A of Π. Analogous to an action a ∈ A, each subtask has preconditions and effects, and consists
of partially ordered actions a ∈ A and smaller subtasks. HTN-based planners, such as NOAH [71] and NONLIN
[74] are among the first planners that have successfully utilized constraint partitioning to solve Π.

An example of a planner that use constraint partitioning on the goals g ∈ G of Π is Subgoal Partitioning and
Resolution in Planning (SGPlan) [15]. SGPlan [15] partitions the goals of Π into independent subproblems, where
each subproblem is a smaller planning problem with one subgoal g ∈ G. The master problem of SGPlan evaluates
the subplans returned by each subproblem; if the subplans can be executed in parallel, SGPlan terminates with
a feasible plan π to Π, otherwise the conflicts between the subplans are resolved through the introduction of
the globally violated constraints into the subproblems, and the subproblems are resolved. The globally violated
constraints penalize the inconsistencies from the previous solutions and the penalties are incremented until all
the inconsistencies are resolved. The experimental results have shown that SGPlan is successful in solving the
benchmarks from the International Planning Competitions in 2003 and 2004 [15].

2.4 Mixed-Integer Linear Programming as a Compilation Technique

A MILP represents a combinatorial optimization problem using linear constraints over some finite set of integer
and continuous decision variables. This dissertation uses various MILP techniques to solve Π. The three main
problem representations that leverage MILP to solve Π are using MILP as compilation, for heuristic search and
in decomposition.

The works described below, as presented in Figure 2.4, are grouped with respect to their planning formalism
and representation of state transitions:

1. Planning formalism: two representations that are used to describe the classical planning problem: the propo-

sitional representation (or STRIPS formalism [29]) and multi-valued representation (or SAS+ formalism
[3]). The propositional representation describes the real world using binary atoms. The multi-valued repre-
sentation describes the real world using multi-valued, discrete state variables.

2. Representation of the state transitions: the state transitions between the steps t and t+ 1 can be implicit in
the constraints of the state-based formulation, or can be explicitly represented using a decision variable in
the state-change formulation.

CHAPTER 2. LITERATURE REVIEW 13

Figure 2.4: Organization of different MILP models that are used in the literature to solve the planning problem as
a compilation technique.

2.4.1 Propositional Representation

State-Based Formulations

Bockmayr et al. [7] present the earliest work that uses MILP as a compilation technique. This work and its
extension [8] use domain-specific knowledge to find step optimal plans to Π. Given the horizon m, the MILP
model uses a state-based formulation to explicitly represent the complete state sc at the beginning of every step
t ∈ T (m + 1) with a set of binary decision variables yf,t for each fluent f ∈ F such that yf,t = 1 if and only if
f ∈ sc. In addition, a set of binary decision variables is used to represent the execution of actions a ∈ A at step
t ∈ T (m) such that xa,t = 1 if and only if a ∈ St. The MILP model [7] uses linear constraints to represent the
state transitions between steps t and t+ 1 ∀t ∈ T (m). The objective function of the MILP model maximizes the
number of goals met at step m+ 1.

Bockmayr et al. [7, 8] do not present a complete model to solve the classical planning problem. Instead,
the authors state that their core MILP model resembles the SAT formulation of the SAT-based planner [47]. The
linear constraints and the objective functions encode the domain knowledge of specific problem instances. For
example, in an instance of the blocks world domain, the total capacity of the table is limited to 7. The constraint∑
b∈blocks yontable(b),t ≤ 7 ∀t ∈ T (m+ 1) represents the fact that over all blocks b ∈ block, at most 7 of them

can be simultaneously on the table, where the binary fluent yontable(b),t = 1 if and only if the block b ∈ blocks is
on the table at step t ∈ T (m+ 1).

Vossen et al. [77] present the earliest work that uses MILP as a domain-independent compilation technique.
Given the horizon m, the work presented two domain-independent MILP formulations: a state-based formulation
that is similar to Bockmayr et al. [7, 8], and an alternative state-change formulation that explicitly represents the
state transitions between steps t and t + 1 ∀t ∈ T (m) with a set of binary decision variables. The state-based
formulation uses the same sets of binary decision variables as the domain-dependent state-based formulation

CHAPTER 2. LITERATURE REVIEW 14

[7, 8]. The objective function and the linear constraints are presented below:

minimize
∑
a∈A

∑
t∈T (m)

xa,t

yf,1 = 1 ∀f ∈ I (2.1)

yf,1 = 0 ∀f /∈ I (2.2)

yf,m+1 = 1 ∀f ∈ G (2.3)

xa,t + xmaintaina,t ≤ yf,t ∀a ∈ pref , t ∈ T (m) (2.4)

yf,t+1 ≤
∑

a∈addf

xa,t + xmaintaina,t ∀f ∈ F, t ∈ T (m) (2.5)

xa,t + xa′,t ≤ 1 ∀a, a′ ∈ A,∃f ∈ (DELa ∩ (ADDf ∪ PREa)), t ∈ T (m) (2.6)

Constraints (2.1)-(2.2) describe the initial state I . Constraint (2.3) describes the goal state G. Constraint (2.4)
states that if action a ∈ A is executed at step t, all its preconditions f ∈ PREa must be true in the beginning
of step t. Constraint (2.5) states that if fluent f ∈ F is true at step t + 1, an action that adds fluent f ∈ ADDa

must be executed at step t. Note that the formulation includes a dummy ‘no-op’ decision variable for each step t,
xmaintaina,t , which propagates fluent f ∈ F between steps t and t+1 whereADDa = PREa = f . Constraint (2.6)
ensures that two conflicting actions, that is if one action deletes the precondition or the add effect of the other,
cannot be executed in the same time step. The objective function minimizes the total number of non-dummy
actions executed in the plan.

State-Change Formulations

Vossen et al. [77] present the first state-change formulation that replaces the state variables with the following set
of binary state-change variables:

Let ypre−addf,t =

1, if action a ∈ pref\delf is executed at step t

0, otherwise.
∀f ∈ F, t ∈ T (m) ∪ {0}

Let ypre−delf,t =

1, if action a ∈ pref ∩ delf is executed at step t

0, otherwise.
∀f ∈ F, t ∈ T (m) ∪ {0}

Let yaddf,t =

1, if action a ∈ addf\pref is executed at step t

0, otherwise.
∀f ∈ F, t ∈ T (m) ∪ {0}

Let ymaintainf,t =

1, if no action a that effects fluent f is executed at step t

such that a ∈ addf ∪ delf ∪ pref
0, otherwise.

∀f ∈ F, t ∈ T (m) ∪ {0}

CHAPTER 2. LITERATURE REVIEW 15

The objective function and the linear constraints used in the state-change formulation are presented below:

minimize
∑
a∈A

∑
t∈T (m)

xa,t

yaddf,0 = 1 ∀f ∈ I (2.7)

yaddf,0 = 0 ∀f /∈ I (2.8)

yaddf,m + ypre−addf,m + ymaintainf,m ≥ 1 ∀f ∈ G (2.9)∑
a∈pref\delf

xa,t ≥ ypre−addf,t ∀t ∈ T (m) (2.10)

∑
a∈addf\pref

xa,t ≥ yaddf,t ∀t ∈ T (m) (2.11)

∑
a∈pref∩delf

xa,t = ypre−delf,t ∀t ∈ T (m) (2.12)

xa,t ≤ ypre−addf,t ∀a ∈ pref\delf , t ∈ T (m) (2.13)

xa,t ≤ yaddf,t ∀a ∈ addf\pref , t ∈ T (m) (2.14)

yaddf,t + ymaintainf,t + ypre−delf,t ≤ 1 ∀f ∈ F, t ∈ T (m) (2.15)

ypre−addf,t + ymaintainf,t + ypre−delf,t ≤ 1 ∀f ∈ F, t ∈ T (m) (2.16)

ypre−addf,t + ymaintainf,t + ypre−delf,t ≤ yaddf,t−1 + ypre−addf,t−1 + ymaintainf,t−1 ∀f ∈ F, t ∈ T (m) (2.17)

Constraints (2.7)-(2.8) describe the initial state I . Constraint (2.9) describes the goal state G. Constraints (2.10) -
(2.12) ensure that for each type of state-change on fluent f ∈ F at step t, at least one action with the corresponding
effect and precondition is executed. Constraints (2.13)-(2.14) ensure that if an action is executed at step t, its
effects and preconditions are described correctly by the state-change variables. Constraints (2.15)-(2.16) ensure
that two conflicting actions cannot be executed in the same step. Constraint (2.17) propagates fluent f ∈ F

between steps t and t+ 1. The objective function minimizes the total number of actions executed in the plan.

The comparison of the run times, the number of problem instances solved, and the number of nodes explored
all show significant performance improvement by using the state-change formulation instead of the state-based
formulation [77]. Across 13 problem instances tested, the state-based formulation can solve only 4 instances
whereas the state-change formulation can solve all of them. In terms of the number of nodes explored and
the solution times of the 4 instances that were solved by both formulations, one to two orders of magnitude
improvement was observed by using the state-change formulation over the state formulation. The results further
show that the linear relaxation values for the state-change formulation are consistently higher compared to the
linear relaxation values for the state-based formulation [77]. A pair of fluents are said to be mutually exclusive if
they cannot be both true in the same state s. It has been further shown experimentally [24] that the exploitation of
the domain structure through the analysis of mutually exclusive fluents improves the run time of the state-change
formulation.

Resource Extension to Domain-Independent State-Based Formulation

Kautz et al. [48] presented extensions to the core state-based formulation, in terms of set of linear constraints and
an alternative objective function, to model the domains with resource requirements [48]. We denote this extended
formulation as the state-resource formulation. The additional parameters used in the state-resource formulation
are as follows:

CHAPTER 2. LITERATURE REVIEW 16

• Prod denotes the set of actions that produce the resource.

• Cons denotes the set of actions that consume the resource.

• ka denotes the resource usage of action a ∈ Prod ∪ Cons.

• UBr denotes the maximum bound on the resource.

• LBr denotes the minimum bound on the resource.

The additional decision variables used in the state-resource formulation are as follows:

Let st =

1, if the resource provider resets the resource to its maximum value UBr at step t

0, otherwise.
∀t ∈ T (m)

Let rt denote the resource level at step t ∀t ∈ T (m)

Let vt denote the amount of resource created by the resource provider at step t ∀t ∈ T (m)

The objective function and the linear constraints used in the state-resource formulation are presented below:

minimize r1 − rm
∑

t∈T (m)

vt

Constraints (2.1)− (2.6)

rt+1 = rt + vt −
∑

a∈Cons
kaxa,t +

∑
a∈Prod

kaxa,t ∀t ∈ T (m− 1) (2.18)

rt+1 ≥ UBrst ∀t ∈ T (m− 1) (2.19)

UBrst ≥ vt ∀t ∈ T (m) (2.20)

xa,t + st ≤ 1 ∀a ∈ A, t ∈ T (m) (2.21)

LBr ≤ rt −
∑

a∈Cons
kaxa,t ∀t ∈ T (m) (2.22)

UBr ≥ rt +
∑

a∈Prod

kaxa,t ∀t ∈ T (m) (2.23)

LBr ≤ rt ≤ UBr ∀t ∈ T (m) (2.24)

LBr ≤ kt ≤ UBr ∀t ∈ T (m) (2.25)

Constraint (2.18) propagates the value of resource variable between two consecutive steps t and t + 1 according
to the resource usage of each action executed at step t and the resource obtained from the resource provider.
Constraint (2.19) ensures that the resource provider resets the resource level to its maximum value UBr. Con-
straint (2.20) ensures that no resource is created from the resource provider if the resource provider is not used.
Constraint (2.21) states that either the resource provider can be used or an action can be executed at any step. Con-
straints (2.22)-(2.23) ensure that after the execution of actions, the resource levels are limited by the minimum
and the maximum resource bounds respectively. The objective function minimizes the total amount of resource
created by the resource provider plus the difference between the resource levels at the first and the last steps.

The experimental results presented by Kautz et al. [48] showed that the state-resource formulation finds plans
with better solution quality in terms of minimum resource usage, compared to both state-of-art parallel sequential
and sequential planners. The superior solution quality of the state-resource formulation is not surprising as the

CHAPTER 2. LITERATURE REVIEW 17

f f f

g g g

h h h
t t+ 1

Figure 2.5: Network representation of a state variable c ∈ C with the domain D(c) = {f, g, h} during steps t and
t+ 1 for the Single State-Change Formulation [11].

other planners do not optimize the resource usage in a plan. Kautz et al. [48] further reported that the linear
relaxation of the state-resource formulation was not very useful to guide the search of the MILP solver. This result
is in-line with the experimental findings of Vossen et al. [77], who demonstrated the state-based formulations
perform significantly worse than state-change formulations. In the light of these experimental results, a promising
area of future research can be extending the state-change formulations to handle problem domains with resource
constraints and objectives.

2.4.2 Multi-valued Representation

A state s in the classical planning problem can be represented using a finite set of multi-valued, discrete state
variables C. Each state variable c ∈ C has a finite domain D(c) = {v1, . . . , vk} where each value vi ∈ D(c)

represents the truth of at most one unique fluent f ∈ F in the state s. Ic denotes the value of state variable c in
the initial state I . C∗ ⊆ C denotes the set of state variables whose domain contains a value that represents a goal
g ∈ G, and Gc denotes the value of state variable c ∈ C∗ in the goal state G.

The multi-valued representation has two interesting properties. The first property is the representation of
mutually exclusive fluents in the domain of each state variable. A value assignment D(c) = v of a state variable
c ∈ C corresponds to the truth of at most one fluent in the state s, and the falsehood of the remaining fluents that
are represented by the values in the variable domain D(c)\{v}. The second property is the explicit representation
of the action condition prevail on some fluent that must hold true prior and during the execution of that action [3].

The Single State-Change (1SC) Formulation [11] represents the planning problem as a set of loosely-coupled
network flow problems where each network represents one state variable. As shown in Figure 2.5, each node
represents a state variable’s value at a given step, t, of the plan, and each arc between the nodes represent the
value transition between steps t and t + 1 ∀t ∈ T (m− 1). The goal is to find a step-based plan such that when
all the networks are merged, the plan is cost-optimal with respect to m. The 1SC formulation uses the following
parameters to represent the relationship between the actions and the state variables:

• SCc:f→g denotes the set of actions that change the value of the state variable c from f to g ∀f, g ∈ D(c), c ∈ C.

• Prevc:g denotes the set of actions that maintain the value g of the state variable c ∀g ∈ D(c), c ∈ C.

Similar to the propositional state-change formulation that is presented in Section 2.4.1 [77], the 1SC formulation
uses binary variables to represent the state transitions between the steps t and t + 1, t ∈ T (m − 1). The 1SC

formulation uses one set of binary decision variables ycf,g,t for each state variable c ∈ C to represent the value

CHAPTER 2. LITERATURE REVIEW 18

transition of c from f ∈ D(c) to g ∈ D(c) between steps t and t + 1. The objective function and the linear
constraints used in the 1SC formulation are presented below:

minimize
∑
a∈A

∑
t∈T (m)

xa,t

∑
g∈D(c)

ycIc,g,1 = 1 ∀c ∈ C (2.26)

∑
f∈D(c)

ycf,Gc,m = 1 ∀c ∈ C∗ (2.27)

∑
f∈D(c)

ycf,g,t =
∑

h∈D(c)

Y cg,h,t+1 ∀f, g ∈ D(c), c ∈ C, t ∈ T (m− 1) (2.28)

∑
a∈SCc:f→g

xa,t = ycf,g,t ∀f 6= g ∈ D(c), c ∈ C, t ∈ T (m) (2.29)

xa,t ≤ ycg,g,t ∀g ∈ D(c), c ∈ C, a ∈ Prevc:g, t ∈ T (m) (2.30)

Constraint (2.26) describes the initial state I by ensuring that every state variable c ∈ C takes the correct value
from their domain D(c) = Ic in the initial state I . Constraint (2.27) describes the goal state G by ensuring that
the state variables c ∈ C∗ that describe the goal state G take the correct values from their domain D(c) = Gc.
Constraint (2.28) preserves the network-flow on every value f ∈ Dc of each state variable c ∈ C for each step
t ∈ T (m). Constraint (2.29) ensures that if there is a state transition from f ∈ Dc to g ∈ Dc at step t ∈ T (m),
an action with the corresponding precondition and effect must be executed. Constraint (2.30) ensures that if an
action with a prevail condition a ∈ Prevc:g is executed at step t ∈ T (m), the value g ∈ D(c) must propagate
between steps t and t+ 1 t ∈ T (m− 1). The objective function minimizes the total number of actions executed
in the plan.

In addition to the 1SC formulation, two different formulations that use more relaxed notions of parallel actions
have been presented [11]. The 1SC formulation uses the notion of parallel actions, that is, a set of actions can be
executed in parallel if any linearization of the actions is a valid subplan that leads to the same complete state sc.
Given the set of state variables C, the 1SC formulation allows for either a1 ∈ SCc:f→g or a2 ∈ Prevc:h to be
executed for each state variable c ∈ C per step. The generalized one-state-change, G1SC, formulation relaxes
the notion of parallelism to ‘there exists some feasible linearization of parallel actions’, and allows for actions
a1 and a2 to be executed in the same step if h = f or h = g. Finally the k-state-change, kSC, formulation
allows each value of a state variable to transition from one unique value to another unique value at most k times
per step. Both the G1SC and kSC formulations can produce plans with cyclic state transitions. The authors
use a branch-and-cut algorithm to solve the planning problem where cuts are dynamically added to remove cyclic
solutions.

Experimental results have shown that the 1SC formulation performed competitively with the winner of the
International Planning Competition in 2004 [46] in terms of run time and plan horizon comparisons. The overall
comparison of 1SC, G1SC and kSC formulations shows that run times are inversely correlated with both the
plan horizon required to find a feasible solution, and the number of cycle elimination constraints that must be
generated for cyclic solutions. The experimental results showed that the G1SC formulation performed the best
overall, and can be viewed as a compromise between the 1SC and kSC formulations [11].

CHAPTER 2. LITERATURE REVIEW 19

2.5 Mixed-Integer Linear Programming for Heuristic Search

In heuristic search, MILP has been used to obtain a numerical value for h(s) and to select which state s ∈ S to
explore next. This section describes the MILP formulations that are used to calculate h(s).

2.5.1 Step Optimal Heuristic Planning

The earliest use of MILP to solve planning problems is in heuristic search [14]. Bylander [14] introduced a step-
based model to calculate an admissible heuristic for step optimal plans. In addition to the action selection xa,t and
state-based yf,t variables, a set of binary decision variables xfa,t is introduced for each precondition f ∈ PREa
of every action a ∈ A at every step t ∈ T (m) such that xfa,t = 1 if the effect of the action a ∈ A is already
satisfied before its execution, and xfa,t = 0 otherwise. The objective function and the linear constraints that are
used [14] to solve Πm are as follows:

maximize
∑
f∈G

yf,m+1

yf,1 = 1 ∀f ∈ I (2.31)

yf,1 = 0 ∀f /∈ I (2.32)∑
a∈A

xa,t ≤ 1 ∀t ∈ T (m) (2.33)

yf,t+1 = yf,t +
∑

a∈addf

xa,t −
∑

a∈addf

xfa,t −
∑
a∈delf

xa,t +
∑
a∈delf

xfa,t ∀f ∈ F, t ∈ T (m) (2.34)

xfa,t ≤ xa,t ∀f ∈ PREa, a ∈ A, t ∈ T (m) (2.35)

yf,t ≥
∑

a∈pref

xa,t +
∑

a∈addf

xfa,t −
∑
a∈delf

xfa,t ∀f ∈ F, t ∈ T (m) (2.36)

1− yf,t ≥
∑

a∈addf

xa,t −
∑

a∈addf

xfa,t +
∑
a∈delf

xfa,t ∀f ∈ F, t ∈ T (m) (2.37)

Constraints (2.31)-(2.32) describe the initial state I . Constraint (2.33) ensures that at most one action can be
executed at a step. Constraint (2.34) ensures the transition of the fluent values between steps t and t+1. Constraint
(2.35) ensures that the decision variable xfa,t can only take the value of 1 only if the action selection variable xa,t
has the value of 1. Constraints (2.36)-(2.37) ensure that the preconditions of an action are true at the step an action
is executed. Finally the objective function maximizes the number of goals satisfied by the MILP formulation.

Bylander implements a modification of this MILP model that allows for actions a ∈ A to be partially-ordered.
Unfortunately the MILP formulation that is presented [14] is specific to a problem instance, and does not provide
sufficient information on how it can be generalized to solve any Πm. This implementation solves the linear-
relaxation of the modified MILP model at every state s ∈ S of the heuristic search. The results show good
approximation to the optimal plan horizon m, however also show that it is computationally expensive to solve the
linear relaxation.

2.5.2 Cost-Optimal Heuristic Planning

Operator counting constraints [64] count the number of actions in some relaxed representation of a plan using
one continuous decision variable za for every action a ∈ A. A number of different planning heuristics, including

CHAPTER 2. LITERATURE REVIEW 20

landmarks [65, 80, 32], the delete relaxation [41], and net state change constraints [9] have been incorporated into
this heuristic.

Delete Relaxation and Landmarks

Imai and Fukunaga [41] introduced a MILP model that finds a cost optimal delete-relaxed plan to Πr+, denoted
as H+. The parameters used in H+ are as follows.

• If = 1 if fluent f ∈ I , If = 0 otherwise.

• inva is the set of inverse actions of action a ∈ A, such that a′ ∈ inva if and only if ADDa′ ⊆ PREa and
ADDa ⊆ PREa′ .

H+ assigns actions and fluents to steps in order to represent the causal links between two actions. The decision
variables used in H+ are as follows.

Let uf =

1, if fluent f is added by πr+

0, otherwise.
∀f ∈ F

Let ua =

1, if action a is used in πr+

0, otherwise.
∀a ∈ A

Let Ta denote the step at which action a is executed. Ta ∈ T (|A| − 1) ∀a ∈ A.

When Ta = |A| − 1, action a is not in πr+.

Let Tf denote the step at which fluent f is added. Tf ∈ T (|A|) ∀f ∈ F .

When Tf = 0, the fluent f is not added by πr+.

Let xa,f =

1, if action a adds fluent f that is required by

the goal state G, or by another action

0, otherwise.

∀f ∈ addf , a ∈ A

CHAPTER 2. LITERATURE REVIEW 21

The constraints and the objective function used in H+ are as follows.

minimize
∑
a∈A

caza

uf = 1 ∀f ∈ G (2.38)

uf ≥ ua ∀f ∈ PREa, a ∈ A (2.39)

ua ≥ xa,f ∀f ∈ ADDa, a ∈ A (2.40)

If +
∑

a∈addf

xa,f = uf ∀f ∈ F (2.41)

Tf ≤ Ta ∀f ∈ PREa, a ∈ A (2.42)

Ta + 1 ≤ Tf + |A+ 1|(1− xa,f) ∀f ∈ ADDa, a ∈ A (2.43)

uf −
∑

a′∈addf∩inva

xa′,f ≥ ua ∀f ∈ PREa, a ∈ A (2.44)

uf = 1 ∀f ∈ LF (2.45)

ua = 1 ∀a ∈ LA (2.46)

ua ≤ za ∀a ∈ A (2.47)

Constraint (2.38) ensures that all goal fluents are added by πr+. Constraint (2.39) ensures that all preconditions
of all the actions are satisfied. Constraint (2.40) states that if action a adds fluent f required by another action or
the goal state, action a has to be in πr+. Constraint (2.41) states that if a fluent is added by πr+, it must either be
true in the initial state, or added by some action. Constraint (2.42) ensures that every precondition of action a is
true by the step it is executed in. Constraint (2.43) ensures that when an action adds a fluent to the plan, the fluent
is true after the execution step of the action. Constraint (2.44) is the inverse action constraint, which states that
action a cannot add fluent f required by another action a′ if a′ adds fluent g required by a. Constraints (2.45) and
(2.46) are causal and action landmark constraints. Constraint (2.47) incorporates H+ into the operator counting
heuristic [64] by ensuring that if an action is used in πr+, the decision variable za takes the value of at least 1.
The objective function minimizes the total action cost of πr+.

Imai and Fukunaga [41, 42] compare the performance of the H+ formulation, to the state-of-the-art delete
relaxation planner (HST) [34] for the computation of the optimal total action cost h+ over 1,300 International
Planning Competition problem instances. Given a 15-minute time limit, the H+ formulation solves more delete
relaxed problems in less computation time. Imai and Fukunaga further implement the H+ formulation in an
A*-search planner to solve cost-optimal planning problems. The experimental results show that solving the linear
relaxation of the H+ formulation performs significantly better than solving the original H+ formulation.

Net Change Constraints

Net change constraints [9] are a set of linear constraints that bound the number of times a set of actions can be
used in any valid plan. These constraints group actions a ∈ A into four different sets, namely: always produce,
sometimes produce, always consume and sometimes consume, for each fluent f ∈ F . The parameters used in the
net change constraints are as follows.

• Mf denotes the set of fluents that are mutually exclusive with fluent f ∈ F .

• APf denotes the set of actions that always produce fluent f ∈ F such that action a ∈ APf if and only if

CHAPTER 2. LITERATURE REVIEW 22

f ∈ ADDa and there exists a fluent g ∈ PREa ∩Mf .

• SPf denotes the set of actions that sometimes produce fluent f ∈ F such that action a ∈ SPf if and only
if f ∈ ADDa and there does not exist a fluent g ∈ PREa ∩Mf .

• ACf denotes the set of actions that always consume fluent f ∈ F such that action a ∈ ACf if and only if
f ∈ DELa ∩ PREa.

• SCf denotes the set of actions that sometimes consume fluent f ∈ F such that action a ∈ SCf if and only
if f ∈ DELa\PREa.

•〈Lf , Uf 〉 =

〈−1,−1〉, if fluent f ∈ I and there exists fluent g ∈ G ∩Mf .

〈−1, 0〉, if fluent f ∈ I\G and there does not exist fluent g ∈ G ∩Mf .

〈1, 1〉, if fluent f ∈ G\I.

〈0, 1〉, if fluent f /∈ I ∪G.

〈0, 0〉, otherwise.

∀f ∈ F

The linear constraints used in the net change constraints are as follows.∑
a∈APf

za +
∑
a∈SPf

za −
∑

a∈ACf

za ≥ Lf ∀f ∈ F (2.48)

∑
a∈APf

za −
∑

a∈ACf

za −
∑

a∈SCf

za ≤ Uf ∀f ∈ F (2.49)

Constraints (2.48)-(2.49) reason about the number of times the fluent f ∈ F is added and deleted by the plan π.
Constraint (2.48) ensures that for each action a2 ∈ ACf , there must exists a unique action a1 ∈ addf for the
causal-link κ(a1, a2, f) ∈ K. Constraint (2.49) ensures that for each action a ∈ APf , there must exists a unique
action that deletes f because a has at least one precondition g ∈ PREa that is mutually exclusive with f such
that g ∈Mf .

Pommerening et al. [64] incorporated both individual and different combinations of operator counting con-
straints into the A*-search configuration of Fast Downward [35]. The performance was tested over 1300 problem
instances from the International Planning Competition domains of 2008 and 2011. Pommerening et al. reported
that the best performing combination of the linear constraints are the net state change constraints and the land-
mark constraints. This configuration is reported to solve 25 more problem instances than the state-of-art heuristic
planner that use LM-Cut.

2.6 Mixed-Integer Linear Programming in Decomposition Techniques

This section of the thesis describes the use of MILP in different decomposition techniques. The works described
in the next section decompose Π with respect to its goals g ∈ G [22] using column generation, or decompose the
procedure for finding π to Π by separating the selection and the ordering of actions A using logic-based Benders

decomposition [21].

CHAPTER 2. LITERATURE REVIEW 23

2.6.1 Column Generation

Davies et al. [22] introduced a column generation decomposition to find a step optimal plan to Π. Given a horizon
m, the master problem selects a set of subplans that consist of a set of actions executed across different steps
t ∈ T (m); each satisfying at least one goal g ∈ G of Π, with minimum total action cost. Each subproblem (i.e.
one subproblem for each g ∈ G) generates a subplan that minimizes the cost of achieving g ∈ G. Davies et al.
[22] use column generation to solve a train scheduling problem, and give a brief introduction on how it can be
generalized for solving the classical planning problems.

Master Problem

The master problem is a step-based MILP formulation that selects subplans to satisfy all goals g ∈ G of Π, with
minimum total action cost. The parameters used in the master problem are as follows.

• P denotes the set of subplans.

• Pg denotes the set of subplans that satisfy goal g ∀g ∈ G.

• cp denotes the total action cost of subplan p ∀p ∈ P .

• M denotes a large numerical constant.

• up,f,t = {0, 1} denotes the usage of fluent f at step t by subplan p ∀p ∈ P, f ∈ F, t ∈ T (m) ∪ {0}.

Davies et al. [22] do not provide the exact definition of the parameter up,f,t for solving the classical planning
problem Π, which is used to ensure that a set of subplans can be executed in parallel. The decision variables used
in the master problem are presented below:

Let xp =

1, if subplan p is executed.

0, otherwise.
∀p ∈ P

Let vg =

1, if goal g is not satisfied.

0, otherwise.
∀g ∈ G

The objective function and the linear constraints used in the master problem are presented below:

minimize
∑
p∈P

cpxp +
∑
g∈G

Mvg∑
p∈P

up,f,0xp ≤ If ∀f ∈ F (2.50)

∑
p∈P

up,f,mxp ≤ −1 ∀f ∈ G (2.51)

∑
p∈P

up,f,mxp ≤ 0 ∀f /∈ G (2.52)

∑
p∈P

up,f,txp ≤ 0 ∀f ∈ F, t ∈ T (m− 1) (2.53)

vg +
∑
p∈Pg

xp = 1 ∀g ∈ G (2.54)

CHAPTER 2. LITERATURE REVIEW 24

Constraints (2.50)-(2.53) ensure that subplans that are selected are executable in parallel at each step t ∈ T (m)∪
{0}. Constraint (2.54) ensures that either each goal g ∈ G is satisfied or the dummy variable vg takes the value of
1. The objective function first maximizes the number of goals g ∈ G satisfied, and then minimizes the total action
cost of the selected subplans.

Subproblem

Each subproblem generates a subplan that satisfies at least one goal g ∈ G with minimum total action cost. The
action cost of each action at each step is updated after solving the master problem with respect to the dual prices

of Constraints (2.50)-(2.53), that correspond to the optimal values of the decision variables in the equivalent dual
problem. Davies et al. [22] solve the subproblems using a temporal Golog implementation [50].

Davies et al. [22] report preliminary results on the multi-agent version of the Blocksworld domain (i.e. there
are as many as grippers as there are blocks). Experimental results show that the column generation performed
competitively with other temporal planners in terms of finding the first feasible plan, and the best in terms of
proving the optimality.

2.6.2 Logic-based Benders decomposition

Davies et al. [21] introduced a logic-based Benders decomposition (LBBD) to find a cost optimal sequential
plan to Π. The master problem of the LBBD is a MILP model that combines several linear constraints from the
operator counting constraints [64] to generate a set of actions A with minimum total action cost. Given A, the
subproblem is a SAT encoding that either finds a sequential plan π if the subproblem is feasible, or returns a cut to
the master problem if the subproblem is infeasible. The overall LBBD presented by Davies et al. [21] is as follows:

Algorithm 1 The algorithmic description of the LBBD presented by Davies et al. [21]
Set Lower Bound Value LB = 0
Set Upper Bound Value UB =∞
Set Incumbent POP π∗ = ∅
while LB < UB do

Solve the master problem
if The master problem is infeasible or |A| > 2|F | then

Terminate
else

Solve the subproblem
if The subproblem is infeasible then

Add the generalized-landmark constraint associated with A to master problem
else

Let π = 〈A∗,O,K〉 denote the POP returned by the subproblem.
Set π∗ = π
Set LB = UB = c(π)
Terminate

end if
end if

end while

CHAPTER 2. LITERATURE REVIEW 25

Master Problem

The master problem is a MILP formulation that is based on three operator counting constraints, namely H+ [41],
net state change constraints [9], and landmark constraints. Similar to the operator counting constraints [64], this
formulation uses one continuous decision variable za for every action a ∈ A. In addition, the master problem
incorporates cuts (or generalized landmarks) returned from the subproblem if the subproblem is infeasible. The
generalized landmarks are in the form of:

∑
a∈A[za ≥ C(a) + 1] ≥ 1 and consist of a set of bounds on every

action a ∈ A that are in the form of: [za ≥ C(a)+1], where C(a) is the value of the decision variable za from the
last optimal solution of the master problem. Intuitively, each generalized landmark is feasible by the satisfaction
of at least one of its bounds, meaning that a plan requires at least one more action to be returned by the master
problem. Instead of adding a generalized landmark with the complete set of bounds on every action a ∈ A, Davies
et al. [21] use Conflict-Directed Clause Learning, which is a conflict analysis method for finding the minimal set
of bounds that have caused the infeasibility of the subproblem [27].

Subproblem

The subproblem is a SAT encoding of a state-based sequential planner that either returns a sequential plan using
the operator counts Ca ∀a ∈ A from the solution of the master problem, or a new set of generalized landmarks.
The SAT model uses the multi-valued representation with the addition of the following parameters:

• Prea:c ∈ D(c) denotes the precondition value of action a on state variable c ∀a ∈ A, c ∈ C.

• Posta:c ∈ D(c) denotes the execution effect of action a on state variable c ∀a ∈ A, c ∈ C.

In addition to the binary action selection variable xa,t, ∀a ∈ A, t ∈ T (|A|), the SAT model uses the binary deci-
sion variable ycf,t, ∀f ∈ D(c), c ∈ C, t ∈ T (|A|) that is true if the state variable c ∈ C takes the value f ∈ D(c)

at step t ∈ T (|A|), and is false otherwise. We follow the same notation that has been used by Davies et al. [21]
to represent the at-most-k constraint, that is denoted as ≤k. Given a set of literals, this constraint enforces that at
most k literals can be simultaneously true. The core SAT model used by Davies et al. [21] is as follows:

({xa,t|a ∈ A}) ≤1 ∀t ∈ T (|A|) (2.55)

({ycf,t|f ∈ D(c)}) ≤1 ∀c ∈ C, t ∈ T (|A|) (2.56)

ycIc,1 ∀c ∈ C (2.57)∧
Prea:c∈D(c),c∈C

(¬xa,t+1 ∨ ycPrea:c,t) ∀a ∈ A, t ∈ T (|A| − 1) (2.58)

∧
Posta:c∈D(c),c∈C

(¬xa,t ∨ ycPosta:c,t) ∀a ∈ A, t ∈ T (|A|) (2.59)

ycf,t+1 → ycf,t
∨

a∈SCc:g→f∀g 6=f∈D(c)

xa,t ∀c ∈ C, t ∈ T (|A| − 1) (2.60)

ycGc,|A| ∨ [
∑
a∈A

C(a) ≥ |A|+ 1] ∀c ∈ C∗ (2.61)

({xa,t|t ∈ T (|A|)}) ≤C(a) ∨ [za ≥ C(a) + 1] ∀a ∈ A, t ∈ T (|A|) (2.62)

Clause (2.55) ensures that at each step, at most one action can be executed. Clause (2.56) ensures that each
state variable can take at most one value from its domain at each step. Clause (2.57) ensures that initial state is set
correctly for every state variable. Clause (2.58) and (2.59) make sure that if an action is executed, its preconditions

CHAPTER 2. LITERATURE REVIEW 26

and effects are set, respectively. Clause (2.60) either propagates the value of a state variable, or ensures that an
action with the proper effect is executed in the previous step. Clause (2.61) states that all goals of Π are satisfied.
Clause (2.62) states that for each action a ∈ A, the total number of actions of a executed across all the steps
t ∈ T (|A|) is less than or equal to the bound C(a). Additionally, Davies et al. [21] use assumptions that are the
negation of the bounds ¬[

∑
a∈A za ≥

∑
a∈A C(a) + 1], and ¬[za ≥ C(a) + 1]. These assumptions are used in

the conflict analysis to find whether the infeasibility of the SAT model is due to the lack of additional steps or
additional actions.

Davies et al. [21] reported the results on a modification of their LBBD that use Branch-and-Check OpSeq
instead of LBBD. The three main differences between the LBBD and OpSeq are as follows. First, OpSeq solves
the linear relaxation of the master problem. Every time an optimal solution is found to the LP, the set of operator
counts are rounded-up to the nearest integer values. Second, the subproblem is solved only if the sum of rounded-
up operator counts are within 20% of the sum of linear operator counts. OpSeq is proposed by Davies et al. [21]
to reduce the large amount of time spent in solving the master problem of LBBD to optimality. The analysis
of the experimental results show that OpSeq is successful in finding high quality dual scores (i.e., good quality
lower bounds on the total action cost of a plan). However, the inspection of the number of problems solved show
that OpSeq is not competitive with the with the winner of the International Planning Competition in 2014 for the
Optimal Track SymBA∗-2 [75].

2.7 Partial-Order Planning

A POP is a plan that imposes only action orderings necessary for achieving a goal, as opposed to a total ordering
of actions as enforced in sequential planning. Equivalently, a POP represents a set of linearizations all including
the same actions but under different orderings. POPs provide flexibility to agents, who can dynamically commit
to the sequence of actions during the real-time execution of the plan [56]. Least commitment planning aims
to generate POPs that do not impose unnecessary ordering constraints between the pairs of actions [51]. Least
commitment planning is used to generate POPs inside:

1. A POP planner that adds an ordering constraint between a pair of actions only if the ordering constraint
removes a threat from the tuple 〈A,O,K〉 [61, 79], or

2. A post-processing model that generates a POP given an initial plan, an approach that is also known as
partial-order relaxation [1, 44, 56].

This section presents these two methods of generating POPs using the least commitment planning.

2.7.1 Partial-Order Planners

The traditional method for generating a POP is called partial-order causal link (POCL) planning [78]. The
original POCL planner, UCPOP [61], performs complete search in plan-space. Unlike in heuristic search, the
search systematically enumerates all states s ∈ S instead of evaluating and selecting the states with the best
heuristic function h(s) value. The integration of the heuristic function h(s) into POCL planning produced a more
efficient POP planner, VHPOP [79]. Neither UCPOP [61] nor VHPOP [79] are competitive with the state-of-the-
art heuristic state-space planners [10, 37, 35, 17, 76].

An alternative method for generating a POP is using the state-space heuristic calculations in POP planning.
POPF [17] is a POP planner that restricts the allowable expansion on the current state s ∈ S to adding new actions

CHAPTER 2. LITERATURE REVIEW 27

ordered at the end of the plan with causal links. Unlike the state-space planners, POPF is not required to order all
pairs of actions. When a new action a1 ∈ A is added to the tuple 〈A,O,K〉, POPF ensures that all preconditions
of a1, f ∈ PREa1 , are supported with the causal links κ(a2, a1, f) such that there exists actions a2 ∈ A that add
the preconditions of a1 i.e., f ∈ PREa1 . In addition, POPF introduces an ordering constraint between a1 and
a3 ∈ A only if a3 ≺ a1 removes a threat from the updated tuple 〈A ∪ {a1},O,K〉. As a result, POPF pertains a
partially-ordered set of actions that can be easily linearized so that a strong heuristic function h(s) value from the
complete state s = sc can be calculated [54].

2.7.2 Partial-Order Relaxation

A least commitment POP introduces an ordering constraint between a pair of actions only if the ordering constraint
contributes to the validity of the POP. Since the ordering constraints are defined between the pairs of actions, it
is common to generate POPs according to the least commitment planning principle given a set A from an initial
plan π = 〈A,O〉 [1, 44, 26, 56, 57] (i.e., a partial-order relaxation). This section presents different objectives and
the MaxSAT models [56, 57] for partial-order relaxation given A.

The earliest work on producing plans using partial-order relaxation investigates the theoretical complexity
of removing ordering constraints from an initial plan, and reorganizing the ordering structure of an initial plan,
namely optimal deordering and optimal reordering of a plan [1]. This work assumes that the action precedence
graph is transitively closed, that is a1 ≺ a3 ∈ O if a1 ≺ a2, a2 ≺ a3 ∈ O.

Definition 1. (Optimal Deordering of a Plan [1]). Let P = 〈A,O,K〉 and P ′ = 〈A,O′,K ′〉 be two valid POPs

for a planning problem Π. P ′ is a optimal deordering of a plan P if and only if

(i) O′ ⊆ O; and

(ii) For all valid POPs P ′′ = 〈A,O′′,K ′′〉, the number of ordering constraints of P ′ is less than or equal to the

number of ordering constraints of P ′′ such that |O′| ≤ |O′′|.

Definition 2. (Optimal Reordering of a Plan [1]). Let P = 〈A,O,K〉 and P ′ = 〈A,O′,K ′〉 be two valid

POPs for a planning problem Π. P ′ is a optimal reordering of a plan P if and only if for all valid POPs

P ′′ = 〈A,O′′,K ′′〉, the number of ordering constraints of P ′ is less than or equal to the number of ordering

constraints of P ′′ such that |O′| ≤ |O′′|.

Both definitions aim to decrease the number of ordering constraints in a plan. The difference between finding
the optimal deordering and optimal reordering of a plan is that deordering only allows the removal of ordering
constraints from O while reordering can introduce new ordering constraints to O. The theoretical complexity of
finding the optimal deordering or optimal reordering of a plan is NP-hard [1].

In temporal planning, a MILP model [26] has been introduced to relax the ordering structure of an initial
plan. In the problem that is being solved, the initial plan is a temporal plan with its actions fixed to specific time
points, and the objective either minimizes the total number of ordering constraints, or maximizes a measure of
temporal flexibility of the resulting order constrained plan. The definition of order constrained plan is similar to
a parallel POP except that an order constrained plan orders a pair of non-concurrent actions a1, a2 ∈ A with an
ordering constraint a1 ≺ a2 ∈ O or a2 ≺ a1 ∈ O instead of the non-concurrency relation a1 ⊥ a2 ∈ #, and,
the action precedence graph of an order constrained plan is not transitively closed. The experimental results have
demonstrated that on average, the makespan of an initial temporal plan can be decreased by 40% as a result of
producing an order constrained plan with the objective of minimizing its makespan [26].

CHAPTER 2. LITERATURE REVIEW 28

In partial order planning, a MaxSAT model [56, 57] has been introduced to generate Minimum Cost Least

Commitment POPs, a weighted combination of cost optimality and optimal reordering objectives.

Definition 3. (Minimum Cost Least Commitment POP (MCLCP) [56]). LetP = 〈A,O,K〉 andP ′ = 〈A′,O′,K ′〉
be two valid POPs for a planning problem Π where A′ ⊆ A. Moreover, let ca be a non-negative cost associated

with each action a ∈ A. P ′ is a least commitment flexible POP (MCLCP) of a plan P iff

(i) For all valid POPs with action set A′′ ⊆ A, we have
∑
a∈A′′ ca ≥

∑
a∈A′ ca; and

(ii) For all valid POPs P ′′ with action set A′′ ⊆ A and
∑
a∈A′′ ca =

∑
a∈A′ ca, |O′| ≤ |O′′|.

Given a set of actions A, Muise et al. [56] introduced a MaxSAT model that selects and orders actions to find
a MCLCP. The parameters used in the MaxSAT model are as follows.

• aI is a special action that represents the initial state I such that ADDaI = I .

• aG is a special action that represents the goal state G such that PREaG = G.

The decision variables used in the MaxSAT model are as follows, where 1 represents true and 0 represents false.

Let Xf
ai,aj =

1, if action ai supports fluent f for

action ajwith the causal link

κ(ai, aj , f) ∈ K

0, otherwise.

∀ai, aj ∈ A, f ∈ ADDai ∩ PREaj

Let Oai,aj =

1, if action ai is ordered before action

aj with an ordering constraint

0, otherwise.

∀ai, aj ∈ A

Let Za =

1, if action a is selected

0, otherwise.
∀a ∈ A

The hard clauses used in the MaxSAT model are as follows.

Zaj →
∧

f∈PREaj

∨
ai∈addf

Xf
ai,aj ∧Oai,aj ∀aj ∈ A (2.63)

Xf
ai,aj →

∧
ad∈delf

(Zad → Oad,ai ∨Oaj ,ad) ∀ai, aj ∈ A, f ∈ PREaj ∩ADDai (2.64)

Oai,aj → Zai ∧ Zaj ∀ai, aj ∈ A (2.65)

Za → OaI ,a ∧OaI ,a ∀a ∈ A (2.66)

ZaI ∧ ZaG (2.67)

¬Oa,a ∀a ∈ A (2.68)

Oai,aj ∧Oaj ,ak → Oai,ak ∀ai, aj , ak ∈ A (2.69)

Hard clause (2.63) ensures that if an action is selected, all of its preconditions are met at least once. Hard
clause (2.64) orders the threatening actions either before or after the causal-link. Hard clause (2.65) makes sure
that the actions in an enforced ordering constraint are included in the plan. Hard clause (2.66) constrains all

CHAPTER 2. LITERATURE REVIEW 29

the included actions to be between the initial and the goal actions. Hard clause (2.67) includes the initial and
goal actions. Hard clause (2.68) disallows self-loops for ordering constraints. Hard clauses (2.68)-(2.69) together
forbid cycles in the action precedence graph. The model grows cubically with the size of the action set A due to
hard clause (2.69). In addition to the hard clauses (2.63)-(2.69), the soft clauses used in the MaxSAT model are
as follows.

w(¬Za) = ca + |A| ∀a ∈ A (2.70)

w(¬Oai,aj) = 1 ∀ai, aj ∈ A (2.71)

Soft clauses (2.70)-(2.71) are weighted such that the model first minimizes the total action cost, then the total
number of ordering constraints in a cost optimal POP w.r.t. the action set A.

The MaxSAT model [55, 56, 57] is compared against a polynomial-time deordering algorithmKK [44] on six
different domains from the International Planning Competition in 2003. The initial sequential plans are obtained
using the Fast Forward planner [37]. Given the actions a ∈ A from these sequential plans π, Muise et al. first
reported the solution qualities obtained from finding the optimal deordering of π using both the MaxSAT model
and the KK algorithm. In terms of solution quality, both models performed equally. Muise et al. then compared
the solution qualities obtained from the calculation of the optimal reordering of π, and the MCLP givenA using the
MaxSAT model. The comparison of the POPs produced by the optimal reordering versus the optimal deordering
of π show consistent reductions in the number of ordering constraints of the resulting POPs. Similarly, the POPs
produced using the MCLP criteria show signification reductions in the number of actions compared to the size of
the set A. Finally, Muise et al. compared the number of linearizations produced by the optimization of deordering
versus reordering criterion [54]. The analysis of the results show that finding the optimal reordering of a plan
produce up to 106 times more linearizations in some benchmark instances compared to the POPs produced by
finding the optimal deordering of π.

The next chapter of this thesis investigates different MILP formulations to find POPs with the optimal number
of linearizations, given an initial sequential plan π. The fourth chapter of this thesis investigates a decomposition
approach for finding a least commitment flexible POP to Π.

Chapter 3

Mixed-Integer Linear Programming
Models for Optimizing Partial-Order Plan
Flexibility

A partial-order plan (POP) compactly encodes a set of sequential plans that can be dynamically chosen by an
agent at execution time. One natural measure of the quality of a POP is its flexibility, which is defined to be the
total number of sequential plans it embodies (i.e., its linearizations) [56, 54]. As this criteria is hard to optimize,
existing work (see Section 2.7.2) has instead optimized proxy functions that are correlated with the number of
linearizations. In this chapter, we develop and strengthen MILP models for three proxy functions: two from the
POP literature and a third novel function based on the temporal flexibility criteria from the scheduling literature.
We show theoretically and empirically that none of the three proxy measures dominate the others in terms of
number of sequential plans. Compared to the state-of-the-art MaxSAT model [56] for the problem, we empirically
demonstrate that two of our MILP models result in equivalent or slightly better solution quality with savings of
approximately one order of magnitude in computation time. The work presented in this chapter is published in
the Twenty-Second European Conference on Artificial Intelligence [72].

3.1 Introduction

Least commitment planning aims to generate POPs that give agents the discretion of how to execute their plans
[54]. A POP generated according to least commitment approach does not commit to actions or ordering decisions
that do not contribute to the validity of the plan (see Section 2.2.3). Given a POP, an agent can dynamically
commit to these sequencing decisions during the execution of the plan. As discussed in Section 2.7, the POCL-
based planners are not competitive with the state-of-the-art sequential planners in terms of their computation
effort. Alternatively, a sequential plan can be efficiently generated using a sequential planner and its solution
quality can be optimized by partial-order relaxation (see Section 2.7.2).

Naturally, a key question in this area concerns the criterion which best reflects the quality of a plan. Several
different objectives have been proposed in the literature, such as the makespan of the plan (i.e., longest path from
the initial state to the goal), total number of unordered actions, existence of possible action reorderings, among
others [73, 60, 2]. This work extends recent research [56, 54] that combines two distinct criteria: a cost per

30

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 31

action and the flexibility of a plan, here measured as the total number of linearizations of the POP. This objective
naturally incorporates the least commitment principle of first executing as few (costly) actions as possible, and
then improving the robustness of the system by placing as many sequential plans as possible at the disposal of the
agent.

While total action cost has been traditionally tackled in sequential planning, enhancing the flexibility of a
plan poses a much more challenging problem. Specifically, optimizing the number of linearizations of a POP is
equivalent to maximizing the number of Hamiltonian paths in a directed acyclic graph, which is computationally
impractical in general [53, 5]. To address this issue, Muise et al. [56, 54] optimize the number of ordering
constraints in a POP, a metric that is correlated to the number of linearizations. Such a metric function is more
computationally tractable and can be efficiently handled, e.g., by MaxSAT solvers.

Building on the work of Muise et al. and previous literature in planning and scheduling [20, 26], we address the
problem of converting a valid sequential plan into a valid POP with minimum action cost and maximum number of
linearizations. In particular, we consider the notion of temporal flexibility from the scheduling literature as a novel
proxy function for the number of linearizations of a POP. We show that there is no dominance relation between
our proxy function and two previous proxy functions in the literature: depending on the problem instance, the
optimization of any of the proxy functions may lead to a greater number of linearizations than either of the others.

Nonetheless, a central benefit of the temporal flexibility criteria is the scaling of model size that is quadratic
in the number of actions, rather than cubic as in Muise’s model. Further, the linear relationships inherent in
the temporal flexibility are amenable to mathematical programming techniques. We exploit this advantage and
propose three MILP models for minimizing action cost and maximizing flexibility: a novel model of temporal
flexibility, a model that linearizes the existing MaxSAT formulation [56], and a model that adapts an existing MILP
formulation for temporal planning to POPs [26]. Going further, we derive a number of valid linear inequalities
that can also be applied to the MILP models, substantially decreasing their solution times.

We compare our three MILP formulations to the current state-of-the-art MaxSAT model by Muise et al. [56].
Our empirical evaluation suggests that optimizing any of the three proxy functions results in equivalent solution
quality, consistent with our theoretical results. Furthermore, the strengthened MILP models achieve approxi-
mately one order of magnitude speedup compared to the state-of-the-art MaxSAT model, solving significantly
more problem instances to optimality. These results hold both when minimizing total action cost and maximizing
flexibility and when only maximizing flexibility with a fixed set of actions.

Contributions. We present temporal flexibility as a novel proxy function for maximizing the number of lineariza-
tions in a partial-order plan and provide a novel mixed-integer linear program to optimize this criterion. We derive
new valid linear inequalities that can be applied to the new and existing POP MILP formulations. Finally, we show
that the modified MILP models achieve substantially better run-time performance than the current state-of-the-art
without sacrificing solution quality.

3.2 Least Commitment Flexible POPs

Given a sequential plan π to a STRIPS problem Π, our aim is to derive a POP P from π that is ideally optimal
both in terms of its action cost and its flexibility. These two characteristics are embodied in the notion of least
commitment planning [51].

The least commitment planning evaluates POPs according to two metrics: the total action cost and the number

of linearizations of the plan. The first is a natural and common objective in planning as agents would like to incur
the minimum total action cost possible to achieve a goal. The second metric intuitively gives us a notion of how

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 32

flexible the plan is, since more linearizations indicate more alternative ways to execute the actions to achieve the
goal [56].

Equipped with these two notions, we formally define the structure of an optimal POP in our context.

Definition 4. (Least Commitment Flexible POP (LCFP) of a Plan). Let P = 〈A,O,K〉 and P ′ = 〈A′,O′,K ′〉
be two valid POPs for a planning problem Π where A′ ⊆ A. Moreover, let ca be a non-negative cost associated

with each action a ∈ A. P ′ is a least commitment flexible POP (LCFP) of plan P iff

(i) For all valid POPs with action set A′′ ⊆ A, we have
∑
a∈A′′ ca ≥

∑
a∈A′ ca; and

(ii) For all valid POPs P ′′ with action set A′′ ⊆ A and
∑
a∈A′′ ca =

∑
a∈A′ ca, the number of linearizations

of P ′ is greater or equal to the number of linearizations of P ′′.

This definition differs from that of Muise et al. [56] as it contains a slightly more general action cost structure
and explicitly incorporates the number of linearizations, as opposed to the number of ordering constraints.

As in previous work, Definition 4 does not include solving the traditional POP planning problem of finding the
set of actions and the ordering constraints that achieve a valid POP. Rather, we are concerned with the optimization
of action cost and flexibility, given a valid POP. Thus, our primary goal in this work is to find the LCFP of a
sequential plan, which is itself a POP. Since counting linearizations is computationally challenging, we investigate
the optimization of alternative proxy functions that correlate with the number of linearizations of a POP.

3.3 Proxy Measures of POP Flexibility

We study three proxy functions for the number of linearizations of a POP, two of which are extracted from
previous works, and one novel to this work: the minimization of the number of open ordering constraints [26],
the minimization of the number of closed ordering constraints [56], and the maximization of temporal flexibility
adapted from the scheduling literature [20].

3.3.1 Order Flexibility

Muise et al. [56] optimized what we term the order flexibility of a POP: the total number of ordering constraints
in the plan. The more ordering constraints, the less order flexibility a POP has. We investigate two definitions of
an ordering constraint.

Definition 5. (Open Ordering Constraint): Given the set of actions A and the set of causal links K, the open

ordering constraint a1 ≺ a2 belongs to the set O for some POP P = 〈A,O,K〉 to a planning problem Π if:

1. There exists a causal link κ(a1, a2, f) ∈ K from action a1 to action a2 on some fluent f ∈ F , or

2. There exists a causal link κ(a2, a3, f) ∈ K from action a2 to action a3 on some fluent f ∈ F and action

a1 ∈ delf is ordered before action a2 to resolve the threat, or

3. There exists a causal link κ(a3, a1, f) ∈ K from action a3 to action a1 on some fluent f ∈ F and action

a2 ∈ delf is ordered after action a1 to resolve the threat.

Do and Kambhampati [26] minimize the equivalent of the number of open ordering constraints in order

constrained plans, temporal plans which have a partial-order structure but allow concurrent execution of non-
interfering actions. Concurrent execution semantics create a subtle but relevant difference in the meaning of

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 33

open ordering constraints. In particular, Definition 2 relaxes Do and Kambhampati’s definition by assuming a
sequential execution of a POP.

We can now characterize the ordering constraint definition used by Muise et al. [56] as specifically the transi-

tive closure of the open ordering constraints.

Definition 6. (Closed Ordering Constraint): Given the set of actions A and the set of causal links K, the closed

ordering constraint a1 ≺ a2 belongs to the set O for some POP P = 〈A,O,K〉 to a planning problem Π if:

1. There exists an open ordering constraint between actions a1 and a2, or

2. There exists some other action a3 such that: a1 ≺ a3 ∈ O and a3 ≺ a2 ∈ O.

We will refer to the set of open and closed ordering constraints as OO and OC , respectively.

3.3.2 Temporal Flexibility

In scheduling, temporal flexibility refers to a schedule’s ability to absorb temporal variation during execution [62].
We exploit the same property to define an analogous version of temporal flexibility for planning problems.

Given a POP P = 〈A,O,K〉 for Π and a duration da of each action a ∈ A, the horizon of P , HP , is the sum
of the action durations. Intuitively, since the actions will be executed in sequence, HP is the (temporal) length
of the plan. The earliest start time of an action a is esta = maxa′≺a∈O (esta′ + da′) and the latest finish time

of action a is lfta = mina≺a′∈O (lfta′ − da′), where estaI = 0 and lftaG = HP for the unique first and last
actions. Let the action slack of a, Ta, be such that Ta = lfta − esta − da [20]. The temporal flexibility, T , of P
is given by T =

∑
a∈A Ta. For classical (i.e. non-temporal) planning, we assume that all actions have a duration

of one time unit.

3.3.3 Dominance Relations Among Proxy Functions

A proxy function obj1 dominates another proxy function obj2 if, for any planning problem instance Π, any POP
P that optimizes obj1 has at least as many linearizations as any POP P ′ that optimizes obj2 and, for at least one
instance Π∗, the number of linearizations in P is strictly greater than that of P ′. We have the following result.

Proposition 7. There are no dominance relations among the open ordering, closed ordering, and temporal flexi-

bility proxy functions.

Proof. For each pair of objective functions (obji, objj), i 6= j, it suffices to show the existence of two problem
instances Π1,Π2, where, for Π1, a POP P that optimizes obji has more linearizations than a POP P ′ that optimizes
objj and vice versa for Π2. The counter-examples are simple but tedious to verify and are presented in the next
section.

To formally prove Proposition 7, Figures 3.1 to 3.4 present counter-examples showing that there does not
exist a dominance relation between any pair of the three proxy functions in terms of the resulting number of
linearizations in a POP. That is, it is not the case that optimizing one proxy function will always lead to more POP
linearizations than optimizing one of the other two.

Each counter-example presents an abstracted planning problem with fluents indexed by integers and two
graphs presenting the POP found by optimizing two of the objective functions, respectively. The nodes repre-
sent the actions and arcs represent the ordering constraints under the OO definition. For clarity, we do not show
the causal links, the action variables aI and aG, or the transitive closure. We use the notation obj1 ; obj2 to

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 34

represent the non-dominance of obj1 over obj2 with respect to the number of linearizations, where obj1 and obj2
represent a pair of proxy objectives. In order to show obj1 ; obj2, we separately optimize the set of actions
with respect to both obj1 and obj2, and show that L1 < L2, where Li is the number of linearizations of objec-
tive i counted through exhaustive enumeration. For each POP example, we report the proxy objective functions
optimized, and the resulting |OO|, |OC |, T and L values.

For clarity, we demonstrate how the counter-examples work using the example presented in Figure 3.1. The
table in Figure 3.1 presents the planning problem. From left to right, the columns represent the action names,
the preconditions, add effects and delete effect of actions a ∈ A. Each numeric value represents a unique fluent
f ∈ F . Each row of the table represents an action a ∈ A. For example, action a1 has a precondition on fluent
0 ∈ F , adds fluents 1, 7 ∈ F and has no delete effects. In total, the set A has eight actions, including the dummy
actions aI and aG. The items in the caption represent the proxy objectives under which the optimal LCFPs are
generated. The action precedence graph of the POP on the left is an optimal LCFP with respect to the objective
min. |OC |, and the POP on the right is an optimal LCFP with respect to the objective max. T . The notation
min. |OC | ; max. T indicates that Figure 3.1 is a counter-example to demonstrate the non-dominance of the
minimization of |OC | over the maximization of T . The remaining items in the caption report the proxy objectives
that are optimized, and the numerical values of every proxy objective of the produced POP. For example, the
POP presented on the right maximizes temporal flexibility and has 5 open ordering constraints, 8 closed ordering
constraints, 18 units of temporal flexibility and 16 linearizations. Since the example on the left minimizes |OC |
and has 15 linearizations, we conclude that minimizing |OC | does not dominate the maximization of T .

Actions Pre Add Del

aI - 0 -
a1 0 1,7 -
a2 1 2,3,8 -
a3 0 6,9 4
a4 6 4,5,10 -
a5 4 2,3,11 -
a6 2,3,5 12 -
aG 7,8,9,10,11,12 - -

a1 a2

a3 a4 a5

a6 a1 a2 a6

a3 a4 a5

Figure 3.1: min. |OC | ; max. T . Left: min. |OC |, |OO| = 5, |OC | = 7, T = 16, L = 15. Right: max. T ,
|OO| = 5, |OC | = 8, T = 18, L = 16.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 35

Actions Pre Add Del

aI - 8,9,10 -
a1 8 0,3 -
a2 0 1,2,4 -
a3 0,1,2 5 -
a4 9 1,6 -
a5 10 2,7 -
aG 3,4,5,6,7 - -

a1 a2

a3

a4

a5

a5 a1 a2

a4 a3

Figure 3.2: max. T ; min. |OC | and max. T ; min. |OO|. Left: min. |OC | or min. |OO|, |OO| = 3,
|OC | = 3, T = 14, L = 20. Right: max. T , |OO| = 4, |OC | = 4, T = 15, L = 18.

Actions Pre Add Del

aI - 7 -
a1 7 2,3 0
a2 7 0,1,4 -
a3 0,7 1,2,5 -
a4 1,2,7 6 -
aG 3,4,5,6 - -

a1 a3

a2 a4

a1 a2

a3 a4

Figure 3.3: min. |OO| ; min. |OC | and min. |OO| ; max. T . Left: min. |OC | or max. T , |OO| = 4,
|OC | = 5, T = 4, L = 2. Right: min. |OO|, |OO| = 3, |OC | = 6, T = 0, L = 1.

Actions Pre Add Del

aI - 10 -
a1 10 3,4,5 -
a2 3,4,10 0,1,2,6 -
a3 10 1,4,7 3
a4 1,10 2,8 -
a5 2,10 3,9 -
aG 5,6,7,8,9 - -

a1 a2 a3

a4a5 a3 a4

a5 a2

a1

Figure 3.4: min. |OC |; min. |OO|. Left: min. |OO|, |OO| = 4, |OC | = 7, T = 10, L = 6. Right: min. |OC |,
|OO| = 5; |OC | = 6, T = 8, L = 5.

Given this result of non-dominance, we now turn to the investigation of different MILP formulations to opti-
mize the proxy objectives of an input set of actions A.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 36

3.4 The OMILP
C Model

Muise [54] empirically investigated equivalent MILP and MaxSAT models for the problem of minimum reorder-
ing: finding a POP with the minimum number of closed ordering constraints without removing actions from the
initial set of actions. OMILP

C is a minor extension of Muise’s MILP encoding for the LCFP problem under the
closed constraint proxy function. OMILP

C does not use the input ordering of the initial sequential plan.

The parameters used in OMILP
C are as follows.

• A′ = A\{aI , aG} is the set of non-dummy actions.

• Gf = 1 if dummy action aG requires fluent f or equivalently if f is required to be true in the goal state.

The objective function and the linear constraints used in OMILP
C are as follows.

minimize (|A′|2 + 1)
∑
a∈A′

caZa +
∑

ai,aj∈A′

Oai,aj∑
ai∈addf

Xf
ai,aj = Zaj ∀aj ∈ A, f ∈ PREaj (3.1)

(1−Xf
ai,aj) + (Oad,ai +Oaj ,ad) ≥ Zad

∀ai, ad, aj ∈ A, f ∈ PREaj ∩DELad ∩ADDai (3.2)

Oai,aj ≥ Xf
ai,aj ∀ai, aj ∈ A, f ∈ ADDai ∩ PREaj (3.3)

OaI ,a = Za ∀a ∈ A\{aI} (3.4)

Oa,aG = Za ∀a ∈ A\{aG} (3.5)

Oai,aj +Oaj ,ai ≤
Zai + Zaj

2
∀ai, aj ∈ A (3.6)

ZaI = ZaG = 1 (3.7)

Oa,a = 0 ∀a ∈ A (3.8)

(1−Oai,aj) + (1−Oaj ,ak) +Oai,ak ≥ 1 ∀ai, aj , ak ∈ A (3.9)

The objective first minimizes the sum of action costs, then minimizes the number of closed ordering con-
straints. The first coefficient of the objective function, |A′|2 + 1, guarantees this property when all the actions
have costs greater or equal to 1 unit. When this is not the case, we need to normalize the action costs so that
all the actions have costs greater or equal to 1 unit. Constraint (3.1) ensures that if an action is selected, all of
its preconditions are met exactly once. Constraint (3.2) orders the threatening actions either before or after the
causal link. Constraint (3.3) is an order implication constraint that states that if action a1 ∈ A supports some
other action a2 ∈ A with some fluent f ∈ F , a1 must be ordered before a2. Constraints (3.4)-(3.5) restrict all
the included actions to be between the initial and the goal actions. Constraint (3.6) makes sure that the actions
in an enforced ordering constraint are included in the plan. Constraint (3.7) includes the initial and goal actions.
Constraint (3.8) disallows self-loops for ordering constraints. Constraint (3.9) produces a transitively-closed POP.
Constraints (3.8)-(3.9) together forbid cycles in the action precedence graph.

Note that due to the ternary arity of Constraint (3.9), OMILP
C grows cubically with the number of actions.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 37

3.5 The OMILP
O and T MILP Models

Both OMILP
O and T MILP build on Do and Kambhampati’s MILP model [26]. The main differences are that OMILP

O

does not enforce an ordering between all pairs of interfering actions, while also allowing for actions to be excluded
when they are not relevant to the POP’s validity.

OMILP
O and T MILP are identical aside from their objectives. The key difference with OMILP

C is the use of start
time variables to represent ordering constraints. With the addition of a linear number of variables, the models
grow quadratically with the number of actions.

Compared to the formulation of OMILP
C , OMILP

O and T MILP introduce three additional variables: Esta =

maxa′≺a∈O (Esta′ + da′) is the earliest start time of action a; Lfta = mina≺a′∈O (Lfta′ − da′) is the latest
finish time of a; and finally Ta = Lfta − Esta − da is the slack of a.

minimize (|A′|
∑
a∈A′

da + 1)
∑
a∈A′

caZa −
∑
a∈A′

Ta

Constraints (3.1)-(3.8)

Estai + daiOai,aj ≤ Estaj +
∑
a∈A

da(1−Oai,aj) ∀ai, aj ∈ A (3.10)

Lftai + dajOai,aj ≤ Lftaj +
∑
a∈A

da(1−Oai,aj) ∀ai, aj ∈ A (3.11)

Esta + daZa + Ta = Lfta ∀a ∈ A (3.12)

EstaI = 0 (3.13)

LftaG =
∑
a∈A

daZa (3.14)

As OMILP
O uses the same objective function as OMILP

C and the only difference between T MILP and OMILP
O are

the objectives, we present the model for T MILP. Analogously to OMILP
C , in T MILP the objective first minimizes the

sum of action cost, then maximizes the sum of temporal slack of all the actions. Constraints (3.10)-(3.11) make
sure that, if some action ai is ordered before some other action aj , the earliest start time and the latest finish time
of aj are not before the earliest start time and the latest finish time of ai, respectively. Constraint (3.12) defines
the temporal slack of an action. Constraints (3.13)-(3.14) set the plan horizon.

3.6 Valid Inequalities

We now present valid linear inequalities to strengthen the MILP models. Unless noted, the constraints can be
added to all formulations.

Mutual Threat Constraints As illustrated in Figure 3.5, a cycle is formed when action ai supports fluent f for
action aj and fluent g for action aj , where aj and ak threaten the causal links Xg

ai,ak
and Xf

ai,aj , respectively.
Since a cycle is not allowed in the action precedence graph, Xg

ai,ak
and Xf

ai,aj are mutually exclusive in any POP
and are removed via Constraint (3.15). When f = g, all Xf

ai,aj are mutually exclusive and are also removed by
Constraint (3.15).

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 38

aiaddf,g

aj pref∩delg
Oak,aj

ak preg∩delf

Oaj ,ak

Xf
ai,aj

Xg
ai,ak

Figure 3.5: Mutual threat constraint example.

max

Xg
ai,ak

+Xf
ai,aj ,

∑
aj∈(pref∩delf)

Xf
ai,aj

 ≤ Zai ∀f ∈ ADDai , ai ∈ A (3.15)

Action Relevance Constraint Constraint (3.16) states that a selected action must support at least one causal
link. If there does not exist a causal link κ(a1, a2, f) ∈ K for fluent f ∈ F and action a2 ∈ pref , action
a1 ∈ addf can be removed without effecting the validity of the POP. If the action has a positive action cost
cai > 0, the removal of a1 will decrement the total action cost by cai . This means the original POP that has action
a1 cannot be a LCFP of the initial plan.

∑
aj∈pref ,f∈ADDai

Xf
ai,aj ≥ Zai ∀cai > 0, ai ∈ A′. (3.16)

Minimal Interference Constraint When an action a1 ∈ A with positive action cost ca1 > 0 adds only one
fluent f ∈ F , there must exist another action a2 ∈ pref and the causal link κ(a1, a2, f) ∈ K (due to Constraint
3.16). The decision variable that corresponds to the causal link κ(a1, a2, f) ∈ K must take the value of 1 i.e.,
Xf
a1,a2 = 1. Further, if there exists a third action a3 ∈ delf , action a1 must be ordered with respect to it, due to

Constraint (3.2) i.e., Oa3,a1 = 1 or Oa1,a3 = 1 because Xf
a1,a2 → Oa1,a2 and Oa1,a2 ∧ Oa2,a3 → Oa1,a3 due to

Constraint (3.9). Constraint (3.17)1 enforces ordering constraints on all the pairs of actions, a1, a2 ∈ A, if, given
|ADDa2 | = 1, either a1 ∈ delf and a2 ∈ (addf ∪ pref) or a2 ∈ delf and a1 ∈ (addf ∪ pref).

Oai,aj +Oaj ,ai ≥ Zai + Zaj − 1

∀ai, aj ∈ A,∃f ∈ (PREai ∪ADDai) ∩DELaj , and |ADDai | = 1. (3.17)

Counting Constraints Inspired by operator counting constraints [64] (see Section 2.5.2), we observe the fol-
lowing: since all actions ai that delete and require fluent f (i.e., f ∈ F, ai, aj ∈ delf ∩ pref) are sequentially
ordered due to interference on f , there must exist at least one action ak that adds fluent f (i.e., ak ∈ addf)
between each ai. This observation gives rise to three constraints: Constraint (3.18) counts the total number of
occurrences of both ai and ak while Constraints (3.19) and (3.20) each split the plan into two for each ai and
ensure there are more actions ak than aj succeeding and preceding ai, respectively.

1Based on the interference constraints of Do and Kambhampati [26].

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 39

∑
ak∈addf

Zak + If ≥
∑

aj∈(delf∩pref)

Zaj +Gf ∀f ∈ F (3.18)

∑
ak∈addf

Oai,ak ≥
∑

aj∈(delf∩pref)

Oai,aj +GfZai ∀ai ∈ A, f ∈ PREai ∩DELai (3.19)

∑
ak∈addf

Oak,ai + IfZai ≥
∑

aj∈(delf∩pref)

Oaj ,ai ∀ai ∈ A, f ∈ PREai ∩DELai (3.20)

Symmetry Breaking Constraints Two actions that are equivalent in their preconditions, add effects, and delete
effects (denoted ai ≡ aj) introduce symmetrically identical solutions (and non-solutions) into the search space.
We can break this symmetry by enforcing a lexicographical ordering as shown below. Constraints (3.21)-(3.23)
disallow the inclusion, ordering, and start of the action with lower index value before its equivalent action with
higher index value, respectively. Constraint (3.24) ensures that two equivalent actions, ai, aj , that delete and
require fluent f (i.e. f ∈ F, ai, aj ∈ delf ∩ pref) are ordered with respect to their index values.

Zai ≤ Zaj ∀cai > 0, i < j, ai ≡ aj ∈ A (3.21)

Oai,aj = 0 ∀i < j, ai ≡ aj ∈ A (3.22)

Estaj ≤ Estai +
∑
a∈A

da(1− Zai) ∀i < j, ai ≡ aj ∈ A (3.23)

Oaj ,ai = Zai ∀i < j, ai ≡ aj ∈ A, ∃f ∈ F, ai, aj ∈ delf ∩ pref (3.24)

Constraints (3.17), (3.19), (3.20), and (3.24) do not introduce any ordering constraints that are not relevant
to the validity of a POP. However, their addition to OMILP

O can change the optimal solution because the orderings
due to threats may now be replaced with explicit ordering constraints and therefore result in a higher number of
open ordering constraints. For example, given the causal link κ(a1, a2, f) ∈ K between actions a1 ∈ addf and
a2 ∈ pref on some fluent f ∈ F , the optimal LCFP generated by OMILP

O orders actions a2 and a3 ∈ delf with
the ordering constraint a2 ≺ a3. The addition of Constraint (3.17) explicitly orders a1 and a3 with the ordering
constraint a1 ≺ a3, which can change the optimal value or the optimal solution. We add Constraints (3.15)-(3.22)
and (3.24) to OMILP

C , OMILP
O and T MILP, and add Constraint (3.23) only to OMILP

O and T MILP. We refer to these
strengthened models as OMILP+S

C , OMILP+S
O and T MILP+S, respectively.

3.7 Computational Results

In this section, we present the results of two computational experiments. In Experiment 1, we investigate the
empirical behaviour of the three proxy functions. While we demonstrated in Section 3.3.3 that theoretically none
of the proxy functions dominate the others, this result does not speak to the average empirical behaviour: it is
possible that, in practice, a proxy function often results in more linearizations than others. To test this possi-
bility, we focus on the minimum reordering problem: a version of LCFP where the number of actions is fixed.
This restriction ensures that we are comparing the proxy functions while controlling for the complicating fac-
tor of different action sets that arises in the LCFP models. We show that, generally, there is also no empirical
domination among the proxy functions, with our only significant comparison being that T MILP+S achieves a sta-
tistically significant higher mean logarithmic number of linearizations than OmaxSAT

C . We also provide empirical

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 40

evidence that the MILP models for temporal flexibility and open ordering constraints are substantially faster than
the state-of-the-art MaxSAT model on the minimum reordering problems.

In Experiment 2, we solve the full LCFP problems. Our findings show that the proposed models OMILP+S
O

and T MILP+S can be solved to optimality faster on the majority of the tested instances, and scale better with the
initial number of actions compared to OmaxSAT

C . The solution quality across proxy functions is similar with no
significant differences in the action cost or mean number of linearizations but with T MILP+S and OmaxSAT

C finding
a statistically significantly higher mean logarithmic number of linearizations than OMILP+S

O .

Experimental Details For both experiments, the initial plans are generated using the Fast-Forward planning
system [37]. For the first experiment, we use eight domains from the International Planning Competition:
Depots, Driverlog, Freecell, Gripper, Logistics, Rovers, Tpp, and Zenotravel, giving in
total 144 instances. For the second experiment, we use the use the same experimental setup as Muise et al. [56]
including the same domains: Depots, Driverlog, Logistics, Rovers, Tpp, and Zenotravel, giving
in total 138 instances. The experiments ran on a MacBookPro computer with 2.66 GHz Intel Core i7. The MILP
models were solved using IBM ILOG CPLEX 12.6.2 with 1 thread. For OmaxSAT

C , we use the SAT4j MaxSAT
2.3.5 solver with a memory limit of 2GB. A time limit of 1,800 seconds was imposed on all models.

3.7.1 Experiment 1: Comparing Proxy Functions

To observe the effect of the optimization of each proxy objective on the number of linearizations in a POP, we fix
the set of actions (i.e., Za = 1,∀a ∈ A) and optimize the proxy objective functions.

Solution Quality In Table 3.1, we report the mean logarithmic number of linearizations considering the in-
stances for which all three models return an optimal solution and for which we successfully count the number of
linearizations: 99 instances. Values in boldface represent the maximum in each row. The number of linearizations
is found through a simple depth-first search with a time limit of 30 minutes per instance. We note that the mean
logarithmic number of linearizations is equivalent to the geometric mean of such numbers, which is more ap-
propriate than reporting their means when comparing large-magnitude numbers (as the number of linearizations
grows exponentially large with the number of actions). This measure is largely used in the optimization literature
(see, e.g., [4, 12]).

We performed bootstrap paired t-tests [16] using two statistics: number of linearizations and logarithmic
number of linearizations (base 10). Our results indicated that there are no statistically significant differences in the
mean number of linearizations while for the mean logarithmic statistic the only significant difference (p ≤ 0.01)
is that T MILP+S finds a higher mean than OmaxSAT

C . Among the two models that optimized the closed ordering
constraints, OmaxSAT

C consistently dominated OMILP+S
C . Therefore the results for OMILP+S

C are not presented.

In Figure 3.6, we plot the number of linearizations for which optimal solutions were found for both closed
ordering flexibility and temporal flexibility and for which we successfully counted the number of linearizations.
For 83% of the instances, optimization of both proxy objective functions resulted in POPs with the same number
of linearizations.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 41

Mean Log10 Number of Linearizations

Dom T MILP+S OMILP+S
O OmaxSAT

C

Dep 7.09 6.97 6.93
Dri 5.84 5.95 5.83
Fre 7.55 6.80 7.57
Gri 4.34 4.34 4.34
Log 11.91 11.42 11.38
Rov 8.53 8.15 8.41
Tpp 3.71 3.71 3.71
Zen 7.69 7.55 7.69

Mean 7.76 7.51 7.63

Table 3.1: Solution quality in terms of linearizations (logarithmic) in Experiment 1.

Closed Order Flexibility (Number Of Linearizations)

Te
m

po
ra

l F
le

xi
bi

lit
y

(N
um

be
r O

f L
in

ea
riz

at
io

ns
)

100 103 106 109 1012 1015 1018 1021 1024 1027

10
0

10
3

10
6

10
9

10
12

10
15

10
18

10
21

10
24

10
27

Figure 3.6: Number of linearizations between temporal flexibility and closed ordering flexibility (in logarithmic
scale) in Experiment 1.

Computational Effort We now compare the models with respect to the effort to optimize each proxy objective.
Figure 3.7 shows a performance profile depicting the number of instances solved to optimality over the 30-minute
time limit. Optimization of open order, temporal and closed ordering flexibility using OMILP+S

O , T MILP+S and

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 42

OmaxSAT
C models solve 126, 122 and 118 problem instances to optimality within 30 minutes, respectively. It can be

observed that both MILP models outperform OmaxSAT
C , while OMILP+S

O is also superior to T MILP+S across all time
points.

Run Time (Seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

Run Time (Seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

0
50

10
0

15
0

Run Time (Seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

TMIP+S
OO
MIP+S

OC
maxSAT

10-2 10-1 100 101 102 103

Figure 3.7: Performance profile (in log scale) for Experiment 1.

3.7.2 Experiment 2: Solving LCFPs

Turning to LCFPs, we present results on three issues in this subsection: the quality of LCFPs produced by each
model, the computational effort for each model, and the impact of the strengthening constraints that we introduced
above.

Solution Quality In Table 4.1, we report the mean action cost for each planning domain. The table includes
results from the 131 problems instances for which at least one of the approaches found a feasible solution. For
instances for which an approach found no feasible POP but another one did, we use the action cost of the input
sequential plan for the former approach. Values in boldface are the minimum for each row. All four models
perform similarly, a result reflected in the bootstrap paired t-tests showing no significant differences. The Tpp
domain is the only one that appears to have variation, an observation that we further explore below (see Figure
3.11).

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 43

Average Total Action Cost

Dom OMILP+S
O OMILP+S

C T MILP+S OmaxSAT
C

Dep 42.30 43.86 42.30 42.30
Dri 26.80 26.80 26.80 26.80
Log 91.11 91.94 91.11 91.14
Rov 35.2 35.2 35.2 35.2
Tpp 91.5 94.05 91.82 85.95
Zen 33.1 33.1 33.1 33.1

Mean 59.81 60.74 59.87 58.95

Table 3.2: Solution quality in terms of total action cost.

Mean Log10 Number of Linearizations

Dom OMILP+S
O OMILP+S

C T MILP+S OmaxSAT
C

Dep 9.24 8.55 11.17 10.95
Dri 6.66 6.81 6.79 6.81
Log 18.01 18.76 18.70 18.76
Rov 14.82 15.05 15.05 15.05
Tpp 9.75 8.06 10.53 10.58
Zen 7.64 7.84 7.82 7.84

Mean 11.06 10.97 11.75 11.72

Table 3.3: Solution quality in terms of linearizations (logarithmic).

In Table 3.3 we report the average logarithmic number of linearizations considering instances for which all
four models return a feasible solution with the same action cost and for which we successfully count the number
of linearizations: 93 instances in total. Values in boldface represent the maximum in each row. As in Experiment
1, we generate the linearizations through a depth-first search with a 30-minute time limit per instance. T MILP+S

performs at the same level as the weighted MaxSAT modelOmaxSAT
C , whileOMILP+S

O andOMILP+S
C trail substantially.

Bootstrap paired t-tests indicate no significant differences between any pair in terms of the mean number of
linearizations while reflecting the pattern in the table in terms of the mean of the logarithm of the number of
linearizations: both T MILP+S and OmaxSAT

C have a significantly higher log mean number of linearizations than
OMILP+S
O (p ≤ 0.01).

Computational Effort We compare the models with respect to solution times, focusing on the strengthened
formulations – we evaluate the direct effect of the strengthening below (see Figure 3.12). Figure 3.8 shows a
performance profile depicting the number of instances solved to optimality over time. OMILP+S

O and T MILP+S each
solved 119 instances out of 138, while OMILP+S

C and OmaxSAT
C each solved 111 instances, all of which were also

solved by the other methods.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 44

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

0
20

40
60

80
10
0

12
0

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

TMILP+S
OO
MILP+S

OC
MILP+S

OC
maxSAT

10-2 10-1 100 101 102 103

Figure 3.8: Performance profile (in log scale) for Experiment 2.

For the 111 instances solved by all methods,OMILP+S
O and T MILP+S were faster than the other approaches in all

but one case. On average, OMILP+S
O and T MILP+S were approximately 27 times and 20 times faster than OmaxSAT

C ,
respectively. A scatter plot comparing the run times of T MILP+S andOmaxSAT

C for all instances is depicted in Figure
3.9. The plot comparing OMILP+S

O and OmaxSAT
C on the same basis is similar. The speedups obtained both by

OMILP+S
O and T MILP+S are likely due to a smaller formulation when compared to other models. As noted above,

the number of constraints in OMILP+S
C (which is derived directly from OmaxSAT

C) grows cubically with the number
of actions, while in OMILP+S

O and T MILP+S the growth is quadratic. This explanation is supported by Figure 3.10,
which indicates that the difference in run times between T MILP+S and OmaxSAT

C is positively correlated with the
number of actions in the original plan.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 45

OC
maxSAT (Seconds)

TM
IL
P
+S

 (S
ec

on
ds

)

10-2 10-1 100 101 102 103

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 3.9: Run time comparison between T MILP+S and OmaxSAT
C (in logarithmic scale).

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 46

Number Of Actions

R
un

 T
im

e
(S

ec
on

ds
)

0 50 100 150 200 250 300

Number Of Actions

R
un

 T
im

e
(S

ec
on

ds
)

10
-2

10
-1

10
0

10
1

10
2

10
3

TMIP+S
OC
maxSAT

Figure 3.10: Run times of OmaxSAT
C and T MILP+S and number of actions in the original plan (in logarithmic scale).

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 47

Number Of Threats

R
un

 T
im

e
(S

ec
on

ds
)

100 101 102 103 104 105 106

10
-2

10
-1

10
0

10
1

10
2

10
3

Depots
Driverlog
Logistics
Rovers
Tpp
Zenotravel

Figure 3.11: Run time performance of T MILP+S and number of threat ordering constraints (in logarithmic scale).

All models grow linearly with the number of threats in the plan, here encoded by Constraints (3.2), which now
becomes more relevant to the size of both OMILP+S

O and T MILP+S. Figure 3.11 depicts the run time of T MILP+S as a
function of the number of threat ordering constraints for each domain, and strongly suggests a direct correlation.
The 19 instances that were unsolved by OMILP+S

O and T MILP+S are from the Tpp domain and have more than
10,000 threats.

The Effect of the Strengthening Constraints In Figure 3.12 we plot run time comparisons between the pairs of
base and strengthened models. The effect is significant for the instances that take longer than one second to solve.
On average, the strengthened models are one order of magnitude faster than their corresponding base models.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 48

Base Models (Seconds)

S
tre

ng
th

en
ed

 M
od

el
s

(S
ec

on
ds

)

10-2 10-1 100 101 102 103

10
-2

10
-1

10
0

10
1

10
2

10
3

OO
MIP vs OO

MIP+S

TMIP vs TMIP+S

OC
MIP vs OC

MIP+S

Figure 3.12: Effect of Constraints (3.15)-(3.24) on base models.

Summary of Results The performance profiles in Figures 3.7 and 3.8 clearly show the superior performance of
T MILP+S and OMILP+S

O over OmaxSAT
C in terms of problem solving efficiency. Figure 3.12 demonstrates that the run

time advantage is largely a result of the valid inequalities that we derived. The solution quality results are more
nuanced, showing no significant differences in action cost in Experiment 2 or in mean number of linearizations
in either experiment. The mean logarithmic number of linearizations does show superiority for T MILP+S over
OmaxSAT
C in Experiment 1 and for both T MILP+S and OmaxSAT

C over OMILP+S
O in Experiment 2.

3.8 Conclusion

We presented three MILP models for converting a sequential plan to a POP by optimizing a combination of action
cost and one of three different proxy functions: the number of open ordering constraints [26], the number of
closed ordering constraints [56] and a novel proxy function, temporal flexibility. We proved, through a set of
counter-examples, that none of these functions dominates the others in terms of the number of linearizations in
the resulting POPs. We then added valid strengthening constraints to these models, resulting in approximately an
order of magnitude improvement in performance. Finally, we demonstrated that the two MILP models based on
open ordering constraints and temporal flexibility achieve solution quality equal to that of the previous state-of-
the-art MaxSAT approach [56] with a decrease in run time of approximately one order of magnitude.

CHAPTER 3. MILP MODELS FOR OPTIMIZING PARTIAL-ORDER PLAN FLEXIBILITY 49

An obvious direction for future work is to investigate the improvement of the MaxSAT model through the
encoding of temporal variables rather than closed ordering constraints. The ideas of Crawford & Baker [18] and
Frausto-Solis & Cruz-Chavez [31] may be useful here. We would also like to investigate other proxy functions
and their relationship to POP flexibility.

In the next chapter, we introduce a decomposition method to find a LCFP to the complete planning problem
Π. Our logic-based Benders decomposition (LBBD) consists of a master problem that selects and updates the
set of actions that are to be ordered by a subproblem that performs a partial-order relaxation on the given set of
actions. Our master problem is solved using a MILP model that is based on the operator counting constraints [64]
that are described in Section 2.5.2. Our subproblem is solved using using a modified version of OMILP

O . We build
on the LBBD introduced by Davies et al. [21] (see Section 2.6.2) to produce an optimal LCFP to Π.

Chapter 4

Mixed-Integer Linear Programming
Models for Least Commitment Flexible
Partial-Order Planning

The least commitment flexible planning criteria evaluates a partial-order plan with respect to two objectives: its
total action cost and the number of linearizations it contains [72]. The first objective, which is equivalent to deter-
mining a cost-optimal plan to the planning problem Π, is typically optimized efficiently using sequential planners.
The second objective, i.e., finding the maximum number of linearizations contained in a plan, is optimized using
an approach denoted by partial-order relaxation. In this chapter we investigate solution methods to find a least
commitment flexible POP (LCFP) to the original planning problem Π in an integrated way. We first focus on
finding a cost-optimal POP to Π using a logic-based Benders decomposition (LBBD) that is similar to the ap-
proach by Davies et al. [21]. In particular, we show experimentally that the overall computational time needed
for generating a cost-optimal POP is similar to that of generating a cost-optimal sequential plan. We then extend
this work to find a LCFP to Π. To our knowledge, this is the first work that globally optimizes this objective. Our
results show that our LCFP planner solves fewer problems to optimality using more computation time compared
to our cost-optimal LBBD POP planner.

4.1 Introduction

Least commitment flexible planning aims to find a POP with the minimum total action cost and the maximum
number of linearizations [56, 72]. In the previous chapter, we solved the problem of finding a least commitment
flexible POP (LCFP) of a given plan. However, the solution quality of the resulting POP depends substantially on
the set of actions contained in the initial plan, and previous works [1, 44, 26, 56, 72] do not address the question
of how to find the set of actions that yields an optimal LCFP to the original planning problem.

We start investigating this issue by building on the recent planner that iteratively selects and orders actions
to find a cost-optimal sequential plan [21]. Similar to Davies et al. [21], we decompose the planning problem
into a master problem and a subproblem in a logic-based Benders decomposition (LBBD) framework. In our
master problem, actions are selected based on a MILP model that incorporates operator counting constraints. In
the subproblem, we find a POP with the minimum total action cost, restricted to the actions that are selected

50

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 51

previously by the master problem. To solve our subproblem, we use a modified version of OMILP
O from Section

3.6 that only minimizes the total action cost of a POP. We denote this LBBD by POPLBBD. We compare our
cost-optimal POP planner POPLBBD to the cost-optimal sequential planner OpSeq by Davies et al. [21] over 200
problem instances from the 2011 International Planning Competition. We compare the planners in terms of the
total number of problems solved given a time limit and show the performance of POPLBBD is almost as good as
OpSeq, without enforcing the action from the final plan to be totally-ordered.

Next, we modify POPLBBD to find a least commitment flexible POP to Π without the need of an initial plan.
We call this model POPLBBD

LCFP , and compare it to POPLBBD in terms of both the number of problems solved given
a time limit and the run time performance. To our knowledge, POPLBBD

LCFP is the first planner that generates POPs
with minimum total action cost and maximum number of linearizations to the original planning problem.

Contributions. We present the first decomposition model to generate POPs with the minimum total action cost
and the maximum number of linearizations to the complete planning problem without the need of an initial
plan. We derive new operator counting constraints to strengthen both the master and the subproblems of our
decomposition models. Finally, we experimentally show that over 200 problem instances across the International
Planning Competition 2011 sequential optimal track benchmark, our least commitment flexible planner solves 67
to optimality.

4.2 Cost-Optimal Planning

The primary objective of the least commitment flexible planning is to generate a POP with the minimum total
action cost. In this section we find a cost-optimal POP to the planning problem Π using a logic-lased Benders
decomposition (LBBD) that is similar to the LBBD presented by Davies et al. [21]. We will denote the LBBD
that is presented in this section as POPLBBD.

POPLBBD is composed of a master problemM and a subproblem S(A). The master problemM is an MILP
model that is similar to the master problem of Davies et al. [21]. The set of bounds on the number of times
action a ∈ A appears in the plan C(a) is obtained from the master problem of POPLBBD and then used to add
actions to the set A. Given a set of actions A, the subproblem S(A) is a MILP model that checks the existence
of a cost-optimal POP π = 〈A∗,O,K〉 with respect to the set of actions A such that A∗ ⊆ A. To solve our
subproblem, we use a modified version of OMILP

O that only minimizes the total action cost of a POP since OMILP
O

has a smaller encoding size compared to T MILP and OMILP
C . In the next three sections we describe the master

MILP problemM, the subproblem S(A), and the modified generalized landmark constraints that consists of a
set of bounds C(a) on the number of times action a ∈ A appears in the plan, respectively.

4.2.1 Master Problem

The master problem M is a relaxation of the original planning problem Π that selects a set of actions with
minimum total action cost. Similar to Davies et al. [21], we formulateM as a MILP model. Our formulation
builds on the H+ MILP formulation [42] and incorporates a set of operator counting constraints that count the
number of actions in a relaxed representation of a plan [64] (see Section 2.5.2).

The formulation forM are as follows.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 52

minimize
∑
a∈A

caza

Constraints (2.38)− (2.47)

Constraints (2.48)− (2.49)

Ta + 1 ≤ Tf + |A|(1− xa,f) ∀f ∈ ADDa, a ∈ A (4.1)

za ≤Mauf ∀f ∈ PREa, a ∈ A\LA (4.2)∑
a∈A

za ≤ 2|F | (4.3)

Modified Generalized Landmark Constraints

whereMa is an arbitrarily large constant that is a minimum upper bound on the set of bounds C(a) on the number
of times each action a ∈ A appears in a cost-optimal POP. If the number of actions required for a cost-optimal
plan is not known, we choose a large constant, i.e. 100, that is experimentally observed to be an upper bound to
the 2011 International Comptetition benchmark. Otherwise, if the total action cost of a valid POP π is known,
the constant Ma can be set equal to the expression c(π)

ca
, since the total action cost of an incumbent POP c(π) is

guaranteed to be greater or equal to the action cost ca times the cardinality of the action a ∈ A in a cost-optimal
POP. The constant Ma is always updated using the lowest known total action cost of a POP.

Constraint (4.1) is a modified version of Constraint (2.43). The constant |A+1| can be reduced to |A| because
the maximum value Ta can take is equal to |A − 1|, that is, Ta = |A − 1|, the maximum value Ta + 1 can
take is |A|. When Tf = 0 and xa,f = 0, the minimum value required to satisfy this constraint is equal to
|A|. Constraint (4.2) ensures that all the preconditions of all the actions are added. Without Constraint (4.2),
the selected actions a ∈ A can have preconditions f ∈ PREa that are never added by another action such that
∀f ∈ PREa @a′ ∈ A∩addf . Constraint (4.3) bounds the sum of all actions in any feasible plan by the maximum
number of states, i.e. 2|F |, of the planning problem Π [21]. The final set of constraints are modified versions of
generalized landmark constraints [21] that will be discussed in Section 4.3.2.

4.2.2 Subproblem

Given a set of actions A, the subproblem S(A) is a MILP model that finds a cost-optimal POP π = 〈A∗,O,K〉
such that A∗ ⊆ A. The subproblem described below is a simplified version of the MILP model OMILP

O that was
introduced in Chapter 3 with the addition of net state change constraints [9], landmark constraints [65, 80, 32].
The addition of valid inequalities that are introduced in section 3.6 are omitted since we have not investigated
their interaction with the net state change and landmark constraints.

The objective function of the MILP model only minimizes the total action cost, as opposed to first minimizing
the total action cost and then minimizing the total number of open ordering constraints OO in a POP. Instead of
using two sets of decision variables to encode the earliest start time and the latest finish time of an action, the
MILP model uses an integer decision variable Sa for all a ∈ A to denote the step at which action a is executed.

The additional parameters used in S(A) are as follows.

• LA denotes the action landmark set that is extracted for the restricted planning problem Π = 〈F,A, I\a,G〉.

• LF denotes the causal landmark set that is extracted for the restricted planning problem. Π = 〈F,A\pref , I\f,G〉.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 53

The objective function and the linear constraints used in S(A) are as follows.

minimize
∑
a∈A

caZa

Constraints (3.1)− (3.8)

SaI = 0 (4.4)

SaG =
∑
a∈A

Za + 1 (4.5)

Sai +Oai,aj ≤ Saj + (|A| − 1)(1−Oai,aj) ∀ai, aj ∈ A (4.6)∑
ai≡a,ai∈A

Zai ≥ 1 ∀a ∈ LA (4.7)

∑
a∈addf

Za ≥ 1 ∀f ∈ LF (4.8)

∑
a∈APf

Za +
∑
a∈SPf

Za −
∑

a∈ACf

Za ≥ Lf ∀f ∈ F (4.9)

∑
a∈APf

Za −
∑

a∈ACf

Za −
∑

a∈SCf

Za ≤ Uf ∀f ∈ F (4.10)

Zaj ≤ Zai ∀cai > 0, ai ≡ aj , i < j, ai, aj ∈ A (4.11)

Zaj = Oai,aj ∀cai > 0, ai ≡ aj , i < j, ai, aj ∈ A (4.12)

Constraints (4.4)-(4.6) ensure that the action precedence graph does not contain cycles. Constraints (4.7)-(4.8)
denote the action and causal landmark constraints, stating that the set of actions and the set of fluents that are
identified as landmarks must be added by the POP, respectively. Constraints (4.9)-(4.10) denote the net state
change constraints, which reason about the number of times the fluent f ∈ F is added and deleted by the POP
using the two pairs of setsAPf , SPf andACf , SCf , respectively (see Section 2.5.2). A pair of actions ai, aj ∈ A
are equivalent (denoted ai ≡ aj) if their preconditions, add effects, and delete effects are identical. Constraints
(4.11) -(4.12) break symmetry between all pairs of equivalent actions to remove symmetrically identical solutions
(and non-solutions) from the search space (see Section 3.7). The objective function minimizes the total action
cost of a POP.

Next, we formally show that in every cost-optimal POP, the symmetry between two equivalent actions ai ≡
aj ∈ A can always be broken by introducing the ordering constraint ai ≺ aj ∈ O for all i < j.

Lemma 8. Let π∗ = 〈A∗,O∗,K∗〉 be a cost-optimal POP. All pairs of actions a1, a2 ∈ A∗ can be ordered with

respect to each other with the ordering constraint a1 ≺ a2 ∈ O if ca1 > 0 and a1 ≡ a2.

Proof. Let π∗ = 〈A∗,O∗,K∗〉 be a cost-optimal POP. Further, suppose actions a1, a2 ∈ A∗ are equivalent, i.e.,
a1 ≡ a2, and are not ordered with respect to each other. This implies that there exists a linear execution of actions
A∗ such that a2 is executed immediately after a1. Since the execution of a2 does not change the state it is executed
in (as the effects and preconditions of a1 and a2 are equivalent), the execution order of a1 and a2 can be reversed
without impacting the validity of the POP.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 54

4.2.3 Benders Cuts: Modified Generalized Landmark Constraints

The modified generalized landmark constraints consist of a set of cardinality bounds on every action a ∈ A (see
Section 2.6.2). For each action a ∈ A, the generalized landmark constraints use one binary decision variable ea
that is associated with the bound C(a). In addition, ea = 1 only if the condition za ≥ C(a) + 1 is satisfied for
each action a ∈ A.

The linear constraints used in the modified generalized landmark constraints are as follows.

za ≥ (C(a) + 1)ea ∀a ∈ A (4.13)∑
a∈A

ea = 1 (4.14)

Constraints (4.13)-(4.14) ensure that exactly one bound on action a ∈ A is satisfied. When ea = 1, the
decision variable za must take a value that is at least one greater than the action boundC(a) such that za ≥ C(a)+

1 for exactly one action a ∈ A. From a planning perspective, the modified generalized landmark constraints
represent the fact that the set of actions A require the addition of at least one more action a ∈ A to contain a
cost-optimal POP.

4.2.4 Updating the set of Actions A

Before the subproblem S(A) is solved, the set of actionsA must be updated. The modified generalized landmark
constraints (4.13)- (4.14) ensure that the set of actions A′ selected by the master problem M contains at least
one new action a ∈ A′ such that A′ * A. We add the new actions Anew = A′\A to the set A such that
A = A ∪ Anew. This is equivalent to updating the action bounds by the maximum of the current action bound
C(a) and the optimal value of the decision variable za such that C(a) ← max{z∗a, C(a)}, where z∗a denotes the
optimal value of the decision variable za, for action a ∈ A. Note that the Constraints (4.13)-(4.14) are modified
by updating the coefficient matrix associated with the decision variable ea in constraint (4.13) of the MILP model.

4.2.5 Using the Incumbent Information

The information from an incumbent POP π can be used to prune the search space of the master problemM. Given
the total action cost of an incumbent POP c(π), the constraint added to the master problemM is as follows:∑

a∈A
caza < c(π) (4.15)

Constraint 4.15 ensures that once an incumbent POP π is found, every action count with the total action cost∑
a∈A caza ≥ c(π) is removed from the search space of the master problemM.

4.2.6 The Cost-Optimal Logic-Based Benders Decomposition: POPLBBD

Given the master and the subproblems, POPLBBD starts with an empty set of actionsA = ∅. At every iteration, at
least one action a ∈ A is added to the set A. POPLBBD iteratively adds actions to A until either A is guaranteed
to contain a cost-optimal POP π∗ = 〈A∗,O,K〉 to Π such that A∗ ⊆ A, or Π is proven to be infeasible. The
algorithmic description of POPLBBD is as follows:

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 55

Algorithm 2 The algorithmic description of POPLBBD

Set Lower Bound Value LB = 0

Set Upper Bound Value UB =∞
Set Incumbent POP πinc = ∅
while LB < UB do

Solve the master problemM
ifM is infeasible then

Terminate
else

Let A′ denote the set of actions returned by the master problem.
if
∑
a∈A′ ca ≥ UB then

Terminate
else

Set LB =
∑
a∈A′ ca

Update A = A ∪Anew where Anew = A′\A
Solve the subproblem S(A)

if S(A) is feasible then
Let π = 〈A∗,O,K〉 denote the POP returned by the subproblem.
if c(π) < UB then

Set UB = c(π)

Set πinc = π

end if
end if
if S(A) is infeasible or LB < UB then

Update the modified generalized landmark constraint inM.
end if

end if
end if

end while

4.2.7 Comparison to Previous Logic-Based Benders Decompositions

The main differences between the LBBD described by Davies et al. [21] and POPLBBD are as follows. First,
POPLBBD produces a POP instead of a sequential plan. Second,POPLBBD maintains one set of modified general-
ized landmark constraints, i.e., Constraint (4.13), instead of adding a unique generalized landmark constraint after
every iteration of the LBBD. Therefore the size ofM stays constant, instead of growing linearly with the number
of iterations of the LBBD. Third, POPLBBD uses only one binary decision variable per action a ∈ A, instead
of pre-allocating a binary decision variable for every unique integer value of the action bound C(a). Therefore,
POPLBBD solves the complete planning problem and the LBBD described by Davies et al. [21] iteratively solves
the bounded planning problem.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 56

4.2.8 Proof of Correctness

In this section, we present theoretical results on the completeness and soundness of POPLBBD. First, we prove
that given a set of actions A, the subproblem S(A) always finds a cost-optimal POP. To do so, we prove that our
temporal constraints (4.4)-(4.6) and the symmetry breaking constraints (4.11)-(4.12) do not remove any unique
optimal solutions from the search space of S(A). Then, we prove the completeness and soundness of POPLBBD

Lemma 9. Let π = 〈A,O,K〉 be a POP for the planning problem Π. The action precedence graph O does not

contain cycles if and only if Constraints (4.4)-(4.6) assign each action a ∈ A to a step Sa.

Proof. First, we show by contradiction that if a feasible solution is returned by the subproblem, its action prece-
dence graph O does not contain cycles. Suppose the action precedence graph O contain cycles, and let there be a
feasible step assignment Sa to each action a ∈ A with respect to Constraints (4.4)-(4.6). This implies that there
exists a set of ordering constraints such that a1 ≺ a2, a2 ≺ a3, a3 ≺ a1 ∈ O. There does not exist a feasible set
of step assignments Sa1 , Sa2 , Sa3 to each action such that at most two out of three clauses can be satisfied in the
formula (Sa1 + 1 ≤ Sa2)∧ (Sa2 + 1 ≤ Sa3)∧ (Sa3 + 1 ≤ Sa1) due to Constraint (4.6), which is a contradiction.

Next, we show by contradiction that if there exists a POP π = 〈A,O,K〉, the subproblem returns a valid POP
with a feasible step assignment. Suppose the action precedence graph O contains no cycles, and there does not
exist a feasible step assignment Sa to each action a ∈ A with respect to Constraints (4.4)-(4.6). This implies
that, for any linear execution of the actions a ∈ A, there does not exist a feasible step assignment with respect to
Constraints (4.4)-(4.6). The actions aI and aG will always be assigned to the steps 0 and |A| + 1, respectively.
These assignments are feasible with respect to Constraints (4.4)-(4.6). The number of steps required for a linear
execution of a ∈ A is equal to |A|. Let L = [a1, a2, ...an] be a linear execution of a ∈ A (w.r.t. O). Given L,
each action a ∈ A can be assigned to a feasible step with respect to Constraint (4.6) such that Sai = i, which is a
contradiction.

Theorem 10. Let Π = 〈F,A, I,G〉 be a planning problem. In finite number of iterations i ∈ I , POPLBBD returns

a cost-optimal POP π∗ if and only if Π is feasible.

Proof. We will first prove by induction that the following properties are valid at each iteration of POPLBBD if the
planning problem Π is feasible,

1. the optimal objective function value of the master problem M is a lower bound LB on the cost of an
optimal POP π∗ such that LB ≤ c(π∗), and

2. at least one of the two must hold:

(a) there exists at least one action cost-optimal POP π∗ = 〈A∗,O,K〉 with the action setA∗ that is either
feasible to the subproblem such that A∗ ⊆ A, or

(b) there exists at least one action count z∗a for all a ∈ A that is feasible to the master problem, that is, z∗a
denotes a feasible value assignment to the action count decision variables za for all actions a ∈ A.

Base Case: In the first iteration i = 1, the action set A and the incumbent POP πinc are empty, the action
bounds C(a) on every action a ∈ A are set to 0, and the lower and upper bounds are set to LB = 0 and UB =∞,
respectively. SinceC(a) = 0 for all a ∈ A, solving the master problemM in the base case is equivalent to solving
the relaxation of Π with operator counting heuristics [64]. Property 1 holds in the base case since solving the delete
relaxation of Π is guaranteed to generate a total action that is less than or equal to the optimal action cost of Π.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 57

Property 2 holds in the base case since every action cost-optimal POP has a corresponding action count z∗a for all
actions a ∈ A that is feasible to the master problem.

Induction Hypothesis: Assume that up to iteration i < k, Properties 1 and 2 hold. This implies that LB
is a lower bound on the optimal action cost of the planning problem Π, and either the incumbent POP πinc is
updated with a cost-optimal POP π∗ = 〈A∗,O,K〉 such that πinc = π∗ (i.e., A∗ ⊆ A), or there exists an action
cost-optimal POP π∗ whose action count z∗a, a ∈ A is feasible to the master problemM.

Induction Step: Let i = k be the next iteration of POPLBBD. Given the action set A and the incumbent
plan πinc, solving the master problemM either returns an optimal action count z∗a, a ∈ A that corresponds to a
cost-optimal set A′, or infeasibility.

If the master problem M is infeasible and πinc is empty, POPLBBD proves the infeasibility of the original
planning problem and terminates because there does not exist a relaxed plan with the action set A∗ * A, and
hence there does not exist a POP π∗ = 〈A∗,O,K〉 such that A∗ ⊆ A since πinc = ∅.

If the master problemM is infeasible and πinc is not empty, POPLBBD proves that πinc is cost-optimal and
terminates. Property 1 is satisfied since the master problemM must be infeasible due to Constraint (4.15) and
therefore the lower bound is less than or equal to the upper bound LB ≤ UB. Property 2 is satisfied since the
infeasibility of the master problemM implies that there does not exist a set of feasible action counts z∗a to the
master problemM for all actions a ∈ A with the total action cost less than the total action cost of the incumbent
POP πinc such that

∑
a∈A caz

∗
a < UB = c(πinc). Further, the non-empty incumbent POP πinc = 〈A∗,O,K〉

implies that A∗ ⊆ A.

If the master problemM is feasible and the set A′ is not empty, the action set A is updated with the addition
of new actions from the set A′ as described in Section 4.2.4. If solving the subproblem S(A) returns a POP π
where c(π) < UB, both πinc and UB are updated such that πinc = π and UB = c(π). Property 1 is satisfied
since solving the master problem M returned a relaxed plan with the action set A′ and the total action cost∑
a∈A′ ca ≤ c(π∗). Property 2 is satisfied because either a cost-optimal POP π∗ = 〈A∗,O,K〉 is found by

solving the subproblem S(A) such that πinc = π∗ whereA∗ ⊆ A, or there exists a set of action counts z∗a, a ∈ A
that correspond to the set A′ * A with the total action cost of

∑
a∈A′ . The total action cost

∑
a∈A′ is equal to

the optimal action cost of the planning problem Π such that
∑
a∈A′ = c(π∗). Given the action bounds C(a) for

all actions a ∈ A, there must exist a set of action counts z∗a for all actions a ∈ A that is a feasible solution to
the master problemM because A′ * A implies the existence of an action ai /∈ A with the corresponding action
count z∗a ≥ C(a) + 1 for at least one action ai ≡ a ∈ A.

There are two possible termination conditions: POPLBBD either terminates with a cost-optimal POP π∗ if Π

is feasible, or proves the infeasibility of Π if Π is infeasible. If Π is feasible, POPLBBD will find a cost-optimal
POP π∗ at some iteration k and prove its optimality since either LB = UB, or by ensuring that there does not
exist any relaxed plan with the action set A′ and total action cost

∑
a∈A′ ca that is lower than the total action cost

of the incumbent POP due to Constraint (4.15) such that
∑
a∈A′ ca < UB = πinc. If Π is infeasible, POPLBBD

proves the infeasibility of Π by showing that there does not exist a cost-optimal POP π∗ = 〈A∗,O,K〉 such that
A∗ ⊆ A since A is bounded by |A| ≤ 2|F | × |A|.

In the next section, we demonstrate how POPLBBD works on a small example.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 58

4.2.9 Example: Solving a Simple Planning Problem with POPLBBD

In this example we demonstrate how POPLBBD solves a simple planning problem. Let us consider a planning
problem represented by the tuple Π = 〈F,A, I,G〉, where F = {f, g}, A = {aI , a1, a2, a3, aG}, I = ADDaI =

∅, G = PREaG = {f, g}, ADDa1 = f , DELa1 = g, ADDa2 = g, DELa2 = f , ADDa3 = {f, g}. Further,
let each action be associated with the actions costs ca1 = ca2 = 1, ca3 = 3. π∗ = 〈A∗,O,K〉 is a cost optimal
POP to Π where A∗ = {aI , a3, aG}, O = {aI ≺ a3, a3 ≺ aG} and K = {κ(a3, aG, f), κ(a3, aG, g)} with the
total action cost of 3. In Figure 4.1, the table summarizes the example planning problem Π and the graph with
the directed arcs represents an action cost-optimal POP to Π where the nodes represent the actions a ∈ A and the
arcs represent the ordering constraints ai ≺ aj ∈ O between the actions ai, aj ∈ A.

Actions Pre Add Del Cost

aI - - - 0
a1 - f g 1
a2 - g f 1
a3 - f,g - 3
aG f,g - - 0

aI a3 aG

Figure 4.1: On the left: The planning problem represented by the table. On the right: The action-cost optimal
POP for the example planning problem.

The maximum number of unique states that can be reached by any plan is 2|F | = 4. Similar to Davies et al.
[21], we use this information to bound (or prove the infeasibility of) Π. If the number of the actions is more than
2|F |, i.e., A′ > 2|F | = 4, Π must be infeasible.

POPLBBD starts with an empty action setA = ∅. In its first iteration,M selects the actions a1 and a2 because
the delete effects of actions a1 and a2 are ignored. The set of actions and the lower bound are updated such that
A = {a1, a2} and LB = 2. Given the set A, the subproblem searches for a cost-optimal POP π∗ = 〈A∗,O,K〉
such that A∗ ⊆ A. Since there does not exist a POP given the set A, S(A) returns infeasibility and the modified
generalized landmark constraints are updated.

In the second iteration,M can select either: (1) a1 twice and a2 once, or (2) a2 once and a2 twice, or (3) a3
once. Note that all three options are equivalent cost-optimal relaxed plans forM, with the total action cost of 3.
Let us assume thatM select option (1) as the cost-optimal relaxed plan. The set of actions and the lower bound
are updated such that A = {a1, a′1, a2} and LB = 3. Given the set A, S(A) will again return infeasibility.

In the third iteration, let us assumeM selects option (2) as the cost-optimal relaxed plan. The set of actions
is updated such that A = {a1, a′1, a2, a′2}. The S(A) returns infeasibility and the modified generalized landmark
constraints are updated.

In the fourth iteration, M can only select option (3) as the cost-optimal relaxed plan. The set of actions
is updated such that A = {a1, a′1, a2, a′2, a3}. Given the set of actions A, S(A) returns the cost-optimal POP
π∗. The incumbent plan and the upper bound are updated such that π = π∗ and UB = 3, respectively. Since
LB ≥ UB, and POPLBBD terminates with the cost-optimal POP π∗ to Π with the total action cost of 3.

With this example, we have demonstrated that POPLBBD performs a complete search to find a set of actions
A that contains a cost-optimal POP π∗ = 〈A∗,O,K〉 to Π such thatA∗ ⊆ A. We further showed how POPLBBD

uses the duality information, i.e., the lower and upper bounds, to prove the optimality of its incumbent plan and
terminate its search.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 59

In the next section we modify POPLBBD to find the least commitment flexible POP to the planning problem
Π.

4.3 Optimal Least Commitment Flexible Planning

The main motivation for generating a POP instead of a sequential plan is the execution flexibility it provides to an
agent (see Section 3.1). Unlike a sequential plan, a POP compactly represents a set of plans, i.e., linearizations,
from which an agent can dynamically choose from during execution. While there are methods, such as partial-
order relaxation, that optimize the flexibility of an input plan (see Section 2.7.2), the problem of finding a Least
Commitment Flexible POP (LCFP) to the complete planning problem has not been investigated. In this section,
we formally define the least commitment flexible POP of the planning problem.

Definition 11. (Least commitment flexible POP of the planning problem). Let P = 〈A,O,K〉 be a valid POP

for the planning problem Π. Moreover, let ca be a non-negative cost associated with each action a ∈ A. P is a

least commitment flexible POP (LCFP) of the planning problem Π iff

(i) For all valid POPs P ′ = 〈A′,O′,K ′〉 to Π, we have
∑
a∈A′ ca ≥

∑
a∈A ca; and

(ii) For all valid POPs P ′ = 〈A′,O′,K ′〉 to Π and
∑
a∈A′ ca =

∑
a∈A ca, the number of actions with

zero action cost of P is less than or equal to the number of actions with zero action cost of P ′ (i.e.,∑
ca=0,a∈A 1 ≤

∑
ca=0,a∈A′ 1); and

(iii) For all valid POPs P ′ = 〈A′,O′,K ′〉 to Π and
∑
ca=0,a∈A 1 =

∑
ca=0,a∈A′ 1, the number of linearizations

of P is greater or equal to the number of linearizations of P ′.

Definition 11 differs from the LCFP definition introduced in Chapter 3 for two reasons. The first difference
is that the scope of Definition 11 is the complete planning problem, as opposed to that of Definition 4, which is
restricted to finding the LCFP of an input plan. The second difference is the tie-breaking rule for POPs with equal
action costs (i.e., condition (ii)). When there are two POPs with equal action costs, we consider the POP with the
lower number of actions with zero action cost. The main reason for this tie-breaking rule is that the minimization
of the number of actions in a POP competes with the maximization of the linearizations in a POP. Without this
tie-breaking rule, the number of linearizations in a POP can be trivially optimized by adding infinite number of
zero-cost actions to the POP.

We modify POPLBBD to find a LCFP to Π. We denote our least commitment flexible planner as POPLBBD
LCFP .

POPLBBD
LCFP uses the same master problem and the subproblem as POPLBBD, except the objective function of its

subproblem. The subproblem of POPLBBD
LCFP first minimizes the total action cost, then minimizes the total number

of zero-cost actions, and then minimizes the total number of open ordering constraints in a POP. We optimize the
total open ordering constraints in a POP because it is the fastest proxy objective to optimize and has the equivalent
solution quality compared to the other proxy objectives, as demonstrated empirically in Chapter 3.

In the next section we compare the computational efficiency of our POP planners against the sequential planner
OpSeq.

4.4 Computational Results

We evaluate the computational efficiency of four different cost-optimal planners on the International Planning
Competition 2011 benchmark. We compare POPLBBD as it is described in Section 4.2 to OpSeq, to another

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 60

LBBD model POPLBBD
2 and to POPLBBD

LCFP .

The only difference between POPLBBD and POPLBBD
2 is as follows. In the master problem of POPLBBD

2 ,
we use the generalized landmarks described in Davies et al. [21] without using the conflict analysis method. As a
result, the input set of actionsA for the subproblem of POPLBBD

2 is always equivalent to the setA′ that is selected
by the master problem such that A = A′.

Note that POPLBBD
LCFP is also a cost-optimal planner with secondary and tertiary objectives. We run POPLBBD,

POPLBBD
2 and POPLBBD

LCFP on MacPro computer with 3.5 GHz 6-Core Intel Xeon E5, with 1-hour time limit for
each problem instance. The MILP models are solved using IBM ILOG CPLEX 12.6.3 with 1 thread. Due to a
bug in the source code of OpSeq, we report the results presented by Davies et al. [21].

Number of Problems Solved to Optimality

Domain POPLBBD
LCFP POPLBBD

2 POPLBBD OpSeq

barman 0 0 0 0
elevators 0 0 0 11
nomystery 2 3 4 5
openstacks 0 0 0 0
parcprinter 20 20 20 20

pegsol 6 7 8 2
scananalyzer 0 2 1 1

sokoban 1 2 2 0
transport 0 0 0 5
visitall 18 20 20 14

woodworking 20 20 20 20

Total 67 74 75 78

Table 4.1: Coverage of problem instances across International Planning Competition 2011 sequential optimal
track benchmarks.

Table 1 summarizes the total number of problem instances solved to optimality across International Plan-
ning Competition 2011 sequential optimal track benchmarks. In comparison to OpSeq, the POP planners i.e.,
POPLBBD

2 , POPLBBD and POPLBBD
LCFP , solved 4, 3 and 11 fewer problem instances within the 1-hour time limit,

respectively. The analysis of Table 1 shows the performance trade-off across different domains. In elevators

and transport domains, OpSeq performed significantly better compared to the POP planners. In contrast, our
POP planners performed better compared to OpSeq in pegsol and visitall domains. The pairwise comparison of
POPLBBD and POPLBBD

2 show that the performance of the two POP planners are almost identical across dif-
ferent domains. The pairwise comparison of POPLBBD and POPLBBD

LCFP show that our least commitment flexible
planning objective takes significantly more time to optimize. In fact, in all 8 instances for which POPLBBD finds
an optimal solution and POPLBBD

LCFP does not, POPLBBD
LCFP terminates with an incumbent POP that is cost optimal.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 61

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

0
20

40
60

80

Run Time (Seconds)

N
um

be
r O

f P
ro

bl
em

 In
st

an
ce

s
S

ol
ve

d

POPMILP
POP2

MILP

POPLCFP
MILP

10-2 10-1 100 101 102 103

Figure 4.2: Performance profile (in log scale) for different decomposition models.

Figure 4.2 shows a performance profile depicting the number of instances solved to optimality over time. The
comparison of the cost optimal POP planners (i.e., POPLBBD and POPLBBD

2), against POPLBBD
LCFP shows that the

least commitment flexible planning objective takes significantly more time to optimize. It can be observed that
both cost-optimal POP planners outperform POPLBBD

LCFP across all time points that are greater than a second to
solve.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 62

POPMILP (Seconds)

P
O
P
2M
IL
P
 (S

ec
on

ds
)

10-2 10-1 100 101 102 103

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 4.3: Run time comparison between POPLBBD and POPLBBD
2 (in logarithmic scale).

Figure 4.3 is a scatter plot that compares the run times of the two cost-optimal POP planners. The pairwise
comparison of POPLBBD and POPLBBD

2 shows that for the problem instances that take less than 100 seconds
to optimize, POPLBBD outperforms POPLBBD

2 . For the problem instances that take longer than 100 seconds to
optimize, POPLBBD performs slightly better than POPLBBD

2 .

4.5 Discussion And Future Work

Davies et al. [21] report that most of the problem instances in the International Planning Competition 2011
sequential optimal track benchmarks can be solved to optimality without using more than two equivalent actions.
Therefore in the implementation of OpSeq, Davies et al. [21] pre-allocate decision variables up to 2 for every
action a ∈ A. In theory, OpSeq or POPLBBD

2 can perform worse on the problem instances that only have
cost-optimal plans with at least three equivalent actions.

The selection of the best master problem is still an open question. The master problem of POPLBBD
LCFP does

not provide an informative lower bound with respect to its secondary objective. Therefore, POPLBBD
LCFP naively

searches through all the cost-optimal POPs, and returns the one with the minimum number of open ordering
constraints. A MILP formulation that represents some relaxation of the ordering constraints in a plan can reduce
the number of iterations POPLBBD

LCFP goes through to exhaustively search all the cost-optimal POPs.

CHAPTER 4. MILP MODELS FOR LEAST COMMITMENT FLEXIBLE PARTIAL-ORDER PLANNING 63

Inside of OpSeq, Davies et al. [21] use Conflict-Directed Clause Learning to produce sets of generalized
landmarks with significantly smaller sizes. Similar to SAT planners, MILP solvers also include minimal conflict
analysis methods which can be utilized to produce stronger modified generalized landmarks and this could be
investigated as future work to improve the performance of POPLBBD

2 .
Different utilization of the conflict analysis methods inside the causal link-based POP formulations is another

interesting area of future research. Specifically, understading how conflict analysis methods can be utilized to
explain the infeasibility of the subproblem S(A) with missing causal links (instead of missing actions as it is
done in OpSeq) can produce more informative modified generalized landmarks.

4.6 Conclusion

Overall performance of bothPOPLBBD andPOPLBBD
2 show promising results in terms of generating cost-optimal

POPs using a LBBD. We showed experimentally that the overall computational time for generating a cost-optimal
POP using a causal link-based subproblem is similar to that of generating a cost-optimal sequential plan. Given
this result, we extended our best performing cost-optimal POP planner to solve the least commitment flexible
planning problem. We experimentally showed that over 90% of the problem instances for which the best perform-
ing cost-optimal POP planner i.e., POPLBBD, finds a cost-optimal POP, the LCFP planner i.e., POPLBBD

LCFP , also
finds a LCFP. To our knowledge, POPLBBD

LCFP is the first of its kind for generating a LCFP to Π.

Chapter 5

Conclusions and Future Work

The central thesis of this dissertation is that the Mixed-Integer Linear Programming (MILP) technology can be
effective in generating least commitment partial-order plans. In this chapter, we first summarize the work that
is presented in the previous chapters and re-state our contributions. We conclude this dissertation by presenting
some insight and intuition for future work.

5.1 Summary and Contributions

In this section, we summarize the work presented in the previous chapters and re-state our contributions.

5.1.1 Mixed-Integer Linear Programming Models for Optimal Least Commitment Flex-
ible Partial-Order Plan of an Initial Plan

Summary In Chapter 3, we addressed the problem of finding a least commitment flexible partial-order plan
(LCFP) given an input set of actions that form a valid plan. We formally defined LFCP as a partial-order plan
(POP) with minimum total action cost and maximum number of linearizations. As the latter objective is computa-
tionally impractical, we investigated three proxy objective functions to maximize the number of linearizations in
a POP. Two of the proxy objective functions are from the partial-order relaxation literature [26, 56] while the third
is adapted from the scheduling literature [20] and applied to POP planning for the first time here. We formally
demonstrated through counter-examples that none of the proxy objective functions dominate the other two with
respect to the number of linearizations they produce. We then presented three base MILP models to optimize our
proxy objective functions and introduced new linear constraints to strengthen the base models. Experimentally,
we showed that two of our MILP models result in equivalent or slightly better solution quality with savings of
approximately one order of magnitude in computation time compared to the state-of-the-art MaxSAT model [56].

Contributions We showed that MILP models are more effective in finding the LCFP of an input plan, compared
to the state-of-the-art weighted SAT model [56]. We presented two base MILP models with significantly smaller
encoding sizes compared to the propositional representation of the problem. We strengthened the base MILP
models by introducing linear constraints. Finally, we demonstrated that the optimization of the strengthened
MILP models generate POPs with higher solution quality in less computation time, compared the MaxSAT model
[56]. Overall, we demonstrated that MILP technology can be effective in generating LCFP of an input plan.

64

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 65

5.1.2 A Logic-Based Benders Decomposition for Finding A Least Commitment Flexible
Partial-Order Plan

Summary In Chapter 4, we addressed the problem of finding a LCFP to the complete planning problem, that
is, without assuming an input set of actions that form a valid plan. We showed how partial-order relaxation
approaches can be utilized inside a logic-based Benders decomposition (LBBD) to find a LCFP. First, we inves-
tigated two LBBDs to find an action cost-optimal POP to the complete planning problem. We derived a new
symmetry breaking constraints to strengthen our decomposition models. Experimentally, we showed that both
of our cost-optimal MILP-based POP planners are comparable to the sequential planner of Davies et al. [21].
Finally, we extended our best performing LBBD model to find a LCFP to the complete planning problem. Our
preliminary empirical results show promising results for using a MILP-based LBBD to optimize this complex
objective.

Contributions We showed that MILP models are effective in finding a LCFP to the complete planning problem.
We formalized the least commitment flexible planning problem and presented a MILP-based LBBD to optimize it.
To our knowledge, both the formalization and the MILP-based solution method of the problem are novel. All three
MILP-based LBBDs presented in Chapter 4 use variations of a causal link-based MILP model that is presented
in Chapter 3 to solve their subproblems. Unlike the sequential planner of Davies et al. [21], our LBBDs are not
restricted to generate sequential plans, which allow our planners to optimize more complex objectives than the
total action cost of a plan. Experimentally, we showed that the overall computational expense for generating a cost-
optimal POP using a causal link-based subproblem is similar to that of generating a cost-optimal sequential plan.
We then showed that the MILP-based LBBD can successfully optimize the least commitment flexible planning
problem. Experimentally, we showed that over 90% of the problem instances for which the best performing cost-
optimal POP planner finds a cost-optimal POP, the LCFP planner also finds a LCFP. Overall, we showed that
MILP technology can be effective in generating a LCFP to the complete planning problem.

5.2 Future Work

In this section, we present possible directions for future work.

5.2.1 Improvement of the SAT Model

The main intuition behind the work in Chapter 3 that improved on the state-of-the-art MaxSAT formulation [56]
for partial-order relaxation problem was the adoption of temporal variables and temporal constraints from the
scheduling literature. In particular, we observed that the transitive closure of ordering constraints (i.e., Constraint
(2.69) from Section 2.7.2) grows cubically with the number of actions. By introducing the temporal variables
Esta, Lfta for every action a and replacing Constraint (2.69) with Constraints (3.14)-(3.10), we reduced the size
of our MILP formulations significantly. In the light of our experimental results, one promising area of research is
to explore SAT formulations that utilize temporal variables [18] i.e., Sa,t = 1 if and only if action a start at step
t, and reduce the size of the encoding by eliminating redundant clauses [31]. If there is sufficient performance
improvement, this new SAT model may be competitive with the MILP-based subproblem of the LBBD that is
presented in Chapter 4.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 66

5.2.2 Pre-Processing for Partial-Order Relaxation Problem

In Chapter 3, we introduced new linear constraints that represent the necessary conditions of a valid POP. The
linear constraints that we identified do not require any pre-processing of the planning problem. One possible future
direction of research is the exploration of pre-processing algorithms to identify stronger necessary conditions for
the problem of partial-order relaxation. Pommerening et al. [64] demonstrated that strong operator counting
constraints can be derived with polynomial-time pre-processing algorithms for the problem of finding a cost-
optimal plan. In Chapter 4, we investigated the addition of operator counting constraints [64] to our base MILP
models that are introduced in Chapter 3. It would be an interesting area of research to explore how Constraints
(3.15)-(3.24) (see Section 3.7) interact with the state-of-the-art operator counting constraints [64]. Further, it
would be interesting to explore pre-processing algorithms for partial-order relaxation problem to identify more
complex necessary conditions of a POP in order to derive stronger linear constraints.

5.2.3 Investigation of Order Counting Heuristics

In Chapter 4, we introduced a logic-based Benders decomposition to find a least commitment flexible POP
(LCFP). Our LBBD uses the same master problem as Davies et al. [21], based on operator counting constraints
[64], since the primary objective of the LFCP problem is the minimization of the total action cost of a POP. The
master problem of our LBBD does not include a lower bound on the proxy objective of the LFCP problem. As a
result, our LBBD exhaustively searches all cost-optimal POPs. An interesting area of future research would be to
investigate different formulations that represent valid lower bounds for the proxy functions used to approximate
the number of linearizations in a POP. The addition of such a lower bound in the master problem of our LBBD
can limit the number of times the subproblem is solved as it provides a stronger dual bound on the LFCP problem.

5.2.4 Conflict-Directed Clause Learning for MILP-based Partial-Order Formulations

Building on the ideas presented in Chapter 4, the overall performance of our LBBD can be improved by the
incorporation of Conflict-Directed Clause Learning methods. Davies et al. [21] use Conflict-Directed Clause
Learning to find the minimum set of missing actions to explain the infeasibility of their subproblem. Some current
MILP solvers (e.g. SCIP) have conflict analysis methods that are similar to that of SAT solvers. An interesting
area of future research would be the exploitation of such conflict analysis methods in our subproblems.

5.3 Conclusion

The central thesis of this dissertation is that the MILP technology can be effective in least commitment flexi-
ble partial-order planning. We demonstrated this thesis by introducing MILP models for partial-order relaxation
problem and a MILP-based logic-based Benders decomposition (LBBD) for the least commitment flexible partial-
ordering problem. We experimentally showed the effectiveness of MILP technology in finding a least commitment
partial-order plan. We have contributed to the partial-order literature with our MILP models, and formally intro-
duced the least commitment flexible partial-order planning problem and a MILP-based solution method.

Bibliography

[1] Christer Bäckström. Finding least constrained plans and optimal parallel executions is harder than we
thought. In Proceedings Second European Workshop On Planning, pages 46–59. IOS Press, 1994.

[2] Christer Bäckström. Computational aspects of reordering plans. Journal of Artificial Intelligence Research,
pages 99–137, 1998.

[3] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Computational Intelli-

gence, 11:625–655, 1995.

[4] Dimitris Bertsimas, Iain Dunning, and Miles Lubin. Reformulation versus cutting-planes for robust opti-
mization. Computational Management Science, 13(2):195–217, 2016.

[5] Sudip Biswas, Stephane Durocher, Debajyoti Mondal, and RahnumaIslam Nishat. Hamiltonian paths and
cycles in planar graphs. In Guohui Lin, editor, Combinatorial Optimization And Applications, volume 7402
of Lecture Notes in Computer Science, pages 83–94. Springer Berlin Heidelberg, 2012.

[6] Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artificial Intelligence,
90(1):1636–1642, 1995.

[7] Alexander Bockmayr and Yannis Dimopoulos. Mixed integer programming models for planning problems.
In Jeremy Frank and Mihaela Sabin, editors, Proceedings of the Workshop on Constraint Problem Reformu-

lation (CP 1998), pages 1–6, Pisa, Italy, 1998. NASA Ames Research Center.

[8] Alexander Bockmayr and Yannis Dimopoulos. Integer programs and valid inequalities for planning prob-
lems. In Proceedings of the Fifth European Conference on Planning, (ECP 1999), pages 239–251, Septem-
ber 1999.

[9] Blai Bonet. An admissible heuristic for SAS+ planning obtained from the state equation. In Proceedings of

the Twenty Third International Joint Conference on Artificial Intelligence (IJCAI 2013), 2013.

[10] Blai Bonet and Héctor Geffner. Planning as heuristic search. In Entry at AIPS 1998 Planning Competition,
2000.

[11] Menkes Van Den Briel. Reviving integer programming approaches for AI planning: A branch-and-cut
framework. In Proceedings of the Fifteenth International Conference on Automated Planning and Schedul-

ing (ICAPS 2005), pages 310–319. AAAI Press, 2005.

[12] Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka. Recoverable robust knapsacks: The discrete
scenario case. Optimization Letters, 5(3):379–392, 2011.

67

BIBLIOGRAPHY 68

[13] Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelligence,
69:165–204, 1994.

[14] Tom Bylander. A linear programming heuristic for optimal planning. In AAAI. AAAI Press, 1997.

[15] Yixin Chen, Benjamin W. Wah, and Chih-Wei Hsu. Temporal planning using subgoal partitioning and
resolution in SGPlan. In Journal of Artificial Intelligence Research, pages 323–369, 2006.

[16] Paul R. Cohen. Empirical Methods For Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1995.

[17] Andrew Coles, Amanda Coles, Maria Fox, and Derek Long. Forward-chaining partial-order planning. In
Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS

2010), 2010.

[18] James M. Crawford and Andrew B. Baker. Experimental results on the application of satisfiability algorithms
to scheduling problems. In Proceedings of the Twelfth National Conference on Artificial Intelligence (Vol. 2),
AAAI’94, pages 1092–1097, Menlo Park, CA, USA, 1994. American Association for Artificial Intelligence.

[19] George Bernard Dantzig and John H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, October 1959.

[20] Andrew J. Davenport, Christophe Gefflot, and J. Christopher Beck. Slack-based techniques for robust sched-
ules. In Proceedings of the Sixth European Conference on Planning (ECP 2001), 2001.

[21] Toby Davies, Adrian R. Pearce, Peter Stuckey, and Nir Lipovetzky. Sequencing operator counts. In Proceed-

ings of the Twenty Fifth International Conference on Automated Planning and Scheduling (ICAPS 2015),
2015.

[22] Toby Davies, Adrian R. Pearce, Peter Stuckey, and Harald Sndergaard. Fragment-based planning using
column generation. In Proceedings of the Twenty Fourth International Conference on Automated Planning

and Scheduling (ICAPS 2014), 2014.

[23] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM,
7(3):201–215, July 1960.

[24] Yannis Dimopoulos. Improved integer programming models and heuristic search for AI planning. In Pro-

ceedings of the European Conference on Planning (ECP 2001), pages 301–313. Springer-Verlag, 2001.

[25] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning problems in nonmonotonic logic
programs. In Proceedings of the Fourth European Conference on Planning, pages 169–181. Springer-Verlag,
1997.

[26] Minh B. Do and Subbarao Kambhampati. Improving the temporal flexibility of position constrained metric
temporal plans. In Proceedings of the Thirteenth International Conference on Automated Planning and

Scheduling (ICAPS 2003), 2003.

[27] Niklas Eën and Niklas Sörensson. An extensible sat-solver. In Theory And Applications Of Satisfiability

Testing, page 502518. Springer, 2004.

BIBLIOGRAPHY 69

[28] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and expressivity. In Proceed-

ings of the Twelfth National Conference on Artificial Intelligence, volume 2 of AAAI 1994, pages 1123–1128,
Menlo Park, CA, USA, 1994. American Association for Artificial Intelligence.

[29] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized robot plans. Artifi-

cial Intelligence, 3:251–288, 1972.

[30] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. In Proceedings of the Second International Joint Conference on Artificial Intelligence,
IJCAI 1971, pages 608–620, San Francisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

[31] Juan Frausto-Solis and Marco A. Cruz-Chavez. A reduced codification for the logical representation of
job shop scheduling problems. In Antonio Lagan, MarinaL. Gavrilova, Vipin Kumar, Youngsong Mun,
C.J.Kenneth Tan, and Osvaldo Gervasi, editors, Computational Science And Its Applications ICCSA 2004,
volume 3046 of Lecture Notes in Computer Science, pages 553–562. Springer Berlin Heidelberg, 2004.

[32] Avitan Gefen and Ronen I. Brafman. Pruning methods for optimal delete-free planning. In Proceedings of

the Twenty Second International Conference on Automated Planning and Scheduling (ICAPS 2012), 2012.

[33] Patrik Haslum and Héctor Geffner. Admissible heuristics for optimal planning. pages 140–149. AAAI Press,
2000.

[34] Patrik Haslum, John Slaney, and Sylvie Thiébaux. Minimal landmarks for optimal delete-free planning. In
Proceedings of the Twenty Second International Conference on Automated Planning and Scheduling (ICAPS

2012), 2012.

[35] Malte Helmert. The fast downward planning system. Journal of Artifical Intelligence Research, pages
191–246, 2006.

[36] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: Whats the difference
anyway? In Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling

(ICAPS 2009), pages 162–169, 2009.

[37] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14(1):253–302, May 2001.

[38] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Journal of Artificial

Intelligence Research, 22:215–278, November 2004.

[39] John N. Hooker. Logic-based benders decomposition. Mathematical Programming, 96:2003, 1995.

[40] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. SAS+ planning as satisfiability. Journal of Artificial

Intelligence Research, pages 293–328, March 2012.

[41] Tatsuya Imai and Alex Fukunaga. A practical, integer-linear programming model for the delete-relaxation in
cost-optimal planning. In Proceedings of Twenty First European Conference on Artificial Intelligence (ECAI

2014), 2014.

[42] Tatsuya Imai and Alex Fukunaga. On a practical, integer-linear programming model for delete-free tasks
and its use as a heuristic for cost-optimal planning. Journal of Artificial Intelligence Research, 54:631–677,
December 2015.

BIBLIOGRAPHY 70

[43] Joxan Jaffar and Jean L. Lassez. Constraint logic programming. In Proceedings of the Fourteenth ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL 1987, pages 111–119,
New York, NY, USA, 1987. ACM.

[44] Subbarao Kambhampati and Smadar Kedar. A unified framework for explanation-based generalization of
partially ordered and partially instantiated plans. Artificial Intelligence, 67(1):29–70, 1994.

[45] Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Proceedings of the Twenty

First International Joint Conference on Artificial Intelligence, IJCAI’09, pages 1728–1733, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[46] Henry Kautz. SATPLAN04: Planning as satisfiability. In Working Notes on the International Planning

Competition (IPC 2004), pages 44–45, 2004.

[47] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and stochastic search.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, volume 2 of AAAI’96, pages
1194–1201. AAAI Press, 1996.

[48] Henry Kautz and Joachim P. Walser. State-space planning by integer optimization. In Proceedings of the

Sixteenth National Conference on Artificial Intelligence, pages 526–533. AAAI Press, 1999.

[49] James E. Kelley, Jr and Morgan R. Walker. Critical-path planning and scheduling. In Papers Presented

at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM 1959
(Eastern), pages 160–173, New York, NY, USA, 1959. ACM.

[50] Ryan F. Kelly and Adrian R. Pearce. Towards high level programming for distributed problem solving.
In IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2006), pages 490–497.
IEEE Computer Society, 2006.

[51] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedings of the Ninth Na-

tional Conference on Artificial Intelligence, volume 2 of AAAI’91, pages 634–639. AAAI Press, 1991.

[52] Karl Menger. Das botenproblem. 2:11–12, 1932.

[53] Steven Minton, John Bresina, and Mark Drummond. Total-order and partial-order planning: A comparative
analysis. Journal of Artificial Intelligence Research, 2(1):227–262, August 1995.

[54] Christian Muise. Exploiting Relevance To Improve Robustness And Flexibility In Plan Generation And

Execution. PhD thesis, Graduate Department of Computer Science, University of Toronto, 2014.

[55] Christian Muise, Sheila A. McIlraith, and J. Christopher Beck. Optimization of partial-order plans via
MAXSAT. In Proceedings of the Twenty First International Conference on Automated Planning and

Scheduling (ICAPS 2011): Workshop on Constraint Satisfaction Techniques for Planning and Scheduling

Problems (COPLAS 2011), pages 31–38, 2011.

[56] Christian Muise, Sheila A. McIlraith, and J. Christopher Beck. Optimally relaxing partial-order plans with
maxSAT. In Proceedings of the Twenty Second International Conference on Automated Planning and

Scheduling (ICAPS 2012), pages 358–362, 2012.

[57] Christian Muise, Sheila A. McIlraith, and J. Christopher Beck. Optimal partial-order plan relaxation via
maxSAT. Journal of Artificial Intelligence Research, 57:113–149, 2016.

BIBLIOGRAPHY 71

[58] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Practice. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

[59] Allen Newell and Herbert A. Simon. Computer science as empirical inquiry: Symbols and search. Commu-

nications of the ACM, 19(3):113–126, March 1976.

[60] XuanLong Nguyen and Subbarao Kambhampati. Reviving partial order planning. In Proceedings of the

Seventeenth International Joint Conference on Artificial Intelligence (IJCAI2001), pages 459–464, 2001.

[61] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order planner for ADL. pages
103–114. Morgan Kaufmann, 1992.

[62] Nicola Policella, Stephen F. Smith, Amedeo Cesta, and Angelo Oddi. Generating robust schedules through
temporal flexibility. In Proceedings of the Fourteenth International Conference on Automated Planning and

Scheduling (ICAPS 2004), 2004.

[63] Florian Pommerening and Malte Helmert. Incremental LM-Cut. In Proceedings of the Twenty Third Inter-

national Conference on Automated Planning and Scheduling (ICAPS 2013), 2013.

[64] Florian Pommerening, Gabriele Roger, Malte Helmert, and Blai Bonet. LP-based heuristics for cost-optimal
planning. In Proceedings of the Twenty Fourth International Conference on Automated Planning and

Scheduling (ICAPS 2014), 2014.

[65] Julie Porteous, Laura Sebastia, and Jörg Hoffmann. On the extraction, ordering, and usage of landmarks in
planning. In Proceedings of the Sixth European Conference on Planning (ECP 2001), 2001.

[66] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Proceedings of the Twenty

Third National Conference on Artificial Intelligence, volume 2 of AAAI’08, pages 975–982. AAAI Press,
2008.

[67] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research, 39(1):127–177, September 2010.

[68] Jussi Rintanen. Evaluation strategies for planning as satisfiability. In Proceedings of Sixteenth European

Conference on Artificial Intelligence (ECAI 2004), pages 682–687. IOS Press, 2004.

[69] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemel. Planning as satisfiability: Parallel plans and algorithms
for plan search. Artificial Intelligence, 180:2006, 2005.

[70] Nathan Robinson, Charles Gretton, Duc-Nghia Pham, and Abdul Sattar. SAT-based parallel planning using a
split representation of actions. In Proceedings of the Sixteenth National Conference on Artificial Intelligence,
pages 526–533. AAAI Pres, 2009.

[71] Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the Fourth International Joint Conference

on Artificial Intelligence, volume 1 of IJCAI’75, pages 206–214, San Francisco, CA, USA, 1975. Morgan
Kaufmann Publishers Inc.

[72] Buser Say, Andre A. Cire, and J. Christopher Beck. Mathematical programming models for optimizing
partial-order plan flexibility. In Proceedings of Twenty Second European Conference on Artificial Intelli-

gence (ECAI 2016), 2016.

BIBLIOGRAPHY 72

[73] Fazlul Hasan Siddiqui and Patrik Haslum. Block-structured plan deordering. In Proceedings of the Twenty

Fifth Australasian Joint Conference on Artificial Intelligence, pages 803–814, 2012.

[74] Austin Tate. Generating project networks. In Proceedings of the Fifth International Joint Conference on

Artificial Intelligence, volume 2 of IJCAI’77, pages 888–893, San Francisco, CA, USA, 1977. Morgan
Kaufmann Publishers Inc.

[75] Alvaro Torralba, Vidal Alcazar, Daniel Borrajo, Peter Kissmann, and Stefan Edelkamp. SymBA*: A sym-
bolic bidirectional a planner. In International Planning Competition (IPC 2014), 2014.

[76] Vincent Vidal. The YAHSP planning system: Forward heuristic search with lookahead plan analysis. In
Booklet of the International Planning Competition (IPC-2004), 2004.

[77] Thomas Vossen, Michael Ball, and Robert H. Smith. On the use of integer programming models in AI
planning. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages
304–309. Morgan Kaufmann, 1999.

[78] Daniel S. Weld. An introduction to least commitment planning. AI Magazine, 1994.

[79] Håkan L. S. Younes and Reid G. Simmons. VHPOP: Versatile heuristic partial order planner. volume 20,
pages 405–430, 2003.

[80] Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In ICAPS Doctoral

Consortium 2003 (ICAPS 2003), pages 156–160, 2003.

