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As the Canadian population ages, there is an increasing demand for senior transportation services

that cannot be met by regular public transportation systems. This thesis aims to bring attention to

the combinatorial optimization problem of senior transportation. By extending current vehicle routing

problem knowledge and computational technologies, we construct novel problem definitions for the Senior

Transportation Problem (STP) and the Senior Transportation Problem with Overbooking (STPOB)

based on data provided by a partnering non-profit organization specializing in senior transportation

services. Solution approaches including mixed integer programming, constraint programming, two logic-

based Benders decompositions and a construction heuristic are developed and empirical analyses on both

randomly generated datasets and real-life datasets are performed. Constraint programming demonstrates

best results being able to solve to optimality large real-life instances of up to 270 vehicles with 385 requests

for the STP and up to 210 vehicles with 320 requests for the STPOB under 600 seconds.
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Chapter 1

Introduction

The elderly population has been increasing rapidly worldwide. In a report from the United Nations

published in 2015, the percentage of the population aged 60 years or older was 12.3% in 2015, but is

expected to grow to 16.5% in 2030 and 21.5% in 2050 [51]. With this large increase in elderly population,

communities need to make sure that the infrastructures are in place to support the everyday life of this

population. One major component is transportation; whether it is from home to a hospital or simply

a grocery run, transportation plays a crucial role in every elder’s daily activities. Currently, there are

some non-profit organizations that provide these “senior transportation” services in many communities.

In the Greater Toronto Area, for example, organizations such as Toronto Ride, Circle of Care, and

Community and Home Assistance to Seniors (CHATS) provide services to all eligible elders in their

districts. However, the resources available for these transportation services are often very limited and

many elders are left on the waiting list for a long time. Furthermore, due to lack of scheduling experts,

the schedules assigned to each driver are often sub-optimal in a sense that many vehicles do not operate

at full capacity. Therefore, finding optimal schedules is crucial for organizations to reduce operational

costs and meet necessary demands.

This thesis is concerned with formally defining the Senior Transportation Problem (STP) and the

Senior Transportation Problem with Overbooking (STPOB) and presenting different approaches to solve

both of these problems. Five different methodologies including Mixed Integer Programming (MIP), Con-

straint Programming (CP), Logic-based Benders Decomposition (LBBD), and Heuristics are explored to

tackle each of the STP and the STPOB and empirical analysis has been performed in order to understand

the reasons why one approach performs better than the other approaches.

1.0.1 Characteristics of the Problems

The STP is a transportation problem and draws many of its problem characteristics from different

variations of the Vehicle Routing Problems (VRP). The VRP is a group of combinatorial optimization

problems that have been extensively studied in the literature as they have demonstrated to be significant

in today’s business operations [63]. Given a set of transportation requests and a fleet of vehicles, the VRP

aims to find a set of routes that can satisfy all requests while obeying all routing constraints at a minimal

cost (or using the least number of vehicles). Some variations of the VRP include adding capacities to

vehicles, time window constraints to transportation requests, sequence constraints on request locations,

and stochasticity on the demand of requests. A thorough review of the VRP is provided in Chapter 2.

1



Chapter 1. Introduction 2

To understand the nature of the STP, we have partnered with CHATS which provides assistance,

including transportation services, to seniors in the York and South Simcoe regions in Ontario, Canada.

In 2015, CHATS provided 88,000 trips to more than 7,300 seniors. After multiple conversations with

CHATS, we have learned that, unlike traditional transportation problems that minimize the number of

vehicles used and/or the total distance travelled, CHATS’ objective is to maximize the number of clients

served. There are two types of drivers: paid drivers and volunteer drivers who have vehicles of different

capacities and also depart from different locations. In addition to routing and time window constraints,

additional constraint such as maximum ride time of a client must also be enforced since the clients are

seniors and user comfort is also very important.

Another aspect of the problem faced by CHATS is that requests are frequently cancelled. Often,

due to weather conditions or illness, from 15% to 26% of the requests are cancelled in the last 24 hours.

Therefore, the second question that we would like to research is how to create the most cost effective

schedule given the additional information on each request’s probability of cancellation. The approach

that we consider is to allow overbooking: any request that is cancelled does not incur any cost and

overbooked requests are served by a higher cost taxi.

1.0.2 Thesis Outline

Chapter 2 provides a literature review on various transportation problems and the different methodologies

to solve these optimization problems. This chapter concludes with a discussion of overbooking.

The thesis follows with Chapter 3 which explains the process of generating test problem instances to

assess the performance of the different algorithms. Two sets of dataset are employed: randomly generated

problem instances and real-life problem instances extracted from the CHATS’ database. Additional data

analyses on the CHATS dataset are also described in this chapter including the use of prediction models

to compute the probability of cancellation of a given request.

In Chapter 4, a formal problem definition for the Senior Transportation Problem is introduced along

with the parameters and notation used in the rest of this thesis. Five approaches including the variable

definitions and formulations or pseudo codes are presented next. All algorithms are tested on the

generated datasets and detailed analysis on the CP model and the LBBD approaches is performed to

understand the behaviour of these algorithms. The best performing approaches are then tested on the

CHATS datasets to assess the different algorithms on real-life instances.

Chapter 5 follows with the introduction of STPOB. As in Chapter 4, five approaches and their

formulations are presented and analysis on the different algorithms is presented. Additionally, Chapter

5 discusses the difficulty of the STPOB compared to the STP. Finally, the best performing approaches

are again tested on the CHATS instances.

The thesis concludes with Chapter 6 which presents a summary and conclusions drawn from this

research followed by a discussion of directions for future research.



Chapter 2

Literature Review

The transportation of goods and people is an important part of everyday life. In order to increase the

efficiency of the transportation industry and economize on resources, vehicle routing problems (VRP)

have been widely studied in the field of Operations Research. Laporte highlights the research discoveries

and the development of highly sophisticated exact algorithms and heuristic methods of VRPs in the

past fifty years [41]. VRP can be defined as the class of combinatorial problems to find a schedule for

vehicles to visit a set of locations while optimizing some aspects of transportation costs. This class of

problems is very complex and intricate; the problem and its various variants have been proven to be

NP-hard [45, 28] and require a lot of computational power to be solved to optimality. Furthermore, many

complicated constraints arise from real-world problem examples. In order to address the difficulties of

transportation problems, many variations of VRP have been studied in the literature. Some of the most

researched VRP variants include time windows on visits to locations (VRPTW) [36], pickup and delivery

requirements (PDP) [20] and vehicle capacities (CVRP) [55].

The research on VRP is still very active but has shown a shift to more realistic problems that involve

a variety of constraints that represent the real-world. In 2014, Caceres-Cruz et al. surveyed existing

problem definitions and the corresponding state-of-the-art solution techniques [10], emphasizing the

importance of having problem formulations and models to tackle real-world problems. Some variants that

the authors present include heterogeneous fleet, multi-depot, time windows and asymmetric costs. Other

real-world problem characteristics that have been addressed recently in the literature include representing

users’ inconvenience time [48] and modifying fixed routes with minimal disruption to customize pickup

and drop-off locations [19].

The goal of this thesis is to define and solve two real-life inspired transportation problems: the Senior

Transportation Problem (STP) and the Senior Transportation with Overbooking (STPOB). There are

three levels of decisions in the STP:

1. the selection of requests to fulfil,

2. the assignment of requests to vehicles, and

3. the routing of vehicles.

In the STPOB, since all requests must be satisfied, the first decision is omitted. Each of these levels

is a well-studied hard problem on its own and instances of reasonable size usually require sophisticated

models or heuristic approaches to be solved.

3



Chapter 2. Literature Review 4

In this chapter, we present an overview of problems relevant to the STP and the STPOB together with

their associated solution techniques. More specifically, we focus on the literature surrounding the PDP

and its variants, the Dial-a-Ride Problem (DARP), the Orienteering Problem (OP), the combination

of the PDP and OP, and overbooking problems. We review both exact techniques and some heuristic

algorithms that solve these related problems.

2.1 Related Problems

The vehicle routing problem with pickup and delivery or simply the PDP is a variation of the VRP in

which sequence constraints are added to some subset of the visits. More specifically, a pickup location is

required to be visited before a delivery location and both visits must be on the same route. Furthermore,

the pickup and delivery problem with time windows (PDPTW) is the PDP with time window constraints

associated with each location. In contrast, the OP is a variation of the VRP in which a fixed set of

vehicles must visit as many locations as possible within the given time limit or given total route length.

The STP can be viewed as a combination of a PDPTW and an OP. In this section, we survey the

recent work done on these problems. We present the variants of each problem that have been proposed

and studied along with the techniques used to solve each variant, with a focus on exact techniques.

The STPOB is an extension of the STP which takes into account the overbooking aspect and mini-

mizes the total expected cost when given the probability of cancellation of each request. We also provide

review on the literature that presents problems with an overbooking condition.

2.1.1 Pickup and Delivery Problems with Time Windows

In 2008, Parragh et al. presented an extensive survey on PDP [52, 53]. Part I studies problems where

the pickup or delivery is only at one single location (namely the depot) and part II surveys the class

of problems with pickup and delivery requests between clients. Within this class, the problems are

further categorized between paired pickup and deliveries where every pickup is paired with exactly one

delivery and unpaired requests where multiple commodities can be picked from up and delivered to

different locations. The DARP is an example of the paired PDP which will be discussed later in this

subsection. Another important feature of the PDP is the presence of time window constraints (PDPTW).

A comprehensive survey was done by Cordeau et al. on the one-to-one PDPTW [16].

The PDPTW can also be seen as a variant of the VRPTW with the additional precedence constraints

from the pickup and delivery. The PDPTW is a routing problem in which the goal is to minimize the

total travel costs while satisfying all time window constrained pickup and delivery requests associated

with each location. Additionally to the given set of available vehicles, a set of pickup and delivery

requests which specify its size, pickup and delivery locations, and service time windows is provided. The

objective is to find a set of feasible routes that satisfy each request exactly once while minimizing the cost

of all routes. Dumas et al. discussed this problem in detail providing a mathematical formulation and a

column generation approach [20]. Additionally, Lau et al. formulated a tabu search with a construction

heuristic approach [44]. Many PDPTW methodologies and formulations are inherited from the VRPTW

which has been surveyed by Cordeau et al. [17] and later by Kallehauge et al [37].
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Formulations of the PDPTW

The PDPTW is most often modelled with a three-indexed formulation [15, 13, 57] that comes from the

vehicle flow formulation of the VRPTW [37]. One of the advantages of this formulation is its compactness,

allowing easy readability. However, the number of variables and constraints grows in a polynomial factor

with the number of requests and this model may become very large for sizeable problems. The three

indexed formulation of [57] for a PDPTW is given in (2.1) - (2.12) .

Let n denote the number of requests, then the set of service locations N is denoted as [0, 1, ..., n, n+

1, ...2n+ 1] where nodes 0 and 2n+ 1 represent the origin and destination depots, while subsets P ∈ N
and D ∈ N denote the pickup and delivery locations respectively. Every vehicle k ∈ K is associated with

a capacity C and each location i is associated with a load qi, service duration di, and a time window

[ai, bi] during which the service can be done. Between two locations i and j, the travel time is denoted

by tij and the cost by cij . This formulation employs binary variables xkij which are equal to 1 if vehicle

k visits location i directly before location j or 0 otherwise. Variables Bk
i indicate the time when vehicle

k begins service at location i and Qk
i indicates the load of vehicle k after completing service at location

i. Then, PDPTW can be modelled as follows:

min
∑
k∈K

∑
i∈N

∑
j∈N

cijx
k
ij (2.1)

subject to
∑
k∈K

∑
j∈N

xkij = 1 ∀i ∈ P (2.2)

∑
j∈N

xkij −
∑
j∈N

xkn+i,j = 0 ∀i ∈ P, k ∈ K (2.3)

∑
j∈N

xk0j = 1 ∀k ∈ K (2.4)

∑
j∈N

xkji −
∑
j∈N

xkij = 0 ∀i ∈ P ∪ D, k ∈ K (2.5)

∑
i∈N

xki,2n+1 = 1 ∀k ∈ K (2.6)

Bk
j ≥ (Bk

i + tij)x
k
ij ∀i ∈ N , j ∈ N , k ∈ K (2.7)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀i ∈ N , j ∈ N , k ∈ K (2.8)

Bk
i + ti,n+i ≤ Bk

n+i ∀i ∈ P, k ∈ K (2.9)

ai ≤ Bk
i ≤ bi ∀i ∈ N , k ∈ K (2.10)

max{0, qi} ≤ Qk
i ≤ min{C,C + qi} ∀i ∈ N , k ∈ K (2.11)

xij
k ∈ {0, 1} ∀i ∈ N , j ∈ N , k ∈ K (2.12)

The objective function (2.1) minimizes the total travel cost. Constraint (2.2) ensures that each

location is visited exactly once and Constraint (2.3) ensures that the pickup and delivery locations of a

request are visited by the same vehicle. Constraints (2.4) to (2.6) ensure that each vehicle starts at the

starting depot, visits locations and ends at the ending depot. The consistency of time window variables

is enforced through Constraint (2.7) and capacity variables through Constraint (2.8). Pickup locations

are made sure to be visited before delivery locations by Constraint (2.9). Inequalities (2.10) and (2.11)

bound the time window and capacity variables.
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In contrast, Lu and Dessouky proposed a compact 0-1 two-index formulation for the multiple vehicle

pickup and delivery problem [47]. The authors build a single Hamiltonian tour from all routes and remove

the k index from the xkij variables from the previous model by introducing new binary variables bij that

indicate whether node i is visited before j in the tour. New constraints are included to reason about

vehicles by using bij variables. For example, the formulation uses the constraint bi,2n+j = bn+i,2n+j ,

where i is a pickup node, n + i is its associated delivery node, and 2n + j is a vehicle depot node,

to model that both pickup and delivery locations must be on the same vehicle. The constraint states

that if a pickup location is visited before a depot node, then its associated delivery node must also be

visited before that depot node. The authors also propose preprocessing to remove infeasible arcs. For

example, going from a delivery node to its associated pickup node is prohibited. The authors present a

branch-and-cut approach and four classes of valid inequalities, and showed that the proposed approach

can solve instances of up to 5 vehicles and 25 customers to optimality.

Very recently, Furtado et al. argued that the two-index formulation proposed by Lu and Dessouky

can only solve small instances, and introduced a new two-index formulation for the PDPTW [24] . The

formulation is an extension of the classical two-index formulation of the VRPTW [18]. Instead of using

the bij variables, the authors make use of vi variables that indicate the index of the vehicle that visits

location i. They showed good performance (solving 26 instances to optimality) compared to the classical

three-indexed formulation (solving 15 instances) and against the Lu and Dessouky two-indexed model

(solving 10 instances). The two-indexed formulation by Furtado et al. is given in (2.13) - (2.26) .

min
∑
i∈N

∑
j∈N

cijxij (2.13)

subject to
∑
i∈N

xij = 1 ∀j ∈ P ∪ D (2.14)∑
j∈N

xij = 1 ∀i ∈ P ∪ D (2.15)

Bj ≥ Bi + di + tij −M(1− xij) ∀i ∈ N ; j ∈ N (2.16)

Qj ≥ Qi + qj −M(1− xij) ∀i ∈ N ; j ∈ N (2.17)

ai ≤ Bi ≤ bi ∀i ∈ N (2.18)

max{0, qi} ≤ Qi ≤ min{C,C + qi} ∀i ∈ N (2.19)

Bn+i ≥ Bi + di + ti,i+n ∀i ∈ P (2.20)

vn+i = vi ∀i ∈ P (2.21)

vj ≥ j · x0j ∀j ∈ P ∪ D (2.22)

vj ≤ j · x0j − n(x0j − 1) ∀j ∈ P ∪ D (2.23)

vj ≥ vi + n(xij − 1) ∀i, j ∈ P ∪ D (2.24)

vj ≤ vi + n(1− xij) ∀i, j ∈ P ∪ D (2.25)

xij ∈ {0, 1} ∀i ∈ N ; j ∈ N (2.26)

Similar to the three-index formulation, there are a set of homogeneous fleet of vehicles K, each with

a capacity of C and a set of pickup P and delivery D nodes, each with a demand (or load) qi, service

time di and time window [ai, bi] during which the service must be completed. Furthermore, a travel cost
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cij and a travel time tij are associated with each pair of locations i and j. This formulation uses binary

variables xij which equal 1 if location i is directly visited before j and integer variables vi which indicate

the index of the vehicle that visits location i. Additionally, variables Qi model the load of the vehicle

after visiting location i and Bi model the time that a vehicle starts the service at location i.

The objective function (2.13) minimizes the total travel cost. Constraints (2.14) and (2.15) ensure

that each location is visited exactly once. The time window and capacity variables are restricted via

constraints (2.16) and (2.17) and bounded though constraints (2.18) and (2.19) respectively. Constraints

(2.21) ensure the pickup location and its associated delivery location are visited by the same vehicle.

The variables vj and xij are linked by Constraints (2.22) to (2.25). Finally, Constraints (2.26) ensure

that variables xij are bounded to 0 or 1.

Solution Techniques for the PDPTW

The PDPTW is an NP-hard problem [7, 45]. In order to achieve the scale of problem solving that is

necessary, while many of the approaches seek heuristic solutions, the state-of-the art for exact approaches

has been based on sophisticated mathematical programming methods such as branch-and-cut-and-price

[57]. The work done by Ropke et al. [57] extends the branch-and-price algorithm proposed by Dumas

et al [20]. The formulation is based on the set partitioning formulation of the VRPTW [18]. This

formulation assumes a set of homogeneous vehicles V and a set of all feasible routes Ω satisfying all time

window, capacity, and precedence constraints. Let Xr be binary variables that are 1 if route r is used

and 0 otherwise. Given Ω and the set of locations N with P ∈ N and D ∈ N as defined previously,

let air be coefficients that are 1 if route r contains request i ∈ N , and 0 otherwise. Finally, letting cr

denote the cost associated with each route r, the formulation is as follows.

min
∑
r∈Ω

crXr (2.27)

subject to
∑
r∈Ω

airXr = 1 ∀i ∈ P (2.28)∑
r∈Ω

Xr = |V| (2.29)

Xr binary ∀r ∈ Ω (2.30)

The objective function (2.27) minimizes the total cost of all routes. Each request can only belong to

one route (2.28) and there are exactly |V| routes (2.29).

In the column generation algorithm, a restricted master problem considering a subset of Ω is solved.

Additional columns, i.e., feasible routes, are generated by solving a pricing subproblem [57] that is given

below.
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min
∑

i,j∈N
dijxij (2.31)

subject to (2.3)− (2.12)(dropping the index k)

where dij is defined as: dij =

{
cij − πi ∀i ∈ P, j ∈ N
cij ∀i ∈ N \ P, j ∈ N

}
(2.32)

and πi is the dual variable associated with the set partitioning Constraints (2.28).

The set partitioning approach was shown to work for instances of sizes up to 500 requests with tight

time windows [20]. Instances with less constrained time windows however, are still very hard to solve.

This approach was re-implemented by Ropke et al. [57] with more modern technology and reportedly

solved less constrained instances of sizes up to 100 requests under 1200 seconds.

More recently, Baldacci et al. presented a new exact algorithm for the PDPTW which is also based

on the set-partitioning formulation [3]. The authors describe various procedures including two ascent

heuristics to find near-optimal dual solutions of the LP-relaxation. The dual solution is then used to

generate a reduced problem in which only routes that have reduced costs than a specific threshold are

considered. The reduced problem is then solved using an integer programming solver. These approaches

were previously proposed by the same authors to solve the capacitated VRP problem [4]. The authors

have claimed that this approach is comparable to the algorithm proposed by Ropke et al. [57] and even

solves 15 previously open instance.

There are two main streams of heuristics that exist for the VRP and PDPTW [42, 14]. One gradually

assigns locations to vehicle routes, whereas the other assigns each location to a different route, then

merges routes based on some savings criterion. Within the constructive heuristics, many algorithms

reason about the geographical location of the locations to visit or the euclidean distance of the locations

from the central depot. These include the sweeping algorithm [29] and the petals algorithm [5].

Dial-a-Ride Problems

In the PDPTW, vehicles transport goods, however in the STP and STPOB, vehicles transport people,

resulting in a set of user inconvenience constraints such as maximum ride time. The version of PDPTW

in which people are transported is known as the Dial-a-Ride Problem (DARP) [15] or the Handicapped

Persons Transportation Problem [62]. This section briefly outlines the different exact solution techniques

that are available to solve the DARP.

The DARP has been widely studied and its variants and solution techniques are explored in various

survey papers [53, 15]. Cordeau et al. [15] note that there could be another objective of maximizing

satisfied demand or quality of service but do not provide any formulation or reference to any work that

has been done in this area, and to the best of our knowledge, no literature has looked at a DARP with

this second objective.

Many researchers have also looked at real-life applications of the DARP and real-world inspired

constraints. For example, in 2009, Gørtz et al. presented approximation methods for the preemptive

multi-vehicle DARP in which users are allowed to be transferred at intermediate locations and served

by multiple vehicles [30]. Furthermore, in 2011, Kim and Haghani [38] modelled the time-varying travel

time and multi-depot DARP in a MIP formulation and provided three different heuristics to solve this
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problem.

Other Variants of the PDPTW

Sigurd et al. proposed the pickup and delivery problem with time windows and precedence constraints

(PDPTWP) that is inspired by the transportation of live animals where specific farms must be visited

after other locations [60]. The authors provided a Dantzig-Wolfe decomposition approach that splits

the problem into a master problem that is similar to a set covering problem and a subproblem that is a

routing problem. The LP relaxation of the decomposed problem is solved through column generation.

The authors presented real-life instances of transporting live pigs and showed that instances up to 580

nodes could be solved to optimality.

Another variant of the PDPTW is the multi-commodity one-to-one pickup and delivery traveling

salesmen problem. In this problem which does not consider time window constraints, the vehicle must

visit all locations exactly once. Some of the locations are associated with pickup and delivery activities

and the vehicle has a fixed capacity. The current state-of-the-art algorithm is a Benders Decomposition

algorithm presented by Hernandez-Perez et al. [33].

Additionally, Irnich has looked at the PDPTW with multiple depots and a single hub from a set

covering and a knapsack view [35]. In this problem, the routes are often short with large demand size and

tight time windows, thus enumerating all vehicle/route combinations is possible. Decomposition models

were presented and were shown to solve medium size instances to optimality. In contrast, Contardo

et al. employ a branch-and-price framework to solve a more general multi-depot VRP (MDVRP) [12]

where there is no restriction on routes or time window characteristics. Valid inequalities were added to

strengthen the formulation and the authors showed through extensive computational experiments that

their algorithm is competitive with the state-of-the-art algorithms. However, the pickup and delivery

constraints were not captured in the MDVRP.

2.1.2 Orienteering Problems

The Orienteering Problem (OP), also known as the selective travelling salesman problem [43] or the

traveling salesman problem with profits [22], is another variant of the routing problems. In this problem,

a person must visit locations, however, each location is associated with a “prize” or “profit” and the goal

is to find a path through a subset of the locations in order to maximize the total profit collected from

all locations while satisfying some tour length or travel time limit constraints. Given a set of vertices

N , where vertex 1 is the starting vertex and vertex N is the ending vertex, each with a profit or score

Si, travel time between vertex i and j, tij , and a time limit Tmax, the OP can be modelled as an integer

program. Binary variables xij that are 1 if vertex i is visited directly before vertex j in the tour or 0

otherwise and variables ui indicating the position of vertex i in the tour are used.
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max

N−1∑
i=1

N∑
i=2

Sixij (2.33)

subject to

N∑
i=2

x1j =

N−1∑
i=1

xiN = 1 (2.34)

N−1∑
i=1

xik =

N∑
i=2

xkj ≤ 1 ∀k = 2, ..., N − 1 (2.35)

N−1∑
i=1

N∑
i=2

tijxij ≤ Tmax (2.36)

2 ≤ ui ≤ N ∀i = 2, ..., N (2.37)

ui − uj + 1 ≤ (N − 1)(1− xij) ∀i, j = 2, ..., N (2.38)

xij ∈ {0, 1} ∀i, j = 1, ..., N (2.39)

ui ∈ Z ∀i = 2, ..., N (2.40)

The objective function (2.33) maximizes the total profit collected. Constraints (2.34) ensure that the

tour starts at the starting vertex and ends at the ending vertex. Constraint (2.35) guarantees that each

vertex is visited at most once and that there is constant flow through all vertices. The maximum tour

length is restricted by Constraint (2.36). Constraints (2.37) and (2.38) bound the ui variables and link

them to the tour positions respectively. Finally, Constraints (2.39) make sure that all xij variables are

binary.

The OP is extensively defined and reviewed in survey papers [22]. The current state-of-the-art exact

technique to solve the OP is a branch-and-cut algorithm proposed by Fischetti et al. [23]. All current

research is focused on heuristic-based algorithms including tabu search [27], genetic algorithm [61], and

ant colony optimization approach [46].

The variation of the OP that incorporates multiple vehicles is named the team orienteering problem

(TOP) in survey papers by Vansteenwegen et al. and Gunawan et al. [66, 31]. Vansteenwegen et al.

[66] included descriptions of problem instances, benchmark instances, and solution approaches; whereas,

Gunawan et al. [31] provide a more recent and comprehensive survey on many variants of the OP

and TOP: TOP with time windows, generalized OP, etc. Exact solution techniques to solve the TOP

include column generation [9] and branch-and-cut-and-price [26] which is similar to the algorithm for

the PDPTW [57]. Recently, Gedik et al. developed a constraint programming approach to solve the

TOP and have found one new best-known solution [25].

Other variations of the OP and TOP include the capacitated (T)OP and (T)OP with time windows.

The capacitated (T)OP is an OP where the vehicles have a fixed capacity for the sizes of the items

they collect from the locations. Archetti et al. proposed exact and heuristic methods for solving the

capacitated TOP and capacitated profitable tour problems and showed that the heuristics demonstrate

very good solutions and often find optimal solutions [1]. In contrast, the (T)OP with time windows

imposes time window constraints on all locations. Boussier et al. presented a branch-and-price framework

for the TOP with time windows [8]. The problem instances with 10 vehicles and 100 locations were solved

to optimality in under 800 seconds. Since this problem is very hard, most studies proposed heuristic-

based methods. The current best performing algorithms are ant colony optimization [49] and iterated
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local search [65]. These approaches could not be compared directly as the problem instances tested were

different, however, the ant colony optimization has shown to provide good quality results, whereas the

iterated local search is able to provide solutions quickly.

2.1.3 Combination of the PDP and OP

Though the PDP and the OP have been studied extensively, a hybrid of the two problems has only been

looked at by two groups. Baklagis et al. [2] have proposed a branch-and-price framework to tackle the

team orienteering pickup and delivery problem with times windows and Qiu et al. [54] have proposed a

graph search and a maximum set packing formulation that is specially tailored for homogeneous fleets

to solve the profit-maximizing multi-vehicle pickup and delivery selection problem.

Qiu et al. [54] presented a pure MIP model while Baklagis et al. [2] only presented their branch-

and-price framework. Qiu et al.’s MIP model is based on Ropke et al.’s MIP model [57] that is the

standard three-index formulation for solving the PDPTW presented in Section 2.1.1. Qiu et al.’s model

is presented in (2.41) - (2.52).

This problem is given a set of vehicles K, each with a capacity Qk and a set of pickup locations P
and delivery locations D, each with a service time di, profit πi, load size qi, and a time window [ai, bi].

The travel time between two locations is tij and the travel cost is cij . This formulation uses binary

variables xkij that are equal to 1 if vehicle k travels to location i directly before location j, variables vki
that indicate when vehicle k leaves location i, and variables wk

i that indicate the load of vehicle k when

leaving location i.

max
∑
k∈K

∑
i∈P

πi
∑
j∈V

xkij

−∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij (2.41)

subject to
∑
i∈V

xk0,j =
∑
i∈V

xki,2n+1 = 1 ∀k ∈ K (2.42)∑
i∈V

xki,2n+1 ≤ 1 ∀k ∈ K (2.43)∑
j∈V

xkij −
∑
j∈V

xkn+i,j = 0 ∀i ∈ P, k ∈ K (2.44)

∑
j∈V

xkji −
∑
j∈N

xkij = 0 ∀i ∈ P ∪ D, k ∈ K (2.45)

vkj ≥ (vki + tij + di)x
k
ij ∀i ∈ V, j ∈ V, k ∈ K (2.46)

vki + ti,n+i ≤ vkn+i ∀i ∈ V, j ∈ V, k ∈ K (2.47)

ai ≤ vki ≤ bi ∀i ∈ V, k ∈ K (2.48)

vk2n+1 − vk0 ≤ T ∀k ∈ K (2.49)

wk
j ≥ (wk

i + qj)x
k
ij ∀i ∈ V, j ∈ V, k ∈ K (2.50)

max{0, qi} ≤ Qk
i ≤ min{Qk, Qk + qi} ∀i ∈ V, k ∈ K (2.51)

xkij ∈ {0, 1} (2.52)

The objective function (2.41) maximizes the total profit collected from all visits. Similar to the three-

indexed model (see Section 2.1.1), Constraints (2.42) to (2.45) are constraints regarding the connectivity
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of routes and precedence of nodes. Constraints (2.46) to (2.49) are the time window constraints, while

(2.50) and (2.51) are the load and capacity constraints respectively. Constraints (2.52) bound the variable

xkij to binary.

A summary of the different problem variants and their respective state-of-the-art exact techniques

are shown in Table 2.1. It is important to note that the size of a problem instance solved can be

sometimes misleading as a measure of the effectiveness of an algorithm because the problem might be

very constrained and data dependent. Thus, there can be multiple current state-of-the-art algorithms

depending on the measure. Furthermore, the list is relatively short since most research has focused

on heuristic methods as these problems are often too hard and the efficiency of exact methods is very

poor. It can also be noted from the list that no other VRP variant has considered all the problem

characteristics present in the STP.

2.1.4 Problems with Overbooking

In the STPOB, we allow requests to be overbooked and in this section, we review some work on over-

booking strategies in various industries including airlines [11], hotels [40] and healthcare [50, 59].

The notion of overbooking or overselling was introduced to the airline industry as early as early as

1958 [6] to compensate for the waste of resources from cancelled reservations [21]. Most of the work

is focused on stochastic models and policy making. Recently, some researchers in operations research

have studied this problem as an optimization problem in a clinical setting. Samorani et al. provided a

stochastic program that finds optimal schedules given an estimated probability of appointment show ups

to improve overbooking in clinic appointment scheduling [59]. This model employs the slot compression

technique [39], which allows time overlap in all appointments. Another application of overbooking is in

hotel revenue management where the length of stay is variable and changes from customer to customer.

Lai et al. proposed a robust network optimization model in an uncertain environment where both

demand and stay length are stochastic [40]. In the healthcare appointment overbooking problem, each

patient can only be appointed to a subset of doctors similar to in the STPOB, where a particular

request can only be assigned to a subset of vehicles due to capacity constraint. The hotel overbooking

problem considers a stochastic length but does not consider limitations of assignment. However, both

problems fail to consider strict time window constraints and travel time and cost between the different

appointments/stays/requests that the STPOB requires.

To the best of our knowledge, the notion of overbooking has not been applied to transportation

problems such as the VRP which assumes that all locations are visited and no cancellation occurs.

2.2 Conclusion

Through a thorough study of the VRP literature, we have noticed that, recently, there has been a

tendency to focus on real-world inspired problem definitions and constraints. Many researchers have

partnered with organizations to understand the true problem difficulties. Similarly, we have partnered

with a non-profit organization Community and Health Assistance to Seniors (CHATS) to create new

problem definitions of the STP and STPOB. We position our research work as a novel problem definition

that comprises problem characteristics from both the PDPTW such as time windows, pickup and deliv-

eries, and routes and from the OP such as the selectivity and maximization of scores. In this chapter,

we have presented recent works on problems including the PDPTW, DARP, and OP along with their
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different formulations and solution techniques. The combination of the PDPTW and OP has been only

looked at by two groups. However, these problems do not address the multi-depot, heterogeneous fleets,

and maximum ride time aspects that our problems include. Therefore, we believe that the definitions of

the STP and STPOB will bring novelty and inspire future research.

Most of the state-of-the-art techniques for these problems involve sophisticated mathematical pro-

gramming methods including branch-and-cut-price algorithms. However, the use of constraint program-

ming or the hybrid of MIP and CP in a logic-based Benders decomposition framework have not been

explored.



Chapter 3

Data Generation and Analysis

In order to test the different solution techniques that are presented in this thesis, we have generated

75 random instances as well as extracted 280 problem instances from real-world data provided by a

partnering organization. This chapter explains the process of data generation and analyses of the real

world data with the goal of retrieving insightful information as well as a better understanding of the

true nature and the difficulty of the problems studied.

3.1 Generated Problem Instances

In the generated problem instances, we varied the size of the problem, i.e., the number of requests and

vehicles and the sizes of the time window (TW) of each request and vehicle. Table 3.1 outlines the five

different problem sizes with varying number of vehicles and requests.

Table 3.1: Generated dataset sizes.

# of Vehicles # of Requests

2 6
3 10
5 20
10 30
20 50

In addition to varying problem sizes, we also experimented with three different time window sizes:

big, normal and small. The time unit has been set to 1 and the maximum time horizon has been set

to 900. Furthermore, the maximum ride time for all requests has been set to be 120 time units. These

values are chosen based on real life situations. Time windows for all locations (starting and ending

depots of vehicles, and pickup and delivery locations of requests) are set between 0 to 900 with varying

window length. Big time windows allow 600 to 900 time units, normal allows 180 to 360 time units and

small allows 80 to 180 time units. A time window length, li, is randomly generated for each location i.

Additionally, each location i is paired with another location i′: starting depots are paired with ending

depots, and pickup locations are paired with delivery locations. Let di denote the time it takes to travel

between paired locations i and i′. For a starting depot or a pickup location i, the earliest start time

esti is then randomly generated between 0 and max(0, 900 − li − di) and the latest finish time lfti is

15
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simply (esti + li). For an ending depot or a delivery location i′, the earliest start time esti′ is randomly

generated between (0 + di′) and max(0 + di′ , 900 − li′) and the latest finish time lfti′ is (esti′ + li′).

Accordingly, the time window for a location i is [esti, lfti]. For each combination of problem size and

time window type, five datasets have been generated, making in total 75 instances.

Each dataset contains both vehicle information and request information. For each vehicle, a capacity

between 2 and 6, and start depot and end depot service times between 2 and 16 time units have been

created following a uniform distribution. These features also mimic real life situations where a vehicle

can hold 2 to 6 passengers and can spend 2 to 16 time units at depot locations. Each request has a size

between 1 and 3, a weight between 1 and 5, and pickup location and delivery location service times be-

tween 2 and 16. Finally, a transition matrix between all locations (starting depots, ending depots, pickup

locations, delivery locations) is generated. Each location has associated random coordinates which cover

a squared area of 120 km by 120 km. Euclidean distances between each pair of locations are calculated

from the coordinates and transformed to travel time with a speed factor of 60 km/h to form the transition

matrix. Euclidean distances are used in order to ensure the triangular inequality between locations which

means that given locations A, B, and C, TravelT ime(A,C) ≤ TravelT ime(A,B) +TravelT ime(B,C).

The lower bound and upper bound for the characteristics of the datasets are summarized in Table 3.2.

All numbers are generated randomly using a uniform distribution.

Table 3.2: Generated datasets’ bounds on problem characteristics.

Characteristic Lower Bound Upper Bound

Vehicle

capacity 2 6

start deport and end depot service time 2 16

Request

size 1 3

weight 1 5

pickup location and delivery location service time 2 16

travel time 1 60

The Senior Transportation Problem with Overbooking (STPOB) requires additional information

including the cost and the cancellation probability of each trip. The cancellation probability is randomly

generated using a skewed uniform distribution with a mean of 0.2 as the partnering organization roughly

predicts the cancellation percentage to be at 20%. The cost of each trip depends on both the direct

distance of the trip and the type of driver, paid driver or volunteer driver. A quarter of all vehicles are

assumed to be paid drivers and they are given a cost factor of 2 while other vehicles are given a cost

factor of 1.5.

3.2 CHATS Problem Instances

Community & Home Assistance to Seniors (CHATS) is a non-profit organization that provides senior

transportation services in the north of Toronto area. From the CHATS database, we extracted 72,883

entries of requests and 52,494 records of vehicles over a total of 280 operating days starting from January

1, 2015 and ending in January 27, 2016. From these records, a total of 280 instances were created. This
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section first describes the extracted data, then explains the prediction model used to generate cancellation

probabilities for the STPOB.

3.2.1 Description of Data

Three major categories of information have been pulled from the database:

1. clients’ demographic information,

2. request related information, and

3. vehicle related information.

These elements were selected based on the need for data analysis as well as for use in building the

prediction model. For this specific time period, 67% of the clients were female, 31% were male and

2% of the gender information was missing. On average, female clients were aged at 79 years old and

male clients were aged at 75 years old. The summary of the elements along with their mean, standard

deviation, and some other basic statistical components are presented in Table 3.3. Additionally, the

distribution of all requests’ earliest pickup time, latest pickup time, earliest delivery time and latest

delivery time is shown in Figure 3.1.
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Figure 3.1: Distribution of requests’ earliest and latest pickup and delivery times.

Requests Information

On average, there are 260 requests per day and the maximum number of requests per day is 554 which

occurred on July 29, 2015. Each request is labelled with three possible statuses: scheduled, unscheduled,

or cancelled. Unscheduled requests are often due to unavailable vehicles or drivers, or due to the

organization’s scheduling, while cancelled requests are scheduled requests that are subsequently cancelled

by the client. The average number of scheduled, unscheduled and cancelled requests are respectively

196, 18, and 47 per day. The total number of requests in the three categories are graphed in Figure 3.2.

We can observe a steep peak around the end of July 2015 but when examining the data, there does

not seem to exist any unusual entry, thus it could simply be an outlier. There is also a large drop by the
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Table 3.3: Elements of the CHATS dataset.

Variable mean std min 25% 50% 75% max Count Pct

Client Information

Gender
- Female 48596 67%
- Male 22656 31%
- NA 1631 2%
Age 78.02 12.65 21 71 80 86 115
- Female 79.08 10.93 44 73 81 86 115
- Male 75.26 13.22 24 68 77 84 115
- NA 100.24 15.63 55 88 102 115 115
Preferred Language
- English 38802 53%
- Other 33283 46%
- NA 798 1%

Request Information (72883)

Size (number of seats needed) 1.21 0.41 1 1 1 1 2
Direct Travel Distance (km) 11.86 11.57 0.00 3.94 8.70 14.93 102.91
Fare to Collect ($) 6.81 9.48 0 0 0 12 100
Weight 7.24 3.82 1 6 6 8 15
Pickup Service Time (min) 0.23 0.50 0 0 0 0 5
Delivery Service Time (min) 0.23 0.50 0 0 0 0 5
Pickup TW Duration (hr) 0.42 0.17 0.00 0.33 0.33 0.67 15.33
Delivery TW Duration (hr) 1.41 0.80 0.00 0.67 1.08 2.33 8.08

Vehicle Information (52494)

Capacity 3.31 3.59 1 1 2 4 17
Depot Start Time 09:11 2.19 00:00 08:00 08:30 09:00 19:30
Depot End Time 16:42 1.95 00:00 16:30 16:30 18:00 22:00
Duration (hr) 7.52 2.56 0 6.5 8 8.75 16
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Figure 3.2: Number of scheduled, unscheduled, cancelled and total requests per day.
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end of December 2015, around Christmas and New Year’s time. It is natural to expect a big decrease

in the number of requests during holidays. Furthermore, there also seem to be periodic drops and when

examining the dates closely, these are all national or provincial holidays, thus again, the decrease is

expected. Figure 3.3 presents the proportion of scheduled, unscheduled and cancelled requests per day

and it can be seen that the percentage of the three categories is relatively constant. During the summer,

when there are higher demands, the percentage of unscheduled requests seems to increase a little. And

as expected, whenever there is a holiday, the percentage of cancelled requests increases significantly.
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Figure 3.3: Percentage of scheduled, unscheduled, cancelled and total requests per day.

Overall, there seems to exist a big increase in demand during summer that slowly reduces over the

winter. However, since the following year’s data is not available, we cannot predict whether the demand

will continue to drop or maintain the same level. Figure 3.4 shows the aggregated number of requests

for each month where the increase can be clearly seen.
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Figure 3.4: Number of scheduled, unscheduled, cancelled and total requests per month.
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When zooming onto the data for a shorter period of time, we can still observe periodic small rises

and drops. There seems to be an increase in demand at the end of the week and demand is much lower

at the beginning of the week as shown in Figure 3.5.
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Figure 3.5: Number of scheduled, unscheduled, cancelled and total requests per weekday.

Vehicle Information

CHATS has two types of drivers: paid drivers who drive CHATS vehicles and get paid $18 per hour and

volunteer drivers who use their own vehicles and get paid $0.05 for each kilometre. Assuming an average

speed of 60 km/h, a paid driver gets paid $0.3 per km. In addition to the pay for paid drivers, CHATS

reimburses the fuel cost which averages $0.14 per km for paid drivers only. Overall, the cost factor of

a paid drive is $0.44/km while the cost factor for a volunteer driver is $0.05/km. The taxi cost factor

is then computed to be $1.75/km. There are on average 187 vehicles available each day where 87% are

volunteer drivers and 13% paid drivers. The daily trend of available vehicles is shown in Figure 3.6.

The trend of vehicles is similar to that of the requests with the outliers in end of July 2015 and the

large increase over the summer time. However, there does not seem to be any significant decrease in

vehicle availabilities during holidays, and the weekly rise and drop are still observed. The percentage of

paid and volunteer drivers per day is shown in Figure 3.7. We can observe that the organization started

with a 80-20 split but had a significant increase in the number of volunteer drivers around July 2015

while the number of paid drivers has been relatively constant.

Depending on the model of the car, each vehicle has a different capacity. From the CHATS dataset,

the smallest capacity is 1 which means that the vehicle can only serve one client, while the largest

capacity vehicle is a small bus that can take up to 17 people. The distribution of vehicle capacity for

both paid and volunteer drivers are shown in Figure 3.8.

3.2.2 Cancellation Probability Prediction Model

In the current database, we only have a flag that indicates whether a request was cancelled or not. Yet,

we wish to predict a probability of cancellation based on some features of a given request. Therefore, we
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Figure 3.6: Number of paid and volunteer drivers per day.
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built a model to predict the probability of cancellation. We have identified 9 features that are readily

available and that will be used towards the prediction model. These features are: age, gender, language

preference of the client, weekday, month, weight, distance, fare, and size of the request. There are other

features such as weather that could also affect the probability of cancellation, however, due to the time

limit of the project and the focus of this thesis being optimization methods, they have not been included.

We have looked into the categorical features including age and gender of the client and the weight

of each request to compute the average cancellation probability in each category. Figure 3.9 shows the

number of clients in each age category and the probability of cancellation of each age category. Similarly,

the information for gender of the client is shown in Figure 3.10. Figure 3.11 presents the information

on the different weight categories. The bars show how many requests fall into each weight category and

the orange ticks show the weight associated with each weight category.

NA <50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95
Age Group

0

2000

4000

6000

8000

10000

12000

14000

Nu
m

be
r o

f P
er

so
ns

NA <50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95
Age Group

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
Pr

oa
bi

lit
y 

of
 C

an
ce

la
tio

n

Total Mean Cancelation

Figure 3.9: Cancellation by age of client.
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Figure 3.10: Cancellation by gender of client.

The training set comprises of 75% of the request records, totalling 54531 records, and the test set

holds 18352 records. The target variable is the cancellation flag with 0 being cancelled and 1 being

not cancelled. A few elementary prediction models have been then fit to the datasets. The models’

performance summary is shown in Table 3.4. Python 3.6 has been used for data cleaning, feature

extraction, and modelling. The python machine learning package SCIkit-Learn v9.0 (http://scikit-
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Figure 3.11: Cancellation by weight of request.

learn.org/) was used for the Random Forest, Extra Tree Classifier, Decision Tree Classifier, Ada Boost,

Gradient Boosting Classifier, Boosting Regressor and Logistic Regression models.

Table 3.4: Prediction models performance summary.

AUROC MSE

Ensemble

Random Forest 0.7073
Decision Tree 0.6710
Extra Tree 0.6822
Ada Boost 0.5876
Gradient Boosting Classifier 0.5872

Regression

Gradient Boosting Regressor 0.1453
Logistic Regression 0.5505

For the four ensemble models and the Logistic Regression model, the area under the receiver operating

characteristic curve (AUROC) was measured. The AUROC measures the proportion of true positive

rate against false positive rate and is equal to the expected true positive rate. For example, an AUROC

value of 0.8 means that in 80% of the time, the model will return a true positive prediction. A value of

1 is a perfect prediction model and a value of 0.5 is a worthless prediction model. The Mean Squared

Error (MSE) for the Gradient Boosting Regressor measures the squared errors between the actual data

point and the fitted line where 0 means a perfect fit. Based on these results, it can be seen that none of

the models accurately predicted the cancellation probability. However, since the goal of this exercise is

to compute a probability of cancellation, we have chosen the best performing model, the random forest

method, to compute the probability of cancellation that is associated with each request of the CHATS

dataset. This probability is then added to the CHATS problem instances as input to test our algorithms

for the STPOB.
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3.3 Summary

We have randomly generated 75 instances with varying time window sizes and varying number of requests

and vehicles following a uniform distribution. The number of requests varies from 6 to 50 while the

number of available vehicles varies from 2 to 20 and time window lengths varies from 80 time units to

900 time units out of a time horizon of 900 units. We have also extracted 280 instances from the CHATS

database and performed basic data analysis. Seasonality and periodic shift in the number of requests

and available vehicles have been observed. On average, there are 260 requests and 187 available vehicles

per day. The problem sizes for the CHATS instances are much larger in both the number of requests and

the number of vehicles compared to the generated instances. Additionally, for the CHATS instances,

the duration of time windows for all requests is around 1.4 hours and does not vary vastly, while the

duration of the availability of vehicles varies significantly and has an average of 7.5 hours. We have also

constructed multiple prediction models to predict the cancellation probability for each request in the

CHATS instances and the random forest prediction model has shown to be the most effective.



Chapter 4

The Senior Transportation Problem

In this chapter, we formally define the senior transportation problem (STP) and state the specific

characteristics that distinguish it from other transportation problems. Four exact methods including

Mixed Integer Programming (MIP), Constraint Programming (CP), and two Logic-based Benders De-

composition (LBBD) models and a construction heuristic to solve the STP are then presented along

with experimental results for each method in subsequent sections. Furthermore, the best approaches

are tested on real-world instances. The chapter closes with empirical analysis of the best performing

algorithms.

4.1 Problem Definition

The STP is a deterministic optimization problem in which a fixed fleet of heterogeneous vehicles from

multiple depots must satisfy as many door-to-door transportation requests as possible within a fixed

time horizon. All requests comprise of a one-to-one Pickup and Delivery Problem with Time Windows

(PDPTW). Moreover, as the clients are seniors, a maximum ride time is enforced to minimize user

inconvenience. With these characteristics, this problem is similar to the classical Dial-a-Ride Problem

(DARP) or the PDPTW. However, due to the limited resources, not all requests can be met within

the given horizon and therefore, the problem is to select a subset of requests such that the total weight

of all served request is maximized. Additionally, part of the drivers may operate on a volunteer basis,

thus aspects such as multi-depots, heterogeneous vehicles, and time windows on vehicles need to be

considered.

The STP is described as follows. Let G = (V,A) be a directed complete graph with vertex set

V = D∪N where D represents the depot vertices andN represents the client vertices. A vertex represents

a single geographic location, however, two vertices may share the same geographic location, and the travel

time between these two vertices is 0. The set D is divided into D+ = {1, ..., |K|} (starting depot vertices)

and D− = {|K|+ 1, ..., 2|K|} (ending depot vertices) where |K| is the number of vehicles. The set N is

partitioned intoN+ = {2|K|+1, ..., 2|K|+|R|} (pickup vertices) andN− = {2|K|+|R|+1, ..., 2|K|+2|R|}
(delivery vertices) where |R| is the number of requests. Each vertex i ∈ V is associated with a time

window [Ei, Li] and a service duration Si (how much time needs to be spent at the location). Each arc

(i, j) ∈ A has a non-negative routing time Ti,j satisfying the triangular inequality.

Let K = {1, ..., |K|} represent the set of vehicles. Each vehicle k ∈ K is associated with a starting

25
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depot ik+ ∈ D+ and an ending depot ik− ∈ D−. Each vehicle must start and end at its associated

depots. Multiple vehicles can share the same geographical location for its depots. However, relocation

of vehicles between depots is not allowed. Each vehicle also specifies its availability. If a vehicle has

multiple non-overlapping time windows, then it is considered as multiple vehicles. Furthermore, vehicles

are heterogeneous and differ in capacity, thus each vehicle k ∈ K is associated with a maximum capacity

Ck. Therefore, each vehicle has a known depot locations ik+ and ik− with Sik+ = Sik−
= 0, a capacity

Ck, and time windows [Eik+ , Lik+ ] and [Eik−
, Lik−

] in which the vehicle must leave the starting depot,

perform all pickup and delivery requests assigned to it and return to the ending depot.

Let R = {1, ..., |R|} represent the set of requests. Each request r is paired with a positive weight, Wr

denoting the importance of the request. The total weight of served requests contributes to the objective

function. A request r ∈ R has an associated pickup location ir+ ∈ N+ and a delivery location ir− ∈ N−.

Requests are divided into two categories: outbound and inbound trips. In an outbound trip, the client

is typically travelling from his/her home location to a destination location, and in an inbound trip, the

client requests a return trip to their home location. In the context of the STP, the client only imposes

a time window on the delivery location of an outbound trip and on the pickup location of an inbound

trip. In addition, all clients are restricted to a maximum ride time, F , on any vehicle. Let Z be the end

of the time horizon. Then for an outbound trip i, the time window associated with its pickup location is

[0, Z], whereas the time window of an inbound trip’s delivery location is [0, Z]. The load size is positive

for a pickup location vertex and negative for a delivery vertex, Qr = −Q|R|+r,∀r ∈ R+. A list of all

parameters can be found in Table 4.1.

Table 4.1: STP parameters.

Parameter Description

G Graph representing the locations of vehicle depots and clients

V Set of vertices

A Set of arcs

Ti,j Travel time between two location vertices in V. All entries are strictly

non-negative. A large entry indicates that no route is allowed between

two locations. Ti,i = 0,∀i ∈ V and Ti,j does not have to equal Tj,i, tt

represents the travel time matrix

D Set of depot location vertices, D ⊂ V

K Set of vehicle

|K| Number of available vehicles

N Set of client location vertices, N ⊂ V

R Set of requests

|R| Number of requests

Ei Earliest service start time at each location i in V

Li Latest service start time at each location i in V

Si Service time needed to perform the task at each location i in V
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Qr Load size associated with each request r in R

Wr Weight associated with each request r in R. All entries are strictly

non-negative.

Ck Capacity of each vehicle k in K

Z Maximum time horizon

F Maximum ride time of a client

A route for vehicle k is a sequence of vertices, [ik+ , ..., ik− ]. A request is served when it is part of a

route. The set of routes must satisfy the following constraints:

1. The pickup and delivery vertices of any request must be on the same route;

2. The pickup vertex must precede the delivery vertex;

3. A vertex is visited by at most one vehicle;

4. The load of a vehicle k cannot exceed its maximum capacity Ck at any point;

5. A route must start and end within the vehicle’s availability window;

6. No subtours are allowed in any route;

7. The ride time of a client cannot exceed the maximum ride time F ;

8. All pickup and delivery must be served within their specified time windows.

4.1.1 Problem Complexity

Each request r is given a weight Wr, each vehicle k is given a capacity Ck, and the objective of the STP

is to maximize the total weight of all served requests that can fit into the given vehicles and satisfying

the route constraints. The objective function can be modelled as Equation 4.1 where ϕk,r is 1 if request

r is assigned to vehicle k and 0 otherwise.

maximize
∑
k∈K

∑
r∈R

(Wr × ϕk,r) (4.1)

The STP’s objective function is equivalent to the one in the Multiple Knapsack Problem (MKP) as

shown in Equation 4.2 where pj is the profit of item j, equivalent to Wr in STP and xi,j is 1 if item j

is assigned to knapsack i and 0 otherwise. The variable xi,j is equivalent to the the variable ϕk,r in the

STP.

maximize

m∑
i=1

n∑
j=1

(pj × xi,j) (4.2)

Furthermore, the STP derives some of its constraints such as constant flow, capacity and time

window constraints from the PDPTW and the rest of the constraints such as selectivity of requests and

the maximum time horizon are explicit to the STP. Therefore, the STP can be generalized to an MKP

with constraints similar to those in the PDPTW and additional constraints specific to the STP. Since
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both the MKP and the PDPTW are NP-hard problems [28, 45], the STP, as a combination of the two,

is also NP-hard.

4.2 Solution Approaches for the STP

Four exact methods, one MIP, one CP, and two LBBD approaches and one heuristic have been developed

to solve the STP. This section presents the variables used and the mathematical formulations of each of

the five methods.

4.2.1 A MIP Approach

A pure MIP model for the STP is presented in this section. The model is an extension of Ropke et al.’s

MIP formulation [57] that is the widely used base model for the PDPTW.

Decision Variables

This formulation uses three variables: a binary variable xk,i,j and two continuous variables vk,i and uk,i.

xk,i,j = 1 if vehicle k visits location j immediately after visiting location i and 0 otherwise. xk,i,j is only

instantiated for (i, j) ∈ A. (i, j) ∈ A if one of the following is true: 1. i ∈ D+ and j ∈ N+, 2. both i and

j ∈ N , 3. i ∈ N− and j ∈ D−, or 4. i ∈ N+ and j ∈ N−. vk,i is a continuous variable that indicates

the load of the vehicle k after visiting location i ∈ V. It is strictly positive and less than or equal to the

maximal vehicle capacity max{Ck},∀k ∈ K. uk,i is a continuous variable that indicates the time when

vehicle k leaves location i ∈ V. It is strictly positive and is less than or equal to the maximum time

horizon Z. A summary of the variables is given in Table 4.2.

Table 4.2: Variables for MIP model.

Location Variables Type Description

xk,i,j binary 1 if arc (i, j) ∈ A is used by vehicle k in the final solution
and 0 otherwise.

Load Variables Type Description

vk,i continuous Load of vehicle k ∈ K after visiting node i ∈ V

Time Windows Variables Type Description

uk,i continuous The time when vehicle k ∈ K leaves node i ∈ V after com-
pleting the service at i
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MIP Formulation

The formulation is given in (4.3) - (4.17).

max
∑
k∈K

∑
r∈R

∑
j∈N

(
Wr × xk,ir+ ,j

)
(4.3)

s.t.
∑

j∈N+

xk,ik+ ,j + xk,ik+ ,ik−
= 1 ∀k ∈ K (4.4)

∑
i∈N−

xk,i,ik− + xk,ik+ ,ik−
= 1 ∀k ∈ K (4.5)

∑
k∈K

∑
j∈V

xk,ir+ ,j ≤ 1 ∀r ∈ R (4.6)

∑
j∈V

(xk,i,j − xk,j,i) = 0 ∀k ∈ K, i ∈ N (4.7)

∑
j∈V

(
xk,ir+ ,j − xk,j,ir−

)
= 0 ∀k ∈ K, r ∈ R (4.8)

uk,j ≥ (uk,i + Ti,j + Sj)−M × (1− xk,i,j) ∀k ∈ K, i, j ∈ V (4.9)

uk,i ≥ Ei −M ×

1−
∑
j∈V

xk,i,j

 ∀k ∈ K, i ∈ V (4.10)

uk,i ≤ Li − Si +M ×

1−
∑
j∈V

xk,i,j

 ∀k ∈ K, i ∈ V (4.11)

uk,ir+ ≤ uk,ir− ∀k ∈ K, r ∈ R (4.12)(
uk,ir− − uk,ir+

)
≤ F ∀k ∈ K, r ∈ R (4.13)

vk,j ≥ (vk,i +Qi)−M × (1− xk,i,j) ∀k ∈ K, i, j ∈ V (4.14)

xk,i,j ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (4.15)

0 ≤ uk,i ≤ Z ∀k ∈ K, i ∈ V (4.16)

0 ≤ vk,i ≤ Ck ∀k ∈ K, i ∈ V (4.17)

The objective function (4.3) maximizes the sum of weights of served requests. Constraints (4.4) and

(4.5) ensure that each vehicle leaves from its starting depot and ends at its ending depot. Constraints

(4.6) allow for the selectivity of requests. Constant flow is enforced with Constraints (4.7). Both the

pickup and delivery locations must be visited by the same vehicle as enforced through Constraints (4.8).

In Constraints (4.9), the travel time and service time of visited nodes are enforced. Constraints (4.10)

and (4.11) make sure that each node that is visited must be visited within its time window. Constraints

(4.12) impose that pickup nodes must precede delivery nodes. Constraints (4.13) enforce that each ride

does not exceed the maximum ride time. The capacity Constraints (4.14) keep track of the load of each

vehicle after visiting the node. Constraints (4.15), (4.16) and (4.17) bound the variables x, u and v,

respectively.

Compared to Rokpe et al.’s model [57], the objective function has been modified to reflect the selective

nature of the STP. Constraints (4.4) and (4.5) have been added to model the multi-depot aspect and

that not all vehicles have to be used in the final solution. The equal sign has been changed to a ≤ in

Constraints (4.6) in order to model the selectivity. A big M is introduced in Constraints (4.9), (4.10),
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(4.11), and (4.14) to model the optionality of location visits. Constraints (4.13) are a new constraint to

represent the maximum ride time constraint.

Model Size

There are |K| vehicles, |R| requests and |V| = 2(|K| + |R|) vertices. Then, the cardinality of the set

A is 2(|K| × |R|) + (2|R| − 1)2 where 2(|K| × |R|) is the number of arcs (i, j) such that i ∈ D+ and

j ∈ N+ or i ∈ N− and j ∈ D−, while (2|R| − 1)2 is the number of arcs (i, j) such that i ∈ N and

j ∈ N , i 6= j. Thus, |K|
(
2(|K| × |R|) + (2|R| − 1)2

)
= 2|K|2|R|+ (2|R| − 1)2 number of xk,i,j variables

will be generated along with (|K| × |V|) = 2|K|2 + 2(|K| × |R|) number of vk,i and uk,i variables. Thus

this algorithm requires O(|K|2|R|+ |R|2) number of variables.

Figure 4.1: Example of an STP graph.

D+

N -N +

D -

1

2

5

6

7

8

9

10

3

4

N

G A

In the example shown in Figure 4.1, there are |K| = 2 vehicles, |R| = 3 requests and |V| = 10 vertices,

thus
(
2× (2× 3) + (6− 1)2

)
= 42 xk,i,j variables and 20 vk,i and uk,i variables.

4.2.2 A CP Approach

A CP Model solving the STP is presented in this section. In this model, each location is represented as

an interval variable where the variable domain is its possible time windows. Each location variable is

then assigned to a vehicle and corresponding route while satisfying capacity and ride time constraints.

The use of interval variables makes the representation of the time windows clear and concise.

Decision Variables

This formulation uses only interval variables and uses cumulative functions and sequence expressions to

logically link the variables. Each location i ∈ V is an optional interval variable xi that is bounded by its
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time window and the length of its service time. We assume that each vehicle visits its depot locations

regardless if it is assigned requests or not. The presence of xi in the final solution implies that the

location is visited by a vehicle. Auxiliary interval variables Xi,k and X̄k,i logically link the xi variables

to vehicles. These variables are again optional and the presence of Xi,k and X̄k,i indicates that location

i is visited by vehicle k. Cumulative functions vk,i are expressions that model the load of vehicle k after

visiting location i. Finally, each route is modelled by a sequence variable uk that is just a permutation

of locations visited by vehicle k. A summary of the variables is given in Table 4.3.

Table 4.3: Variables for Vehicle-Based Model.

Location Variables Type Description

xi interval Time interval in which location i ∈ V is served and
not present if the location is not served. The variable
is bounded by the time window at location i

Xi,k interval Time interval in which location i ∈ N is visited by
vehicle k ∈ K and not present if location i is not
visited by vehicle k. (Xi represents a vector of the
Xi,k variables

X̄k,i interval Time interval in which vehicle k ∈ K visits location
i ∈ N

Load Variables Type Description

vk,i cumul function Load of vehicle k ∈ K after visiting node i ∈ N

Sequence Variables Type Description

uk sequence Sequence of locations visited by vehicle k ∈ K
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CP Formulation

The CP formulation is presented in Equations (4.18) - (4.27).

maximize
∑
r∈R

(
Wr × PresenceOf(xir+ )

)
(4.18)

subject to

Location Constraints

Alternative(xi,Xi) ∀i ∈ N (4.19)

Before(X̄k,ir+
, X̄k,ir−

) ∀k ∈ K,∀r ∈ R (4.20)

PresenceOf(X̄k,ir+
) = PresenceOf(X̄k,ir−

) ∀k ∈ K,∀r ∈ R (4.21)

Ride Time Constraint

GetStartMax(xir− )− GetEndMax(xir+ ) ≤ F ∀r ∈ R (4.22)

Capacity Constraints

vk,i = StepAtStart(X̄k,i, Qi) ∀k ∈ K,∀i ∈ N (4.23)∑
i∈N

vk,i ≤ Ck ∀k ∈ K (4.24)

Route Constraints

First(uk, xik+ ) ∀k ∈ K (4.25)

Last(uk, xik− ) ∀k ∈ K (4.26)

NoOverlap(uk, tt) ∀k ∈ K (4.27)

The objective function (4.18) chooses a set of locations to visit in order to maximize the total weight

of requests fulfilled while respecting the constraints. The function PresenceOf indicates if the variable

xi is present or not (i.e., if the location is served or not) in a solution.

Constraints (4.19) make sure that if location i is visited, then only one vehicle serves that location.

The sequence order for pickup and delivery locations is ensured by Constrains (4.20). Constraints (4.21)

enforces that if the pickup location of a request is served by vehicle k, then its associated delivery

location must also be served by the same vehicle k. The maximum ride time constraint is modelled

through Constraints (4.22).

Constraints (4.23) use the cumulative function to keep track of the load size of the vehicles after

visiting location i. Constraints (4.24) enforces that the capacity of the vehicle must not be exceeded.

Furthermore, Constraints (4.25) and (4.26) indicate that each route must start at its associated

start depot and end at its associated ending depot locations. The CP model uses the NoOverlap global

Constraints (4.27) to enforce subtour elimination on each route.

Model Size

Compared to the MIP model, the number of variables and the number of constraints in the CP model

are significantly reduced. Since there is no use of arc variables, this CP model only requires O(k|R|)
variables. More details on the number of variables and constraints on larger instances for the CP model

are presented in Section 3.2.
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4.2.3 Logic-based Benders Decomposition Approaches

Two logic-based Benders decomposition (LBBD) [34] approaches to solve the STP are presented in this

section. We break the STP into a relaxed master problem and a number of subproblems. The relaxed

master problem is a packing and assignment problem and each subproblem is an optimal routing and

scheduling problem. We present two MIP formulations of the master problem, one more restricted and

one more relaxed, as well as a CP formulation. The subproblem is modelled using a CP formulation. The

master problem finds the optimal assignment of requests to vehicles given the different relaxations, then

several subproblems are created. Each subproblem is an optimization problem to find the optimal route

given the assigned requests. If the optimal route for each subproblem satisfies all requests assigned to it,

then the optimal solution has been found, otherwise, a Benders cut is produced for every subproblem that

cannot meet all requests. This LBBD model finds a feasible global solution at every iteration because

each the route found in each subproblem is feasible. The LBBD framework for the STP is represented

in Figure 4.2.

Relaxed	Master	Problem
(Optimization	Problem)
Assigns	requests	to	vehicles

Subproblem	1
(Optimization	Problem)

Schedules	requests

Subproblem	2
(Optimization	Problem)

Schedules	requests

Subproblem n
(Optimization	Problem)

Schedules	requests
.	.	.		

Benders	Cut Benders	Cut

Figure 4.2: The LBBD framework for the STP.

MIP Master Problem

The master problem makes the decision of “packing” each request into a vehicle given the vehicle’s time

window and capacity using integer decision variables ϕk,r which equal to 1 if request r is assigned to

vehicle k and 0 otherwise. There are three relaxations in the master problem. In the first relaxation,

the variable xk,i,j determining if a specific job j is visited directly after job i is relaxed to be continuous.

Thus, instead of a single sequence of locations, the service time of each location is allowed to be divided

into small partitions. This relaxation is similar to the time-index model of a scheduling problem as

described in [64].

Secondly, the sequence constraint between pickup and delivery locations is relaxed; the pickup lo-

cation does not need to be visited before the delivery location. The reasoning about sequences are
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described using decision variables yk,i which is equal to 1 if vehicle k visits location i and 0 otherwise.

In the third relaxation, similar to the relaxations described in [32], a set of area relaxations based

on the size and the minimum time required of each request is implemented. Each request is represented

as a “job” to schedule. The size of the request r, Qr serves as the “height” of the job. The minimum

time required, defined as the sum of the service time of the pickup location ir+ , the service time of the

delivery location ir− and the travel time between the two locations, serves as the “width” of the job.

Thus for each request r ∈ R, ζr = Sir+
+ Tir+ ,ir−

+ Sir−
is constrained to occur within a time window

[Eir+
, Lir−

] where Eir+
is the earliest start time of the pickup location and Lir−

is the latest finish time

of the delivery location. Figure 4.3 shows an example of a request.

Sir+ Sir⎼
Tir+, ir⎼ ζr

Eir+ Lir⎼
Qr Qr

Figure 4.3: Example of a request.

Let W = {(t1, t2)|t1 ∈ E , t2 ∈ L, t1 < t2} be set of time windows where E is the set of all earliest

start times Er and L is the set of all latest finish times Lr. Let R(t1, t2) = {r ∈ R|t1 ≤ Er, t2 ≥ Lr} be

the set of all requests that can be executed between t1 and t2. The area relaxations consist of a set of

linear constraints as below.

∑
r∈R(t1,t2)

ζr ×Qr × ϕk,r ≤ Ck × (t2 − t1) ∀k ∈ K, (t1, t2) ∈ W

Since the master problem has been relaxed to exclude specific time windows and capacity constraints, the

master problem only makes use of three location decision variables. xk,i,j variables, similar to those of

the MIP model in Section 4.2.1, have been relaxed to be continuous, binary yk,i variables are associated

with the relaxed sequence constraints and binary ϕk,r variables are associated with the relaxed area

packing constraints. xk,i,j must be within [0, 1] and indicates the percentage of location j directly after

location i on vehicle k. yk,i = 1 if location i is visited by vehicle k and 0 otherwise. Furthermore,

ϕk,r = 1 if request r is served by vehicle k and 0 otherwise. All variables are summarized in Table 4.4.

The formulation for the MIP master problem is presented in Equations (4.28) - (4.41).

The number of variables required for the master problem is similar to the pure MIP model due to the

presence of xk,i,j variables and is of order O(k2r + kr2) with the change that xk,i,j are now continuous

variables and a number of constraints have been removed and replaced.

Table 4.4: Variables for master MIP model.

Variables Type Description

xk,i,j continuous [0,1] indicating the part of location j ∈ V that is visited directly after
location i ∈ V by vehicle k and 0 if no part of location j is visited directly
after location i.

yk,i binary 1 if location i ∈ N is visited by vehicle k ∈ K and 0 otherwise.

ϕk,r binary 1 if request r ∈ R is served by vehicle k ∈ K and 0 otherwise.
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maximize
∑
r∈R

∑
k∈K

(Wr × ϕk,r) (4.28)

subject to
∑
k∈K

yk,i ≤ 1 ∀i ∈ N (4.29)

yk,i =
∑
j∈N

xk,i,j ∀k ∈ K, i ∈ N (4.30)

yk,j =
∑
i∈N

xk,i,j ∀k ∈ K, j ∈ N (4.31)

Qr × ϕk,r ≤ Ck ∀k ∈ K, r ∈ R (4.32)

ζr = Sir+
+ Tir+ ,ir−

+ Sir−
∀r ∈ R (4.33)

(Eir+
+ ζr)× ϕk,r ≤ Lik−

∀k ∈ K, r ∈ R (4.34)

Lir−
− ζr ≥ Eik+ × ϕk,r ∀k ∈ K, r ∈ R (4.35)∑

i∈N
(Si × yk,i) + ξk ≤ Lk − Ek ∀k ∈ K (4.36)

ξk =
∑

(i,j)∈A

xk,i,j × Ti,j ∀k ∈ K (4.37)

∑
r∈R(t1,t2)

ζr ×Qr × ϕk,r ≤ Ck × (t2 − t1) ∀k ∈ K, (t1, t2) ∈ W (4.38)

yk,r = yk,r+|R| = ϕk,r ∀k ∈ K, r ∈ R (4.39)

yk,i, ϕk,r ∈ {0, 1} ∀k ∈ K, i ∈ N , r ∈ R (4.40)

xk,i,j ∈ [0, 1] ∀k ∈ K, i, j ∈ N (4.41)

Benders Cuts

The objective function (4.28) maximizes the total weight of all the requests served. Constraints (4.29)

makes sure all locations are visited at most once. Constraints (4.30) and (4.31) ensure the consistency

between the y variables and the x variables. The approximate length of a request, ζr is modelled

in Constraints (4.33) and Constraints (4.32), (4.34), and (4.35) remove all infeasible requests from a

specific vehicle. The sum of service time and relaxed travel time is bounded by each vehicle’s time

window in Constraints (4.36) and the relaxed travel time for each vehicle is defined in Constraints

(4.37). Constraints (4.38) represents the area relaxations. The relationship between the yk,i and ϕk,r

variables is established in Constraints (4.39). It also specifies that if the pickup location of a request is

assigned to a vehicle then the delivery location must be visited by the same vehicle. Constraints (4.40)

and (4.41) form the bounds of the variables.

Simplifying the MIP Master Problem

When solving large real-world problem instances, this MIP formulation for the master problem fails to

build the model as the number of variables and constraints becomes too big and the computer runs out

of memory. In the single largest instance, the number of variables is 2.52 million and the number of

constraints is 2.24 million. In order to reduce the memory usage, we removed all the xk,i,j variables

along with their related constraints, namely Constraints (4.30) and (4.31). The distance constraints
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(4.36) and (4.37) are replaced with a single simpler constraint. Instead of modelling the exact travel

distance between consecutive locations, we compute the minimum travel time from each location i,

denoted with Ti, and use that as our relaxed distance constraint as shown in (4.42).

∑
i∈N

(yk,i × Ti + Si) + Tik+ + Sik+ ≤ Lik−
− Eik+ ∀k ∈ K (4.42)

The area relaxations (4.38) are also removed as these generate O((|K| × |R|)2) constraints. The new

MIP master problem is as below.

maximize Objective Function (4.28)

subject to Constraints (4.29), (4.32), (4.33), (4.34), (4.35)∑
i∈N

(yk,i × Ti + Si) + Tik+ + Sik+ ≤ Lik−
− Eik+ ∀k ∈ K (4.42)

Constraints (4.39), (4.40)

Benders Cuts

All results reported in this thesis use this simplified master problem.

CP Master Problem

In another attempt to decrease the size of the master problem, we provide a CP formulation that uses a

significantly fewer number of variables. Since we are relaxing all the temporal constraints in the master

problem, there is no need for sequence variables. In this CP formulation of the LBBD master problem,

we only employ interval variables xi and Xi,k as defined in Section 4.2.2. The formulation for the CP

master problem is given in Equations (4.43) - (4.49).
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maximize
∑
r∈R

(
Wr × PresenceOf(xir+ )

)
(4.43)

subject to

Location Constraints

Alternative(xi,Xi) ∀i ∈ N (4.44)

PresenceOf(Xir+ ,k) = PresenceOf(Xir− ,k) ∀k ∈ K, r ∈ R (4.45)

Route Constraints

EndBeforeStart(xik+ , Xi,k) ∀k ∈ K, i ∈ N (4.46)

EndBeforeStart(Xi,k, xik− ) ∀k ∈ K, i ∈ N (4.47)

EndBeforeStart(xik+ , xik− ) ∀k ∈ K (4.48)

Distance Constraint∑
i∈N

(PresenceOf(Xi,k)× Ti + Si) + Tik+ + Sik+ ≤ Lik−
− Eik+ ∀k ∈ K (4.49)

Benders Cuts

The objective function (4.43) remains the same along with Constraints (4.44) and (4.45). Since

sequences are relaxed, no sequence variables are modelled but Constraints (4.46), (4.47), and (4.48) still

make sure that each vehicle visits its starting depot before visiting any other location and visits its

ending depot location last. Finally, the distance relaxation is the same as in the MIP master problem

represented by Constraints (4.49).

CP Subproblem

After the master problem assigns requests to vehicles, a subproblem is created for each vehicle that

has been assigned at least two requests. Each subproblem is a single vehicle STP that maximizes the

total weight of served requests given the attributes of the vehicle and the requests assigned by the

master problem. If the subproblem is able to schedule all the requests given to it, then the vehicle has

a feasible assignment. Otherwise, the vehicle is not feasible and the solution of the subproblem is the

optimal assignment for that specific subset of requests. The objective value of the subproblem is then

returned to the master problem as a Benders cut. With optimization subproblems, at each iteration of

the LBBD, the algorithm finds a globally feasible solution. The subproblem is modelled using CP and

the formulation is similar to that of the model provided in Section 4.2.2 with the removal of Constraints

(4.19) and (4.21) since each subproblem is a single vehicle problem. Let k∗ represent the vehicle, R∗

the subset of requests assigned to k∗ from the master problem, N ∗ the set of clients and V∗ the set of

vertices that forms the graph in the subproblem.

Since each subproblem schedules one vehicle, the variables Xi,k and X̄k,i are no longer needed. The

CP formulation of the subproblem uses three decision variables. For each location i ∈ V∗, the optional

interval variable xi represents the time interval in which location i is served and is not present if it is

not visited. This variable is bounded by the time window of the specific location. Cumulative functions

yi represent the load of the vehicle after visiting location i. Finally a sequence variable u represents the

sequence of visits of the vehicle. All variables are summarized in Table 4.5. The formulation for the CP
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subproblem is presented in Equations (4.50) - (4.57).

Location Variables Type Description

xi interval Time interval in which location i ∈ V∗ is served and is not
present if the location is not visited. The variable is bounded
by the time window at location i

Load Variables Type Description

vi cumul function Load of vehicle after visiting location i ∈ N ∗

Sequence Variable Type Description

u sequence Sequence of locations visited by the vehicle

Table 4.5: Variables for the CP formulation of LBBD’s subproblem.

maximize
∑
r∈R∗

(
Wr × PresenceOf(xir+ )

)
(4.50)

subject to

Location Constraints

Before(u, xi+ , xi−) ∀i ∈ R∗ (4.51)

Ride Time Constraints

GetStartMax(xi−)− GetEndMax(xi+) ≤ F ∀i ∈ R∗ (4.52)

Capacity Constraints

vi = StepAtStart(vi, Qi) ∀i ∈ N ∗ (4.53)

0 ≤
∑
i∈N∗

uvi ≤ Ck∗ (4.54)

Route Constraints

First(u, xik∗+) (4.55)

Last(u, xik∗−) (4.56)

NoOverlap(u) (4.57)

The subproblem is to find the maximal weight of served requests given a vehicle and a subset of

requests, thus similar to the full CP model presented in Section 4.2.2. The objective function maximizes

the sum of weights of served requests. Constraints (4.51) make sure that the pickup location is visited

before the delivery location. The maximum ride time is enforced through Constraints (4.52). Constraints

(4.53) and (4.54) use the step function in CP to keep track of the load of the vehicle after visiting each

location and makes sure that the load does not exceed the capacity of the vehicle at any location.

Constraint (4.55) forces the start of the sequence at the starting depot of the vehicle and Constraint

(4.56) makes sure the sequence ends at the ending depot of the vehicle. Finally, Constraint (4.57) takes

into account the travel distances between locations for the sequence and eliminates subtours.
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Benders Cut

In each iteration h, if the subproblem schedules all the requests assigned to it, then this subproblem is

feasible. Otherwise, an optimality cut is returned to the master problem, or in other words, a constraint

is added to the model. The cut specifies that given the subset of requests R∗ to vehicle k∗, denoted

by Jh,k, the objective value of this combination cannot be larger than the subproblem’s optimal value

denoted by z∗. This cut is modelled in a MIP formulation as in Inequality (4.58) and in a CP formulation

as in Inequality (4.59). The optimality cut has been proved to be valid in previous work [58].

∑
r∈Jh,k

(ϕk,r ×Wr) ≤ z∗ ∀k ∈ K, h ∈ {1, ...,H − 1} (4.58)

∑
r∈Jh,k

(PresenceOf(Xir+ ,k ×Wr) ≤ z∗ ∀k ∈ K, h ∈ {1, ...,H − 1} (4.59)

4.2.4 A Heuristic Approach

In order to compare the different approaches to a runtime-efficient heuristic algorithm, we also developed

a construction heuristic. Since the objective function is to maximize the total weight of the requests

served, it is logical to try to schedule the requests that have the highest ratio of weight to length

first. Furthermore, vehicles are sorted in ascending order of time availability length so that requests are

spread out amongst all vehicles and not concentrated on a single vehicle with a large time window. The

algorithm schedules the highest weight ratio request to the first vehicle that can perform the request. If

no currently available vehicle can satisfy a request, then the request is not scheduled. The algorithm is
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outlined in Algorithm 1.

Algorithm 1: Construction Heuristic for the STP.

Data: Set of requests R, and set of vehicles K
Result: A set of scheduled routes

1 Sort R based on descending order of weight
length ;

2 Sort K based on ascending order time window size;

3 for all requests r in R do

4 for all vehicles v in K do

5 if r can be served by v then

6 assign r to v and set start time of r as earliest start time on r that is after the earliest

pickup time of r;

7 split v into two vehicle pieces, v1 and v2;

8 set start and end locations and start and end times for v1 and v2;

9 insert v1 and v2 into K based on the new time window lengths;

10 break;

11 else

12 move to the next vehicle;

13 end

14 end

15 end

16 Regroup all pieces of the same vehicle to make scheduled routes;

4.3 Experimental Results

In this section, we first discuss the experimental results of running the five different methodologies on

the randomly generated instances. CP and MIP/CP LBBD show the best performance, thus these two

methodologies are then tested on the CHATS dataset.

All five approaches are coded using IBM’s CPLEX Studio 12.7 in C++. The experiments are run

on a computer with Intel Xeon E3-1226 v3 @ 3.30GHz, 16G RAM using single thread and a 600 second

runtime limit.

4.3.1 Randomly Generated Dataset Results

In descending order of best performance, CP solved all 75 (100%) instances to optimality in an average

of 2.75 seconds, MIP/CP LBBD solved 71 (95%) instances with an average runtime of 25.13 seconds,

CP/CP LBBD solved 49 (65%) instances with an average of 110.14 seconds and MIP solved 35 (48%)

instances with an average of 90.00 seconds. Each of the four exact methods are then run with the

Heuristic solution as a warm start. It can be seen in Figure 4.4 that MIP and CP/CP LBBD with the

Heuristic start have a substantial improvement. However, all the instances that were solved to optimality

with the Heuristic but failed to solve without are the ones where the heuristic found an optimal solution

by itself. The runtime for both MIP and CP/CP LBBD have also improved significantly. The heuristic

start only improves MIP/CP LBBD a little while it has very minimal effects on CP.

The runtime of MIP, CP/CP LBBD and MIP/CP LBBD are compared to that of CP in Figure
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Figure 4.4: Number of instances solved to optimality and average runtime for the generated dataset.

4.5. It can be observed that CP’s performance is the best in terms of runtime compared to the three

methods. Though MIP/CP LBBD seems to be competitive for some instances that both methods can

solve within 0.1 seconds, there are still a large number of instances where MIP/CP LBBD takes more

than 10 seconds, or even struggles to solve, but CP takes less than 1 second to solve to optimality. The

detailed results are presented in Appendix B.

Based on the above results, we can observe that CP shows exceptionally good performance while

the LBBD methods demonstrate a poorer performance. There are two intriguing questions to study: 1)

Why do the LLBD approaches work poorly and 2) Why does the CP approach work so well? Empirical

analysis suggests that the LBBDs fail in two situations: the instance gets stuck in a subproblem and the

algorithm runs out of time in solving that subproblem or the algorithm performs thousands of iterations

without finding an optimal solution and thus times out. To answer the second question, we have two

orthogonal hypotheses: compared to LBBD approaches, CP finds better quality first solutions faster and

the first solutions have a greater impact on search space reduction.

4.3.2 Analysis of LBBD Approaches

As shown in Appendix B, the instances where the LBBD approaches fail have very few iterations for

big and normal time windows indicating that the algorithm has encountered a very hard subprob-

lem and times-out trying to solve it. On the other hand, the instances for small time windows show

many iterations, which indicates that the master problem is enumerating many possible combinations of

request-to-vehicle assignments. The breakdown of runtime in master problem vs subproblem is shown in

Figure 4.6 for CP/CP LBBD and MIP/CP LBBD, respectively. For large time window instances, since

the vehicle has such a large time window, the master problem assigns all request to a single vehicle,

resulting in a subproblem with one vehicle and a lot of requests which in turns results in a very hard

subproblem. For small time windows, the percentage of time spent in the master problem is signifi-

cantly increased as the algorithm goes back and forth between the master problem and the subproblem

enumerating many possible master solutions.
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Figure 4.5: Runtime comparison of MIP, CP/CP LBBD, and MIP/CP LBBD to CP.
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Figure 4.6: Comparison of runtime spent in the master problem vs. the subproblem across all instances.
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In Figure 4.7, the relationship between the number of iterations and the percentage of runtime spent

in the subproblem can be clearly seen. The largest amount of time spent in subproblems occurs when

the number of iteration is very small, indicating a very hard subproblem.
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Figure 4.7: Percentage of time spent in the subproblem vs. the number of iterations.

These results conclude the analysis of the poorer performance of the LBBD approaches. When we

decompose the problem, both the master and the subproblems have less information and thus either

the master problem makes a poor assignment resulting in a very hard subproblem or there are many

iterations between the master problem and the subproblems. More iterations often occur in the small

time window instances as the master problem enumerates all possible assignment combinations.

4.3.3 Comparison of the CP Approach and the LBBD Approaches

We have two hypotheses to why the CP model is working so well. First, it seems that given more

information to the overall problem, the CP model is able to spread out the distribution of requests to

vehicles more “evenly” in initial solutions thus creating better quality solutions and in a shorter amount

of time. Further, the solutions that CP finds result in back-propagation from the lower-bound on the

objective function, creating a greater impact of search space reduction [56]. In this section, we explore

both of these ideas.

CP and Depth First Search

CP Optimizer’s default search employs a combination of Large Neighbourhood Search (LNS) and Failure-

directed Search (FDS) [67]. To observe its impact, we ran CP on the generated dataset using depth-first

search (DFS). All instances were solved to optimality by DFS with an increase in the average runtime

from 1.016 seconds to 1.873 seconds, a decrease in the average optimality gap of the first feasible solution

from 29.14% to 24.14%, and an increase on the mean time to find the first solution from 0.163 seconds

to 0.207 seconds. The difference in using DFS appears marginal, perhaps due to using a single thread in

all experiments. However, it does not appear that we can attribute the strong performance of our CP

model, relative to the LBBD approaches, to the sophisticated default search of CP Optimizer.
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CP and LBBD First Solutions

For this experiment, we run the CP model and both LBBD approaches until finding a first feasible

solution. For the CP model, the first solution is the first feasible solution found by the CP Optimizer.

The first solution found by the LBBD approaches is the solution found after the first iteration. When

the LBBD algorithms encounter a hard subproblem in the first subproblem, then the algorithms return

a solution of 0. Otherwise, the algorithms return the routes of scheduled vehicles from previous subprob-

lems as a solution. Two measures are taken from the first solution found: the objective value and the

time to find it. The objective value, denoted by z′, is compared to the known optimal solution value, z.

The first solution gap is computed as (z− z′)/z. Figures 4.8 and 4.9 show the comparison of the LBBD

approaches to the CP model.
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Figure 4.8: First solution quality of MIP/CP LBBD compared to CP.

Due to how the first solution is computed in LBBD approaches, the feasible solution found is often

the actual optimal solution. Therefore, while the first solution optimality gap of the LBBD approaches

is the same or in many cases smaller than the CP model, the time to find these solutions for the LBBD

approaches is larger.

To measure the effect of the first solution on the different approaches, we use the first solution found

in CP as a starting solution for the better performing LBBD approach, MIP/CP LBBD. We then let

the algorithm run and report the change of runtime with and without the warm start. The warm start

solution consists of an assignment of requests to vehicles which is a solution to the master problem of

the MIP/CP LBBD, it does not contain any temporal information. The runtime does not include the

time to compute the warm start solution. The results are shown in Figure 4.10.

For big time windows, some are solved more quickly with the warm start solution. However, on

average, the runtimes with or without the warm-start are the same. In many cases, the warm start

solution provided by the CP model is not as good as the first master problem solution and thus the

warm start solution is not used.

We conducted the same experiments using the MIP/CP LBBD first solution into the CP model as
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Figure 4.9: First solution quality of CP/CP LBBD compared to CP.
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a warm start. The results are shown in Figure 4.11. In this chart, we can clearly see that in most

cases, the warm start actually slows down the CP model for the given assignment which supports our

hypothesis that the LBBD models find poor first solutions.
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Figure 4.11: Runtime difference of pure CP minus CP with MIP/CP LBBD starting solution.

Search Space Reduction

The next set of experiments measures the impact of search space reduction given artificial lower bounds.

If we denote the set of possible values that a variable xi can take as Dxi , then the logarithm of the size

of the search space log(|P |) is computed as in Equation 4.60.

log(|P |) = log(|Dxi
|) + ...+ log(|Dxn

|) (4.60)

For interval variables, the domain size is simply the size of the interval (latest finish time - earliest

start time) minus the duration of the variable, or |Dxi | = Li − Ei − Si + 1. The reason for taking the

log of the domain sizes is that the domain sizes are often too big. For a fair comparison, we compare

CP and CP/CP LBBD to avoid differences caused by different software and methodologies.

Since an optimal solution for each instance is already known, we compute 5 different lower bounds

for each dataset that are 100%, 80%, 60%, 40%, and 20% of the actual optimal solution. Note that since

we are maximizing, a lower bound on the objective function still results in a feasible solution. We then

add this lower bound as a constraint on the objective function for both the CP model and the CP/CP

LBBD approach. Both approaches are then allowed to simply propagate without branching, and the

search space is calculated. Tables 4.6 and 4.7 show how many instances have shown any search space

reduction given the different lower bounds.

There are several instances that have shown a reduction in search space after applying a lower

bound indicating that if the CP model finds a good first solution, the search space is also reduced,

thus facilitating search. Only one instance demonstrated search space reduction for the CP/CP LBBD
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Table 4.6: Number of instances (out of 25 in each row) that have shown a reduction in search space after
applying an artificial lower bound for the CP model.

CP
Lower Bound Percentage

100% 80% 60% 40% 20%

Time Window Type

small 8 3 2 0 0
normal 3 1 0 0 0
big 0 0 0 0 0

Table 4.7: Number of instances (out of 25 in each row) that have shown a reduction in search space after
applying an artificial lower bound for the CP/CP LBBD approach.

CP/CP LBBD
Lower Bound Percentage

100% 80% 60% 40% 20%

Time Window Type

small 1 1 0 0 0
normal 0 0 0 0 0
big 0 0 0 0 0

showing a poor propagation of the first solution quality to the entire search space.

Based on the experimental results, CP is able to find good solutions very quickly as compared to

the other methods. Though the search space analysis does not show a significant reduction, we are still

confident that the CP algorithm reduces search space more efficiently than the CP/CP LBBD approach.

Combining the two major results, CP produces good initial solutions and based on these solutions,

CP is able to reduce its search space more resulting in a better performance compared to the LBBD

approaches.

4.3.4 CHATS Dataset Results

From the experimental results of the generated dataset, CP and MIP/CP LBBD are the best performing

methodologies. The MIP model’s size grows too quickly for the large size of CHATS instances and

therefore, we only tested CP and MIP/CP LBBD on the CHATS instances. The experiment set-up is

the same as for the generated dataset.

Out of the 280 instances, 250 instances solved to optimality with an average of 126.74 seconds using

the pure CP model while the MIP/CP LBBD could only solve 47 instances with an average of 331.31

seconds. All other instances timed out without finding the optimal solution or proving optimality. Figure

4.12 outlines the summary results of the CHATS dataset.

Taking a closer look at the CP runtime shown in Figure 4.13, it can clearly be seen that as the

instances get larger, the runtime is longer.

Since CP shows the best performance, we also let the CP algorithm run for 8 hours in an attempt

to find an actual optimal solution of the unsolved instances. 21 instances were solved to optimality but

9 instances are still unsolved. Thus the best known solution is reported and the gap is calculated. The

overall mean optimality gap for CP is 5.25% and 11.84% for MIP/CP LBBD. For the 233 instances that

are unsolved by MIP/CP LBBD, the average optimality gap is 14.23% for MIP/CP LBBD and 6.31% for

pure CP. Furthermore, for the 30 instances that CP failed to find optimal solutions in the 600 seconds

time limit, MIP/CP LBBD finds better solutions and the average gap to the best known solution is
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Figure 4.12: Number of instances solved to optimality and average runtime for the CHATS dataset.
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Figure 4.13: CP runtime of CHATS instances over number of vertices.
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49.02% for CP while the gap is only 18.38% for MIP/CP LBBD. Out of these 30 instances, MIP/CP

finds better solutions than CP in 22 instances. The optimality gap information is outlined in Table 4.8.

Table 4.8: Average optimality gap summary for CP and MIP/CP LBBD on CHATS instances.

Instances CP avg gap MIP/CP LBBD avg gap

All 280 instances 5.25% 11.84%
233 instances not solved by MIP/CP LBBD 6.31% 14.23%
30 instances not solved by CP 49.02% 18.38%

Overall, CP finds and proves optimal solutions or it does not find a good solution, while MIP/CP

LBBD finds fairly good solutions in most instances. The optimality gap comparison is shown in Figure

4.14.
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Figure 4.14: Optimality gap comparison between CP and MIP/CP LBBD on CHATS instances.

4.4 Conclusions

Inspired from real-world problems, the Senior Transportation Problem (STP) is a combination of Pickup

and Delivery Problem with Time Windows, Dial-a-Ride Problem, and Team Orienteering Problem and

proves to be a hard problem to solve. In this chapter, a formal problem definition for the STP has been

proposed illustrating multiple constraints inspired from real-life problems.

Five different approaches, Mixed Integer Programming (MIP), Constraint Programming (CP), MIP/CP

Logic-based Benders Decomposition (LBBD), CP/CP LBBD, and a construction heuristic, solving the

STP have been developed. The variables used, the mathematical formulations and pseudo-code are

presented. Each method is tested on 75 instances from the generated dataset as described in the previ-

ous chapter. CP proves to be the best performing algorithm both in terms of the number of instances

solved to proven optimality and faster runtime, followed by MIP/CP LBBD, CP/CP LBBD, construction
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heuristic, then MIP. In order to explain the good performance of CP compared to the LBBD approaches,

experiments were performed to investigate two hypotheses: compared to LBBD approaches, CP finds

better first solutions and the solutions have a greater impact on search space reduction. Furthermore,

analysis on the LBBD methods shows that they fail in two situations: the algorithm gets stuck in a

hard subproblem due to a poor assignment from the master problem, or the algorithm goes through too

many iterations.

The two best performing algorithms, CP and MIP/CP LBBD are then tested on CHATS instances.

Again, CP proved to be the best algorithm, solving 250 out 280 instances to optimality while MIP/CP

LBBD only solved 47 instances to optimality in the given 600 seconds time limit.



Chapter 5

The STP with Overbooking

Our partner organization, CHATS, indicated that one of the major problems that they face is cancella-

tions. They experience roughly 20% cancellations on their scheduled requests, which leads us to explore

an extension of the Senior Transportation Problem (STP) and the possibility of overbooking requests. In

this chapter, we provide the definition of the Senior Transportation Problem with Overbooking (STPOB)

and provide five solution techniques in a similar structure as the previous chapter. The different tech-

niques are then evaluated using both the generated dataset and CHATS dataset as described in Chapter

3. Detailed analysis on the different methods are performed in order to demonstrate the reasons why

one methodology performs better than another.

5.1 Problem Definition

As described in Chapter 2, the notion of overbooking has not been previously studied in transporta-

tion problems. Therefore, we borrow some ideas from the clinical appointment scheduling overbooking

problem [50] where the authors computed cancellation probabilities for each appointment and created

a schedule with overlapping appointments. The objective is to maximize the expected profits gained

from appointments that actually occur while minimizing the wait time and the clinic overtime. For the

STPOB, we also compute probabilities of cancellation and use this information as input data. However,

rather than booking overlapping appointments, we introduce a new unconstrained vehicle that can serve

overbooked requests at a higher cost. The objective is simply minimizing the total expected cost.

In the previous chapter, we maximized the number of requests that could be served given the available

vehicles. Whereas, in the STPOB, we assume that all requests must be served, each with an additional

information of probability of cancellation. To compensate for the requests that cannot be served by the

given vehicles, we introduce one “taxi” vehicle that can hypothetically fulfil all requests simultaneously.

Additionally, each vehicle is associated with a vehicle cost factor, where the cost of volunteer vehicles

is less than the cost of paid drivers, which are both substantially less than the cost of the taxi vehicles.

The objective of the STPOB is then to minimize the total expected cost of scheduling all requests. The

STPOB can be defined as an extension of the STP: given the same set of constraints as the STP (see

Section 4.1), the STPOB minimizes the total expected cost of serving all requests with the addition

of higher cost taxi vehicles which are completely unconstrained. The expectation arises from each trip

having a probability of cancellation and the assumption that cancelled trips do not incur any cost.

51
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The STPOB differs from the STP in the objective function, the addition of taxi vehicles, a cancellation

probability πr associated with each request r, and a cost factor costFactork attribute associated with

each vehicle k. The STPOB is still described with the same graph G (see Section 4.1) with the addition

of a taxi node k∗ which represents an infinite number of taxi vehicles. The structure of the rest of the

request and vehicle information remains the same as the STP.

When a request cannot be completed by a volunteer driver or a paid driver, a higher cost taxi vehicle

will complete the request. It is assumed that for the taxi vehicle, there are no constraints; it can satisfy

any request. We then redefine the set of vehicles K∗ as K ∪ k∗ where k∗ is the taxi vehicle. The taxi

vehicle has no restriction on earliest start time or latest finish time, has unlimited capacity and can start

and end at any location.

Each request r is associated with a total travel time Br, and each vehicle is associated with a vehicle

cost factor Vk such that Vtaxi > Vpaiddriver > Vvolunteer. The cost that is associated with each request

is then its distance multiplied by the vehicle cost factor and by the probability of the request not being

cancelled. The mathematical representation is shown in Equation (5.1). For example, if request r is

assigned to vehicle k, then the cost of request r, Or is as below.

Or = (1− πr)×Br × Vk (5.1)

The cost Or is only an estimate; the true of cost of a trip also includes gas prices which are dependent

on the total distance travelled. We have converted all cost factors to be based on the travel time in order

to facilitate computation. Examinations of true costs can be studied further in future work. The new

parameters are summarized in Table 5.1. A list of all parameters can be found in Appendix A.

Table 5.1: Additional parameters for the STPOB.

Parameter Description

πr Probability of cancellation of request r

Br Total travel time length of request r. Br = Tir+ ,ir−

Vk Cost factor of vehicle k. Vtaxi > Vpaiddriver > Vvolunteer

Oi Expected cost of request r

5.2 Solution Approaches for the STPOB

In this section, we present five different approaches to solve the STPOB. As in the previous chapter, we

present a MIP approach, a CP approach, followed by MIP/CP and CP/CP LBBD approaches and we

complete this section by describing a simple construction heuristic.

5.2.1 A MIP Approach

The variables for the MIP model are the same as in the MIP model for the STP (see Section 4.2.1)

with the addition of the variables associated with the taxi vehicle. Most of the constraints are the same

except for the addition of an unconstrained taxi vehicle and the change of the objective function. A
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MIP formulation is presented below.

min
∑
k∈K∗

∑
r∈R

∑
j∈V

(
xk,ir+ ,j × (1− πr)×Br × Vk

)
(5.2)

s.t.
∑

j∈N+

xk,ik+ ,j + xk,ik+ ,ik−
= 1 ∀k ∈ K (5.3)

∑
i∈N−

xk,i,jk− + xk,ik+ ,ik−
= 1 ∀k ∈ K (5.4)

∑
k∈K∗

∑
j∈V

xk,ir+ ,j = 1 ∀r ∈ R (5.5)

∑
j∈V

(xk,i,j − xk,j,i) = 0 ∀k ∈ K∗, i ∈ N (5.6)

∑
j∈V

(
xk,ir+ ,j − xk,j,ir−

)
= 0 ∀k ∈ K∗, r ∈ R (5.7)

uk,j ≥ (uk,i + Ti,j + Sj)−M × (1− xk,i,j) ∀k ∈ K, i, j ∈ V (5.8)

uk,i ≥ Ei −M ×

1−
∑
j∈V

xk,i,j

 ∀k ∈ K, i ∈ V (5.9)

uk,i ≤ Li − Si +M ×

1−
∑
j∈V

xk,i,j

 ∀k ∈ K, i ∈ V (5.10)

uk,ir+ ≤ uk,ir− ∀k ∈ K, r ∈ R (5.11)(
uk,ir− − uk,ir+

)
≤ F ∀k ∈ K, r ∈ R (5.12)

vk,j ≥ (vk,i +Qi)−M × (1− xk,i,j) ∀k ∈ K, i, j ∈ V (5.13)

xk,i,j ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (5.14)

0 ≤ uk,i ≤ Z ∀k ∈ K, i ∈ V (5.15)

0 ≤ vk,i ≤ Ck ∀k ∈ K, i ∈ V (5.16)

The objective function (5.2) has been changed to minimize the total expected cost of satisfying all

requests. For each request r that is assigned to vehicle k, the expected cost associated with request i is

the probability of the request happening multiplied by the cost factor of the vehicle k and by the total

travel length of the request r.

Constraints (5.3) and (5.4) ensure that each vehicle leaves from its depot location to either a request’s

pickup place or to its associated ending depot directly. Constraints (5.5) is changed from an inequality

to an equality as each request must be satisfied by a vehicle including the taxi vehicle. The constant

flow is again ensured through Constraints (5.6), with the taxi vehicle added. Constraints (5.7) ensures

that the pickup and delivery locations of the same request are visited by the same vehicle including the

taxi vehicle.

The time window, capacity, variable bound constraints (5.8) - (5.16) are the same as for the STP as

the taxi vehicle is not subject to these constraints.
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5.2.2 A CP Approach

Again, we use the same set of variables as from the CP model of the STP (see Section 4.2.2) with

additional variables for the taxi vehicle. All location variables xi are set to non-optional since all

locations will be visited by a vehicle. Below is a CP approach to solve the STPOB.

minimize
∑
k∈K∗

∑
r∈R

(
PresenceOf(X̄k,ir+

)× (1− πr)× Vk ×Br

)
(5.17)

subject to

Location Constraints

Alternative(xi,Xi) ∀i ∈ N (5.18)

Before(X̄k,ir+
, X̄k,ir+

) ∀k ∈ K,∀r ∈ R (5.19)

PresenceOf(X̄k,ir+
) = PresenceOf(X̄k,ir−

) ∀k ∈ K∗,∀r ∈ R (5.20)

Ride Time Constraint

GetStartMax(xir− )− GetEndMax(xir+ ) ≤ F ∀r ∈ R (5.21)

Capacity Constraints

vk,i = StepAtStart(X̄k,i, Qi) ∀k ∈ K,∀i ∈ N (5.22)∑
i∈N

vk,i ≤ Ck ∀k ∈ K (5.23)

Route Constraints

First(uk, xik+ ) ∀k ∈ K (5.24)

Last(uk, xik− ) ∀k ∈ K (5.25)

NoOverlap(uk, tt) ∀k ∈ K (5.26)

Although all requests must be satisfied, depending on which vehicle the request is assigned to, the

associated expected cost varies. Therefore, in the objective function (5.17), the variables bounded by

the PresenceOf constraint are changed to the assignment variables X̄k,ir+
from the location variable

xi since all locations will be visited by a vehicle. If vehicle k serves request r, the expected cost of the

request is the total travel length of the request multiplied by the vehicle cost factor and the probability

that the request will happen.

Constraints (5.18) to (5.26) are the same as in the CP model for the STP (see Section 4.2.2) except

for Constraints (5.20) which is modified for the taxi vehicle. The constraints restrict pickup and delivery

locations of a request to be visited by the same vehicle (including the taxi vehicle).

5.2.3 Logic-based Benders Approaches

An LBBD approach has also been developed to solve the STPOB. The idea remains the same as in

Chapter 4: the master problem assigns requests to vehicles including the taxi. Each vehicle then solves

a minimization problem to find its minimal cost route. If the objective cost returned by a subproblem is

higher than the cost assigned by the master problem, a Benders cut is returned to the master problem.

For the next iteration, the master problem has a newly added constraint that states that the cost of
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assigning these specific requests onto this vehicle has to be at least what the subproblem has returned

in the previous iteration.

MIP Master Problem

The MIP master problem employs the same variables as for the MIP master for the STP (see Section

4.2.3) with additional variables for the taxi vehicle.

minimize
∑
k∈K∗

∑
r∈R

(ϕk,r × (1− πr)×Br × Vk) (5.27)

subject to
∑
k∈K∗

yk,i = 1 ∀i ∈ N (5.28)

Qr × ϕk,r ≤ Pk ∀k ∈ K, r ∈ R (5.29)

ζr = Sir+
+ Tir+ ,ir−

+ Sir−
∀r ∈ R (5.30)

(Eir+
+ ζr)× ϕk,r ≤ Lik−

∀k ∈ K, r ∈ R (5.31)

Lir−
− ζr ≥ Eik+ × ϕk,r ∀k ∈ K, r ∈ R (5.32)∑

i∈N
(yk,i × Ti + Si) + Tik+ + Sik+ ≤ Lik−

− Eik+ ∀k ∈ K (5.33)

yk,r = yk,r+|R| = ϕk,r ∀k ∈ K∗, r ∈ R (5.34)

yk,i, ϕk,r ∈ {0, 1} ∀k ∈ K∗, i ∈ N , r ∈ R (5.35)

Benders Cuts

The objective function (5.27) has been changed to minimize the total expected costs. Constraints

(5.28), (5.34), and (5.35) have been altered to include the taxi vehicle, while the rest of the constraints

remain the same as for the STP.

CP Master Problem

All variables remain the same as the CP master problem for the STP (see Section 4.2.3) with the addition

of variables associated with the taxi vehicle. All location variables xi are set to non-optional. The CP

master problem for the STPOB is presented below.
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minimize
∑
k∈K∗

∑
r∈R

(
PresenceOf(Xir+ ,k)× (1− πr)× Vk ×Br

)
(5.36)

subject to

Location Constraints

Alternative(xi,Xi) ∀i ∈ N (5.37)

PresenceOf(Xir+ ,k) = PresenceOf(Xir− ,k) ∀k ∈ K∗, r ∈ R (5.38)

Route Constraints

EndBeforeStart(xik+ , Xi,k) ∀k ∈ K, i ∈ N (5.39)

EndBeforeStart(Xi,k, xik− ) ∀k ∈ K, i ∈ N (5.40)

EndBeforeStart(xik+ , xik− ) ∀k ∈ K (5.41)

Distance Constraint∑
i∈N

(PresenceOf(Xi,k)× Ti + Si) + Tik+ + Sik+ ≤ Lik−
− Eik+ ∀k ∈ K (5.42)

Benders Cuts

Similar to the previous models, the objective function has been changed and the taxi vehicle has

been added to Constraints (5.38) while keeping all other constraints the same.

CP Subproblem

The CP subproblem employs the same variables as the CP subproblem for the STP (see Section 4.2.3).

Since a subproblem may not be able to serve all requests that the master problem has assigned to it

and since we would like to compute an upper bound on the cost of all the requests assigned to a specific

vehicle, a taxi vehicle must also be added to each subproblem. Each subproblem then forms a scheduling

optimization problem for a two-vehicle problem, thus we will be in need of Xi,k variables, as in the master

problem, to find the assignment of requests to either the organization’s vehicle or to the taxi vehicle.

The new variables are only used to compute the total cost and are only constrained to restrict pickup

and delivery locations to be visited by the same vehicle. The variables employed in the subproblem are

outlined in Table 5.2.

A CP model for the subproblem of the LBBD approaches for the STPOB is given in (5.43) - (5.52).
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Table 5.2: Variables for vehicle-based model.

Location Variables Type Description

xi interval Time interval in which location i ∈ V∗ will be served.
The variable is bounded by the time window at lo-
cation i.

Xi,k interval Time interval in which location i ∈ N is visited by
vehicle k and not present if location i is not visited
by vehicle k. k = 0 if vehicle associated with the
subproblem, and k = 1 if taxi vehicle.

Load Variables Type Description

vi cumul function Load of vehicle k = 0 after visiting node i ∈ N ∗

Sequence Variable Type Description

u sequence Sequence of locations visited by vehicle k = 0

minimize
∑

k∈{0,1}

∑
r∈R∗

(
PresenceOf(Xir+ ,k)× (1− πr)× Vk ×Br

)
(5.43)

suject to

Location Constraints

Alternative(xi, Xi) ∀i ∈ N ∗ (5.44)

Before(Xir+ ,k, Xir− ,k) ∀k ∈ K,∀r ∈ R∗ (5.45)

PresenceOf(Xir+ ,k) = PresenceOf(Xir− ,k) ∀k ∈ K∗,∀r ∈ R∗ (5.46)

Ride Time Constraints

GetStartMax(xir− )− GetEndMax(xir+ ) ≤ F ∀r ∈ R∗ (5.47)

Capacity Constraints

vi = StepAtStart(vi, Qi) ∀i ∈ N ∗ (5.48)

0 ≤
∑
i∈N∗

vi ≤ Ck∗ (5.49)

Route Constraints

First(u, xik∗+) (5.50)

Last(u, xik∗−) (5.51)

NoOverlap(u) (5.52)

The subproblem finds the minimal cost schedule given the set of requests and the specific vehicle

with the addition of a taxi vehicle. The objective function (5.43) has been altered to reflect the minimal

cost while the rest of the constraints are left unchanged. All other constraints are similar to that of the

global CP model.
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Benders Cut

Each subproblem minimizes the total cost of scheduling the given requests to the two vehicles, the

organization vehicle and a taxi. Since the taxi is always more costly than the organization vehicle, when

the minimal cost of the subproblem does not equal to the cost computed by the master problem, the

schedule had to employ the more expensive taxi. The cost incurred by the organization’s vehicle then

becomes an upper bound on the cost of the given requests when assigned to the organization’s vehicle.

The upper bound on the cost of the given requests are returned to the master problem as the Benders

cut, forcing the master problem to assign a subset of requests whose total cost is smaller or equal to that

upper bound or a different set of requests. In this subsection, we present two lemmas, one showing that

the cost of the organization vehicle in each subproblem represents an upper bound on the given requests

assigned to the vehicle and another showing that the cut does not remove feasible solutions. Finally, the

two lemmas result in a theorem showing the validity of the Benders cut presented.

First, we will present some notation. In each subproblem, let k0 represent the organization’s vehicle,

and let k1 represent the taxi vehicle. Then, c =
∑

k∈{k0,k1}

∑
r∈R∗

(
PresenceOf(Xir+ ,k)× (1− πr)× Vk ×Br

)
is the minimum cost of assigning the requests r ∈ R∗ to k0 and k1 found by the subproblem. Let R∗0
represent the set of requests assigned to k0 or and R∗1 represent the set of requests assigned to k1 in

the optimal schedule of the subproblem. Accordingly, z′k =
∑
r∈R∗k

((1− πr)×Br) × Vk is the cost of all

requests assigned to vehicle k in the subproblem. Thus, c can be represented as z′0 + z′1. We will show

that z′0 is an upper bound of the requests assigned to k0 through Lemma 1.

Lemma 1. Given a set of request R∗ and the minimum cost, c = z′0 + z′1, of assigning these requests to

a vehicle k0 and a taxi vehicle k1, then z′0 is an upper bound to the minimum cost of assigning requests

to k0.

Proof. By contradiction.

In this proof, we consider three cases that may induce changes to z′0: 1. move a request ri ∈ R∗1 from

the k1 to k0, 2. move a request rj ∈ R∗0 from k0 to k1 and 3. swap requests ri ∈ R∗1 and rj ∈ R∗0 and

show that none of the actions can produce a cost z̄′0 > z′0. Let c̄ = z̄′0 + z̄′1 be cost of reassigning requests

and c = z′0 + z′1 be cost of the original schedule and minimal cost of assigning requests R∗. Consider

any request r, its cost is calculated as (1− πr)×Br × Vk. For ease of notation, we denote (1− πr)×Br

as δr. We are given that V1 > V0.

1. Suppose there exists ri ∈ R∗1 such that by assigning it to k0 instead of k1, z̄′0 > z′0. If ri if moved

to k0, the cost of the subproblem will be reduced. However, because c is the minimum cost, there

cannot exist another schedule with cost smaller than c, thus we have derived a contradiction. Such

ri does not exist and z′0 is indeed the maximum cost of requests assigned to k0.

2. Moving a request rj ∈ R∗0 from k0 to k1 would reduce the cost of k0, however would increase the

cost of k1 by a strictly larger amount since the cost of the k1 is strictly larger than k0. This will

result in a larger c.

3. Suppose there exist requests ri ∈ R∗1 and rj ∈ R∗0 such that by swapping their assigned vehicles,
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z̄′0 > z′0. Then,

z̄′0 = z′0 + δri × V0 − δrj × V0

= z′0 + (δri − δrj )× V0

∵ z̄′0 > z′0 and V0 > 0 ∴ (δri − δrj ) > 0

z̄′1 = z′1 − δri × V1 + δrj × V1

= z′1 − (δri − δrj )× V1

c̄ = z′0 + z′1 + (δri − δrj )× (V0 − V1)

= c+ (δri − δrj )× (V0 − V1)

< c (since V1 > V0 and (δri − δrj ) > 0).

Since c is the minimal cost, there cannot exist such a pair, thus we have derived a contradiction.

Such ri and rj do not exist and z′0 is the maximum cost.

This concludes the proof that z′0 is the maximum cost of assigning requests R∗ to k0.

Given the upper bound z′0, the Benders cut returned to the master problem is modelled in the MIP

formulation as Equation (5.53) and in the CP formulation as Equation (5.54).

∑
r∈Jh,k

(ϕk,r × (1− πr)×Br × Vk) ≤ z′0 ∀k ∈ K, h ∈ {1, ...,H − 1} (5.53)

∑
r∈Jh,k

(PresenceOf(Xir+ ,k)× (1− πr)×Br × Vk) ≤ z′0 ∀k ∈ K, h ∈ {1, ...,H − 1} (5.54)

Next, we show that the Benders cuts presented above do not remove any global feasible solutions.

Lemma 2. The proposed cuts shown in Equations (5.53) and (5.54) do not eliminate any global feasible

solutions.

Proof. When a subproblem must employ a taxi, it is not feasible to schedule all requests assigned to it

on the vehicle and for the purpose of this proof, we will define this as an infeasible schedule. Let R(h)
k

be the set of requests assigned to vehicle k by the master problem at iteration h with cost wk that is

less than the optimal cost cR(h)
k ,k

of the subproblem associated with vehicle k, wk < cR(h)
k ,k

. Then the

returned Benders cut will be
∑

r∈R(h)
k

(ϕk,r × (1 − πr) × Br × Vk) ≤ z′0. Similar to Lemma 1, we denote

(1 − πr) × Br as δr. Consider a set of requests R∗k with an optimal cost of cR∗k,k, we show that R∗k
satisfies the inequality in Equations (5.53) and (5.54) if it is feasible. In this proof, we employ a similar

approach as Roshanaei [58], we present five possible cases of R∗k.
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1. In R∗k, some more requests R̄∗k have been added to R(h)
k .

cR∗k,k =
∑

r∈R(h)
k ∪R̄

∗
k

ϕk,r × δr × V0

=
∑

r∈R(h)
k

ϕk,r × δr × V0 +
∑
r∈R̄∗k

ϕk,r × δr × V0

> z′0

Since R(h)
k is already incurring more cost than wk, a taxi must have been employed, adding more

requests will still need to employ a taxi, thus R
(h)
k does not have a feasible solution and as shown

above does not satisfy the Benders cut.

2. In R∗k, some requests R̄∗k with (cR(h)
k ,k
− cR̄∗k,k) > z′0 have been removed from R(h)

k .

cR∗k,k = cR(h)
k ,k
− cR̄∗k,k

> z′0

Removing one or more requests may allow the feasibility of the schedule, however, if the difference

between the cost of the original set of requests and the cost of the set of the removed requests

is still greater than z′0, as from Lemma 1, z′0 is an upper bound, the new set of requests is also

infeasible and does not satisfy the Benders cut.

3. In R∗k, some requests R̄∗k with cR(h)
k ,k
− cR̄∗k,k ≤ z

′
0 have been removed from R(h)

k .

cR∗k,k = cR(h)
k ,k
− cR̄∗k,k

≤ z′0

If the cost of the set of requests removed is less than or equal to the difference between the original

cost and the removed cost, the schedule could potentially be feasible and as shown above, the

Benders cut is satisfied.

4. R∗k and R(h)
k share some requests (i.e., R(h)

k ∩R∗k 6= ∅).

cR∗k,k = cR∗k∩R
(h)
k ,k

+ cR∗k\R
(h)
k ,k

Since the requests in R∗k \R
(h)
k are not in the set R(h)

k , they are unconstrained. If cR∗k∩R
(h)
k ,k

> z′0,

then similar to case 2, the shared requests have a total cost higher than z′0, thus R
(h)
k does not

have a feasible solution and does not satisfy the Benders cut. Otherwise if cR∗k∩R
(h)
k ,k

> z′0, the

new set could potentially be feasible and satisfies the Benders cut.

5. R∗k and R(h)
k do not share any requests. Since the requests in R∗k are not in set R(h)

k , thus are

unconstrained. The new set could yield feasible solutions and satisfies the Benders cut.

The above holds for all iterations and set of requests. In addition, the above relationships are exhaustive
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and demonstrate that a Benders cut is not satisfied only when the solution is infeasible. This concludes

the proof for Lemma 2.

Theorem 3. The proposed inequality modelled in Equations (5.53) and (5.54) is a valid Benders cut.

Proof. Lemma 1 showed that z′0 is an upper bound to the cost of a subset of requests assigned to a

specific vehicle, thus by applying the cuts iteratively, the algorithm cuts off infeasible solutions and the

algorithm will terminate by finding a feasible solution or prove infeasibility. Furthermore, the inequality

does not remove any feasible solutions as shown in Lemma 2. We can then conclude that the proposed

inequality is a valid Benders cut.

5.2.4 A Heuristic Approach

The objective of the STPOB is to minimize the total expected cost. In Equation (5.1), there are two

components, (1− πr)×Br which is only dependent on the request and Vk which depends on the vehicle

assigned. Since the objective is to minimize the total cost, assigning higher cost requests to lower cost

vehicles should lower the total cost.

The algorithm sorts all requests in descending order of cost ratio defined as weight
length , and all vehicles

in ascending order of cost factor, with ties broken by sorting smaller time windows first. The algorithm

assigns each request, in order, to the first vehicle that is able to take it. If no vehicle can satisfy the

request, it is assigned to the taxi. Once the request is assigned to a vehicle, the vehicle is split into two

vehicles with the time window availability before the assigned request and the time window availability

after the assigned request. The list of vehicles is then resorted. The algorithm is outlined in Algorithm
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2.

Algorithm 2: Construction Heuristic for the STP.

Data: Set of requests R, and set of vehicles K
Result: A set of scheduled routes

1 Sort R based on descending order of weight
length ;

2 Sort K based on ascending order cost factor, break ties with smaller time windows first;

3 for all requests r in R do

4 for all vehicles v in K do

5 if r can be served by v then

6 assign r to v and set start time of r as earliest start time on r that is after the earliest

pickup time of r;

7 split v into 2 vehicle pieces, v1 and v2 with

(i) start time of v1 = start time of v

(ii) end time of v1 = start time of r

(iii) start location of v1 = start location of v

(iv) end location of v1 = pickup location of r

(v) start time of v2 = end time of r

(vi) end time of v2 = end time of v

(vii) start location of v2 = delivery location r

(viii) end location of v2 = end location of v ;

8 insert v1 and v2 into K based on the new time window lengths ;

9 break;

10 end

11 end

12 end

13 Regroup all pieces of the same vehicle to make scheduled routes ;

5.3 Experimental Results

All five approaches have been tested on both the randomly generated dataset and the CHATS dataset

described in Chapter 3. An analysis similar to that of Chapter 4 is presented for the STPOB. Compar-

isons between the performance of the different algorithms on the STPOB and the STP are also drawn.

Finally the best approaches, CP, MIP/CP LBBD and the Construction Heuristic are tested on the

CHATS dataset.

All five approaches are coded in C++ using IBM’s CPLEX Studio 12.7. The experiments are run

on a computer with Intel Xeon E3-1226 v3 @ 3.30GHz, 16G RAM using single thread and a 600 second

runtime limit for both the generated dataset and the CHATS dataset.

5.3.1 Randomly Generated Dataset Results

Compared to the STP, the STPOB seems to be a harder problem to solve in general. The number of

instances solved to optimality in all approaches are less compared to the STP. Figure 5.1 summarizes

the experimental results on the generated dataset.
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In descending order of best performance, CP solved 73 (97%) instances to optimality in an average

of 21.78 seconds, MIP/CP LBBD solved 66 (88%) instances in an average of 28.31 seconds, CP/CP

LBBD solved 54 (72%) instances in an average of 45.70 seconds and MIP solved 28 (37%) instances in

an average of 56.20 seconds. The solution computed by the construction heuristic is also used to warm

start the four exact techniques, denoted with prefix with Heuristic. The heuristic start seems to help

little for the STPOB especially in terms of runtime though for CP/CP LBBD, the average runtime is

longer with the heuristic start.
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Figure 5.1: Number of instances solved to optimality and average runtime for generated dataset for
STPOB.

MIP, MIP/CP LBBD and CP/CP LBBD runtimes are compared to that of the CP approach in

Figure 5.2. It can be clearly seen that CP is the best approach. It is also worth noticing that for CP vs.

MIP/CP LBBD, the majority of the big time window instances have shorter runtime with the MIP/CP

LBBD approach compared to the CP approach, while CP outperforms MIP/CP LBBD for the normal

and small time windows due to the strong filtering and propagation rules available for shorter time

windows in the CP model.

We next look at the runtime comparison of the four different approaches with and without the

heuristic start in Figure 5.3. For the CP approach, the heuristic start helps on some instances and

hurts on others, with the average runtime remaining approximately the same. On the other hand, the

heuristic start helps the MIP approach solve many instances to optimality, especially those with big time

windows. Originally, MIP solved 28 instances to optimality; with the heuristic warm start, it solves 35

instances to optimality. In those cases the heuristic warm start solution provides an optimal solution to

the MIP model, thus helping the MIP model solving more instances. From the figure, it can be seen

that many blue dots (big time window instances) are in the top left corner meaning that these instances

timed out while using the MIP approach but the MIP with the heuristic start was able to solve these

instances within the time limit. In terms of the MIP/CP LBBD, the heuristic enabled the approach to

find a few more optimal solutions. Finally, the heuristic start worsened the CP/CP LBBD approach

especially on the small TW instances.
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Figure 5.2: Runtime comparison of CP and MIP, MIP/CP LBBD and CP/CP LBBD.
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Figure 5.3: Runtime comparison of CP, MIP, MIP/CP LBBD and CP/CP LBBD with and without
heuristic start.
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The cumulative number of instances solved to optimality over time is seen in Figure 5.4. MIP/CP

LBBD seems to dominate in the first 0.1 seconds but subsequently, CP is the dominant approach.
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Figure 5.4: Number of instances solved to optimality over total runtime.

Overall, CP is the best performing approach, however, it seems that the two LBBD approaches

perform better than when solving the STP. In the next two subsections, we study in detail CP compared

to the LBBD approaches.

5.3.2 Analysis of LBBD Approaches

In this subsection, we study the performance of the LBBD approaches. The instances where MIP/CP

LBBD failed to find optimal solutions within the time limit seem to be all problems where a particular

subproblem is too hard and failed to terminate within the time limit. In contrast, the CP/CP LBBD

failed in many hard subproblems but also encountered multiple situations of too many iterations. The

proportion of runtime spent in the master problem and the subproblem is shown in Figure 5.5.
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Figure 5.5: Comparison of runtime spent in the master problem vs. the subproblem across all instances.

It can be clearly seen that for the MIP/CP LBBD approach, most of the runtime is spent in the
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subproblems. For the CP/CP LBBD, it seems more evenly distributed. However, it is worth noticing

that for the 16-node instances, all solved in less than 0.01 seconds spending ∼0 sec in the subproblem

and <0.01 sec in the master problem thus resulting in larger percentage of distribution of runtime in

the master problem. Again, we observe the same behaviour in the STP where in the LBBD approaches,

without all the information, the master problem makes a poor assignment, in particular, creating very

hard subproblems where the subproblem cannot be solved within a time limit.

Next, we explore the percentage of time spent in subproblems vs. the number of iterations in each

of the MIP/CP LBBD and CP/CP LBBD approaches. As can be seen in Figure 5.6, the majority of

the instances are solved in very few iterations.
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(b) CP/CP LBBD.

Figure 5.6: Percentage of time spent in the subproblem vs. the number of iterations.

5.3.3 Comparison of the CP Approach and the LBBD Approaches

Again, we study the behaviour of the CP approach compared to the LBBD approaches in terms of their

first solution quality and the search space reduction from the first solution found.

CP and LBBD First Solutions

In order to compute the quality of the first solutions, we measure how long it takes to find an initial

feasible solution and how good this solution is. The criteria for a first feasible solution remains the same

as in the previous chapter (see Section 4.3.3). For each of the instances, we let the CP method run until

finding an optimal solution, we then measure the optimality gap of the first solution’s objective value

for all approaches.

Looking at Figures 5.7 and 5.8, it can be observed that in both LBBD approaches, the optimality gap

of the first solution found is much smaller than the one found by the CP approach. In fact, 36 instances

were solved to optimality with only one iteration by MIP/CP LBBD and 30 instances with only one

iteration by CP/CP LBBD. Therefore, all of these instances have an optimality gap of 0 from the first

feasible solution found. However, the time it takes to find a first feasible solution is much smaller for

the CP method than the two LBBD methods especially for CP/CP LBBD.
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Figure 5.7: First solution quality of MIP/CP LBBD compared to CP.
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Figure 5.8: First solution quality of CP/CP LBBD compared to CP.
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We test the quality of the first solution in both CP and MIP/CP LBBD and its effects on the

algorithms through the following experiments. In the first set of experiments, we take the first solution

found by the CP approach and use that as a warm start to the MIP/CP LBBD approach. The runtime

results can be seen in Figure 5.9. Unlike in the STP, the CP start does not help too much with runtime

for the MIP/CP LBBD approach. The number of optimally solved instances decreases to 64 when using

the CP starting solution from optimally solving 66 instances without the CP starting solution.
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Figure 5.9: Runtime difference of pure MIP/CP LBBD minus MIP/CP LBBD with CP starting solution.

Using MIP/CP LBBD first solution as a warm start solution to the CP approach shows a similar

behaviour as the runtime is not affected much by the starting solution and the number of instances solved

to optimality with the MIP/CP LBBD is reduced to 72 from 73 without using the MIP/CP LBBD start

solution.
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Figure 5.10: Runtime difference of pure CP minus CP with MIP/CP LBBD starting solution.
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Although the MIP/CP LBBD provides a better first solution, the amount of time to find the solution

is too large to speed up the CP approach. If we let CP run until MIP/CP LBBD finds its first feasible

solution, then the quality of the solution found by CP is much better as can be seen in Figure 5.11.

In fact, 39 instances are solved to optimality given the time the MIP/CP LBBD used to find the first

solution. It is also worth noticing that for 11 instances, CP failed to find any feasible solution in the

given runtime.
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Figure 5.11: Comparison of CP vs. MIP/CP LBBD solution quality given runtime of finding MIP/CP
LBBD first solution.

Search Space Reduction

Since the STPOB is a minimization problem, in order to measure the impact on the search space

reduction, we provide artificial upper bounds. The search space is computed as described in the previous

chapter (see Section 4.3.3).

We let the CP approach run until finding an optimal solution and compute 6 different upper bounds

that are 100%, 120%, 140%, 160%, 180%, and 200% of the optimal objective value. This upper bound is

added as a new constraint and the algorithms are then allowed to simply propagate without branching.

We compute the size of the search space of the original problem and with the additional upper bound

constraint and observe any reduction in search space. The results are presented in Table 5.3 for CP

and Table 5.4 for CP/CP LBBD. For each time window type, there are 25 instances and the number

indicates how many instances show a decrease in the size of the search space with the addition of an

artificial upper bound.

From the observations, it seems that the majority of the instances show a reduction in search space

size when given an extremely tight upper bound, thus finding a good quality feasible solution is crucial.

In contrast, instances show more space reduction for the CP/CP LBBD approach which confirm the

better performance of LBBD approaches solving the STPOB compared to the STP (see Section 4.3.3).
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Table 5.3: Number of instances that show a reduction in search space after applying an artificial upper
bound for the CP model.

CP

Upper Bound Percentage

100% 120% 140% 160% 180% 200%

Time Window Type

small 18 1 0 0 0 0

normal 22 2 2 1 0 0

big 23 0 0 0 0 0

Table 5.4: Number of instances that show a reduction in search space after applying an artificial upper
bound for the CP/CP LBBD approach.

CP/CP LBBD

Upper Bound Percentage

100% 120% 140% 160% 180% 200%

Time Window Type

small 23 7 1 0 0 0

normal 25 12 7 4 0 0

big 24 13 9 3 0 0

5.3.4 Comparison of STP and STPOB Solutions

In an attempt to understand the different objectives of the STP and the STPOB and the impact they

may have on problem difficulty, we investigated the solution structures of the same instances solved using

CP. The objective of the STP is to maximize the number of requests fulfilled given a set of vehicles,

while the STPOB aims to minimize the total cost of assigning all requests with additional taxi vehicles.

All instances are kept the same (i.e., all vehicle and request information are identical) except for the

addition of vehicle cost and cancellation probability of requests when solving the STPOB.

First, we took the solutions computed to solve the STP and compute their costs in the same way

as in the STPOB; each request uses the same probability of cancellation and each vehicle has the same

cost factor. Note that when computing the optimal solutions for STP, vehicle cost factors were not part

of the objective function and thus requests were assigned to vehicles arbitrarily. Figure 5.12 highlights

the cost of each instance solved as an STP compared to those solved as an STPOB. The blue datapoints

represent the instances where all requests were fulfilled in the STP solutions, while the orange datapoints

represent the instances where only a subset of requests were fulfilled. We can see that only the instances

where all requests could be scheduled incurred a higher cost in the STP. This is due to the arbitrary

assignment of vehicles since there are no cost differences in the STP. The rest of the instances incurred

a lower cost since in the STP, as there is no taxi vehicle and the requests that are not scheduled do not

incur any cost.

We then examined the number of vehicles used for each instance and the variance in the number of

requests assigned to each vehicle. Note that taxi vehicles are not counted. In Figure 5.13, we can see

in almost all instances, more vehicles are employed in STP solutions. In these solutions, where vehicles

do not have a cost, the organization vehicles and the volunteer vehicles are not distinguished, whereas

in the STPOB solutions, the vehicles have different cost, thus most requests are assigned to volunteer
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Figure 5.12: Cost comparison of instances solved in STP vs. STPOB.

vehicles. Additionally, from Figure 5.14, we can see that the variance in the number of requests assigned

to each vehicle is a lot higher for the STPOB, indicating that in the STPOB, fewer vehicles are loaded

and some vehicles are much more heavily employed than others when compared to solving the STP.

This also suggests that requests are more evenly spread to each vehicle in STP solutions compared to

the STPOB solutions.
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Figure 5.13: Comparison of number of vehicles
used in solutions of instances solved in STP vs.
STPOB.
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Figure 5.14: Comparison of variance in the num-
ber of requests per vehicle of instances solved in
STP vs. STPOB.

5.3.5 CHATS Dataset Results

Based on the experimental results from the previous subsections, again, the CP and MIP/CP approaches

seem to be the best performing methods. In this subsection, we observe the performance of the CP and

MIP/CP LBBD methods on the CHATS dataset.
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As expected, the STPOB is a harder problem compared to the STP, thus out of 280 instances, CP

was only able to solve 93 instances to optimality in an average runtime of 284.34 seconds while MIP/CP

LBBD only solved 1 instance to optimality. The Heuristic method had an average runtime of 112.11 but

it is not possible to assess which instances have reached optimality. By examining the runtime of the

instances solved by the CP approach, it can be clearly seen that as the number of nodes increase, the

problem gets harder as shown in Figure 5.15.
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Figure 5.15: CP runtime of CHATS instances over number of nodes.

The heuristic approach was also run on the CHATS dataset, and we compared both the objective

value and the runtime of CP against the Heuristic approach as well as MIP/CP LBBD. In Figure 5.16,

it can be seen that in the runtime for MIP/CP LBBD, all instances timed out except for one and the

quality of the solution for the CP approach dominates MIP/CP LBBD in all of the instances. In both

runtime and objective value, the smaller the number the better, thus all instances above the diagonal

line are instances where CP performs better than MIP/CP LBBD.

We compare CP to the heuristic approach in Figure 5.17. Even though the heuristic runtime is better

in all instances, the quality of the solution is much poorer than the CP approach. On average, the CP

approach has a cost that is 633.39 less than the Heuristic approach.

5.4 Conclusions

In this chapter, we defined the Senior Transportation Problem with Overbooking (STPOB) which is an

extension of the STP presented in the previous chapter as we see an opportunity to take extra requests

based on the probability of cancellation that is associated with each request. The biggest difference

between the STPOB and the STP is the change in the objective function and the addition of vehicle

cost factors that differentiate the vehicles. In the STP, the vehicle heterogeneity only contributes to the

constraints. In the STPOB, the assignment of a request to a different vehicle could result in different

costs which makes the problem harder to solve. On the other hand, all of the route constraints are

the same as for the STP except for the creation of the extra taxi vehicle, which is unconstrained and
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Figure 5.16: Objective value and runtime comparison between CP and MIP/CP LBBD.
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Figure 5.17: Objective value and runtime comparison between CP and the heuristic approach.
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assumed to be able to fulfil any request.

Based on the experimental results, the STPOB is harder to solve overall and a few instances were

not solved to optimality. The CP approach performs the best followed by MIP/CP LBBD, CP/CP

LBBD, then MIP. However, the LBBD approaches seem to perform better in terms of solving instances

to optimality and runtime compared to the STP. The good performance is supported by the large search

space reduction abilities of this model structure. Nonetheless, the large amount of time required to

compute a first solution for the LBBD approaches hinders their runtime in general. Furthermore, the

number of iterations for the MIP/CP LBBD approach seems to have decreased compared to the number

of iterations for the STP’s MIP/CP LBBD and all the instances that failed to solve to optimality were

due to a hard subproblem.

For the CHATS instances, again CP dominates MIP/CP LBBD where CP was able to solve 93

instances whereas MIP/CP LBBD only solved 1 instance in the given 600 seconds time limit. Overall,

the STPOB is a harder problem to solve compared to the STP as the different vehicle assignment

contributes differently to the objective function but the CP model still shows promising results in terms

of solution quality and runtime.



Chapter 6

Conclusions and Future Work

In this chapter, we conclude this thesis with a summary of the work presented in previous chapters and

present the contributions of this research work. We then close with directions for potential future work.

6.1 Summary and Contributions

This thesis has presented the formal definitions of two novel optimization problems: the Senior Trans-

portation Problem (STP) and the Senior Transportation Problem with Overbooking (STPOB). Both of

these problems are inspired by a real-life problem faced by non-profit organizations that provide senior

transportation services. The STP maximizes the weighted sum of requests served, while the STPOB

minimizes the total expected costs while allowing overbooking of requests. One contribution of this work

is to bring attention to these two problems that are variations of Pickup and Delivery Problems with

Time Windows (PDPTW) but with distinct objective functions and additional constraints specific to

senior transportation.

We randomly generated 75 problem instances, varying problem sizes and time windows of each request

and vehicle, and extracted 280 instances from the CHATS dataset for each of the STP and the STPOB.

We performed analysis on the CHATS dataset and observed some seasonality trends in both the demand

(number of requests) and supply (number of available vehicles and drivers). From the CHATS dataset,

we identified 9 features: age, gender, language preference of the client, weekday, month, weight, distance,

fare and size of the request to use towards building a model to predict the probability of cancellation of

a given request. This probability is then used to generate STPOB problem instances.

To solve the STP, we provided five solution approaches: Mixed Integer Programming (MIP), Con-

straint Programming (CP), two Logic-based Benders Decompositions, one with a MIP master problem

(MIP/CP LBBD) and one with a CP master problem (CP/CP LBBD), and one construction heuristic.

On the generated dataset, CP solved the most number of instances to optimality followed by MIP/CP

LBBD, CP/CP LBBD, the construction heuristic, and MIP, where except for the construction heuristic,

all other approaches also proved optimality. Out of the instances that were not solved to optimality

by the LBBD approaches, we observed two phenomena, either the algorithms time-out solving a very

hard subproblem or they perform many iterations. When observing the behaviour of the CP approach,

we saw that CP is able to find good quality first solutions and that the lower bound provided from the

first solutions has a greater impact on the search space reduction compared to the LBBD approaches.

76
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Compared to CP, LBBD algorithms find better first solutions but at a higher computation time and

those solutions have less impact on search space reduction.

We also used the construction heuristic to compute a warm start solution for the four exact algorithms

and observed the resulting performance. The heuristic improved the MIP approach significantly both

in terms of the number of optimal solutions found and the average runtime, slightly improved the two

LBBD algorithms, but did not affect the CP approach. The two best algorithms, CP and MIP/CP

LBBD were then tested on the CHATS dataset. Again, CP shows the best performance and was able

to solve 237 out 280 instances to optimality within 600 seconds.

We took similar approaches to the STPOB, adapting our five solution techniques for the STP. The

STPOB proved to be a harder problem to solve than the STP. Given the same problem instances that

were used for the STP with added cancellation probability, all five algorithms solved fewer instances

to optimality with a higher average runtime for the STPOB. Nevertheless, CP still demonstrated the

best performance followed by MIP/CP LBBD, CP/CP LBBD, the construction heuristic, and MIP. The

heuristic was also used to compute a warm start for the four exact algorithms. Unlike for the STP, the

heuristic warm start did not help the other algorithms very much and even worsened the performance

of CP/CP LBBD.

For the two LBBD approaches, the number of iterations for all instances decreased compared to

the approaches without the heuristic warm start. There were no instances where MIP/CP LBBD fails

due to too many iterations; all instances failed due to hard subproblems. The search space reduction

experiments showed different results than for the STP: the artificial bound on the solution quality has

a greater impact on the search space using CP/CP LBBD than using CP. However, CP finds good first

solutions faster and still dominates the LBBD approaches in terms of performance. CP and MIP/CP

LBBD were tested on the CHATS instances and CP solved 93 instances to optimality while MIP/CP

LBBD only solved one instance to optimality.

6.2 Future Work

In the STP, we considered one deterministic optimization problem, however, when assigning requests, a

fair selection of requests to fulfil could also be considered. For example, if a trip to a grocery store has

a low weight, then when resources are limited, perhaps no grocery store visits will ever get scheduled.

The percentage of requests fulfilled based on request types (i.e., grocery runs, medical appointment, etc.)

may be added as an extra factor to the objective function such that there is an equal spread amongst the

types of satisfied requests. Furthermore, if the problem is non-uniformly spread geographically, requests

from clients living in isolated locations will often not be able to be satisfied. Therefore, the consideration

of a fair and balanced representation of all request types is also important.

We employed a three-indexed MIP model, while Furtado et al. proposed a two-indexed formulation for

the PDPTW which they claim to have better performance than the common three-indexed formulation

[24]. Studying how to modify Furtado’s formulation to fit the STP and evaluating its performance is a

future next step.

For the STPOB, the objective function is an estimation of the true cost as all costs have been

converted to be based on travel time. However there are also components such as gas expenses that are

truly based on the travel distance that were not explicitly represented. In future study, we can provide

problem formulations based on true costs.
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Furthermore, we have not considered the problem of rescheduling a request when a cancellation

happens. In the STPOB, when a request is cancelled, the vehicle is idle for that period of time and no

travel cost occurs. Therefore, exploring methods to create schedules such that it is easy to re-schedule,

given a cancellation is a future research interest. One research direction is the notion of slot compression

[59] from the clinical appointment scheduling literature to create a two-dimensional compression from

both temporal and capacity constraints to allow flexible start and end times of trips.

In both Chapters 4 and 5, we performed experiments to understand why one approach performs

better than another. We explored two concepts: the quality of first solution found and its impact on the

search space reduction. However, there are still important open questions about why CP performed so

well. Some directions to explore include analyzing the impact of the default CP Optimizer search which

concurrently run Large-Neighbourhood Search and Failure Directed Search on the way the different

decisions are made and interleaved during the search. Through these further analyses, we hope to

generalize from these instances to discover what aspects contribute to CP’s success. Other experiments

such as analyzing improvement of the LBBD objective value at each iteration could help us better

understand the behaviour of the algorithms on different problems. These tests could be generalized to

assess specific problem characteristics and constraints. Furthermore in both chapters, the two LBBD

approaches struggle on hard subproblems. Thus, with further tests to understand what circumstances

create a hard subproblem and if there are ways to avoid these situations, the two LBBD approaches

could be improved and alternative LBBD’s can be explored.

6.3 Conclusion

The goal of this thesis is to present two novel problems, the STP and STPOB to the Operations Research

community. We believe that the STP and STPOB have very interesting problem characteristics that can

be further studied. We presented five different approaches to solve each of the problems and performed

empirical analysis on both a randomly generated dataset and a real-world dataset. We demonstrated

that CP is a good approach to solve both the STP and STPOB even for very large instances.
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Appendix A

STP and STPOB Parameters

Table A.1: STP parameters.

Parameter Description

G Graph representing the locations of vehicle depots and clients

V Set of vertices

A Set of arcs

Ti,j Travel time between two location vertices in V. All entries are strictly

non-negative. A large entry indicates that no route is allowed between

two locations. Ti,i = 0,∀i ∈ V and Ti,j does not have to equal Tj,i, tt

represents the travel time matrix

D Set of depot location vertices, D ⊂ V

K Set of vehicle

|K| Number of available vehicles

N Set of client location vertices, N ⊂ V

R Set of requests

|R| Number of requests

Ei Earliest service start time at each location in V

Li Latest service start time at each location in V

Si Service time needed to perform the task at each location in V.

Qr Load size associated with each request r in R

Wr Weight associated with each request r in R. All entries are strictly

non-negative.

Ck Capacity of each vehicle k in K

Z Maximum time horizon

F Maximum ride time of a client
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Table A.2: Additional parameters for the STPOB.

Parameter Description

πr Probability of cancellation of request r

Br Total travel time length of request r. Br = Tir+ ,ir−

Vk Cost factor of vehicle k. Vtaxi > Vpaiddriver > Vvolunteer

Or Expected cost a request r



Appendix B

Experimental Results for STP

The tables in this appendix present the details of the experimental results on the generated dataset.

The tables are organized by the different time windows: big, normal, and small. The columns present

the objective (obj), runtime in seconds, and number of iterations (itrs) of the five different approaches

including the construction heuristic method, Mixed Integer Programming (MIP), Constraint Program-

ming (CP), logic-based Benders decomposition with MIP master problem and CP subproblem (MIP/CP

LBBD), and LBBD with CP master problem and CP subproblem (CP/CP LBBD) without and with

the heuristic start (indicated with “ H” after the name of the approach). Grey cells indicate instances

that have run out of time without finding and proving an optimal solution.

Big Time Windows

# of

Nodes

Heuristic CP CP H MIP MIP H

obj obj runtime obj runtime obj runtime obj runtime

16

21 21 0.01 21 0.00 21 0.11 21 0.02

21 21 0.01 21 0.01 21 0.10 21 0.02

21 21 0.01 21 0.01 21 0.08 21 0.01

16 16 3.64 16 1.39 16 0.40 16 0.01

21 21 0.02 21 0.01 21 0.28 21 0.02

26

37 37 0.01 37 0.02 37 7.12 37 0.05

37 37 0.02 37 0.01 37 19.53 37 0.06

37 37 0.01 37 0.03 37 8.30 37 0.04

37 37 0.02 37 0.02 37 9.07 37 0.04

37 37 0.02 37 0.02 37 0.68 37 0.04

50

57 57 0.07 57 0.15 57 221.09 57 0.24

56 57 0.06 57 0.14 57 93.15 57 124.22

57 57 0.08 57 0.16 57 555.40 57 0.50

57 57 0.06 57 0.14 57 152.18 57 0.32

57 57 0.08 57 0.16 57 185.67 57 0.24

80

86 86 0.18 86 0.36 24 598.99 86 1.50

86 86 0.18 86 0.44 19 599.08 86 0.98

86 86 0.07 86 0.47 44 599.07 86 2.10

86 86 0.19 86 0.44 83 599.09 86 1.77

86 86 0.16 86 0.44 25 599.04 86 0.91
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140

153 153 0.89 153 1.85 0 599.43 153 22.23

153 153 0.73 153 1.75 0 599.44 153 18.02

153 153 0.78 153 2.82 0 599.45 153 18.04

153 153 1.39 153 2.80 0 599.43 153 11.29

153 153 0.93 153 2.03 0 599.43 153 18.62

# of

Nodes

MIP/CP MIP/CP H CP/CP CP/CP H

obj runtime itrs obj runtime itrs obj runtime itrs obj runtime itrs

16

21 0.00 1 21 0.00 1 21 0.01 1 21 0.00 1

21 0.00 1 21 0.00 1 21 0.01 1 21 0.00 1

21 0.00 1 21 0.00 1 21 0.00 1 21 0.00 1

16 0.00 1 16 0.00 1 16 0.00 1 16 0.00 1

21 0.00 1 21 0.00 1 21 0.01 1 21 0.00 1

26

37 0.01 1 37 0.00 1 37 0.00 1 37 0.01 1

37 0.00 1 37 0.00 1 37 0.01 1 37 0.01 1

37 0.01 1 37 0.00 1 37 0.01 1 37 0.00 1

37 0.01 1 37 0.00 1 37 0.01 1 37 0.01 1

37 0.00 1 37 0.01 1 37 0.01 1 37 0.01 1

50

57 0 1 57 0.01 1 48 596.46 2 57 0.02 1

57 0.01 1 57 0.01 1 57 598.48 2 57 597.87 2

57 0.01 1 57 0.01 1 56 596.15 2 57 0.03 1

57 116.90 1 57 0.01 1 57 604.44 2 57 0.02 1

57 0.03 1 57 0.01 1 56 595.56 2 57 0.02 1

80

86 0.03 1 86 0.02 1 29 615.94 2 86 0.07 1

86 0.02 1 86 0.02 1 86 598.75 2 86 0.05 1

86 0.02 1 86 0.02 1 75 596.15 2 86 0.05 1

86 0.02 1 86 0.02 1 52 597.04 2 86 0.04 1

86 0.02 1 86 0.02 1 72 596.32 2 86 0.04 1

140

153 340.00 1 153 0.08 1 90 597.14 2 153 0.18 1

153 2.63 1 153 0.07 1 67 597.37 2 153 0.17 1

153 0.04 1 153 0.07 1 48 597.07 2 153 0.17 1

149 600.01 2 153 0.07 1 47 596.51 2 153 0.17 1

153 0.04 1 153 0.06 1 45 596.06 2 153 0.17 1

Normal Time Windows

# of

Nodes

Heuristic CP CP H MIP MIP H

obj obj runtime obj runtime obj runtime obj runtime

16

19 21 0.02 21 0.00 21 0.11 21 0.09

21 21 0.01 21 0.01 21 0.55 21 0.02

14 21 0.04 21 0.10 21 11.88 21 9.49

21 21 0.01 21 0.02 21 0.18 21 0.02

21 21 0.02 21 0.01 21 0.33 21 0.02
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26

35 37 0.03 37 0.00 37 400.00 37 14.72

37 37 0.05 37 0.11 37 43.59 37 0.08

33 36 0.02 36 0.02 36 599.23 33 599.13

27 32 18.52 32 7.12 32 599.24 32 599.09

36 37 0.02 37 0.03 37 4.54 37 26.54

50

51 57 0.06 57 0.08 57 368.52 57 227.59

56 57 0.05 57 0.12 57 594.31 57 318.63

57 57 0.03 57 0.12 57 197.05 57 0.61

52 57 0.29 57 1.05 54 599.01 55 598.90

54 54 0.07 54 0.14 54 598.85 54 598.80

80

82 86 0.15 86 0.33 53 599.08 82 598.96

86 86 0.34 86 0.40 46 599.10 82 598.99

86 86 0.71 86 1.65 61 599.11 86 1.79

86 86 3.04 86 0.38 2 599.09 86 1.66

79 86 0.25 86 0.67 52 599.09 79 599.06

140

153 153 9.22 153 6.76 0 599.41 0 599.31

153 153 1.76 153 3.16 0 599.55 153 26.65

153 153 0.55 153 1.21 0 599.47 153 15.58

153 153 1.32 153 1.80 0 599.53 153 19.95

153 153 0.86 153 4.07 0 599.51 0 599.32

# of

Nodes

MIP/CP MIP/CP H CP/CP CP/CP H

obj runtime itrs obj runtime itrs obj runtime itrs obj runtime itrs

16

21 0.00 1 21 0.01 1 21 0.00 1 21 0.01 1

21 0.03 2 21 0.00 1 21 0.00 1 21 0.00 1

21 0.04 1 21 0.03 1 21 0.03 1 20 0.00 1

21 0.01 1 21 0.00 1 21 0.01 1 16 0.01 1

21 0.00 1 21 0.00 1 21 0.00 1 21 0.00 1

26

37 0.01 1 37 0.01 1 37 0.01 1 37 0.01 1

37 0.01 2 37 0.00 1 37 0.01 1 37 0.01 1

36 0.01 1 36 0.01 1 36 0.87 115 36 0.01 1

32 0.03 3 32 0.03 3 32 0.14 2 32 0.14 2

37 0.11 2 37 0.11 3 37 0.11 2 37 0.11 12

50

57 1.33 5 57 1.34 5 57 223.03 35 54 371.05 39

57 0.74 5 57 0.74 5 57 32.18 16 57 14.90 6

57 5.00 2 57 0.01 1 57 0.02 1 54 12.35 6

57 1.70 19 57 1.68 19 57 80.12 107 52 90.41 11

54 2.63 5 54 0.01 1 54 326.06 20 54 0.04 1

80

86 11.63 7 86 11.65 7 57 614.05 4 54 614.82 14

86 2.61 14 86 2.50 16 68 596.35 2 65 608.01 2

86 8.47 13 86 0.03 1 27 601.23 278 27 602.39 2

86 1.89 9 86 0.02 1 57 620.32 24 43 617.19 11

86 0.02 1 86 0.02 1 56 594.86 11 63 614.97 4
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140

153 24.86 58 153 32.52 94 92 608.34 5 79 609.07 2

153 521.32 13 153 0.09 1 65 601.09 5 102 603.47 1

150 600.00 11 153 0.08 1 103 617.21 9 110 614.01 1

153 599.82 5 153 0.08 1 73 596.77 2 56 604.55 2

148 600.01 3 148 600.00 4 75 645.05 2 101 612.11 2

Small Time Windows

# of

Nodes

Heuristic CP CP H MIP MIP H

obj obj runtime obj runtime obj runtime obj runtime

16

5 5 0.01 5 0.01 5 0.01 5 0.01

5 5 0.01 5 0.01 5 0.07 5 0.08

14 16 0.00 16 0.01 16 2.21 16 1.58

21 21 0.01 21 0.01 21 0.08 21 0.02

19 21 0.02 21 0.02 21 0.24 21 0.99

26

5 5 0.00 5 0.01 5 77.51 5 42.42

36 37 0.02 37 0.02 37 18.48 37 0.21

23 31 0.15 31 0.20 31 132.67 31 184.10

21 27 0.17 27 0.21 26 599.16 27 599.33

32 32 0.02 32 0.01 32 44.51 32 13.16

50

57 57 0.07 57 0.14 53 598.94 57 29.98

25 31 0.21 31 0.30 25 599.00 30 599.06

43 54 0.68 54 1.46 44 599.04 46 598.91

30 40 149.36 40 114.10 36 599.22 36 599.15

37 49 0.51 49 0.40 43 599.18 46 599.09

80

74 86 0.28 86 0.33 61 599.21 44 599.14

83 84 0.13 84 0.26 66 599.29 83 599.13

82 83 0.16 83 0.20 25 599.17 82 599.17

79 84 1.01 84 2.08 43 599.24 79 599.15

86 86 0.12 86 0.55 59 599.43 86 5.25

140

148 153 0.77 153 1.10 0 599.39 149 599.30

148 150 1.99 150 2.34 0 599.46 0 599.32

152 153 2.27 153 3.36 0 599.47 0 599.39

151 152 0.57 152 5.50 0 599.40 151 599.59

139 153 0.36 153 0.72 0 599.43 139 599.28

# of

Nodes

MIP/CP MIP/CP H CP/CP CP/CP H

obj runtime itrs obj runtime itrs obj runtime itrs obj runtime itrs

16

5 0.00 1 5 0.01 1 5 0.00 1 5 0.00 1

5 0.00 2 5 0.00 2 5 0.01 2 5 0.00 2

16 0.08 3 16 0.09 3 16 0.00 1 16 0.01 1

21 0.00 1 21 0.00 1 21 0.01 2 20 0.00 1

21 0.00 1 21 0.00 1 21 0.13 5 14 0.00 1
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26

5 0.01 3 5 0.01 3 5 0.02 5 5 0.01 3

37 0.01 1 37 0.01 1 37 0.21 4 30 0.01 1

31 0.86 16 31 0.86 16 31 1.22 19 31 1.11 16

27 0.20 4 27 0.19 4 27 1.07 16 26 0.00 1

32 0.25 4 32 0.01 1 32 0.29 5 27 0.01 1

50

57 1.66 16 57 1.66 16 0 600.04 1613 56 0.02 1

31 0.45 9 31 0.46 9 31 3.15 56 31 1.13 13

54 6.26 63 54 6.20 63 54 29.09 153 43 1.36 10

40 1.00 19 40 1.01 19 40 0.45 16 34 0.10 2

49 3.81 46 49 3.82 46 49 75.40 176 49 23.37 172

80

86 21.04 137 86 21.02 137 86 261.75 547 86 253.21 629

84 3.39 31 84 3.39 31 84 337.47 645 84 467.04 762

83 1.53 14 83 1.53 14 83 295.67 809 83 65.31 170

84 9.12 55 84 9.08 55 0 600.11 955 81 134.15 102

86 8.55 54 86 0.02 1 86 124.96 251 86 0.05 1

140

153 14.47 34 153 14.54 34 101 600.09 467 94 600.04 431

150 9.91 44 150 9.96 44 0 601.51 517 76 610.48 17

153 16.22 71 153 16.23 71 45 600.05 301 153 562.07 75

152 43.66 94 152 43.80 94 64 600.25 442 32 600.65 8

148 600.37 1044 148 600.29 1042 40 601.74 3 49 600.08 347
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Experimental Results for STPOB

Similarly structured as Appendix A, the tables in this section present the details of the experimental

results on the generated dataset.

Big Time Windows

# of

Nodes

Heuristic CP CP H MIP MIP H

obj obj runtime obj runtime obj runtime obj runtime

16

230.75 230.75 0.02 230.75 0.01 230.75 0.05 230.75 0.01

264.98 264.98 0.01 264.98 0.02 264.98 0.11 264.98 0.01

241.19 241.19 0.01 241.19 0.01 241.19 1.88 241.19 0.01

389.26 386.36 5.01 386.36 1.75 386.36 0.04 386.36 0.04

219.36 219.36 0.00 219.36 0.01 219.36 0.21 219.36 0.01

26

375.08 375.08 0.04 375.08 0.02 375.08 20.93 375.08 0.05

330.21 330.21 0.02 330.21 0.02 330.21 19.89 330.21 0.08

368.78 368.78 0.01 368.78 0.01 368.78 25.51 368.78 0.05

359.04 359.04 0.02 359.04 0.02 359.04 79.38 359.04 0.04

298.19 298.19 0.03 298.19 0.01 298.19 22.43 298.19 0.05

50

663.54 663.54 0.13 663.54 0.04 673.22 598.46 663.54 0.22

827.73 777.85 600.03 791.12 600.04 873.56 598.77 810.39 598.76

637.24 614.60 6.56 614.60 5.03 640.43 598.65 637.24 598.97

638.96 638.96 0.13 638.96 0.04 682.62 598.69 638.96 0.36

587.67 580.98 0.08 580.98 0.26 607.45 595.45 580.98 89.97

80

1020.66 1020.66 1.31 1020.66 0.46 1020.66 394.06 1020.66 1.63

865.04 865.04 0.82 865.04 1.04 1199.84 597.32 865.04 1.03

1044.50 1044.50 0.93 1044.50 0.10 1089.00 597.80 1044.50 2.54

1019.69 1019.69 0.95 1019.69 3.67 1019.69 576.36 1019.69 2.02

1102.92 1102.92 1.72 1102.92 0.13 1642.69 598.22 1102.92 0.87

140

1607.81 1607.81 7.02 1607.81 0.38 5359.35 598.87 1607.81 32.58

1569.32 1569.32 11.46 1569.32 15.44 4319.69 598.91 1569.32 25.25

1621.31 1621.31 7.84 1621.31 2.56 5404.35 598.91 1621.31 27.01

1641.86 1641.86 3.92 1641.86 6.45 5472.85 598.97 1641.86 14.90

1574.66 1574.66 8.26 1574.66 14.99 5248.85 598.95 1574.66 28.52

87
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# of

Nodes

MIP/CP MIP/CP H CP/CP CP/CP H

obj runtime itrs obj runtime itrs obj runtime itrs obj runtime itrs

16

230.75 0.00 1 230.75 0.01 1 230.75 0.01 1 230.75 0.01 1

264.98 0.00 1 264.98 0.01 1 264.98 0.01 1 264.98 0.01 1

241.19 0.01 1 241.19 0.00 1 241.19 0.00 1 241.19 0.00 1

386.36 0.01 1 386.36 0.00 1 386.36 0.01 1 386.36 0.01 1

219.36 0.01 1 219.36 0.00 1 219.36 0.00 1 219.36 0.01 1

26

375.08 0.01 1 375.08 0.00 1 375.08 0.02 1 375.08 0.02 1

330.21 0.01 1 330.21 0.00 1 330.21 0.02 1 330.21 0.02 1

368.78 0.01 1 368.78 0.02 1 368.78 0.02 1 368.78 0.01 1

359.04 0.01 1 359.04 0.00 1 359.04 0.90 1 359.04 0.90 1

298.19 0.01 1 298.19 0.01 1 298.19 0.01 1 298.19 0.02 1

50

663.54 0.02 1 663.54 0.02 1 899.79 600.01 2 836.02 600.01 2

1160.47 600.00 2 1160.47 600.00 2 777.85 471.11 7 777.85 461.71 7

614.60 599.25 2 2630.89 598.33 2 614.60 123.91 1 614.60 123.61 1

638.96 0.02 1 2473.26 0.04 1 689.11 600.02 2 689.11 600.00 2

580.98 0.02 1 866.13 0.02 1 717.83 600.00 2 717.83 600.01 2

80

1020.66 0.03 1 1020.66 0.05 1 1360.37 600.05 3 1360.37 600.01 2

865.04 0.02 1 865.04 0.04 1 960.59 600.01 2 960.59 600.05 3

1044.50 0.02 1 1044.50 0.03 1 1316.94 600.02 1 1314.94 600.00 1

1019.69 0.02 1 1019.69 0.03 1 1291.46 600.01 2 1291.46 600.00 2

1102.92 0.03 1 1102.92 0.04 1 1237.64 600.01 2 1237.64 600.00 2

14

1607.81 0.06 1 1607.81 0.09 1 1607.81 0.27 1 1607.81 1.53 1

1943.26 600.00 2 1569.32 0.10 1 3270.63 600.01 2 3270.63 600.00 2

1621.31 0.05 1 1621.31 0.09 1 2988.09 600.01 2 2988.09 600.01 2

3638.99 600.01 1 1641.86 0.12 1 3586.18 600.01 1 3586.18 600.01 1

1574.66 0.14 1 1574.66 0.09 1 3185.29 600.00 2 3185.29 600.00 2

Normal Time Windows

# of

Nodes

Heuristic CP CP H MIP MIP H

obj obj runtime obj runtime obj runtime obj runtime

16

394.48 232.32 0.02 232.32 0.02 232.32 1.61 232.32 1.92

277.38 247.59 0.01 247.59 0.01 247.59 2.35 247.59 1.07

322.00 270.79 0.00 270.79 0.01 270.79 0.05 270.79 0.04

243.62 216.48 0.03 216.48 0.02 216.48 0.97 216.48 2.26

284.71 264.93 0.12 264.93 0.16 264.93 0.09 264.93 0.05

26

448.25 391.70 2.17 391.70 1.33 391.70 181.50 391.70 0.61

434.95 332.03 0.05 332.03 0.05 339.05 598.97 338.91 599.14

394.96 392.81 0.02 392.81 0.03 392.81 599.02 392.81 487.58

438.34 438.34 12.38 438.34 6.98 438.34 599.12 438.34 599.23



Appendix C. Experimental Results for STPOB 89

485.69 338.69 0.06 338.69 0.04 338.69 20.29 338.69 20.46

50

755.34 697.10 600.02 697.10 183.86 890.74 598.73 714.66 598.98

719.97 589.46 2.54 589.46 0.78 644.75 599.02 630.17 598.89

691.75 659.33 0.56 659.33 2.54 756.51 598.69 691.75 598.95

786.80 770.15 0.06 770.15 1.02 905.25 598.83 770.15 545.82

712.87 695.54 0.19 695.54 0.46 798.52 598.75 712.87 598.90

80

1252.10 1199.53 3.71 1199.53 2.24 1445.71 598.76 1236.81 599.03

1135.06 1105.66 1.40 1105.66 4.15 1181.17 598.54 1110.56 598.95

1059.62 1014.94 210.32 1014.94 600.08 1169.67 598.89 1047.69 599.09

1372.29 1372.29 0.34 1372.29 1.02 1659.67 598.48 1372.29 599.02

1088.54 1088.54 0.78 1088.54 1.97 1538.04 598.97 1088.54 86.61

140

1557.09 1557.09 20.34 1557.09 15.40 5190.30 598.73 1560.60 599.23

1774.77 1774.77 8.01 1774.77 21.04 5256.50 599.01 1774.77 599.24

1560.21 1560.21 12.25 1560.21 17.34 5200.70 598.88 5200.70 599.13

1731.99 1731.99 7.68 1731.99 13.01 5290.40 598.87 1731.99 598.93

1795.42 1795.42 5.96 1795.42 6.26 5463.80 599.06 1795.42 599.05

# of

Nodes

MIP/CP MIP/CP H CP/CP CP/CP H

obj runtime itrs obj runtime itrs obj runtime itrs obj runtime itrs

16

232.32 0.01 1 232.32 0.01 1 232.32 0.01 1 232.32 0.01 1

247.59 0.00 1 247.59 0.00 1 247.59 0.01 1 247.59 0.01 1

270.79 0.00 1 270.79 0.01 1 270.79 0.01 1 270.79 0.00 1

216.48 0.00 1 216.48 0.00 1 216.48 0.00 1 216.48 0.02 1

264.93 0.00 1 264.93 0.01 1 264.93 0.01 1 264.93 0.01 1

26

391.70 0.01 1 391.70 0.00 1 391.70 0.02 1 391.70 0.02 1

332.03 0.86 3 332.03 0.86 3 332.03 0.62 3 332.03 0.63 3

392.81 0.01 1 392.81 0.01 1 392.81 0.02 1 392.81 0.02 1

438.34 0.02 2 438.34 0.02 2 438.34 0.29 3 438.34 0.30 3

338.69 0.05 1 338.69 0.04 1 338.69 0.54 3 338.69 0.54 3

50

697.10 24.92 60 697.10 24.82 60 697.10 195.82 63 697.10 221.53 62

866.13 600.01 267 593.24 600.00 269 589.46 20.39 50 589.46 20.31 50

659.33 5.30 2 659.33 5.31 2 659.33 5.24 4 659.33 5.22 4

770.15 92.80 23 770.15 92.94 23 770.15 4.04 5 770.15 4.00 5

695.54 154.34 12 695.54 153.47 12 929.79 600.00 2 914.78 600.01 3

80

1199.53 117.78 12 1199.53 117.88 12 1199.53 91.53 47 1199.53 62.43 47

1105.66 256.60 9 1105.66 255.16 9 1430.85 600.00 2 1640.04 600.00 2

1014.94 158.92 164 1014.94 159.11 164 1085.15 183.25 58 1085.15 181.91 58

1372.29 0.07 2 1372.29 0.04 1 1893.55 600.00 2 1924.24 600.00 2

1088.54 63.67 9 1088.54 0.04 1 1403.47 600.02 3 1403.47 600.00 2

140

2630.89 600.00 66 1212.91 600.01 67 1557.09 93.99 48 1557.09 152.38 54

2732.20 600.00 4 1774.77 0.09 1 3323.24 600.00 1 3233.64 600.01 1

2473.26 600.00 3 516.75 600.01 3 1560.21 397.84 22 1560.21 502.61 42

3591.33 600.01 2 1731.99 0.08 1 1731.99 46.11 10 1731.99 47.01 10

3730.85 600.02 3 1795.42 0.08 1 3651.08 604.38 2 3651.08 604.10 2
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Small Time Windows

# of

Nodes

Heuristic CP CP H MIP MIP H

obj obj runtime obj runtime obj runtime obj runtime

16

590.42 590.42 0.02 590.42 0.00 590.42 0.02 590.42 0.01

628.18 628.18 0.02 628.18 0.01 628.18 0.03 628.18 0.05

414.68 352.04 0.01 352.04 0.01 352.04 0.65 352.04 0.74

423.53 307.04 0.08 307.04 0.05 307.04 0.12 307.04 0.11

527.37 527.37 0.01 527.37 0.01 527.37 0.04 527.37 0.02

26

935.94 935.94 0.01 935.94 0.01 935.94 9.96 935.94 10.25

372.71 372.71 0.02 372.71 0.01 372.71 1.26 372.71 0.07

544.82 403.77 0.06 403.77 0.27 403.77 73.72 403.77 46.50

921.88 892.24 0.02 892.24 0.02 892.24 599.23 892.24 599.31

457.58 444.33 0.05 444.33 0.08 444.33 140.00 444.33 257.44

50

746.37 722.47 0.67 722.47 2.46 733.42 598.74 742.77 598.90

1660.31 1526.14 0.15 1526.14 0.19 1635.67 598.89 1526.14 598.90

1123.59 964.30 0.26 964.30 0.18 1188.51 598.22 1044.07 599.03

1519.23 1495.33 600.02 1495.33 458.56 1500.02 598.97 1500.02 598.98

1456.39 1334.65 0.30 1334.65 0.52 1389.43 598.89 1369.06 599.04

80

1835.64 1517.46 2.88 1517.46 5.54 2594.16 598.84 1701.83 599.08

1456.77 1442.40 0.23 1442.40 0.97 2643.18 599.10 1447.09 599.26

2218.71 2218.71 0.09 2218.71 0.08 2579.54 599.21 2218.71 599.30

1603.55 1508.79 3.12 1508.79 8.56 2749.17 598.95 1603.55 599.11

1161.53 1128.07 15.11 1128.07 18.02 1780.87 598.99 1507.29 599.25

140

2271.50 2260.12 1.10 2260.12 2.65 4641.65 599.20 4641.65 599.31

2433.79 2376.42 2.56 2376.42 3.80 4704.55 599.44 2433.50 599.32

2228.10 2208.21 15.32 2208.21 8.87 5329.93 599.09 5329.93 599.30

2625.65 2563.28 2.50 2563.28 2.47 5379.80 599.00 5379.80 599.04

2494.99 2447.90 600.17 2447.90 421.15 4232.23 599.07 4232.23 599.36

# of

Nodes

MIP/CP MIP/CP H CP/CP CP/CP H

obj runtime itrs obj runtime itrs obj runtime itrs obj runtime itrs

16

590.42 0.01 1 590.42 0.00 1 590.42 0.01 1 590.42 0.01 1

628.18 0.01 2 628.18 0.00 2 628.18 0.01 2 628.18 600.05 15860

352.04 0.00 1 352.04 0.00 1 352.04 0.01 1 352.04 0.02 1

307.04 0.08 2 307.04 0.08 2 307.04 0.08 2 404.03 600.00 6585

527.37 0.00 1 527.37 0.01 1 527.37 0.00 1 527.37 0.01 1

26

935.94 0.00 1 935.94 0.00 1 935.94 0.01 1 935.94 0.01 1

372.71 0.01 1 372.71 0.01 1 372.71 0.01 1 372.71 0.02 1

403.77 0.09 2 403.77 0.07 2 403.77 0.11 2 520.53 600.02 6478

892.24 0.00 1 892.24 0.00 1 892.24 0.01 1 892.24 0.01 1
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444.33 0.11 3 444.33 0.11 1 542.73 0.01 1 542.73 600.00 6384

50

722.47 2.66 12 722.47 2.66 12 722.47 253.13 29 1044.01 600.00 9

1526.14 0.86 11 1526.14 0.85 11 1526.14 1.22 11 1635.70 600.01 2089

964.30 9.01 32 964.30 8.99 32 964.30 19.15 65 1250.64 600.00 372

1495.33 0.30 3 1495.33 0.30 3 1495.33 0.01 1 1495.33 0.04 1

1334.65 0.37 4 1334.65 0.36 4 1334.65 0.30 2 1376.30 600.01 2524

80

1517.46 80.08 386 1517.46 79.80 386 1539.00 600.21 1304 1539.00 600.09 1305

1442.40 62.64 306 1442.40 62.79 306 1442.40 16.16 60 1442.40 16.08 60

2218.71 0.04 2 2218.71 0.03 1 2218.71 6.26 20 2218.71 0.10 1

1508.79 22.76 143 1508.79 22.65 143 1624.22 42.36 51 1624.22 42.68 51

1128.07 22.78 117 1128.07 22.69 117 1128.07 69.45 86 1128.07 70.73 86

140

2260.12 16.25 75 2260.12 16.19 75 2260.12 85.07 281 2260.12 84.86 281

2376.42 17.76 109 2376.42 17.76 109 2376.42 175.95 373 2376.42 175.12 373

2208.21 8.22 33 2208.21 8.23 33 2208.21 162.36 237 2208.21 160.11 237

2563.28 27.61 117 2563.28 27.53 117 2569.30 600.20 1039 2569.30 600.01 1050

2447.90 121.83 298 2447.90 120.62 397 2635.04 600.18 138 3627.92 600.00 1493
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