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Abstract

We investigate the novel Two-Dimensional Two-stage Cutting Stock Problem with Flexible
Length, Flexible Demand, Order-to-Order Marriageability, and Scheduling Costs (2SCSP-
FFMS): orders for rectangular items must be cut from treated rectangular stocks using
guillotine cuts with the objective to minimize waste, inventory cost, and tardiness cost.
Different from problems in the literature, the 2SCSP-FFMS allows the item length and total
order demands to vary within customer-specified intervals. We first investigate a variation of
the problem that ignores marriageability (pairwise conflicts between orders) and scheduling
costs, proposing constraint programming models, mixed-integer programming models, and
heuristics. Then, we study a second variation that adds the marriageability requirement
before examining the full 2SCSP-FFMS problem. Accordingly, we extend the approaches
that performed best in the first variation to the second one and the full 25CSP-FFMS.
For each of these problems, we perform empirical analysis on both generated and real-
life industrial instances. Notably, our scheduling-based constraint programming model has
orders-of-magnitude smaller memory requirements over other exact methods and can be

competitive with a customized multi-phase heuristic.
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Chapter 1

Introduction

ONSTRAINT programming is a paradigm that solves combinatorial problems by a
combination of search and logical reasoning. Drawing upon techniques from arti-
ficial intelligence, computer science, and operations research, constraint program-

ming represents problems by declaring a set of constraints over a set of variables and is
often seen as an alternative to mathematical programming [14]. A distinguishing feature
of constraint programming compared to other model-based paradigms is the expressivity of
its constraints: they are not limited to mathematical expressions. In particular, constraint
programming offers global constraints that describe recurring problem substructures and
make inferences based on the entire substructure instead of just individual mathematical
expressions [14]. In addition, constraint programming allows users the flexibility to define
constraints with customized inference algorithms [129).

Solving constraint programs traditionally involves building tree-search algorithms, the
process of which can be complex and time-consuming [14},33]. To improve the accessibility of
constraint programming, since the 1980s, researchers have built general-purpose constraint
programming solvers that search systematically [56, 57, 138]. These solvers are designed to
be off-the-shelf toolboxes with built-in constraints and variable types that can be used to
construct a structured model representing the problem. Then, the solvers execute a series
of internal routines to search for solutions [159]. As a result, practitioners can leverage the
expressivity of constraint programming without needing to develop the internal workings
of the solver.

Although general-purpose solvers allow diverse problems to be modelled using the same
set of tools, each problem can still be modelled using possibly different formulations of
variables and constraints [229]. In constraint programming, different formulations can result
in different search trees and different levels of inference at each search node, leading to
varying performance [33| 34, 229]. The promise of performance gains makes examining
these formulations an imperative to obtaining quality results.

Constraint programming has been applied to many different problem domains, the most
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successful being scheduling [157]. Scheduling problems involve the allocation of resources
over time and are computationally difficult to solve, with many variations being NP-hard
[87, (107, |196]. These problems have shown a natural affinity to be framed as constraint
programs, as their inherent substructures, such as precedence constraints and optional tasks,
naturally invite temporal reasoning, a particular type of inference integrated into most
general-purpose solvers [50, 160} (199, 206]. Some solvers, such as IBM’s CP Optimizer
[128], also combine linear relaxation with the temporal reasoning for enhanced performance
on scheduling problems [158]. A testament to its success, constraint programs are currently
being relied on to schedule many major business operations, including airport flights in
Hong Kong [117] and transshipment hubs in the port of Singapore [117].

Constraint programming has yet to reach state-of-the-art in a number of other prob-
lems including two-dimensional cutting stock problems. First studied in 1939 [143], cutting
stock problems, also known as bin packing problems, arise from natural applications such
as manufacturing [136, [163], 232] and transportation [136, 205|. In two-dimensional cutting
stock problems, the goal is to cut large rectangular stocks into smaller rectangular pieces to
fulfill orders, and the problem becomes even more complex if there are restrictions on the
form of cuts (e.g., guillotine cuts, see Section. Many solution techniques have tackled
this problem, with the most popular exact method being mixed-integer linear programming
[137]. Around the turn of the century, academic efforts and technological breakthroughs
spurred advances in constraint programming, resulting in the development of global con-
straints PACK for one-dimensional packing [221] and CUMULATIVE for the resource capacity
120} 226]. However, these tools have mostly been applied to other packing problems, such
as the optimal rectangle packing problem [154] 155, 194} |225| [226], so the performance of
constraint programming on two-dimensional cutting stock problems, especially those with
complex cutting requirements, remains largely unknown.

Researchers have identified the link between packing and scheduling since the late 1990s
[65, 110]. Notably, these problems share a similar problem structure: both require resource
capacities to be satisfied. For example, a single machine job-shop-scheduling problem with-
out precedence can be reduced to a one-dimensional packing problem if jobs and operations
are interpreted as pieces that need to be cut and machine capacity over time as stocks. This
relationship invites further investigation into constraint programming’s ability to solve two-
dimensional packing problems.

This thesis leverages constraint programming tools designed for scheduling problems to
solve different variations of a novel packing problem from the aluminum-metal industry:
the Two-Dimensional Two-Stage Cutting Stock Problem with Flexible Length, Flexible
Demand, Marriageability, and Scheduling Costs (2SCSP-FFMS). We compare the results
with mixed-integer programs and heuristics. At the time of writing, constraint programming
has neither been used to study two-dimensional packing problems with flexible dimensions

nor packing problems with guillotine cuts.
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Thesis Statement This thesis develops optimization approaches to solve a novel packing
problem, the 2SCSP-FFMS, that arises from the industry. The central thesis is as follows:

Tools developed for scheduling in general-purpose constraint programming solvers
can achieve state-of-the-art performance among model-based approaches and
competitive performance with customized heuristics in solving large-scale in-

dustrial packing problems.

The thesis outline and the primary contributions are discussed in the following sections.

1.1 Thesis Outline

Chapter [2] defines and formalizes our problem, including the notation and terminologies
used throughout the thesis. The chapter closes with a detailed description of the experiment
setup and the data used.

Chapter [3| presents the background necessary in understanding the thesis. First, the
chapter formalizes the main optimization paradigms, mixed-integer programming and con-
straint programming, and presents details on how each paradigm is typically used to model
and solve problems. The chapter then reviews related literature, covering important mixed-
integer linear programming and constraint programming modelling perspectives in one-
dimensional (1D) and two-dimensional (2D) packing. As the 2SCSP-FFMS is a 2D prob-
lem, we provide a classification of the existing literature on 2D packing, within which our
problem is then contextualized. Lastly, the chapter broadly reviews literature on batch
scheduling and vehicle routing and highlights the connection between packing and these
prominent scheduling problems.

The 2SCSP-FFMS can be divided into three components: packing items into stocks,
treating stocks to meet order properties, and scheduling. The three subsequent chapters
study different variations of the 2SCSP-FFMS, incrementally adding the components to
reflect different industrial use cases.

Chapter [4 studies the packing-only scenario. Our empirical results show that the
scheduling-based constraint programming model has an order of magnitude advantage in
memory usage, and accordingly, is the only model-based approach to scale to larger in-
stances. Mixed-integer models found high-quality solutions for the small instances, but
struggled to scale. Lastly, we develop heuristic solutions and show that by decomposing
the problem into smaller subproblems, heuristics can find solutions competitive with the
scheduling-based model for the industrial instances. The work in this chapter extends our
published paper in the Proceedings of the Sixteenth International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research [181].

Chapter [5| examines a packing scenario considering stock treatments and the resultant

order properties. This chapter builds upon Chapter [] formalizing the new requirement
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and augmenting the best-performing methods in Chapter [df The scheduling-based model
remains the only model to scale to industrial instances. The best heuristic is competitive
with, if not slightly better than, the scheduling-based model, but requires more time to find
feasible solutions.

Chapter [6] studies the full 2SCSP-FFMS, adding a scheduling-related cost factor to the
packing use case with stock treatments. We again build upon the formulations in Chapter
and realize the performance shortcomings of the scheduling-based model: it struggled to
find high-quality solutions with the more complex objective function.

Chapter [7] concludes this thesis and discusses directions for future work.

1.2 Contribution Summary
The main contributions of this thesis are as follows:

e We adapt and develop a scheduling-based single resource constraint programming
model that connects scheduling to packing. We demonstrate its computational effi-
ciency for 2SCSP-FFMS and the related use cases and its resulting affinity for larger

instances.

e We recognize a connection between guillotine cutting patterns and batch scheduling
and adapt constraint programming techniques proposed in batch scheduling to our

packing problem.

e We formalize the novel 2SCSP-FFMS. This problem is motivated by an industrial use
case in aluminum trimming and is at the intersection of many hard problems in the

literature.

e We propose the first mixed-integer linear programming models, alternative constraint
programming models, a first-fit-based heuristic, and a sequential heuristic framework
for the different variations of 2SCSP-FFMS.



Chapter 2

Problem Overview

HE Two-Dimensional Two-Stage Cutting Stock Problem with Flexible Item, Flex-
ible Demand, Marriageability, and Scheduling Cost, 2SCSP-FFMS, abstracts the
planning process of manufacturers in the rolled-metals industry. Over a given time

horizon, we want to satisfy client orders by cutting items using a guillotine machine from
a limited quantity of stocks while minimizing aggregate cost. A cut item is subsequently
rolled into a cylindrical coil used as feedstock for downstream processing, resulting in novel

requirements that impose modelling and computational challenges.

2.1 Problem Definition

The 2SCSP-FFMS is a novel generalization of the Two-stage Two-Dimensional Cutting
Stock Problem with Guillotine Constraints (2SCSP). Given a set of orders for rectangu-
lar items and a set of larger stock rectangles, the classic Two-Dimensional Cutting Stock
Problem (2DCSP) fulfills orders by cutting items from stocks. A more constrained vari-
ant, the 2SCSP only allows stocks to be processed using guillotine cuts, a cut that runs
from one edge of the object to another. All cuts must also be executed in two stages, each
consisting of a set of parallel guillotine cuts performed on a rectangle obtained from the
previous stage (Figure . Without loss of generality, we let the direction of the first stage
cuts be widthwise and that of the second stage ones lengthwise. The rectangles produced
in the first stage are referred to as levels, following the literature [86], and those produced
in the second stage as partitions. On top of 2SCSP, the 2SCSP-FFMS has the following

characteristics arising from our application.

Flexible Length: The length of an item is flexible within some integer interval
dependent on the order. If a level contains items from different orders, its length must
lie in the intersection of the item-length intervals. In our application, the maximum
length requirement ensures a maximum coil diameter to enable mounting it on a

downstream machine. The minimum length requirement comes from the desire to
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Figure 2.1: A visualization of the guillotine cutting process.

limit the number of coils.

Flexible Demand: Consistent with real-world manufacturing practices, each order
can tolerate a percentage deviation from the total area demanded. For example, an

order may request items totalling 10000 & 15% units of area.

Maximum Partition Count per Level: To reflect the limitations of an industrial

cutter, the maximum number of partitions on each level is fixed.

Limited Stocks with Variable Sizes: Stock rectangles of various widths and

lengths are available in limited quantities.

Order-to-order Marriageability: Each stock needs to be treated so that the cut
orders can have desired properties, such as temper, gauge ranges, and coating. Con-
sequently, items belonging to orders with different properties cannot be cut from the
same stock. Each stock can be processed to have exactly one set of properties (e.g.,

one coating).

Cost Minimization: The goal is to minimize the monetary cost that is comprised
of two components: packing-related waste and scheduling-related expenses. The cost
of waste is defined as the sum of the weighted difference between the area of the
stocks used and the area of the orders fulfilled. The cost related to scheduling deals
with the price of storing the cut items until their orders are due (inventory cost)
and the penalty for delivering items later than their order due dates (tardiness cost).
Later in the section, we introduce an approximation to simplify the scheduling-related

expenses.

Figure describes the overarching relationship between items, orders, and stocks.
Formally, we are given a set of stock rectangles K, whose types are characterized by set
H. Each rectangle k € K has width W) and length Lj. Stock rectangles with identical
dimensions belong to the same type, Kj, K = [,cy Kn. We are also given a set of
orders, N, where each order ¢ € N has a required area interval of [qzmi”, q/"**]. Each item

belonging to order 7 is required to have a fixed width w; and a length within the interval
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Figure 2.2: A visualization of 2SCSP-FFMS. Each order is represented by its total quantity
(left) and the partitions assigned to it (middle), as illustrated by the double-arrow. Dashed
lines and the dotted fills indicate flexibility in the associated parameter. Orange and blue
lines represent the first and second stage cuts, respectively. LB and UB abbreviate lower
and upper bound, respectively.

[P, pa]. Due to the flexible length, the total number of items belonging to order i must

. min maz i .
be within an integer interval [n]"", n]"***] = HZEHWL {Z;,Wj] For order i, we denote its set
. 1
of necessary items as A; = {1,...,n™"}, its set of possible, but not necessary items as

B; = {n™" 4+ 1,...,n%} and all possible items as C; = A4;|J B;. Lastly, we let a and S
be the coefficients associated with the area of stocks used and the area of orders fulfilled,

respectively, and seek to minimize this weighted difference.
yorad
min; ey p7*e"

possible numbers of levels of stock k of type h as Jp = Jj, = {0,...,jk}. There must also

A stock k can be assigned to at most j; = levels, and we denote the set of
be no more than n partitions on each level. We let P = {1,...,7n} be the set of partitions
on a given level, and P; = {l € P |1 < n["**} be the set of partitions on a given level from
order i. A partition of a stock that is assigned to an order becomes an item.

In addition, we let G' be the set of combinations of order properties and N, be the set
of orders with properties v € G. Equivalently, we can summarize the relationship between
the items of these orders in a conflict matrix: given an item from order ¢ and another from
order 7', the two cannot be assigned to the same stock if M;;; = 0. Note that M;; = 1 if and
only if 3y € G such that i,7’ € N,. A stock can only be treated once, so orders of different
properties cannot be cut from the same stock. If there is an infinite number of stocks, then
the problem can be separated into independent subproblems for each combination of order
properties. However, with a finite number of stocks, the orders for one property combination
compete for stocks with orders of other property combinations, tying these orders together.

Finally, we consider a set of scheduling requirements: stocks cannot be cut until they
are available, and cutting orders before or after their due dates incurs either inventory or
tardiness cost (Figure 2.3)). Inventory cost is incurred if an item of an order is cut before

its due date, and tardiness cost if it is cut after its due date. A stock can only be cut once.
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Figure 2.3: A visualization of the scheduling cost of assigning items from order i to stock
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Nl K] [ Wi @ wi gt per gttt gt ds G

19 42 48 35.4 222 1129 180.2 1.3e5 1.7¢5 189 8
21 172 | 45.2 183 16.3  56.6 94.6 9.7¢4 13¢5 4.0 7
47 149 | 43.3 1979 104 68.2 1341 1.6e5 2.1e5 186.8 18
149 636 | 44.6 190.1 13.3 744 134.4  2.5e5 3.4eb 2172 32

Table 2.1: Mean of the parameter combinations from the four industrial instances.

Approximating Scheduling Costs The inventory and tardiness costs are proportional
to the product of an item’s area and the time difference between when the item is cut and
the due date of its order. Formally, we let the available time of stock k£ and the due date of
order i be a; and d;. Consider an item of order ¢ cut from stock k at time ¢. The inventory
cost is Cinpwil; X max(0,dy — t) and the tardiness cost cygrqwil; X max(0,t — di), where [;
is the length of the item, ¢;;, the inventory cost per unit time per unit area, and cy.q the
tardiness cost per unit time per unit area. Accordingly, we augment the definition of stock
types so that, in addition to identical dimensions, they must be available at the same time.

Typically, ¢;n, is orders of magnitude smaller than ciu,.q, so the optimal time to cut
any stock is always slightly after the earliest due date of the orders assigned to a stock.
Formulating a concise objective expression can be complicated, as ¢, I; given a level assign-
ment, and the matching of an item to stock k are all independent decisions. Instead, we
resort to an approximation: a stock is cut as soon as it is available. Mathematically, the
approximated inventory cost is ¢jp,w;l; X max(0,d; — ax) and the approximated tardiness

cost ciarqwil; X max(0, ap — d;).

2.2 Data Description

We conduct our analysis on a combination of 50 generated problem instances and 4 real-life
instances provided by our industry partner (Table .

For the generated instances, we draw from distributions provided by our industrial
collaborator (Table , generating 10 instances for each parameter combination in the set
{(IN],|K|)} € {(4,8),(8,16), (16,32), (32,64), (64,128)}. For 5 out of these 10 instances,
we halve the total area tolerances to provide variability. In the rare case that, for some

77

order i, p"® < pMin is generated, we swap the two values. We also force the first two
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Parameter ‘ Distribution
YV order 1 € N
qi Exponential(A=>5.608¢-0.5)
mar Constant, 0.85 ¢;
qmin Constant, 1.15 ¢;
w; Integer Uniform(a=1, b=20)
ot Integer Uniform(a=70, b=115)
prin Integer Uniform(a=85, b=130)
d; Integer Uniform(a=0, b=100)
veG Integer Uniform(a=0, b=|N|/2)
V stock k € K
W Integer Uniform(a=36, b=>50) with 50% chance of duplicating previous stock
L Integer Uniform(a=350, b=450) with 50% chance of duplicating previous stock
ag Integer Uniform(a=0, b=100)

Table 2.2: Data distributions for parameters in the generated instances.

orders to be incompatible so that some item-to-item conflict is always present.
For all experiments, we set o and 3, the objective weights, to 0.3 and 0.7, respectively.
We also set ¢ipny and cierg, the scheduling weights, to 0.0006 and 0.72 to reflect the industrial

use case.

2.3 Experiment Setup

In this thesis, all experiments were implemented in Python 3.8, and computations were
performed on individual nodes of the SciNet Niagara cluster [179, |211]. To solve the opti-
mization models, we used CPLEX and CP Optimizer from the CPLEX Optimization Studio
version 20.1.0 accessed via the DOcplex Modelling API with a single thread and default
search and inference settings. All experiments were given 16 GB of RAM and runs that

exceed this size were aborted. A one-hour time limit was used.

2.4 Summary

In this chapter, we introduced and formally defined the 2SCSP-FFMS. We also described
our data generation procedure, summarized key statistics about the industrial instances,
and detailed our experimental setup. In the next chapter, we review relevant background
and contextualize 2SCSP-FFMS.



Chapter 3

Background

N this chapter, we present relevant background to the thesis. We first describe mixed-
integer linear programming (MILP) and constraint programming (CP), two optimiza-
tion techniques central to our work. Then, we review literature related to our problem,

spotlighting important MILP and CP formulations in 1D and 2D packing and describing
alternative approaches. Finally, we compare packing with scheduling and review two related

types of scheduling problems.

3.1 Mixed-Integer Linear Programming

Mixed-integer linear programming (MILP) is an optimization paradigm that expresses prob-
lem requirements using linear mathematical expressions and continuous and integer vari-
ables 62, 143 219]. Widely employed in various sectors, including food and agriculture
[42}228], engineering [35], 184} |186], transportation [5, 170, 220], manufacturing and energy
1102} 1157], MILP is one of the most popular techniques to solve optimization problems. In

this section, we describe MILP models and how they are solved.

3.1.1 Modelling

A MILP is an optimization model that takes up the following form:

min c¢Tx +dTly (3.1a)
Ax+By>h (3.1b)
xeR" yezZ™ (3.1c)

where x € R" is a column vector of continuous variables, y € Z™ is a column vector of
integer variables, ¢ € R" and h € R™ are column vectors denoting cost, and A € R"*! and

B € R™*! are constraint matrices. If m = 0, then the MILP is a linear program. If n = 0,

10
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then the MILP is referred to as a pure integer program. Constraints in MILP are usually
linear (i.e. of the first order) inequalities. Contingent on the solver, MILP constraints can
also express special ordered sets (SOS) |17], which restricts the number of nonzero solution
values among a specified set of variables. For instance, SOS1, an SOS of type 1, restricts

a set of variables to have at most one non-zero value.

3.1.2 Solving

Optimizing MILPs typically involves running a branch-bound-and-cut algorithm [97, |94,
161]. At each iteration, the algorithm infers a bound on the objective function via linear
relaxation, partitions the model’s solution space by branching on variables, and adds valid
inequalities to tighten the relaxation without removing integer solutions.

The linear relaxation of a MILP ignores integrality constraints on variables, yielding
a linear program that can be solved in polynomial time [61, 146] and a solution that is a
bound on the MILP’s objective. Having a strong linear relaxation is important, as it allows
the search tree to be pruned early, thus increasing the chance of avoiding an exponential
search. Typical approaches to solving a linear relaxation include the simplex method [61],
the dual simplex method [242], and the interior-point method [146, [212].

Branching partitions the original problem into disjoint subproblems and involves three
main decisions: variable selection, branching strategy, and node selection. Variable selection
decides which variable to branch on, and common approaches include pseudo-costs |26, [88],
strong branching [9, |128], and reliability branching [2]. Typically, a MILP’s branching
strategy is binary, creating two independent subproblems at each node [198]; using SOSes
also allows solvers to employ a wide branching strategy, where multiple branches originate
from the parent node [16, |17, 198]. Finally, node selection decides which subproblem is
processed after branching, and typical strategies include best first search [63], depth first
search [96, [233], and, more recently, cyclic best-first search |49} 144, 197]. For further details
on the branch and bound algorithm, we refer readers to a survey by Morrison et al. [198].

A valid inequality (VI), also known as a cut, is a constraint added to a MILP to tighten
its linear relaxation without removing integer solutions [202]. There are three main classes
of VIs: general purpose, generic structure, and problem-specific. General purpose Vs
are independent of any problem structures, and examples include Chvétal-Gomory cuts
[52], Gomory cuts [97], mixed-integer rounding cuts [104, |201], and disjunctive cuts [10].
Consequently, these VIs are commonly implemented in MILP solving software. Generic
structure VIs are derived from basic problem substructures, such as knapsack sets [11} |12,
59, 145, 244] and mixing sets [192, 241]. Finally, problem-specific VIs are specific to the
problem, with successful examples spanning domains including matching [111, [237] and
travelling salesman problems (1}, 23, 193] 204, 207]. Adding VIs to a MILP strengthens
solvers’ inference at every search node, and has been a key driver to their performance

improvement over the past two decades [32, 103].
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3.1.3 Decomposition Techniques

Decomposition techniques divide a problem into smaller and more tractable parts that can
be recombined to recover the optimal solution to the original problem. There are two main

types of decompositions in MILP: column generation and Benders Decomposition.

3.1.3.1 Column Generation

Column generation decomposes a linear programming problem based on its variables [81].
It first formulates a restricted master problem, which only contains a subset of variables
from the original model. Then, the subproblem tries to find a variable that has a negative
reduced cost to enter the restricted master problem to improve its objective value. The
algorithm repeats until no such variables can be found. Since a column generation algorithm
dynamically generates variables during search, it is often most suitable when there are
significantly more variables than constraints.

A major drawback of column generation is that it only solves linear programs. If op-
timality is not required, heuristics, such as rounding [70], can be used to recover integer
solutions, although feasibility is not always guaranteed [70, |[141]. To exactly solve a prob-
lem and prove optimality, Barnhart et al. [15] proposed the branch-and-price algorithm,
which generates columns at every node in a branch-and-bound tree. However, designing an

efficient and effective branch-and-price algorithm remains complex and intricate [76, 240].

3.1.3.2 Benders Decomposition

Benders Decomposition [25] partitions a MILP formulation into a master problem and one
or more subproblems containing subsets of its variables and constraints. Each subproblem
generates a set of cuts that are added to the master problem, strengthening its formulation
so that eventually the MILP’s optimal solution can be recovered. Since a cut added to the
master problem increases its constraint matrix by one row, Benders Decomposition is also
referred to as row generation [120].

Formally, consider the following MILP formulation where x is a vector of complicating

variables belonging to a possibly integer solution space X:

min ¢Tx +dTy (3.2a
Ax+By>h (
xe kX (3.2¢
x € R}, y e R (3.2d

Benders Decomposition can be derived naturally from the Benders Reformulation [25|

32, |202], which rearranges the MILP formulation as follows:
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min cTx + 7 (3.3a)
xeX (3.3b)
x € R} (3.3c)
neR (3.3d)
n>xnl(h—Ax) Ve V() (3.3¢)
rT(h— Ax) <0 Vre R(I) (3.3f)

where II is the dual feasible region of the subproblem Q(x) = {mindTy | Ax + By > h,y €
R}, and R(IT) and V (II) are the set of extreme rays and the set of extreme points of II, re-
spectively. In essence, Benders Reformulation characterizes a subproblem as a combination
of extreme rays and extreme points of its dual. If the dual of the subproblem has an optimal
solution, then the solution must be an extreme point in the set V(II), so the optimality
cuts expressed in constraint restrict the tightest lower bound for the subproblem for
any x feasible to the subproblem. Alternatively, if the optimal solution of the dual of the
subproblem is in the direction of an extreme ray, then the subproblem itself is infeasible, so
the feasibility cuts expressed in constraint remove any solutions infeasible to the sub-
problem. Unfortunately, the dual feasible region of the subproblem can have exponentially
many extreme points and extreme rays, leading to intractability.

Benders Decomposition circumvents this scalability issue by dynamically generating the
optimality and feasibility cuts in the subproblem using either a cutting plane algorithm
or a branch-bound-and-cut algorithm. At the root node, the master problem {min |
— } is solved. Then, the subproblem Q(&) is evaluated using the optimal
solution & from the master problem. If the subproblem is infeasible, we add a feasibility
cut 77 (h — A%X) < 0, where 7 is the extreme ray associated with the dual of Q(£). If the
subproblem is optimal with dual variables 7, then the optimality cut n > #7(h — A%) is
added. This process is repeated until the optimum of the master problem does not change,
indicating global optimality, or the master problem becomes infeasible, indicating that the
original problem is infeasible.

Geoffrion |91] developed the Generalized Benders Decomposition for mixed integer non-
linear programs. Hooker and Ottosson [121] proposed the Logic-Based Benders Decompo-
sition, which substitutes the mathematical cuts with inferential ones. Consequently, more
paradigms can be used to represent master problems and subproblems, thereby loosening

the decomposition criteria.
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3.1.4 Software

An assortment of commercial and open source software is available for both modelling
and solving MILPs. Commercial solvers include IBM’s CPLEX Optimization Suite [128],
Gurobi [106], and FICO Xpress Optimizer [203]. Open source solvers include COIN-OR
Branch-and-Cut Solver [82] and SCIP |28 |29].

3.2 Constraint Programming

Developed within the artificial intelligence community, constraint programming (CP) solves
combinatorial problems by reasoning about problem substructures expressed as constraints
[14, 18, [234]. Compared to MILPs, the variables and constraints in CP are richer, allowing
more types of problems to be modelled and solved. In this section, we present background

information on CP modelling and solving.

3.2.1 Modelling

There are two types of models in CP: constraint satisfaction problem (CSP) |14 |183, 235]
and constraint optimization problem (COP) |14} 235].

A CSP tests the existence of a feasible solution given problem requirements. Formally,
a CSP P = (X, D,C) consists of a set of variables X = {x1,...,z,} and a set of constraints
C = {Cy,...,Cp}. Each variable z; is characterized by a domain D; that describes its
candidate values. Together, the set of variable domains is denoted as D = {Dy,...,Dy}.
A feasible solution to a CSP is then a set of values for variables X from D that satisfies all
constraints in C.

A COP is the optimization version of the CSP in that it has an objective function. The
optimal solution to a COP must be a feasible solution that produces an objective value no
worse than all other feasible solutions.

Due to different developmental origins [159], the variables and constraints available to
a modeller vary from solver to solver. In this thesis, we only discuss those from IBM’s
CP Optimizer [12§], taking advantage of both non-scheduling-based and scheduling-based

tools.

3.2.1.1 Variables

The types of CP variables are diverse. In addition to integer variables and binary variables,
a CP modeller has access to interval variables, state functions, and cumulative functions.
These variables are widely used in scheduling problems, so these CP formulations are gen-
erally referred to as CP scheduling |14} [159].
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Optional Interval Variables An optional interval variable [130, [159], OPTINTER-
VALVAR, is a variable whose domain is a subset of { L} J{[s,€) | s,e € Z,s < €}, where s
and € are the start and end times of the interval, and L is a special value indicating ab-
sence. A duration of an interval variable refers to the value e — s, and can itself be a decision
variable. When L is removed from the domain, the interval variable must be present in a
solution and can be declared using the signature INTERVALVAR. Example usage includes
representing jobs and operations executed over a period of time.

CP solvers provide methods to access properties of interval variables [130, [159] (Figure
. The presence of an interval variable var can be accessed via PRESENCEOF(var) € B.
A value 1 indicates the interval variable is present and 0 not present. The starting and
ending coordinates of an interval variable var can be accessed using STARTOF(var) € Z
and END(var) € Z. The duration or length of an interval variable var can be accessed using
LENGTH(var) € Z. If var is absent, then these methods all evaluate to 0. An example of

constraints restricting an interval variable is shown in Section 3.2.1.3

STA R’iﬂF(rar} ENDfF(m )

1B

————

LENGTHOF(var)

Figure 3.1: Illustration of an interval variable var and some of its methods.

State Functions A state function [135, [159] is a variable whose domain consists of
sets of non-overlapping intervals, with each interval characterized by a non-negative integer
state. In other words, the value of a state function is a sequence of state intervals and state
values formalized as {[s;, €;) : v; | Vi € [1,n]}, such that Vi € [1,n], s;,€;,v; € ZAs; < ¢; and
Vi e [1,n—1],¢ < s;11, where s;, €, and v; are the start time, end time, and state value of
state interval 7, respectively, and n € Z™T is the number of states in the state function.

An example application of the state function is the description of an exercise regimen
with three possible intensity levels indexed by 0, 1, and 2. For the solution depicted in
Figure the first state is between time 0 to 20, and its state value, 0, indicates normal
intensity. The second state describes a low intensity workout (state value 1) from time 20
to 29, and the third state returns to normal intensity (state value 0) from time 29 to 33.
Finally, the last stage of the workout is of high intensity (state value 2) and lasts from time
33 to 40. Constraints that can be applied to a state function are formalized in Section
B:21.2.2] An example using these constraints to restrict the state function is shown in
Section

We will make extensive use of the state functions to model guillotine cuts in Chapter [4]
and stock treatments in Chapter
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State Value 1] | 1] 2
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Figure 3.2: Example of a state function representing a workout regimen with intensities
indexed by 0, 1, and 2.
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Figure 3.3: Step functions starting at the Figure 3.4: Pulses expressions over the
start time of the interval variables. interval variables.

Cumulative Function Expressions Cumulative functions are expres-
sions that represent the sum of contributions of intervals over time. Formally, a cumu-
lative function f is defined as the summation of elementary cumulative functions f; such
that f =), fi . The most basic elementary function is a STEP(time, height), which
equals 0 before time and height after time. Another elementary cumulative function is
a PULSE(interval, height), which equals height over the interval and 0 outside of the
interval. Examples of cumulative functions using step functions and pulse expressions are
shown in Figure 3.3 and Figure [3.4] respectively. A typical usage of these cumulative func-
tion expressions is to model resource consumption over time. An example of constraints
restricting a cumulative function is shown in Section [3.2.1.3

Both state functions and cumulative functions describe changes in behaviour over time.

The difference is that the former describe absolute changes, while the latter describe relative
ones [135].
3.2.1.2 Constraints

Just like the variables, the types of CP constraints are expansive [159, [160]. In general, we

can distinguish two types of constraints: generic constraints and global constraints.
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3.2.1.2.1 Generic Constraints Generic constraints are simple constraints widely adopted

in different CP solvers.

Arithmetic Constraints Arithmetic constraints [123] are constraints that use arith-

metic operators between expressions.

Logical Constraints/Expressions Logical constraints and expressions [132] are those
that use the following logical operators: conjunction (A), disjunction (V), negation (—), and
implication (=-). Logical expressions can be combined with arithmetic constraints so that
“True” is evaluated as 1 and “False” as 0. For example, the constraint (True A True) +
—(False) == 2 is always “True”, because both terms on the left hand side evaluate to
“True” and 1+ 1 = 2.

3.2.1.2.2 Global Constraints Global constraints are declarative constraints used to
represent frequently recurring substructures found in different problems. Modelling sub-
structures using global constraints often allows an enhanced level of inference compared to
modelling using generic ones. In this section, we only describe the global constraints used

in the thesis; a more exhaustive list can be found at the Global Constraint Catalogue [21].

Element Constraint The Element constraint [113, 127], ELEMENT(array, index),
acts as a subscripting operator to access the index!” element in the array. In this thesis,
we let the index of the first element in array always be 0. For example, consider an
integer variable x representing the array indices and an integer array a = [1,2,3,4,5]. If
we prescribe the constraint ELEMENT(a, z) == 3, then the only feasible solution is z = 2.

The ELEMENT(array, index) constraint is often abbreviated as arrayindes-

Count Constraint The CoUNT(array,val) constraint [125] counts the number of

occurrences of val in the array. If val is not in array, then the constraint returns 0.

Lexicographic Constraint The lexicographic constraint [131], LEXICOGRAPHIC(a, b),
ensures that array a is always lexicographically not greater than array b. Formally, LEX-
ICOGRAPHIC(a, b) is satisfied if and only if either a = b or 3i < size(a) such that Vj < i,
a; = bj and a; < b;. For example, given array a = [2,1,3], b = [2,2,1], and ¢ = [1,1,1], a
is lexicographically less than b, because there exists ¢ = 1 such that, for j =0, ag = by = 2

and a; =1 < by = 2. However, a is not lexicographically less than c.

Pack Constraint The Pack constraint [133| [221], PACK(load, where, size), describes
a 1D packing substructure where the items are packed into bins and the bin capacity cannot
be exceeded. Syntactically, load is a vector of variables describing the sum of item sizes in

each bin; where is a vector of variables representing the bin index each item is assigned to;
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and size is a vector of values dictating item size. Each element in where must correspond

to the element in the same index in size.

No Overlap (Disjunctive) Constraint The NOOVERLAP(sequence) constraint [159,
160] ensures that interval variables in the set sequence do not overlap. This constraint is

also referred to as the DISJUNCTIVE constraint in the Global Constraint Catalogue [21].

Forbid Extent Constraint The FORBIDEXTENT(var,sf) constraint [159, 160] ex-
plicitly prohibits the interval variable var to overlap with non-zero regions of a step function

sf. If var is absent, then the constraint is always satisfied.

AlwaysIn Constraint The ALWAYSIN( function, interval, min, max) constraint [159]
160] restricts the value of a cumulative function or a state function, function, to a particular

range [min, maz| during an interval interval.

AlwaysEqual Constraint The ALWAYSEQUAL(stateFunction, interval,value, startAlign,
endAlign) constraint [159} 160] ensures that the value of a state function stateFunction
during an interval is always value. CP Optimizer provides optional boolean arguments
startAlign and endAlign that align the starting and ending coordinates of interval with

the interval of a state in state Function if True. These are False by default.

AlwaysConstant Constraint The ALWAYSCONSTANT(stateFunction, interval, start Align,
endAlign) constraint [159, [160] is identical to ALWAYSEQUAL, except that it is satisfied as

long as the state value during interval is constant.

3.2.1.3 Examples

The following satisfaction problems exemplify the usage of variables and select constraints

used in this thesis.

Example 1 (Constrained Interval Variables). Given an interval variable x, we can con-
strain the start time, end time, presence, and length using constraints - . The

resulting variable domain is illustrated in Figure |3.9)

STARTOF (z) > s (3.4a)
ENDOF(z) <€ (3.4b)
PRESENCEOF (z) = 1 (3.4¢)

| < LENGTHOF(z) < u (3.4d)
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Figure 3.5: Illustration of a constrained interval variable.

Example 2 (Intervals in a State Function). Given interval variables z; Vi = 1...6 and
a state function g, we can constrain the intervals to match the states in the state function
with a possible solution displayed in Figure (3.0, This solution will remain feasible with
constraints - . Constraints - restrict the value of intervals to
always take on a particular state. Constraint ensures that, within the interval [b,d),

the value of the states does mot change.

ALwAYSEQUAL(g, x1,0, True, True) (3.5a)
ALwAYSEQUAL(g, %, 1, False, False) Yi=2...5 (3.5b)
ALwAYSEQUAL(g, 7,2, False, False) (3.5¢)
ALwWAYSCONSTANT(g, [b, d], False, False) (3.5d)
(3.5¢)

state o 4 1 2

1
i h o

Figure 3.6: Illustration of interval variables being restricted by a state function.

The values of the boolean arguments startAlign and endAlign are important. These ar-
guments in constraint align both the start and end coordinates of state 0 with those of
x1. The arguments in constraint do not enforce the alignment of coordinates, which is
reflected in the positions of xo, x3, and x4. However, the starting coordinate of x4 in the cur-
rent solution would violate the hypothetical constraint ALWAYSEQUAL(g, x;, 1, True, False)
for i =2...5. Similarly, the ending coordinates of both xs and x4 in this solution would

violate the hypothetical constraint ALWAYSEQUAL(g, z;, 1, False, True) fori=2,...,5.

Example 3 (Construction of a Cumulative Function). The solution illustrated in Figure
has interval variables x1 and xo, each contributing a pulse of magnitude hi and ha,
respectively, towards the cumulative function f. The solution will remain feasible if we

apply the constraint , as the maximum of the cumulative function is not greater than
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h1 + ho and the minimum not less than 0.

ALWAYSIN(f, z, 0, hy + ho) (8.6a)

3.2.2 Solving

Like MILP, CP employs a branch-and-bound scheme that branches on decision variables,
bounds the objective, and backtracks to previous branches; the biggest difference is the
use of inference as the main mechanism to reduce search. MILP takes advantage of the
geometric properties of the solution space to develop a linear relaxation, make cuts, and
prune branches. CP, in contrast, relies on constraint propagation, a logic-based algorithmic
approach to communicate domain reductions of variables [122, |124, [216].

The extent to which variable domains are reduced can be described by consistency
[122, 142]. The literature on the types of consistency is broad, so we only discuss domain
consistency, the most fundamental type [34, 122} 142]. Intuitively, for a constraint, domain
consistency, also known as generalized arc consistency, refers to the state where all the
values in the domains of all variables that appear in the constraint participate in at least one
solution to that constraint [122, 142]. Formally, given a CSP P = (X, D,(C), a constraint
C} € C acting on a subset of variables X, C X is domain consistent only if V.X; € A},
Vé; € D;, 3 a tuple of values d with elements d; € {D; € D | i # j} such that Cy(X; =
0i, Xj = d;jVX; € Xy | i # j) is satisfied. The subset of variables A} is also known as
the scope of this constraint [142]. Accordingly, a CSP is domain consistent if and only if
all constraints are domain consistent [122} 142]. At each iteration, solvers execute filtering
algorithms to prune the variable domains. Ideally, the pruning enforces some form of
consistency, but this can be computationally expensive. So, instead, filtering algorithms
implemented in solvers sometimes sacrifice a guarantee on consistency for a polynomial
runtime [122} 142, |216]. Other theoretical forms of consistencies include bounds consistency

and k-consistency [122].

3.2.3 Software

CP solvers are also widely available. Popular options include IBM’s ILOG CP Optimizer
[128], Choco [199], Gecode [50], and Google’s CP-SAT Solver [206].

3.3 Packing Problems

The first documented study of packing dates back to the 1930s, when Kantorovich solved
the first mathematical formulation to increase the industrial efficiency for Soviet Union
[143]. Since, packing-related problems have expanded beyond borders, seeping into many

facets of the modern society including manufacturing |136} |163| |232], technology 222 [236],
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and supply chain [136} [205]. In this section, we review related literature on two of the most
prominent types of packing problems: one-dimensional bin packing and two-dimensional

bin packing.

3.3.1 One-dimensional Packing Problems

In this section, we review literature on two main classes of one-dimensional packing: the
1D Bin Packing Problem (1DBPP) and the 1D Cutting Stock Problem (1DCSP) [93, 239].

An NP-hard optimization problem, 1DBPP packs a set of items, I, of size w;,i € [
into a set of bins K, By of which have size W}, while minimizing the empty space within
the bins. This leftover empty space is termed waste. As the sizes of items are constants,
1DBPP can be equivalently expressed as a problem that minimizes the total size of bins
used.

The 1DCSP considers packing a set of orders ¢ € N for b; items with size w; into an a set
of stocks K of size W} while minimizing waste. The two problems are very similar: 1DCSP
can be reduced to a 1IDBPP if the order demand b; = 1 for i € N [239|]. For the remainder
of this section, we present models to describe the more general 1DCSP and interchangeably
use the terminologies “bin” and “stock”.

Next, we highlight common MILP and CP formulations and summarize solution ap-

proaches.

3.3.1.1 Mixed-Integer Programming

Assignment-based Models Assignment-based models use integer variables x;; to ex-
plicitly decide if item i is assigned to stock k. Should there be duplicates of orders, the
demands can be aggregated to reduce symmetry between these items. Below, we reproduce
the MILP model proposed by Kantorovich [143], who additionally used binary variables
yr to track if stock k is used. Constraints (3.7b]) and (3.7¢) capture the demand and the

size-wise capacity, respectively. The rest define the variables.

min Z Wiy (3.7a)
keK

st Y wip > b Vie N (3.7b)
keK
Zwixik < kak Vk e K (3.70)
1EN
Ty €ZT Vie Nke K (3.7d)

yr €B Vk e K (3.7e)
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Compared to the models presented later, this formulation typically yields a weak linear
relaxation and hence a weak lower bound. For a 1IDBPP with identical bins (W), = W for
k € K), the relaxed lower bound is always [ > w;/W] |187].

el
Position-indexed Models Position-indexed models use variables indexed by numerical
coordinates on a stock to indicate if an item starts at a coordinate in a solution. To achieve
a more compact representation, the positional relationship of items and stocks is often
characterized by an arc-flow graph G with vertices V' = {0, ..., W4, } being the positions
and arcs A = {(s,¢e) : (0 < s < e < Wyae)A(Fi € Nle—s = w;)} being the item placements.
Intuitively, an item belonging to order ¢ can only be packed into any stock with the leftmost
coordinate being s if the arc (s, s + w;) is selected. If the stocks are identical, then the arc
flow graph G is sufficient, as none of the arcs will finish beyond the stock size. However,
with differently sized stocks, two sets of arcs need to be added to A to discriminate stock
types. First, all vertices in V' are connected to a sink node with coordinate W} for each
stock k. Each unit of flow that reaches the sink at W}, signals the usage of another stock
of size W. Then, as the number of total stocks consumed always equals the units of flow
across all sinks, we can add an additional arc that connects the sinks to coordinate 0, so as

to complete the arc flow cycle.

B
[
® -
}:’rﬁ.:::'ﬁh:'ijh'
3o e
0 2 el ||
T e

Item a

Figure 3.7: Example of the one-dimensional arc flow model for packing two items into a
bin of size 10. Item a is of size 6 and item b is of size 2. The upper half of the diagram is
the complete arc flow graph and the lower half is one feasible packing scheme. Orange and
yellow arcs indicate different items packed into the bin. Dashed arcs are added to ensure a
common sink. A dotted arc is added to complete the arc flow cycle.

Figure illustrates an example of the position-indexed model packing two items into
a bin of size 10. Item a has size 6 and item b has size 2. In total, there are three possible
packing combinations: packing only item a, packing only item b, and packing both item a
and b. The first combination is illustrated by the orange arc (0, 2), which indicates the bin
usage from coordinate 0 to coordinate 2, and the dashed arc (2, 10), which connects to the
sink node. Similarly, the second combination is illustrated by the yellow arc (0, 6) and the
dashed arc (6, 10). The last combination, cutting both item a and b, has arcs (0, 6) and
(6, 8), as well as the dashed arc (8, 10). In all three cases, one unit of flow exits the origin

node and finishes at the sink node at coordinate 10.
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We reproduce Carvalho’s 1D position-indexed model [47] below. Integer variables xg,
are introduced to represent the number of items obtained from arcs (s, e). Integer variables
z;, are added as a feedback arc from vertex W, to vertex 0 to represent the number of stocks
of type k used. Constraint enforces that the amount of flow in the incoming arcs must
equal to the amount in the outgoing arcs. Semantically, in the case where vertex e equals
0, Constraint ensures that the number of items with their leftmost coordinates being
0 equals the number of stocks used. In the case where e = W}, for some stock type k, the
number of items with their rightmost coordinates being e must equal to the summation of
the number of stocks of type k used and the number of items with their leftmost coordinates
being e. The final case is similar to the case where e = W}, except no stocks are exhausted
yet. Constraint ensures the number of arcs with size w; is enough to satisfy the
demand of order i. Constraint ensures only available stocks are used. The rest
describe the variables. Since the model size is dependent on the graph size, recent work [40]

has developed graph compression techniques to address scaling challenges.

K
min Y~ Wiz, (3.8a)
k=1
K
Yz ife=0
k=1
8.t — Z Tde + Z Tef =9\ —2 fore=Wy, Vk=1,...,K (3.8b)
(d,e)EA (6,f)€A
0 otherwise
> Tgarw, > b Vi=1,...,m (3.8¢)
(d,d+’wi)€A
zr < By, Vk=1,...,K (3.8d)
Tge € LT Y(d,e) € A (3.8¢)
2, €LY Vk=1,...,K (3.8f)

One-Cut Models Instead of assignments or positions, one-cut models focus on modelling
cuts and their byproducts. The key observation here is that, after each cut, we always obtain
an item and a leftover rectangle, the latter of which is referred to as a residual plate. As
any large enough residual plate can be cut to produce an item and another residual plate,
we can obtain all combinations of item assignments inductively.

Figure illustrate the running example packing two item of size 2 and 6 into a bin of
size 10. The first cut is at coordinate 2, producing a targeted plate of size 2, which fulfills
the first item, and a residual plate of size 8. Another cut is executed on the residual plate

to produce a targeted plate of size 6, which fulfills the second item.
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Figure 3.8: Example of a one-dimensional one-cut model for packing two items (size 2 and
6) into a bin (size 10). The white rectangles are either the bin or residual plates.

To illustrate, we reproduce a 1D one-cut model by Dyckhoff in Model Given a
set of stock size H = {W},, k € K} and a set of orders with unique size D = {w;,i € N}, let
Yp,q denote the number of plates with size p that are divided into a targeted plate of size ¢
and a residual plate of size p— q. We also let R be the set of these residual plates excluding
those that are smaller than the smallest order size, and IN; be the demand of rectangular
items of size ¢ for ¢ € {1,..., maxgex Wy}. Note that if type ¢ € D, then N, = 0. If a
residual plate of size ¢ € H is cut (possibly to produce an item-sized plate), then there must
be at least one resource that is cut to yield the residual plate. This resource can either be a
stock of size ¢ or another residual plate derived from a larger stock, so the number of these
resources cannot be less than their derivatives, as is formalized by constraint . For
plates with non-stock sizes, constraint ensures that they are cut as either residual
plates or targeted plates and are either used to fulfill corresponding orders, if any, or cut

into smaller plates.

min Z Wozg (3.9a)
qeEH
s.t. oz + Z Yptqp = Z Ya.p Vqe H (3.9b)
peD:p+qc HUR pED:p<q
Z Yp.q + Z Yprap > Z Yop + No¥q € (DU R)\H (3.9¢)
pEHUR:p>q peD:p+qe HUR pED:p<q
zg €L Vqge H (3.9d)

Ypq €B Vpe HUR,q € D,q <($9e)
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Set Cover Models Set cover models explicitly enumerate all size-wise combinations of
items and try to find an optimal subset |94, 240]. This formulation typically yields a
strong linear relaxation, but, as the number of these combinations is exponential, solving
it can often be intractable. To avoid generating all combinations, these models use the
column generation technique embedded in a branch-and-price algorithm to generate good
combinations during runtime, albeit at the expense of being less flexible and more difficult
to implement |76}, 240].

min Z Tp (3.10a)

peP

st. Y ahw,>b Vie N (3.10b)
peEP
z, € LT Vpe P (3.10c)

Here, we denote the set of all size-wise patterns as P. For each pattern p € P, the
parameter aﬁ, describes the number of items belonging to order 7 in pattern p. Since the
combinatorics of packing is encapsulated in the pattern set, the model only needs to con-

strain the demand.

3.3.1.2 Constraint Programming

The constructs used in CP models are highly dependent on the underlying solvers. Modern
solvers, such as CP Optimizer [128] and Gecode [50], offer the PACK constraint introduced
in Section [3.2.1.2] Below, we describe a formulation using PACK. Other formulations
have been investigated, albeit using features from dated solvers, such as the DIFFN and

CUMULATIVE constraints from the CHIP solver [20} 231].

Bin-Indexed Model Bin-indexed models introduce, for each item %, an integer variable
x; that takes on the index of the assigned bin. In particular, this type of model shows
particular affinity with the global constraint PACK, which uses a filtering algorithm to
prune a CP search if a subset of items cannot be packed within some bound on the net
usage of a bin. Shaw [221] demonstrated that this global constraint can cut the search by
orders of magnitude. An 1DBPP modelled using PACK is as follows.
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min »  Wi(by, > 0) (3.11a)
keK

s.t. PAck(b,z,w) (3.11Db)
b < Wi Vk e K (3.110)
v, € K Vie N (3.11d)
b €Z7F Vke K (3.11e)

As required by the PACK in constraint (3.11b]), this model introduces variables by to
track the net usage of each bin k. The capacity of each bin is restricted in constraint (3.11c)).

3.3.1.3 Other Works

Other exact approaches are as follows. Vance [240] proposed a branch-and-price algorithm
to solve a Dantzig-Wolfe decomposition of the Kantorovich model and showed that, with
a constant bin size, the decomposed model is equivalent to the set cover model. Valério
de Carvalho [47] proposed a branch-and-price scheme to solve the position-indexed model.
Exact search algorithms have also been proposed. Martello and Toth [187] proposed the
Martello-Toth Procedure (MTP), a branch-and-bound algorithm that branches on item as-
signments, derives upper bounds using a First-fit Decreasing heuristic (FFD), and prunes
branches via dominance relationships. Scholl et al. [218] developed a fast hybrid procedure
called BISON, which uses a tabu search to improve solutions found by a fast non-exact
heuristic and subsequently applies branch-and-bound. Their experiments show that the
solutions found are superior to those of MTP while requiring less time on average. While
MTP branches on items, Korf [152, |153] developed a bin completion branch-and-bound
algorithm that branches on item subsets comprising a bin. They showed that their branch-
ing scheme enables a stronger dominance relationship between nodes and hence a smaller
search tree. Later, Fukunaga and Korf [85] extended the bin completion algorithm to other
variations of the 1DBPP.

The literature on non-exact approaches on 1IDCSP and 1DBPP is substantial. Johnson
[140L |139] proposed the well-known FFD and Best-Fit Decreasing (BFD) greedy algorithms
and derived their asymptotic worst-case behaviours. Gupta and Ho [105] developed the
Minimum-Bin-Slack (MBS) heuristic that, at each iteration, tries to pack a set of items as
close to a bin’s capacity as possible. Fleszar and Hindi [80] proposed three variations of MBS
and proposed a variable-neighbourhood-search algorithm. They showed that coupling the
search algorithm with the modified MBS is advantageous. Alvim and Ribeiro [7] proposed
a heuristic that used load redistribution and a tabu search. Fleszar and Charalambous [79]

developed heuristics that pack a sufficient average weight for each remaining bin. Loh et
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al. [178] developed a weight annealing heuristic that changes the item size based on search
history to escape local extrema. Falkenauer |75] solved the IDBPP using genetic algorithms.
He proposed three different encodings and demonstrated that a group-based encoding can
find solutions as well as MTP but with less time. Singh and Gupta [227], Poli et al. [209)],
and Rohlfshagen and Bullinaria [217] investigated other evolutionary approaches to 1IDBPP.

3.3.2 Two-dimensional Rectangular Packing Problems

Two-dimensional packing problems involve packing rectangles of fixed sizes into rectangular
bins a.k.a stocks. In this section, we first provide a classification scheme for these problems.

As the literature is diverse, we limit our review to literature related to our problem.

3.3.2.1 Classification Scheme

We can categorize two-dimensional packing problems based on problem types and charac-

teristics. An overview of our classification scheme is shown in Figure [3.9

Exact Version

Variable-sized
Bins
2D Bin Packing & Grtilleitiae Non-Exact Version
2D Cutting Stock Cuts
2D Orthogonal Size Changeable
Packin 2-Stage
& Items S =
Guillotine Cuts )
2D Knapsack Item-to-Item m-Stage 3.
EAnINEE Guillotine Cuts &
2D Strip Packing Orthogonal
Rotations Unrestricted
2D Optimal Unloading Guillotine Cuts
Rectangle packing Requirements
Defective
Areas

Figure 3.9: Classification of 2D packing problems. Categories associated with our problem
are highlighted in grey.

There are five main types of two-dimensional packing problems (Table : the 2D
Orthogonal Packing [54, 55, 58}, |98, 99, 137, |167, 191], 2D Single and Multiple Knapsack
Problem [38], 46, (72}, 85, |115], 116, |149, (165, 177, [238|, [187], 2D Strip Packing Problem [24,
30, |31} 137, 139, 141}, |53, 164, (101}, 1147, {164} 230], 2D Optimal Rectangle Packing Problem [154,
155|194, [226|, 225], and 2D Bin Packing and Cutting Stock Problem. The 2D Orthogonal
Packing is a feasibility problem, checking if a set of rectangular items can be packed into a

single stock. The 2D Single Knapsack Problem packs the optimal subset of rectangles into
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Single Multiple Infinite Bin
Goal Bin Bins Length

2D Orthogonal Packing Feasibility b
2D Single Knapsack | Max Packed Value X

2D Multiple Knapsack | Max Packed Value X

2D Strip Packing Min Length X X
. . Min Enclosing

2D Optimal Rectangle Packing Rectanglular Area b

2D Bin Packing/Cutting Stock Min Waste X

Table 3.1: Common Types of 2D Packing Problems.

a single stock while maximizing the rectangles’ values. The 2D Multiple Knapsack Problem
generalizes the 2D Single Knapsack Problem to include multiple stocks of different sizes.
The 2D Strip Packing Problem packs items into a strip of infinite length while minimizing
the used length. The 2D Optimal Rectangle Packing Problem attempts to find a rectangle
with the smallest area that encloses all packed items. The 2D Cutting Stock Problem
(2DCSP) and 2D Bin Packing Problem (2DBPP) pack items into stocks while minimizing
waste.

The 2SCSP-FFMS is a generalization of 2DBPP and 2DCSP, and industrial applications
have fostered many variations of these problems, including those with Variable-sized Bins
[19, 86, 177, 208, 210} [223], Guillotine cuts [19, 86, |149, |148| (177, (190} (182, 223], Size
Changeable Items [163], Item-to-Item Conflicts |73} (150} 168], Orthogonal Rotations 147,
171}, |245], Loading and Unloading requirements [58, 166, 224], and Defective Areas [3}, 4,
100, (180} 1189, |200]. Their characteristics are described below.

e Variable-sized Bins: Different bins have different fixed dimensions.

e Guillotine Cuts: All cuts must be guillotine, a type of cut that runs from one side
of the object to the other. The left and middle plot in Figure [3.10] show a guillotine

cutting pattern and a non-guillotine one, respectively.
e Size Changeable Items: One or more dimensions of items are flexible.
e [tem-to-Item Conflicts: Conflicting items cannot be placed in the same stock.
e Orthogonal Rotations: Items can rotate 90 degrees.
e Unloading Requirements: Packed items must be unloaded according to some sequence.

e Defective Areas: Items cannot overlap with parts of the stock that are defective.

Finally, the literature segments different guillotine cutting schemes according to cut

restrictions and exactness. Cut restrictions limit the number of cuts that can be executed,
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Figure 3.10: (Left) A 2-stage guillotine pattern. (Middle) An invalid guillotine pattern.
(Right) A valid guillotine pattern that requires three stages of cuts.

often due to the limitations of industrial machines. Two-Stage problems allow only two
stages of the cuts to be executed, each stage orthogonal to the other (Figure left).
Similarly, a solution from an m-Stage problem must be cuttable from m stages (e.g. Figure
shows a 3-stage pattern, right). If there are no restrictions on the number of stages,
the problem is described as unrestricted.

Exactness describes if an item cut requires subsequent trimming. If items can be
trimmed after cutting, it is a non-exact version of the problem. If no trimming is al-
lowed, then the problem is exact. Indeed, the two perspectives can be unified. For instance,
a 2-stage non-exact version is identical to a 3-stage exact version.

The problem that we focus on in this thesis, 2SCSP-FFMS (Section , is situated
at the intersection of many difficult problems: 2DCSP with Variable-sized Bins, 2-stage
Guillotine Cuts, Size Changeable Items, and Item-to-Item conflicts (Figure[3.9] highlighted).

Next, we review 2DCSP literature with these characteristics.

3.3.2.2 Two-dimensional Packing with Guillotine Cuts and Variable-sized Bins

We first review 2DCSP and 2DBPP with Guillotine Cuts and Variable-sized Bins with a
focus on modelling perspectives. The notations used to reproduce different formulations
are as follows. We are given a set of stocks K with width W, and length L; and let H be
the set of unique stock dimensions. We wish to fulfill a set of orders ¢ € N of b; items of
dimensions w; x l;. We refer to the problem as 2DBPP only if b; = 1 and 2DCSP otherwise.

3.3.2.2.1 Mixed-Integer Programming In this section, we review the main MILP
models for two-dimensional packing problems with 2-stage guillotine constraints and variable-

sized bins, two variations most associated to our problem.

Assignment-based Model An assignment-based formulation for two-dimensional
two-stage cutting stock problems (2SCSP) uses decision variables to explicitly represent
the matching between items, levels, and stocks [86, |L77]. Extending the assignment-based
formulation from 1D to 2DCSP requires the representation of levels, whose quantity is un-
known a priori. A frequently used upper bound on the number of levels is the total number

of items, n = >_I'_, d, where d, is the demand of items from order o € N and N = {1,...,n}
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[86]. However, matching these levels to stocks invites significant symmetry, so studies have
proposed assignment restriction schemes at the expense of enumerating all possible stock
combinations, making this formulation ideal only if the total number of items is not large.

Here, we detail the assignment restriction scheme proposed by Furini and Malaguti
[86]. First, they assume orders are sorted according to non-increasing width. Then, any
items from order i must be cut from levels with indices in {1,...,«;}, where o;; = ij:l d,
and g = 0. Conversely, level k can only take on items from orders {f,...,n}, where
Br = min{r : r € N,a, < k}. Similarly, a level k can only be assigned to stocks with
indices {k...n}.

They used four sets of variables, all of which are initialized according to the restriction
scheme. Binary variables y? and q,if equal 1 only if level j and stock k of type h are initialized,
respectively. A stock type characterizes the set of stocks with identical dimensions and let
H denote the set of these types. Integer variable CL‘,Z counts the number of items of order i
assigned to level j of type h. Binary variable z;.lk equals 1 only if level j is assigned to stock
k of type h. Constraint ensures demand is fulfilled. Constraint and
restrict the width of levels and the length of stocks, respectively. Constraint links

the stock usage with level assignments.

n
min Y WiLp Y _qf (3.12a)
heH k=1
o (o7}
DO 2+ > yhH=b o i=1...n (3.12b)
heH j=1 Jj=a;—1+1
n
> wirly < (Wh — wg, )y} j=1...a—-1,he H (3.12c)
i=B;
n
> gz < (Ln— g, )ah k=1...a—1,heH (3.12d)
j=k+1
7j—1
S A td =y j=1...iheH (3.12e)
k=1
yl € {0,1} j=1..n—1,heH (3.12f

)
x)s € Ly j=1,.a—1,i=p;,.n,h€ H  (3.12g)
qr € {0,1} k=1,...,ai:he H (3.12h)
2 €{0,1} k=1...a-1,j=Fk...a,hec H (3.12i)

3.3.2.2.1.1 Cut-and-Plate Model The Cut-and-Plate formulation extended the
1D One-Cut formulation to 2SCSP by expanding the definition of residual plates to include
byproducts from first-stage cuts and second-stage cuts [19} |86, 223|. After cutting an item,
the stock is divided into two residual plates, one above and one to the right (Figure .
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1 Stage Cut 2" Stage Cut
Top residual plate Top residual ¢
plate
l Right residual
late
Right residual P
plate
(a) Residual plates after a (b) Residual plates after a
first-stage cut second-stage cut
Figure 3.11: Residual Plates after different types of cuts.
Cuts Plates
Plate Type Item Type Top Right
Width Height Stage | Width Height | Width Height Stage | Width Height Stage
Wh Lh 1 w; lz Wh Lh — ll 1 Wh — Ww; ll 2
W, Ly 2 wW; l; w; Ly —1; Waste | Wy —w; Ly, 2

Table 3.2: Plate types resulting from cuts in different stages for a two-stage problem.

Their dimensions are dependent on the stage of the cut and are summarized in Table [3.2]
The set of all possible residual plates is captured in the parameter a;j;, which equates to 1
if plate type k results from cutting item type ¢ from plate type j and 0 otherwise. Then,
letting integer variables x;; represent the number of items from order i cut from a plate j

and m the total number of enumerated plates, the Cut-and-Plate model is as follows:

min Z WL szh (3.13a)
heH =1
m
> @i > b i=1...n (3.13b)
7=1
m n n
Z Zaijkxi] > lek k=1...m (3.13¢)
7j=1 =1 =1
zi; €T i=1...n,j=1...m (3.13d)

Objective (3.13a]) describes the waste minimization objective. Constraint (3.13b|) satis-
fies the demand. Constraint (3.13c)) ensures that a plate can only be cut if it is a residual
plate. The rest defines the variables.

3.3.2.2.1.2 Position-Indexed Model Extending the 1D position-indexed formu-

lation, the 2D position-indexed formulation is an arc-flow model that associates each cutting
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stage with a graph whose arcs represent cut positions. In essence, the model combines two
1D arc-flow formulations, one to cut levels and another to cut items.

One example is the model of Macedo et al. [182], who tackled a problem with identical
stock dimensions (W = W), and L = Ly, for h € H). For the first stage, they considered the
arc-flow graph Gy = {Vp, Ao}, where the vertex set Vy = {0,..., L} is the set of possible
integer positions and the arc set Ay = {(a,b) : 0 < a <b < LAb—a € L*} represents
cut items. Here, L* is the set of possible length values. In the second stage, for a given
level s with length ¥ € L*, the arc-flow graph G has vertices Vs = {0,..., W} and arcs
As={(d,e):0<d<e<WATieN|(e—d=w; Nl < hg)}.

This model requires four sets of variables. Integer variable z° represents the number of
stocks used, and integer variables z® represent the number of cut levels with length s € L*.
Integer variables 2% o describe the flow in G and integer variables xy,; the flow in G°. In
particular, z,; also represents the number of items with length [ and width e — d cut from
a level with length s. If all items share different width values, then the last index [ can
be removed from z3,,. Constraint enforces flow conservation in GY. Constraint
ensures that the number of levels with length s matches those cut from the first
stage. Constraint conserves the flow in G*. Constraint ensures the demand
is fulfilled.

min 2° (3.14a)
-0 ifb=0
sty ahy— Y ap.=490  ifb=1,2,... H—1 (3.14b)
(a,b)e A0 (b,c)c A0 .0 $h=
doooal -2 =0 Vs e L* (3.14c)
(c,c+s5)e A

Z Tl — Z Tos ife=1,2,.... W—1 VselL" (3.14d)
(de)eA J)EA® .

lee)LG* N léf z° ife=W,
Do D Thprw 2 b vieN (3.14e)
seL* (fuf—"_wl)eAs
zd, € Z* V(a,b) € A% s € L* (3.14f)
x5, €2 V(d,e) € A%)1,s € L*(3.14g)

3.3.2.2.1.3 Set Cover Model The 2D set cover models employ the same idea as
their 1D siblings, thus retaining their advantages and disadvantages. The difference lies in
the pattern set: instead of widthwise ones, we now consider those that are feasible cutting

schemes for the entire rectangular stock. In other words, each pattern must be executable
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using two stages of guillotines. Exemplifying the exponential-sized formulation with variable
stock sizes is Model (3.15)) by Furini and Malaguti [86], which is reproduced below.

min Z Wi Ly, Z xp (3.15a)

heH pEPh

st. Y. alm,>b VieN (3.15b)
heH,pePh
x, € 7" Vpe P he H (3.15¢)

Differing from the 1D set cover model, which contains only 1D stocks of the same
type, this model distinguishes patterns cuttable from rectangular stocks of types h € H by
adding index h to the pattern set. The constraint and variable definitions are augmented

accordingly.

3.3.2.2.2 Constraint Programming Dincbas and Simonis proposed the first CP-
based approach [68] to the 2SCSP, generating stock patterns using a combination of back-
track search and a finite domain model. Later, Beldiceanu and Contejean introduced DIFFN
[22, |20], a global constraint with an option to enforce guillotine cuts; however, no exper-
imental results related to guillotine cuts were provided. Since then, CP has largely been
investigated in other 2D packing contexts. For the two-dimensional optimal rectangle pack-
ing problem, Korf [154} |155] considered solving a constraint satisfaction problem using the
absolute positions of items. Moffitt and Pollack [194] studied the same satisfaction problem
from a relative placement perspective, focusing on the pairwise relationships between items.
For the same problem, Clautiaux et al. [55] considered a scheduling approach, represent-
ing the width and length of items as two interval variables. This model was improved by
Mesyagutov et al. [191], who integrated linear-programming-based pruning rules to prop-
agate the constraints. Simonis and O’Sullivan investigated CP search strategies to pack

squares into rectangles using the CUMULATIVE global constraint [226, |225].

3.3.2.2.3 Other Approaches Puchinger and Raidl [214] proposed a branch-and-price
algorithm for the set cover formulation. They added dual-optimal cuts, a column generation
stabilization technique [8, |48] to accelerate subproblem convergence, and branched on if
two items are in the same stock. Furini and Malaguti [86] also proposed a branch-and-
price algorithm for the set cover model, but with a different branching rule and subproblem
formulation. Monaci and Toth [195] and Cui et al. [60] developed two-phase algorithms,
first generating two-stage patterns for a single stock and then assigning patterns to stocks.
They differ in that the former used a heuristic and the latter a MILP model to minimize

the number of stocks used in the second phase. Recently, Martin et al. [188] proposed a
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Benders Decomposition on a position-based MIP formulation.

Many inexact algorithms have been proposed in the literature. Incidentally, the solutions
of early heuristics designed for 2D packing problems without guillotines are naturally feasible
for problems with guillotine constraints [173]. Chung et al. [51] presented the Hybrid First-
fit Decreasing Heuristic (HFFD) that packs items into levels without taking into account the
level length and then packs these levels into stocks, both according to a first-fit decreasing
scheme. Frenk and Galambos [84] studied the Hybrid NFD heuristic (HNFD), a Next-fit
version of the HFFD. Berkey and Wong [27] developed the Finite First-Fit (FFF), Finite
Next-Fit (FNF), Finite Best-Strip (FBS), and Finite Bottom Left (FBL) heuristics. FFF
and FNF both pack items into levels directly into stocks. If the item cannot be packed into
a level, a new level is opened, and if the item cannot fit into the new level, then a new bin
is opened. FBS is essentially an HFFD using best-fit strategies. Lastly, FBL always packs
into the closest bottom-left corner of the stock if possible. In the literature, HFFD, HNFD,
FBS are classified as 2-phase heuristics, and the rest as 1-phase heuristics [173]. Caprara
et al. [45] proposed an algorithm for 2SCSP that combined grouping techniques with the
simple heuristics. They show that this algorithm always executes in polynomial time if the
instance size approaches infinity, making it an asymptotically polynomial-time algorithm.

Metaheuristics have also been studied. Lodi et al. [114} {172, 175, [176] proposed a
generalized tabu search procedure for two-dimensional packing problems. Given a solution,
they first try to find a stock with large waste and a high number of items. Then, to find a
solution using fewer stocks, they execute a move: one item from that stock and items from
k other stocks are repacked by a heuristic. They also consider diversifying the search by
incrementing k and destroying poorly packed bins. For both problems with and without
guillotine requirements, they show that their solutions are superior to other heuristics.
Gharsellaoui and Hasni [92] developed a genetic algorithm that replaces the mutation step
with a tabu search. Alvelosa et al. [6] explored neighbourhoods for a local search, swapping

both adjacent item types and levels.

3.3.2.3 Two-dimensional Packing with Size Changeable Items

While the two-dimensional packing problems have been widely studied, we could find only
one work addressing item flexibility in the 2D setting. Lee et al. [163] considered a vari-
ant of the 2SCSP with flexible width and length and proposed a multi-stage heuristic to
iteratively pack items and adjust level dimensions. Notably, their heuristic uses three main
components. Given a set of unpacked items, the algorithm first uses a knapsack-based al-
gorithm to greedily pack items into a level on a candidate available stock. If no new levels
can be opened on the stock, the current packing scheme is compared with a hypothetical
one that forcibly divides the last level into two, and the solution with less waste is accepted.
Finally, the heuristic checks if this packing scheme yields less waste if it is executed on a

differently sized stock. These steps are repeated until all items are packed. Their empirical
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experiments on a set of industrial data show superior performance over historical decisions.

They also proposed a non-linear model but did not investigate its performance.

3.3.2.4 Two-dimensional Packing with Conflicts

Literature on two-dimensional packing problems with conflicts has exclusively focused on
heuristics. Epstein et al. 73] studied the problem of packing squares into a set of identi-
cal square stocks with bipartite and perfect conflict graphs and proposed an ensemble of
heuristics for each graph type. Their algorithms for bipartite graphs and perfect graphs
have an approximation ratio of at most 2+ € for € > 0 and 3.2744, respectively. Khanafer et
al. [150] developed a multi-step algorithm to tackle two-dimensional bin packing problems
with any conflict graph. They first compute the compatibility graph and apply a tree-based
decomposition to identify clusters of compatible items. Items appearing in multiple clusters
are assigned heuristically to one of the clusters. Then, orders in each cluster are packed
using simple heuristics, and the solutions of clusters are merged. They show practical effec-
tiveness and note that exact algorithms can replace the heuristics, but did not investigate
this scheme’s performance. Li et al. [168] adapted a maximal space algorithm proposed by
El Hayek et al. [112] for vanilla 2D bin packing problems and proposed a local search ap-
proach. They showed that, in their industrial application, combining the adapted maximal

space algorithm with the local search yields strong solutions.

3.4 Resource Constrained Scheduling

Scheduling refers to the problem of optimizing resource usage over time. Despite being
completely different application areas, the relationship between packing and scheduling has
been linked since as early as the late 1990s for both 1D [65] and 2D settings [110]: items that
need to be packed can be viewed as activities to be scheduled. The literature on scheduling
is diverse, so we focus on vehicle routing problems and batch scheduling, two areas related
to the substructures of our problem. Here, we provide a brief intuition of their relations to
our problem, and leave the details to Section

3.4.1 Vehicle Routing Problem

Vehicle Routing Problems (VRP) optimize the routes of vehicles while some criteria asso-
ciated with each route are satisfied. Packing problems and VRPs are similar: each vehicle
can be interpreted as a bin with capacity corresponding to trip length or time. The distance
or travel time between visits, then, are items to be packed. In this thesis, we explore this
idea, applying techniques proposed for VRP to our packing problem.

MILP models of VRPs can be categorized into three main types: the three-indexed
model, two-indexed model, and set cover model [34]. The three-indexed model treats the

route of each vehicle as independent of other vehicles. This is particularly beneficial if the
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Figure 3.12: Comparison between the representation of trip decisions in the ALTERNATIVE
CP model (left) and the single resource CP model (right). The coloured blocks portray the
customers that a vehicle needs to service. The duration of service is represented by the
block’s horizontal size. The arrows represent the allocation decision of the pink block (cus-
tomer), and the horizon below each arrowhead corresponds to the domain of the variable.
The time horizon of each vehicle is from 0 to H.

vehicle types are heterogeneous 162]. Problems with homogeneous vehicles can be
modelled using a two-indexed formulation, which merges the routes of different vehicles in
the decision process . Finally, the set cover models explicitly enumerate all possible
routes and are generally solved using a branch-and-price algorithm .

A number of CP models for VRPs , represent the problem from a schedul-
ing perspective, modelling the trip-to-vehicle assignments using interval variables and the
ALTERNATIVE constraint. Recently, for a capacity- and time-constrained routing problem,
Booth and Beck introduced the single resource model, where multiple resources are
unified into a single resource on an expanded time horizon. Consequently, variables and
constraints are declared over the single unified horizon instead of alternatively on each
resource, which allows for a stronger inference. Their experiments demonstrate that this
formulation is computationally advantageous over alternative CP constructs, especially for
larger instances.

Instead of reproducing their proposed ALTERNATIVE and single resource model, both
of which contain other problem-specific requirements, we summarize the essentials in a
simplified example: we would like to service a customer with one of three vehicles. The
ALTERNATIVE CP formulation would need three decision variables, each assigning the cus-
tomer to one vehicle. In contrast, the single resource formulation would need only one
variable representing the assignment of the customer onto the entire horizon (Figure .
Similarly, to satisfy a limited vehicle capacity, the ALTERNATIVE model would need three
sets of constraints, each of which, for example, restricts a cumulative function describing

the load of a vehicle; the single resource model would only need one set, as the constraints
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are applied over all vehicle routes simultaneously.

For more details on VRPs, we refer readers to surveys by Drexl [69] and Erdelié¢ [74].

3.4.2 Batch Scheduling

Batch scheduling arises when a set of jobs with common characteristics need to be processed
together. We observe that making guillotine cuts is very similar to scheduling batches: in
both cases, some events are executed concurrently. Ham [107] proposed a 4-index MILP
formulation that uses binary decision variables to match steps in jobs with batch positions
on machines. Ham and Cakici [109] proposed a 3-index formulation that uses two sets of
binary decision variables to match steps in jobs with batches and to distribute batches onto
machines. They demonstrated that this formulation requires significantly fewer variables
and constraints than the 4-index one. Liao and Liao [169] introduced a MILP model similar
to the 3-index formulation for a two-machine flowshop problem, where the machines are
batching machines. Cakici et al. [43] developed a time-indexed MILP model that decides
on the time index at which a job starts and restricts the number of batches at each time
index. Monma and Potts [196] constructed a disjunctive MILP model where variables
represent job-to-job precedence.

Constraint programming formulations typically use interval variables and state functions
to represent jobs and regulate their start times, respectively [108} 109, [232]. Notably, Ham
and Cakici [109] found that this CP formulation drastically outperformed the 3-index and
4-index MILP formulations, finding the same quality solutions while using significantly less
memory. Malapert et al. [185] took an alternative perspective to solve a parallel-batch
machine problem and developed the global constraint, SEQUENCEEDD), to describe the
maximal lateness for a single batching machine. The performance of the CP model using
this constraint, however, was inferior to a MILP model proposed for the same problem by
Kosch and Beck [156].

For non-model-based approaches, we refer readers to review surveys by Potts and Ko-
valyov [213] and by Fowler and Monch [83].

3.5 Summary

In this chapter, we presented foundations of mixed-integer linear programming (MILP)
and constraint programming (CP) and reviewed relevant literature. We showed that a
substantial number of exact and approximation algorithms have been proposed for 1D
packing. For 2D packing, we provided a classification system with a focus on bin packing
and cutting stock problems and contextualized our problem. We described the main MILP
models to represent guillotine cuts and traced their origins to the 1D formulations. We noted
a lack of CP-based studies on 2DBPP and 2DCSP with guillotine constraints; instead, we

reviewed main CP modelling perspectives on the optimal rectangle packing problem. We
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also identified a shortfall of literature on two-dimensional packing problems with changeable
item size and conflicts. Lastly, we examined relevant studies on vehicle routing and batch
scheduling. Concluding this chapter, we remind the reader that the 2SCSP-FFMS contains
several difficult packing problems, the intersection of which has not been studied in the

literature.



Chapter 4

2SCSP with Flexible Item Length
and Flexible Demand

N this chapter, we study the Two-Dimensional Two-stage Cutting Stock Problem with
Flexible Length and Flexible Demand (2SCSP-FF), a reduced version of 2SCSP-FFMS
that ignores marriageability constraints and removes scheduling costs. We first formal-

ize our assumptions, before introducing both exact and heuristic algorithms. Our experi-
ments show that the single resource CP formulation has an order-of-magnitude advantage
over other exact approaches, and our multi-phase sequential heuristic yields the best solu-

tions overall.

4.1 Problem Assumptions

Compared to 2SCSP-FFMS, the two-dimensional two-stage cutting stock problem with
flexible length and demand, 2SCSP-FF, makes the following assumptions.

Trivial Order Marriageability All orders share identical order properties, so any com-

bination of orders can be cut from the same stock. In other words, M;; = 1 for i,7 € N.

Negligible Scheduling Cost The due dates of orders and the available dates of stocks
are identical (d; = ay, for i € N,k € K), so the scheduling costs can be ignored.

Even after these assumptions, 2SCSP-FF is a difficult problem to solve, being comprised
of NP-hard problems, such as the 2SCSP [86] and the generalized assignment problem with
flexible jobs [215]. Thus, 2SCSP-FF is also NP-hard.

39
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Figure 4.1: Ilustration of the CPgr model. The lengths of the stock rectangles are con-
catenated along the horizontal axis. Here, a level is a vertical strip. The smaller rectangles
and the dashed lines represent items and guillotine cuts, respectively.

4.2 Exact Approaches

4.2.1 The Single Resource CP Formulation

First, we present a novel approach that exhibits significant representational efficiency: the
Single Resource CP model, CPgr. Our model poses the 2SCSP-FF as a scheduling problem
composed of three main components: a unified domain of stock length, a state function for

guillotine cuts, and cumulative functions tracking widthwise resources.

Unified Lengthwise Domain Our model adapts the single resource transformation ,
a CP modelling technique that unifies alternative resources into a single horizon, to the
2SCSP-FF. CPgg concatenates the stock rectangles so that the total length of the stocks is
analogous to a temporal horizon on which items belonging to all orders need to be allocated
(Figure 4. ) For each possible item p € C; belonging to order 4, we introduce an optional
interval variable x;,. The start time of x;, represents an item’s leftmost lengthwise coordi-

mzn

nate, and the duration of z;, its length, which we further restrict to be within [p} maz),

) P
For necessary items (i.e., in set A;), we remove the absent value, { L}, from the domain of

x;p for all p € A; and simply declare them as interval variables.
To avoid an item spanning multiple stocks in the unified horizon, we insert a dummy

unit of forbidden space between adjacent stocks to create an infeasible region (Figure ,
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hatched). The horizon is thus augmented from ;- Ly to Y c i (L + 1), and items can
only be placed in the feasible region F = Urex Fr, where F, = [Ek’eK|k/<k Ly +k —
1> werw<k Liw + k — 1]. We denote the augmented horizon as H = [0, ;¢ (L + 1)]
and use FORBIDEXTENT to restrict the domain of the item variables x;, accordingly.

Guillotine State Function We draw inspiration from batch scheduling to model guillo-
tine cuts: we treat each level in a stock rectangle as a batch so that the level’s lengthwise
endpoints coincide with the corresponding endpoints of the items. We first introduce a state
function, g (Figure ) Then, we associate the items with a level using an ALWAYSCON-
STANT constraint, which coerces their interval variables to align with an interval in g. Thus,

items can only be on the same level if they belong to the same interval in the state function.

Cumulative Resource Function Expressions The width of stocks and a level’s par-
tition count limit are interpreted as widthwise resources. Typical of CP scheduling, we use
cumulative functions and pulses. We let €2, a cumulative function, be the net widthwise
capacity over the horizon. In ), we generate a pulse with magnitude W}, for each stock
rectangle k and a pulse with magnitude —w; for every item belonging to order i (Figure
). As long as € is non-negative, the widthwise capacity is satisfied. A similar construct
is used to express the limit on the number of partitions on each level (Figure ), where
a positive pulse with unit magnitude is generated for each item. We constrain the total
cumulative function of these unit pulses, I', to be within 7.

Overall, our decision variables are as follows:

xip = (interval) lengthwise interval of item p belonging to order i.
¢ = (interval) lengthwise interval representing stock k.

g = (state function) guillotine state function.

CPgr is defined in Model Objective describes our cost, the weighted differ-
ence between the areas of stocks used and orders fulfilled. Expressions PRESENCEOF and
S1zEOF are used to access the presence and the duration of an interval variable. Constraints
(4.1b)) and define the widthwise usage of each stock. The last two parameters in the

ALWAYSIN constraint respectively dictate the minimum and maximum values that the cu-

mulative function 2 can take on over the horizon H. Constraints (4.1d]) and (4.1¢) define the
restriction on the number of partitions on each level. We remark that Constraint can
be substituted by I' = > 7, - o PULSE(H, 1) — >, v pec; PULSE(Zip, 1), which yields identical
semantics overall, but uses more terms on the right-hand side. Constraint defines the

guillotine cut restrictions. The last two parameters in ALWAYSCONSTANT ensure that the

start and end times of the variables x;, are aligned with those of the intervals within the
state function g. Constraints (4.1g)) and (4.1hl) ensure that the total quantity of the order
fulfilled is within the demand tolerance. Constraint (4.1i)) ensures that no item is assigned

across two stock rectangles. The remaining constraints declare the decision variables.
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min « Z LW, PRESENCEOF(cy,) (CPsRr) (4.1a)
keK
—B Z Z w; PRESENCEOF () SIZEOF (2 )
i€N peC}
st. Q= Z PULSE(cg, Wy) — Z Z PULSE(z4p, w;) (4.1b)
ke K iEN peC;
ALwAYSIN(Q, H, 0, max W) (4.1c)
S
= Z Z PULSE(z;p, 1) (4.1d)
i€EN peC};

ArwaysIN(T', H,0,7n) (4.1e)
ALWAYSCONSTANT(g, xip, T'rue, True) Vie N,peC; (4.1f)
> S1zEOF(zip) > " /w; Vie N (4.1g)
peC;
)~ S1zEOF (24) < " Jw; Vie N (4.1h)
peC;
FORBIDEXTENT (2, F) Vie N,peC; (4.1i)
iy : INTERVALVAR(H, [p!"™, pie*]) Vie N,p € A; (4.1j)
2 : OPTINTERVALVAR(H, [, pi**]) Vie N,p € B; (4.1k)
¢k : INTERVALVAR(Fy, L) Vk e K (4.11)
g : STATEFUNCTION() (4.1m)

4.2.2 Integer-based CP Formulations

Next, we present three integer-based CP formulations motivated by different modelling

perspectives summarized in Figure |4.2

4.2.2.1 Counting-based CP Model

Due to the two-stage cuts, partitions assigned to the same order on a level must be identical;
hence, we can count them. For a given level j from stock k, we use an integer variable x;
in our counting-based model, CPco, to denote the number of partitions assigned to order
i (Figure . We use an integer variable y;; to represent the length of level j on stock
k. As the position of the lengthwise cut is not restricted to be integral, we magnify the
domain using a precision parameter P equal to some power of 10, so that y;; represents the
first log;, P decimal places of the actual length. More formally, our decision variables are

as follows:

xi;, = (integer) # of partitions on level j of stock k assigned to order 4
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Figure 4.2: A visualization of the integer-based CP models.

yjk ‘= (integer) length of level j of stock k£ magnified by P

min o Z LiWier — Z Z Z wixijkyjk/lp

s.t.

keK iEN jeJy, keK
E Tijpw; < Wisjg
iEN

Yik/P < pi*" + (2451 == 0) max(p;'**

neN
Yix/P = pi"" (@i > 1)

SO yikmige/P = g fwi

je€J kEK

Z Z YikTije/P < ¢ Jw;

jeJ keK
Z Yjx/P < Licy

JE€Jx
Sjk = ANY([:L'Z'jk >0,Vi € N])

cr = ANY([sjr = 1,Vj € Ji])
zijk € {0,...,m}

; 0, min p™" P, ... max p**
vk € { N P P, en P P}

(CPco)

Vi€ JkeK

Vie N,je Jp, ke K

Vie N,je Jp, ke K
Vie N

Vie N

Vk e K
Vi€ Jp, ke K
Vk e K

Vie N,je Jp, ke K
Vi€ Jp, ke K
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Modelformalizes CPco. Objective describes the cost. Since y;;, is magnified,
we divide it by P to recover its actual length. Constraint restricts the width of the
stocks. Constraints (4.2c|) and restrict the length of a level by the tightest interval
determined by the allotted orders. Constraints (4.2€) and (4.2f) ensure that partitions of
each order fulfilled satisfy the total quantity range demanded. Constraint restricts
the length of the stocks in use. Constraints (4.2h)) and (4.2i)) describe if a level and a stock

is used, respectively.

4.2.2.2 Stock-based CP Model

The stock-based CP model, CPgr, takes advantage of the limited number of possible par-
titions on a level, matching each partition to some order (Figure . Specifically, we
define integer variables xjj; representing the index of the order to which the It partition
of the j* level on the k" stock is assigned. As not all partitions are always needed, we
define a dummy order that serves as a placeholder. Formally, the dummy order, indexed by
D = |N| + 1, has width wp = 0 and length interval [p™", pPa] = [0, rlré%((pgna‘”)] We use
N = N |J{D} to denote the set of original orders plus the dummy order; w to denote the

set of widths of original orders union the dummy width wp; p™" and p™% to denote the
min max

lengthwise bounds of orders union the dummy bounds p5"" and p5%*. Similar to CPco,
we let y;; be the length of level j on stock k and magnify its domain using P.

minimize Z LiWic, — Z Z Zﬁmjklyjk/,]) (CPsr) (4.3a)

keK je€Ji keK leP
s.t. > Wy, < Wisii Vj € JykeK (4.3b)
leP

Yjr/P < pm, Vje ke K,leP (4.3c)
Yi/P = p""y Vje ke K,leP (4.3d)
SO (wjm == dyjn/P = ¢ Jw; Vi€ N (4.3¢)

je€JL kEK IEP

Z Z Z(xjkz ==1)yx/P < ¢"""Jwi Vie N (4.3f)
j€J kEK l€EP
Sjk = ANY([I']'M # D,VI € P]) VieJy, ke K (4.3g)

zj €N Vi€ ke K,le P (4.3h)
[@24), [@.24), (4.2%)

Model formalizes CPgr. Objective (4.3a)) minimizes the cost. Constraint (4.3b))

ensures that the widthwise capacity is satisfied on each stock. In particular, w is indexed
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by z; using the ELEMENT constraint. Constraints and constrain the length
of a level by the items assigned on it. If x;; takes on the dummy value, these constraints
are trivially satisfied. Constraints and satisfy the total area of each order.
Constraint instantiates intermediate parameters indicating level usage.

4.2.2.3 Item-based CP Model

Our final integer-based CP model, CP;p , takes advantage of PACK, a global constraint
for the 1D packing substructure. In 2SCSP-FF, we observe two such substructures: the
widthwise packing of items into levels, and the lengthwise packing of levels into stock
rectangles. While the former can be represented by PACK, the latter cannot due to the
flexibility in length.

To use PAack for the first substructure, we propose a new set of indices for levels. First,
we let J={1,...,> ,cx |Jk|} be the flattened set of the maximally possible levels over all
available stocks. Then, for every possible item p belonging to order ¢, we introduce a set of
integer variables z;, having domain J (Figure . However, in a feasible assignment, not
all possible items need to be allotted to a level in the available stocks, so we expand the
domain of z;, to include a dummy level with infinite width indexed D = |J| + 1 to absorb
any unneeded items. Accordingly, we introduce integer variables 2, to represent the width
usage of level j on stock k£ and an additional integer variable 2p for the dummy level. The

length of level j on stock k is again represented by an integer variable y;y..

min « Z cxWiL — B Z Z wz@"g:‘;”/P (CPrr) (4.4a)

keK i€N peC;

s.t. PACK(Q, z, w) (4.4b)
e /P < pirer Vi€ N,pe C (4.4c)
Jp [P > it Vie N,pe C; (4.4d)
> TP < g fw; Vie N (4.4e)
peC;
> e /P > g w; Vie N (4.4f)
peC;

CouNT(z,7) < 1 VielJ (4.4g)

sjk = ANY([zy, == j+ k|J|,Yi€e N,pe C;]) Vje€ ke K (4.4h)

ziyp € JU{D} Vi€ N,p e C; (4.4i)

ij e {0,..., W} Vje ke K (4.45)

Qp €40,... > wilCil} Vie JpkeK (4.4K)
iEN

(E29), [@24), (.28)
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Model formalizes CPp. Constraint makes item-to-level assignments. Here,
variables x;, and parameters w; are reshaped into two one-dimensional vectors x and w of
size ) ;cn |Cil so that the i'™ element in x has width of w;y. We also use ﬁ,; ={Q | Vje
Je, k€ K} J{Qp} to denote the flattened set of stock width variables. Constraints
and restrict the level’s length by the orders allotted on it. In associating the item
assignment x;, with y;j,, we define notations y™** = y(J{0} and g™ = @U{mzax piery
where § = {y;r, Vj € Jp,k € K}. The last entry in g™ and in §™%* corresponds to the
dummy index and is important. If x;, takes on the dummy value D, constraints and

max
7

and max p;"

4.4d)) evaluate to expressions 0 < p a > pmin respectively, both of which

1
are always true. If z;, does not take on the dummy value, then the corresponding level
length is restricted. Also, for conciseness, we abbreviate the global constraint ELEMENT(A,
e) as A.. Constraints (4.4e) and (4.4f) ensure that the quantity fulfilled satisfies the quantity

T

demanded. Here, we always use y™** so that no contribution is made if x;, takes on the

dummy value. Constraint (4.4g) enforces a maximum of 7 items on any level. Constraint
(4.4h) defines if a level is used. The rest define the variables.

4.2.2.4 Symmetry-breaking

The problem has a number of inherent symmetries due to the homogeneous items, levels,
and stock rectangles. Hence, we augment CPcoop, CPgr, and CPrp with the following

symmetry-breaking constraints:

Yik > Y+ Vi€ ke K (4.5a)
Ck 2> Ck+1 Vk € Kl/w he H (4.5b)

These constraints break the symmetry between the lengths of consecutive levels on
the same stock and the presence of homogeneous stocks, respectively. We use a prime
to indicate an ordered set without its last element: J' = J\ {|J|}. For CPgr, we also
specify a lexicographic ordering of the order indices on consecutive levels of the same stock
via LEXICOGRAPHIC([z k1, VI € PJ,[x(j41)1, V] € P]). For CPir, we add an additional
constraint to break the symmetry for items belonging to the same order: i, < ;(,41), Vi €
N,peC].

4.2.3 MILP Formulations

We also introduce two mixed-integer programs that use binary variables to assign partitions
on each level to orders. Formulating a strong MILP model is challenging, as determining the
area of each order requires information related to two independent decisions: the order-to-

level assignment and the level length given order assignments. We linearize this relationship
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at the expense of introducing new variables, each one packing an item of an order into a
level of a stock. While it is tempting to decompose them into independent orders-to-levels
and levels-to-stocks decisions similar to the compact formulation in Furini and Malaguti
[86], representing both the area of each order and the variable length of each level using

linear constraints is nontrivial. Here, we do not investigate this further.

4.2.3.1 Assignment-based MILP Model

The assignment-based MILP model, MIP 45, explicitly enumerates all possible pieces on
each level of the stock that can be assigned to each order. Binary variable x;j;; decides if
the It" piece of the j** level of the k" stock is assigned to i** order. Continuous decision
variables y;i describe the varying length for each 4t level of the k" stock. The resulting
quantities of each It" piece on the j™* level of the k" stock assigned to each i** order are
denoted by continuous variables a;jx;, which linearize the product representing the weight
of each piece of stock between continuous variable y;, and binary variable ;. Binary
variables ¢, indicate whether the k*" stock is used or not.

MIP 45 is defined in Model Objective describes the cost. Constraint
restricts the stocks’ width. Constraint limits the number of lengthwise cuts. Con-
straint (4.6d)) ensures that the lengthwise capacity of each stock is satisfied. Constraints
and assert that the level’s length must respect the minimum and maximum
length of items assigned to it. Constraints and ensure that the quantity of

each order assigned across all stocks is satisfactory. Constraints (4.61), (4.6j), and (4.6k)
define the area of each partition on a level.
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min o Z LiWycp, — B Z aijit (MIP yg) (4.6a)
keK iEN jEJ, kEK,IEP,
s.t. Z W;iTijkl < Wyep V] e Jp, ke K (4.6b)
iEN,IEP;
> miju < ek Vj € Jp, k€ K (4.6¢)
iEN,IEP;
> Yk < Licx Vk e K (4.6d)
JEJk
yik > pi" T VieN,jeJ,ke K,leP  (4.6e)
Yik < pi T Tijp + maﬁ(P?ax)(l —zyw) VieN,jeJy ke KleP (4.6f)
e
Z Qjjkl > qzmm Vie N (4.6g)
IEP; jE T kEK
Yo agu <™ Vie N (4.6h)
IEP; jEJp kEK
Aijki < WilYjk Vie N,je€ Jp, ke K,leP, (4.61)
Qijkl 2 Wiljk — P w; (1 — xijkl) YVie N,je Jp, ke K,le P, (4.6j)
Q;ikl < p;mwwixijkl Yie N,je Jp,ke K,le P (4.61{)
zijm € {0,1} Vie N,je ke K,l € P, (4.61)
yir € RY Vj € Jp,keK (4.6m)
aijr € RY Vie N,j € Jy, ke K,l€P, (4.6n)
cr € {0,1} Vke K (4.60)

Symmetry-breaking: We can again add symmetry-breaking constraints (4.5al) and (4.5b])
to MIP similar to CPco and CPgp. Furthermore, we add constraints (4.7a)) and (4.7b)) to

break the symmetry between partitions on the same level belonging to the same order and

the length of the first level of identical stocks, respectively.

Tijht = Tijrayry Vi€ N,jeJ ke K, leP; (4.7a)
Yok = Yo(k+1) Vk € Kj,,h € H (4.7b)

4.2.3.2 Counting-based MILP Model

In order to retain linearity, MIP 4g treats the assignment of partitions on the same level to
an order as individual decisions. Alternatively, we can count them, leading to a counting-
based MILP model denoted as MIPco. We introduce binary variable x;;;; that takes the
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value 1 if and only if there are [ partitions (with identical dimensions) on level j of stock
k assigned to order i. Differing from Section which uses a;j; to describe the area
of partition [, we let the continuous variable a;jx; represent the total area of all [ counts
of partitions on level j of stock k. Again, we use a continuous variable y;;, to describe the
length of the j** level on the k" stock.

Constraint ensures that each order can only take on one range of cumulative
quantity on each level. In addition, we take advantage of the special orders sets inherent
in MILP solvers. Constraint enforces the total width of all items assigned to each
stock to be less than the stock width if that stock is used, or zero if it is unused. Constraint
ensures the number of lengthwise cuts is within limits. Constraint , , and
defines the total quantity of partitions of each order.

minimize (4.6al) (MIPyder) (4.8a)

S.t. SOSl(xijthl €FR) Vie Nyje Jp, ke K (4.8b)
Z Z wi(la:,'jkl) < Wiep VieJy, ke K (4.8C)
iEN IEP;

SO i < Vi€ ke K (4.8d)
iEN I€P;

Qjjkl < lwiyjk Vie N (4.86)
agjrl > lwiyjr — Up] ““wi(1 — z45) Vie N (4.8f)
Aijrl < ltpea]ffi(PTax)wixzjkz Vie N,jeJy,ke K,le P, (4.8g)

(&6d) — ([E-67), (E.6]) — (£.6)

4.2.4 Model Comparison

Amongst the models proposed are two common abstract substructures that manifest them-
selves differently due to modelling perspectives. The first substructure is a 1D packing
problem that assigns items of the orders to levels without exceeding the levels’ width,
which is inherited from its respective stock. The second substructure again is a 1D packing
problem, fitting levels into stocks lengthwise; however, differing from a classic packing prob-
lem, the level length is flexible. These substructures are linked by two types of constraints:
the orders that are assigned to the level restricts the length of each level, and the total
quantity fulfilled for each order is derived from the multiplicative relationship between the
presence of the item and the level length.

All CP models, except CPgg, share almost identical constraints and variable definitions
for the second substructure, in particular, using a decision variable y;;, for the Gt level

on the k' stock; where these models differ is in the modelling of the first substructure.
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CPgr takes advantage of the maximum number of lengthwise cuts by using them as the
indices for decision variables. So, its model size is largely dependent on the number of
partitions on the stocks, and its search space is unaffected by any changes in the number
of items. In contrast, with an increase in the number of items, the search space for CPco
increases, but its size does not change, as neither new variables nor new constraints need
to be introduced. The CPp model leverages the global constraint PACK at the expense of
explicitly instantiating all possible partitions for all orders, making the model size highly
sensitive to the number of items and the number of orders.

The central difference between CPgpr and the other exact models is that the former uses
interval variables to describe the item assignments, and the latter uses integer variables.
For the first substructure, CPgr models the width of each stock as a cumulative resource
for the items to deplete, whereas all other models employ arithmetic and logical constraints.
Also, CPgpr models the second substructure by framing stock length as time in a scheduling
problem. Typically, a continuous time horizon implies that the stocks are joined into one
resource, but packing problems require stocks to be discrete. The variables from integer-
based CP models, as a result, use an index dedicated to each stock. For instance, y; is
described by the index k. Instead, CPgpr adds forbidden regions between stocks representing
the discretization without adding indices to variables. Furthermore, by taking advantage of
the state functions, CPgpg is the only model that does not explicitly enumerate all possible
levels in stocks to represent guillotine cuts. This implicit representation, as well as the use
of different CP substructures, significantly reduces the number of variables and constraints
declared.

The MILP models differ mostly in their interpretation of the variable index [. In MIP »g,
decisions related to partition [ is independent of any other partitions on the same level.
MIP o, however, groups the decisions of the [ counts of partitions together. This subtlety

results in differing definitions for area variables and related constraints.

4.3 A First-fit based Heuristic

In addition to the exact approaches, we develop a two-phase first-fit-based heuristic, FFMH .
An extension of the Finite First-fit Heuristic [27], the first phase sorts the orders’ items in
a lexicographically decreasing order based on their width and length interval size and packs
each one into a level. The intuition is that orders with less lengthwise flexibility and larger
width should be packed into a level first, as they can be more difficult to pack into a partial
solution. A new level or stock is opened if an item cannot fit into the previous level or stock.
Packing an item into a stock’s level only narrows its length interval: another decision is
required to obtain its exact length and thereafter each order’s total area. For simplicity,
we pack items of an order until the sum of the average possible area of each item is not

less than the middle of the required area interval for that order. In the second phase, given
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the complete item-to-level assignment, we solve a linear program (Model 4.9)) to determine

each level’s length, while minimizing cost.

max Z Wi Pk Yk (4.9a)
iEN,jETp,kEK
st >y < Ly Vk € K (4.9b)
JE€Jk
yji, > @ pmin VieN,jeJunkeK (4.9¢)
ik < BT+ (1 - O max(pF Wi € N,j € ke K (49d)
Z wi LYk > gmin Vie N (4.9¢)
jed ke K
Z wiéijkyjk < qima:c Vie N (49f)
jET kEK
yir € RY Vi€ ke K (4.9g)

The only variables in Model are the continuous variables y;;, describing the length of
the j* level on the k" stock. The parameter ®, ;1 is the number of partitions on the Gt level
of the k" stock that belongs to order i, and the parameter @Zf is a 0-1 indicator for ®;;, > 0.
We simplify the cost minimization objective to maximize total fulfillment because
the number of stocks used is fixed given the item-to-level assignment. Constraint
constrains the stock length. Constraints and satisfy the length specifications
of the partitions. Constraints and ensure the total fulfillment of each order to

be within tolerance limits.

4.4 A Sequential Heuristic Framework

In FFMH , items of orders are naively assigned to stocks; here, we attempt to develop a more
sophisticated heuristic that solves components of the problem sequentially (Figure. The
sequential heuristic first identifies subsets of orders with overlapping length intervals. Then,
for each of these subsets, it generates a set of widthwise patterns. Finally, these patterns
are packed into stocks, and their length values determined. These steps are repeated until
termination, and, for each of these steps, we attempt several approaches, summarized in
Table We call a combination of these approaches a configuration of the heuristic and
denote a configuration comprised of approaches S1, 52, and S3 as S : S1+4 52+ S3.

Before detailing the heuristic, we first define two terms used throughout this section.

Definition 1 (Congruent Orders). Two orders are congruent if and only if the length

intervals of these orders overlap.
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Congruent Groupings Item to Level Level to Stock

m_’I ok

I
I
I
| Level Assignment Level Length |
I
I
I

EEE >
III

Figure 4.3: A three step outline of the sequential heuristic.

Step Task Type Approach
Constrained Clusteri ccst
S1  Finding Congruent Groups OnStTaIne usterms
CcP cpSt
cp cps?
S2 Ttem-to-level Assignments
MILP MIPS?,
CP ops3
Simple Formulation ~ MIP33,
MILP < d
Compact Formulation MIPCO?’mp
S3  Level-to-Stock Assignment F Length LB BDS3
& BD of MIPS3,, O s simp
From Length UB BDSWZ,
From Length LB BD33Ib
BD of MIPS3, om ene comp
From Length UB BD33ub

Table 4.1: Approaches used in the sequential heuristics at each step. BD, LB, and UB
abbreviates Benders Decomposition, lower bound, and upper bound, respectively.

Definition 2 (Congruent Group). A set of orders that are all congruent with each other

form a congruent group.

Finding congruent groups is critical in reaching a feasible solution, as all orders that are
on the same level form a congruent group.

Algorithm [1] outlines the a generic configuration of the sequential heuristic.
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Algorithm 1: Sequential Heuristics Framework
Input : Set of orders N, Cannot link constraints C

Output: Set of level patterns bestPattern

iter < 0 ;

k < GetHoffmanLB(N,C);

while within time limit and k& < |N| do

groups < FindCongruentGroups (N, C, k) ;
levels <— DivideGroupsIntoLevels (groups) ;
assignments < AssignLevelsToStocks (levels) ;

if assignments has lower objective than best Pattern then
| bestPattern < assignments

end

iter < iter + 1 ;

if iter mod |N| == |N| — 1 then
k< k+1;

end

end

We allocate the runtime of each step in the heuristic as follows. FindCongruentGroups
is allowed one-tenth of the overall runtime. With A seconds remaining, for each congruent
group g € G, the second stage algorithm takes up the maximum of h/(|G| + 1) seconds or
the time it takes to find a feasible solution if less, leaving the rest for the third stage. One
issue is that, especially for larger instances, instantiating the model can take a noticeable

amount of time, so the actual clock-time may exceed the initially allotted runtime.

4.4.1 Finding Congruent Groups

The first step finds subsets of orders whose items can be placed on the same level. Restricting
same-level assignments is a set of cannot link constraints C derived from non-overlapping

length intervals. Formally, the relation (4,4') of orders ¢ and ¢’ is in the set C if and only

min ,max

constrained K-means algorithm and a constraint program.

min max]

| does not overlap with [pl", pl; Here, we attempt two approaches: a

4.4.1.1 Finding A Lower Bound on the Number of Clusters

Determining the initial number of clusters is essential: because of the cannot link con-
straints, starting off with too few clusters will lead to infeasibility. We initialize the number
of clusters with a lower bound. First, we note that finding a feasible solution to the cannot-
link constraints is equivalent to solving a vertex colouring problem, where each vertex is
an order, each edge a cannot-link relation, and each colour a cluster. In other words, the
minimum number of clusters is simply the chromatic number. One simple lower bound on

the chromatic number is the Hoffman’s bound [118], which states that:
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(4.10)

where x(G) denotes the chromatic number, and A (G) and A, (G) is the largest and smallest
eigenvalues of the adjacency matrix of a graph G. Here, G is the conflict graph defined
by C, where (i,7') is an edge in G if and only if (z,i") € C. We use the function signature
GetHoffmanLB to return x(G). Finally, we remark that a solution with the number of groups
being the chromatic number may not always lead to minimum waste, as the combinatorics

of packing is not captured in this step.

4.4.1.2 Constrained K-Means

We consider using a popular constrained clustering algorithm to find congruent orders:
the Constrained K-means [243], denoted as CC°. CCS! augments the standard K-means
clustering algorithm by considering cannot-link constraints. First, CCS! initializes a set
of cluster centroids. Then, each data point is assigned to the closest centroid that does
not contain any data points in conflict. A data point of an order is the one-hot encoding
of a set of non-overlapping sub-intervals discretized from the set of length intervals for all
orders. After all data points are assigned, the location of each centroid is recalculated using
the data points assigned to it. This process is repeated until the centroid positions do not
change. The pseudocode of the CCS! algorithm is described in Algorithm
Algorithm 2: CCS! Algorithm

Input : dataset D, cannot-link constraints C, cardinality k

Output: labels for dataset D

Initialize cluster centres G = {G1,...,Gk};

while not converge do

for data d; € D do
assign the closest cluster to d; such that none of the data previously

assigned to this cluster conflicts with d;
end
if cannot find any cluster for a data point then
‘ restart algorithm with random centroids;
end
for centroid G; € G do
‘ update G; by averaging all of the points d; that has been assigned to it;

end

end

Initializing Cluster Centers We randomly generate the cluster centers. The hope is

that randomness allows good order groupings to be explored early.
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4.4.1.3 Constraint Programming Formulation

Given the upper bound on the number of clusters k, finding congruent groups is inherently
a satisfaction problem, so we can find clusters using CP solvers. We introduce an integer
variable z; for each order i with the domain being the set of indices of the k clusters.
We hypothesize that having fewer congruent groups is beneficial to finding better solution
to the overall problem, as this invites more diversity in the widthwise patterns. So, our
satisfaction model is augmented with an objective function that minimizes the
number of clusters. Constraint enforces the cannot-link relations.

min rlrg\}[((xz) (4.11a)
1€EN

st @ # xy V(i,i') € C (4.11b)
zie{l,....,k} VieN (4.11c)

Solution Cut For a given k, there may be multiple feasible combinations of order clusters.
So, after the solver finds a solution, we add a cut to this CP model to avoid generating
the same combination in the subsequent iterations of Algorithm The cut is comprised
of the disjunction of boolean clauses, each describing the non-homogeneity of the values
of variables that previously belonged to the same cluster. This is formally expressed in

Expression (4.12):

Ve A mi==a) (4.12)

r€R i ENp X Nyp|i<i/

where the set N, = {i € N|z} = r} denotes indices of orders belonging to cluster r, and z

represents the solution of the variable x; in the previous iteration.

4.4.2 Dividing Groups into Levels

The second stage distributes items of orders in each congruent group to levels of varying
width to minimize any widthwise loss. Dividing orders within a congruent group into levels
is inherently a 1D packing problem: we want to pack items belonging to these orders into
potential levels widthwise. On top of 1IDBPP, we need to consider the total area fulfilled for
each order; however, until the levels are assigned to stocks, we cannot determine the exact
value of the level length and thus the area fulfilled. Fortunately, we can approximate the
total area using lower and upper bounds on the level length. Here, we solve for the level
patterns iteratively, developing a mixed-integer linear program and a constraint program for

each congruent group. In both formulations, we recall that », _ |Ji| is an upper bound
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on the number of levels. We recall J = {1,...,> ;5 |Jk|} from Section [4.2.2.3 and let
Jp = {j € J| W; = Wy} be the set of levels for a stock type. We denote the set of

congruent groups as G = {Ny,... , NG|}, where Ny is the g'" congruent group. Given a

congruent group, we approximate the lower and upper bounds to be pZ”” = max p;”m and
1€Ng

Py " = min p;"**.

iEN,
4.4.2.1 Mixed-integer Formulation

We present a mixed-integer program, MIP52, to divide items of orders in the ¢*" congruent
group into levels. We initialize a set of artificial levels with different widths and attempt to
assign items of orders within each congruent group. For stocks of type h € H, the number
of these artificial levels with width W}, is always no greater than |Jy|. The variables used

are as follows:

xi;n = (integer) # of partitions on level j of stock type h assigned to order ¢

s;p = (binary) 1 iff level j of stock type h is used

min « Z Z Whsin — B Z Z Z WiTijh (4.13a)

heH jey, heH jeJ, i€Ng
s.t. Z Tijhw; < Whsjn Viedy,he H (4.13b)
iEN,
Z Tijh < MNSjh Vje€Jy,he H (4.13c)
iEN,
Z Z P wign < g fwi Vi € Ny (4.13d)
heH je,
SO praTai > g w; Vi e N, (4.13¢)
heH jely
Z Tijhwi = Z Ti(j+1)h Wi Vh e H,j e J, (4.13f)
i€N, ieN,
zijn € ZF Vie Ny, jeJy,he H (4.13g)
Sjh € B VjeJ,he H (4.13h)

Objective minimizes the width loss of each level. Constraint restricts
the width of the levels of different stock types. Constraint reflects the limit on the
number of widthwise knives of the slitter. Constraints and impose lower
and upper bounds on the area fulfilled assuming the level lengths are at their minimum and
maximum. Constraint eliminates symmetry between levels of the same stock type.

The rest of the constraints define the variables.



CHAPTER 4. 2SCSP WITH FLEXIBLE ITEM LENGTH AND FLEXIBLE DEMAND 57

4.4.2.2 Constraint Programming Formulation

In CP, the 1D bin packing problem substructure can be efficiently modelled using the PACK
constraint, from which we derive our CP model, CP52. We let Z;p be an integer variable
representing level indices and 2, be an integer variable denoting the used-up width. As
not all items need to be present, like in Section we use a dummy level indexed
D = |J|+1 to absorb any unused items and a corresponding dummy leftover width variable
Qp.

min o Y > " (Qn > 0)W (4.14a)

heH jeJy,
B> > wiwip # D) (4.14b)
iENg pECi
st. PACK(Q, z,w) (4.14c¢)
CounT(z,5) <n vjedJ (4.14d)
>yt ==j) < ¢ /wi Vi€ N, (4.14e)
jeJ
> oy (wip ==4) = ¢ fwi Vi€ N, (4.14f)
jeJ
Tip < Ti(p+1) Vi € Ng,p e G (4.14g)
zip € JU{D} Vi € Ny,p € C; (4.14h)
th S {0,...,Wh} VieJy,he H (4.14i)
0 .. 4.14j
p €{0,...,maxWp} (4.14j)

Objective minimizes the width loss. Constraint uses the constraint PACK
to pack orders into levels. Like in Section Q is the combined set of actual and dummy
stock width variables, and = and w is a one-dimensional vector flattened from variables x;,
and width parameters w;, respectively. Constraint uses the constraint COUNT to
limit the number of partitions within each level. Constraints and impose
lower and upper bounds on the area fulfilled assuming the level lengths are approximately at
their minimum and maximum. Constraint reduces the symmetry between partitions

of the same order. The rest of the constraints define the variables.

4.4.3 Assigning Levels To Stocks

Finally, given a set of level patterns S from the second stage, we want to assign them to
stocks. First, we let the number of items belonging to order i on level j € S be n;;. As
these levels have a fixed width, we only consider packing them lengthwise. The overlap

among all of the length intervals of items on the level is often still an interval, so, instead
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