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Abstract

We investigate the novel Two-Dimensional Two-stage Cutting Stock Problem with Flexible

Length, Flexible Demand, Order-to-Order Marriageability, and Scheduling Costs (2SCSP-

FFMS): orders for rectangular items must be cut from treated rectangular stocks using

guillotine cuts with the objective to minimize waste, inventory cost, and tardiness cost.

Different from problems in the literature, the 2SCSP-FFMS allows the item length and total

order demands to vary within customer-specified intervals. We first investigate a variation of

the problem that ignores marriageability (pairwise conflicts between orders) and scheduling

costs, proposing constraint programming models, mixed-integer programming models, and

heuristics. Then, we study a second variation that adds the marriageability requirement

before examining the full 2SCSP-FFMS problem. Accordingly, we extend the approaches

that performed best in the first variation to the second one and the full 2SCSP-FFMS.

For each of these problems, we perform empirical analysis on both generated and real-

life industrial instances. Notably, our scheduling-based constraint programming model has

orders-of-magnitude smaller memory requirements over other exact methods and can be

competitive with a customized multi-phase heuristic.
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Chapter 1

Introduction

C
onstraint programming is a paradigm that solves combinatorial problems by a

combination of search and logical reasoning. Drawing upon techniques from arti-

ficial intelligence, computer science, and operations research, constraint program-

ming represents problems by declaring a set of constraints over a set of variables and is

often seen as an alternative to mathematical programming [14]. A distinguishing feature

of constraint programming compared to other model-based paradigms is the expressivity of

its constraints: they are not limited to mathematical expressions. In particular, constraint

programming offers global constraints that describe recurring problem substructures and

make inferences based on the entire substructure instead of just individual mathematical

expressions [14]. In addition, constraint programming allows users the flexibility to define

constraints with customized inference algorithms [129].

Solving constraint programs traditionally involves building tree-search algorithms, the

process of which can be complex and time-consuming [14, 33]. To improve the accessibility of

constraint programming, since the 1980s, researchers have built general-purpose constraint

programming solvers that search systematically [56, 57, 138]. These solvers are designed to

be off-the-shelf toolboxes with built-in constraints and variable types that can be used to

construct a structured model representing the problem. Then, the solvers execute a series

of internal routines to search for solutions [159]. As a result, practitioners can leverage the

expressivity of constraint programming without needing to develop the internal workings

of the solver.

Although general-purpose solvers allow diverse problems to be modelled using the same

set of tools, each problem can still be modelled using possibly different formulations of

variables and constraints [229]. In constraint programming, different formulations can result

in different search trees and different levels of inference at each search node, leading to

varying performance [33, 34, 229]. The promise of performance gains makes examining

these formulations an imperative to obtaining quality results.

Constraint programming has been applied to many different problem domains, the most

1
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successful being scheduling [157]. Scheduling problems involve the allocation of resources

over time and are computationally difficult to solve, with many variations being NP-hard

[87, 107, 196]. These problems have shown a natural affinity to be framed as constraint

programs, as their inherent substructures, such as precedence constraints and optional tasks,

naturally invite temporal reasoning, a particular type of inference integrated into most

general-purpose solvers [50, 160, 199, 206]. Some solvers, such as IBM’s CP Optimizer

[128], also combine linear relaxation with the temporal reasoning for enhanced performance

on scheduling problems [158]. A testament to its success, constraint programs are currently

being relied on to schedule many major business operations, including airport flights in

Hong Kong [117] and transshipment hubs in the port of Singapore [117].

Constraint programming has yet to reach state-of-the-art in a number of other prob-

lems including two-dimensional cutting stock problems. First studied in 1939 [143], cutting

stock problems, also known as bin packing problems, arise from natural applications such

as manufacturing [136, 163, 232] and transportation [136, 205]. In two-dimensional cutting

stock problems, the goal is to cut large rectangular stocks into smaller rectangular pieces to

fulfill orders, and the problem becomes even more complex if there are restrictions on the

form of cuts (e.g., guillotine cuts, see Section 3.3.2). Many solution techniques have tackled

this problem, with the most popular exact method being mixed-integer linear programming

[137]. Around the turn of the century, academic efforts and technological breakthroughs

spurred advances in constraint programming, resulting in the development of global con-

straints Pack for one-dimensional packing [221] and Cumulative for the resource capacity

[20, 226]. However, these tools have mostly been applied to other packing problems, such

as the optimal rectangle packing problem [154, 155, 194, 225, 226], so the performance of

constraint programming on two-dimensional cutting stock problems, especially those with

complex cutting requirements, remains largely unknown.

Researchers have identified the link between packing and scheduling since the late 1990s

[65, 110]. Notably, these problems share a similar problem structure: both require resource

capacities to be satisfied. For example, a single machine job-shop-scheduling problem with-

out precedence can be reduced to a one-dimensional packing problem if jobs and operations

are interpreted as pieces that need to be cut and machine capacity over time as stocks. This

relationship invites further investigation into constraint programming’s ability to solve two-

dimensional packing problems.

This thesis leverages constraint programming tools designed for scheduling problems to

solve different variations of a novel packing problem from the aluminum-metal industry:

the Two-Dimensional Two-Stage Cutting Stock Problem with Flexible Length, Flexible

Demand, Marriageability, and Scheduling Costs (2SCSP-FFMS). We compare the results

with mixed-integer programs and heuristics. At the time of writing, constraint programming

has neither been used to study two-dimensional packing problems with flexible dimensions

nor packing problems with guillotine cuts.



CHAPTER 1. INTRODUCTION 3

Thesis Statement This thesis develops optimization approaches to solve a novel packing

problem, the 2SCSP-FFMS, that arises from the industry. The central thesis is as follows:

Tools developed for scheduling in general-purpose constraint programming solvers

can achieve state-of-the-art performance among model-based approaches and

competitive performance with customized heuristics in solving large-scale in-

dustrial packing problems.

The thesis outline and the primary contributions are discussed in the following sections.

1.1 Thesis Outline

Chapter 2 defines and formalizes our problem, including the notation and terminologies

used throughout the thesis. The chapter closes with a detailed description of the experiment

setup and the data used.

Chapter 3 presents the background necessary in understanding the thesis. First, the

chapter formalizes the main optimization paradigms, mixed-integer programming and con-

straint programming, and presents details on how each paradigm is typically used to model

and solve problems. The chapter then reviews related literature, covering important mixed-

integer linear programming and constraint programming modelling perspectives in one-

dimensional (1D) and two-dimensional (2D) packing. As the 2SCSP-FFMS is a 2D prob-

lem, we provide a classification of the existing literature on 2D packing, within which our

problem is then contextualized. Lastly, the chapter broadly reviews literature on batch

scheduling and vehicle routing and highlights the connection between packing and these

prominent scheduling problems.

The 2SCSP-FFMS can be divided into three components: packing items into stocks,

treating stocks to meet order properties, and scheduling. The three subsequent chapters

study different variations of the 2SCSP-FFMS, incrementally adding the components to

reflect different industrial use cases.

Chapter 4 studies the packing-only scenario. Our empirical results show that the

scheduling-based constraint programming model has an order of magnitude advantage in

memory usage, and accordingly, is the only model-based approach to scale to larger in-

stances. Mixed-integer models found high-quality solutions for the small instances, but

struggled to scale. Lastly, we develop heuristic solutions and show that by decomposing

the problem into smaller subproblems, heuristics can find solutions competitive with the

scheduling-based model for the industrial instances. The work in this chapter extends our

published paper in the Proceedings of the Sixteenth International Conference on Integration

of Constraint Programming, Artificial Intelligence, and Operations Research [181].

Chapter 5 examines a packing scenario considering stock treatments and the resultant

order properties. This chapter builds upon Chapter 4, formalizing the new requirement
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and augmenting the best-performing methods in Chapter 4. The scheduling-based model

remains the only model to scale to industrial instances. The best heuristic is competitive

with, if not slightly better than, the scheduling-based model, but requires more time to find

feasible solutions.

Chapter 6 studies the full 2SCSP-FFMS, adding a scheduling-related cost factor to the

packing use case with stock treatments. We again build upon the formulations in Chapter

5 and realize the performance shortcomings of the scheduling-based model: it struggled to

find high-quality solutions with the more complex objective function.

Chapter 7 concludes this thesis and discusses directions for future work.

1.2 Contribution Summary

The main contributions of this thesis are as follows:

• We adapt and develop a scheduling-based single resource constraint programming

model that connects scheduling to packing. We demonstrate its computational effi-

ciency for 2SCSP-FFMS and the related use cases and its resulting affinity for larger

instances.

• We recognize a connection between guillotine cutting patterns and batch scheduling

and adapt constraint programming techniques proposed in batch scheduling to our

packing problem.

• We formalize the novel 2SCSP-FFMS. This problem is motivated by an industrial use

case in aluminum trimming and is at the intersection of many hard problems in the

literature.

• We propose the first mixed-integer linear programming models, alternative constraint

programming models, a first-fit-based heuristic, and a sequential heuristic framework

for the different variations of 2SCSP-FFMS.



Chapter 2

Problem Overview

T
he Two-Dimensional Two-Stage Cutting Stock Problem with Flexible Item, Flex-

ible Demand, Marriageability, and Scheduling Cost, 2SCSP-FFMS, abstracts the

planning process of manufacturers in the rolled-metals industry. Over a given time

horizon, we want to satisfy client orders by cutting items using a guillotine machine from

a limited quantity of stocks while minimizing aggregate cost. A cut item is subsequently

rolled into a cylindrical coil used as feedstock for downstream processing, resulting in novel

requirements that impose modelling and computational challenges.

2.1 Problem Definition

The 2SCSP-FFMS is a novel generalization of the Two-stage Two-Dimensional Cutting

Stock Problem with Guillotine Constraints (2SCSP). Given a set of orders for rectangu-

lar items and a set of larger stock rectangles, the classic Two-Dimensional Cutting Stock

Problem (2DCSP) fulfills orders by cutting items from stocks. A more constrained vari-

ant, the 2SCSP only allows stocks to be processed using guillotine cuts, a cut that runs

from one edge of the object to another. All cuts must also be executed in two stages, each

consisting of a set of parallel guillotine cuts performed on a rectangle obtained from the

previous stage (Figure 2.1). Without loss of generality, we let the direction of the first stage

cuts be widthwise and that of the second stage ones lengthwise. The rectangles produced

in the first stage are referred to as levels, following the literature [86], and those produced

in the second stage as partitions. On top of 2SCSP, the 2SCSP-FFMS has the following

characteristics arising from our application.

Flexible Length: The length of an item is flexible within some integer interval

dependent on the order. If a level contains items from different orders, its length must

lie in the intersection of the item-length intervals. In our application, the maximum

length requirement ensures a maximum coil diameter to enable mounting it on a

downstream machine. The minimum length requirement comes from the desire to

5
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Figure 2.1: A visualization of the guillotine cutting process.

limit the number of coils.

Flexible Demand: Consistent with real-world manufacturing practices, each order

can tolerate a percentage deviation from the total area demanded. For example, an

order may request items totalling 10000± 15% units of area.

Maximum Partition Count per Level: To reflect the limitations of an industrial

cutter, the maximum number of partitions on each level is fixed.

Limited Stocks with Variable Sizes: Stock rectangles of various widths and

lengths are available in limited quantities.

Order-to-order Marriageability: Each stock needs to be treated so that the cut

orders can have desired properties, such as temper, gauge ranges, and coating. Con-

sequently, items belonging to orders with different properties cannot be cut from the

same stock. Each stock can be processed to have exactly one set of properties (e.g.,

one coating).

Cost Minimization: The goal is to minimize the monetary cost that is comprised

of two components: packing-related waste and scheduling-related expenses. The cost

of waste is defined as the sum of the weighted difference between the area of the

stocks used and the area of the orders fulfilled. The cost related to scheduling deals

with the price of storing the cut items until their orders are due (inventory cost)

and the penalty for delivering items later than their order due dates (tardiness cost).

Later in the section, we introduce an approximation to simplify the scheduling-related

expenses.

Figure 2.2 describes the overarching relationship between items, orders, and stocks.

Formally, we are given a set of stock rectangles K, whose types are characterized by set

H. Each rectangle k ∈ K has width Wk and length Lk. Stock rectangles with identical

dimensions belong to the same type, Kh, K =
⋃

h∈H Kh. We are also given a set of

orders, N , where each order i ∈ N has a required area interval of [qmin
i , qmax

i ]. Each item

belonging to order i is required to have a fixed width wi and a length within the interval
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Figure 2.2: A visualization of 2SCSP-FFMS. Each order is represented by its total quantity
(left) and the partitions assigned to it (middle), as illustrated by the double-arrow. Dashed
lines and the dotted fills indicate flexibility in the associated parameter. Orange and blue
lines represent the first and second stage cuts, respectively. LB and UB abbreviate lower
and upper bound, respectively.

[ρmin
i , ρmax

i ]. Due to the flexible length, the total number of items belonging to order i must

be within an integer interval [nmin
i , nmax

i ] = [⌈ q
min
i

ρmax
i
⌉, ⌊ q

max
i

ρmin
i
⌋]. For order i, we denote its set

of necessary items as Ai = {1, . . . , nmin
i }, its set of possible, but not necessary items as

Bi = {nmin
i + 1, . . . , nmax

i }, and all possible items as Ci = Ai
⋃
Bi. Lastly, we let α and β

be the coefficients associated with the area of stocks used and the area of orders fulfilled,

respectively, and seek to minimize this weighted difference.

A stock k can be assigned to at most j̄k = ⌊ Lk

mini∈N ρmin
i
⌋ levels, and we denote the set of

possible numbers of levels of stock k of type h as Jk = Jh = {0, . . . , j̄k}. There must also

be no more than η partitions on each level. We let P = {1, . . . , η} be the set of partitions

on a given level, and Pi = {l ∈ P | l ≤ nmax
i } be the set of partitions on a given level from

order i. A partition of a stock that is assigned to an order becomes an item.

In addition, we let G be the set of combinations of order properties and Nγ be the set

of orders with properties γ ∈ G. Equivalently, we can summarize the relationship between

the items of these orders in a conflict matrix: given an item from order i and another from

order i′, the two cannot be assigned to the same stock if Mii′ = 0. Note that Mii′ = 1 if and

only if ∃γ ∈ G such that i, i′ ∈ Nγ . A stock can only be treated once, so orders of different

properties cannot be cut from the same stock. If there is an infinite number of stocks, then

the problem can be separated into independent subproblems for each combination of order

properties. However, with a finite number of stocks, the orders for one property combination

compete for stocks with orders of other property combinations, tying these orders together.

Finally, we consider a set of scheduling requirements: stocks cannot be cut until they

are available, and cutting orders before or after their due dates incurs either inventory or

tardiness cost (Figure 2.3). Inventory cost is incurred if an item of an order is cut before

its due date, and tardiness cost if it is cut after its due date. A stock can only be cut once.
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Figure 2.3: A visualization of the scheduling cost of assigning items from order i to stock
k.

|N | |K| Wk ak wi ρmin
i ρmax

i qmin
i qmax

i di |G|

19 42 48 35.4 22.2 112.9 180.2 1.3e5 1.7e5 18.9 8
21 172 45.2 18.3 16.3 56.6 94.6 9.7e4 1.3e5 4.0 7
47 149 43.3 197.9 10.4 68.2 134.1 1.6e5 2.1e5 186.8 18
149 636 44.6 190.1 13.3 74.4 134.4 2.5e5 3.4e5 217.2 32

Table 2.1: Mean of the parameter combinations from the four industrial instances.

Approximating Scheduling Costs The inventory and tardiness costs are proportional

to the product of an item’s area and the time difference between when the item is cut and

the due date of its order. Formally, we let the available time of stock k and the due date of

order i be ak and di. Consider an item of order i cut from stock k at time t. The inventory

cost is cinvwili ×max(0, dk − t) and the tardiness cost ctardwili ×max(0, t − dk), where li

is the length of the item, cinv the inventory cost per unit time per unit area, and ctard the

tardiness cost per unit time per unit area. Accordingly, we augment the definition of stock

types so that, in addition to identical dimensions, they must be available at the same time.

Typically, cinv is orders of magnitude smaller than ctard, so the optimal time to cut

any stock is always slightly after the earliest due date of the orders assigned to a stock.

Formulating a concise objective expression can be complicated, as t, li given a level assign-

ment, and the matching of an item to stock k are all independent decisions. Instead, we

resort to an approximation: a stock is cut as soon as it is available. Mathematically, the

approximated inventory cost is cinvwili ×max(0, di − ak) and the approximated tardiness

cost ctardwili ×max(0, ak − di).

2.2 Data Description

We conduct our analysis on a combination of 50 generated problem instances and 4 real-life

instances provided by our industry partner (Table 2.1).

For the generated instances, we draw from distributions provided by our industrial

collaborator (Table 2.2), generating 10 instances for each parameter combination in the set

{(|N |, |K|)} ∈ {(4, 8), (8, 16), (16, 32), (32, 64), (64, 128)}. For 5 out of these 10 instances,

we halve the total area tolerances to provide variability. In the rare case that, for some

order i, ρmax
i ≤ ρmin

i is generated, we swap the two values. We also force the first two
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Parameter Distribution

∀ order i ∈ N

qi Exponential(λ=5.608e-0.5)
qmax
i Constant, 0.85 qi
qmin
i Constant, 1.15 qi
wi Integer Uniform(a=1, b=20)

ρmax
i Integer Uniform(a=70, b=115)
ρmin
i Integer Uniform(a=85, b=130)
di Integer Uniform(a=0, b=100)

γ ∈ G Integer Uniform(a=0, b=|N |/2)

∀ stock k ∈ K

Wk Integer Uniform(a=36, b=50) with 50% chance of duplicating previous stock
Lk Integer Uniform(a=350, b=450) with 50% chance of duplicating previous stock
ak Integer Uniform(a=0, b=100)

Table 2.2: Data distributions for parameters in the generated instances.

orders to be incompatible so that some item-to-item conflict is always present.

For all experiments, we set α and β, the objective weights, to 0.3 and 0.7, respectively.

We also set cinv and ctard, the scheduling weights, to 0.0006 and 0.72 to reflect the industrial

use case.

2.3 Experiment Setup

In this thesis, all experiments were implemented in Python 3.8, and computations were

performed on individual nodes of the SciNet Niagara cluster [179, 211]. To solve the opti-

mization models, we used CPLEX and CP Optimizer from the CPLEX Optimization Studio

version 20.1.0 accessed via the DOcplex Modelling API with a single thread and default

search and inference settings. All experiments were given 16 GB of RAM and runs that

exceed this size were aborted. A one-hour time limit was used.

2.4 Summary

In this chapter, we introduced and formally defined the 2SCSP-FFMS. We also described

our data generation procedure, summarized key statistics about the industrial instances,

and detailed our experimental setup. In the next chapter, we review relevant background

and contextualize 2SCSP-FFMS.



Chapter 3

Background

I
n this chapter, we present relevant background to the thesis. We first describe mixed-

integer linear programming (MILP) and constraint programming (CP), two optimiza-

tion techniques central to our work. Then, we review literature related to our problem,

spotlighting important MILP and CP formulations in 1D and 2D packing and describing

alternative approaches. Finally, we compare packing with scheduling and review two related

types of scheduling problems.

3.1 Mixed-Integer Linear Programming

Mixed-integer linear programming (MILP) is an optimization paradigm that expresses prob-

lem requirements using linear mathematical expressions and continuous and integer vari-

ables [62, 143, 219]. Widely employed in various sectors, including food and agriculture

[42, 228], engineering [35, 184, 186], transportation [5, 170, 220], manufacturing and energy

[102, 157], MILP is one of the most popular techniques to solve optimization problems. In

this section, we describe MILP models and how they are solved.

3.1.1 Modelling

A MILP is an optimization model that takes up the following form:

min cTx+ dTy (3.1a)

Ax+By ≥ h (3.1b)

x ∈ Rn,y ∈ Zm (3.1c)

where x ∈ Rn is a column vector of continuous variables, y ∈ Zm is a column vector of

integer variables, c ∈ Rn and h ∈ Rm are column vectors denoting cost, and A ∈ Rn×l and

B ∈ Rm×l are constraint matrices. If m = 0, then the MILP is a linear program. If n = 0,

10
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then the MILP is referred to as a pure integer program. Constraints in MILP are usually

linear (i.e. of the first order) inequalities. Contingent on the solver, MILP constraints can

also express special ordered sets (SOS) [17], which restricts the number of nonzero solution

values among a specified set of variables. For instance, SOS1, an SOS of type 1, restricts

a set of variables to have at most one non-zero value.

3.1.2 Solving

Optimizing MILPs typically involves running a branch-bound-and-cut algorithm [97, 94,

161]. At each iteration, the algorithm infers a bound on the objective function via linear

relaxation, partitions the model’s solution space by branching on variables, and adds valid

inequalities to tighten the relaxation without removing integer solutions.

The linear relaxation of a MILP ignores integrality constraints on variables, yielding

a linear program that can be solved in polynomial time [61, 146] and a solution that is a

bound on the MILP’s objective. Having a strong linear relaxation is important, as it allows

the search tree to be pruned early, thus increasing the chance of avoiding an exponential

search. Typical approaches to solving a linear relaxation include the simplex method [61],

the dual simplex method [242], and the interior-point method [146, 212].

Branching partitions the original problem into disjoint subproblems and involves three

main decisions: variable selection, branching strategy, and node selection. Variable selection

decides which variable to branch on, and common approaches include pseudo-costs [26, 88],

strong branching [9, 128], and reliability branching [2]. Typically, a MILP’s branching

strategy is binary, creating two independent subproblems at each node [198]; using SOSes

also allows solvers to employ a wide branching strategy, where multiple branches originate

from the parent node [16, 17, 198]. Finally, node selection decides which subproblem is

processed after branching, and typical strategies include best first search [63], depth first

search [96, 233], and, more recently, cyclic best-first search [49, 144, 197]. For further details

on the branch and bound algorithm, we refer readers to a survey by Morrison et al. [198].

A valid inequality (VI), also known as a cut, is a constraint added to a MILP to tighten

its linear relaxation without removing integer solutions [202]. There are three main classes

of VIs: general purpose, generic structure, and problem-specific. General purpose VIs

are independent of any problem structures, and examples include Chvátal-Gomory cuts

[52], Gomory cuts [97], mixed-integer rounding cuts [104, 201], and disjunctive cuts [10].

Consequently, these VIs are commonly implemented in MILP solving software. Generic

structure VIs are derived from basic problem substructures, such as knapsack sets [11, 12,

59, 145, 244] and mixing sets [192, 241]. Finally, problem-specific VIs are specific to the

problem, with successful examples spanning domains including matching [111, 237] and

travelling salesman problems [1, 23, 193, 204, 207]. Adding VIs to a MILP strengthens

solvers’ inference at every search node, and has been a key driver to their performance

improvement over the past two decades [32, 103].
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3.1.3 Decomposition Techniques

Decomposition techniques divide a problem into smaller and more tractable parts that can

be recombined to recover the optimal solution to the original problem. There are two main

types of decompositions in MILP: column generation and Benders Decomposition.

3.1.3.1 Column Generation

Column generation decomposes a linear programming problem based on its variables [81].

It first formulates a restricted master problem, which only contains a subset of variables

from the original model. Then, the subproblem tries to find a variable that has a negative

reduced cost to enter the restricted master problem to improve its objective value. The

algorithm repeats until no such variables can be found. Since a column generation algorithm

dynamically generates variables during search, it is often most suitable when there are

significantly more variables than constraints.

A major drawback of column generation is that it only solves linear programs. If op-

timality is not required, heuristics, such as rounding [70], can be used to recover integer

solutions, although feasibility is not always guaranteed [70, 141]. To exactly solve a prob-

lem and prove optimality, Barnhart et al. [15] proposed the branch-and-price algorithm,

which generates columns at every node in a branch-and-bound tree. However, designing an

efficient and effective branch-and-price algorithm remains complex and intricate [76, 240].

3.1.3.2 Benders Decomposition

Benders Decomposition [25] partitions a MILP formulation into a master problem and one

or more subproblems containing subsets of its variables and constraints. Each subproblem

generates a set of cuts that are added to the master problem, strengthening its formulation

so that eventually the MILP’s optimal solution can be recovered. Since a cut added to the

master problem increases its constraint matrix by one row, Benders Decomposition is also

referred to as row generation [120].

Formally, consider the following MILP formulation where x is a vector of complicating

variables belonging to a possibly integer solution space X :

min cTx+ dTy (3.2a)

Ax+By ≥ h (3.2b)

x ∈ X (3.2c)

x ∈ Rn
+,y ∈ Rm

+ (3.2d)

Benders Decomposition can be derived naturally from the Benders Reformulation [25,

32, 202], which rearranges the MILP formulation as follows:
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min cTx+ η (3.3a)

x ∈ X (3.3b)

x ∈ Rn
+ (3.3c)

η ∈ R (3.3d)

η ≥ πT (h−Ax) ∀π ∈ V (Π) (3.3e)

rT (h−Ax) ≤ 0 ∀r ∈ R(Π) (3.3f)

where Π is the dual feasible region of the subproblem Q(x) = {mindTy | Ax+By ≥ h,y ∈
Rm
+}, and R(Π) and V (Π) are the set of extreme rays and the set of extreme points of Π, re-

spectively. In essence, Benders Reformulation characterizes a subproblem as a combination

of extreme rays and extreme points of its dual. If the dual of the subproblem has an optimal

solution, then the solution must be an extreme point in the set V (Π), so the optimality

cuts expressed in constraint (3.3e) restrict the tightest lower bound for the subproblem for

any x feasible to the subproblem. Alternatively, if the optimal solution of the dual of the

subproblem is in the direction of an extreme ray, then the subproblem itself is infeasible, so

the feasibility cuts expressed in constraint (3.3f) remove any solutions infeasible to the sub-

problem. Unfortunately, the dual feasible region of the subproblem can have exponentially

many extreme points and extreme rays, leading to intractability.

Benders Decomposition circumvents this scalability issue by dynamically generating the

optimality and feasibility cuts in the subproblem using either a cutting plane algorithm

or a branch-bound-and-cut algorithm. At the root node, the master problem {min(3.3a) |
(3.3b) − (3.3d)} is solved. Then, the subproblem Q(x̂) is evaluated using the optimal

solution x̂ from the master problem. If the subproblem is infeasible, we add a feasibility

cut r̂T (h−Ax̂) ≤ 0, where r̂ is the extreme ray associated with the dual of Q(x̂). If the

subproblem is optimal with dual variables π̂, then the optimality cut η ≥ π̂T (h−Ax̂) is

added. This process is repeated until the optimum of the master problem does not change,

indicating global optimality, or the master problem becomes infeasible, indicating that the

original problem is infeasible.

Geoffrion [91] developed the Generalized Benders Decomposition for mixed integer non-

linear programs. Hooker and Ottosson [121] proposed the Logic-Based Benders Decompo-

sition, which substitutes the mathematical cuts with inferential ones. Consequently, more

paradigms can be used to represent master problems and subproblems, thereby loosening

the decomposition criteria.
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3.1.4 Software

An assortment of commercial and open source software is available for both modelling

and solving MILPs. Commercial solvers include IBM’s CPLEX Optimization Suite [128],

Gurobi [106], and FICO Xpress Optimizer [203]. Open source solvers include COIN-OR

Branch-and-Cut Solver [82] and SCIP [28, 29].

3.2 Constraint Programming

Developed within the artificial intelligence community, constraint programming (CP) solves

combinatorial problems by reasoning about problem substructures expressed as constraints

[14, 18, 234]. Compared to MILPs, the variables and constraints in CP are richer, allowing

more types of problems to be modelled and solved. In this section, we present background

information on CP modelling and solving.

3.2.1 Modelling

There are two types of models in CP: constraint satisfaction problem (CSP) [14, 183, 235]

and constraint optimization problem (COP) [14, 235].

A CSP tests the existence of a feasible solution given problem requirements. Formally,

a CSP P = (X ,D, C) consists of a set of variables X = {x1, . . . , xn} and a set of constraints

C = {C1, . . . , Cm}. Each variable xi is characterized by a domain Di that describes its

candidate values. Together, the set of variable domains is denoted as D = {D1, . . . , Dn}.
A feasible solution to a CSP is then a set of values for variables X from D that satisfies all

constraints in C.
A COP is the optimization version of the CSP in that it has an objective function. The

optimal solution to a COP must be a feasible solution that produces an objective value no

worse than all other feasible solutions.

Due to different developmental origins [159], the variables and constraints available to

a modeller vary from solver to solver. In this thesis, we only discuss those from IBM’s

CP Optimizer [128], taking advantage of both non-scheduling-based and scheduling-based

tools.

3.2.1.1 Variables

The types of CP variables are diverse. In addition to integer variables and binary variables,

a CP modeller has access to interval variables, state functions, and cumulative functions.

These variables are widely used in scheduling problems, so these CP formulations are gen-

erally referred to as CP scheduling [14, 159].
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Optional Interval Variables An optional interval variable [130, 159], OptInter-

valVar, is a variable whose domain is a subset of {⊥}
⋃
{[s, ϵ) | s, ϵ ∈ Z, s ≤ ϵ}, where s

and ϵ are the start and end times of the interval, and ⊥ is a special value indicating ab-

sence. A duration of an interval variable refers to the value ϵ−s, and can itself be a decision

variable. When ⊥ is removed from the domain, the interval variable must be present in a

solution and can be declared using the signature IntervalVar. Example usage includes

representing jobs and operations executed over a period of time.

CP solvers provide methods to access properties of interval variables [130, 159] (Figure

3.1). The presence of an interval variable var can be accessed via PresenceOf(var) ∈ B.
A value 1 indicates the interval variable is present and 0 not present. The starting and

ending coordinates of an interval variable var can be accessed using StartOf(var) ∈ Z
and End(var) ∈ Z. The duration or length of an interval variable var can be accessed using

Length(var) ∈ Z. If var is absent, then these methods all evaluate to 0. An example of

constraints restricting an interval variable is shown in Section 3.2.1.3.

Figure 3.1: Illustration of an interval variable var and some of its methods.

State Functions A state function [135, 159] is a variable whose domain consists of

sets of non-overlapping intervals, with each interval characterized by a non-negative integer

state. In other words, the value of a state function is a sequence of state intervals and state

values formalized as {[si, ϵi) : vi | ∀i ∈ [1, n]}, such that ∀i ∈ [1, n], si, ϵi, vi ∈ Z∧ si ≤ ϵi and

∀i ∈ [1, n− 1], ϵi ≤ si+1, where si, ϵi, and vi are the start time, end time, and state value of

state interval i, respectively, and n ∈ Z+ is the number of states in the state function.

An example application of the state function is the description of an exercise regimen

with three possible intensity levels indexed by 0, 1, and 2. For the solution depicted in

Figure 3.2, the first state is between time 0 to 20, and its state value, 0, indicates normal

intensity. The second state describes a low intensity workout (state value 1) from time 20

to 29, and the third state returns to normal intensity (state value 0) from time 29 to 33.

Finally, the last stage of the workout is of high intensity (state value 2) and lasts from time

33 to 40. Constraints that can be applied to a state function are formalized in Section

3.2.1.2.2. An example using these constraints to restrict the state function is shown in

Section 3.2.1.3.

We will make extensive use of the state functions to model guillotine cuts in Chapter 4

and stock treatments in Chapter 5.
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Figure 3.2: Example of a state function representing a workout regimen with intensities
indexed by 0, 1, and 2.

Figure 3.3: Step functions starting at the
start time of the interval variables.

Figure 3.4: Pulses expressions over the
interval variables.

Cumulative Function Expressions Cumulative functions [126, 159] are expres-

sions that represent the sum of contributions of intervals over time. Formally, a cumu-

lative function f is defined as the summation of elementary cumulative functions fi such

that f =
∑

i fi [34]. The most basic elementary function is a Step(time, height), which

equals 0 before time and height after time. Another elementary cumulative function is

a Pulse(interval, height), which equals height over the interval and 0 outside of the

interval. Examples of cumulative functions using step functions and pulse expressions are

shown in Figure 3.3 and Figure 3.4, respectively. A typical usage of these cumulative func-

tion expressions is to model resource consumption over time. An example of constraints

restricting a cumulative function is shown in Section 3.2.1.3.

Both state functions and cumulative functions describe changes in behaviour over time.

The difference is that the former describe absolute changes, while the latter describe relative

ones [135].

3.2.1.2 Constraints

Just like the variables, the types of CP constraints are expansive [159, 160]. In general, we

can distinguish two types of constraints: generic constraints and global constraints.
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3.2.1.2.1 Generic Constraints Generic constraints are simple constraints widely adopted

in different CP solvers.

Arithmetic Constraints Arithmetic constraints [123] are constraints that use arith-

metic operators between expressions.

Logical Constraints/Expressions Logical constraints and expressions [132] are those

that use the following logical operators: conjunction (∧), disjunction (∨), negation (¬), and
implication (⇒). Logical expressions can be combined with arithmetic constraints so that

“True” is evaluated as 1 and “False” as 0. For example, the constraint (True ∧ True) +

¬(False) == 2 is always “True”, because both terms on the left hand side evaluate to

“True” and 1 + 1 = 2.

3.2.1.2.2 Global Constraints Global constraints are declarative constraints used to

represent frequently recurring substructures found in different problems. Modelling sub-

structures using global constraints often allows an enhanced level of inference compared to

modelling using generic ones. In this section, we only describe the global constraints used

in the thesis; a more exhaustive list can be found at the Global Constraint Catalogue [21].

Element Constraint The Element constraint [113, 127], Element(array, index),

acts as a subscripting operator to access the indexth element in the array. In this thesis,

we let the index of the first element in array always be 0. For example, consider an

integer variable x representing the array indices and an integer array a = [1, 2, 3, 4, 5]. If

we prescribe the constraint Element(a, x) == 3, then the only feasible solution is x = 2.

The Element(array, index) constraint is often abbreviated as arrayindex.

Count Constraint The Count(array, val) constraint [125] counts the number of

occurrences of val in the array. If val is not in array, then the constraint returns 0.

Lexicographic Constraint The lexicographic constraint [131], Lexicographic(a, b),

ensures that array a is always lexicographically not greater than array b. Formally, Lex-

icographic(a, b) is satisfied if and only if either a = b or ∃i < size(a) such that ∀j < i,

aj = bj and ai < bi. For example, given array a = [2, 1, 3], b = [2, 2, 1], and c = [1, 1, 1], a

is lexicographically less than b, because there exists i = 1 such that, for j = 0, a0 = b0 = 2

and a1 = 1 < b1 = 2. However, a is not lexicographically less than c.

Pack Constraint The Pack constraint [133, 221], Pack(load, where, size), describes

a 1D packing substructure where the items are packed into bins and the bin capacity cannot

be exceeded. Syntactically, load is a vector of variables describing the sum of item sizes in

each bin; where is a vector of variables representing the bin index each item is assigned to;
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and size is a vector of values dictating item size. Each element in where must correspond

to the element in the same index in size.

No Overlap (Disjunctive) Constraint TheNoOverlap(sequence) constraint [159,

160] ensures that interval variables in the set sequence do not overlap. This constraint is

also referred to as the Disjunctive constraint in the Global Constraint Catalogue [21].

Forbid Extent Constraint The ForbidExtent(var, sf) constraint [159, 160] ex-

plicitly prohibits the interval variable var to overlap with non-zero regions of a step function

sf . If var is absent, then the constraint is always satisfied.

AlwaysIn Constraint TheAlwaysIn(function, interval,min,max) constraint [159,

160] restricts the value of a cumulative function or a state function, function, to a particular

range [min,max] during an interval interval.

AlwaysEqual Constraint TheAlwaysEqual(stateFunction, interval, value, startAlign,

endAlign) constraint [159, 160] ensures that the value of a state function stateFunction

during an interval is always value. CP Optimizer provides optional boolean arguments

startAlign and endAlign that align the starting and ending coordinates of interval with

the interval of a state in stateFunction if True. These are False by default.

AlwaysConstant Constraint TheAlwaysConstant(stateFunction, interval, startAlign,

endAlign) constraint [159, 160] is identical to AlwaysEqual, except that it is satisfied as

long as the state value during interval is constant.

3.2.1.3 Examples

The following satisfaction problems exemplify the usage of variables and select constraints

used in this thesis.

Example 1 (Constrained Interval Variables). Given an interval variable x, we can con-

strain the start time, end time, presence, and length using constraints (3.4a) - (3.4d). The

resulting variable domain is illustrated in Figure 3.5.

StartOf(x) ≥ s (3.4a)

EndOf(x) ≤ ϵ (3.4b)

PresenceOf(x) = 1 (3.4c)

l ≤ LengthOf(x) ≤ u (3.4d)
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Figure 3.5: Illustration of a constrained interval variable.

Example 2 (Intervals in a State Function). Given interval variables xi ∀i = 1 . . . 6 and

a state function g, we can constrain the intervals to match the states in the state function

with a possible solution displayed in Figure 3.6. This solution will remain feasible with

constraints (3.5a) - (3.5d). Constraints (3.5a) - (3.5c) restrict the value of intervals to

always take on a particular state. Constraint (3.5d) ensures that, within the interval [b, d),

the value of the states does not change.

AlwaysEqual(g, x1, 0, T rue, True) (3.5a)

AlwaysEqual(g, xi, 1, False, False) ∀i = 2 . . . 5 (3.5b)

AlwaysEqual(g, x6, 2, False, False) (3.5c)

AlwaysConstant(g, [b, d], False, False) (3.5d)

(3.5e)

Figure 3.6: Illustration of interval variables being restricted by a state function.

The values of the boolean arguments startAlign and endAlign are important. These ar-

guments in constraint (3.5a) align both the start and end coordinates of state 0 with those of

x1. The arguments in constraint (3.5b) do not enforce the alignment of coordinates, which is

reflected in the positions of x2, x3, and x4. However, the starting coordinate of x4 in the cur-

rent solution would violate the hypothetical constraint AlwaysEqual(g, xi, 1, T rue, False)

for i = 2 . . . 5. Similarly, the ending coordinates of both x3 and x4 in this solution would

violate the hypothetical constraint AlwaysEqual(g, xi, 1, False, T rue) for i = 2, . . . , 5.

Example 3 (Construction of a Cumulative Function). The solution illustrated in Figure

3.4 has interval variables x1 and x2, each contributing a pulse of magnitude h1 and h2,

respectively, towards the cumulative function f . The solution will remain feasible if we

apply the constraint (3.6a), as the maximum of the cumulative function is not greater than
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h1 + h2 and the minimum not less than 0.

AlwaysIn(f, x, 0, h1 + h2) (3.6a)

3.2.2 Solving

Like MILP, CP employs a branch-and-bound scheme that branches on decision variables,

bounds the objective, and backtracks to previous branches; the biggest difference is the

use of inference as the main mechanism to reduce search. MILP takes advantage of the

geometric properties of the solution space to develop a linear relaxation, make cuts, and

prune branches. CP, in contrast, relies on constraint propagation, a logic-based algorithmic

approach to communicate domain reductions of variables [122, 124, 216].

The extent to which variable domains are reduced can be described by consistency

[122, 142]. The literature on the types of consistency is broad, so we only discuss domain

consistency, the most fundamental type [34, 122, 142]. Intuitively, for a constraint, domain

consistency, also known as generalized arc consistency, refers to the state where all the

values in the domains of all variables that appear in the constraint participate in at least one

solution to that constraint [122, 142]. Formally, given a CSP P = (X ,D, C), a constraint

Ck ∈ C acting on a subset of variables Xk ⊆ X is domain consistent only if ∀Xi ∈ Xk,

∀δi ∈ Di, ∃ a tuple of values d with elements dj ∈ {Dj ∈ D | i ̸= j} such that Ck(Xi =

δi, Xj = dj∀Xj ∈ Xk | i ̸= j) is satisfied. The subset of variables Xk is also known as

the scope of this constraint [142]. Accordingly, a CSP is domain consistent if and only if

all constraints are domain consistent [122, 142]. At each iteration, solvers execute filtering

algorithms to prune the variable domains. Ideally, the pruning enforces some form of

consistency, but this can be computationally expensive. So, instead, filtering algorithms

implemented in solvers sometimes sacrifice a guarantee on consistency for a polynomial

runtime [122, 142, 216]. Other theoretical forms of consistencies include bounds consistency

and k-consistency [122].

3.2.3 Software

CP solvers are also widely available. Popular options include IBM’s ILOG CP Optimizer

[128], Choco [199], Gecode [50], and Google’s CP-SAT Solver [206].

3.3 Packing Problems

The first documented study of packing dates back to the 1930s, when Kantorovich solved

the first mathematical formulation to increase the industrial efficiency for Soviet Union

[143]. Since, packing-related problems have expanded beyond borders, seeping into many

facets of the modern society including manufacturing [136, 163, 232], technology [222, 236],
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and supply chain [136, 205]. In this section, we review related literature on two of the most

prominent types of packing problems: one-dimensional bin packing and two-dimensional

bin packing.

3.3.1 One-dimensional Packing Problems

In this section, we review literature on two main classes of one-dimensional packing: the

1D Bin Packing Problem (1DBPP) and the 1D Cutting Stock Problem (1DCSP) [93, 239].

An NP-hard optimization problem, 1DBPP packs a set of items, I, of size wi, i ∈ I

into a set of bins K, Bk of which have size Wk, while minimizing the empty space within

the bins. This leftover empty space is termed waste. As the sizes of items are constants,

1DBPP can be equivalently expressed as a problem that minimizes the total size of bins

used.

The 1DCSP considers packing a set of orders i ∈ N for bi items with size wi into an a set

of stocks K of size Wk while minimizing waste. The two problems are very similar: 1DCSP

can be reduced to a 1DBPP if the order demand bi = 1 for i ∈ N [239]. For the remainder

of this section, we present models to describe the more general 1DCSP and interchangeably

use the terminologies “bin” and “stock”.

Next, we highlight common MILP and CP formulations and summarize solution ap-

proaches.

3.3.1.1 Mixed-Integer Programming

Assignment-based Models Assignment-based models use integer variables xik to ex-

plicitly decide if item i is assigned to stock k. Should there be duplicates of orders, the

demands can be aggregated to reduce symmetry between these items. Below, we reproduce

the MILP model proposed by Kantorovich [143], who additionally used binary variables

yk to track if stock k is used. Constraints (3.7b) and (3.7c) capture the demand and the

size-wise capacity, respectively. The rest define the variables.

min
∑
k∈K

Wkyk (3.7a)

s.t.
∑
k∈K

xik ≥ bi ∀i ∈ N (3.7b)∑
i∈N

wixik ≤Wkyk ∀k ∈ K (3.7c)

xik ∈ Z+ ∀i ∈ N, k ∈ K (3.7d)

yk ∈ B ∀k ∈ K (3.7e)
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Compared to the models presented later, this formulation typically yields a weak linear

relaxation and hence a weak lower bound. For a 1DBPP with identical bins (Wk = W for

k ∈ K), the relaxed lower bound is always ⌈
∑
i∈I

wi/W ⌉ [187].

Position-indexed Models Position-indexed models use variables indexed by numerical

coordinates on a stock to indicate if an item starts at a coordinate in a solution. To achieve

a more compact representation, the positional relationship of items and stocks is often

characterized by an arc-flow graph G with vertices V = {0, . . . ,Wmax} being the positions

and arcs A = {(s, e) : (0 ≤ s < e ≤Wmax)∧(∃i ∈ N |e−s = wi)} being the item placements.

Intuitively, an item belonging to order i can only be packed into any stock with the leftmost

coordinate being s if the arc (s, s+ wi) is selected. If the stocks are identical, then the arc

flow graph G is sufficient, as none of the arcs will finish beyond the stock size. However,

with differently sized stocks, two sets of arcs need to be added to A to discriminate stock

types. First, all vertices in V are connected to a sink node with coordinate Wk for each

stock k. Each unit of flow that reaches the sink at Wk signals the usage of another stock

of size Wk. Then, as the number of total stocks consumed always equals the units of flow

across all sinks, we can add an additional arc that connects the sinks to coordinate 0, so as

to complete the arc flow cycle.

Figure 3.7: Example of the one-dimensional arc flow model for packing two items into a
bin of size 10. Item a is of size 6 and item b is of size 2. The upper half of the diagram is
the complete arc flow graph and the lower half is one feasible packing scheme. Orange and
yellow arcs indicate different items packed into the bin. Dashed arcs are added to ensure a
common sink. A dotted arc is added to complete the arc flow cycle.

Figure 3.7 illustrates an example of the position-indexed model packing two items into

a bin of size 10. Item a has size 6 and item b has size 2. In total, there are three possible

packing combinations: packing only item a, packing only item b, and packing both item a

and b. The first combination is illustrated by the orange arc (0, 2), which indicates the bin

usage from coordinate 0 to coordinate 2, and the dashed arc (2, 10), which connects to the

sink node. Similarly, the second combination is illustrated by the yellow arc (0, 6) and the

dashed arc (6, 10). The last combination, cutting both item a and b, has arcs (0, 6) and

(6, 8), as well as the dashed arc (8, 10). In all three cases, one unit of flow exits the origin

node and finishes at the sink node at coordinate 10.
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We reproduce Carvalho’s 1D position-indexed model [47] below. Integer variables xse

are introduced to represent the number of items obtained from arcs (s, e). Integer variables

zk are added as a feedback arc from vertex Wk to vertex 0 to represent the number of stocks

of type k used. Constraint (3.8b) enforces that the amount of flow in the incoming arcs must

equal to the amount in the outgoing arcs. Semantically, in the case where vertex e equals

0, Constraint (3.8b) ensures that the number of items with their leftmost coordinates being

0 equals the number of stocks used. In the case where e = Wk for some stock type k, the

number of items with their rightmost coordinates being e must equal to the summation of

the number of stocks of type k used and the number of items with their leftmost coordinates

being e. The final case is similar to the case where e = Wk, except no stocks are exhausted

yet. Constraint (3.8c) ensures the number of arcs with size wi is enough to satisfy the

demand of order i. Constraint (3.8d) ensures only available stocks are used. The rest

describe the variables. Since the model size is dependent on the graph size, recent work [40]

has developed graph compression techniques to address scaling challenges.

min
K∑
k=1

Wkzk (3.8a)

s.t. −
∑

(d,e)∈A

xde +
∑

(e,f)∈A

xef =


K∑
k=1

zk if e = 0

−zk for e = Wk, ∀k = 1, . . . ,K

0 otherwise

(3.8b)

∑
(d,d+wi)∈A

xd,d+wi
≥ bi ∀i = 1, . . . ,m (3.8c)

zk ≤ Bk ∀k = 1, . . . ,K (3.8d)

xde ∈ Z+ ∀(d, e) ∈ A (3.8e)

zk ∈ Z+ ∀k = 1, . . . ,K (3.8f)

One-Cut Models Instead of assignments or positions, one-cut models focus on modelling

cuts and their byproducts. The key observation here is that, after each cut, we always obtain

an item and a leftover rectangle, the latter of which is referred to as a residual plate. As

any large enough residual plate can be cut to produce an item and another residual plate,

we can obtain all combinations of item assignments inductively.

Figure 3.8 illustrate the running example packing two item of size 2 and 6 into a bin of

size 10. The first cut is at coordinate 2, producing a targeted plate of size 2, which fulfills

the first item, and a residual plate of size 8. Another cut is executed on the residual plate

to produce a targeted plate of size 6, which fulfills the second item.
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Figure 3.8: Example of a one-dimensional one-cut model for packing two items (size 2 and
6) into a bin (size 10). The white rectangles are either the bin or residual plates.

To illustrate, we reproduce a 1D one-cut model by Dyckhoff [71] in Model 3.9. Given a

set of stock size H = {Wk, k ∈ K} and a set of orders with unique size D = {wi, i ∈ N}, let
yp,q denote the number of plates with size p that are divided into a targeted plate of size q

and a residual plate of size p− q. We also let R be the set of these residual plates excluding

those that are smaller than the smallest order size, and Nq be the demand of rectangular

items of size q for q ∈ {1, . . . ,maxk∈K Wk}. Note that if type q ̸∈ D, then Nq = 0. If a

residual plate of size q ∈ H is cut (possibly to produce an item-sized plate), then there must

be at least one resource that is cut to yield the residual plate. This resource can either be a

stock of size q or another residual plate derived from a larger stock, so the number of these

resources cannot be less than their derivatives, as is formalized by constraint (3.9b). For

plates with non-stock sizes, constraint (3.9c) ensures that they are cut as either residual

plates or targeted plates and are either used to fulfill corresponding orders, if any, or cut

into smaller plates.

min
∑
q∈H

Wqzq (3.9a)

s.t. zq +
∑

p∈D:p+q∈H∪R
yp+q,p ≥

∑
p∈D:p<q

yq,p ∀q ∈ H (3.9b)∑
p∈H∪R:p>q

yp,q +
∑

p∈D:p+q∈H∪R
yp+q,p ≥

∑
p∈D:p<q

yq,p +Nq∀q ∈ (D ∪R)\H (3.9c)

zq ∈ Z+ ∀q ∈ H (3.9d)

yp,q ∈ B ∀p ∈ H ∪R, q ∈ D, q < p(3.9e)
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Set Cover Models Set cover models explicitly enumerate all size-wise combinations of

items and try to find an optimal subset [94, 240]. This formulation typically yields a

strong linear relaxation, but, as the number of these combinations is exponential, solving

it can often be intractable. To avoid generating all combinations, these models use the

column generation technique embedded in a branch-and-price algorithm to generate good

combinations during runtime, albeit at the expense of being less flexible and more difficult

to implement [76, 240].

min
∑
p∈P

xp (3.10a)

s.t.
∑
p∈P

aipxp ≥ bi ∀i ∈ N (3.10b)

xp ∈ Z+ ∀p ∈ P (3.10c)

Here, we denote the set of all size-wise patterns as P . For each pattern p ∈ P , the

parameter aip describes the number of items belonging to order i in pattern p. Since the

combinatorics of packing is encapsulated in the pattern set, the model only needs to con-

strain the demand.

3.3.1.2 Constraint Programming

The constructs used in CP models are highly dependent on the underlying solvers. Modern

solvers, such as CP Optimizer [128] and Gecode [50], offer the Pack constraint introduced

in Section 3.2.1.2. Below, we describe a formulation using Pack. Other formulations

have been investigated, albeit using features from dated solvers, such as the Diffn and

Cumulative constraints from the CHIP solver [20, 231].

Bin-Indexed Model Bin-indexed models introduce, for each item i, an integer variable

xi that takes on the index of the assigned bin. In particular, this type of model shows

particular affinity with the global constraint Pack, which uses a filtering algorithm to

prune a CP search if a subset of items cannot be packed within some bound on the net

usage of a bin. Shaw [221] demonstrated that this global constraint can cut the search by

orders of magnitude. An 1DBPP modelled using Pack is as follows.
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min
∑
k∈K

Wk(bk > 0) (3.11a)

s.t. Pack(b, x, w) (3.11b)

bk ≤Wk ∀k ∈ K (3.11c)

xi ∈ K ∀i ∈ N (3.11d)

bk ∈ Z+ ∀k ∈ K (3.11e)

As required by the Pack in constraint (3.11b), this model introduces variables bk to

track the net usage of each bin k. The capacity of each bin is restricted in constraint (3.11c).

3.3.1.3 Other Works

Other exact approaches are as follows. Vance [240] proposed a branch-and-price algorithm

to solve a Dantzig-Wolfe decomposition of the Kantorovich model and showed that, with

a constant bin size, the decomposed model is equivalent to the set cover model. Valério

de Carvalho [47] proposed a branch-and-price scheme to solve the position-indexed model.

Exact search algorithms have also been proposed. Martello and Toth [187] proposed the

Martello-Toth Procedure (MTP), a branch-and-bound algorithm that branches on item as-

signments, derives upper bounds using a First-fit Decreasing heuristic (FFD), and prunes

branches via dominance relationships. Scholl et al. [218] developed a fast hybrid procedure

called BISON, which uses a tabu search to improve solutions found by a fast non-exact

heuristic and subsequently applies branch-and-bound. Their experiments show that the

solutions found are superior to those of MTP while requiring less time on average. While

MTP branches on items, Korf [152, 153] developed a bin completion branch-and-bound

algorithm that branches on item subsets comprising a bin. They showed that their branch-

ing scheme enables a stronger dominance relationship between nodes and hence a smaller

search tree. Later, Fukunaga and Korf [85] extended the bin completion algorithm to other

variations of the 1DBPP.

The literature on non-exact approaches on 1DCSP and 1DBPP is substantial. Johnson

[140, 139] proposed the well-known FFD and Best-Fit Decreasing (BFD) greedy algorithms

and derived their asymptotic worst-case behaviours. Gupta and Ho [105] developed the

Minimum-Bin-Slack (MBS) heuristic that, at each iteration, tries to pack a set of items as

close to a bin’s capacity as possible. Fleszar and Hindi [80] proposed three variations of MBS

and proposed a variable-neighbourhood-search algorithm. They showed that coupling the

search algorithm with the modified MBS is advantageous. Alvim and Ribeiro [7] proposed

a heuristic that used load redistribution and a tabu search. Fleszar and Charalambous [79]

developed heuristics that pack a sufficient average weight for each remaining bin. Loh et
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al. [178] developed a weight annealing heuristic that changes the item size based on search

history to escape local extrema. Falkenauer [75] solved the 1DBPP using genetic algorithms.

He proposed three different encodings and demonstrated that a group-based encoding can

find solutions as well as MTP but with less time. Singh and Gupta [227], Poli et al. [209],

and Rohlfshagen and Bullinaria [217] investigated other evolutionary approaches to 1DBPP.

3.3.2 Two-dimensional Rectangular Packing Problems

Two-dimensional packing problems involve packing rectangles of fixed sizes into rectangular

bins a.k.a stocks. In this section, we first provide a classification scheme for these problems.

As the literature is diverse, we limit our review to literature related to our problem.

3.3.2.1 Classification Scheme

We can categorize two-dimensional packing problems based on problem types and charac-

teristics. An overview of our classification scheme is shown in Figure 3.9.

Figure 3.9: Classification of 2D packing problems. Categories associated with our problem
are highlighted in grey.

There are five main types of two-dimensional packing problems (Table 3.1): the 2D

Orthogonal Packing [54, 55, 58, 98, 99, 137, 167, 191], 2D Single and Multiple Knapsack

Problem [38, 46, 72, 85, 115, 116, 149, 165, 177, 238, 187], 2D Strip Packing Problem [24,

30, 31, 37, 39, 41, 53, 64, 101, 147, 164, 230], 2D Optimal Rectangle Packing Problem [154,

155, 194, 226, 225], and 2D Bin Packing and Cutting Stock Problem. The 2D Orthogonal

Packing is a feasibility problem, checking if a set of rectangular items can be packed into a

single stock. The 2D Single Knapsack Problem packs the optimal subset of rectangles into
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Goal
Single
Bin

Multiple
Bins

Infinite Bin
Length

2D Orthogonal Packing Feasibility x
2D Single Knapsack Max Packed Value x

2D Multiple Knapsack Max Packed Value x
2D Strip Packing Min Length x x

2D Optimal Rectangle Packing
Min Enclosing

Rectanglular Area
x

2D Bin Packing/Cutting Stock Min Waste x

Table 3.1: Common Types of 2D Packing Problems.

a single stock while maximizing the rectangles’ values. The 2D Multiple Knapsack Problem

generalizes the 2D Single Knapsack Problem to include multiple stocks of different sizes.

The 2D Strip Packing Problem packs items into a strip of infinite length while minimizing

the used length. The 2D Optimal Rectangle Packing Problem attempts to find a rectangle

with the smallest area that encloses all packed items. The 2D Cutting Stock Problem

(2DCSP) and 2D Bin Packing Problem (2DBPP) pack items into stocks while minimizing

waste.

The 2SCSP-FFMS is a generalization of 2DBPP and 2DCSP, and industrial applications

have fostered many variations of these problems, including those with Variable-sized Bins

[19, 86, 177, 208, 210, 223], Guillotine cuts [19, 86, 149, 148, 177, 190, 182, 223], Size

Changeable Items [163], Item-to-Item Conflicts [73, 150, 168], Orthogonal Rotations [147,

171, 245], Loading and Unloading requirements [58, 166, 224], and Defective Areas [3, 4,

100, 180, 189, 200]. Their characteristics are described below.

• Variable-sized Bins: Different bins have different fixed dimensions.

• Guillotine Cuts: All cuts must be guillotine, a type of cut that runs from one side

of the object to the other. The left and middle plot in Figure 3.10 show a guillotine

cutting pattern and a non-guillotine one, respectively.

• Size Changeable Items: One or more dimensions of items are flexible.

• Item-to-Item Conflicts: Conflicting items cannot be placed in the same stock.

• Orthogonal Rotations: Items can rotate 90 degrees.

• Unloading Requirements: Packed items must be unloaded according to some sequence.

• Defective Areas: Items cannot overlap with parts of the stock that are defective.

Finally, the literature segments different guillotine cutting schemes according to cut

restrictions and exactness. Cut restrictions limit the number of cuts that can be executed,
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Figure 3.10: (Left) A 2-stage guillotine pattern. (Middle) An invalid guillotine pattern.
(Right) A valid guillotine pattern that requires three stages of cuts.

often due to the limitations of industrial machines. Two-Stage problems allow only two

stages of the cuts to be executed, each stage orthogonal to the other (Figure 3.10, left).

Similarly, a solution from an m-Stage problem must be cuttable from m stages (e.g. Figure

3.10 shows a 3-stage pattern, right). If there are no restrictions on the number of stages,

the problem is described as unrestricted.

Exactness describes if an item cut requires subsequent trimming. If items can be

trimmed after cutting, it is a non-exact version of the problem. If no trimming is al-

lowed, then the problem is exact. Indeed, the two perspectives can be unified. For instance,

a 2-stage non-exact version is identical to a 3-stage exact version.

The problem that we focus on in this thesis, 2SCSP-FFMS (Section 2.1), is situated

at the intersection of many difficult problems: 2DCSP with Variable-sized Bins, 2-stage

Guillotine Cuts, Size Changeable Items, and Item-to-Item conflicts (Figure 3.9, highlighted).

Next, we review 2DCSP literature with these characteristics.

3.3.2.2 Two-dimensional Packing with Guillotine Cuts and Variable-sized Bins

We first review 2DCSP and 2DBPP with Guillotine Cuts and Variable-sized Bins with a

focus on modelling perspectives. The notations used to reproduce different formulations

are as follows. We are given a set of stocks K with width Wk and length Lk and let H be

the set of unique stock dimensions. We wish to fulfill a set of orders i ∈ N of bi items of

dimensions wi× li. We refer to the problem as 2DBPP only if bi = 1 and 2DCSP otherwise.

3.3.2.2.1 Mixed-Integer Programming In this section, we review the main MILP

models for two-dimensional packing problems with 2-stage guillotine constraints and variable-

sized bins, two variations most associated to our problem.

Assignment-based Model An assignment-based formulation for two-dimensional

two-stage cutting stock problems (2SCSP) uses decision variables to explicitly represent

the matching between items, levels, and stocks [86, 177]. Extending the assignment-based

formulation from 1D to 2DCSP requires the representation of levels, whose quantity is un-

known a priori. A frequently used upper bound on the number of levels is the total number

of items, ñ =
∑n

o=1 do where do is the demand of items from order o ∈ N and N = {1, . . . , n}
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[86]. However, matching these levels to stocks invites significant symmetry, so studies have

proposed assignment restriction schemes at the expense of enumerating all possible stock

combinations, making this formulation ideal only if the total number of items is not large.

Here, we detail the assignment restriction scheme proposed by Furini and Malaguti

[86]. First, they assume orders are sorted according to non-increasing width. Then, any

items from order i must be cut from levels with indices in {1, . . . , αi}, where αi =
∑i

o=1 do

and α0 = 0. Conversely, level k can only take on items from orders {βk, . . . , n}, where
βk = min{r : r ∈ N,αr ≤ k}. Similarly, a level k can only be assigned to stocks with

indices {k . . . ñ}.
They used four sets of variables, all of which are initialized according to the restriction

scheme. Binary variables yhj and qhk equal 1 only if level j and stock k of type h are initialized,

respectively. A stock type characterizes the set of stocks with identical dimensions and let

H denote the set of these types. Integer variable xhij counts the number of items of order i

assigned to level j of type h. Binary variable zhjk equals 1 only if level j is assigned to stock

k of type h. Constraint (3.12b) ensures demand is fulfilled. Constraint (3.12c) and (3.12d)

restrict the width of levels and the length of stocks, respectively. Constraint (3.12e) links

the stock usage with level assignments.

min
∑
h∈H

WhLh

n̄∑
k=1

qhk (3.12a)

∑
h∈H

(

αi∑
j=1

xhij +

αi∑
j=αi−1+1

yhj ) ≥ bi i = 1 . . . n (3.12b)

n∑
i=βj

wix
h
ij ≤ (Wh − wβj

)yhj j = 1 . . . ñ− 1, h ∈ H (3.12c)

n̂∑
j=k+1

lβj
zjk ≤ (Lh − lβk

)qhk k = 1 . . . ñ− 1, h ∈ H (3.12d)

j−1∑
k=1

zhjk + qhj = yhj j = 1 . . . ñ, h ∈ H (3.12e)

yhj ∈ {0, 1} j = 1 . . . n− 1, h ∈ H (3.12f)

xhij ∈ Z+ j = 1, ..ñ− 1, i = βj , ..n, h ∈ H (3.12g)

qhk ∈ {0, 1} k = 1, . . . , ñ : h ∈ H (3.12h)

zhjk ∈ {0, 1} k = 1 . . . n̄− 1, j = k . . . n̄, h ∈ H (3.12i)

3.3.2.2.1.1 Cut-and-Plate Model The Cut-and-Plate formulation extended the

1D One-Cut formulation to 2SCSP by expanding the definition of residual plates to include

byproducts from first-stage cuts and second-stage cuts [19, 86, 223]. After cutting an item,

the stock is divided into two residual plates, one above and one to the right (Figure 3.11).



CHAPTER 3. BACKGROUND 31

(a) Residual plates after a
first-stage cut

(b) Residual plates after a
second-stage cut

Figure 3.11: Residual Plates after different types of cuts.

Cuts Plates

Plate Type Item Type Top Right

Width Height Stage Width Height Width Height Stage Width Height Stage

Wh Lh 1 wi li Wh Lh − li 1 Wh − wi li 2
Wh Lh 2 wi li wi Lh − li Waste Wh − wi Lh 2

Table 3.2: Plate types resulting from cuts in different stages for a two-stage problem.

Their dimensions are dependent on the stage of the cut and are summarized in Table 3.2.

The set of all possible residual plates is captured in the parameter aijk, which equates to 1

if plate type k results from cutting item type i from plate type j and 0 otherwise. Then,

letting integer variables xij represent the number of items from order i cut from a plate j

and m the total number of enumerated plates, the Cut-and-Plate model is as follows:

min
∑
h∈H

WhLh

n∑
i=1

xih (3.13a)

m∑
j=1

xij ≥ bi i = 1 . . . n (3.13b)

m∑
j=1

n∑
i=1

aijkxij ≥
n∑

i=1

xik k = 1 . . .m (3.13c)

xij ∈ Z+ i = 1 . . . n, j = 1 . . .m (3.13d)

Objective (3.13a) describes the waste minimization objective. Constraint (3.13b) satis-

fies the demand. Constraint (3.13c) ensures that a plate can only be cut if it is a residual

plate. The rest defines the variables.

3.3.2.2.1.2 Position-Indexed Model Extending the 1D position-indexed formu-

lation, the 2D position-indexed formulation is an arc-flow model that associates each cutting
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stage with a graph whose arcs represent cut positions. In essence, the model combines two

1D arc-flow formulations, one to cut levels and another to cut items.

One example is the model of Macedo et al. [182], who tackled a problem with identical

stock dimensions (W = Wh and L = Lh for h ∈ H). For the first stage, they considered the

arc-flow graph G0 = {V0, A0}, where the vertex set V0 = {0, . . . , L} is the set of possible

integer positions and the arc set A0 = {(a, b) : 0 ≤ a < b ≤ L ∧ b − a ∈ L∗} represents

cut items. Here, L∗ is the set of possible length values. In the second stage, for a given

level s with length l∗s ∈ L∗, the arc-flow graph Gs has vertices Vs = {0, . . . ,W} and arcs

As = {(d, e) : 0 ≤ d < e ≤W ∧ ∃i ∈ N |(e− d = wi ∧ li ≤ hs)}.
This model requires four sets of variables. Integer variable z0 represents the number of

stocks used, and integer variables zs represent the number of cut levels with length s ∈ L∗.

Integer variables x0ab describe the flow in G0 and integer variables xsdel the flow in Gs. In

particular, xsdel also represents the number of items with length l and width e− d cut from

a level with length s. If all items share different width values, then the last index l can

be removed from xsdel. Constraint (3.14b) enforces flow conservation in G0. Constraint

(3.14c) ensures that the number of levels with length s matches those cut from the first

stage. Constraint (3.14d) conserves the flow in Gs. Constraint (3.14e) ensures the demand

is fulfilled.

min z0 (3.14a)

s.t.
∑

(a,b)∈A0

x0ab −
∑

(b,c)∈A0

x0bc =


−z0 if b = 0

0 if b = 1, 2, . . . ,H − 1

z0 if b = H

(3.14b)

∑
(c,c+s)∈A0

x0c,c+s − zs = 0 ∀s ∈ L∗ (3.14c)

∑
(d,e)∈As

l∈L∗

xsdel −
∑

(e,f)∈As

l∈L∗

xsefl =


−zs if e = 0,

0 if e = 1, 2, . . . ,W − 1

zs if e = W,

∀s ∈ L∗ (3.14d)

∑
s∈L∗

∑
(f,f+wi)∈As

xsf,f+wi,li
≥ bi ∀i ∈ N (3.14e)

x0ab ∈ Z+ ∀(a, b) ∈ A0, s ∈ L∗ (3.14f)

xsdel ∈ Z+ ∀(d, e) ∈ As, l, s ∈ L∗(3.14g)

3.3.2.2.1.3 Set Cover Model The 2D set cover models employ the same idea as

their 1D siblings, thus retaining their advantages and disadvantages. The difference lies in

the pattern set: instead of widthwise ones, we now consider those that are feasible cutting

schemes for the entire rectangular stock. In other words, each pattern must be executable
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using two stages of guillotines. Exemplifying the exponential-sized formulation with variable

stock sizes is Model (3.15) by Furini and Malaguti [86], which is reproduced below.

min
∑
h∈H

WhLh

∑
p∈Ph

xp (3.15a)

s.t.
∑

h∈H,p∈Ph

aipxp ≥ bi ∀i ∈ N (3.15b)

xp ∈ Z+ ∀p ∈ P h, h ∈ H (3.15c)

Differing from the 1D set cover model, which contains only 1D stocks of the same

type, this model distinguishes patterns cuttable from rectangular stocks of types h ∈ H by

adding index h to the pattern set. The constraint and variable definitions are augmented

accordingly.

3.3.2.2.2 Constraint Programming Dincbas and Simonis proposed the first CP-

based approach [68] to the 2SCSP, generating stock patterns using a combination of back-

track search and a finite domain model. Later, Beldiceanu and Contejean introduced diffn

[22, 20], a global constraint with an option to enforce guillotine cuts; however, no exper-

imental results related to guillotine cuts were provided. Since then, CP has largely been

investigated in other 2D packing contexts. For the two-dimensional optimal rectangle pack-

ing problem, Korf [154, 155] considered solving a constraint satisfaction problem using the

absolute positions of items. Moffitt and Pollack [194] studied the same satisfaction problem

from a relative placement perspective, focusing on the pairwise relationships between items.

For the same problem, Clautiaux et al. [55] considered a scheduling approach, represent-

ing the width and length of items as two interval variables. This model was improved by

Mesyagutov et al. [191], who integrated linear-programming-based pruning rules to prop-

agate the constraints. Simonis and O’Sullivan investigated CP search strategies to pack

squares into rectangles using the Cumulative global constraint [226, 225].

3.3.2.2.3 Other Approaches Puchinger and Raidl [214] proposed a branch-and-price

algorithm for the set cover formulation. They added dual-optimal cuts, a column generation

stabilization technique [8, 48] to accelerate subproblem convergence, and branched on if

two items are in the same stock. Furini and Malaguti [86] also proposed a branch-and-

price algorithm for the set cover model, but with a different branching rule and subproblem

formulation. Monaci and Toth [195] and Cui et al. [60] developed two-phase algorithms,

first generating two-stage patterns for a single stock and then assigning patterns to stocks.

They differ in that the former used a heuristic and the latter a MILP model to minimize

the number of stocks used in the second phase. Recently, Martin et al. [188] proposed a
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Benders Decomposition on a position-based MIP formulation.

Many inexact algorithms have been proposed in the literature. Incidentally, the solutions

of early heuristics designed for 2D packing problems without guillotines are naturally feasible

for problems with guillotine constraints [173]. Chung et al. [51] presented the Hybrid First-

fit Decreasing Heuristic (HFFD) that packs items into levels without taking into account the

level length and then packs these levels into stocks, both according to a first-fit decreasing

scheme. Frenk and Galambos [84] studied the Hybrid NFD heuristic (HNFD), a Next-fit

version of the HFFD. Berkey and Wong [27] developed the Finite First-Fit (FFF), Finite

Next-Fit (FNF), Finite Best-Strip (FBS), and Finite Bottom Left (FBL) heuristics. FFF

and FNF both pack items into levels directly into stocks. If the item cannot be packed into

a level, a new level is opened, and if the item cannot fit into the new level, then a new bin

is opened. FBS is essentially an HFFD using best-fit strategies. Lastly, FBL always packs

into the closest bottom-left corner of the stock if possible. In the literature, HFFD, HNFD,

FBS are classified as 2-phase heuristics, and the rest as 1-phase heuristics [173]. Caprara

et al. [45] proposed an algorithm for 2SCSP that combined grouping techniques with the

simple heuristics. They show that this algorithm always executes in polynomial time if the

instance size approaches infinity, making it an asymptotically polynomial-time algorithm.

Metaheuristics have also been studied. Lodi et al. [114, 172, 175, 176] proposed a

generalized tabu search procedure for two-dimensional packing problems. Given a solution,

they first try to find a stock with large waste and a high number of items. Then, to find a

solution using fewer stocks, they execute a move: one item from that stock and items from

k other stocks are repacked by a heuristic. They also consider diversifying the search by

incrementing k and destroying poorly packed bins. For both problems with and without

guillotine requirements, they show that their solutions are superior to other heuristics.

Gharsellaoui and Hasni [92] developed a genetic algorithm that replaces the mutation step

with a tabu search. Alvelosa et al. [6] explored neighbourhoods for a local search, swapping

both adjacent item types and levels.

3.3.2.3 Two-dimensional Packing with Size Changeable Items

While the two-dimensional packing problems have been widely studied, we could find only

one work addressing item flexibility in the 2D setting. Lee et al. [163] considered a vari-

ant of the 2SCSP with flexible width and length and proposed a multi-stage heuristic to

iteratively pack items and adjust level dimensions. Notably, their heuristic uses three main

components. Given a set of unpacked items, the algorithm first uses a knapsack-based al-

gorithm to greedily pack items into a level on a candidate available stock. If no new levels

can be opened on the stock, the current packing scheme is compared with a hypothetical

one that forcibly divides the last level into two, and the solution with less waste is accepted.

Finally, the heuristic checks if this packing scheme yields less waste if it is executed on a

differently sized stock. These steps are repeated until all items are packed. Their empirical
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experiments on a set of industrial data show superior performance over historical decisions.

They also proposed a non-linear model but did not investigate its performance.

3.3.2.4 Two-dimensional Packing with Conflicts

Literature on two-dimensional packing problems with conflicts has exclusively focused on

heuristics. Epstein et al. [73] studied the problem of packing squares into a set of identi-

cal square stocks with bipartite and perfect conflict graphs and proposed an ensemble of

heuristics for each graph type. Their algorithms for bipartite graphs and perfect graphs

have an approximation ratio of at most 2+ ϵ for ϵ > 0 and 3.2744, respectively. Khanafer et

al. [150] developed a multi-step algorithm to tackle two-dimensional bin packing problems

with any conflict graph. They first compute the compatibility graph and apply a tree-based

decomposition to identify clusters of compatible items. Items appearing in multiple clusters

are assigned heuristically to one of the clusters. Then, orders in each cluster are packed

using simple heuristics, and the solutions of clusters are merged. They show practical effec-

tiveness and note that exact algorithms can replace the heuristics, but did not investigate

this scheme’s performance. Li et al. [168] adapted a maximal space algorithm proposed by

El Hayek et al. [112] for vanilla 2D bin packing problems and proposed a local search ap-

proach. They showed that, in their industrial application, combining the adapted maximal

space algorithm with the local search yields strong solutions.

3.4 Resource Constrained Scheduling

Scheduling refers to the problem of optimizing resource usage over time. Despite being

completely different application areas, the relationship between packing and scheduling has

been linked since as early as the late 1990s for both 1D [65] and 2D settings [110]: items that

need to be packed can be viewed as activities to be scheduled. The literature on scheduling

is diverse, so we focus on vehicle routing problems and batch scheduling, two areas related

to the substructures of our problem. Here, we provide a brief intuition of their relations to

our problem, and leave the details to Section 4.2.1.

3.4.1 Vehicle Routing Problem

Vehicle Routing Problems (VRP) optimize the routes of vehicles while some criteria asso-

ciated with each route are satisfied. Packing problems and VRPs are similar: each vehicle

can be interpreted as a bin with capacity corresponding to trip length or time. The distance

or travel time between visits, then, are items to be packed. In this thesis, we explore this

idea, applying techniques proposed for VRP to our packing problem.

MILP models of VRPs can be categorized into three main types: the three-indexed

model, two-indexed model, and set cover model [34]. The three-indexed model treats the

route of each vehicle as independent of other vehicles. This is particularly beneficial if the
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Figure 3.12: Comparison between the representation of trip decisions in the Alternative
CP model (left) and the single resource CP model (right). The coloured blocks portray the
customers that a vehicle needs to service. The duration of service is represented by the
block’s horizontal size. The arrows represent the allocation decision of the pink block (cus-
tomer), and the horizon below each arrowhead corresponds to the domain of the variable.
The time horizon of each vehicle is from 0 to H.

vehicle types are heterogeneous [78, 95, 162]. Problems with homogeneous vehicles can be

modelled using a two-indexed formulation, which merges the routes of different vehicles in

the decision process [66]. Finally, the set cover models explicitly enumerate all possible

routes and are generally solved using a branch-and-price algorithm [13, 67, 76].

A number of CP models for VRPs [44, 89, 151] represent the problem from a schedul-

ing perspective, modelling the trip-to-vehicle assignments using interval variables and the

Alternative constraint. Recently, for a capacity- and time-constrained routing problem,

Booth and Beck [36] introduced the single resource model, where multiple resources are

unified into a single resource on an expanded time horizon. Consequently, variables and

constraints are declared over the single unified horizon instead of alternatively on each

resource, which allows for a stronger inference. Their experiments demonstrate that this

formulation is computationally advantageous over alternative CP constructs, especially for

larger instances.

Instead of reproducing their proposed Alternative and single resource model, both

of which contain other problem-specific requirements, we summarize the essentials in a

simplified example: we would like to service a customer with one of three vehicles. The

Alternative CP formulation would need three decision variables, each assigning the cus-

tomer to one vehicle. In contrast, the single resource formulation would need only one

variable representing the assignment of the customer onto the entire horizon (Figure 3.12).

Similarly, to satisfy a limited vehicle capacity, the Alternative model would need three

sets of constraints, each of which, for example, restricts a cumulative function describing

the load of a vehicle; the single resource model would only need one set, as the constraints
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are applied over all vehicle routes simultaneously.

For more details on VRPs, we refer readers to surveys by Drexl [69] and Erdelić [74].

3.4.2 Batch Scheduling

Batch scheduling arises when a set of jobs with common characteristics need to be processed

together. We observe that making guillotine cuts is very similar to scheduling batches: in

both cases, some events are executed concurrently. Ham [107] proposed a 4-index MILP

formulation that uses binary decision variables to match steps in jobs with batch positions

on machines. Ham and Cakici [109] proposed a 3-index formulation that uses two sets of

binary decision variables to match steps in jobs with batches and to distribute batches onto

machines. They demonstrated that this formulation requires significantly fewer variables

and constraints than the 4-index one. Liao and Liao [169] introduced a MILP model similar

to the 3-index formulation for a two-machine flowshop problem, where the machines are

batching machines. Cakici et al. [43] developed a time-indexed MILP model that decides

on the time index at which a job starts and restricts the number of batches at each time

index. Monma and Potts [196] constructed a disjunctive MILP model where variables

represent job-to-job precedence.

Constraint programming formulations typically use interval variables and state functions

to represent jobs and regulate their start times, respectively [108, 109, 232]. Notably, Ham

and Cakici [109] found that this CP formulation drastically outperformed the 3-index and

4-index MILP formulations, finding the same quality solutions while using significantly less

memory. Malapert et al. [185] took an alternative perspective to solve a parallel-batch

machine problem and developed the global constraint, SequenceEDD, to describe the

maximal lateness for a single batching machine. The performance of the CP model using

this constraint, however, was inferior to a MILP model proposed for the same problem by

Kosch and Beck [156].

For non-model-based approaches, we refer readers to review surveys by Potts and Ko-

valyov [213] and by Fowler and Mönch [83].

3.5 Summary

In this chapter, we presented foundations of mixed-integer linear programming (MILP)

and constraint programming (CP) and reviewed relevant literature. We showed that a

substantial number of exact and approximation algorithms have been proposed for 1D

packing. For 2D packing, we provided a classification system with a focus on bin packing

and cutting stock problems and contextualized our problem. We described the main MILP

models to represent guillotine cuts and traced their origins to the 1D formulations. We noted

a lack of CP-based studies on 2DBPP and 2DCSP with guillotine constraints; instead, we

reviewed main CP modelling perspectives on the optimal rectangle packing problem. We
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also identified a shortfall of literature on two-dimensional packing problems with changeable

item size and conflicts. Lastly, we examined relevant studies on vehicle routing and batch

scheduling. Concluding this chapter, we remind the reader that the 2SCSP-FFMS contains

several difficult packing problems, the intersection of which has not been studied in the

literature.



Chapter 4

2SCSP with Flexible Item Length

and Flexible Demand

I
n this chapter, we study the Two-Dimensional Two-stage Cutting Stock Problem with

Flexible Length and Flexible Demand (2SCSP-FF), a reduced version of 2SCSP-FFMS

that ignores marriageability constraints and removes scheduling costs. We first formal-

ize our assumptions, before introducing both exact and heuristic algorithms. Our experi-

ments show that the single resource CP formulation has an order-of-magnitude advantage

over other exact approaches, and our multi-phase sequential heuristic yields the best solu-

tions overall.

4.1 Problem Assumptions

Compared to 2SCSP-FFMS, the two-dimensional two-stage cutting stock problem with

flexible length and demand, 2SCSP-FF, makes the following assumptions.

Trivial Order Marriageability All orders share identical order properties, so any com-

bination of orders can be cut from the same stock. In other words, Mii′ = 1 for i, i′ ∈ N .

Negligible Scheduling Cost The due dates of orders and the available dates of stocks

are identical (di = ak for i ∈ N, k ∈ K), so the scheduling costs can be ignored.

Even after these assumptions, 2SCSP-FF is a difficult problem to solve, being comprised

of NP-hard problems, such as the 2SCSP [86] and the generalized assignment problem with

flexible jobs [215]. Thus, 2SCSP-FF is also NP-hard.

39



CHAPTER 4. 2SCSP WITH FLEXIBLE ITEM LENGTH AND FLEXIBLE DEMAND 40

Figure 4.1: Illustration of the CPSR model. The lengths of the stock rectangles are con-
catenated along the horizontal axis. Here, a level is a vertical strip. The smaller rectangles
and the dashed lines represent items and guillotine cuts, respectively.

4.2 Exact Approaches

4.2.1 The Single Resource CP Formulation

First, we present a novel approach that exhibits significant representational efficiency: the

Single Resource CP model, CPSR. Our model poses the 2SCSP-FF as a scheduling problem

composed of three main components: a unified domain of stock length, a state function for

guillotine cuts, and cumulative functions tracking widthwise resources.

Unified Lengthwise Domain Our model adapts the single resource transformation [36],

a CP modelling technique that unifies alternative resources into a single horizon, to the

2SCSP-FF. CPSR concatenates the stock rectangles so that the total length of the stocks is

analogous to a temporal horizon on which items belonging to all orders need to be allocated

(Figure 4.1a). For each possible item p ∈ Ci belonging to order i, we introduce an optional

interval variable xip. The start time of xip represents an item’s leftmost lengthwise coordi-

nate, and the duration of xip its length, which we further restrict to be within [ρmin
i , ρmax

i ].

For necessary items (i.e., in set Ai), we remove the absent value, {⊥}, from the domain of

xip for all p ∈ Ai and simply declare them as interval variables.

To avoid an item spanning multiple stocks in the unified horizon, we insert a dummy

unit of forbidden space between adjacent stocks to create an infeasible region (Figure 4.1a,
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hatched). The horizon is thus augmented from
∑

k∈K Lk to
∑

k∈K(Lk + 1), and items can

only be placed in the feasible region F̄ =
⋃

k∈K Fk, where Fk = [
∑

k′∈K|k′<k Lk′ + k −
1,
∑

k′∈K|k′≤k Lk′ + k − 1]. We denote the augmented horizon as H = [0,
∑

k∈K(Lk + 1)]

and use ForbidExtent to restrict the domain of the item variables xip accordingly.

Guillotine State Function We draw inspiration from batch scheduling to model guillo-

tine cuts: we treat each level in a stock rectangle as a batch so that the level’s lengthwise

endpoints coincide with the corresponding endpoints of the items. We first introduce a state

function, g (Figure 4.1b). Then, we associate the items with a level using an AlwaysCon-

stant constraint, which coerces their interval variables to align with an interval in g. Thus,

items can only be on the same level if they belong to the same interval in the state function.

Cumulative Resource Function Expressions The width of stocks and a level’s par-

tition count limit are interpreted as widthwise resources. Typical of CP scheduling, we use

cumulative functions and pulses. We let Ω, a cumulative function, be the net widthwise

capacity over the horizon. In Ω, we generate a pulse with magnitude Wk for each stock

rectangle k and a pulse with magnitude −wi for every item belonging to order i (Figure

4.1c). As long as Ω is non-negative, the widthwise capacity is satisfied. A similar construct

is used to express the limit on the number of partitions on each level (Figure 4.1d), where

a positive pulse with unit magnitude is generated for each item. We constrain the total

cumulative function of these unit pulses, Γ, to be within η.

Overall, our decision variables are as follows:

xip := (interval) lengthwise interval of item p belonging to order i.

ck := (interval) lengthwise interval representing stock k.

g := (state function) guillotine state function.

CPSR is defined in Model 4.1. Objective (4.1a) describes our cost, the weighted differ-

ence between the areas of stocks used and orders fulfilled. Expressions PresenceOf and

SizeOf are used to access the presence and the duration of an interval variable. Constraints

(4.1b) and (4.1c) define the widthwise usage of each stock. The last two parameters in the

AlwaysIn constraint respectively dictate the minimum and maximum values that the cu-

mulative function Ω can take on over the horizonH. Constraints (4.1d) and (4.1e) define the

restriction on the number of partitions on each level. We remark that Constraint (4.1d) can

be substituted by Γ =
∑

k∈K Pulse(H, η)−
∑

i∈N,p∈Ci
Pulse(xip, 1), which yields identical

semantics overall, but uses more terms on the right-hand side. Constraint (4.1f) defines the

guillotine cut restrictions. The last two parameters in AlwaysConstant ensure that the

start and end times of the variables xip are aligned with those of the intervals within the

state function g. Constraints (4.1g) and (4.1h) ensure that the total quantity of the order

fulfilled is within the demand tolerance. Constraint (4.1i) ensures that no item is assigned

across two stock rectangles. The remaining constraints declare the decision variables.
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min α
∑
k∈K

LkWkPresenceOf(ck) (CPSR) (4.1a)

−β
∑
i∈N

∑
p∈Ci

wiPresenceOf(xip)SizeOf(xip)

s.t. Ω =
∑
k∈K

Pulse(ck,Wk)−
∑
i∈N

∑
p∈Ci

Pulse(xip, wi) (4.1b)

AlwaysIn(Ω,H, 0,max
k∈K

Wk) (4.1c)

Γ =
∑
i∈N

∑
p∈Ci

Pulse(xip, 1) (4.1d)

AlwaysIn(Γ,H, 0, η) (4.1e)

AlwaysConstant(g, xip, T rue, True) ∀i ∈ N, p ∈ Ci (4.1f)∑
p∈Ci

SizeOf(xip) ≥ qmin
i /wi ∀i ∈ N (4.1g)∑

p∈Ci

SizeOf(xip) ≤ qmax
i /wi ∀i ∈ N (4.1h)

ForbidExtent(xip, F̄ ) ∀i ∈ N, p ∈ Ci (4.1i)

xip : IntervalVar(H, [ρmin
i , ρmax

i ]) ∀i ∈ N, p ∈ Ai (4.1j)

xip : OptIntervalVar(H, [ρmin
i , ρmax

i ]) ∀i ∈ N, p ∈ Bi (4.1k)

ck : IntervalVar(Fk, Lk) ∀k ∈ K (4.1l)

g : StateFunction() (4.1m)

4.2.2 Integer-based CP Formulations

Next, we present three integer-based CP formulations motivated by different modelling

perspectives summarized in Figure 4.2.

4.2.2.1 Counting-based CP Model

Due to the two-stage cuts, partitions assigned to the same order on a level must be identical;

hence, we can count them. For a given level j from stock k, we use an integer variable xijk

in our counting-based model, CPCO, to denote the number of partitions assigned to order

i (Figure 4.2a). We use an integer variable yjk to represent the length of level j on stock

k. As the position of the lengthwise cut is not restricted to be integral, we magnify the

domain using a precision parameter P equal to some power of 10, so that yjk represents the

first log10 P decimal places of the actual length. More formally, our decision variables are

as follows:

xijk := (integer) # of partitions on level j of stock k assigned to order i
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(a) Counting-based CP model

(b) Stock-based CP model

(c) Item-based CP model

Figure 4.2: A visualization of the integer-based CP models.

yjk := (integer) length of level j of stock k magnified by P

min α
∑
k∈K

LkWkck − β
∑
i∈N

∑
j∈Jk

∑
k∈K

wixijkyjk/P (CPCO) (4.2a)

s.t.
∑
i∈N

xijkwi ≤Wksjk ∀j ∈ Jk, k ∈ K (4.2b)

yjk/P ≤ ρmax
i + (xijk == 0)max

n∈N
(ρmax

n ) ∀i ∈ N, j ∈ Jk, k ∈ K (4.2c)

yjk/P ≥ ρmin
i (xijk ≥ 1) ∀i ∈ N, j ∈ Jk, k ∈ K (4.2d)∑

j∈Jk

∑
k∈K

yjkxijk/P ≥ qmin
i /wi ∀i ∈ N (4.2e)∑

j∈Jk

∑
k∈K

yjkxijk/P ≤ qmax
i /wi ∀i ∈ N (4.2f)∑

j∈Jk

yjk/P ≤ Lkck ∀k ∈ K (4.2g)

sjk = Any([xijk > 0,∀i ∈ N ]) ∀j ∈ Jk, k ∈ K (4.2h)

ck = Any([sjk = 1,∀j ∈ Jk]) ∀k ∈ K (4.2i)

xijk ∈ {0, ..., η} ∀i ∈ N, j ∈ Jk, k ∈ K (4.2j)

yjk ∈ {0,min
i∈N

ρmin
i P, . . . ,max

i∈N
ρmax
i P} ∀j ∈ Jk, k ∈ K (4.2k)
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Model 4.15 formalizes CPCO. Objective (4.2a) describes the cost. Since yjk is magnified,

we divide it by P to recover its actual length. Constraint (4.2b) restricts the width of the

stocks. Constraints (4.2c) and (4.2d) restrict the length of a level by the tightest interval

determined by the allotted orders. Constraints (4.2e) and (4.2f) ensure that partitions of

each order fulfilled satisfy the total quantity range demanded. Constraint (4.2g) restricts

the length of the stocks in use. Constraints (4.2h) and (4.2i) describe if a level and a stock

is used, respectively.

4.2.2.2 Stock-based CP Model

The stock-based CP model, CPST , takes advantage of the limited number of possible par-

titions on a level, matching each partition to some order (Figure 4.2b). Specifically, we

define integer variables xjkl representing the index of the order to which the lth partition

of the jth level on the kth stock is assigned. As not all partitions are always needed, we

define a dummy order that serves as a placeholder. Formally, the dummy order, indexed by

D = |N |+ 1, has width wD = 0 and length interval [ρmin
D , ρmax

D ] = [0,max
i∈N

(ρmax
i )]. We use

N = N
⋃
{D} to denote the set of original orders plus the dummy order; w to denote the

set of widths of original orders union the dummy width wD; ρmin and ρmax to denote the

lengthwise bounds of orders union the dummy bounds ρmin
D and ρmax

D . Similar to CPCO,

we let yjk be the length of level j on stock k and magnify its domain using P.

minimize
∑
k∈K

LkWkck −
∑
j∈Jk

∑
k∈K

∑
l∈P

wxjkl
yjk/P (CPST ) (4.3a)

s.t.
∑
l∈P

wxjkl
≤Wksjk ∀j ∈ Jk, k ∈ K (4.3b)

yjk/P ≤ ρmax
xjkl

∀j ∈ Jk, k ∈ K, l ∈ P (4.3c)

yjk/P ≥ ρmin
xjkl

∀j ∈ Jk, k ∈ K, l ∈ P (4.3d)∑
j∈Jk

∑
k∈K

∑
l∈P

(xjkl == i)yjk/P ≥ qmin
i /wi ∀i ∈ N (4.3e)∑

j∈Jk

∑
k∈K

∑
l∈P

(xjkl == i)yjk/P ≤ qmax
i /wi ∀i ∈ N (4.3f)

sjk = Any([xjkl ̸= D,∀l ∈ P ]) ∀j ∈ Jk, k ∈ K (4.3g)

xjkl ∈ N ∀j ∈ Jk, k ∈ K, l ∈ P (4.3h)

(4.2g), (4.2i), (4.2k)

Model 4.3 formalizes CPST . Objective (4.3a) minimizes the cost. Constraint (4.3b)

ensures that the widthwise capacity is satisfied on each stock. In particular, w is indexed
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by xjkl using the Element constraint. Constraints (4.3c) and (4.3d) constrain the length

of a level by the items assigned on it. If xjkl takes on the dummy value, these constraints

are trivially satisfied. Constraints (4.3e) and (4.3f) satisfy the total area of each order.

Constraint (4.3g) instantiates intermediate parameters indicating level usage.

4.2.2.3 Item-based CP Model

Our final integer-based CP model, CP IT , takes advantage of Pack, a global constraint

for the 1D packing substructure. In 2SCSP-FF, we observe two such substructures: the

widthwise packing of items into levels, and the lengthwise packing of levels into stock

rectangles. While the former can be represented by Pack, the latter cannot due to the

flexibility in length.

To use Pack for the first substructure, we propose a new set of indices for levels. First,

we let J = {1, . . . ,
∑

k∈K |Jk|} be the flattened set of the maximally possible levels over all

available stocks. Then, for every possible item p belonging to order i, we introduce a set of

integer variables xip having domain J (Figure 4.2c). However, in a feasible assignment, not

all possible items need to be allotted to a level in the available stocks, so we expand the

domain of xip to include a dummy level with infinite width indexed D = |J |+ 1 to absorb

any unneeded items. Accordingly, we introduce integer variables Ωjk to represent the width

usage of level j on stock k and an additional integer variable ΩD for the dummy level. The

length of level j on stock k is again represented by an integer variable yjk.

min α
∑
k∈K

ckWkL− β
∑
i∈N

∑
p∈Ci

wiỹ
min
xip

/P (CP IT ) (4.4a)

s.t. Pack(Ω̃, x, w) (4.4b)

ỹmax
xip

/P ≤ ρmax
i ∀i ∈ N, p ∈ Ci (4.4c)

ỹmin
xip

/P ≥ ρmin
i ∀i ∈ N, p ∈ Ci (4.4d)∑

p∈Ci

ỹmin
xip

/P ≤ qmax
i /wi ∀i ∈ N (4.4e)∑

p∈Ci

ỹmax
xip

/P ≥ qmin
i /wi ∀i ∈ N (4.4f)

Count(x, j) ≤ η ∀j ∈ J̃ (4.4g)

sjk = Any([xip == j + k|J |, ∀i ∈ N, p ∈ Ci]) ∀j ∈ Jk, k ∈ K (4.4h)

xip ∈ J ∪ {D} ∀i ∈ N, p ∈ Ci (4.4i)

Ωjk ∈ {0, ...,Wk} ∀j ∈ Jk, k ∈ K (4.4j)

ΩD ∈ {0, ...,
∑
i∈N

wi|Ci|} ∀j ∈ Jk, k ∈ K (4.4k)

(4.2g), (4.2i), (4.2k)
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Model 4.4 formalizes CP IT . Constraint (4.4b) makes item-to-level assignments. Here,

variables xip and parameters wi are reshaped into two one-dimensional vectors x and w of

size
∑

i∈N |Ci| so that the i′th element in x has width of wi′ . We also use Ω̃D = {Ωjk | ∀j ∈
Jk, k ∈ K}

⋃
{ΩD} to denote the flattened set of stock width variables. Constraints (4.4c)

and (4.4d) restrict the level’s length by the orders allotted on it. In associating the item

assignment xip with yjk, we define notations ỹmax = y
⋃
{0} and ỹmin = y

⋃
{max

i
ρmax
i },

where y = {yjk, ∀j ∈ Jk, k ∈ K}. The last entry in ỹmin and in ỹmax corresponds to the

dummy index and is important. If xip takes on the dummy value D, constraints (4.4c) and

(4.4d) evaluate to expressions 0 ≤ ρmax
i and max

i
ρmax
i ≥ ρmin

i , respectively, both of which

are always true. If xip does not take on the dummy value, then the corresponding level

length is restricted. Also, for conciseness, we abbreviate the global constraint Element(A,

e) as Ae. Constraints (4.4e) and (4.4f) ensure that the quantity fulfilled satisfies the quantity

demanded. Here, we always use ỹmax so that no contribution is made if xip takes on the

dummy value. Constraint (4.4g) enforces a maximum of η items on any level. Constraint

(4.4h) defines if a level is used. The rest define the variables.

4.2.2.4 Symmetry-breaking

The problem has a number of inherent symmetries due to the homogeneous items, levels,

and stock rectangles. Hence, we augment CPCO, CPST , and CP IT with the following

symmetry-breaking constraints:

yjk ≥ y(j+1)k ∀j ∈ J ′
k, k ∈ K (4.5a)

ck ≥ ck+1 ∀k ∈ K ′
h, h ∈ H (4.5b)

These constraints break the symmetry between the lengths of consecutive levels on

the same stock and the presence of homogeneous stocks, respectively. We use a prime

to indicate an ordered set without its last element: J ′ = J \ {|J |}. For CPST , we also

specify a lexicographic ordering of the order indices on consecutive levels of the same stock

via Lexicographic([xjkl,∀l ∈ P ], [x(j+1)kl, ∀l ∈ P ]). For CP IT , we add an additional

constraint to break the symmetry for items belonging to the same order: xip ≤ xi(p+1),∀i ∈
N, p ∈ C ′

i.

4.2.3 MILP Formulations

We also introduce two mixed-integer programs that use binary variables to assign partitions

on each level to orders. Formulating a strong MILP model is challenging, as determining the

area of each order requires information related to two independent decisions: the order-to-

level assignment and the level length given order assignments. We linearize this relationship
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at the expense of introducing new variables, each one packing an item of an order into a

level of a stock. While it is tempting to decompose them into independent orders-to-levels

and levels-to-stocks decisions similar to the compact formulation in Furini and Malaguti

[86], representing both the area of each order and the variable length of each level using

linear constraints is nontrivial. Here, we do not investigate this further.

4.2.3.1 Assignment-based MILP Model

The assignment-based MILP model, MIPAS , explicitly enumerates all possible pieces on

each level of the stock that can be assigned to each order. Binary variable xijkl decides if

the lth piece of the jth level of the kth stock is assigned to ith order. Continuous decision

variables yjk describe the varying length for each jth level of the kth stock. The resulting

quantities of each lth piece on the jth level of the kth stock assigned to each ith order are

denoted by continuous variables aijkl, which linearize the product representing the weight

of each piece of stock between continuous variable yjk and binary variable xijkl. Binary

variables ck indicate whether the kth stock is used or not.

MIPAS is defined in Model 4.6. Objective (4.6a) describes the cost. Constraint (4.6b)

restricts the stocks’ width. Constraint (4.6c) limits the number of lengthwise cuts. Con-

straint (4.6d) ensures that the lengthwise capacity of each stock is satisfied. Constraints

(4.6e) and (4.6f) assert that the level’s length must respect the minimum and maximum

length of items assigned to it. Constraints (4.6g) and (4.6h) ensure that the quantity of

each order assigned across all stocks is satisfactory. Constraints (4.6i), (4.6j), and (4.6k)

define the area of each partition on a level.
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min α
∑
k∈K

LkWkck − β
∑

i∈N,j∈Jk,k∈K,l∈Pi

aijkl (MIPAS) (4.6a)

s.t.
∑

i∈N,l∈Pi

wixijkl ≤Wkck ∀j ∈ Jk, k ∈ K (4.6b)∑
i∈N,l∈Pi

xijkl ≤ ηck ∀j ∈ Jk, k ∈ K (4.6c)∑
j∈Jk

yjk ≤ Lkck ∀k ∈ K (4.6d)

yjk ≥ ρmin
i xijkl ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6e)

yjk ≤ ρmax
i xijkl +max

i′∈N
(ρmax

i′ )(1− xijkl) ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6f)∑
l∈Pi,j∈Jk,k∈K

aijkl ≥ qmin
i ∀i ∈ N (4.6g)∑

l∈Pi,j∈Jk,k∈K
aijkl ≤ qmax

i ∀i ∈ N (4.6h)

aijkl ≤ wiyjk ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6i)

aijkl ≥ wiyjk − ρmax
i wi(1− xijkl) ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6j)

aijkl ≤ ρmax
i wixijkl ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6k)

xijkl ∈ {0, 1} ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6l)

yjk ∈ R+ ∀j ∈ Jk, k ∈ K (4.6m)

aijkl ∈ R+ ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.6n)

ck ∈ {0, 1} ∀k ∈ K (4.6o)

Symmetry-breaking: We can again add symmetry-breaking constraints (4.5a) and (4.5b)

to MIP similar to CPCO and CPST . Furthermore, we add constraints (4.7a) and (4.7b) to

break the symmetry between partitions on the same level belonging to the same order and

the length of the first level of identical stocks, respectively.

xijkl ≥ xijk(l+1) ∀i ∈ N, j ∈ J, k ∈ K, l ∈ P ′
i (4.7a)

y0k ≥ y0(k+1) ∀k ∈ K ′
h, h ∈ H (4.7b)

4.2.3.2 Counting-based MILP Model

In order to retain linearity, MIPAS treats the assignment of partitions on the same level to

an order as individual decisions. Alternatively, we can count them, leading to a counting-

based MILP model denoted as MIPCO. We introduce binary variable xijkl that takes the
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value 1 if and only if there are l partitions (with identical dimensions) on level j of stock

k assigned to order i. Differing from Section 4.2.3.1 which uses aijkl to describe the area

of partition l, we let the continuous variable aijkl represent the total area of all l counts

of partitions on level j of stock k. Again, we use a continuous variable yjk to describe the

length of the jth level on the kth stock.

Constraint (4.8b) ensures that each order can only take on one range of cumulative

quantity on each level. In addition, we take advantage of the special orders sets inherent

in MILP solvers. Constraint (4.8c) enforces the total width of all items assigned to each

stock to be less than the stock width if that stock is used, or zero if it is unused. Constraint

(4.8d) ensures the number of lengthwise cuts is within limits. Constraint (4.8e), (4.8f), and

(4.8g) defines the total quantity of partitions of each order.

minimize (4.6a) (MIPorder) (4.8a)

s.t. SOS1(xijkl,∀l ∈ Pi) ∀i ∈ N, j ∈ Jk, k ∈ K (4.8b)∑
i∈N

∑
l∈Pi

wi(lxijkl) ≤Wkck ∀j ∈ Jk, k ∈ K (4.8c)∑
i∈N

∑
l∈Pi

lxijkl ≤ η ∀j ∈ Jk, k ∈ K (4.8d)

aijkl ≤ lwiyjk ∀i ∈ N (4.8e)

aijkl ≥ lwiyjk − lρmax
i wi(1− xijkl) ∀i ∈ N (4.8f)

aijkl ≤ lmax
i′∈N

(ρmax
i′ )wixijkl ∀i ∈ N, j ∈ Jk, k ∈ K, l ∈ Pi (4.8g)

(4.6d)− (4.6h), (4.6l)− (4.6o)

4.2.4 Model Comparison

Amongst the models proposed are two common abstract substructures that manifest them-

selves differently due to modelling perspectives. The first substructure is a 1D packing

problem that assigns items of the orders to levels without exceeding the levels’ width,

which is inherited from its respective stock. The second substructure again is a 1D packing

problem, fitting levels into stocks lengthwise; however, differing from a classic packing prob-

lem, the level length is flexible. These substructures are linked by two types of constraints:

the orders that are assigned to the level restricts the length of each level, and the total

quantity fulfilled for each order is derived from the multiplicative relationship between the

presence of the item and the level length.

All CP models, except CPSR, share almost identical constraints and variable definitions

for the second substructure, in particular, using a decision variable yjk for the jth level

on the kth stock; where these models differ is in the modelling of the first substructure.
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CPST takes advantage of the maximum number of lengthwise cuts by using them as the

indices for decision variables. So, its model size is largely dependent on the number of

partitions on the stocks, and its search space is unaffected by any changes in the number

of items. In contrast, with an increase in the number of items, the search space for CPCO

increases, but its size does not change, as neither new variables nor new constraints need

to be introduced. The CP IT model leverages the global constraint Pack at the expense of

explicitly instantiating all possible partitions for all orders, making the model size highly

sensitive to the number of items and the number of orders.

The central difference between CPSR and the other exact models is that the former uses

interval variables to describe the item assignments, and the latter uses integer variables.

For the first substructure, CPSR models the width of each stock as a cumulative resource

for the items to deplete, whereas all other models employ arithmetic and logical constraints.

Also, CPSR models the second substructure by framing stock length as time in a scheduling

problem. Typically, a continuous time horizon implies that the stocks are joined into one

resource, but packing problems require stocks to be discrete. The variables from integer-

based CP models, as a result, use an index dedicated to each stock. For instance, yjk is

described by the index k. Instead, CPSR adds forbidden regions between stocks representing

the discretization without adding indices to variables. Furthermore, by taking advantage of

the state functions, CPSR is the only model that does not explicitly enumerate all possible

levels in stocks to represent guillotine cuts. This implicit representation, as well as the use

of different CP substructures, significantly reduces the number of variables and constraints

declared.

The MILP models differ mostly in their interpretation of the variable index l. InMIPAS ,

decisions related to partition l is independent of any other partitions on the same level.

MIPCO, however, groups the decisions of the l counts of partitions together. This subtlety

results in differing definitions for area variables and related constraints.

4.3 A First-fit based Heuristic

In addition to the exact approaches, we develop a two-phase first-fit-based heuristic, FFMH .

An extension of the Finite First-fit Heuristic [27], the first phase sorts the orders’ items in

a lexicographically decreasing order based on their width and length interval size and packs

each one into a level. The intuition is that orders with less lengthwise flexibility and larger

width should be packed into a level first, as they can be more difficult to pack into a partial

solution. A new level or stock is opened if an item cannot fit into the previous level or stock.

Packing an item into a stock’s level only narrows its length interval: another decision is

required to obtain its exact length and thereafter each order’s total area. For simplicity,

we pack items of an order until the sum of the average possible area of each item is not

less than the middle of the required area interval for that order. In the second phase, given
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the complete item-to-level assignment, we solve a linear program (Model 4.9) to determine

each level’s length, while minimizing cost.

max
∑

i∈N,j∈Jk,k∈K
wiΦijkyjk (4.9a)

s.t.
∑
j∈Jk

yjk ≤ Lk ∀k ∈ K (4.9b)

yjk ≥ Φind
ijk ρ

min
i ∀i ∈ N, j ∈ Jk, k ∈ K (4.9c)

yjk ≤ Φind
ijk ρ

max
i + (1− Φind

ijk )max
i′∈N

(ρmax
i′ )∀i ∈ N, j ∈ Jk, k ∈ K (4.9d)∑

j∈Jk,k∈K
wiΦijkyjk ≥ qmin

i ∀i ∈ N (4.9e)∑
j∈Jk,k∈K

wiΦijkyjk ≤ qmax
i ∀i ∈ N (4.9f)

yjk ∈ R+ ∀j ∈ Jk, k ∈ K (4.9g)

The only variables in Model 4.9 are the continuous variables yjk describing the length of

the jth level on the kth stock. The parameter Φijk is the number of partitions on the jth level

of the kth stock that belongs to order i, and the parameter Φind
ijk is a 0-1 indicator for Φijk > 0.

We simplify the cost minimization objective to maximize total fulfillment (4.9a) because

the number of stocks used is fixed given the item-to-level assignment. Constraint (4.9b)

constrains the stock length. Constraints (4.9c) and (4.9d) satisfy the length specifications

of the partitions. Constraints (4.9e) and (4.9f) ensure the total fulfillment of each order to

be within tolerance limits.

4.4 A Sequential Heuristic Framework

In FFMH , items of orders are naively assigned to stocks; here, we attempt to develop a more

sophisticated heuristic that solves components of the problem sequentially (Figure 4.3). The

sequential heuristic first identifies subsets of orders with overlapping length intervals. Then,

for each of these subsets, it generates a set of widthwise patterns. Finally, these patterns

are packed into stocks, and their length values determined. These steps are repeated until

termination, and, for each of these steps, we attempt several approaches, summarized in

Table 4.1. We call a combination of these approaches a configuration of the heuristic and

denote a configuration comprised of approaches S1, S2, and S3 as S : S1 + S2 + S3.

Before detailing the heuristic, we first define two terms used throughout this section.

Definition 1 (Congruent Orders). Two orders are congruent if and only if the length

intervals of these orders overlap.
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Figure 4.3: A three step outline of the sequential heuristic.

Step Task Type Approach

S1 Finding Congruent Groups
Constrained Clustering CC S1

CP CPS1

S2 Item-to-level Assignments
CP CPS2

MILP MIPS2,

S3 Level-to-Stock Assignment

CP CPS3

MILP
Simple Formulation MIPS3

simp

Compact Formulation MIPS3
comp

BD of MIPS3
simp

From Length LB BDS3,lb
simp

From Length UB BDS3,ub
simp

BD of MIPS3
comp

From Length LB BDS3,lb
comp

From Length UB BDS3,ub
comp

Table 4.1: Approaches used in the sequential heuristics at each step. BD, LB, and UB
abbreviates Benders Decomposition, lower bound, and upper bound, respectively.

Definition 2 (Congruent Group). A set of orders that are all congruent with each other

form a congruent group.

Finding congruent groups is critical in reaching a feasible solution, as all orders that are

on the same level form a congruent group.

Algorithm 1 outlines the a generic configuration of the sequential heuristic.
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Algorithm 1: Sequential Heuristics Framework

Input : Set of orders N , Cannot link constraints C
Output: Set of level patterns bestPattern

iter ← 0 ;

k ← GetHoffmanLB(N,C);

while within time limit and k ≤ |N | do
groups← FindCongruentGroups (N , C, k) ;
levels← DivideGroupsIntoLevels (groups) ;

assignments← AssignLevelsToStocks (levels) ;

if assignments has lower objective than bestPattern then
bestPattern← assignments

end

iter ← iter + 1 ;

if iter mod |N | == |N | − 1 then

k ← k + 1 ;

end

end

We allocate the runtime of each step in the heuristic as follows. FindCongruentGroups

is allowed one-tenth of the overall runtime. With h seconds remaining, for each congruent

group g ∈ G, the second stage algorithm takes up the maximum of h/(|G|+ 1) seconds or

the time it takes to find a feasible solution if less, leaving the rest for the third stage. One

issue is that, especially for larger instances, instantiating the model can take a noticeable

amount of time, so the actual clock-time may exceed the initially allotted runtime.

4.4.1 Finding Congruent Groups

The first step finds subsets of orders whose items can be placed on the same level. Restricting

same-level assignments is a set of cannot link constraints C derived from non-overlapping

length intervals. Formally, the relation (i, i′) of orders i and i′ is in the set C if and only

if [ρmin
i , ρmax

i ] does not overlap with [ρmin
i′ , ρmax

i′ ]. Here, we attempt two approaches: a

constrained K-means algorithm and a constraint program.

4.4.1.1 Finding A Lower Bound on the Number of Clusters

Determining the initial number of clusters is essential: because of the cannot link con-

straints, starting off with too few clusters will lead to infeasibility. We initialize the number

of clusters with a lower bound. First, we note that finding a feasible solution to the cannot-

link constraints is equivalent to solving a vertex colouring problem, where each vertex is

an order, each edge a cannot-link relation, and each colour a cluster. In other words, the

minimum number of clusters is simply the chromatic number. One simple lower bound on

the chromatic number is the Hoffman’s bound [118], which states that:
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χ(G) ≥ 1− λ1(G)

λn(G)
(4.10)

where χ(G) denotes the chromatic number, and λ1(G) and λn(G) is the largest and smallest

eigenvalues of the adjacency matrix of a graph G. Here, G is the conflict graph defined

by C, where (i, i′) is an edge in G if and only if (i, i′) ∈ C. We use the function signature

GetHoffmanLB to return χ(G). Finally, we remark that a solution with the number of groups

being the chromatic number may not always lead to minimum waste, as the combinatorics

of packing is not captured in this step.

4.4.1.2 Constrained K-Means

We consider using a popular constrained clustering algorithm to find congruent orders:

the Constrained K-means [243], denoted as CCS1. CCS1 augments the standard K-means

clustering algorithm by considering cannot-link constraints. First, CCS1 initializes a set

of cluster centroids. Then, each data point is assigned to the closest centroid that does

not contain any data points in conflict. A data point of an order is the one-hot encoding

of a set of non-overlapping sub-intervals discretized from the set of length intervals for all

orders. After all data points are assigned, the location of each centroid is recalculated using

the data points assigned to it. This process is repeated until the centroid positions do not

change. The pseudocode of the CCS1 algorithm is described in Algorithm 2.

Algorithm 2: CCS1 Algorithm

Input : dataset D, cannot-link constraints C, cardinality k

Output: labels for dataset D

Initialize cluster centres G = {G1, . . . , Gk};
while not converge do

for data dj ∈ D do
assign the closest cluster to dj such that none of the data previously

assigned to this cluster conflicts with dj ;

end

if cannot find any cluster for a data point then

restart algorithm with random centroids;

end

for centroid Gi ∈ G do

update Gi by averaging all of the points dj that has been assigned to it;

end

end

Initializing Cluster Centers We randomly generate the cluster centers. The hope is

that randomness allows good order groupings to be explored early.
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4.4.1.3 Constraint Programming Formulation

Given the upper bound on the number of clusters k, finding congruent groups is inherently

a satisfaction problem, so we can find clusters using CP solvers. We introduce an integer

variable xi for each order i with the domain being the set of indices of the k clusters.

We hypothesize that having fewer congruent groups is beneficial to finding better solution

to the overall problem, as this invites more diversity in the widthwise patterns. So, our

satisfaction model is augmented with an objective function (4.11a) that minimizes the

number of clusters. Constraint (4.11b) enforces the cannot-link relations.

min
∑
i∈N

max
i∈N

(xi) (4.11a)

s.t. xi ̸= xi′ ∀(i, i′) ∈ C (4.11b)

xi ∈ {1, . . . , k} ∀i ∈ N (4.11c)

Solution Cut For a given k, there may be multiple feasible combinations of order clusters.

So, after the solver finds a solution, we add a cut to this CP model to avoid generating

the same combination in the subsequent iterations of Algorithm 1. The cut is comprised

of the disjunction of boolean clauses, each describing the non-homogeneity of the values

of variables that previously belonged to the same cluster. This is formally expressed in

Expression (4.12):

∨
r∈R

(¬
∧

i,i′∈Nr×Nr|i<i′

xi == xi′) (4.12)

where the set Nr = {i ∈ N |x∗i = r} denotes indices of orders belonging to cluster r, and x∗i
represents the solution of the variable xi in the previous iteration.

4.4.2 Dividing Groups into Levels

The second stage distributes items of orders in each congruent group to levels of varying

width to minimize any widthwise loss. Dividing orders within a congruent group into levels

is inherently a 1D packing problem: we want to pack items belonging to these orders into

potential levels widthwise. On top of 1DBPP, we need to consider the total area fulfilled for

each order; however, until the levels are assigned to stocks, we cannot determine the exact

value of the level length and thus the area fulfilled. Fortunately, we can approximate the

total area using lower and upper bounds on the level length. Here, we solve for the level

patterns iteratively, developing a mixed-integer linear program and a constraint program for

each congruent group. In both formulations, we recall that
∑

k∈K |Jk| is an upper bound
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on the number of levels. We recall J = {1, . . . ,
∑

k∈K |Jk|} from Section 4.2.2.3 and let

Jh = {j ∈ J | Wj = Wh} be the set of levels for a stock type. We denote the set of

congruent groups as G = {N1, . . . , N|G|}, where Ng is the gth congruent group. Given a

congruent group, we approximate the lower and upper bounds to be ρmin
g = max

i∈Ng

ρmin
i and

ρmax
g = min

i∈Ng

ρmax
i .

4.4.2.1 Mixed-integer Formulation

We present a mixed-integer program, MIPS2, to divide items of orders in the gth congruent

group into levels. We initialize a set of artificial levels with different widths and attempt to

assign items of orders within each congruent group. For stocks of type h ∈ H, the number

of these artificial levels with width Wh is always no greater than |Jh|. The variables used

are as follows:

xijh := (integer) # of partitions on level j of stock type h assigned to order i

sjh := (binary) 1 iff level j of stock type h is used

min α
∑
h∈H

∑
j∈Jh

Whsjh − β
∑
h∈H

∑
j∈Jh

∑
i∈Ng

wixijh (4.13a)

s.t.
∑
i∈Ng

xijhwi ≤Whsjh ∀j ∈ Jh, h ∈ H (4.13b)

∑
i∈Ng

xijh ≤ ηsjh ∀j ∈ Jh, h ∈ H (4.13c)

∑
h∈H

∑
j∈Jh

ρmin
g xijh ≤ qmax

i /wi ∀i ∈ Ng (4.13d)∑
h∈H

∑
j∈Jh

ρmax
g xijh ≥ qmin

i /wi ∀i ∈ Ng (4.13e)∑
i∈Ng

xijhwi ≥
∑
i∈Ng

xi(j+1)hwi ∀h ∈ H, j ∈ J ′
h (4.13f)

xijh ∈ Z+ ∀i ∈ Ng, j ∈ Jh, h ∈ H (4.13g)

sjh ∈ B ∀j ∈ Jh, h ∈ H (4.13h)

Objective (4.13a) minimizes the width loss of each level. Constraint (4.13b) restricts

the width of the levels of different stock types. Constraint (4.13c) reflects the limit on the

number of widthwise knives of the slitter. Constraints (4.13d) and (4.13e) impose lower

and upper bounds on the area fulfilled assuming the level lengths are at their minimum and

maximum. Constraint (4.13f) eliminates symmetry between levels of the same stock type.

The rest of the constraints define the variables.
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4.4.2.2 Constraint Programming Formulation

In CP, the 1D bin packing problem substructure can be efficiently modelled using the Pack

constraint, from which we derive our CP model, CPS2. We let xip be an integer variable

representing level indices and Ωjh be an integer variable denoting the used-up width. As

not all items need to be present, like in Section 4.2.2.3, we use a dummy level indexed

D = |J |+1 to absorb any unused items and a corresponding dummy leftover width variable

ΩD.

min α
∑
h∈H

∑
j∈Jh

(Ωjh > 0)Wh (4.14a)

−β
∑
i∈Ng

∑
p∈Ci

wi(xip ̸= D) (4.14b)

s.t. Pack(Ω̃, x, w) (4.14c)

Count(x, j) ≤ η ∀j ∈ J (4.14d)∑
j∈J

ρmin
g (xip == j) ≤ qmax

i /wi ∀i ∈ Ng (4.14e)

∑
j∈J

ρmax
g (xip == j) ≥ qmin

i /wi ∀i ∈ Ng (4.14f)

xip ≤ xi(p+1) ∀i ∈ Ng, p ∈ Ci (4.14g)

xip ∈ J ∪ {D} ∀i ∈ Ng, p ∈ Ci (4.14h)

Ωjh ∈ {0, . . . ,Wh} ∀j ∈ Jh, h ∈ H (4.14i)

ΩD ∈ {0, . . . ,max
h∈H

Wh} (4.14j)

Objective (4.14a) minimizes the width loss. Constraint (4.14c) uses the constraint Pack

to pack orders into levels. Like in Section 4.2.2.3, Ω̃ is the combined set of actual and dummy

stock width variables, and x and w is a one-dimensional vector flattened from variables xip

and width parameters wi, respectively. Constraint (4.14d) uses the constraint Count to

limit the number of partitions within each level. Constraints (4.14e) and (4.14f) impose

lower and upper bounds on the area fulfilled assuming the level lengths are approximately at

their minimum and maximum. Constraint (4.14g) reduces the symmetry between partitions

of the same order. The rest of the constraints define the variables.

4.4.3 Assigning Levels To Stocks

Finally, given a set of level patterns S from the second stage, we want to assign them to

stocks. First, we let the number of items belonging to order i on level j ∈ S be nij . As

these levels have a fixed width, we only consider packing them lengthwise. The overlap

among all of the length intervals of items on the level is often still an interval, so, instead
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Figure 4.4: Single resource CP formulation of the third step in the sequential heuristic
framework.

of having to solve a 1D packing problem, we solve a 1D Generalized Assignment Problem

with Flexible Jobs [215], which is NP-hard. For this problem, we develop both monolithic

and decomposition optimization models. First, we propose a CP formulation and two

MILP formulations. For each MILP, we also investigate two classic Benders decomposition

approaches, tackling the level length in the subproblem.

4.4.3.1 Monolithic Models

4.4.3.1.1 Constraint Programming Formulation In CP, the one-dimensional pack-

ing substructure suggests the usage of Pack, but this constraint cannot handle items of

flexible sizes. Instead, we construct a scheduling-based CP formulation, CPS3, that lever-

ages the single resource transformation by concatenating the stocks lengthwise into a unified

resource (Figure 4.4). We initialize an optional interval variable yj for each level j obtained

from the previous step. Slightly abusing the notation, we let ρmin
j and ρmax

j be the minimum

and maximum allowable length of level j given the items assigned to it, and let wj be the

width of level pattern j. A level pattern cannot be placed in a stock whose width is greater

than the level’s width, so we can reduce the search space of yj by first sorting the stocks

by their widths in a decreasing order and then setting the maximum end time of yj to be∑
k∈K|wj≤Wk

(Lk + 1), the rightmost coordinate of the last stock that level j can fit into.

The definition of the infeasible region F̄ remains the same as in Section 4.2.1. Differing

from the monolithic model CPSR, we need an extra NoOverlap constraint to restrict the

levels’ positions, whereas CPSR uses a guillotine state function.

The decision variables are as follows:

yj := (interval) lengthwise interval of level pattern j ∈ S.

ck := (interval) lengthwise interval representing stock k.
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(a) Assignment scheme of MIPS3
simp,

where items are directly matched with
the available stocks.

(b) Assignment scheme of MIPS3
comp, where items are first

assigned to a set of hypothetical stocks with a limiting
assignment scheme.

Figure 4.5: Assignment schemes of MILP models for the third stage of the sequential
heuristic.

min α
∑
k∈K

LkWkPresenceOf(ck)− β
∑
j∈S

wjSizeOf(yj) (CPS3) (4.15a)

s.t. NoOverlap(y) (4.15b)

Ω =
∑
k∈K

Pulse(ck,Wk)−
∑
j∈S

Pulse(yj , wj) (4.15c)

ForbidExtent(yj , F̄ ) ∀j ∈ S (4.15d)∑
p∈Ci

nijSizeOf(yj) ≥ qmin
i /wi ∀i ∈ N (4.15e)∑

p∈Ci

nijSizeOf(yj) ≤ qmax
i /wi ∀i ∈ N (4.15f)

yj ∈ IntervalVar([0,
∑

k∈K|wj≤Wk

(Lk + 1)], [ρmin
j , ρmax

j ]) ∀j ∈ S (4.15g)

(4.1l), (4.1c) (4.15h)

Objective (4.15a) describes the trim loss. Constraint (4.15b) uses NoOverlap to en-

sure the length intervals of levels do not overlap. Constraint (4.15c) describes a cumulative

expression for the net width usage, and, in conjunction with Constraint (4.1c), ensures that

ck must be present if yj is assigned to stock k. Constraint (4.15d) restricts the forbid-

den regions. Constraints (4.15e) and (4.15f) ensures that the total area fulfilled is within

tolerances. The rest define the variables.
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4.4.3.1.2 Mixed-integer Programming - Simple We first construct a mixed-integer

linear model, MIPS3
simp, that assigns levels to stocks and concurrently determines the levels’

length (Figure 4.5a). We notice that the input level patterns may contain duplicates. To

reduce symmetry, we reduce the set S to Ŝ, a set containing unique level patterns only.

Next, we introduce integer variables zjk to count the number of the jth unique level pattern

matched to stock k. To determine the length of the level pattern j if assigned to stock k, we

use continuous variables djk. We only need to declare zjk and djk variables where the width

of the jth level does not exceed the width of the stock k. This subset of level patterns is

denoted via a subscript of the stock’s index k (e.g. Sk = {s ∈ S | width of level s ≤ Wk}).
Lastly, to maximize feasibility, we do not impose additional constraints to restrict the

uniqueness of each level pattern in any solutions.

Overall, the variables used are as follows:

zjk := (integer) # of unique level j is present on stock k

ck := (binary) 1 iff stock k is used

djk := (continuous) surplus length of unique level pattern j on stock k

Objective (4.16a) defines the trim loss function. Constraint (4.16b) defines the lower

and upper bounds of level patterns assigned to a stock. Constraint (4.16c) restricts the

stock length. Constraints (4.16d) and (4.16e) ensure orders are fulfilled within tolerances.

Constraint (4.16f) eliminates symmetry between stocks. The rest define the decision vari-

ables.

min α
∑
k∈K

LkWkck − β
∑
k∈K

∑
j∈Ŝk

wj(ρ
min
j zjk + djk) (MIPS3

simp) (4.16a)

s.t. djk ≤ (ρmax
j − ρmin

j )zjk ∀j ∈ Ŝk, k ∈ K (4.16b)∑
j∈Ŝk

(ρmin
j zjk + djk) ≤ Lkck ∀k ∈ K (4.16c)

wi

∑
k∈K

∑
j∈Ŝk

nij(ρ
min
j zjk + djk) ≤ qmax

i ∀i ∈ N (4.16d)

wi

∑
k∈K

∑
j∈Ŝk

nij(ρ
min
j zjk + djk) ≥ qmin

i ∀i ∈ N (4.16e)

ck ≥ ck+1 ∀k ∈ K ′
h, h ∈ H (4.16f)

zjk ∈ Z+ ∀j ∈ Ŝk, k ∈ K (4.16g)

ck ∈ B ∀k ∈ K (4.16h)

djk ∈ R+ ∀j ∈ Ŝk, k ∈ K (4.16i)
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4.4.3.1.3 Mixed-integer Programming - Compact Inspired by Furini and Malaguti

[86], we present an alternative mixed-integer programming formulation, denoted asMIPS3
comp,

that explicitly reduces the symmetry between levels by using a limiting assignment scheme

(Figure 4.5b). For each level pattern s ∈ S, we initialize a hypothetical stock that is used

in a solution if and only if that level is also present on the stock. In addition, a hypothet-

ical stock with index k can only take on levels with indices greater than or equal to its

index. Conversely, a level can only be assigned to hypothetical stocks with either the same

index or smaller indices. Here, each hypothetical stock is essentially a possible combina-

tion of a level-to-stock assignment, and by restricting the assignment scheme, we reduce

redundant combinations. Since the width of a level pattern limits the types of stock to

which it can be assigned, given a level j with width wj , we denote the set of viable stock

types as Hj = {h ∈ H|wj ≤ Wh}, and the set of hypothetical stocks of type h ∈ Hj as

Kh
j = {j}

⋃
ξhj , where ξhj = {k ∈ S|wj ≤ Wh ∧ k < j}. For a given hypothetical stock k of

type h, the set of assignable levels is denoted as ζhk = {j ∈ S|wj ∈Wh ∧ j ≥ k}.
Overall, the following decision variables are used:

qjh := (binary) 1 iff level j and the hypothetical stock j of type h are used

zjkh := (binary) 1 iff level j is assigned to hypothetical stock k of type h

djkh := surplus length of level j assigned to hypothetical stock k of type h

min α
∑
j∈S

∑
h∈Hj

((Lh − ρmin
j )Whqjh −Whdjjh) (MIPS3

comp) (4.17a)

−β
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

wj(zjkhρ
min
j + djkh)

s.t. ρmax
j zjkh ≥ zjkhρ

min
j + djkh ∀j ∈ S, h ∈ Hj , k ∈ Kh

j (4.17b)

ρmin
j zjkh ≤ zjkhρ

min
j + djkh ∀j ∈ S, h ∈ Hj , k ∈ Kh

j (4.17c)

djjh ≤ (ρmax
j − ρmin

j )qjh ∀j ∈ S, h ∈ Hj (4.17d)∑
j∈ζhk

(zjkhρ
min
j + djkh) ≤ (Lh − ρmin

k )qkh − dkkh ∀k ∈ S, h ∈ Hk (4.17e)

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwi(zjkhρ
min
j + djkh) ≤ qmax

i ∀i ∈ N (4.17f)

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwi(zjkhρ
min
j + djkh) ≥ qmin

i ∀i ∈ N (4.17g)

∑
j∈S

qjh ≤ |Kh| ∀h ∈ Hj (4.17h)

qjh ∈ B ∀j ∈ S, h ∈ Hj (4.17i)

zjkh ∈ B ∀j ∈ S, h ∈ Hj , k ∈ ξhj (4.17j)

djkh ∈ R+ ∀j ∈ S, h ∈ Hj , k ∈ ξhj (4.17k)
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Objective (4.17a) defines the trim loss function. In the first term, we subtract ρmin
j from

Lh because if the jth hypothetical stock of type h is used, then we always assign the jth level

to it. Constraints (4.17b) and (4.17c) define the upper and lower bounds of the jth level

pattern assigned to stock k if the indices do not match. In the case that they do match,

the bounds are restricted by constraint (4.17d). Constraint (4.17e) restricts the length of

each stock. Constraints (4.17f) and (4.17g) ensure orders are fulfilled within tolerances.

Constraint (4.17h) ensures that the number of hypothetical stocks used does not exceed the

number of available ones for a given stock type. The rest define the decision variables.

4.4.3.2 Decomposition-based Models

In both MIPS3
simp and MIPS3

comp, the length of each level pattern is determined concurrently

with the actual assignment. In this section, we decompose each monolithic model using

Benders Decomposition [25]. For each model, we derive two such decompositions: one from

the upper bounds of the length intervals and another from the lower bounds. For all of these

approaches, we ask the master problem to assign levels to stocks, and the subproblem to

determine the levels’ length. Since the subproblem can be formulated as a linear program,

solving it is easy.

4.4.3.2.1 Benders Decompositions of MIPS3
simp

4.4.3.2.1.1 From Lower Bound The first Benders reformulation, denoted as BDS3,lb
simp,

approaches the length of the level j assigned to stock k from its lower bound. In each itera-

tion, we solve the master problem assuming the lengths of the levels are at their minimum.

Then, in the subproblem, we calculate how much more area can we fulfill by increasing the

length of assigned levels. In the case that the solution from the master problem is feasible

for the subproblem, we add optimality cuts to the master problem to bound the estimation.

If the master problem solution is infeasible in the subproblem, we add a feasibility cut to

the master problem. The iterations repeat until either the solution of the master problem

converges or the time limit is exceeded.

In addition to the decision variables in MIPS3
simp, we introduce a continuous variable

θlbsimp to estimate the area described in the subproblem. The master problem is expressed

in Model (4.18). Objective (4.18a) expresses the trim loss, assuming levels’ lengths are all

at their minimum, less θlbsimp. Constraints (4.18b), (4.18c), and (4.18d) are valid inequal-

ities determined using the bounds of the length intervals. Constraint (4.18b) ensures the

minimum total length of the levels do not exceed the stock length. Constraints (4.18c) and

(4.18d) ensure that the maximum total area fulfilled is not less than the minimum area

tolerance, and that the minimum total area fulfilled is not more than the maximum area

tolerance, respectively. Constraint (4.18e) ensures that the master problem is feasible on
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the first iteration.

min α
∑
k∈K

WkLkck − β
∑
k∈K

∑
j∈Jk

wjρ
min
j zjk + θlbsimp (4.18a)

s.t.
∑
j∈Ŝk

ρmin
j zjk ≤ Lkck ∀i ∈ N (4.18b)

wi

∑
k∈K

∑
j∈Ŝk

nijρ
max
j zjk ≥ qmin

i ∀i ∈ N (4.18c)

wi

∑
k∈K

∑
j∈Ŝk

nijρ
min
j zjk ≤ qmax

i ∀i ∈ N (4.18d)

θlbsimp ≥ −
∑
k∈K

WkLk (4.18e)

θlbsimp ∈ R (4.18f)

(4.16f)− (4.16i) (4.18g)

Given solutions ẑ and ĉ to the variables z and c in the master problem, we want to

determine how much more order can we fulfill without violating the order tolerances by

increasing the level length in the subproblem. The formulation is expressed in Model (4.19).

Objective (4.19a) maximizes the total area induced by the additional length. Constraint

(4.19b) limits total length of the levels assigned to each stock. Constraint (4.19c) enforces

an upper bound on the total area of each order. Here, we do not need to limit its lower

bound because it is implicitly satisfied by Constraint (4.19d), which bounds the surplus in

a level’s length, and Constraint (4.18c). We also associate a dual variable for the cth set of

constraints denoted as πc.

Q(ẑ, ĉ) = min −β
∑
k∈K

∑
j∈Ŝk

wjdjk (4.19a)

(π1k)
∑
j∈Ŝk

(ρmin
j ˆzjk + djk) ≤ Lk ĉk ∀k ∈ K (4.19b)

(π2i) wi

∑
k∈K

∑
j∈Ŝk

nij(ρ
min
j ẑjk + djk) ≤ qmax

i ∀i ∈ N (4.19c)

(π3jk) djk ≤ (ρmax
j − ρmin

j )ẑjk ∀j ∈ Ŝk, k ∈ K (4.19d)

(4.16i) (4.19e)

We add an optimality cut (Equation 4.20) to the master problem after solving the

subproblem. The dual variables used in the cut are optimal to the subproblem in the same
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iteration.

θlbsimp ≥
∑
k∈K

(
∑
j∈Ŝk

ρmin
j zjk − Lkck)π1k +

∑
i∈N

(
∑
k∈K

∑
j∈Ŝk

nijρ
min
j zjk − qmax

i /wi)π2i

+
∑
k∈K

∑
j∈Ŝk

(ρmin
j − ρmax

j )π3jk (4.20)

If the subproblem is infeasible, we add a feasibility cut (Equation 4.21) using the ex-

treme rays of the infeasible dual problem. For each set of dual variables πc, we denote the

corresponding extreme ray as ϕc. The feasibility cut is as follows:

0 ≥
∑
k∈K

(
∑
j∈Ŝk

ρmin
j zjk − Lkck)ϕ1k +

∑
i∈N

(
∑
k∈K

∑
j∈Ŝk

nijρ
min
j zjk − qmax

i /wi)ϕ2i

+
∑
k∈K

∑
j∈Ŝk

(ρmin
j − ρmax

j )ϕ3jk (4.21)

4.4.3.2.1.2 From Upper Bound The second Benders reformulation, denoted as

BDS3,ub
simp , approaches the length of the level j assigned to stock k from its upper bound,

with it being expressed as ρmax
j zjk − djk in the Benders Reformulation. The intuition is

similar to the MIPS3
simp’s decomposition from the lower bound. In the master problem, we

assume all lengths are at their maximum length. In the subproblem, we determine the total

area exceeding the stocks and add optimality and feasibility cuts as required. In the master

problem, we denote the estimation of the area exceeded as θubsimp.

The master problem is given in Model (4.22).

min α
∑
k∈K

WkLck − β
∑
k∈K

∑
j∈Ŝk

wjρ
max
j zjk + θubsimp (4.22a)

s.t. θubsimp ∈ R+ (4.22b)

(4.16f)− (4.16i), (4.18b)− (4.18d) (4.22c)

Next, we want to determine the minimum amount of area that makes the master prob-

lem solution (ẑ, ĉ) feasible in the subproblem. Objective (4.23a) describes the trim loss.

Constraint (4.23b) restricts the stock length. Constraint (4.23c) ensures the area fulfilled is

within order tolerance. Constraint (4.23d) defines the maximum deficit of a level’s length.
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Q(ẑ, ĉ) = min β
∑
k∈K

∑
j∈Ŝk

wjdjk (4.23a)

(π1k)
∑
j∈Ŝk

(ρmax
j ˆzjk − djk) ≤ Lk ĉk ∀k ∈ K (4.23b)

(π2i) wi

∑
k∈K

∑
j∈Ŝk

nij(ρ
max
j ẑjk − djk) ≥ qmin

i ∀i ∈ N (4.23c)

(π3jk) djk ≤ (ρmax
j − ρmin

j )ẑjk ∀j ∈ Ŝk, k ∈ K (4.23d)

(4.16i) (4.23e)

Accordingly, we add the optimality cut (Equation 4.24) to the master problem.

θubsimp ≥
∑
k∈K

(
∑
j∈Ŝk

ρmax
j ẑjk − Lk ĉk)π1k +

∑
i∈N

(qmin
i /wi −

∑
k∈K

∑
j∈Ŝk

nijρ
max
j ẑjk)π2i+

∑
k∈K

∑
j∈Ŝk

(ρmin
j − ρmax

j )π3jk (4.24)

If the subproblem is infeasible, we add a feasibility cut using extreme rays ϕc (Equation

4.25).

0 ≥
∑
k∈K

(
∑
j∈Ŝk

ρmax
j ẑjk − Lk ĉk)ϕ1k +

∑
i∈N

(qmin
i /wi −

∑
k∈K

∑
j∈Ŝk

nijρ
max
j ẑjk)ϕ2i+

∑
k∈K

∑
j∈Ŝk

(ρmin
j − ρmax

j )ϕ3jk (4.25)

4.4.3.2.2 Benders Decompositions of MIPS3
comp

4.4.3.2.2.1 From Lower Bound Similar to BDS3,lb
simp, we decompose MIPS3

comp from

the lower bound of the length interval, denoted as BDS3,lb
comp. The intuition behind the de-

composition is identical to BDS3,lb
simp, and we denote the subproblem estimation in the master

problem as θlbcomp. The master problem is described by Model (4.26). Objective (4.26a)

describes the trim loss objective assuming a minimum level length. Constraint (4.26b) re-

stricts the stock length. Constraint (4.26c) and (4.26d) ensure that the upper and lower

area tolerances can be satisfied by the minimum and the maximum length, respectively.
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min α
∑
j∈S

∑
h∈Hj

Wh(Lh − ρmin
j )qjh (4.26a)

−β
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

wjρ
min
i zjkh + θlbcomp

s.t.
∑
j∈ζhk

ρmin
j zjkh ≤ (L− ρmin

k )qkh ∀k ∈ S, h ∈ Hk (4.26b)

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwizjkhρ
min
i ≤ qmax

i ∀i ∈ N (4.26c)

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwizjkhρ
max
i ≥ qmin

i ∀i ∈ N (4.26d)

(4.17h)− (4.17j) (4.26e)

The subproblem in Model (4.27) solves for the decrease in objective value from the

flexible length given a master problem solution (ẑ, q̂). Objective 4.27a describes the afore-

mentioned surplus area. Constraints (4.27b) and (4.27c) define the upper bound on the

lengthwise surplus. Constraint (4.27d) restricts the stock length. Constraints (4.26c) and

(4.26d) satisfy the area tolerances of each order.

Q(q, z) = min −β
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

wjdjkh (4.27a)

(π1jkh) (ρmax
j − ρmin

j ) ˆzjkh ≥ djkh ∀j ∈ S, h ∈ Hj , k ∈ Kh
j (4.27b)

(π2jh) (ρmax
j − ρmin

j ) ˆqjh ≥ djjh ∀j ∈ S, h ∈ Hj (4.27c)

(π3kh)
∑
j∈ζhk

( ˆzjkhρ
min
j + djkh) ≤ (Lh − ρmin

k ) ˆqkh ∀k ∈ S, h ∈ Hj (4.27d)

(π4i)
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwi( ˆzjkhρ
min
i + djkh) ≤ qmax

i ∀i ∈ N (4.27e)

(π5i)
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwi( ˆzjkhρ
min
i + djkh) ≥ qmin

i ∀i ∈ N (4.27f)

(4.17k) (4.27g)

Given a solution (ẑ, q̂), Expressions (4.28) and (4.29) describe the optimality and feasi-

bility cut, respectively.
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θlbcomp ≥
∑
j∈S

∑
h∈Hj

∑
k∈Kh

j

(ρmin
j − ρmax

j ) ˆzjkhπ1jkh +
∑
j∈S

∑
h∈Hj

(ρmin
j − ρmax

j ) ˆqjhπ2jh+

∑
k∈S

∑
h∈Hk

( ˆzjkhρ
min
j − (Lh − ρmin

k ) ˆqkh)π3kh +
∑
i∈N

(
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh − qmax

i )π4i+

∑
i∈N

(qmin
i −

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh)π5i (4.28)

0 ≥
∑
j∈S

∑
h∈Hj

∑
k∈Kh

j

(ρmin
j − ρmax

j ) ˆzjkhϕ1jkh +
∑
j∈S

∑
h∈Hj

(ρmin
j − ρmax

j ) ˆqjhϕ2jh+

∑
k∈S

∑
h∈Hk

( ˆzjkhρ
min
j − (Lh − ρmin

k ) ˆqkh)ϕ3kh +
∑
i∈N

(
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh − qmax

i )ϕ4i+

∑
i∈N

(qmin
i −

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh)ϕ5i (4.29)

4.4.3.2.2.2 From Upper Bound Similarly, we decomposeMIPS3
comp from the upper

bound of the length interval, denoted as BDS3,ub
comp . The intuition behind the decomposition

is identical to BDS3,ub
simp , and we denote the estimation variable in the master problem as

θubcomp. The master problem is described by Model (4.30).

min α
∑
j∈S

∑
h∈Hj

Wh(Lh − ρmax
j )qjh (4.30a)

−β
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

wjρ
max
i zjkh + θubcomp

(4.30b)

s.t. (4.17h)− (4.17j), (4.26b)− (4.26d) (4.30c)

(4.30d)

The subproblem in Model (4.31) solves for the lengthwise surplus area given a master

problem solution (ẑ, q̂). Objective (4.31a) describes the decrease in trim loss. Constraints

(4.31b) and (4.31c) define the upper bound on the lengthwise surplus. Constraint (4.31d)

restricts the stock length. Constraints (4.31e) and (4.31f) satisfy the area tolerances of each

order.
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Q(q, z) = min β
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

wjdjkh (4.31a)

(π1jkh) (4.27b) (4.31b)

(π2jh) (4.27c) (4.31c)

(π3kh)
∑
j∈ζhk

( ˆzjkhρ
max
j − djkh) ≤ (Lh − ρmax

k ) ˆqkh + dkkh ∀k ∈ S, h ∈ H (4.31d)

(π4i)
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwi( ˆzjkhρ
max
j − djkh) ≤ qmax

i ∀i ∈ N (4.31e)

(π5i)
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwi( ˆzjkhρ
max
j − djkh) ≥ qmin

i ∀i ∈ N (4.31f)

(4.17k) (4.31g)

Given a solution (ẑ, q̂), Inequalities (4.32) and (4.33) describe the optimality and feasi-

bility cut, respectively.

θubcomp ≥
∑
j∈S

∑
h∈Hj

∑
k∈Kh

j

(ρmin
j − ρmax

j ) ˆzjkhπ1jkh +
∑
j∈S

∑
h∈Hj

(ρmin
j − ρmax

j ) ˆqjhπ2jh+

∑
k∈S

∑
h∈Hk

( ˆzjkhρ
max
j − (Lh − ρmax

k ) ˆqkh)π3kh +
∑
i∈N

(
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh − qmax

i )π4i+

∑
i∈N

(qmin
i −

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh)π5i (4.32)

0 ≥
∑
j∈S

∑
h∈Hj

∑
k∈Kh

j

(ρmin
j − ρmax

j ) ˆzjkhϕ1jkh +
∑
j∈S

∑
h∈Hj

(ρmin
j − ρmax

j ) ˆqjhϕ2jh+

∑
k∈S

∑
h∈Hk

( ˆzjkhρ
max
j − (Lh − ρmax

k ) ˆqkh)ϕ3kh +
∑
i∈N

(
∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh − qmax

i )ϕ4i+

∑
i∈N

(qmin
i −

∑
j∈S

∑
h∈Hj

∑
k∈ξhj

nijwiρ
min
i ˆzjkh)ϕ5i (4.33)

4.5 Numerical Results

We first examine the representational efficiency of the exact approaches. Then, we select the

best configurations of the sequential heuristic and make an overall comparison on feasibility,

solution quality, and runtime performance. The full results can be found in Appendix B.
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Figure 4.6: Comparison of the number of variables, the number of constraints, and the
model memory before search over instance sizes. Note the scales of the y-axes.

4.5.1 Monolithic Model Size Comparison

Figure 4.6 compares the model sizes of the exact approaches based on the number of vari-

ables, the number of constraints, and the model memory (before search). The memory

usage of MILP models is not accessible from the solver. A data point is omitted if the cor-

responding model fails to initialize in memory within the one-hour time limit. The CPSR

formulation is significantly smaller than the other models across all three measures, espe-

cially as the instances scale up. For the largest industrial instances, no other models could

be loaded before timing out. For the largest generated instances, (64, 128), the CPCO model

requires about 800MB of memory, while CPSR only needs 20MB.

The CPST model used more memory than any other model for all instances. Inter-

estingly, for the generated instances with |N | ≥ 16 and the industrial instances, it used

fewer variables and constraints than CPCO and both MILP models. Typically using fewer

variables and constraints is associated with using less memory, but here the size of the

constraints is determinant. Notably, CPST adds expressions over possible partitions on all

stocks to obtain the total area fulfilled for each order. As the number of stocks increases,

this sum becomes especially hefty.

CP IT used the second-fewest variables and constraints, trailing only behind CPSR.

However, CP IT consumed the second-most memory, and the marginal increase over the

next smallest model, CPCO, is significant. Just like with CPST , the size of the constraints

is again crucial. CP IT iterates over all items to obtain the total area fulfilled for an order,

while CPCO iterates only over orders and levels. This difference is insignificant in smaller

instances but becomes pronounced as the instance size increases.
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Generated Industrial
OptGap # Feasible OptGap # Feasible

S : CPS1 +MIPS2 +MIPS3
simp 29.3 50 62.9 4

S : CCS1 +MIPS2 +MIPS3
simp 29.8 50 63.4 4

S : CCS1 +MIPS2 +BDS3,ub
simp 31.3 50 61.9 4

S : CPS1 +MIPS2 +BDS3,ub
simp 31.7 49 61.6 4

S : CCS1 +MIPS2 +BDS3,lb
simp 32.5 50 62.4 4

S : CPS1 +MIPS2 +BDS3,lb
simp 33.2 49 65.6 3

S : CPS1 +MIPS2 + CPS3 35.2 50 65.1 4

Table 4.2: Optimality gap and number of feasible solutions of the top 7 sequential heuristic
configurations by their gaps on the generated instances.

4.5.2 Sequential Heuristic Selection

We select top performing configurations of the sequential heuristic that will be compared

with the rest of the approaches. Table 4.2 displays the optimality gap (OptGap) and the

number of feasible solutions of the top sequential heuristic configurations by OptGap. The

OptGap is calculated from Equation (4.34), where z(n; i) is the objective value of approach

n for instance i, and lb(i) is the best lower bound of instance i across all approaches.

For a given solution approach, we penalize an unsolved instance by the worst objective

value found for the instance. We base the selection on the lowest optimality gaps on the

generated instances to avoid biasing towards the industrial instances, which are more limited

in quantity.

% OptGap(n; i) = 100
z(n; i)− lb(i)

lb(i)
(4.34)

Overall, configurations S : CCS1+MIPS2+MIPS3
simp and S : CPS1+MIPS2+MIPS3

simp

are the most preferred, as they found the lowest OptGap for the generated instances. Their

only difference is in the first stage solvers, with the CPS1 configuration yielding slightly

better solutions than the one with CC S1. All top configurations use MIPS2 and an ap-

proach related to MIPS3
simp. In particular, the performance of configurations using Benders

Decomposition on MIPS3
simp is lacking compared to using just the standalone formulation,

suggesting that the Benders cuts are ineffective and the problem geometry complex. Config-

urations using CPS3 are not preferred, as they produced weaker solutions than alternative

approaches. For the subsequent analysis, we select S : CCS1 + MIPS2 + MIPS3
simp and

S : CPS1 + MIPS2 + MIPS3
simp to represent the performances of the sequential heuris-

tic. For conciseness, we henceforth denote S : CCS1 + MIPS2 + MIPS3
simp as SCC and

S : CPS1 +MIPS2 +MIPS3
simp as SCP .
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Figure 4.7: Number of generated and industrial instances with a feasible solution by each
model for 2SCSP-FF.

Figure 4.8: The average run time required to find a feasible solution for a given model at
an instance size for 2SCSP-FF.

4.5.3 Feasibility Analysis

Figures 4.7 and 4.8 report the number of instances for which a feasible solution was found

and the average time to feasibility or termination, respectively. Only CPSR, SCC , and SCP

found a feasible solution to all instances. In particular, CPSR reached feasibility the fastest

amongst all methods, requiring less than 100 seconds for the largest industrial instance.

The short time-to-feasibility, however, differs from the results for routing problems [36],

where the model struggled to find feasible solutions quickly. We suspect that this disparity

is due to the looser constraints on interval variables for our problem compared to the

routing formulation. Slightly worse than CPSR are SCC and SCP , using 50 more seconds

for the largest industrial instance and 160 more seconds for the largest generated instance,

respectively. FFMH found a feasible solution to all but one generated instance and the

largest industrial instance, while other exact approaches struggled with the large generated

and industrial instances. Notably, neither MILP models found a feasible solution to the

industrial instances within the runtime.



CHAPTER 4. 2SCSP WITH FLEXIBLE ITEM LENGTH AND FLEXIBLE DEMAND 72

Figure 4.9: % optimality gap for generated and industrial instances for 2SCSP-FF. Instances
that are not solved by an approach are not included in that approach’s measure.

4.5.4 Overall Quality

Figure 4.9 displays the optimality gap of each approach calculated using Equation (4.34).

Any unsolved instances are omitted from the visualization, so some approaches are penalized

for finding solutions to harder instances compared to approaches that did not do so.

First, we compare the exact approaches. MIPAS demonstrated the strongest perfor-

mance for generated instances with |N | ≤ 16. MIPAS proved optimality for two generated

instances, the only ones proven optimal across all models. For larger instances (|N | ≥ 32),

both MILP models scaled poorly, failing to find a feasible solution within the time limit.

CPCO, CP IT , and CPST struggle to find competitive solutions to the generated instances

past N = 4, eventually encountering loading time issues for larger instances. CPCO found

similar solutions to MIPAS for the smallest generated instances, but could not prove opti-

mality due to a weaker lower bound. CPSR consistently outperformed the MILP and the

integer-based CP models for all but the smaller instances. A similar trend is observed in the

industrial instances, where CPSR was the only model-based approach that found a feasible

solution to more than one instance. We note that the lower bounds of the instances with

|N | ≥ 21 are generated by CPSR, but their values are non-trivial, a rare feat for typical CP

approaches. Here, CP Optimizer computes the lower bound using an automatic LP-based

relaxation of the scheduling constraints [158], a feature not available in other CP solvers.

The sequential heuristic SCP outperformed CPSR for most of the generated and indus-

trial instances. However, CPSR is better than SCP for the largest industrial instance, mak-

ing it the preferred approach for solving large-scale industrial use cases. SCC is marginally

worse than SCP for the smaller generated instances, but their solution qualities are approx-

imately equal for the larger generated and industrial ones. FFMH found weaker solutions

to all other approaches for both generated and industrial instances on average.

Interestingly, although CPSR is one of the best-performing monolithic formulations, us-
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Figure 4.10: Number of instances for which an approach found the best solution over
runtime.

ing the single resource model CPS3 in the last subproblem of the sequential heuristic yielded

poorer solution quality than using MIPS3
simp (Table 4.2). This is consistent with our results

in Figure 4.9, where both monolithic MILP models found higher quality solutions than

CPSR did for the smaller instances. In other words, the value of CPSR (and hence CPS3)

is more in its representational efficiency, enabling it to solve industrial instances that the

monolithic MILP models could not. However, the decomposed subproblems in the sequen-

tial heuristic framework are less complex than the full 2SCSP-FF, which allows MIPS3
simp to

solve the larger instances that MIPAS and MIPCO could not. So, the advantage of CPS3

is muted, as the heuristic can effectively exploit MILP’s reasoning capabilities without en-

countering tractability issues. Nonetheless, there may still exist be larger instances that

only CPS3 can solve.

4.5.5 Runtime Performance

Finally, we examine the performance of the proposed approaches over their runtime by aver-

aging the number of best solutions every 10 seconds (Figure 4.10). For the small generated

instances, SCP found the best solution for more instances than any other approaches from

start to finish, with SCC being a distant second. After the 500th second, SCC ’s superiority

diminished, undermined mostly by MIPAS . Interestingly, the quality of solutions found by

CPSR, which yielded low optimality gaps for these instances, was dominated by SCP , SCC ,

and MIPAS throughout the runtime. For the large generated instances, CPSR found the

most number of best solutions in the first 200 seconds, after which the heuristics generally

are better. The dynamics of SCP and SCC almost reflect one another, suggesting that CCS1

is competitive with CPS1. For the industrial instances, SCP found the most number of best

solutions between the 100th and 1500th second, after which CPSR is preferred. In addi-

tion, CPSR’s solution to the largest industrial instance is stronger than the others’ solutions

throughout the runtime, again attesting to its suitability for large-scale use cases.



CHAPTER 4. 2SCSP WITH FLEXIBLE ITEM LENGTH AND FLEXIBLE DEMAND 74

4.6 Conclusion

In this chapter, we proposed a single resource CP model, three integer-based CP models, two

MILP models, a first-fit-based heuristic, and a sequential heuristic framework. Out of these

exact approaches, CPSR has significant advantages in its problem representation and overall

performance. The memory efficiency of CPSR results from the compact representation of

complicated substructures and variables. To represent the guillotine cuts, CPSR is the only

model that does not enumerate the set of levels, instead using just a state function and an

AlwaysConstant constraint. Similarly, CPSR restricts the widthwise capacities and the

partition counts without levelwise constraints. By using the fewest variables and constraints,

the CPSR model has at least an order-of-magnitude advantage in its memory usage. As the

instances scale up, this advantage increases. Including the heuristics, our empirical results

show that SCC is generally the preferred approach, having found higher quality solutions

than CPSR, the best exact approach, in less time within a one-hour runtime. Nonetheless,

CPSR remains the most suitable for the largest industrial instances.



Chapter 5

2SCSP with Flexible Item Length,

Flexible Demand, and

Marriageability

I
n this chapter, we extend the top-performing models and heuristics proposed for 2SCSP-

FF (the single resource CP model, the assignment-based MILP model, the counting-

based MILP model, the first-fit based heuristic and the top-performing sequential

heuristic configurations) to tackle the full Two-Stage Cutting Stock Problem with Flexi-

ble Item Length, Flexible Demand, and Order-to-order Marriageability (2SCSP-FFM). In

2SCSP-FFM, a more constrained version of 2SCSP-FF, stocks need to be treated so that

the cut items have desired properties. As a result, items from orders requesting different

properties cannot be cut from the same stock, creating order-to-order marriageability re-

quirements. For the exact approaches, we develop the formulations from different modelling

perspectives, and, for the heuristics, we modify the algorithms surgically. We conclude this

chapter with empirical experiments.

5.1 Problem Description

The 2SCSP-FFM restricts order-to-order marriageability: stocks are treated once before

cutting so that the cut partitions have desired properties; consequently, orders requesting

different properties cannot be cut from the same stock. There are no restrictions on the

type of treatment that is applied a stock, but only one treatment can be applied to a

given stock. We recall that G is the set of combinations of order properties and Ng is

the set of orders with treated properties g ∈ G. Equivalently, we can construct a binary

marriageability matrix M such that Mii′ = 1 if and only if items from order i and i′ have

identical properties (i.e. ∃g ∈ G | i, i′ ∈ Ng) and hence can be cut from the same stock.

75
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Model Conflict-based Treatment-based

CPSR x

MIPC
AS x

MIPT
AS x

MIPC
CO x

MIPT
CO x

Table 5.1: Perspectives taken by the marriageability formulations of the top-performing
exact approaches on 2SCSP-FFM.

Figure 5.1: Illustration of the CPSR model with order-to-order marriageability. The mar-
riageability state values in this example are arbitrarily assigned.

The guillotine state function, widthwise capacity, and the partition number capacity are
the same as in the 2SCSP-FF formulation (Figure 4.1 b, c, and d) and are not shown.

5.2 Exact Approaches

In this section, we extend the top exact approaches proposed in Chapter 4: the single

resource model (CPSR), the assignment-based MILP model (MIPAS), and the counting-

based MILP model (MIPCO). For the MILP models, we formulate their marriageability

requirements from two perspectives: a conflict-based perspective where conflicting orders

cannot be assigned to the same stock, and a treatment-based perspective where each stock

can only take on one set of treatments. Table 5.1 provides a summary for the perspectives.

Notably, from a graphical perspective, the conflict-based formulation is derived from the

conflict graph, where orders are nodes and edges represent the conflicting relationships; the

combination-based formulation is obtained from its complement, the marriageability graph,

where orders with identical properties form a clique.
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5.2.1 The Single Resource CP Formulation

Items of different orders assigned to the same stock are treated to have the same properties,

so a finite number of orders implies a finite number of treatments for each stock. Here, we

associate each type of treatment with a state value in the state function µ (Figure 5.1e).

A feasible solution to the 2SCSP-FFM then requires the state values of items to be the

same as the state value of the stock, which is formalized using the following two sets of

constraints. Constraint (5.1b) restricts a constant state value over each stock interval ck,

thereby ensuring that each stock is treated to take on only one set of order properties.

Next, constraint (5.1a) restricts the state value over the item interval variable xip to always

equal γ ∈ G | i ∈ Nγ . Thus, item p belonging to order i can only be cut from stocks that

are treated to have its desired properties. We note that the boolean arguments in both

constraints are important. In constraint (5.1b), since there can be multiple levels of items

in a stock, the starting and ending coordinates of the item intervals do not need to align

with coordinates of the state intervals. In constraint (5.1a), however, both the starting and

ending coordinates of the stock interval need to be aligned with the coordinates of a state

interval in the marriageability state function so that the treatment throughout the stock is

consistent. Since these constraints restrict how the stock is treated, we classify this model

as a treatment-based formulation.

min (4.1a) (CPSR)

s.t. AlwaysEqual(µ, xip, γ, False, False) ∀i ∈ Nγ , γ ∈ G, p ∈ Ci (5.1a)

AlwaysConstant(µ, ck, T rue, True) ∀k ∈ K (5.1b)

µ : StateFunction() (5.1c)

(4.1b)− (4.1m)

5.2.2 Assignment-based MILP Model

We investigate two marriageability formulations extending MIPAS , one from the conflict-

based perspective and another from the treatment-based perspective. In both formulations,

we recall the definition of the binary decision variables xijkl, which equals 1 if the lth piece

of the jth level of the kth stock is assigned to ith order. The base formulation of MIPAS is

in Section 4.6.

Conflict-based Formulation The conflict-based formulation, denoted asMIPC
AS , explic-

itly models the conflicts between non-marriageable orders. It introduces binary variables

zcik, which, in conjunction with Constraints (5.2b) and (5.2d), detect the presence of order

i on stock k. Notably, constraint (5.2b) only needs to include the first partition on a level

because of the symmetry-reducing constraint (4.5a), which requires the smaller indexed
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partition to be assigned first. Finally, each stock, after treatment, can only be used to fulfill

at most one of two orders with conflicting properties. In other words, given two conflicting

orders i and i′, at most one of zcik and zci′k can be present in a given stock k. Formalized in

Constraint (5.2c), this relation can be captured using the SOS1 set, which ensures that at

most one of the variables in the set is non-zero.

min (4.6a) (MIPC
AS) (5.2a)

s.t. zcik ≥ xijk0 ∀i ∈ N, j ∈ Jk, k ∈ K (5.2b)

SOS1(zcik, z
c
i′k) ∀(i, i′) ̸∈M,k ∈ K (5.2c)

zcik ∈ {0, 1} ∀i ∈ N, k ∈ K (5.2d)

(4.6b)− (4.6o)

Treatment-based Formulation The treatment-based formulation of MIPAS , denoted

as MIPT
AS , ensures that each stock is only treated once. Since there is a finite number

of possible treatments, we introduce binary variables ztgk that only equals 1 if stock k is

treated to take on a set of properties represented by g ∈ G. Constraint (5.3b) and (5.3d)

associates ztgk with xijkl so that ztgk = 1 only if some item belonging to an order i ∈ Ng

with properties g is assigned to stock k. In particular, pg = maxi∈Ng |Pi| is an upper bound

on the number of items belonging to an order demanding properties g in a level, |Jk| is
the maximum number of levels in stock k, and pg|Jk| is an upper bound on the number

of items demanding properties g across all levels in stock k. Constraint (5.3c) captures

the uniqueness of treatment on each stock. In particular, each stock can only take on one

combination of treated properties, so there can only be at most one non-zero ztgk for each

stock k. For each stock, we can characterize the set of the corresponding ztgk variables as a

SOS1 set.

min (4.6a) (MIPT
AS) (5.3a)

s.t. pg|Jk|ztgk ≥
∑

i∈Ng ,j∈Jk

xijk0 ∀k ∈ K, g ∈ G (5.3b)

SOS1(ztgk∀g ∈ G) k ∈ K (5.3c)

ztgk ∈ {0, 1} ∀g ∈ G, k ∈ K (5.3d)

(4.6b)− (4.6o)

5.2.3 Counting-based MILP Model

The counting-based MILP model uses binary decision variables xijkl, which equal 1 if and

only if l partitions belonging to order i is assigned to level j of stock k. Its formulation is
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similar to that of MIPAS , so we can reuse the variables and constraints proposed to address

marriageability from both the conflict-based and the treatment-based perspectives. The

base formulation of MIPCO is described in Section 4.8.

Conflict-based Formulation The conflict-based formulation, denoted as MIPC
CO, again

explicitly restricts the assignment of conflicting orders on the same stock. Its formulation

is identical to MIPC
AS , except for Constraint (5.4b), which relates zcik and MIPCO’s xijkl.

Here, for each order i in level j of stock k, xijkl is non-zero for at most one of the l ∈ Pi

counts of partitions, so the sum
∑
l∈Pi

xijkl can only be 0 or 1.

minimize (4.6a) (MIPC
CO) (5.4a)

s.t. zcik ≥
∑
l∈Pi

xijkl ∀i ∈ N, j ∈ Jk, k ∈ K(5.4b)

(5.2c), (5.2d)

(4.6d)− (4.6h), (4.6l)− (4.6o), (4.8b)− (4.8g)

Treatment-based Formulation The treatment-based formulation, MIPT
CO, again lever-

ages the fact that each stock can only treated once. The definition of the binary variable

ztgk is identical to those in MIPT
AS . Constraint (5.5b) replaces Constraint (5.3b) due again

to the difference in variable definitions.

minimize (4.6a) (MIPT
CO) (5.5a)

s.t. pg|Jk|ztgk ≥
∑

i∈Ng ,j∈Jk,l∈Pi

l × xijkl ∀k ∈ K, g ∈ G (5.5b)

(5.3c), (5.3d)

(4.6d)− (4.6h), (4.6l)− (4.6o), (4.8b)− (4.8g)

5.3 The First-fit based Heuristic

The two-stage first-fit based heuristic iteratively packs items into open levels with the lowest

available stock index and then solves a MILP to determine the packed items’ lengths. The

base heuristic, before packing an item, checks if it can fit into a level geometrically. With

the marriageability requirements, before verifying the geometric fit, the heuristic examines

if the item’s properties conflict with properties of any items previously packed into the

stock. If there is a conflict, the heuristic moves on to the next stock. If an item of an order

cannot be packed into any stocks and other already-packed items belonging to the order

cannot satisfy the minimum total area demanded, the heuristic terminates and assumes

infeasibility. Like in the base heuristic, after all orders are packed into the stocks, the
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Step Models Modifications

S1 (Congruent Groups) CCS1 and CPS1 Include marriageability in the set of cannot-link relations C
S2 (Group to Levels) MIPS2 None

S3 (Levels to Stocks) MIPS3
simp Add constraints expressing the cannot-link relations

Table 5.2: Changes made to select sequential heuristic configurations to tackle 2SCSP-FFM.

length of each item is determined by solving a linear program defined in Model 4.9. We

do not need to modify the this model because the solution from the first stage requires the

items packed in the same stock to be marriageable with each other.

5.4 The Sequential Heuristics

The sequential heuristic framework aims to construct high-quality solutions by sequentially

solving three subproblems: finding congruent orders, packing grouped orders into level

patterns, and assigning level patterns to stocks (Figure 4.3). We investigated different

approaches for each step in Section 4.4, and found the top-performing configurations to be

S : CPS1 +MIPS2 +MIPS3
simp and S : CCS1 +MIPS2 +MIPS3

simp. Here, we modify these

configurations to tackle the marriageability requirement. The summary of these changes is

shown in Table 6.1.

5.4.1 Finding Congruent Groups

The first step in the base heuristic finds congruent orders with overlapping length intervals

by computing a lower bound on the number of clusters and solving a clustering problem

using either constrained clustering (CCS1) or constraint programming (CPS1). Both pro-

cedures rely on the set of cannot-link pairwise relations, C, which, in the base heuristic,

represents pairs of orders that have non-overlapping length intervals. As the marriageabil-

ity requirements introduce additional conflicts between orders, we augment C to also include

pairs of orders (i, i′) that belong to different marriageable groups (i.e. Mii′ = 0). Then,

with the updated C, we can simply initialize the number of clusters using the Hoffman’s

lower bound, update the cannot-link constraints in CPS1, and check for the order-to-cluster

assignments in CCS1 according to the constrained algorithm in Section 4.4.

5.4.2 Dividing Groups into Levels

Given the congruent groups found by the first step, the second step of the heuristic dis-

tributes items in each order in the same group into levels of varying width. Here, no

modification is needed for the second-step models proposed in Section 4.4, since orders in

each congruent group must be marriageable with each other.
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5.4.3 Assigning Levels To Stocks

Given a set of level patterns, the third step of the heuristic packs the levels to stocks. The

top two configuration of 2SCSP-FF both used MIPsimp as their third-step solver, so, in this

section, we only extend this MILP model. Because the number of level patterns is typically

much larger than the number of orders, a conflict-based formulation that restricts pairs of

conflicting levels introduces significantly more constraints than it would in MIPT
AS . Instead,

we investigate a treatment-based formulation of MIPsimp that ensures each stock can only

be treated to take on one set of order properties. We recall that zjk is a binary variable

from Section 4.4.3.1.2 which equals 1 if level pattern j is assigned to stock k, and ztgk is a

binary variable from Section 5.2 which equals 1 if stock k takes on properties represented

by g ∈ G. We reuse these variables and all constraints, except that Constraint (5.2b) is

replaced by Constraint (5.6b) to associate zjk with ztgk.

min (4.16a) (MIPS3
simp) (5.6a)

|Jk|ztgk ≥
∑
j∈Sg

zjk ∀k ∈ K, g ∈M (5.6b)

(5.2c)− (5.2d), (4.16b)− (4.16i)

5.5 Numerical Results

We present our experimental results on 2SCSP-FFM. For each MILP model, we only display

the marriageability formulation with the superior average solution quality after penalizing

the instances for which the approach failed to find a feasible solution within time and

memory limits. We again abbreviate S : CPS1 + MIPS2 + MIPS3
simp and S : CC S1 +

MIPS2 +MIPS3
simp as SCP and SCC .

Model # New Variables # New Constraints

CPSR 1
∑

g∈G,i∈Ng

|Ci|+ |K| =
∑
i∈N
|Ci|+ |K|

MIPC
AS |N ||K|

∑
k∈K
|N ||Jk|+ (|N ||N − 1|/2− |M |)|K|

MIPT
AS |G||K| |G||K|+ |K|

MIPC
CO |N ||K|

∑
k∈K
|N ||Jk|+ (|N ||N − 1|/2− |M |)|K|

MIPT
CO |G||K| |G||K|+ |K|

Table 5.3: Exact number of variables and constraints additionally introduced to describe
the marriageability requirement.
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Figure 5.2: Empirical number of variables and constraints additionally introduced to de-
scribe the marriageability requirement per instance size.

5.5.1 Monolithic Model Comparison

Table 5.3 formalizes the number of variables and constraints introduced to describe the

marriageability requirement. CPSR adds only one new variable, the state function, but

the number of its marriageable constraints is dependent on both the maximum possible

number of items and the number of stocks. The change in the number of variables and

constraints of the MILP models is the same for each marriageability formulation, regardless

of its base model. The conflict-based formulation uses at least as many variables as the

treatment-based formulation, since the number of orders is always greater than the number

of treatment properties, except possibly when the properties of orders are all different.

The constraints in the conflict-based formulation can be segmented into two functionalities:

those relating different decision variables (Constraints 5.2b and 5.4b) and those forbidding

conflicts (Constraint 5.2c). Counting the former is straightforward, as it is the product of

the number of orders and the number of possible levels on all stocks. The number of the

latter can be described by the number of missing edges in the marriageability graph times

the number of stocks. The number of missing edges is calculated by the number of edges,

|N ||N − 1|/2, in a fully-connected graph whose vertices are orders, minus the number of

edges in the marriageability graph, |M |. The number of constraints in the treatment-based

formulation is much simpler. Notably, |G|, the number of types of treatments, is equivalent

to the number of cliques in the marriageability graph. In contrast to the conflict-based

formulation, the size of the treatment-based formulation is not affected by the increase in

the number of orders or in the number of possible levels in a stock. The number of variables

and constraints in both formulations is reliant on the number of stocks. CPSR is the only

model whose number of marriageability variables is independent of the instance size.

Figure 5.2 describes the empirical number of additional variables and constraints in-

stantiated for each instance size. The number of variables introduced in CPSR is indeed
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Figure 5.3: Number of generated and industrial instances with a feasible solution by each
model for 2SCSP-FFM. None of the MILP formulations found a feasible solution to the
industrial instances.

Figure 5.4: The average run time required to find a feasible solution for a given model at
an instance size for 2SCSP-FFM.

orders of magnitude fewer than the MILP models. However, CPSR does not always use

fewer constraints than the treatment-based MILP formulations, as the total possible num-

ber of items can be large and is independent of the number of cliques in the marriageability

graph. If the number of unique types of stock treatments is substantial, CPSR is prefer-

able; if orders demand many items, the treatment-based MILP formulations may still be

desirable. Both CPSR and the treatment-based MILP models use significantly fewer vari-

ables and constraints than the conflict-based MILP models. Nonetheless, including the rest

of the formulation, CPSR still uses significantly fewer variables and constraints than the

alternative models.

We do not compare the memory usage of the models, because we can not access the

memory usage of the MILP models via the CPLEX solver. The increase in CPSR’s model

size in memory before search averaged across the generated instances is under 10 MB, and

that averaged across the industrial ones is around 120 MB.
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Figure 5.5: % optimality gap for generated and industrial instances for 2SCSP-FFM. In-
stances that are not solved by an approach are not included in that approach’s measure.

5.5.2 Feasibility Analysis

Figures 5.3 and 5.4 display the number of feasible solutions found, and the time to feasibility,

respectively. Only CPSR, SCC , and SCP found a feasible solution to all generated and

industrial instances. Notably, out of the model-based approaches, CPSR is the only one

that found a feasible solution to the generated instances with |N | ≥ 16 and the industrial

ones with |N | ≥ 21. CPSR’s ability to quickly find a feasible solution for 2SCSP-FF was

also observed here, as it required less than 150 seconds to find its first feasible solution for

the largest industrial instance. SCP and SCC , the second and third fastest for that instance,

needed at least 400 seconds. With the solution space being more constrained, FFMH did

not find a feasible solution to two of the generated instances and timed-out solving the

largest industrial instance. MIPT
CO found more feasible solutions than any other MILP

formulations for the generated instances, and none of the MILP models found a feasible

solutions for the industrial ones.

5.5.3 Overall Quality

Figures 5.5 displays the optimality gap of the final solution found by the solution approaches

computed using Equation (4.34). Instances that an approach did not find a feasible solution

are not included. Out of the exact approaches (red, orange, and cyan), MIPT
CO found the

highest quality solutions for the generated instances with |N | ≤ 16, and CPSR for the

generated instances with |N | ≥ 32 and all industrial instances.

Comparing the heuristics, the solution qualities of SCC and SCP are similar for all

instances except the largest generated and the largest industrial instances, where SCC is

superior, thereby affirming our initial hypothesis that the randomized clustering process

aids the discovery of high-quality solutions, especially when the instance size scales up. For

all instances, FFMH found worse solutions than CPSR, SCC , and SCP . The gap between

their solutions, however, gradually tightened as the instance size increased. This behaviour
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Figure 5.6: Number of instances for which an exact method found the best solution over
runtime for 2SCSP-FFM.

Figure 5.7: Number of instances for which any approach found the best solution over runtime
for 2SCSP-FFM.

is also present in the industrial instances. CPSR found the high-quality solutions for the

industrial instances with |N | ≤ 21. For the rest of the instances, its solutions remain

competitive with the best performing approach, SCC .

The lower bound used for all instances with |N | ≥ 19 are produced from CPSR. Like in

Section 4.5.4, these bounds are non-trivial and are attributed to using the CP scheduling

tools.

5.5.4 Runtime Analysis

Figures 5.6 and 5.7 display the relative performance of the solution approaches over the

runtime. Out of the exact approaches, CPSR found the highest number of best solutions

in the first 400 seconds, but was superseded by MIPT
CO in the remaining runtime. For

the larger generated and industrial instances, CPSR remains the only viable model-based

approach. Comparing the exact approaches with the heuristic methods, for the smaller

instances, we observe that SCC and SCP found the highest number of best solutions before

the 2500th second, after which MIPT
CO overtook SCC and finished with approximately the
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same number as SCP . Like in Section 4.5.5, MILP models require longer runtime to achieve

similar performance with the sequential heuristics. For the large generated instances, CPSR

found the highest quality solutions before the 200th second, after which SCC dominated.

For the industrial instance, the relative solution quality between CPSR, SCC , and SCP is

steady after 1000 seconds, with CPSR finding the highest number of best solutions.

5.6 Conclusion

In this chapter, we extended select models and heuristics to solve the 2SCSP with Flexible

Item Length, Flexible Demand, and Marriageability. For the single resource constraint pro-

gramming formulation, we develop a concise augmentation using a state function spanning

the entire single resource horizon. We also investigate two marriageability formulations of

the mixed-integer programming models, one from a conflict-based perspective and another

from a treatment-based perspective, and modify both the first-fit-based heuristic and the

algorithms in the sequential heuristics. In our experiment, the single resource model CPSR

introduces orders-of-magnitude fewer variables than MILP models to describe the mar-

riageability requirement and remains the only model-based approach to scale effectively to

the larger generated and industrial instances. It yielded solutions slightly weaker with the

best sequential heuristic for the generated instances, but outperformed all other approaches

for two of the four industrial instances. With the additional marriageability requirement,

MILP models struggled to scale up, which can be attributed to the considerable number of

variables and constraints that are introduced.



Chapter 6

2SCSP with Flexible Item Length,

Flexible Demand, Marriageability,

and Scheduling Costs

T
his chapter extends the top-performing models and heuristics proposed for 2SCSP-

FF for the full Two-Stage Cutting Stock Problem with Flexible Item Length,

Flexible Demand, Order-to-order Marriageability, and Scheduling Costs (2SCSP-

FFMS). We develop expressions for each model to describe the scheduling costs and conduct

experiments on this packing-scheduling hybrid use case. Our results show that, with this

more complicated objective function, the single resource CP model performed worse than

it did on previous problems, while the performance of the sequential heuristics remained

steady.

6.1 Problem Description

In 2SCSP-FFMS, stock k can only be cut after its availability date ak, and order i has a due

date di. Any items cut before their due dates incur an inventory cost cinv for every unit area

per unit time; any items cut after their due dates incur tardiness cost ctard for every unit area

per unit time. Typically, ctard >> cinv, so tardiness is more heavily penalized. To simplify

the objective expression, we consider an approximation of the scheduling cost: we assume

all stocks are cut as soon as they are available. Formally, the approximated inventory cost

per unit area per unit time is cinvwili×max(0, di−ak), and the approximated tardiness cost

per unit area per unit time is ctardwili ×max(0, ak − di). Since an item of order i assigned

to stock k can only incur either inventory cost or tardiness cost, its scheduling cost per unit

area is in fact a constant, which we denote as Tik and is formally defined in Equation 6.1.
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Figure 6.1: Illustration of the CPSR model with a step function representing the scheduling
costs associated with a given order. The guillotine state function, widthwise capacity, the
partition number capacity, and the marriageability state function are the same as in the
2SCSP-FFM formulation (Figure 4.1 b, c, and d and Figure 5.1 e) and are not shown.

Tik =


ctard(ak − di) if ak > di

cinv(di − ak) if ak < di

0 otherwise

(6.1)

6.2 Exact Approaches

6.2.1 The Single Resource CP Formulation

To quantify the scheduling costs, we need information about both the order an item belongs

to and the index of the stock. In the single resource model, while the former can be easily

obtained via the index of the item’s interval variable, the index of each stock is implied in the

coordinates of the variables. Consequently, we define a new parameter, T SR
iτ , that represents

the scheduling cost per unit area incurred by assigning order i to stock κ such that, on the

single resource horizon, the coordinate τ is within the lengthwise interval defined by stock

κ. We formally define T SR
iτ in Equation 6.2. We note that, given an item of order i and its

positioning τ , T SR
i (τ) yields a constant.

T SR
i (τ) = Tiκ , where κ ∈ K |

κ−1∑
k=1

Lk ≤ τ ≤
κ∑

k=1

Lk (6.2)

The scheduling costs incurred for item p of order i is then T SR
i (StartOf(xip)), where xip

is the item’s interval variable on the single resource horizon and StartOf(xip) is its leftmost

lengthwise coordinates. As we vary τ along the single resource horizon horizon, T SR
i (τ)

becomes a step function (Figure 6.1 f), and can be natively expressed in CP Optimizer
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using the PiecewiseLinear functionality [134].

The total scheduling costs incurred by items over all orders, denoted as Ttotal, is expressed
in Equation 6.3 and is added to Objective Function (4.1a) when solving instances of 2SCSP-

FFMS. Here, wiSizeOf(xip) indicates the total area of each item p of order i.

Ttotal =
∑
i∈N

∑
p∈Ci

wiSizeOf(xip)T SR
i (StartOf(xip)). (6.3)

6.2.2 Assignment-based MILP Model

The total scheduling cost over all items, denoted as Ttotal, is described in Equation 6.4. We

recall that variable aijkl representing the area fulfilled for each partition l belonging to order

i on level j of stock k is indexed by both order and stock, and so we can compute the total

cost by multiplying the aijkl with the per-unit-area scheduling costs. We added Ttotal to
the packing-based objective function (4.6a) when solving instances of 2SCSP-FFMS. The

marriageability formulations of MIPAS without scheduling costs are found in Section 5.2.2.

Ttotal =
∑
k∈K

∑
j∈Jk

∑
l∈Pi

∑
i∈N

aijklTik (6.4)

6.2.3 Count-based MILP Model

Like the assignment-based MILP model, adding the scheduling costs to the counting-based

MILP model involves multiplying the per-unit-area scheduling cost with the item areas.

Since the definition of the item-area variable aijkl is the same as the assignment-based

model, we can reuse the definition of Ttotal from Equation 6.4 and add it to the original

packing objective function (4.6a). The marriageability formulations of MIPCO without

scheduling costs are described in Section 5.2.2.

6.3 The First-fit-based Heuristic

In model-based approaches, expressing scheduling cost involves extending the objective func-

tions; however, the first-fit-based heuristic, FFMH, lacks an declarative objective function,

so instead, we need to preprocess the input parameters to guide the solution construction.

Since incurring inventory costs is much cheaper than incurring tardiness costs, the heuristic

should avoid the latter. A simple solution is to cut orders from stocks as early as possible,

so that, in the worst case, cut orders are stored in the inventory for a long time. Translating

this strategy to the first-fit-based heuristic, we can sort the orders by their due dates and

the stocks by their availability dates, both in ascending order. As a result, orders with an

early due date are packed into the earliest available stocks.

As the base heuristic in Section 4.3 already sorts the orders and stocks by their physical

dimensions, the lexicographic order to which the parameters are sorted directly contributes
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to the lexicographic importance of the objectives. In our experiments, we find that solutions

typically incur more scheduling costs than the cost of wasteful packing. So, we first sort

the orders and stocks by their schedule-related parameters. Then, orders with identical due

dates are sorted by their widths and then length interval sizes, and stocks with identical

availability dates are sorted by their widths and then lengths. This sorting scheme results

in a greater emphasis on reducing scheduling costs.

6.4 The Sequential Heuristics

In this section, we modify the algorithms used in the steps of the top-performing configu-

rations in 2SCSP-FF, S : CPS1 +MIPS2 +MIPS3
simp and S : CCS1 +MIPS2 +MIPS3

simp.

The summary of these changes is shown in Table 6.1.

Step Component Modifications

S1 (Congruent Groups) Initial # of Clusters k = |N | clusters are initialized. k is decremented over time.
CCS1 Cluster using order due dates as input features
CPS1 New model clustering orders based on their due dates

S2 (Group to Levels) MIPS2 None

S3 (Levels to Stocks) MIPS3
simp Add scheduling cost to objective function.

Table 6.1: Changes made to select sequential heuristic configurations to tackle 2SCSP-
FFMS.

6.4.1 Finding Congruent Groups

The first step segments orders into congruent groups. Adding scheduling costs does not alter

the definition of congruency, so we can reuse the set of cannot-link relations C from Section

5.4, which considers both overlapping length intervals and order-to-order marriageability.

However, orders in a congruent group should have similar due dates, as they will be packed

into the same level in the subsequent step. Thus, we modify our algorithms accordingly.

Finding the Initial Number of Clusters

The first step of the heuristic starts with finding an initial number of clusters, k. In the

base heuristic, we initialized a lower bound in the hope that fewer groups can lead to larger

groups, which, in turn, increases the packing efficiency. However, with the scheduling costs,

having as few clusters as possible does not necessarily yield good solutions, as orders with

varying due dates may be forced together. In our experiments, we find that the costs

associated with scheduling are often higher than those with packing, so we let the initial k

be as large as possible (i.e. k = |N |), thereby assigning each order to its own cluster. The

hope is that, in the later steps of the heuristic, the due dates of orders in the level patterns

are identical, so matching them to a stock having an appropriate available date is easier.
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When the base heuristic increases k by 1, we decrement k by 1 to form congruent groups

containing more orders.

Constrained Clustering

The Constrained K-Means algorithm, CCS1, clusters orders based on the similarity of their

features while respecting a set of cannot-link relations, which, in 2SCSP-FFM, concerns

non-overlapping length intervals and order-to-order marriageability. With the scheduling

costs, we cluster orders around their due dates (Figure 6.2), hypothesizing that orders with

similar due dates are more likely to be assigned to the same stock. Since the cannot-link

relations did not change, we reuse its definition in Section 5.4.1.

Figure 6.2: Finding congruent groups by clustering around order due dates.

Constraint Programming Formulation

To tackle the 2SCSP-FFMS, we adapt CPS1 so that orders with similar due dates are clus-

tered together. The new formulation is expressed in Model 6.5, in which we introduce an

array of integer variables, t, where the rth element is the integer variable tr representing

the centroid of cluster r. Instead of the total number of clusters, we minimize the residual

sum of squares of the orders’ due dates, penalizing clusters with large variance in Objec-

tive Function 6.5a. With the updated C, we can also reuse Constraint (4.11b) to express

marriageability requirements.

min
∑
i∈N

(di − txi)
2 (6.5a)

s.t. tr ∈ {0, . . . ,max
i′∈N

di′} ∀r ∈ {1, . . . , k} (6.5b)

tr ≥ tr+1 r ∈ {1, . . . , k − 1} (6.5c)

(4.11b), (4.11c) (6.5d)
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We also reuse the solution cut in Expression 4.12, as the new variables tr are unrelated

to the order-to-cluster assignment.

6.4.2 Dividing Groups into Levels

Given congruent groups found by the first step, the second step of the heuristic distributes

items in each order in the same group to a set of levels of varying width. Here, no mod-

ification is needed for the second-step models proposed in Section 4.4, since orders in a

congruent group share similar due dates.

6.4.3 Assigning Levels To Stocks

MIPS3
simp is the preferred approach for both of the top-performing configurations to assign

level patterns generated from the previous step to stocks, so we add the scheduling cost

expressed in Equation (6.6) to its objective function (4.16a). We recall that zjk is a binary

variable that equals 1 if level pattern j is assigned to stock k, and djk is a continuous

variable that represents the length surplus exceeding ρmin
j for level pattern j assigned to

stock k. The additional scheduling cost added to the objective function is expressed as the

following:

Ttotal =
∑
k∈K

∑
j∈Sk

∑
i∈N

nijwiTik(ρ
min
j zjk + djk) (6.6)

where nij is the number of items belonging to order i present in level pattern j.

6.5 Numerical Results

We present our experimental results on 2SCSP-FFMS. As in Chapter 5, we only display the

marriageability formulation with the superior average solution quality after penalizing the

instances for which the approach failed to find a feasible solution within time and memory

limits. Top-performing sequential heuristic configurations S : CPS1 +MIPS2 +MIPS3
simp

and S : CCS1 +MIPS2 +MIPS3
simp are abbreviated as SCP and SCC .

6.5.1 Feasibility Analysis

The number of feasible solutions (Figure 6.3) found for each approach and their time to

feasibility (Figure 6.4) with the additional scheduling costs are similar to those without the

scheduling costs. Only SCP , SCC , and CPSR found a feasible solution to all generated and

industrial instances, all of which needed significantly less time than the other approaches.

Notably, SCC improved on its results for 2SCSP-FFM, and we suspect this is caused by the

change in the input features in the first step of the heuristic. CPSR again uses significantly

less time than all other approaches to find a feasible solution for the largest industrial

instance, resulting in a 500-second margin over the second-fastest approach, SCP . Both
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Figure 6.3: Number of generated and industrial instances with a feasible solution by each
model for 2SCSP-FFMS.

Figure 6.4: The average run time required to find a feasible solution for a given model at
an instance size for 2SCSP-FFMS.

MIP T
AS and MIP T

AS found a feasible solution to one of the industrial instances, which is

an improvement considering it could not find any solving 2SCSP-FFM.

6.5.2 Overall Quality

Figure 6.5 displays the average optimality gap of a solution compared with the best lower

bound found across all approaches. Any unsolved instances are omitted from the visualiza-

tion. With the additional objective term, different approaches behaved differently, yielding

trends in optimality gaps inconsistent with those observed in 2SCSP-FFM. For the small

generated instances, MIPT
AS and MIPT

CO yielded the best solutions and commanded a sig-

nificant margin over the next best approaches, SCC and SCP . Both CPSR and FFMH

struggled to find solutions that are competitive with the sequential heuristics. Increasing

the size of the generated instances again leads to all model-based approaches, except CPSR,

becoming intractable. FFMH, which was lacking in 2SCSP-FFM, found solutions compet-

itive with CPSR. Both sequential heuristics exhibited strong performances on the industrial

instances, outperforming both CPSR and FFMH.
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Figure 6.5: % optimality gap for generated and industrial instances for 2SCSP-FFMS.
Instances that are not solved by an approach are not included in that approach’s measure.
The y-axis are log scaled.

Figure 6.6: Number of instances for which an approach found the best solution over runtime
for 2SCSP-FFMS.

6.5.3 Runtime Analysis

Figure 6.6 records the number of best solutions found by each approach throughout the

runtime. For the smaller instances, SCC was dominant for the first 500 seconds, after which

the number of best solutions from both SCC and SCP dwindled, replaced instead by MIPT
AS

and MIPT
CO. MILPs appear to be more suitable with this more complex objective function,

as for the remainder of the runtime, they dominated this metric. For the larger generated

instances, SCC is superior to all other approaches for most of the runtime. SCP undermined

the dominance of SCC after the 400th second by finding 5 solutions better than SCC . CPSR,

the only model-based approach to find a feasible solution, was bested after the 50th second.

The industrial instances followed a similar trend, where SCC was better for most of the

solutions.
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6.6 Conclusion

In this chapter, we extended the exact models and the heuristics to reflect the industrial

use case with scheduling costs (2SCSP-FFMS). The single resource CP model remains the

most viable model-based approach, being the only one to effectively scale to the larger

industrial instances. Its ability to quickly find feasible solutions translated from 2SCSP-FF

and 2SCSP-FFM, as it required less time than even the heuristics. However, the single

resource model struggled to find high-quality solutions with this more difficult objective

function. In comparison, MIP T
AS and MIP T

CO are the preferred approach for the smaller

generated and industrial instances, and SCC and SCP are the preferred ones for the larger

instances. The fact that MILPs were much better than SCC and SCP for the smaller

generated instances suggests that the sequential heuristic’s modifications may be improved,

which we leave for future work.



Chapter 7

Conclusion and Next Steps

7.1 Summary and Contributions

I
n this thesis, we explored applying scheduling-based constraint programming tools to

solve variations of the novel Two-Dimensional Two-Stage Cutting Stock Problem with

Flexible Length, Flexible Demand, Marriageability, and Scheduling Costs (2SCSP-

FFMS). Stemming from the aluminum-metal industry, this problem is situated at the inter-

section of many hard problems. In solving large-scale instances of this problem, we showed

that tools developed for scheduling in general-purpose constraint programming solvers can

achieve state-of-the-art performance among model-based approaches and competitive per-

formance with customized heuristics.

In Chapter 4, we examined a variant of 2SCSP-FFMS that ignores stock treatment,

order properties, and scheduling costs. For the resulting problem, the Two-Dimensional

Two-Stage Cutting Stock Problem with Flexible Length and Flexible Demand (2SCSP-

FF), we develop a novel scheduling-based constraint programming model that adapted the

recently proposed single resource transformation [34]. In particular, we noticed a connection

between guillotine cuts and batch scheduling and introduced the use of state functions to

model these cuts, a new idea to the literature. For comparison purposes, we also developed

exact methods (three integer-based constraint programming models and two mixed-integer

linear models) and heuristics (a first-fit-based heuristic and a three-stage sequential heuris-

tic framework with 28 different configurations). Over the other exact methods, the single

resource model demonstrates an order-of-magnitude advantage in memory usage before the

search and the number of variables and constraints used. Accordingly, the single resource

model is the only viable model-based approach to solving the industrial instances. Com-

pared with the heuristics, the single resource model outperforms the simple first-fit-based

heuristic and is competitive with the best sequential heuristic. Nonetheless, the simplicity

and scalability of the single resource model coupled with its high-quality solutions remain

desirable in the industrial setting.

96
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Chapter 5 investigates a second variation of 2SCSP-FFMS that ignores any scheduling

costs. In addition to 2SCSP-FF, this problem considers treating the stocks once before cut-

ting so that the resulting partitions have desired properties. Items belonging to two orders

with conflicting properties cannot be cut from the same stock, leading to order-to-order

marriageability constraints. We augment the best performing approaches from Chapter 4:

the single-resource constraint programming model, the mixed-integer programming models,

and the sequential heuristic framework. We also adapt the first-fit heuristic as a baseline.

The representational efficiency of the single resource model remains prominent. The single

resource model outperforms other exact models for the larger instances and is competitive

with the best sequential heuristic for some instances.

Chapter 6 studied the full 2SCSP-FFMS problem, which adds scheduling costs to the

problem studied in Chapter 5. While the modelling efficiency of the single resource con-

straint programming model carried over, its solution quality is generally weaker than the

best sequential heuristic. This noticeable struggle may be attributed to the more complex

objective function but deserves further investigation.

In conclusion, our primary contribution, the scheduling-based single resource constraint

programming model, is able to consistently outperform other exact approaches for the

industrial-sized instances of variations of 2SCSP-FFMS. Its performance on these instances

is also competitive with an ad-hoc multi-step heuristic depending on the objective function.

7.2 Future Work

We anticipate two main directions for future work: improvements to the proposed ap-

proaches and extensions to problems beyond 2SCSP-FFMS.

7.2.1 Improvements to Existing Work

This study is motivated by real-life industrial applications, so the instances used in the

experiments are designed to reflect these use cases. While we have examined the per-

formance of various approaches on these instances, another important research direction

is to understand problem bottlenecks. For instance, it would be interesting to generate

phase-transition diagrams while varying problem parameters to characterize the solubility

of different instances [90]. Understanding these bottlenecks can lead to a more efficient and

tailored search process for high-quality solutions.

We noted in Chapter 2 that problems with marriageability requirements cannot be

directly decomposed into smaller problems due to a limiting number of stocks. Nonetheless,

assuming an infinite number of stocks may be reasonable in scenarios where new stocks can

be easily and timely procured. Under this assumption, 2SCSP-FFM and 2SCSP-FFMS

can be decomposed into smaller subproblems, each of which assigns subsets of orders with

identical demanded properties to an infinite set of stocks of varying types and can be
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solved independently. From this observation, we believe developing heuristics that relax

the stock cardinality requirement to take advantage of these independent subproblems will

be interesting. The solution to the relaxed problem can then serve as a starting point for

post-processing algorithms, such as a neighbourhood search.

Another idea not explored in this thesis is the set-cover MILP formulation and column-

generation-based heuristics. Traditionally, applying column-generation approaches to the

set-cover formulation works well for optimizing 2D packing problems of fixed item dimen-

sions: the master problem assigns cutting patterns to stocks, and the subproblem generates

new patterns to improve the objective value of the master problem [53]. For our problem,

the lengths of the items are flexible, so a secondary decision is required to localize the items’

length values. This decision needs to be resolved in either the master problem or the sub-

problem, and the resulting effects on the overall computation deserve future investigation.

For large industrial instances, while the lower bounds computed by the single resource

constraint programming model in Chapter 4, Chapter 5, and Chapter 6 are usable, exter-

nally developing a stronger lower bound can reduce the search space and help the solver

prove optimality. Various lower bound procedures have been developed for two-dimensional

packing problems, including dual feasible functions, contiguous relaxation, and state space

relaxations [137], but extending them to the problem with guillotine cuts or flexible item

sizes is nontrivial and lacking in literature. We leave the development of a stronger bound

as future work.

For all variations of 2SCSP-FFMS, the mixed-integer programming models excelled for

small instances, but experienced considerable scalability issues. A possible approach to

circumvent these issues is to use a rounding heuristic on the linear relaxation of the mixed-

integer linear programming models, as rounding heuristics have a track record alleviating

computation strain [77].

An alternative approach to improve the scalability of the mixed-integer programming

models is to integrate them in a large neighbourhood search. Large neighbourhood search

essentially removes a set of values from a solution and asks a solver, such as a mixed-integer

linear program or a constraint program, to reoptimize the partial solution and produce a

feasible solution. Here, the large neighbourhood search can provide a smaller scope in which

the mixed-integer linear programming models may be able to deliver strong performance.

Unfortunately, this potential performance gain will be at the expense of losing a global

lower bound and hence optimality guarantees. Examples of successful hybrids of large

neighbourhood search and exact methods to solve packing-related problems include the

work by Hojabri et al. [119] and by Lodi et al. [175].

Finally, the results in all three chapters showed that the best sequential heuristic config-

uration can at times outperform the single resource constraint programming model. Hence,

we believe that further investigation into solving the subproblems within the heuristic, es-

pecially the problem of assigning levels to stocks, is warranted. Possible methods include
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Figure 7.1: Proposed constraint programming model for 2D-LSPP.

rounding heuristics, local search, and large neighbourhood search.

7.2.2 Extensions to Related Problems

Another direction of future work is to extend the scheduling-based constraint programming

model to other problems.

Two-Dimensional Level Strip Packing Problem In Two-Dimensional Level Strip

Packing (2D-LSPP), a rectangular stock of fixed width and infinite length needs to be cut

into a set of items using at most three stages of guillotine cuts, and the goal is to cut the

shortest length possible [174]. An important nuance between 2D-LSPP and other guillotine

packing problems is that two items cannot be placed side-by-side within a level. We can

easily translate this packing problem to a batch scheduling problem by interpreting items

as operations without any precedence requirements and the stock as a single machine with

capacity equalling the stock width. The desire to minimize length can then interpreted as

one to minimize the makespan.

Here, we adapt our single resource constraint programming formulation to the 2D-LSPP

(Figure 7.1). Given a set of items N , for each item i ∈ N with width wi and length ρi,

we introduce an interval variable xi with duration ρi. We also declare a state function g

to represent the guillotine cuts (Figure 7.1b). We use a cumulative function Ω to track the

amount of stock width not used at any given length. Different from 2SCSP-FF, 2D-LSPP

allows three-stages of guillotine cuts, which can be represented by not enforcing the end

times of each items to align with a state in the state function. Then, for stock of width W
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and infinite length, we can compute an upper bound LUB for the stock length using some

simple heuristic and denote the lengthwise horizon as H = [0, LUB] (Figure 7.1a). Finally,

we again use a cumulative function Ω to track the widthwise usage of the stock (Figure

7.1c). Now, we can define the scheduling-based constraint program as follows.

min max
i∈N

EndOf(xi) (7.1a)

s.t. AlwaysConstant(g, xi, T rue, False) ∀i ∈ N (7.1b)

Ω = Pulse(H,W )−
∑
i∈N

Pulse(xi, wi) (7.1c)

Ω ≥ 0 (7.1d)

xi : IntervalVar(H, ρi) ∀i ∈ N (7.1e)

g : StateFunction() (7.1f)

Objective (7.1a) defines the maximum stock length required, which equals the latest end

time of all interval variables. Constraint (7.1b) represents the guillotine cuts. In particular,

we recall that the last two arguments to the constraint AlwaysConstant is true only if

the start and the end times of interval variable xi are aligned with the start and end times

of a state in the state function g, respectively. With three stages of guillotine cuts, the

rightmost coordinates of items on the same level does not need to align, so we set that

latter argument to false. Constraints (7.1c) and (7.1d) ensure that the widthwise capacity

of the stock is always satisfied. The rest define the variables.

Comparing with the single resource Model 4.1 in Chapter 4, we observe that Model 7.1

does not declare any infeasible regions, since only one stock is present, and that all item

interval variables are non-optional. These should allow a stronger temporal relaxation,

improve the search process, and reduce the search space. Furthermore, if the stock length

is interpreted as a time horizon, the objective of 2D-LSPP is equivalent to minimizing the

makespan, an objective function which constraint programming solvers are typically very

good at optimizing. Hence, we believe extending the scheduling concepts to this problem

is very promising.

Two-Dimensional Bin Packing Problem with Size Changeable Items Introduced

by Lee et al. [163], the Two-Dimensional Bin Packing Problem with Size Changeable Items

generalizes 2SCSP-FF in that the width of items is also flexible within a specified range.

In other words, item p ∈ Ci of order i ∈ N is characterized by a flexible width and length

within intervals w̄i = [wmin
i , wmax

i ] and ρ̄i = [ρmin
i , ρmax

i ], respectively. To adapt the single

resource model, we recognize that the magnitude of Pulse can in fact be an interval, so we

simply need to redefine the cumulative function representing the net usage of stock width
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to be Ω =
∑

k∈K Pulse(ck,Wk) −
∑

i∈N
∑

p∈Ci
Pulse(xip, w̄i). Here, the only change is

the substitution of wi with w̄i. Because the change is subtle, the representational efficiency

of the single resource model exhibited in solving 2SCSP-FF is likely to carry over to this

problem, making this an interesting direction for further investigation.

Two-Dimensional Packing Problems with Defects Introduced by Afsharian [3], the

Two-Dimensional Cutting Stock Problem with Defects and Guillotine Cuts asks for rect-

angular items to be cut out of a larger rectangular stock using guillotines while avoiding

rectangular defects on the stocks. Without loss of generality, assuming the length of stocks

is unified into a single resource, the length of a defective area can easily modelled by in-

troducing an interval variable with start and end times representing the its leftmost and

rightmost length coordinates. However, representing the width of the defective area using

cumulative functions can be difficult, as the pulses generated by this interval variable does

not represent the absolute widthwise positioning of the defective area. One alternative

would be to declare two sets of interval variables for every item and for every defective area,

one set representing the length and another representing the width, similar to the work by

Clautiaux et al. [55]. The resulting effect on the performance of the model, however, is

unclear.



Appendix A

Parameter Notations

Table A.1 summarizes the notations used in this thesis.

Parameter Description

∀ order i ∈ N

qmax
i Upper bound on the total area demanded of order i.
qmin
i Lower bound on the total area demanded of order i.
wi Width of items belonging to order i.

ρmax
i Upper bound on the item length of order i.
ρmin
i Lower bound on the item length of order i.
di Due date of order i.
Pi The index set of items/partitions belonging to order i on a level.
Ai The index set of necessary items belonging to order i that must be

present in all solutions.
Bi The index set of optional items belonging to order i.
Ci The index set of all possible items belonging to order i.

∀ order properties γ ∈ G

Nγ ⊆ N The subset of orders demanding order properties γ.
pγ Maximum number of items demanding order properties γ on a level.

∀ stock k ∈ K

Wk Width of stock k.
Lk Length of stock k.
ak Availability date of stock k.
Jk The set of possible numbers of levels of stock k.

Table A.1: Notations describing or derived from the problem inputs.
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Table A.2 summarizes the notations specific to the sequential heuristic.

Parameter Description

C The set of cannot-link relations.
S The set of level patterns obtained by solving the first second step.
Sk The set of level patterns obtained by solving the first second step

that can fit widthwise into stock k.

Table A.2: Notations used in the sequential heuristic.

Table A.3 describes the notations specific to the 2SCSP-FFMS in Chapter 6.

Parameter Description

ctard Tardiness cost per unit area per unit time.
cinv Inventory cost per unit area per unit time.
Tik Scheduling cost per unit area of order i assigned to stock k.
T SR
i (τ) Scheduling cost per unit area of order i assigned to coordinate τ in

the single resource.
Ttotal The total scheduling costs for all orders.

Table A.3: Notations used in Chapter 6.



Appendix B

2SCSP-FF: Detailed Results

The tables in this appendix present the detailed results for solving the generated and in-

dustrial instances of 2SCSP-FF. In total, there are 50 generated instances and 4 industrial

instances. Table B.1 describes the number of feasible solutions found, Table B.2 describes

the average optimality gap calculated using Equation (4.34), and Table B.3 describes the

average time taken for an approach to find the first feasible solution. For Table B.2 and

Table B.3, if an approach did not find a feasible solution for an instance, we penalize it

with the worst solution found for that instance. The lower bound used in the optimality

gap calculation is the best lower bound found across all approaches.

Generated Industrial

|N | 4 8 16 32 64 19 21 47 149

|K| 8 16 32 64 128 42 172 149 636

S : CCS1 + CPS2 +BDS3,lb
comp 10 9 5 2 0 1 1 0 0

S : CCS1 + CPS2 +BDS3,ub
comp 10 10 1 0 0 1 0 0 0

S : CCS1 + CPS2 +BDS3,lb
simp 9 10 10 9 7 1 1 1 1

S : CCS1 + CPS2 +BDS3,ub
simp 9 10 10 9 6 1 1 0 1

S : CCS1 + CPS2 + CPS3 7 8 6 0 0 0 0 0 0

S : CCS1 + CPS2 +MIPS3
comp 9 10 9 5 0 1 1 0 0

S : CCS1 + CPS2 +MIPS3
simp 10 10 10 9 9 1 1 1 0

S : CCS1 +MIPS2 +BDS3,lb
comp 10 10 10 7 1 1 1 0 0

S : CCS1 +MIPS2 +BDS3,ub
comp 10 10 6 0 0 1 1 0 0

S : CCS1 +MIPS2 +BDS3,lb
simp 10 10 10 10 10 1 1 1 1

S : CCS1 +MIPS2 +BDS3,ub
simp 10 10 10 10 10 1 1 1 1

S : CCS1 +MIPS2 + CPS3 10 10 9 10 10 1 1 1 1

S : CCS1 +MIPS2 +MIPS3
comp 10 10 10 9 3 1 1 1 0

S : CCS1 +MIPS2 +MIPS3
simp 10 10 10 10 10 1 1 1 1

S : CPS1 + CPS2 +BDS3,lb
comp 9 10 8 5 1 1 1 0 0
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S : CPS1 + CPS2 +BDS3,ub
comp 9 10 4 1 0 1 1 0 0

S : CPS1 + CPS2 +BDS3,lb
simp 10 10 10 10 5 1 1 0 1

S : CPS1 + CPS2 +BDS3,ub
simp 10 10 10 10 5 1 1 0 1

S : CPS1 + CPS2 + CPS3 8 4 4 0 0 0 0 0 0

S : CPS1 + CPS2 +MIPS3
comp 9 10 9 7 2 1 1 0 0

S : CPS1 + CPS2 +MIPS3
simp 10 10 10 10 5 1 1 0 1

S : CPS1 +MIPS2 +BDS3,lb
comp 10 10 10 7 1 1 1 1 0

S : CPS1 +MIPS2 +BDS3,ub
comp 10 10 7 0 0 1 1 0 0

S : CPS1 +MIPS2 +BDS3,lb
simp 10 10 10 10 9 1 1 1 0

S : CPS1 +MIPS2 +BDS3,ub
simp 10 10 10 10 9 1 1 1 1

S : CPS1 +MIPS2 + CPS3 10 10 10 10 10 1 1 1 1

S : CPS1 +MIPS2 +MIPS3
comp 10 10 10 10 2 1 1 1 0

S : CPS1 +MIPS2 +MIPS3
simp 10 10 10 10 10 1 1 1 1

FFMH 9 10 10 10 9 1 1 1 0

CPCO 10 10 8 0 0 1 0 0 0

CP IT 10 10 3 0 0 1 0 0 0

CPSR 10 10 10 10 10 1 1 1 1

CPST 10 10 10 3 0 1 0 0 0

MIPAS 8 9 10 0 0 0 0 0 0

MIPCO 8 9 10 0 0 0 0 0 0

Table B.1: The number of instances for which an approach found a feasible solution for
2SCSP-FF for all approaches.

Generated Industrial

|N | 4 8 16 32 64 19 21 47 149

|K| 8 16 32 64 128 42 172 149 636

S : CCS1 + CPS2 +BDS3,lb
comp 29.1 33.6 136.6 110.0 111.6 29.1 215.3 107.1 88.0

S : CCS1 + CPS2 +BDS3,ub
comp 32.1 26.1 148.3 112.4 111.6 29.4 236.9 107.1 88.0

S : CCS1 + CPS2 +BDS3,lb
simp 27.7 15.8 12.7 63.8 94.8 28.5 69.4 89.9 87.6

S : CCS1 + CPS2 +BDS3,ub
simp 26.4 17.2 11.7 63.7 94.1 28.5 69.2 107.1 85.1

S : CCS1 + CPS2 + CPS3 47.6 62.3 79.6 112.4 111.6 116.0 236.9 107.1 88.0

S : CCS1 + CPS2 +MIPS3
comp 33.5 55.5 112.0 103.4 111.6 38.1 236.9 107.1 88.0

S : CCS1 + CPS2 +MIPS3
simp 22.8 13.4 12.5 62.0 89.2 29.9 73.1 85.9 88.0

S : CCS1 +MIPS2 +BDS3,lb
comp 13.9 9.1 48.1 108.5 109.2 24.5 71.9 107.1 88.0

S : CCS1 +MIPS2 +BDS3,ub
comp 14.8 9.2 43.7 112.4 111.6 26.2 73.2 107.1 88.0

S : CCS1 +MIPS2 +BDS3,lb
simp 13.8 5.2 2.9 58.1 82.3 21.3 67.7 74.9 85.9

S : CCS1 +MIPS2 +BDS3,ub
simp 13.8 5.3 3.0 58.1 76.6 20.8 67.6 75.2 83.9

S : CCS1 +MIPS2 + CPS3 16.4 9.6 37.9 61.3 76.4 21.4 73.4 82.0 79.4



APPENDIX B. 2SCSP-FF: DETAILED RESULTS 106

S : CCS1 +MIPS2 +MIPS3
comp 16.7 15.2 93.4 109.8 111.5 116.0 236.7 74.4 88.0

S : CCS1 +MIPS2 +MIPS3
simp 13.0 4.9 3.3 55.7 72.0 22.9 68.9 74.2 87.7

S : CPS1 + CPS2 +BDS3,lb
comp 29.3 25.6 114.4 105.3 111.6 28.9 223.9 107.1 88.0

S : CPS1 + CPS2 +BDS3,ub
comp 30.7 27.6 97.0 111.9 111.6 30.0 72.7 107.1 88.0

S : CPS1 + CPS2 +BDS3,lb
simp 23.3 14.3 11.1 64.5 102.2 28.7 68.9 107.1 83.7

S : CPS1 + CPS2 +BDS3,ub
simp 23.3 13.9 11.2 64.5 96.8 28.7 68.8 107.1 83.9

S : CPS1 + CPS2 + CPS3 44.8 76.1 122.3 112.4 111.6 116.0 236.9 107.1 88.0

S : CPS1 + CPS2 +MIPS3
comp 35.2 29.9 118.8 95.9 111.6 32.6 70.3 107.1 88.0

S : CPS1 + CPS2 +MIPS3
simp 23.3 14.2 11.5 64.1 97.2 28.7 72.0 107.1 88.0

S : CPS1 +MIPS2 +BDS3,lb
comp 11.7 9.8 53.7 108.3 111.0 22.9 130.7 107.1 88.0

S : CPS1 +MIPS2 +BDS3,ub
comp 13.5 8.3 37.7 112.4 111.6 21.7 70.5 107.1 88.0

S : CPS1 +MIPS2 +BDS3,lb
simp 11.6 4.4 2.9 59.5 88.8 20.3 68.0 86.3 88.0

S : CPS1 +MIPS2 +BDS3,ub
simp 11.6 4.3 2.6 59.3 84.3 20.1 67.6 74.6 84.2

S : CPS1 +MIPS2 + CPS3 14.8 10.4 11.4 61.9 77.4 24.3 74.2 82.6 79.4

S : CPS1 +MIPS2 +MIPS3
comp 14.5 15.0 44.9 85.9 111.4 114.7 229.5 74.2 88.0

S : CPS1 +MIPS2 +MIPS3
simp 11.7 4.5 2.5 55.5 72.4 22.8 67.8 74.2 87.0

CPCO 8.2 25.7 64.9 112.4 111.6 35.9 236.9 107.1 88.0

CP IT 31.1 43.4 112.3 112.4 111.6 46.2 236.9 107.1 88.0

CPSR 18.6 10.4 8.7 57.9 72.4 22.8 68.9 75.8 71.9

CPST 26.9 28.1 45.8 99.5 111.6 51.7 236.9 107.1 88.0

MIPAS 15.2 13.3 6.8 112.4 111.6 116.0 236.9 107.1 88.0

MIPCO 15.4 12.3 6.9 112.4 111.6 116.0 236.9 107.1 88.0

Table B.2: % optimality gap for generated and industrial instances for 2SCSP-FF for all
approaches.

Generated Industrial

|N | 4 8 16 32 64 19 21 47 149

|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +BDS3,lb
comp 2.6 3.4 2.0 2520.5 TO 3.0 5.0 TO TO

S : CCS1 +MIPS2 +BDS3,ub
comp 3.7 3240.0 3240.5 TO TO TO TO TO TO

S : CCS1 +MIPS2 +BDS3,lb
simp 1.9 2.7 3.2 5.9 2.3 3.0 1.0 15.0 20.0

S : CCS1 +MIPS2 +BDS3,ub
simp 2.9 2.3 1.7 4.3 2.9 1.5 2.0 12.8 22.6

S : CCS1 +MIPS2 + CPS3 2.7 3.8 362.6 12.9 177.0 4.0 2.0 12.0 25.0

S : CCS1 +MIPS2 +MIPS3
comp 2.1 2.2 3.4 362.2 3240.4 4.0 3.0 21.0 TO

S : CCS1 +MIPS2 +MIPS3
simp 2.0 1.1 2.1 4.0 10.3 2.0 5.0 9.0 91.0

S : CPS1 +MIPS2 +BDS3,lb
comp 3.4 2.3 2.1 1441.2 TO 2.0 2.0 11.0 TO

S : CPS1 +MIPS2 +BDS3,ub
comp 361.9 3240.3 TO TO TO TO TO TO TO

S : CPS1 +MIPS2 +BDS3,lb
simp 3.0 2.8 3.5 2.3 793.5 1.0 4.0 13.0 TO
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S : CPS1 +MIPS2 +BDS3,ub
simp 2.2 2.2 2.3 2.1 409.0 1.0 5.0 10.0 21.0

S : CPS1 +MIPS2 + CPS3 3.6 2.2 5.7 31.7 334.3 1.0 4.0 12.0 21.0

S : CPS1 +MIPS2 +MIPS3
comp 2.5 2.4 2.8 2.3 2881.0 4.0 1.0 53.0 TO

S : CPS1 +MIPS2 +MIPS3
simp 2.9 2.9 1.9 2.9 268.2 1.0 5.0 8.0 98.0

CPCO 3.4 20.1 1029.2 TO TO 137.0 TO TO TO

CP IT 3.3 67.0 2701.1 TO TO 17.0 TO TO TO

CPSR 2.0 3.4 3.3 5.7 3.7 2.0 3.5 2.0 12.0

CPST 3.4 58.4 438.1 3217.9 TO 79.0 TO TO TO

MIPAS 721.9 420.7 641.7 TO TO TO TO TO TO

MIPCO 722.2 378.1 380.4 TO TO TO TO TO TO

Table B.3: Time to feasibility in seconds for generated and industrial instances for 2SCSP-
FF for all approaches. TO denotes all instances of the approach timed out.



Appendix C

2SCSP-FFM: Detailed Results

The content in this appendix pertains to 2SCSP-FFM and is similarly structured as Ap-

pendix B.

Generated Industrial
|N | 4 8 16 32 64 19 21 47 149
|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +MIPS3
simp 10 10 10 10 10 1 1 1 1

S : CPS1 +MIPS2 +MIPS3
simp 10 10 10 10 10 1 1 1 1

CPSR 10 10 10 10 10 1 1 1 1
FFMH 9 10 10 10 9 1 1 1 0

MIPT
AS 9 9 2 0 0 0 0 0 0

MIPC
AS 9 9 0 0 0 0 0 0 0

MIPT
CO 9 10 8 0 0 0 0 0 0

MIPC
CO 9 10 8 0 0 0 0 0 0

Table C.1: The number of instances for which an approach found a feasible solution for
2SCSP-FFM for all approaches.

108



APPENDIX C. 2SCSP-FFM: DETAILED RESULTS 109

Generated Industrial
|N | 4 8 16 32 64 19 21 47 149
|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +MIPS3
simp 9.0 36.6 26.5 75.5 75.1 35.3 89.9 79.5 75.5

S : CPS1 +MIPS2 +MIPS3
simp 7.4 31.3 25.9 78.4 93.0 35.3 86.9 78.6 93.1

CPSR 18.2 42.5 33.4 77.1 76.2 30.2 76.5 80.3 76.1
FFMH 51.2 69.8 57.3 83.7 81.6 47.5 81.4 86.1 93.1

MIPT
AS 11.9 35.7 101.3 88.7 97.6 90.6 89.9 99.5 93.1

MIPC
AS 11.2 35.0 122.3 88.7 97.6 90.6 89.9 99.5 93.1

MIPT
CO 11.7 29.9 44.0 88.7 97.6 90.6 89.9 99.5 93.1

MIPC
CO 11.7 29.9 44.1 88.7 97.6 90.6 89.9 99.5 93.1

Table C.2: % optimality gap for generated and industrial instances for 2SCSP-FFM for all
approaches.

Generated Industrial
|N | 4 8 16 32 64 19 21 47 149
|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +MIPS3
simp 4.3 2.1 3.1 9.5 35.3 2.0 11.0 51.0 657.0

S : CPS1 +MIPS2 +MIPS3
simp 2.1 2.1 73.7 367.4 415.8 3.0 7.0 421.0 546.0

CPSR 2.2 2.8 3.6 6.2 3.7 4.0 5.0 2.0 41.0
FFMH 362.8 6.2 24.1 118.9 987.3 9.0 131.0 557.0 TO

MIPC
AS 363.0 862.2 TO TO TO TO TO TO TO

MIPT
AS 362.8 874.1 3449.9 TO TO TO TO TO TO

MIPC
CO 361.3 38.2 1696.5 TO TO TO TO TO TO

MIPT
CO 362.7 397.6 1698.3 TO TO TO TO TO TO

Table C.3: Time to feasibility in seconds for generated and industrial instances for 2SCSP-
FFM for all approaches. TO denotes all instances of the approach timed out.



Appendix D

2SCSP-FFMS: Detailed Results

The content in this appendix pertains to the 2SCSP-FFMS and is similarly structured as

Appendix B.

Generated Industrial
|N | 4 8 16 32 64 19 21 47 149
|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +MIPS3
simp 10 10 10 10 10 1 1 1 1

S : CPS1 +MIPS2 +MIPS3
simp 10 10 10 10 10 1 1 1 1

CPSR 10 10 10 10 10 1 1 1 1
FFMH 9 10 10 10 10 1 1 1 0

MIPT
AS 10 10 2 0 0 1 0 0 0

MIPC
AS 10 10 5 0 0 1 0 0 0

MIPT
CO 10 10 10 0 0 1 0 0 0

MIPC
CO 10 10 10 0 0 1 0 0 0

Table D.1: The number of instances for which an approach found a feasible solution for
2SCSP-FFMS for all approaches.
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Generated Industrial
|N | 4 8 16 32 64 19 21 47 149
|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +MIPS3
simp 47 65 1765 79 78 55 133 1553 5542

S : CPS1 +MIPS2 +MIPS3
simp 47 65 1454 80 80 55 130 1587 5443

CPSR 504 155 4716 198 242 85 146 2863 6589
FFMH 1749 681 6503 259 235 169 141 2278 7534

MIPT
AS 14 63 7292 337 313 29 470 3341 7534

MIPC
AS 14 68 7460 337 313 27 470 3341 7534

MIPT
CO 14 62 1589 337 313 26 470 3341 7534

MIPC
CO 14 61 1614 337 313 27 470 3341 7534

Table D.2: % optimality gap for generated and industrial instances for 2SCSP-FFMS for
all approaches.

Generated Industrial
|N | 4 8 16 32 64 19 21 47 149
|K| 8 16 32 64 128 42 172 149 636

S : CCS1 +MIPS2 +MIPS3
simp 2.6 1.9 3.1 10.3 26.7 3.0 12.0 113.0 1658.0

S : CPS1 +MIPS2 +MIPS3
simp 3.2 3.4 331.4 370.5 390.0 364.0 368.0 385.0 535.0

CPSR 8.4 2.6 2.7 18.6 5.4 5.0 2.0 8.0 67.0
FFMH 362.8 6.0 23.1 114.5 672.8 9.0 123.0 503.0 TO

MIPC
AS 3.6 392.8 3040.9 TO TO 2627.0 TO TO TO

MIPT
AS 2.5 317.2 3109.4 TO TO 1425.0 TO TO TO

MIPC
CO 2.5 20.5 830.0 TO TO 289.0 TO TO TO

MIPT
CO 2.6 24.0 876.2 TO TO 345.0 TO TO TO

Table D.3: Time to feasibility in seconds for generated and industrial instances for 2SCSP-
FFMS for all approaches. TO denotes all instances of the approach timed out.
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[58] Jean-François Côté, Michel Gendreau, and Jean-Yves Potvin. “An Exact Algorithm

for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints”.

In: Oper. Res. 62.5 (2014), pp. 1126–1141.

[59] Harlan Crowder, Ellis L. Johnson, and Manfred Padberg. “Solving Large-Scale Zero-

One Linear Programming Problems”. In: Operations Research 31.5 (1983), pp. 803–

834.

[60] Yaodong Cui, Yi Yao, and Yi-Ping Cui. “Hybrid approach for the two-dimensional

bin packing problem with two-staged patterns”. In: Int. Trans. Oper. Res. 23.3

(2016), pp. 539–549.

[61] G. B. Dantzig. “Maximization of a Linear Function of Variables Subject to Linear In-

equalities”. In: [Activity Analysis of Production and Allocation, Cowles Commission

Monograph] 13 (1951).

[62] George B. Dantzig. “Linear programming and extensions”. In: 1963.

[63] Rina Dechter and Judea Pearl. “Generalized Best-First Search Strategies and the

Optimality of A*”. In: J. ACM 32.3 (1985), pp. 505–536.

[64] Türkay Dereli and Gülesin Sena Das. “A Hybrid Simulated-Annealing Algorithm

for Two-Dimensional Strip Packing Problem”. In: Adaptive and Natural Computing

Algorithms, 8th International Conference, ICANNGA 2007, Warsaw, Poland, April

11-14, 2007, Proceedings, Part I. Ed. by Bartlomiej Beliczynski, Andrzej Dzielinski,

Marcin Iwanowski, and Bernardete Ribeiro. Vol. 4431. Lecture Notes in Computer

Science. Springer, 2007, pp. 508–516.

[65] Guy Desaulniers, Jacques Desrosiers, Irina Ioachim, Marius Solomon, François Soumis,

and Daniel Villeneuve. “A Unified Framework for Deterministic Time Constrained

Vehicle Routing and Crew Scheduling Problems”. In: vol. 57-93. Jan. 1998, pp. 57–

93.

[66] M. Desrochers, J. Lenstra, Martin Savelsbergh, and F. Soumis. “Vehicle routing

with time windows: Optimization and approximation”. In: Veh Rout Methods Stud

16 (Jan. 1988).

[67] Jacques Desrosiers, François Soumis, and Martin Desrochers. “Routing with time

windows by column generation”. In: Networks 14.4 (1984), pp. 545–565.

[68] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. “Solving a cutting-

stock problem with the constraint logic programming language CHIP”. In: Mathe-

matical and Computer Modelling 16 (1992), pp. 95–105.

[69] Michael Drexl. “Synchronization in Vehicle Routing - A Survey of VRPs with Mul-

tiple Synchronization Constraints”. In: Transp. Sci. 46.3 (2012), pp. 297–316.



BIBLIOGRAPHY 118

[70] Alessandro Druetto and Andrea Grosso. “Column generation and rounding heuristics

for minimizing the total weighted completion time on a single batching machine”.

In: Computers Operations Research 139 (2022), p. 105639.

[71] Harald Dyckhoff. “A New Linear Programming Approach to the Cutting Stock Prob-

lem”. In: Oper. Res. 29.6 (1981), pp. 1092–1104.

[72] Jens Egeblad and David Pisinger. “Heuristic approaches for the two- and three-

dimensional knapsack packing problem”. In: Comput. Oper. Res. 36.4 (2009), pp. 1026–

1049.

[73] Leah Epstein, Asaf Levin, and Rob van Stee. “Two-dimensional packing with con-

flicts”. In: Acta Informatica 45.3 (2008), pp. 155–175.
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