
Domain-Independent Dynamic Programming

by

Ryo Kuroiwa

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

© Copyright 2024 by Ryo Kuroiwa



Domain-Independent Dynamic Programming

Ryo Kuroiwa
Doctor of Philosophy

Graduate Department of Mechanical and Industrial Engineering
University of Toronto

2024

Abstract

Dynamic programming (DP) is a framework used in multiple disciplines to solve decision-making

problems. In particular, in computer science and operations research (OR), DP algorithms have been

developed for combinatorial optimization, a class of problems to make a finite set of decisions to

optimize an objective function. In such work, DP algorithms were typically implemented specifically

for individual combinatorial optimization problems.

In contrast to problem-specific algorithms, model-based paradigms use general-purpose solvers

to solve any problem formulated in a particular form of mathematical model. They aim to decouple

modeling and solving a problem: the ‘holy grail’ of declarative problem-solving. In practice, model-

based paradigms such as mixed-integer programming (MIP) and constraint programming (CP) are

widely used to solve various combinatorial optimization problems.

We propose domain-independent dynamic programming (DIDP), a novel model-based paradigm

for combinatorial optimization based on DP. In DIDP, a user formulates a DP model using a declar-

ative modeling language and then uses a general-purpose DP solver to solve the model. Throughout

this dissertation, we develop the modeling language and general-purpose solvers for DIDP.

Our language is based on a state-transition system, inspired by artificial intelligence (AI) plan-

ning. However, it is specifically designed for combinatorial optimization: similar to MIP and CP, a

user can declaratively include redundant information in a model, which is implied by other parts of

the model but may be useful for a solver when made explicit. We demonstrate the modeling capa-

bility of our language by formulating eleven combinatorial optimization problems as DP models.

We investigate DIDP solvers using heuristic search, a class of algorithms widely used in the AI

community. First, we develop anytime and exact solvers, which improve the solution quality over

time and eventually solve the problem optimally. Then, we develop a DIDP solver based on large

neighborhood search, which is used to quickly obtain high-quality solutions in MIP and CP. Finally,

we develop multi-thread DIDP solvers using parallel heuristic search algorithms. With the developed

modeling language and solvers, we demonstrate that DIDP is a promising approach: it empirically

outperforms MIP and CP in multiple classes of combinatorial optimization problems.

ii



Acknowledgements

First and foremost, I would like to thank my supervisor, Professor J. Christopher Beck, for his
great guidance and support. You always encouraged me to pursue big ideas and interesting research
directions while giving me fruitful feedback and timely responses to everything. I learned a lot from
you and have been really happy to work with you.

I would like to thank my internal committee members, Professor Sheila McIlraith and Professor
Eldan Cohen, for their commitment over time. I would also like to thank my external committee
members, Professor Andre Augusto Cire and Professor Laurent Michel.

Thank you to TIDEL members, Alex, Chiara, Margarita, Jasper, Minori, Arnoosh, Jason, Gio-
vanni, Louis, Anton, Litong, Victor, Tan, Oksana, Eugene, Anubhav, Kyle, Man-Qiu, Sonia, Lily,
Lea, Nivetha, and Max.

I would like to thank Professor Thorsten Koch and Dr. Yuji Shinano at Zuse Institute Berlin for
inviting me to Berlin twice. I also thank my friends met in Zuse Institute Berlin, Mark, Franziska,
Thai, Huong, Tu, Hanqiu, Ida, Shanwen, Jaap, Stephanie, Maxwell, Gioni, Tim, and Suresh.

Thank you to my friends Bansho, Naoya, Kotaro, Yoshito, Yutaka, and Yuzuki, who started the
undergraduate program together with me and are now working in different fields, for interesting
interdisciplinary discussions. Also, thank you to Ro and Shinya for visiting me overseas during my
Ph.D.

Lastly, I would like to thank my parents and brother.

iii



Contents

1 Introduction 1
1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 6
2.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Deterministic Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Stochastic Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Dynamic Programming for Combinatorial Optimization . . . . . . . . . . . . 7

2.2 Methodologies for Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Successive Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Approximation in Policy Space . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Bottom-up Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Recursion with Memoization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Dominance Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.6 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.7 State Space Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.8 Decision Diagram-Based Branch-and-Bound . . . . . . . . . . . . . . . . . . . 15
2.2.9 Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Model-Based Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Mathematical Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Domain-Independent AI Planning . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Model-Based Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Theoretical Formalisms for Dynamic Programming . . . . . . . . . . . . . . . 29
2.4.2 Dynamic Programming with Logic Programming . . . . . . . . . . . . . . . . 29
2.4.3 Model-Based Dynamic Programming Software . . . . . . . . . . . . . . . . . 30
2.4.4 Decision Diagram Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Modeling Formalism and Language 32
3.1 Dynamic Programming Description Language (DyPDL) . . . . . . . . . . . . . . . . 32

3.1.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Redundant Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



3.1.3 The Bellman Equation for DyPDL . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 YAML-DyPDL: A Practical Modeling Language . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 DIDPPy: A Python Interface for DyPDL . . . . . . . . . . . . . . . . . . . . 48

3.3 DyPDL Models for Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Capacitated Vehicle Routing Problem (CVRP) . . . . . . . . . . . . . . . . . 49
3.3.2 Multi-Commodity Pickup and Delivery TSP (m-PDTSP) . . . . . . . . . . . 50
3.3.3 Orienteering Problem with Time Windows (OPTW) . . . . . . . . . . . . . . 51
3.3.4 Multi-Dimensional Knapsack Problem (MDKP) . . . . . . . . . . . . . . . . . 54
3.3.5 Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.6 Simple Assembly Line Balancing Problem (SALBP-1) . . . . . . . . . . . . . 56
3.3.7 Single Machine Total Weighted Tardiness (1||

∑
wiTi) . . . . . . . . . . . . . 57

3.3.8 Talent Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.9 Minimization of Open Stacks Problem (MOSP) . . . . . . . . . . . . . . . . . 59
3.3.10 Graph-Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Heuristic Search Solvers for Domain-Independent Dynamic Programming 62
4.1 Heuristic Search for DyPDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 State Transition Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Cost Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.3 Cost-Algebraic DyPDL Models . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.4 Formalization of Heuristic Search for DyPDL . . . . . . . . . . . . . . . . . . 66

4.2 Heuristic Search Algorithms for DyPDL . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 CAASDy: Cost-Algebraic A* Solver for DyPDL . . . . . . . . . . . . . . . . 73
4.2.2 Depth-First Branch-and-Bound (DFBnB) . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Cyclic-Best First Search (CBFS) . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.4 Anytime Column Search (ACS) . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.5 Anytime Pack Search (APS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.6 Discrepancy-Based Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.7 Complete Anytime Beam Search (CABS) . . . . . . . . . . . . . . . . . . . . 75

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Software Implementation of DIDP . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.4 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.6 Performance of DIDP Solvers and Problem Characteristics . . . . . . . . . . 87
4.3.7 Evaluating the Importance of Dual Bound Functions . . . . . . . . . . . . . . 87
4.3.8 Comparison with Other State-Based Approaches . . . . . . . . . . . . . . . . 88

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

v



5 Large Neighborhood Beam Search 90
5.1 Large Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Large Neighborhood Search with Decision Diagrams . . . . . . . . . . . . . . 92
5.2 Large Neighborhood Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Beam Search in a Partial State Transition Graph . . . . . . . . . . . . . . . . 95
5.2.2 Removing Conflicting Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.3 Bandit-Based Depth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.4 Start Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.5 Beam Width Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Instance Set-Wise Comparisons in a Subset of Problems . . . . . . . . . . . . 107
5.3.3 Larger Instances for m-PDTSP, MOSP, and Graph-Clear . . . . . . . . . . . 110
5.3.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.5 Analysis of Problem Characteristics . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 State Space Search in a Neighborhood . . . . . . . . . . . . . . . . . . . . . . 119
5.5.2 Multi-Armed Bandits for Large Neighborhood Search . . . . . . . . . . . . . 120

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Parallel Beam Search 123
6.1 Parallel State Space Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.1 Sequential State Space Search Algorithms . . . . . . . . . . . . . . . . . . . . 124
6.1.2 Shared Memory and Distributed Environments . . . . . . . . . . . . . . . . . 125
6.1.3 Layer Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.4 Shared Hash Tables for Duplicate Detection . . . . . . . . . . . . . . . . . . . 125
6.1.5 Hash-Based Work Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Parallel Beam Search for DIDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.1 Sequential Beam Search Implementation for DIDP . . . . . . . . . . . . . . . 127
6.2.2 Shared Beam Search (SBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2.3 Hash-Distributed Beam Search (HDBS) . . . . . . . . . . . . . . . . . . . . . 131

6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.2 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4.1 Parallel Search in Shared Memory Environments . . . . . . . . . . . . . . . . 154
6.4.2 Parallel Search in Distributed Environments . . . . . . . . . . . . . . . . . . . 157
6.4.3 Reducing Search Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

vi



7 Concluding Remarks 162
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1.1 Contributions to Combinatorial Optimization . . . . . . . . . . . . . . . . . . 163
7.1.2 Contributions to Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2.2 Improvements in Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.3 Improvements in Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Details of YAML-DyPDL 170
A.1 Syntax of YAML-DyPDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.1.1 Redundant Information in YAML-DyPDL . . . . . . . . . . . . . . . . . . . . 174
A.1.2 Syntax of Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.2 YAML-DyPDL Domain Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B Mixed-Integer Programming and Constraint Programming Models 190
B.1 Traveling Salesperson Problem with Time Windows . . . . . . . . . . . . . . . . . . 190

B.1.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.1.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.2 Capacitated Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.2.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.2.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.3 Multi-Commodity Pickup and Delivery TSP . . . . . . . . . . . . . . . . . . . . . . . 194
B.3.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.3.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.4 Orienteering Problem with Time Windows . . . . . . . . . . . . . . . . . . . . . . . . 197
B.4.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.4.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.5 Multi-Dimensional Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 198
B.5.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
B.5.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.6 Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
B.6.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
B.6.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.7 Simple Assembly Line Balancing Problem . . . . . . . . . . . . . . . . . . . . . . . . 200
B.7.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
B.7.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.8 Single Machine Total Weighted Tardiness . . . . . . . . . . . . . . . . . . . . . . . . 202
B.8.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
B.8.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.9 Talent Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.9.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.9.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.10 Minimization of Open Stacks Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 205

vii



B.10.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.10.2 CP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B.11 Graph-Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
B.11.1 MIP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
B.11.2 Node-Based CP Model (CPN) . . . . . . . . . . . . . . . . . . . . . . . . . . 208
B.11.3 Sequence-Based CP Model (CPS) . . . . . . . . . . . . . . . . . . . . . . . . . 209

C Additional Results for Chapter 4 211
C.1 Detailed Comparison of the MIP, CP, and DIDP Solvers . . . . . . . . . . . . . . . . 211
C.2 Comparison of DIDP and Other State-Based Approaches . . . . . . . . . . . . . . . 217

C.2.1 Domain-Independent AI Planning . . . . . . . . . . . . . . . . . . . . . . . . 217
C.2.2 Picat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.2.3 Ddo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

D Additional Results for Chapter 5 221

E Additional Results for Chapter 6 229

Bibliography 235

viii



List of Tables

3.1 DyPDL representation of the DP model for TSPTW. . . . . . . . . . . . . . . . . . . 44
3.2 DyPDL representation of the DP model for CVRP. . . . . . . . . . . . . . . . . . . . 51
3.3 DyPDL representation of the DP model for m-PDTSP. . . . . . . . . . . . . . . . . . 52
3.4 DyPDL representation of the DP model for OPTW. . . . . . . . . . . . . . . . . . . 53
3.5 DyPDL representation of the DP model for MDKP. . . . . . . . . . . . . . . . . . . 54
3.6 DyPDL representation of the DP model for bin packing. . . . . . . . . . . . . . . . . 56
3.7 DyPDL representation of the DP model for SALBP-1. . . . . . . . . . . . . . . . . . 57
3.8 DyPDL representation of the DP model for 1||

∑
wiTi. . . . . . . . . . . . . . . . . . 58

3.9 DyPDL representation of the DP model for talent scheduling. . . . . . . . . . . . . . 59
3.10 DyPDL representation of the DP model for MOSP. . . . . . . . . . . . . . . . . . . . 60
3.11 DyPDL representation of the DP model for graph-clear. . . . . . . . . . . . . . . . . 61

4.1 Coverage and the number of instances where the memory limit is reached. . . . . . . 84
4.2 Average optimality gap in each problem class. . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Average primal integral in each problem class. . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Average primal gap of MIP, CP, CABS, DD-LNS, and LNBS. . . . . . . . . . . . . . 105
5.2 Average primal integral of MIP, CP, CABS, DD-LNS, and LNBS. . . . . . . . . . . . 105
5.3 Number of instances where LNBS has a better/same/worse primal gap than CABS . 106
5.4 Number of instances where LNBS has a better/same/worse primal integral than CABS106
5.5 Coverage of MIP, CP, CABS, DD-LNS, and LNBS. . . . . . . . . . . . . . . . . . . . 107
5.6 Comparison of CABS and LNBS in each instance set of TSPTW. . . . . . . . . . . . 108
5.7 Comparison of CABS and LNBS in each instance set of m-PDTSP. . . . . . . . . . . 108
5.8 Comparison of CABS and LNBS in each instance set of bin packing. . . . . . . . . . 109
5.9 Comparison of CABS and LNBS in each instance set of MOSP. . . . . . . . . . . . . 109
5.10 Comparison of CABS and LNBS in each instance set of graph-clear. . . . . . . . . . 110
5.11 Comparison of MIP, CP, CABS, DD-LNS, and LNBS in large instances of m-PDTSP,

MOSP, and Graph-Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.12 Number of large instances of m-PDTSP, MOSP, and graph-clear where LNBS has a

better/same/worse primal gap or primal integral than CABS. . . . . . . . . . . . . . 111
5.13 Average primal gap of MIP, CP, CABS, and LNBS configurations. . . . . . . . . . . 112
5.14 Average primal integral of MIP, CP, CABS, and LNBS configurations. . . . . . . . . 112
5.15 Coverage of MIP, CP, CABS, and LNBS configurations. . . . . . . . . . . . . . . . . 113

ix



5.16 Average primal gap and primal integral of CABS in bin packing and SALBP-1 using
the original and zero dual bound functions. . . . . . . . . . . . . . . . . . . . . . . . 116

5.17 Number of instances where LNBS has a better/same/worse primal gap than CABS
in bin packing and SALBP-1 with the original and zero dual bound functions. . . . . 116

5.18 Average primal gap and primal integral of CABS in OPTW with and without the
dual bound functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.19 Number of instances where LNBS has a better/same/worse primal gap than CABS
in OPTW with and without the dual bound function. . . . . . . . . . . . . . . . . . 117

6.1 Coverage of multi-thread solvers with 32 threads and sequential solvers. . . . . . . . 147
6.2 Average optimality gap of multi-thread solvers with 32 threads and sequential solvers. 147
6.3 Average primal gap of multi-thread solvers with 32 threads and sequential solvers. . 148
6.4 Average primal integral of multi-thread solvers with 32 threads and sequential solvers. 149
6.5 Speedup of multi-thread solvers with 32 threads against a sequential solver. . . . . . 150
6.6 Parallel state space search algorithms in the literature. . . . . . . . . . . . . . . . . 155

A.1 Notation for expressions in YAML-DyPDL. . . . . . . . . . . . . . . . . . . . . . . . 170
A.2 Keys of a domain file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.3 Keys of {variable}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.4 Keys of {table}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.5 Constants for different types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.6 Keys of {transition}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.7 Keys of {parameter}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.8 Keys of {forall}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.9 Keys of {base case}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.10 Keys of a problem file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.1 Coverage of MIP, CP, domain-independent AI planners, Picat, and CABS. . . . . . . 220
C.2 Coverage and the average optimality gap of ddo and CABS in TSPTW-M and talent

scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

x



List of Figures

2.1 Examples of decision diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Example PDDL domain and problem files for TSP. . . . . . . . . . . . . . . . . . . . 26

3.1 YAML-DyPDL domain file for TSPTW. . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Example TSPTW instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Python program with DIDPPy for TSPTW. . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 The ratio of the coverage against time and the ratio of instances against the optimality
gap averaged over all problem classes. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 The ratio of instances against the primal integral averaged over all problem classes. 86

5.1 Partial state transition graph in Example 1. . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 The ratio of instances against the primal gap averaged over all problem classes. . . 104
5.3 The ratio of instances against the primal integral averaged over all problem classes. 104
5.4 Entropy of the cost distribution over partial paths vs. the solution length in each

problem instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 The ratio of the coverage against time and the ratio of instances against the optimality
gap averaged over all problem classes using 1 thread and 32 threads. . . . . . . . . 146

6.2 The ratio of instances against the primal integral averaged over all problem classes
using 1 thread and 32 threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Geometric mean speedup in instances optimally solved by sequential CABS in 10-300
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of TSPTW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of CVRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of bin packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of SALBP-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.8 Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of MOSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.9 Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of graph-clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xi



6.10 Comparison of sequential and 32-thread CABS in the number of expanded states to
optimally solve each instance of bin packing. . . . . . . . . . . . . . . . . . . . . . . 153

6.11 Comparison of sequential and 32-thread CABS in the number of expanded states to
optimally solve each instance of SALBP-1. . . . . . . . . . . . . . . . . . . . . . . . 154

A.1 BNF of expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.2 YAML-DyPDL domain file for the traveling salesperson problem with time windows

(TSPTW) where the cost of the base case is zero. . . . . . . . . . . . . . . . . . . . . 178
A.3 YAML-DyPDL domain file for the traveling salesperson problem with time windows

to minimize the makespan (TSPTW-M). . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.4 YAML-DyPDL domain file for the capacitated vehicle routing problem (CVRP). . . 180
A.5 YAML-DyPDL domain file for the capacitated vehicle routing problem (CVRP) where

the cost of the base case is zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.6 YAML-DyPDL domain file for multi-commodity pickup and delivery traveling sales-

person problem (m-PDTSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.7 YAML-DyPDL domain file for the orienteering problem with time windows (OPTW). 183
A.8 YAML-DyPDL problem file for the orienteering problem with time windows (OPTW).184
A.9 YAML-DyPDL domain and problem files for the multi-dimensional knapsack problem

(MDKP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.10 YAML-DyPDL domain file for bin packing. . . . . . . . . . . . . . . . . . . . . . . . 186
A.11 YAML-DyPDL domain file for the simple assembly line balancing problem (SALBP-1).187
A.12 YAML-DyPDL domain file for single machine total weighted tardiness (1||

∑
wiTi). . 187

A.13 YAML-DyPDL domain file for talent scheduling. . . . . . . . . . . . . . . . . . . . . 188
A.14 YAML-DyPDL domain file for the minimization of open stacks problem (MOSP). . . 188
A.15 YAML-DyPDL domain file for graph-clear. . . . . . . . . . . . . . . . . . . . . . . . 189

C.1 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the traveling salesperson problem with time windows (TSPTW). . . . . . . . 211

C.2 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the capacitated vehicle routing problem (CVRP). . . . . . . . . . . . . . . . 211

C.3 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the multi-commodity pickup and delivery traveling salesperson problem (m-
PDTSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

C.4 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the orienteering problem with time windows (OPTW). . . . . . . . . . . . . 212

C.5 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the multi-dimensional knapsack problem (MDKP). . . . . . . . . . . . . . . . 212

C.6 The ratio of the coverage against time and the ratio of instances against the optimality
gap in bin packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

C.7 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the simple assembly line balancing problem (SALBP-1). . . . . . . . . . . . . 213

C.8 The ratio of the coverage against time and the ratio of instances against the optimality
gap in single machine total weighted tardiness (1||

∑
wiTi). . . . . . . . . . . . . . . 213

xii



C.9 The ratio of the coverage against time and the ratio of instances against the optimality
gap in talent scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

C.10 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the minimization of open stacks problem (MOSP). . . . . . . . . . . . . . . . 213

C.11 The ratio of the coverage against time and the ratio of instances against the optimality
gap in graph-clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.12 The ratio of instances against the primal integral in the traveling salesperson problem
with time windows (TSPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.13 The ratio of instances against the primal integral in the capacitated vehicle routing
problem (CVRP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.14 The ratio of instances against the primal integral in the multi-commodity pickup and
delivery traveling salesperson problem (m-PDTSP). . . . . . . . . . . . . . . . . . . 214

C.15 The ratio of instances against the primal integral in the orienteering problem with
time windows (OPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.16 The ratio of instances against the primal integral in the multi-dimensional knapsack
problem (MDKP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.17 The ratio of instances against the primal integral in bin packing. . . . . . . . . . . . 215
C.18 The ratio of instances against the primal integral in the simple assembly line balancing

problem (SALBP-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
C.19 The ratio of instances against the primal integral in single machine total weighted

tardiness (1||
∑
wiTi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.20 The ratio of instances against the primal integral in talent scheduling. . . . . . . . . 216
C.21 The ratio of instances against the primal integral in the minimization of open stack

problem (MOSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.22 The ratio of instances against the primal integral in graph-clear. . . . . . . . . . . . 216

D.1 The ratio of instances against the primal gap in the traveling salesperson problem
with time windows (TSPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D.2 The ratio of instances against the primal gap in the capacitated vehicle routing prob-
lem (CVRP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D.3 The ratio of instances against the primal gap in the multi-commodity pickup and
delivery traveling salesperson problem (m-PDTSP). . . . . . . . . . . . . . . . . . . 222

D.4 The ratio of instances against the primal gap in the large instances of the multi-
commodity pickup and delivery traveling salesperson problem (m-PDTSP). . . . . . 222

D.5 The ratio of instances against the primal gap in the orienteering problem with time
windows (OPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

D.6 The ratio of instances against the primal gap in the multi-dimensional knapsack prob-
lem (MDKP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

D.7 The ratio of instances against the primal gap in bin packing. . . . . . . . . . . . . . 223
D.8 The ratio of instances against the primal gap in the simple assembly line balancing

problem (SALBP-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.9 The ratio of instances against the primal gap in single machine total weighted tardiness

(1||
∑
wiTi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

D.10 The ratio of instances against the primal gap in talent scheduling. . . . . . . . . . . 224

xiii



D.11 The ratio of instances against the primal gap in the minimization of open stacks
problem (MOSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D.12 The ratio of instances against the primal gap in the large instances of the minimization
of open stacks problem (MOSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D.13 The ratio of instances against the primal gap in graph-clear. . . . . . . . . . . . . . 224
D.14 The ratio of instances against the primal gap in the large instances of graph-clear. . 225
D.15 The ratio of instances against the primal integral in the traveling salesperson problem

with time windows (TSPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
D.16 The ratio of instances against the primal integral in the capacitated vehicle routing

problem (CVRP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
D.17 The ratio of instances against the primal integral in the multi-commodity pickup and

delivery traveling salesperson problem (m-PDTSP). . . . . . . . . . . . . . . . . . . 225
D.18 The ratio of instances against the primal integral in the large instances of the multi-

commodity pickup and delivery traveling salesperson problem (m-PDTSP). . . . . . 226
D.19 The ratio of instances against the primal integral in the orienteering problem with

time windows (OPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
D.20 The ratio of instances against the primal integral in the multi-dimensional knapsack

problem (MDKP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
D.21 The ratio of instances against the primal integral in bin packing. . . . . . . . . . . . 226
D.22 The ratio of instances against the primal integral in the simple assembly line balancing

problem (SALBP-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
D.23 The ratio of instances against the primal integral in single machine total weighted

tardiness (1||
∑
wiTi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.24 The ratio of instances against the primal integral in talent scheduling. . . . . . . . . 227
D.25 The ratio of instances against the primal integral in the minimization of open stacks

problem (MOSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
D.26 The ratio of instances against the primal integral in the large instances of the mini-

mization of open stacks problem (MOSP). . . . . . . . . . . . . . . . . . . . . . . . 228
D.27 The ratio of instances against the primal integral in graph-clear. . . . . . . . . . . . 228
D.28 The ratio of instances against the primal integral in the large instances of graph-clear. 228

E.1 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the traveling salesperson problem with time windows (TSPTW). . . . . . . . 229

E.2 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the capacitated vehicle routing problem (CVRP). . . . . . . . . . . . . . . . 229

E.3 The ratio of the coverage against time and the ratio of instances against the optimality
gap in bin packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

E.4 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the simple assembly line balancing problem (SALBP-1). . . . . . . . . . . . . 230

E.5 The ratio of the coverage against time and the ratio of instances against the optimality
gap in the minimization of open stacks problem (MOSP). . . . . . . . . . . . . . . . 230

E.6 The ratio of the coverage against time and the ratio of instances against the optimality
gap in graph-clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

xiv



E.7 The ratio of instances against the primal integral in the traveling salesperson problem
with time windows (TSPTW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

E.8 The ratio of instances against the primal integral in the capacitated vehicle routing
problem (CVRP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

E.9 The ratio of instances against the primal integral in bin packing. . . . . . . . . . . . 231
E.10 The ratio of instances against the primal integral in the simple assembly line balancing

problem (SALBP-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
E.11 The ratio of instances against the primal integral in the minimization of open stacks

problem (MOSP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
E.12 The ratio of instances against the primal integral in graph-clear. . . . . . . . . . . . 232
E.13 The ratio of the coverage against time and the ratio of instances against the optimality

gap in the traveling salesperson problem with time windows (TSPTW) for CAHDBS2. 232
E.14 The ratio of the coverage against time and the ratio of instances against the optimality

gap in the simple assembly line balancing problem (SALBP-1) for CAHDBS2. . . . 232
E.15 The ratio of the coverage against time and the ratio of instances against the optimality

gap in the minimization of open stacks problem (MOSP) for CAHDBS2. . . . . . . 233
E.16 The ratio of the coverage against time and the ratio of instances against the optimality

gap in graph-clear for CAHDBS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
E.17 The ratio of instances against the primal integral in the traveling salesperson problem

with time windows (TSPTW) for CAHDBS2. . . . . . . . . . . . . . . . . . . . . . 233
E.18 The ratio of instances against the primal integral in the simple assembly line balancing

problem (SALBP-1) for CAHDBS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
E.19 The ratio of instances against the primal integral in the minimization of open stacks

problem (MOSP) for CAHDBS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
E.20 The ratio of instances against the primal integral in graph-clear for CAHDBS2. . . 234

xv



Chapter 1

Introduction

Dynamic programming (DP) [27] is a commonly used computational method to solve diverse decision-
making problems. In DP, a sequence of decisions is made over multiple stages to optimize an objective
function, with the result of the decisions up to the current stage represented by a state. This struc-
ture is represented by a Bellman equation [27], a recursive equation where the optimal objective
value of a state in the current stage is defined by the optimal objective values of states in the next
stage. An optimal solution for a problem can be obtained by solving the Bellman equation.

One important application of DP is combinatorial optimization [259], a class of problems re-
quiring a set of discrete decisions to be made to optimize an objective function. Combinatorial
optimization has wide real-world application fields including transportation [422], scheduling [342],
and manufacturing [53] and thus has been an active research topic in artificial intelligence (AI) [370,
25, 31], operations research (OR) [209, 259], and discrete mathematics [259]. In previous work, DP
methods have been typically implemented as specialized algorithms to solve specific combinatorial
optimization problems [29, 28, 198, 318, 104, 2, 109, 46, 358, 152, 357, 355, 153, 17, 187].

Unlike problem-specific algorithms, model-based paradigms are general and declarative problem-
solving frameworks. In such paradigms, a user formulates a problem as a mathematical model and
then solves it using a general-purpose solver, i.e., a user just needs to define a problem to solve it.
Therefore, they represent steps toward the ‘holy grail’ of declarative problem-solving [145]. Ben-
efitting from this declarative nature, model-based paradigms such as mixed-integer programming
(MIP) and constraint programming (CP) have been applied to a wide range of combinatorial op-
timization problems [222, 49, 151, 350, 287, 363, 54, 248, 307, 317, 277]. Such paradigms employ
constraint-based representations: a problem is defined as the optimization of an objective function
of decision variables, whose joint assignments are restricted by constraints. In contrast, DP is based
on a state-based representation of a problem.

State-based modeling is used in domain-independent AI planning [165], a model-based paradigm
to solve planning problems in AI. However, this work has not been designed for combinatorial opti-
mization. In particular, the AI planning community focuses on methodologies more than problems:
their purpose is to compare different solving methods using the same input, and thus they describe a
model of a planning problem with only the necessary information to define it [308]. In contrast, the
OR community focuses on solving particular combinatorial optimization problems and investigates
efficient optimization models for them. For example, in MIP, different decision variables and con-

1



CHAPTER 1. INTRODUCTION 2

straints can result in different strengths of linear relaxations while sharing equivalent integer feasible
regions [248, 197]. In CP, global constraints are specifically designed for common substructures of
combinatorial optimization problems so that a solver can exploit them to achieve high performance
[432, 280, 391]. Similarly, problem-specific DP methods for combinatorial optimization often exploit
problem-specific information to reduce the effort to solve the Bellman equations [318, 104, 109, 46,
358, 152, 357, 355, 153, 17].

Thesis Statement

This dissertation proposes domain-independent dynamic programming (DIDP), a novel model-based
paradigm designed for combinatorial optimization based on DP. DIDP is domain independent in the
sense that it takes only a declarative mathematical model as input and does not require other
information such as problem-specific solving instructions. Thus, we restrict the modeling language
to mathematical statements implied by the problem definition, including optional information like
dual bounds. In other words, DIDP follows the OR approach that allows a user to investigate
efficient optimization models by using different formulations. The central thesis of this dissertation
is as follows:

DP can be used as a practical model-based paradigm for combinatorial optimization,
achieving better performance than existing constraint-based paradigms in multiple problem
classes.

This dissertation approaches the thesis by developing a modeling language and general-purpose
solvers for DIDP. In particular, our DIDP solvers meet the standard of general-purpose solvers
in existing model-based paradigms for combinatorial optimization: most of them are exact and
anytime, and some of them are multi-threaded in addition. To develop the solvers, we use state
space search [372], a methodology widely used in AI, which solves a problem by finding a path in an
implicitly defined graph. In particular, we employ heuristic search algorithms [335, 116], which use
functions called heuristic functions to estimate the path cost. We empirically compare the developed
DIDP solvers with commercial solvers for existing constraint-based paradigms using combinatorial
optimization problems and demonstrate the advantage of DIDP.

1.1 Dissertation Overview

The dissertation first reviews the literature relevant to DIDP in Chapter 2. Then, Chapter 3 proposes
a modeling language for DIDP. The following three chapters (Chapters 4–6) develop DIDP solvers
with different characteristics. Finally, Chapter 7 summarizes the contributions and presents future
directions.

In Chapter 2, we first introduce DP algorithms used for combinatorial optimization. Then, we
describe existing model-based paradigms for combinatorial optimization, discussing their connections
to DP. We also review existing model-based DP approaches and argue that they are insufficient to
be a practical model-based paradigm for combinatorial optimization.

In Chapter 3, we propose Dynamic Programming Description Language (DyPDL), a modeling
formalism for DIDP. Then, we present YAML-DyPDL, a practical modeling language for DyPDL.



CHAPTER 1. INTRODUCTION 3

We explain YAML-DyPDL with an example of a DP model while presenting the formal syntax in Ap-
pendix A.1. We demonstrate the modeling capability of DyPDL and YAML-DyPDL by formulating
DP models for eleven classes of combinatorial optimization problems.

In Chapter 4, we develop general-purpose DIDP solvers using heuristic search algorithms. The
solvers are anytime and exact: they continuously improve the solution quality and eventually solve
a problem optimally. In addition, the solvers provide optimality gaps of intermediate solutions. We
empirically compare the developed solvers against commercial MIP and CP solvers and demonstrate
that DIDP outperforms them in seven out of the eleven combinatorial optimization problem classes
tested. Chapters 3 and 4 are based on a paper currently under review in Artificial Intelligence
[266], which extends two papers published in the Proceedings of the International Conference on
Automated Planning and Scheduling [267, 270].

In Chapter 5, we combine DIDP with large neighborhood search (LNS), an algorithmic framework
used in MIP and CP to quickly obtain good solutions. We propose large neighborhood beam
search (LNBS), an algorithm combining LNS and state space search. We empirically show that the
DIDP solver using LNBS achieves a better solution quality than the best DIDP solver developed in
Chapter 4 in six out of the eleven problem classes tested. This work is based on a paper published
in the International Conference on Principles and Practice of Constraint Programming [268].

In Chapter 6, we develop multi-thread DIDP solvers using parallel heuristic search algorithms.
We show that the multi-thread DIDP solvers achieve significant speedup up to 32 threads against
a single-thread DIDP solver. In addition, we demonstrate that the multi-thread DIDP solvers
outperform commercial multi-thread MIP and CP solvers in multiple problem classes. This work
is based on a paper published in the Proceedings of the AAAI Conference on Artificial Intelligence
[269].

Finally, we summarize our contributions in Chapter 7 and discuss future research directions for
DIDP.

1.2 Summary of Contributions

The contributions of this dissertation are the development of the modeling language, with which a
user can formulate a combinatorial optimization problem as a DP model, and the creation of general-
purpose solvers for such models. We formalize the developed language and solvers and empirically
evaluate them. In what follows, we describe the contributions of each chapter in detail.

Chapter 3: Modeling Formalism and Language

1. DyPDL, a theoretical formalism to describe a DP model based on a state-transition system.
We prove that solving a DyPDL model is undecidable in general while it is decidable under
some conditions that are typically satisfied by models of combinatorial optimization problems.

2. YAML-DyPDL, a practical modeling language for DyPDL. It is designed so that a user can
incorporate redundant information, which is implied by the other parts of the model but can
be useful for a solver, following the standard in OR. We provide an example in the chapter
and present the formal syntax in Appendix A.1.



CHAPTER 1. INTRODUCTION 4

3. DyPDL models (and corresponding YAML-DyPDL encodings in Appendix A.2) for eleven
combinatorial optimization problem classes, including routing, scheduling, packing, and manu-
facturing problems. We demonstrate the modeling capability of DyPDL through these models.

Chapter 4: Heuristic Search Solvers for Domain-Independent Dynamic Programming

1. Theoretical formalization of heuristic search for DyPDL. We propose a generic heuristic search
procedure to solve a class of DyPDL models including those formulated in Chapter 3. The
procedure can exploit redundant information included in a DyPDL model and provide the
optimality gap for an intermediate solution. We prove its theoretical correctness, completeness,
and optimality.

2. General-purpose DIDP solvers using heuristic search. We instantiate the generic heuristic
search procedure with existing heuristic search algorithms and develop seven DIDP solvers.
We implement an open-source software framework to use DIDP solvers with YAML-DyPDL.

3. An empirical evaluation of the DIDP solvers. We evaluate the developed DIDP solvers using
the eleven combinatorial optimization problem classes, for which DyPDL models are developed
in Chapter 3. We demonstrate that memory consumption is an important issue for DIDP
solvers, and complete anytime beam search (CABS), a memory-efficient solver based on a
heuristic search algorithm called beam search, achieves the best performance. We also show
that CABS outperforms commercial MIP and CP solvers in seven out of the eleven problem
classes. In addition, we evaluate the importance of incorporating a dual bound of the objective
function, which is redundant information, in a DyPDL model.

Chapter 5: Large Neighborhood Beam Search

1. LNBS, a heuristic search algorithm combining LNS and beam search. It improves a given
solution path by removing a partial path and searching for a better one. LNBS is composed
of strategies to select the length and starting point of the partial path to remove. We show
that an existing LNS algorithm and CABS can be viewed as special cases of LNBS.

2. A DIDP solver using LNBS. We propose concrete strategies for LNBS to develop a DIDP
solver. In particular, the strategy to select the length of the partial path uses multi-armed
bandits. We prove that with the proposed strategies, LNBS has a guarantee of completeness.

3. An empirical evaluation of LNBS. We demonstrate that the DIDP solver using LNBS achieves a
better solution quality than CABS in six out of the eleven combinatorial optimization problem
classes and better solution quality than MIP and CP in seven of these classes. However, we also
observe that CABS outperforms LNBS in some problem classes. Our experimental analysis
suggests that LNBS performs better than CABS when they are used with a less informative
heuristic function.

Chapter 6: Parallel Beam Search

1. Shared beam search (SBS) and hash-distributed beam search (HDBS), parallel beam search
algorithms. SBS uses a shared data structure, and HDBS uses message passing. While SBS is



CHAPTER 1. INTRODUCTION 5

a relatively straightforward adaptation of previous work, HDBS combines mechanisms used for
different heuristic search algorithms to parallelize beam search. We provide theoretical proofs
for their correctness.

2. Multi-thread DIDP solvers. We implement the proposed algorithms in the software framework
for DIDP and develop DIDP solvers by combining them with CABS.

3. An empirical evaluation of the multi-thread DIDP solvers. Using 32 threads, we demonstrate
that the multi-thread DIDP solvers, particularly those based on HDBS, outperform the single-
thread CABS, achieving 9 to 36 times speedup on average. We investigate super linear speedup
and slowdown observed in some instances. Our analysis suggests that due to the strong dual
bound function used in these instances, small perturbations in search behavior caused by
parallelization result in significant differences in performance. We also show that the multi-
thread DIDP solvers outperform commercial multi-thread MIP and CP solvers in multiple
problem classes where the single-thread CABS is better than the single-thread MIP and CP
solvers while also demonstrating larger speedups.

The work present in this dissertation has been published or submitted in the following papers.

• Ryo Kuroiwa and J. Christopher Beck. “Domain-Independent Dynamic Programming: Generic
State Space Search for Combinatorial Optimization”. In: Proceedings of the 33rd International
Conference on Automated Planning and Scheduling (ICAPS). 2023, pp. 236–244.

• Ryo Kuroiwa and J. Christopher Beck. “Solving Domain-Independent Dynamic Programming
Problems with Anytime Heuristic Search”. In: Proceedings of the 33rd International Conference
on Automated Planning and Scheduling (ICAPS). 2023, pp. 245–253.

• Ryo Kuroiwa and J. Christopher Beck. “Large Neighborhood Beam Search for Domain-
Independent Dynamic Programming”. In: 29th International Conference on Principles and
Practice of Constraint Programming (CP 2023). 2023, pp. 23:1–23:22.

• Ryo Kuroiwa and J. Christopher Beck. “Parallel Beam Search Algorithms for Domain-Independent
Dynamic Programming”. In: Proceedings of the 38th AAAI Conference on Artificial Intelli-
gence (AAAI). 2024, pp. 245–253.

• Ryo Kuroiwa and J. Christopher Beck. “Domain-Independent Dynamic Programming”. Sub-
mitted to Artificial Intelligence. 2024.



Chapter 2

Literature Review

In this chapter, we review the background and the related literature to this dissertation. The
main topic of this dissertation is domain-independent dynamic programming (DIDP), a model-based
paradigm based on dynamic programming (DP). Therefore, we consider the following three topics:
methodologies for DP in combinatorial optimization, model-based paradigms, and model-based DP
frameworks. We first introduce DP and then focus on each of the three topics.

2.1 Dynamic Programming

Dynamic programming (DP) [27] is a framework to solve decision-making problems. In DP, we
sequentially make decisions over multiple (possibly infinite) stages. A state represents the result of
decisions up to the current stage, and the initial state is given for the first stage. A policy selects a
decision given the current state. We want to find an optimal policy that minimizes or maximizes an
objective function associated with decisions. DP requires an optimal policy to satisfy the Principle
of Optimality (Bellman [27], p.83):

An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.

Bellman [27] considered two types of structures for outcomes of decisions: deterministic and stochas-
tic. While we mainly focus on deterministic DP in this dissertation, we also introduce stochastic
DP for completeness.

2.1.1 Deterministic Dynamic Programming

In deterministic DP, a decision and the state in which the decision is made uniquely determine the
resulting state. Let S0 be the initial state, T (S) be a set of possible decisions in state S, and S[[τ ]]

be a state resulting from decision τ in state S. A policy maps a state S to a decision in T (S). The
objective value of a policy π is Vπ(S0), which is recursively defined as

Vπ(S) = R(S, π(S), Vπ(S[[π(S)]])) (2.1)

6



CHAPTER 2. LITERATURE REVIEW 7

where R is a function that maps a state, a decision, and the objective value of the resulting state
to the objective value. In this chapter, we assume minimization for ease of presentation. With the
Principle of Optimality, we assume that the optimal objective value is represented by V (S0), where
V is a value function recursively defined as

V (S) = min
τ∈T (S)

R(S, τ, V (S[[τ ]])). (2.2)

Equation (2.2) is called a Bellman equation.

2.1.2 Stochastic Dynamic Programming

In the stochastic case, there can be multiple resulting states following a probability distribution.
Markov decision processes (MDPs) [27, 219] are widely used to formulate such decision-making
problems in the artificial intelligence (AI) community [371, 413]. Following the convention in MDPs,
we use the term action instead of decision and denote a set of possible actions in state S by A(S)
instead of T (S). We also denote the set of states by S. Using action a in state S results in a
state S′ ∈ S with the probability of p(S′|S, a) and yields the reward r(S, a, S′). The objective is
to find a policy that maximizes the cumulative reward. Given the reward rt obtained in stage t,
the cumulative reward is defined as

∑
t=0,..., γ

trt, where γ ∈ (0, 1] is a discount factor. For a finite
horizon MDP, which has only a finite number of stages, γ = 1 can be used, resulting in the sum
of the rewards over stages. For an infinite horizon MDP, which has an infinite number of stages,
γ < 1 is used to make the cumulative reward converge to a finite value. The Bellman equation is
formulated as

V (S) = max
a∈A(S)

∑
S′∈S

p(S′|S, a)(r(S, a, S′) + γV (S′)). (2.3)

When the probability distribution p and the reward function r are unknown, and a policy is
learned from observations of states and rewards resulting from using actions, the problem is called
reinforcement learning, which is actively studied in AI [414]. While extending DIDP to stochastic
DP or reinforcement learning might be possible in the future, we focus on deterministic DP in this
dissertation as mentioned above.

2.1.3 Dynamic Programming for Combinatorial Optimization

We focus on combinatorial optimization problems [259], where we make a finite set of discrete deci-
sions to minimize or maximize the objective function. Therefore, we mainly focus on deterministic
DP such that T (S) is a finite set for any state S, and the number of stages is finite. For the latter
property, we assume that from any state, after making a finite number of decisions, we reach a base
state S, where no decision is available, i.e., T (S) = ∅. A policy π does not define a decision for such
a state, and the objective value is non-recursively defined as

Vπ(S) = vS (2.4)

where vS is a constant. Accordingly, given a base state S, the value function V returns

V (S) = vS . (2.5)



CHAPTER 2. LITERATURE REVIEW 8

With these assumptions, an optimal policy can be represented by a finite sequence of decisions with
which we can reach a base state from the initial state.

DP has been used for combinatorial optimization over the past six decades. In 1950’s, Jack-
son [233] proposed a DP algorithm for the simple assembly line balancing problem to minimize the
number of stations (SALBP-1). Bellman [29] proposed a DP algorithm to solve the shortest path
problem, which is now called the Bellman-Ford algorithm [29, 138, 394]. In 1960’s, Bellman [28]
proposed a DP formulation for the traveling salesperson problem (TSP). Held and Karp [198] also
independently developed an equivalent DP formulation for TSP and proposed DP formulations for
single machine scheduling problems and SALBP-1. Since then, DP has been applied to various
combinatorial optimization problems including knapsack [318, 348, 408, 62], routing [318, 76, 104,
103, 109, 46, 358, 357, 355, 183, 16, 17, 187, 299, 365, 298, 60, 171, 169, 62, 373, 170, 87, 88, 257],
scheduling [1, 2, 153], and manufacturing [152, 348, 408].

2.2 Methodologies for Dynamic Programming

We review existing methodologies to find an optimal policy for DP. We mainly focus on method-
ologies to solve combinatorial optimization problems using deterministic DP. In what follows, for
the sake of simplicity, we assume a minimization problem represented as the Bellman equation in
Equation (2.2). In general, the methodologies considered here can be used for maximization as
well. First, we introduce four algorithms that directly use a Bellman equation: successive approx-
imation, approximation in policy space, bottom-up computation, and recursion with memoization.
Then, we describe mechanisms and algorithms using additional information: dominance detection,
branch-and-bound, state space relaxation, decision diagram-based branch-and-bound, and heuristic
search.

2.2.1 Successive Approximations

Bellman [27] introduced a method called successive approximations. In this approach, the value
function V is approximated by a sequence of functions. First, V0 is initialized to some function. In
each iteration, Vi+1 is computed as

Vi+1(S) = min
τ∈T (S)

R(S, τ, Vi(S[[τ ]])). (2.6)

Bellman proved that Vi eventually converges to the value function V under some conditions. One
example of successive approximations is the Bellman-Ford algorithm [29, 138, 394]. Given a directed
graph (N,E), where N is the set of nodes, E ⊆ N ×N is the set of edges, and each edge (j, k) ∈ E
has the weight cjk, the Bellman-Ford algorithm computes the shortest path cost from a node j to
t ∈ N using the following equation:

Vi+1(j) =

0 if j = t

min(j,k)∈E cjk + Vi(k) if j ̸= t.
(2.7)

For MDPs, the algorithm called value iteration is based on successive approximations [219, 412].



CHAPTER 2. LITERATURE REVIEW 9

Algorithm 1 Bottom-up computation for the DP formulation of TSP in Equation (2.9).

1: Let T be a table mapping a state to a numeric value
2: for all i ∈ N \ {0} do
3: T [(∅, i)]← ci0

4: for k = 0, ..., n− 3 do
5: for all (U, j) such that U ⊆ N \ {0}, j ∈ N \ (U ∪ {0}) and |U | = k do
6: for all i ∈ N \ (U ∪ {0, j}) do
7: if T [(U ∪ {j}, i)] is initialized then
8: T [(U ∪ {j}, i)]← min{T [(U ∪ {j}, i)], cij + T [(U, j)]}
9: else

10: T [(U ∪ {j}, i)]← cij + T [(U, j)]

11: T [(N \ {0}, 0)]←∞
12: for all j ∈ N \ {0} do
13: T [(N \ {0}, 0)]← min{T [(N \ {0}, 0)], c0j + T [(N \ {0, j}, j)]}
14: return an optimal policy reconstructed from T

2.2.2 Approximation in Policy Space

Bellman [27] also proposed approximation in policy space. In iteration i, this method maintains
an approximation of an optimal policy πi. First, π0 is initialized to some policy. Then, πi+1 is
computed from Vπi so that

πi+1(S) ∈ argmin
τ∈T (S)

R(S, τ, Vπi
(S[[τ ]])). (2.8)

Bellman proved that πi eventually converges to an optimal policy under some conditions. This
method is called policy iteration in MDPs [219, 412].

2.2.3 Bottom-up Computation

Bottom-up computation iteratively computes the value of V . Unlike successive approximations
and approximation in policy space, which compute Vi(S) for each state S over multiple iterations,
bottom-up computation computes V (S) once for each state. Bottom-up computation requires or-
dering states so that V (S) only depends on preceding states in the order. For example, bottom-up
computation is used with DP for TSP [29, 198]. In TSP, a set of customers N = {0, ..., n − 1} is
given, and visiting customer j from i incurs the travel time cij . The objective is to minimize the
total travel time of a tour that visits each customer exactly once starting from and returning to the
depot 0. In DP for TSP, a decision corresponds to visiting one customer, and a state is represented
by the set of unvisited customers U and the current location i. The initial state is (N \ {0}, 0). The
Bellman equation is written as

V (U, i) =

minj∈U cij + V (U \ {j}, j) if U ̸= ∅

ci0 if U = ∅.
(2.9)

To solve this Bellman equation, we can use a bottom-up computation algorithm by ordering states
according to the number of unvisited customers. Starting from k = 0, we iteratively compute the
objective values of states where k + 1 customers are unvisited using the results with k. We show



CHAPTER 2. LITERATURE REVIEW 10

Algorithm 2 Recursion with memoization for the DP formulation in Equations (2.2) and (2.5).

1: function Evaluate(S, T )
2: if T [S] is initialized then return T [S]

3: if S is a base state then return vS
4: v ←∞
5: for all τ ∈ T (S) do
6: v ← min{v,R(S, τ , Evaluate(S[[τ ]], T ))}
7: T [S]← v
8: return v
9: Let T be a table mapping a state to a numeric value

10: Evaluate(S0, T )
11: return an optimal policy reconstructed from T

pseudo-code for this algorithm in Algorithm 1. The algorithm computes V (S) and stores it in a
table T .

2.2.4 Recursion with Memoization

While bottom-up computation evaluates each state only once, it requires an ordering of states, which
is specific to the problem. An alternative approach is to perform recursion following the Bellman
equation with memoization [312], which stores the evaluation results of function calls in memory.
Unlike bottom-up computation, the order in which states are evaluated is automatically determined
by recursion. With memoization, each state is evaluated only once. We present pseudo-code of the
algorithm for the generic Bellman equation in Equations (2.2) and (2.5). Recursion with memoization
was used for combinatorial optimization problems such as knapsack [348], the minimization of open
stacks problem (MOSP) [152, 348, 408], and talent scheduling [153].

2.2.5 Dominance Detection

Bottom-up computation and recursion with memoization avoid evaluating the same state multiple
times by storing it in memory. Dominance detection is a generalization of this strategy: it avoids
evaluating a state if it is known to be equal to or worse than an already evaluated state. DP
algorithms with dominance detection have been actively studied for the shortest path problems with
resource constraints (SPPRC) [232]. In SPPRC, a directed graph (N,E) and m resources 1, ...,m

are given, and each node i ∈ N is associated with the resource window [aik, bik] for each resource
k. Each edge (i, j) ∈ E is associated with the weight cij and the resource consumption dijk for each
resource k. Given cumulative resource consumptions r1, ..., rm at node i, a feasible path can use edge
(i, j) only if rk + dijk ≤ bjk and updates the consumption of resource k to max{ajk, rk + dijk} when
reaching node j from node i. The objective is to find a shortest feasible path from a node s ∈ N to
a node t ∈ N starting with the cumulative resource consumption rk = 0 at s for each resource k.
SPPRC can be solved by DP algorithms called labeling algorithms [232], which are generalizations
of shortest path algorithms such as the Bellman-Ford algorithm and Dijkstra’s algorithm [105].

Labeling algorithms for SPPRC exploit dominance between different paths. Suppose that the
cumulative resource consumptions of a path p from s to i are r1, ..., rm, the cumulative resource
consumptions of another path q from s to i are r′1, ..., r′m with rk ≤ r′k for each resource k, and p



CHAPTER 2. LITERATURE REVIEW 11

Algorithm 3 Labeling algorithm for SPPRC in a directed graph (N,E) with m resources. A path
is represented by a sequence of nodes.

1: O ← {(⟨s⟩, 0, ..., 0, 0)}
2: G← ∅
3: while O ̸= ∅ do
4: Let (⟨s, ..., i⟩, r1, ..., rm, g) ∈ O
5: O ← O \ {(⟨s, ..., i⟩, r1, ..., rm, g)}
6: for all (i, j) ∈ E such that rk + dijk ≤ bjk for k = 1, ...,m do
7: O ← O ∪ {(⟨s, ..., i, j⟩,max{aj1, r1 + dij1}, ...,max{aim, rm + dijm}, g + cij)}
8: G← G ∪ {(⟨s, ..., i⟩, r1, ..., rm, g)}
9: Remove (possibly a subset of) labels in O dominated by another label in O ∪G

10: Let (p, r′1, ..., r
′
m, g

′) ∈ argmin(⟨s,...,t⟩,r1,...,rm,g)∈G g
11: return p

has an equal or smaller path cost than q. To find a shortest feasible path from s to t, we can ignore
extensions of q as long as we consider extensions of p, i.e., p dominates q. In labeling algorithms,
instead of a state, a label (p, r1, ..., rm, g) is used, where p is a path, r1, ..., rm are the cumulative
resource consumptions, and g is the current path cost. Instead of checking if a state is already stored
in memory, a labeling algorithm checks if a label is dominated by another label stored in memory.

We present pseudo-code for a generic labeling algorithm, following Irnich and Desaulniers [232], in
Algorithm 3. In the pseudo-code, we represent a path by a sequence of nodes, e.g., a path from s to i is
⟨s, ..., i⟩. The algorithm stores the set of labels to process in O, initialized with O = {(⟨s⟩, 0, ..., 0, 0)},
and the set of processed labels in G, initialized with G = ∅. In each iteration, the algorithm removes
one label from O, inserts new labels extending the path associated with the label into O, and inserts
the processed label into G. How to select the label to process from O depends on the concrete
labeling algorithm. For example, the algorithm proposed by Desrochers and Soumis [104] selects
the label based on a lexicographic order of the cumulative resource consumptions, which guarantees,
under some conditions, that the processed label will not be dominated by labels generated later.
Algorithms with such a guarantee are called label setting algorithms, and other algorithms are called
label correcting algorithms [232]. After inserting the generated labels into O, the algorithm removes
dominated labels from O. How to detect and remove dominated labels also depends on the concrete
algorithm. Since exactly detecting dominance between all labels in O ∪ G can be computationally
expensive, some labeling algorithms check only a subset of labels in O ∪G for each label [299, 373].

While Algorithm 3 extends forward paths from s toward t, bidirectional labeling algorithms,
which search from both forward and backward directions, were also proposed [358, 60, 373]. Such
algorithms extend backward paths from t in addition to forward paths from s and check if forward
and backward paths collide.

2.2.6 Branch-and-Bound

Bottom-up computation and recursion with memoization enumerate all possible states that can be
reached from the initial state. Even with dominance detection, we still need to enumerate all states
that are not dominated. In contrast, Morin and Marsten [318] used branch-and-bound [279] for
DP, which can avoid enumerating some states by using bounds on the objective function. Branch-
and-bound is a general algorithmic framework to solve optimization problems. A branch-and-bound



CHAPTER 2. LITERATURE REVIEW 12

Algorithm 4 Bottom-up branch-and-bound for the DP formulation of TSP in Equation (2.9). A
primal bound u and a dual bound function l satisfying Equation (2.11) are given as input.

1: Let T be a table mapping a state to a numeric value
2: for all i ∈ N \ {0} do
3: if l(∅, i) + ci0 < u then
4: T [(∅, i)]← ci0

5: for k = 0, ..., n− 3 do
6: for all (U, j) such that T [(U, j)] is initialized and |U | = k do
7: for all i ∈ N \ (U ∪ {0, j}) such that l(U ∪ {j}, i) + cij + T [(U, j)] < u do
8: if T [(U ∪ {j}, i)] is initialized then
9: T [(U ∪ {j}, i)]← min{T [(U ∪ {j}, i)], cij + T [(U, j)]}

10: else
11: T [(U ∪ {j}, i)]← cij + T [(U, j)]

12: T [(N \ {0}, 0)]← u
13: for all j ∈ N \ {0} such that T [(N \ {0, j}, j)] is initialized do
14: T [(N \ {0}, 0)]← min{T [(N \ {0}, 0)], c0j + T [(N \ {0, j}, j)]}
15: return an optimal policy reconstructed from T

algorithm divides the original problem into subproblems so that the optimal solution for the problem
is computed from the optimal solutions for the subproblems. This procedure is called branching.
The algorithm solves the subproblems by recursively branching until reaching a trivial subproblem,
which can be solved without branching. In doing so, the algorithm may avoid solving a subproblem
by using bounds. In minimization, the algorithm maintains an upper bound (primal bound) on the
optimal objective value for the original problem and computes a lower bound (dual bound) on the
optimal objective value of each subproblem. Suppose that the optimal solution cost for the original
problem is exactly the same as the optimal solution cost for its best subproblem, which minimizes
the objective function among the subproblems. Then, if the dual bound of a subproblem is greater
than or equal to the primal bound, the algorithm does not need to solve that subproblem since a
better solution will not be obtained from it.

Morin and Marsten [318] combined branch-and-bound and bottom-up computation for DP. Their
algorithm requires the objective function to be additive,1 i.e., the Bellman equation is defined as

V (S) =

vS if S is a base state

minτ∈T (S) wτ (S) + V (S[[τ ]]) otherwise
(2.10)

where wτ returns a constant given a state. Given a state S, the algorithm computes the dual bound
to reach S from the initial state S0. For minimization, given any policy π, the dual bound l(S)

satisfies

l(S) ≤
m−1∑
i=0

wπ(Si)(S
i) (2.11)

where Si+1 = Si[[π(Si)]] and Sm = S. Given a primal bound u, if l(S) + V (S) ≥ u, we can
ignore S. The primal bound can be the objective value of any policy. Morin and Marsten applied
this algorithm to TSP and nonlinear knapsack. We show pseudo-code for the branch-and-bound

1Morin and Marsten [318] mentioned that their algorithm can be extended to a cost defined by any commutative
isotonic binary operator such as multiplication and taking the maximum or minimum.



CHAPTER 2. LITERATURE REVIEW 13

Algorithm 5 Recursion with memoization and local bounding for the DP formulation in Equa-
tions (2.10). A dual bound function l satisfying Equation (2.12) is given as input.

1: function Evaluate(S, T )
2: if T [S] is initialized then return v

3: if S is a base state then return vS
4: v ←∞
5: T̂ ← T (S)
6: while T̂ ≠ ∅ do
7: Let τ ∈ argminτ ′∈T̂ wτ ′(S) + l(S[[τ ′]])

8: T̂ ← T̂ \ {τ}
9: if wτ (S) + l(S[[τ ]]) ≥ v then

10: break
11: v ← min{v, wτ (S)+ Evaluate(S[[τ ]], T ))}
12: T [S]← v
13: return v
14: Let T be a table mapping a state to a numeric value
15: Evaluate(S0, T )
16: return an optimal policy reconstructed from T

algorithm in Algorithm 4 using the DP formulation of TSP in Equation (2.9). In TSP, given a state
(U, i), where U is the set of unvisited customers, and i the current location, the cost to reach the
state from the target state is the travel time of a route from 0 to i visiting all customers in N \ U .
A dual bound can be obtained by computing a lower bound on the travel time, e.g., by solving the
minimum spanning tree problem [199].

Branch-and-bound was also combined with recursion with memoization [152, 348, 153]. For ex-
ample, Puchinger and Stuckey [348] proposed two strategies: local bounding and argument bound-
ing. We explain their algorithm using the Bellman equation in Equation (2.10).2 Unlike bottom-up
computation, both local bounding and argument bounding use a dual bound function l that satisfies

l(S) ≤ V (S). (2.12)

In local bounding, when computing V (S) = minτ∈T (S) wτ (S)+V (S[[τ ]]), once we obtain wτ (S)+
V (S[[τ ]]) for some τ (a primal bound), we can ignore τ ′ without computing V (S[[τ ′]]) if wτ ′(S) +

l(S[[τ ′]]) ≥ wτ (S)+V (S[[τ ]]). To obtain a good primal bound earlier, the algorithm evaluates decisions
in the ascending order of wτ (S) + l(S[[τ ]]). We show pseudo-code for recursion with memoization
and local bounding in Algorithm 5.

Local bounding still requires to compute V (S[[τ ]]) for at least one τ . In contrast, argument bound-
ing uses a primal bound given as input, similar to branch-and-bound with bottom-up computation.
We show pseudo-code for recursion with memoization and argument bounding in Algorithm 6. The
recursive function takes a value u in addition to a state S and the table T and returns V (S) if
V (S) < u. If V (S) > u, it returns a value less than or equal to V (S) and greater than or equal to u;
such a value is sufficient for the caller (line 9) to decide if V (S) < u or not since wτ (S)+V (S[[τ ]]) ≥ u
if Evaluate(S[[τ ]], u−wτ (S), T ) ≥ u−wτ (S). In the table T , the algorithm stores a value v ≤ V (S)

and a flag is_optimal indicating if v = V (S). Given a state S stored in T , if is_optimal = ⊤, the
function returns v = V (S). If is_optimal = ⊥ and v ≥ u, the function returns v, which satisfies the

2The original algorithm is defined for more general cost structures [348].



CHAPTER 2. LITERATURE REVIEW 14

Algorithm 6 Recursion with memoization and argument bounding for the DP formulation in
Equations (2.10). A primal bound u and a dual bound function l satisfying Equation (2.12) are
given as input.

1: function Evaluate(S, u, T )
2: if T [S] is initialized then
3: (v, is_optimal)← T [S]
4: if is_optimal or v ≥ u then return v

5: if l(S) ≥ u then return l(S)

6: if S is a base state then return vS
7: v ←∞
8: while τ ∈ T (S) do
9: v ← min{v, wτ (S)+ Evaluate(S[[τ ]], u− wτ (S), T ))}

10: T [S]← (v, v < u)
11: return v
12: Let T be a table mapping a state to a numeric value and a binary flag
13: Evaluate(S0, u, T )
14: return an optimal policy reconstructed from T

requirement of the function since v ≥ u is a dual bound on V (S), and v = V (S) if V (S) = u. If
is_optimal = ⊥ and v < u, the function needs to compute a new v such that v = V (S) if V (S) < u

and u ≤ v ≤ V (S) if V (S) ≥ u using recursion. When storing S in T in line 10, v < u indicates if
v = V (S).

In addition to bottom-up computation and recursion with memoization, branch-and-bound was
also combined with labeling algorithms [358, 299, 60]. Contrary to introducing bounding in DP
algorithms, methods that use mechanisms similar to DP, which store subproblems in memory to
avoid solving them again, in branch-and-bound algorithms were also studied. Such approaches are
called by various names, such as test for dominance [255], subproblem dominance [77], branch, bound,
and remember [239, 388, 319], branch and memorize [389], caching [403], and nogood recording [79].

2.2.7 State Space Relaxation

Christofides, Mingozzi, and Toth [76] proposed state space relaxation, which uses DP to obtain
a dual bound. The idea is to solve a relaxation of the problem, which ignores some aspects of
the original problem and thus is easier to solve. For example, for the DP formulation for TSP in
Equation (2.9), they proposed the n-path relaxation, which replaces the set of unvisited customers
U ⊆ N = {0, ..., n − 1} with its cardinality k and reduces the number of states from O(n2n) to
O(n2). The n-path relaxation considers the optimal cost to visit n − 1 customers in N \ {0} and
return to the depot 0, allowing visiting the same customer multiple times. The optimal cost for
the n-path relaxation is a lower bound on the optimal cost of the original problem. The Bellman
equation for the n-path relaxation is

V (k, i) =

minj∈N\{0,i} cij + V (k − 1, j) if k ≥ 1

ci0 if k = 0.
(2.13)

This idea was also applied to variants of TSP [183, 17, 365], scheduling problems [1], and a facility
location problem [144].



CHAPTER 2. LITERATURE REVIEW 15

Boland, Dethridge, and Dumitrescu [46] and Righini and Salani [357, 355] independently pro-
posed decremental state space relaxation, which iteratively solves relaxations while refining them, to
solve routing problems. Their approaches are based on the n-path relaxation, but each customer in
C ⊆ N , called a critical vertex set by Righini and Salani, can be visited at most once. The algorithm
starts from C = ∅, which is the n-path relaxation. In each iteration, the relaxed problem is solved
by a DP algorithm. If the optimal solution visits the same customer only once, it is also an optimal
solution for the original problem. Otherwise, some of the customers that are visited multiple times
are added to C, and the procedure is repeated.

2.2.8 Decision Diagram-Based Branch-and-Bound

Bergman et al. [35] proposed a branch-and-bound algorithm that uses decision diagrams (DDs)
to obtain primal and dual bounds, based on the connection between DP and DDs pointed by
Hooker [217]. This algorithm can be viewed as a combination of branch-and-bound and state space
relaxation. A DD is a directed acyclic graph partitioned into layers l = 0, ..., n. Layer 0 contains only
one node called the root. An edge (i, j, d) connects node i in layer l and node j in layer l + 1 with
label d, and nodes in layer n do not have outgoing edges. There can be multiple edges connecting
the same nodes with different labels. Bergman et al. [35] focused on DDs that have only one node,
called the terminal, in layer n for their purpose. A DP formulation is represented as a DD, where
each node in layer l corresponds to a DP state in stage l, and edges are labeled with decisions: an
edge (S, S[[τ ]], τ) exists if τ ∈ T (S). Here, for simplicity, we denote a DD node by its corresponding
DP state assuming that there is a one-to-one mapping between them. This assumption is valid in
the DP formulation for TSP in Equation (2.9), for example. However, in general, if the same state
appears in different stages, multiple DD nodes in different layers correspond to that state. Bergman
et al. [35] assume that the DP formulation has the additive cost structure (Equation (2.10)), and
there is only one base state S with V (S) = vS = 0 in stage n. With these assumptions, edge
(S, S[[τ ]], τ) is associated with the weight wτ (S), and the optimal objective value is the shortest path
cost (or the longest path cost for maximization) from the root to the terminal in the DD. This DD
is called the exact DD. Constructing the exact DD corresponds to enumerating all DP states, which
can be computationally expensive. Bergman et al. [35] addressed this issue by obtaining dual and
primal bounds from relaxed and restricted DDs, which are smaller than the exact DD. We present
examples of exact, relaxed, and restricted DDs in Figure 2.1.

A dual bound, which is a lower bound on the shortest path cost, is obtained from a relaxed DD
[7, 36]. The concept of relaxed DDs is similar to state space relaxation: it has fewer DD nodes and
the shortest path cost is a lower bound on that of the exact DD. More formally, for each path from
the root to the terminal in the exact DD, a relaxed DD must have a path from the root to the
terminal with the same edge labels and a less or equal cost. Bergman et al. [35] construct relaxed
DDs with at most b nodes in each layer, where b is a parameter. In their algorithm, a relaxed DD
is constructed layer by layer from the root. For each node S in the current layer and each decision
τ ∈ T (S), a node S[[τ ]] in the next layer is created. After generating all nodes in the next layer, if
the number of the nodes exceeds the limit b, a subset of nodes M are selected and merged into one
node, and a corresponding DP state SM is created. Each edge (S′, S, τ) with S ∈ M is updated to
(S′, SM , τ), and its weight is updated so that the resulting DD satisfies the requirement of a relaxed
DD. These procedures are performed by a problem-specific merging operator, which defines a map



CHAPTER 2. LITERATURE REVIEW 16

r

t

2 1

2 1 3 2

1 3 2 2

1 3

(a) Exact DD.

r

t

2 1

2 1
3

2

1
2

2

1 3

(b) Relaxed DD.

r

t

2 1

1
3

2

3
2

2

1 3

(c) Restricted DD.

Figure 2.1: Examples of decision diagrams (DDs), where r is the root and t is the terminal. There
are two labels for edges, represented by dashed and solid lines. The numbers presented are the edge
weights, and the shortest paths are colored in red.

from a set of states M to a state SM and how to update the edge weights.
A primal bound is obtained from a restricted DD [37]. For each path from the root to the

terminal in a restricted DD, the exact DD must have a path from the root to the terminal with the
same edge labels and a less or equal cost. Bergman et al. [35] construct a restricted DD that has
at most b nodes in each layer. In their algorithm, when the number of nodes in a layer exceeds b, a
subset of nodes are removed from the layer.

DD-based branch-and-bound tries to find a shortest path in the exact DD representing the orig-
inal problem through repeatedly constructing relaxed and restricted DDs [35]. We present pseudo-
code for DD-based branch-and-bound in Algorithm 7. The algorithm maintains states in the set O.
For each state in S ∈ O, the algorithm also records g(S), the shortest path cost from S0 to S in the
exact DD of the original problem and the corresponding shortest path σ(S). In each iteration, the
algorithm removes one state S from O and constructs a restricted DD B whose root is S. Then,
a shortest path σt from S to the terminal in B is extracted. The path ⟨σ(S);σt⟩, which concate-
nates σ(S) and σt, is a path from the root to the terminal in the exact DD of the original problem.
Therefore, its cost g(S) + u(S) is an upper bound on the optimal objective value. If B is actually
exact, we have obtained the shortest path cost from S0 to the terminal via S in the exact DD of
the original problem, so we no longer need to consider paths extending σ(S). If B is not exact, the
algorithm creates a relaxed DD B and obtains l(S), the shortest path cost from S to the terminal
in B. If g(S) + l(S) ≥ u, paths extending σ(S) will not have better costs than the current solution
cost, so we ignore S. Otherwise, we need to investigate paths extending σ(S).

Bergman et al. [35] proved that it is sufficient to consider a set of nodes called an exact cut set.
A node in B is exact if all sequences of decisions that correspond to paths from S to that node in
B transform S to the same state. An exact cut set is a set of exact nodes such that all paths from
S to the terminal pass at least one node in it. Since there can be multiple exact cut sets in B, the
algorithm selects one using some strategy. Then, it extends σ(S) to each node S′ in the set using a
shortest path from S to S′ in B and inserts S′ into O. The algorithm terminates when O becomes
empty.

DD-based branch-and-bound was originally proposed for binary DDs (BDDs) [283], where each
node has at most two outgoing edges [35]. Gillard, Schaus, and Coppé [171] generalized the algorithm



CHAPTER 2. LITERATURE REVIEW 17

Algorithm 7 DD-based branch-and-bound for the DP formulation in Equation (2.10).

1: O ← {S0}
2: g(S0)← 0, σ(S0)← ⟨⟩, u←∞, σ ← NULL
3: while O ̸= ∅ do
4: Let S ∈ O
5: O ← O \ {S}
6: Create a restricted DD B whose root is S
7: Let σt be a shortest path from S to the terminal in B and its cost be u(S)
8: if g(S) + u(S) < u then
9: u← g(S) + u(S), σ ← ⟨σ(S);σt⟩

10: if B is not exact then
11: Create a relaxed DD B whose root is S
12: Let the shortest path cost from S to the terminal in B be l(S)
13: if g(S) + l(S) < u then
14: for all S′ in an exact cut set of B do
15: Let σ(S, S′) be a shortest path from S to S′ in B and g(S, S′) be its cost
16: g(S′)← g(S) + g(S, S′), σ(S′)← ⟨σ(S);σ(S, S′)⟩
17: O ← O ∪ {S′}
18: return σ

to multi-valued DDs (MDDs) [406], where a node may have more than two outgoing edges. DD-
based branch-and-bound has been improved by using dual bounds to remove unnecessary nodes from
relaxed and restricted DDs [169, 87] and dominance detection [88, 89].

2.2.9 Heuristic Search

DD-based branch-and-bound finds a shortest path in the exact DD to solve the problem. This
approach can be viewed as state space search in AI, which solves a problem by finding a path in the
state transition graph, an implicitly defined graph by the problem [372]. Similarly to DP, in state
space search, a problem is defined by states and actions, and a state is transformed into another by
applying an action. A solution is a sequence of actions that transforms the initial state into a goal
state. In our DP notation, decisions correspond to actions, and a base state corresponds to a goal
state. The state transition graph is a directed graph where nodes are states and edges are actions.
A solution corresponds to a path from the initial state to a goal state in the state transition graph.
Since state transition graphs may contain cycles and are not necessarily partitioned into layers in
general, DDs are special cases of state transition graphs.

Heuristic search is a widely used approach for state space search [335, 116, 372]. Similarly to
labeling algorithms, a heuristic search algorithm tries to find a path from the initial state to a goal
state by iteratively extending a path. In doing so, it uses a heuristic function h, which estimates
the path cost from a state S to a goal state by the heuristic value h(S). Assuming the additive cost
structure (Equation (2.10)) and vS = 0 for a base state (goal state), we present generic pseudo-code
for heuristic search in Algorithm 8. The algorithm maintains a set of states to search in the open
list O, initialized with {S0}. In addition, to prevent searching already searched states, the algorithm
maintains another set G, initialized with {S0}. The algorithm also records the g-value g(S), the
cost of the shortest path from S0 to S found so far. In each step, the algorithm expands one state S
from O: remove S from O and inserts state S[[τ ]] into O and G for each τ ∈ T (S) if it has not been



CHAPTER 2. LITERATURE REVIEW 18

Algorithm 8 Heuristic search for the DP formulation in Equation (2.10).

O,G← {S0}
while O ̸= ∅ do

Let S ∈ O
O ← O \ {S}
if S is a goal state then return the path from S0 to S
for all τ ∈ T (S) do

if S[[τ ]] /∈ G or g(S) + wτ (S) < g(S[[τ ]]) then
g(S[[τ ]])← g(S) + wτ (S)
Compute h(S[[τ ]])
O ← O ∪ {S[[τ ]]}, G← G ∪ {S[[τ ]]}

return no solution

generated with an equal or better g-value. The algorithm selects a state to expand based on the
heuristic values, and the strategy depends on the concrete heuristic search algorithm. For example,
A* [190] selects a state S that minimizes the f -value, f(S) = g(S) + h(S), in O. The algorithm
terminates when it finds a goal state or O becomes empty.

A heuristic function is typically obtained by ignoring some aspects of the original problem and
solving the resulting problem, which is called relaxation or abstraction [115, 372]. This procedure is
similar to state space relaxation in DP as discussed by Holte and Fan [214]. A heuristic function h
is admissible if h(S) always returns a lower bound on the optimal path cost from S to a goal state.
With an admissible heuristic function, if the edge weights are nonnegative, the solution found by
A* is guaranteed to be a shortest path [190]. Nau, Kumar, and Kanal [325] pointed out that A*
with an admissible heuristic function can be considered a branch-and-bound algorithm: the f -value
f(S) = g(S) + h(S) is a lower bound on the shortest path cost from the initial state to a goal state
via state S, and A* is guaranteed to never expand S if f(S) is greater than the optimal solution cost.
Ibaraki [225] and Kumar and Kanal [263] also proposed theoretical frameworks unifying heuristic
search, branch-and-bound, and DP.

The idea to use heuristic search for DP dates back to the work by Martelli and Montanari [304].
They applied heuristic search to DP with more general cost structures than the additive cost struc-
ture by considering functionally weighted graphs. In such a graph, the weight of an edge is defined
as a monotonically non-decreasing function instead of a constant, and the cost of a path is computed
by recursively applying the functions along the path. They focused on theoretical analysis and did
not use the resulting algorithm to solve problems in practice. Theoretical connections between DP
and finding a path in a graph were also investigated by subsequent work [67, 175].

2.3 Model-Based Paradigms

In a model-based paradigm, a user formulates a problem as a mathematical model and then solves it
using a general-purpose solver. We review three model-based paradigms by which DIDP is inspired:
mathematical programming, constraint programming, and domain-independent AI planning. For
each paradigm, we present the problem formulation, introduce general-purpose solvers and their
algorithms, review modeling frameworks, and discuss the connections to DP.



CHAPTER 2. LITERATURE REVIEW 19

2.3.1 Mathematical Programming

In mathematical programming, a problem is formulated as the minimization or maximization of
an objective function of decision variables under constraints. A value assignment to the decision
variables is a feasible solution if it satisfies the constraints. Assuming minimization, we represent a
mathematical programming model as

min f(x) (2.14)

s.t. gi(x) ≤ 0 i = 1, ...,m (2.15)

x ∈ Rn (2.16)

where x is an n-dimensional vector of the decision variables, f is the objective function, and gi

for i = 1, ...,m are functions representing the constraints. We particularly focus on mixed-integer
programming (MIP), where the domains of the decision variables are continuous values or integers,
and the objective function and constraints are linear [440]. We represent a MIP model as

min c′x (2.17)

s.t. Ax ≤ b (2.18)

x ∈ Rn−k × Zk (2.19)

where c, b ∈ Rn, A ∈ Rm×n, c′ is the transposition of c, and k is the number of integer decision
variables. If all decision variables are continuous values, i.e., k = 0, the model is called a linear
programming (LP) model. While solving MIP is NP-hard [240], LP can be solved in polynomial
time [251].

Modeling Languages for Mathematical Programming

To formulate mathematical programming models, declarative modeling languages and libraries in
programming languages such as C++, Java, Python, and Julia are used. While general-purpose
mathematical programming solvers typically provide specific modeling interfaces, they can also be
used with solver-independent modeling interfaces. With such interfaces, a user can easily use dif-
ferent solvers with the same model. For example, AIMMS [43], MPL [261], AMPL [139], GAMS
[56], and CMPL3 are solver-independent declarative modeling languages specifically designed for
mathematical programming. PuLP,4 Python-MIP,5 and Pyomo [191, 59] in Python and JuMP [301]
in Julia are solver-independent modeling libraries. MPS [230] is a solver-independent data format
for LP and MIP, which is used in MIPLIP 2017, a benchmark library for MIP [173].

Mathematical Programming Solvers

General-purpose mathematical programming solvers are being actively developed. For example,
commercial mathematical programming solvers such as Gurobi [188], CPLEX,6 Xpress,7 COPT

3https://github.com/coin-or/Cmpl
4https://coin-or.github.io/pulp/
5https://www.python-mip.com/
6https://www.ibm.com/products/ilog-cplex-optimization-studio
7https://www.fico.com/en/products/fico-xpress-optimization



CHAPTER 2. LITERATURE REVIEW 20

[158], and MindOPT,8 and open-source solvers such as SCIP [3], CBC,9 GLPK,10 and HIGHS [221]
can be used for mathematical programming models including MIP. These solvers use branch-and-
bound tree search [279] as a basic algorithm to solve MIP.11 Starting from the original model, the
algorithm solves the linear relaxation of a MIP model, which is the LP model created by relaxing the
domain of the integer decision variables to continuous values. If the solution for the linear relaxation
is feasible for the MIP model, the problem is solved. Otherwise, the algorithm branches, i.e., it
creates subproblems by introducing new constraints. For example, if a decision variable xi ∈ Z takes
a continuous value in (0, 1) in the solution for the linear relaxation, we can create one MIP model
with an additional constraint xi ≤ 0 and another with xi ≥ 1. Thus, the algorithm constructs a
search tree, where nodes are MIP models, the root is the original model, each node is connected
to its subproblems, and leaves are models optimally solved without branching. The algorithm uses
bounds to avoid solving subproblems. The optimal objective value of a leaf node can be used as a
primal bound. For each node, the optimal objective value of the linear relaxation is used as a dual
bound: if it meets or exceeds the primal bound, we do not need to solve that subproblem. The
algorithm terminates when there are no subproblems to solve.

While the optimal objective values of different MIP models for the same problem should be the
same, the optimal objective values of their linear relaxations can be different. For example, valid
inequalities can be used to obtain better dual bounds [439]. A valid inequality is a constraint that
is satisfied by all feasible solutions of the MIP model but may not be satisfied by some feasible
solutions of the linear relaxation. Such constraints are redundant, unnecessary to model and solve
the problem in theory, but may improve the solving performance.

Connections Between Mathematical Programming and Dynamic Programming

We review three connections between mathematical programming and DP: DP-based MIP formula-
tions, column generation, and hybridization of DD-based branch-and-bound and MIP.

DP-Based MIP Formulations In DP-based MIP formulations, a problem or its substructure
is formulated as DP, and such a formulation is embedded in a MIP model. Thus, DP is concep-
tually used to capture the structure of the problem, but DP algorithms are not used. Eppen and
Martin [124] proposed a technique to reformulate a MIP model for a lot-sizing problem by encoding
particular subsets of constraints as DP to find a shortest path in a directed acyclic graph. Bergman
and Cire [32] took a similar approach, but they combined MIP, DP, and DDs. In their framework,
the exact BDD for the DP formulation of a problem is decomposed into multiple BDDs, and the
MIP model is formulated as finding a set of paths in the decomposed BDDs. Similarly, Lozano and
Smith [300] decomposed a MIP model for a stochastic programming problem, where each subprob-
lem corresponds to the shortest path problem in a BDD. Bergman and Cire [33] proposed solving a
nonlinear optimization problem by formulating it as DP and then converting it into a MIP model.
They also obtained objective bounds by aggregating states using an approach similar to a relaxed
DD.

8https://opt.alibabacloud.com/doc/latest/en/html/index.html
9https://www.coin-or.org/Cbc/cbcuserguide.html

10https://www.gnu.org/software/glpk/glpk.html
11While the source codes of the commercial solvers are unavailable, their user manuals mention that branch-and-

bound is used.



CHAPTER 2. LITERATURE REVIEW 21

Column Generation DP algorithms are used in column generation, where an LP model is divided
into a master problem and pricing subproblems [101]. In each iteration, a restricted master problem,
which contains only a subset of decision variables in the master problem, is solved. Then, the pricing
subproblems are solved to check the optimality of the solution for the original problem and generate
decision variables to be added to the restricted master problem if the solution is not optimal. In
some routing problems, where the pricing subproblems are formulated as variants of SPPRC, labeling
algorithms with state space relaxation and/or bounding were used to solve the subproblems [103,
16, 299, 298, 373].

Hybridization of DD-Based Branch-and-Bound and MIP González et al. [182] hybridized
DD-based branch-and-bound with MIP. In their algorithm, when an exact cut set is obtained from
a relaxed DD, a node in the set is processed either by DD or MIP. In the former case, restricted
and relaxed DDs will be constructed just as in the original DD-based branch-and-bound (see Sec-
tion 2.2.8). In the latter case, a MIP model for the subproblem represented by the DD node is solved
by a MIP solver to directly obtain an optimal solution. Which methods, DD or MIP, to use for a
given node is decided by a strategy learned with supervised machine learning.

2.3.2 Constraint Programming

Constraint programming (CP) [369] is a model-based paradigm to solve constraint satisfaction
problems (CSPs) and constraint optimization problems (COPs). In a CSP, decision variables
X = {x1, ..., xn}, their domains D = {D1, ..., Dn}, and constraints C = {C1, ..., Cm} are given.
Each decision variable xi is associated with its domain Di and must be assigned a value in Di.
We assume that each domain is a finite set of values.12 A constraint Cj ⊆ Dj1 × ... × Djl is a
relation defined over a subset of decision variables Yj = {yj1, ..., yjl} ⊆ X, where Djk is the domain
of yjk. A solution for the CSP is a value assignment (d1, ..., dn) to the decision variables satisfying
the constraints, i.e., di ∈ Di for each xi ∈ X and (dj1, ..., djl) ∈ Cj for each Cj ∈ C, where djk
is the value of yjk. In a COP, an objective function of the decision variables f is defined, and an
optimal solution minimizes or maximizes f(x). CSPs and COPs are NP-hard in general since the
NP-complete boolean satisfiability problem (SAT) [240] is a special case of CSPs.

In CP, a CSP or COP is formulated as a CP model. While constraints are relations in the CSP
definition, they are not necessarily explicitly defined in a CP model. Constraints can be described
by expressions, such as equations and inequalities, using decision variables. For example, given
two decision variables xi and xj with Di = Dj = {0, 1}, an inequality xi ̸= xj can be used as a
constraint instead of a binary relation {(0, 1), (1, 0)}. Moreover, global constraints [432] are used
to represent specific substructures. For example, the AllDifferent global constraint [280] takes an
arbitrary number of variables, and AllDifferent(y1, ..., yl) represents that all values of y1, ..., yl must
be different, i.e., yi ̸= yj for i ̸= j. Using global constraints can make a CP model simpler and
easier to understand. Furthermore, CP solvers may exploit the specific combinatorial substructure
explicitly represented by global constraints.

12CSPs with infinite domains are also studied in the literature, e.g., by Bodirsky [45].



CHAPTER 2. LITERATURE REVIEW 22

Modeling Languages for Constraint Programming

While some CP solvers provide modeling libraries in programming languages, there are modeling
languages designed for CP such as MiniZinc [326], XCSP3 [51], ECLiPSe [8], Essence [147], OPL
[431], and Comet [431]. There are also solver-independent modeling libraries in Python such as
Numberjack [196] and PyCSP3 [282]. With solver-independent modeling languages, the CP com-
munity has been organizing competitions to evaluate general-purpose CP solvers using the same CP
models. The MiniZinc Challenge,13 which uses MiniZinc, has been annually held since 2008. XCSP
competitions,14 which use XCSP3, have also been held since 2017.

Constraint Programming Solvers

There are a number of open-source CP solvers such as CP-SAT [337], Choco-solver [346], Gecode,15

Chuffed,16 MiniCP [311], OscaR [330], Minion [161], JaCoP [262], Mistral [195], ACE [281], Yuck
[44], and SeaPearl [69]. There are also commercial CP solvers such IBM ILOG CP Optimizer
[277] and iZplus.17 In addition, SCIP [3] is designed to solve constraint integer programming, a
hybridization of CP and MIP. In CP solvers, constraint propagation and tree search are commonly
used techniques [41, 429]. After introducing them, we also mention constraint-based local search
[431], a framework closely related to CP and integrated into some CP solvers such as OscaR and
Yuck.

Constraint Propagation In constraint propagation [41], algorithms called constraint propaga-
tors remove values from the domains of the decision variables based on constraints. For example,
a constraint propagator may enforce a pair of decision variables to satisfy arc consistency [302].
Given two decision variables xi and xj and a set of constraints C ′ ⊆ C defined over them, i.e.,
Ck ⊆ Di × Dj for Ck ∈ C ′, xi is arc consistent with xj if for each di ∈ Di, there exists dj ∈ Dj

such that (di, dj) satisfies all constraints in C ′, i.e., (di, dj) ∈
⋂
Ck∈C′ Ck. If xi is arc inconsistent

with xj due to di ∈ Di, we can remove di from Di. Once di is removed from Di, another decision
variable may become arc inconsistent with xi, and some values may be removed from the domain.
Therefore, constraint propagation repeatedly performs the procedure after removing values from
the domains possibly using multiple constraint propagators. In practice, implementations of con-
straint propagators depend on CP solvers. Typically, specific constraint propagators are designed for
global constraints to exploit the combinatorial substructures represented by them [432]. Although
constraint propagation by itself may find a solution or prove that there is no solution, there is no
guarantee in general. In CP solvers, constraint propagation is usually combined with tree search,
which has the guarantee of completeness.

Tree Search In tree search for CP, each node corresponds to a CSP, and branching creates sub-
problems by introducing additional constraints [429]. Typically, one decision variable is selected by
a mechanism called a variable ordering heuristic, and constraints on the variable are added. For
example, a tree search algorithm may create one subproblem with xi = d and another with xi ̸= d

13https://www.minizinc.org/challenge.html
14https://www.xcsp.org/competitions/
15https://www.gecode.org/
16https://github.com/chuffed/chuffed
17http://www.constraint.org/en/izc_download/



CHAPTER 2. LITERATURE REVIEW 23

or multiple subproblems where xi is assigned different values in Di. In these branching strategies,
the values assigned to the variable are selected by a mechanism called a value ordering heuristic.
For each subproblem, the domains can be reduced by constraint propagation. When there is no
value to assign a decision variable, the subproblem does not have a solution, so the algorithm needs
to search different nodes. When all decision variables are assigned values satisfying the constraints,
a solution for the original CSP is found. A COP can be solved by repeatedly solving CSPs: when
a solution is found with the objective value u, the algorithm solves a new CSP with an additional
constraint that the solution cost is better than u [429]. Commonly, the search does not restart but
simply continues with a new bound on the objective value.

Constraint-Based Local Search While each node in tree search corresponds to a partial value
assignment, constraint-based local search (CBLS) [431] uses local search [218], which searches in the
space of complete value assignments. Local search does not have a guarantee of completeness, but
it is usually efficient in solving large-scale problems. To solve a CSP, starting from a complete value
assignment that does not satisfy the constraints, local search investigates a set of value assignments
called the neighborhood. For example, the neighborhood can be a set of value assignments created
by swapping two values in the current assignment. If a solution is not found, local search repeats
this procedure from a different value assignment such as one in the neighborhood. In CBLS, how to
create the neighborhood is specified with the CP model by a user.

Connections Between Constraint Programming and Dynamic Programming

We review four types of connections between CP and DP: DP-based CP formulations, constraint
propagation with DP, caching subproblems in tree search, and bucket elimination.

DP-Based CP Formulations Cappart et al. [62] used DP as a unified modeling framework for
CP and reinforcement learning. In their approach, a CP model based on a DP formulation is used,
where each decision variable in the CP model corresponds to each stage in the DP formulation, and
the value assigned to the variable corresponds to the decision in the stage. The DP formulation is
also interpreted as an MDP, though there is no stochasticity, and a policy for the MDP is learned by
reinforcement learning. The learned policy, which ranks decisions given a state, is used as a value
ordering heuristic in tree search. While this framework was originally implemented with an existing
solver, a dedicated CP solver, SeaPearl [69], was developed later. In contrast to requiring a user to
explicitly formulate a DP, Lin, Meng, and Li [293] proposed a method to automatically reformulate
a given CP model to a DP-based model by detecting specific substructures.

Constraint Propagation with DP Trick [424] proposed a constraint propagator using DP for a
global constraint based on the knapsack problem. Constraint propagators based on MDDs were also
developed in the CP community [7, 210, 81]. In these approaches, constraint propagators use relaxed
MDDs to represent a set of value assignments for a CSP. Cire and van Hoeve [81] associated such
relaxed MDDs with state space relaxation in DP. Gentzel, Michel, and van Hoeve [162] proposed
HADDOCK, a state-based modeling language for MDDs, with which a user can define MDDs in a
CP model to use MDD-based constraint propagators.



CHAPTER 2. LITERATURE REVIEW 24

Caching Subproblems in Tree Search Smith [403] proposed caching, which stores subproblem
in memory during tree search and avoids searching the same subproblem multiple times, similarly
to DP. Chu, Garcia de la Banda, and Stuckey [77] extended this approach to dominance detection.

Bucket Elimination Dechter [97] proposed bucket elimination, an algorithmic framework gen-
eralizing DP, as a unified approach to different problems including CSPs, SAT, and probabilistic
reasoning. A bucket elimination algorithm processes functions defined over variables. It uses a
bucket for each variable. The buckets are ordered, and each bucket stores functions defined over
variables associated with that bucket or later buckets. The algorithm eliminates a bucket one by
one: from the functions in the bucket, it generates new functions that no longer depend on the
variable associated with the bucket. Such functions are inserted into the remaining buckets and will
be processed later without considering the variable of the eliminated bucket. Thus, the algorithm
can be viewed as reusing previously computed results as in DP algorithms.

In the bucket elimination algorithm for a CSP by Dechter [97], each decision variable is associated
with a bucket, and constraints defined over variables associated with the bucket or later buckets are
stored in the bucket. In each step, the algorithm eliminates the bucket associated with a decision
variable xi. The algorithm takes the join of all constraints in the bucket: given a constraint Cj
defined over a subset of decision variables Yj ⊆ X and another constraint Ck over Yk ⊆ X, the join
of Cj and Ck is a set of value assignments to Yj ∪ Yk satisfying Cj and Ck. The algorithm projects
out the variable xi associated with the bucket from the join: creating a set of value assignment R to
(Yk ∪ Yj) \ {xi} by removing the value of xi from each value assignment in the join and eliminating
duplicates. Then, R is inserted into the next bucket as a constraint. In subsequent buckets, the
variable xi is no longer considered since some value can be assigned to xi as long as R is satisfied. If
constraints are not satisfied in a bucket, there is no solution. Otherwise, after eliminating all buckets,
a solution can be constructed by selecting one value for each variable from the values remaining after
the join operation performed when the associated bucket was eliminated. Hooker [216] also proposed
a similar DP algorithm to solve a CSP.

2.3.3 Domain-Independent AI Planning

The objective of AI planning is to find a sequence of actions to achieve a goal from a given initial state
[165]. While there are multiple classes of AI planning problems, in this section, we mainly focus on
classical planning, where a state is represented by discrete variables, and an action deterministically
transforms one state into another. The STRIPS formalism of classical planning [137] is represented
by a tuple ⟨VP , Init,Goal,Ops⟩, where VP is a set of state variables, Init is the initial state, Goal is a
set of goal conditions, and Ops is a set of operators (or equivalently, actions).18 A state maps each
state variable to a boolean value in {⊤,⊥}. An operator is represented by ⟨Pre,Eff⟩, where Pre is
a set of preconditions, and Eff is a set of effects. A precondition in Pre or a goal condition in Goal
is written as v = ⊤ for some v ∈ Vp and is satisfied by a state if it maps v to ⊤. An effect in Eff
assigns a value to a variable, written as v ← ⊤ or v ← ⊥. An operator can be used in a state if
all of its preconditions are satisfied. When an operator is used, a state is transformed into another,
where state variables mentioned in the effects are changed accordingly, and other state variables are

18Here, we use ‘operator’ to make our terminology consistent with the definition of numeric planning by
Helmert [202], which will be introduced in Chapter 3.



CHAPTER 2. LITERATURE REVIEW 25

not changed. A solution for the STRIPS planning problem is to find a plan, a sequence of operators
that transforms Init to a goal state, which satisfies all conditions in Goal. The problem of finding
a plan is called satisficing planning. The problem of optimizing the cost of a plan is called optimal
planning, where each operator has a nonnegative cost, and the cost of a plan is the sum of the
operator costs. Satisficing classical planning is PSPACE-complete [58], and thus optimal classical
planning is PSPACE-hard.

STRIPS is not the only formalism for classical planning. For example, SAS+ [13] is a classical
planning formalism where the domain of a state variable is a finite set, whose cardinality can be more
than two. Therefore, SAS+ can explicitly represent a set of conditions that do not simultaneously
hold. Some classical planners transform a STRIPS representation of a planning problem to SAS+
as preprocessing [203].

More general classes of AI planning problems than classical planning have also been studied.
For example, in numeric planning [140], a state is represented by numeric state variables, whose
domain is rational numbers. A precondition of an action or a goal condition can be a condition
on numeric state variables, e.g., inequalities over numeric state variables. In temporal planning
[140], each action is associated with time duration, and multiple actions can possibly be executed
in parallel. In probabilistic planning [444, 375], the effects of an action are stochastic, which can
be represented by MDPs. There are yet more classes such as non-deterministic planning [92, 80],
hierarchical planning [224], and multi-agent planning [420].

Modeling Languages for Domain-Independent AI Planning

In domain-independent AI planning, planning problems are represented by the same modeling lan-
guage, and domain-independent AI planners solve any problem formulated in the language. The
standard modeling language for AI planning is Planning Domain Definition Language (PDDL) [164].
Since our modeling language for DIDP is inspired by PDDL, we explain it with an example focusing
on a subset of features used for STRIPS. We also discuss the design philosophy of PDDL comparing
it with MIP and CP. Finally, we will mention extensions of PDDL to non-classical planning.

Planning Domain Definition Language (PDDL) PDDL is a declarative language having a
similar syntax to LISP. PDDL uses a domain file and problem file to specify one planning problem
instance. A domain file contains definitions that can be used by multiple instances of the planning
problem. A problem file contains information specific to the particular problem instance. We show
example domain and problem files for TSP in Figure 2.2. The model is equivalent to the DP
formulation in Equation (2.9), but we do not model the travel time for the sake of simplicity. In
practice, we can model the travel time as the cost of an action in PDDL. In a domain file, object
types, predicates, and actions are defined. Predicates (at ?loc - customer), (visited ?loc - customer),
and (unvisited ?loc - customer) take an object with the type customer as an argument. Concrete
objects for the object types are defined in a problem file. In our example, four customers, depot, c1,
c2, and c3 are defined.

A state in classical planning is represented as a set of propositions, predicates whose arguments
are assigned concrete objects of the object types. In our example, the initial state is explicitly given
as a set of propositions (at depot), (visited depot), (unvisited c1), (unvisited c2), and (unvisited c3)
in the problem file. The propositions included in a state correspond to state variables whose values



CHAPTER 2. LITERATURE REVIEW 26

( d e f i n e ( domain t sp )
( : r e qu i r emen t s : s t r i p s : t y p i n g )
( : t y p e s customer )
( : p r e d i c a t e s ( at ? l o c − customer ) ( v i s i t e d ? l o c − customer ) ( u n v i s i t e d ? l o c − customer ) )
( : a c t i o n v i s i t

: pa ramete r s (? from ? to − customer )
: p r e c o n d i t i o n ( and ( at ? from ) ( u n v i s i t e d ? to ) )
: e f f e c t ( and ( at ? to ) ( v i s i t e d ? to ) ( not ( u n v i s i t e d ? to ) ) ( not ( at ? from ) ) )

)
)

(a) Domain file.

( d e f i n e ( problem tsp−example )
( : domain t sp )
( : o b j e c t s depot c1 c2 c3 − customer )
( : i n i t ( a t depot ) ( v i s i t e d depot ) ( u n v i s i t e d c1 ) ( u n v i s i t e d c2 ) ( u n v i s i t e d c3 ) )
( : goa l ( and ( v i s i t e d c1 ) ( v i s i t e d c2 ) ( v i s i t e d c3 ) ) )

)

(b) Problem file.

Figure 2.2: Example PDDL domain and problem files for TSP.

are ⊤ in the STRIPS formalism. An action visit is defined with two parameters, ?from and ?to,
which have the object type customer. Similarly to predicates, one grounded action is defined for
each combination of concrete objects. In this way, we need only one definition for multiple actions
having the same structure and can reuse the domain file for different instances with possibly different
numbers of objects. The preconditions of the action are predicates that must be included in a state,
e.g., (at ?from) and (unvisited ?to). The effects of actions are predicates added to or removed from
a state. In our example, (at ?to) and (visited ?to) are added and (unvisited ?to) and (at ?from) are
removed. The goal is a set of propositions that must be included in a state, defined in the problem
file.

While PDDL is a declarative modeling language, modeling libraries for AI planning such as
Tarski [143] and the Unified-Planning Library19 have been also developed. With these libraries, a
user can formulate a planning problem in Python and convert it to PDDL or related languages.

Design Philosophy of PDDL PDDL was originally developed for the First International Plan-
ning Competition (IPC) held in 1998 [308] to compare different AI planners using the same input.
The design philosophy of PDDL is ‘physics, not advice’ (McDermott [308], p.37):

every piece of a representation would be a necessary part of the specification of what
actions were possible and what their effects are. All traces of “hints” to a planning system
would be eliminated.

In contrast, in MIP and CP, a user has more freedom in modeling. In these paradigms, a user can
include information unnecessary to define a problem, such as valid inequalities in MIP, which poten-
tially improves the solving performance. Moreover, in CP, a user can select different representations
to describe the same constraints, e.g., defining a set of inequalities or using a global constraint.
Nevertheless, these approaches are still declarative model-based paradigms: redundant information
or structured representations of constraints are declarative, and a user does not program particular
solving algorithms in the model. The design philosophy of PDDL is justified for evaluating the
performance of domain-independent AI planners to solve planning problems. However, when used

19https://github.com/aiplan4eu/unified-planning



CHAPTER 2. LITERATURE REVIEW 27

as declarative problem-solving technologies for combinatorial optimization, the approaches of MIP
and CP, where a user can investigate different models to improve the solving performance, can have
a significant advantage.

We note that there were some attempts to increase the expressive power of PDDL such as
Functional STRIPS [159, 142] and Planning Modulo Theories [186]. Closely related to AI planning,
Hernádvölgyi, Holte, and Walsh [207] proposed PSVN, a language to define a state space search
problem. PSVN automatically generates a heuristic function for heuristic search based on its state
representation using a fixed length vector of discrete values. However, none of these approaches were
designed for combinatorial optimization.

Extensions of PDDL and Related Langauges Multiple extensions of PDDL or modeling
languages inspired by PDDL were developed for different classes of AI planning problems, most of
which were motivated by IPCs.20 The original PDDL is for classical planning. PDDL2.1 [140] is
an extension of PDDL for numeric and temporal planning, developed for the third IPC in 2002.
PDDL2.1 was later extended to PDDL2.2 [113] and PDDL3 [163] for the fourth and fifth IPCs in
2004 and 2006. PPDDL [444] is an extension of PDDL2.1 for probabilistic planning developed for
the fourth IPC. There are other extensions of PDDL such as HDDL for hierarchical planning [224],
MA-PDDL for multi-agent planning [420], and PDDL+ to handle external processes and events. In
contrast to extensions of PDDL, Relational Dynamic Influence Diagram Language (RDDL) [375] is
designed for MDPs from scratch and has been used for the probabilistic planning tracks of the IPCs
since 2011.

Domain-Independent AI Planners

We describe two approaches for domain-independent AI planners: heuristic search and compilation-
based planners.

Heuristic Search Planners Many planners that participated in the classical planning tracks of
the past IPCs are based on heuristic search [48, 213, 354, 295, 154, 428, 419]. In these planners,
heuristic search solves a planning problem by finding a path from the initial state to a goal state in
the state transition graph, where nodes correspond to states, and edges correspond to actions. The
planners automatically obtain heuristic functions from PDDL representations. For example, the FF
heuristic [213] uses the length of a plan for the delete relaxation [48] of the planning problem as a
heuristic value. In the delete relaxation, delete effects, i.e., effects that assign ⊥ to state variables
in STRIPS, are ignored. The delete relaxation was extended to more general classes of planning
problems such as numeric planning [212, 379, 380] and temporal planning [86, 85]. Abstraction is
another approach to obtain heuristic functions, typically used in optimal planning [112, 193, 242,
204, 386]. An abstraction heuristic creates a relaxed problem by mapping multiple states to the
same abstract state and obtains the heuristic value by solving the relaxed problem. For example, a
pattern database heuristic [112, 193] maps a state to an abstract state by ignoring a subset of state
variables. Then, it computes the optimal plan cost from each abstract state to an abstract goal state
and stores the results in a table. During search, the heuristic maps a state to an abstract state and
uses the optimal plan cost as the heuristic value, which is obtained by a table lookup.

20https://www.icaps-conference.org/competitions/



CHAPTER 2. LITERATURE REVIEW 28

In terms of software, the Fast Downward planning system [203], which is based on heuristic
search, was used by many classical planners that participated in IPCs [154, 428, 419]. In addition,
it was extended to numeric planning [6] and temporal planning [128]. The Lightweight Automated
Planning Toolkit (LAPKT) [351], another AI planning framework based on heuristic search, was
also used by a winning classical planner in IPC 2018 [295]. All of these systems are open-source.

Compilation-Based Planners A competitive approach to heuristic search is to compile a plan-
ning problem into another problem and use an off-the-shelf solver. For example, SAT was used for
classical planning [243, 247, 244, 245, 362, 366, 73, 220, 360, 223], and satisfiability modulo theories
(SMT) was used for numeric planning [381, 286, 63] and temporal planning [361, 333]. From math-
ematical programming, MIP was used for classical planning [246, 438, 430] and numeric planning
[340, 265], and mixed-integer nonlinear programming was used for probabilistic planning [172]. CP
was used for classical planning [91, 106, 297, 20, 185, 166, 12] and temporal planning [435, 156].

Connections Between Domain-Independent AI Planning and DP

There is a clear connection between AI planning and DP: both approaches are based on state-based
representations. Indeed, heuristic search can be used for both AI planning and DP as we described
in Section 2.2.9. In this section, we discuss two additional topics: DP in heuristic functions and DP
for probabilistic planning.

DP in Heuristic Functions Some heuristic functions for AI planning are related to DP. For
example, the max heuristic [48], the additive heuristic [48], and the hm heuristic [194] for classical
planning are based on Bellman-equations to compute approximated costs to achieve goal conditions.
These heuristic functions are computed by algorithms based on the Bellman-Ford algorithm or
Dijkstra’s algorithm [48, 296, 250]. As mentioned in Section 2.2.9, Holte and Fan [214] discussed
the similarity between abstraction heuristic functions in AI planning [193, 204, 386] and state space
relaxation in DP [76, 1, 144, 46, 357, 355, 183, 16, 17, 365]. Similar to abstraction, Castro et al. [66]
developed heuristic functions using relaxed DDs.

DP for Probabilistic Planning Since probabilistic planning is formulated as an MDP, DP al-
gorithms such as value iteration and policy iteration can be used as mentioned in Sections 2.2.1 and
2.2.2. Indeed, planners based on DP algorithms such as real-time dynamic programming (RTDP)
[21], stochastic planning using decision diagrams (SPUDD) [211], and symbolic dynamic program-
ming (SDP) [52, 376] participated in the probabilistic planning tracks of IPCs. In particular, SDP
is specifically designed for first-order MDPs, where states and actions are defined by predicates and
objects as in PDDL. The number of states in such an MDP increases as the number of objects
increases, which makes computing the value function impractical. Instead of considering each state
using grounded predicates and actions, SDP aggregates multiple states that satisfy the same set of
conditions. Then, SDP learns the value function of aggregated states using ungrounded predicates
and actions.



CHAPTER 2. LITERATURE REVIEW 29

2.4 Model-Based Dynamic Programming

While some prior studies used DP as a model-based framework, they are insufficient to be a practical
model-based DP paradigm for combinatorial optimization in some aspects. We review four research
directions studied by previous work: theoretical formalisms for DP, DP with logic programming,
model-based DP software, and DD solvers.

2.4.1 Theoretical Formalisms for Dynamic Programming

Some problem-independent formalisms for DP have been developed, but they were studied mainly
for theoretical purposes and were not actual modeling languages. In their seminal work, Karp and
Held [241] introduced sequential decision process (sdp), a problem-independent formalism for DP
based on a finite state automaton. However, their main purpose is to use DP algorithms without
DP modeling: while they used sdp to develop DP algorithms problem-independently, they noted
that “In many applications, however, the state-transition representation is not the most natural
form of problem statement” and thus introduced discrete decision process, a formalism to describe
a combinatorial optimization problem, from which sdp is derived. This line of research was further
investigated by subsequent work [201, 228, 227, 229, 226, 225, 263, 305]. In particular, Kumar and
Kanal [263] proposed the composite decision process, a theoretical formalism based on context-free
grammar, as a unified framework for DP, heuristic search, and branch-and-bound.

2.4.2 Dynamic Programming with Logic Programming

A technique called tabling [42, 415] in logic programming [260] can be viewed as declarative DP
modeling and solving, but it is not designed for combinatorial optimization. In logic programming,
a program describes specifications of computational results using logical formulas and rules. For
example, a program can specify that a predicate reachable(X, Y) is satisfied by X and Y if there
exists Z such that reachable(X, Z) and reachable(Z, Y). If logical formulas reachable(a, b) and reach-
able(b, c) are defined in the program, the program can reason that reachable(a, c) holds. Since
such reasoning requires recursively evaluating the predicate, possibly multiple times with the same
arguments, tabling stores the evaluation results in memory and reuses them to speed up reasoning.
In particular, Dyna is a declarative programming language for DP based on logic programming and
tabling, designed for natural language processing and machine learning [121, 437]. In functional
programming, similarly to tabling, Norvig [327] developed a technique to automate memoization in
LISP. While these approaches were not for optimization, some researchers combined tabling with
branch-and-bound (Section 2.2.6). For example, Puchinger and Stuckey [348] extended Prolog so
that a user can define bounds on the objective function with a recursive DP formulation. Picat
[449], a logic programming language hybridized with MIP, CP, AI planning, SAT, and SMT, imple-
ments algorithms for AI planning by combining tabling and branch-and-bound. However, all these
approaches still cannot model dominance (Section 2.2.5) since tabling can reuse the evaluation result
only when given arguments exactly match previously evaluated arguments.



CHAPTER 2. LITERATURE REVIEW 30

2.4.3 Model-Based Dynamic Programming Software

Software frameworks for model-based DP were developed by previous work, but they were impractical
for combinatorial optimization or designed for different application fields. DP2PNSolver [288] takes a
DP model coded in a Java-style language, gDPS, as input and compiles it to program code, e.g., Java
code. It first transforms the DP model into a graphical representation to identify the topological
order of states and then generates a program to perform bottom-up computation (Section 2.2.3)
following the order. DP2PNSolver does not use dominance nor bounding, which can be inefficient for
combinatorial optimization. Algebraic dynamic programming (ADP) [167] is a software framework
to formulate a DP model using context-free grammar. It was designed for bioinformatics and was
originally limited to DP models where a state is described by a string. While ADP has been extended
to describe a state using data structures such as a set, it is still focused on bioinformatics applications
[454]. For optimal control, general-purpose DP solvers were developed as libraries in MATLAB [411,
314].

2.4.4 Decision Diagram Solvers

In existing work, the approach closest to a general-purpose DP solver for combinatorial optimization
is ddo [171], a general-purpose solver using DD-based branch-and-bound (Section 2.2.8). However,
modeling in ddo is specific to DD-based branch-and-bound, and thus it is a DD solver rather than
a DP solver. Ddo provides modeling interfaces as libraries in Rust and Python. In either of the
modeling libraries, the user formulates a DP model by defining classes (or structs in Rust) satisfying
particular interfaces defined in the library. In addition, ddo requires a user to provide a merging
operator to construct relaxed DDs and a ranking operator to select states to merge in relaxed DDs
and states to remove in restricted DDs. These operators are specific to DD-based branch-and-bound.
In contrast, existing model-based paradigms such as MIP and CP do not require information more
than necessary to define a problem, while their general-purpose solvers can exploit it if provided.
Thus, ddo is closer to the approach of CBLS, which requires a user to provide information specific
to the solving algorithm.

2.5 Summary

We have reviewed the literature related to domain-independent dynamic programming (DIDP) from
three perspectives: methodologies for dynamic programming (DP), model-based paradigms, and
model-based DP. We introduced DP algorithms to solve problems defined with a Bellman equa-
tion. While basic algorithms only depend on the Bellman equation, some algorithms speed up the
solving process by exploiting additional information: dominance, bounds, merging operators, and
heuristic functions. We also discussed existing model-based paradigms, focusing on mixed-integer
programming (MIP), constraint programming (CP), and domain-independent artificial intelligence
(AI) planning. Modeling in MIP and CP is based on decision variables and constraints, which is
fundamentally different from DP, while there are some connections between these paradigms and
DP. In contrast, domain-independent AI planning is similar to DP in its state-based modeling, but
unlike MIP and CP, its modeling language is not designed to include redundant information, such
as dominance and bounds. We reviewed existing model-based DP approaches, but they are not



CHAPTER 2. LITERATURE REVIEW 31

designed for combinatorial optimization or have restrictions in their modeling capabilities. Overall,
existing approaches are insufficient to be a practical model-based DP paradigm for combinatorial
optimization.



Chapter 3

Modeling Formalism and Language

In this chapter, we introduce Dynamic Programming Description Language (DyPDL), a modeling
formalism for domain-independent dynamic programming (DIDP). For software implementations,
we propose YAML-DyPDL, a practical modeling language for DyPDL. DyPDL is based on a state
transition system, inspired by artificial intelligence (AI) planning formalisms such as STRIPS [137]
and SAS+ [13], but we also follow the operations research (OR) approach of incorporating implied
and redundant information in a model. In particular, differently from AI planning languages such
as Planning Domain Definition Language (PDDL) [164], YAML-DyPDL is designed to allow a
user to incorporate such information. This design is motivated by existing problem-specific DP
algorithms in OR, which exploit redundant information to achieve better performance [109, 152,
153, 357, 355]. YAML-DyPDL provides problem- and solver-independent features to declaratively
incorporate such knowledge into a DyPDL model. We demonstrate that dynamic programming
(DP) models including redundant information can be formulated in DyPDL in practice using eleven
combinatorial optimization problem classes.

In Section 3.1, we define DyPDL and present its theoretical properties including its computational
complexity. In Section 3.2, we introduce YAML-DyPDL. In Section 3.3, we show DyPDL models for
the combinatorial optimization problems studied. Finally, Section 3.4 summarizes the contributions
of this chapter.

The work in this chapter is based on a paper currently under review in Artificial Intelligence
[266], which extends two papers published in the Proceedings of the International Conference on
Automated Planning and Scheduling [267, 270].

3.1 Dynamic Programming Description Language (DyPDL)

DyPDL is a solver-independent formalism to define a DP model. In DyPDL, a problem is described
by states and transitions between states, and a solution corresponds to a sequence of transitions
satisfying particular conditions. A state is a complete assignment to state variables.

Definition 1. A state variable is either an element, set, or numeric variable. An element variable
v has domain Dv = Z+

0 (nonnegative integers). A set variable v has domain Dv = 2Z
+
0 (sets of

nonnegative integers). A numeric variable v has domain Dv = Q (rational numbers).

32



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 33

Definition 2. Given a set of state variables V = {v1, ..., vn}, a state is a tuple of values S =

(d1, ..., dn) where di ∈ Dvi for i = 1, ..., n. We denote the value di of variable vi in state S by S[vi].

A state can be transformed into another state by changing the values of the state variables. To
describe such changes, we define expressions: functions returning a value given a state.

Definition 3. An element expression e is a function that maps a state S to a nonnegative integer
e(S) ∈ Z+

0 . A set expression e is a function that maps a state S to a set e(S) ∈ 2Z
+
0 . A numeric

expression e is a function that maps a state S to a numeric value e(S) ∈ Q. A condition c is a
function that maps a state S to a boolean value c(S) ∈ {⊥,⊤}. We denote c(S) = ⊤ by S |= c and
c(S) = ⊥ by S ̸|= c. For a set of conditions C, we denote ∀c ∈ C, S |= c by S |= C and ∃c ∈ C, S ̸|= c

by S ̸|= C.

With the above expressions, we formally define transitions, which transform one state into an-
other.

Definition 4. A transition τ is a 4-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ where effτ is the effect, costτ is
the cost expression, preτ is the set of preconditions, and forcedτ ∈ {⊥,⊤}.

• The effect effτ maps a state variable v to an expression effτ [v]. An element, set, or numeric
variable must be mapped to an element, set, or numeric expression, respectively.

• The cost expression costτ is a function that maps a numeric value x ∈ Q and a state S to a
numeric value costτ (x, S) ∈ Q.

• A precondition in preτ is a condition.

• If forcedτ = ⊤, τ is a forced transition.

The preconditions of a transition define when we can use it. A forced transition is a transition
that must be used if its preconditions are satisfied, ignoring other transitions. Forced transitions
must be totally ordered so that only one is used when a state satisfies the preconditions of multiple
forced transitions. We give a formal definition of the applicability of transitions using preconditions
and forced transitions.

Definition 5 (Applicability). Given a set of transitions T and a total order⪯t over forced transitions
in T , the set of applicable transitions T (S) in a state S is defined as follows:

T (S) =

{τ ∈ Tf (S) | ∀τ ′ ∈ Tf (S), τ ⪯t τ ′} if Tf (S) ̸= ∅

{τ ∈ T | S |= preτ} if Tf (S) = ∅.

where Tf (S) = {τ ∈ T | S |= preτ ∧ forcedτ}.

With forced transitions, a user may formulate a more efficient model for a solver through, for
example, symmetry breaking [153]. As an intuitive example for symmetry breaking using forced
transitions, we use a DyPDL model for bin packing [306], which is formally defined later in Sec-
tion 3.3.5. In this problem, we minimize the number of bins to pack a set of weighted items, where
all bins have the same capacity. In the DyPDL model, a transition packs one item into the current
bin or opens a new bin when no item can be packed. We can pack any item as the first item in a



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 34

new bin without loss of optimality, so it is sufficient to consider only one case where an arbitrary
item is packed. To model this symmetry breaking, for each item, we define a forced transition that
opens a new bin and packs the item with minimum index, by specifying forced transitions ordered
in the ascending order of the indices of the items.

We also define the changes in the state variables using the effect of a transition.

Definition 6 (State transition). Given a state S and a transition τ , the successor state S[[τ ]], which
results from applying τ to S, is defined as S[[τ ]][v] = effτ [v](S) for each variable v. For a sequence
of transitions σ = ⟨σ1, ..., σm⟩, the state S[[σ]], which results from applying σ to S, is defined as
S[[σ]] = S[[σ1]][[σ2]]...[[σm]]. If σ is an empty sequence, i.e., σ = ⟨⟩, S[[σ]] = S.

We introduce notation for a sequence of transitions σ = ⟨σ1, ..., σm⟩ here.

• We denote the length of σ by |σ| = m.

• We denote the i-th transition of σ by σi.

• We denote the first i transitions of σ by σ:i = ⟨σ1, ..., σi⟩ where σ:0 = ⟨⟩.

• We denote the last m− i+ 1 transitions by σi: = ⟨σi, ..., σm⟩ where σm+1: = ⟨⟩.

• We denote the i-th to j-th transitions of σ by σi:j = ⟨σi, ..., σj⟩ where 1 ≤ i ≤ j ≤ m.

• Given a transition τ , we denote the concatenation of σ and τ by ⟨σ; τ⟩ = ⟨σ1, ..., σm, τ⟩.
Similarly, ⟨τ ;σ⟩ = ⟨τ, σ1, ..., σm⟩.

• Given a sequence of transitions σ′ = ⟨σ′
1, ..., σ

′
m′⟩, we denote the concatenation of σ and σ′

by ⟨σ;σ′⟩ = ⟨σ1, ..., σm, σ′
1, ..., σ

′
m′⟩. We denote the concatenation of multiple sequences σj

for j = 1, ..., n by ⟨σ1; ...;σn⟩. We also denote the concatenation of multiple sequences with a
transition τ added after the j-th sequence by ⟨σ1; ...;σj ; τ ;σj+1; ...;σn⟩.

While Definitions 5 and 6 are related to preconditions, forced transitions, and effects, another
component, the cost expression, has not been used thus far. Since it is used to define the cost of a
solution for a DyPDL model, we will use it once we define a DyPDL model in Definition 7 and an
optimization problem in Definition 10.

Definition 7. A DyPDL model is a tuple ⟨V, S0, T ,B, C⟩, where V is the set of state variables, S0

is a state called the target state, T is the set of transitions, B is the set of base cases, and C is the
set of state constraints.

• Forced transitions in T are totally ordered.

• A base case B ∈ B is a tuple ⟨CB , costB⟩, where CB is a set of conditions and costB is a
numeric expression.

• A state constraint in C is a condition.

A state S is a base state if ∃B ∈ B, S |= CB ∪ C.

Intuitively, the target state is the start of the state transition system, and a base state is a goal.
State constraints are constraints that must be satisfied by all states. We are interested in the set of
states reachable from the target state by applying transitions in the state transition system.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 35

Definition 8 (Reachability). Given a DyPDL model ⟨V, S0, T ,B, C⟩, a state S, and a sequence of
transitions σ with m = |σ| ≥ 1, the state S[[σ]] is reachable from S with σ if the following conditions
are satisfied:

• All transitions are applicable, i.e., σi+1 ∈ T (S[[σ:i]]) for i = 0, ...,m− 1.

• All intermediate states do not satisfy a base case, i.e., S[[σ:i]] ̸|= CB for i = 0, ...,m− 1 for any
base case B ∈ B.

• All intermediate states satisfy the state constraints, i.e., S[[σ:i]] |= C for i = 0, ...,m− 1.

Similarly, we say that S[[τ ]] is reachable from S with a transition τ if τ is applicable in S, S is not a
base state, and S satisfies the state constraints. For states S and S′, if there exists σ such that S′

is reachable from S with σ, we say that S′ is reachable from S. If a state S is reachable from the
target state S0, we say that S is reachable or S is a reachable state. In addition, we define that S0

is reachable.

In the above definition, intermediate states S[[σ:i]] for i = 1, ...,m − 1 need to satisfy state
constraints, but a reachable state S[[σ]] itself may violate them. However, such a reachable state is
a dead end, i.e., no state is reachable from it. The reachability relation is transitive, as shown in
Lemma 1.

Lemma 1 (Transitivity of reachability). Given a DyPDL model, if state S′ is reachable from state
S with σ, and a state S′′ is reachable from S′ with σ′, then S′′ is reachable from S with ⟨σ;σ′⟩.

Proof. Since S′′ is reachable from S′, S′ is not a base state and satisfies the state constraints. Since
S[[σ]] = S′, ⟨σ;σ′⟩ makes S transition to S′′ while satisfying the conditions in Definition 8. Thus,
the lemma is proved.

With the reachability, we define the notion of a solution for a DyPDL model. Intuitively, a
solution is a sequence of transitions that transforms the target state into a base state.

Definition 9. Given a DyPDL model ⟨V, S0, T ,B, C⟩, let σ be a sequence of transitions. Then, σ is
an S-solution if S[[σ]] is a base state and reachable from S with σ. For a base state S, we define an
empty sequence ⟨⟩ to be an S-solution. An S0-solution, i.e., a solution starting from the target state,
is a solution for the DyPDL model. If a model has a solution, the model is feasible. Otherwise, the
model is infeasible.

We consider finding a solution that maximizes or minimizes the cost over all solutions, computed
from base cases and cost expressions.

Definition 10 (Optimization problems with DyPDL). Given a DyPDL model ⟨V, S0, T ,B, C⟩, a
minimization (maximization) problem is to find an optimal solution for the model. An optimal S-
solution for minimization (maximization) is an S-solution with its cost less (greater) than or equal
to the cost of any S-solution. For minimization, the cost of an S-solution σ is defined recursively as

costσ(S) =


min

B∈B:S|=CB

costB(S) if σ = ⟨⟩

costσ1(costσ2:(S[[σ1]]), S) else.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 36

For maximization, we define the cost of the S-solution by replacing min with max. An optimal
solution for the minimization (maximization) problem is an optimal S0-solution for minimization
(maximization).

Intuitively, the term x in the cost expression costτ (x, S) represents the cost of the successor state.
The cost of the solution depends on whether the problem is maximization or minimization; we take
the best one according to the optimization direction when multiple base cases are satisfied. Note
that an optimal solution does not necessarily exist. For example, if the set of reachable states is
infinite in a maximization problem, we may construct a better solution than any given solution by
adding transitions.

3.1.1 Complexity

We have defined expressions as functions of states and have not specified further details. Therefore,
the complexity of an optimization problem with a DyPDL model depends on the complexity of
evaluating expressions. In addition, for example, if we have an infinite number of preconditions,
evaluating the applicability of a single transition may not terminate in finite time. Given these
facts, we consider the complexity of a model whose definition is finite.

Definition 11. A DyPDL model is finitely defined if the following conditions are satisfied:

• The numbers of the state variables, transitions, base cases, and state constraints are finite.

• Each transition has a finite number of preconditions.

• Each base case has a finite number of conditions.

• All the effects, the cost expression, the preconditions of the transitions, the conditions and the
costs of the base cases, and the state constraints can be evaluated in finite time.

Even with this restriction, finding a solution for a DyPDL model is an undecidable problem. We
show this by reducing one of the AI planning formalisms, which is undecidable, into a DyPDL model.
We define a numeric planning task and its solution in Definitions 12 and 13 following Helmert [202].

Definition 12. A numeric planning task is a tuple ⟨VP , VN , Init,Goal,Ops⟩ where VP is a finite
set of propositional variables, VN is a finite set of numeric variables, Init is a state called the initial
state, Goal is a finite set of propositional and numeric conditions, and Ops is a finite set of operators.

• A state is defined by a pair of functions (α, β), where α : VP → {⊥,⊤} and β : VN → Q.

• A propositional condition is written as v = ⊤ where v ∈ VP . A state (α, β) satisfies it if
α(v) = ⊤.

• A numeric condition is written as f(v1, ..., vn) relop 0 where v1, ..., vn ∈ VN , f maps n numeric
variables to a rational number, and relop ∈ {=, ̸=, <,≤,≥, >}. A state (α, β) satisfies it if
f(β(v1), ..., β(vn)) relop 0.

An operator in Ops is a pair ⟨Pre,Eff⟩, where Pre is a finite set of conditions (preconditions),
and Eff is a finite set of propositional and numeric effects.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 37

• A propositional effect is written as v ← t where v ∈ VP and t ∈ {⊥,⊤}.

• A numeric effect is written as v ← f(v1, ..., vn) where v, v1, ..., vn ∈ VN and f maps n numeric
variables to a rational number.

All functions that appear in numeric conditions and numeric effects are restricted to functions
represented by arithmetic operators {+,−, ·, /}, but the divisor must be a non-zero constant.

The restriction to arithmetic operators {+,−, ·, /} is motivated by PDDL 2.1 [141], where func-
tions are described by these operators. Indeed, Definition 12 is a superset of commonly studied
formalisms such as simple numeric planning [380] and linear numeric planning [212] used in the
International Planning Competition 2023.1

Definition 13. Given a numeric planning task ⟨VP , VN , Init,Goal,Ops⟩, the state transition graph
is a directed graph where nodes are states and there is an edge ((α, β), (α′, β′)) if there exists an
operator ⟨Pre,Eff⟩ ∈ Ops satisfying the following conditions.

• (α, β) satisfies all conditions in Pre.

• α′(v) = t if v ← t ∈ Eff and α′(v) = α(v) otherwise.

• β′(v) = f(β(v1), ..., β(vn)) if v ← f(v1, ..., vn) ∈ Eff and β′(v) = β(v) otherwise.

A solution for the numeric planning task is a path from the initial state to a state that satisfies all
goal conditions in Goal in the state transition graph.

Helmert [202] showed that finding a solution for the above-defined numeric planning task is
undecidable. To show the undecidability of DyPDL, we reduce a numeric planning task into a
DyPDL model by replacing propositional variables with a single set variable.

Theorem 1. Finding a solution for a finitely defined DyPDL model is undecidable.

Proof. Let ⟨VP , VN , Init,Goal,Ops⟩ be a numeric planning task. We compose a DyPDL model as
follows:

• If VP ̸= ∅, we introduce a set variable P ′ in the DyPDL model. For each numeric variable
v ∈ VN in the numeric planning task, we introduce a numeric variable v′ in the DyPDL model.

• Let (α0, β0) = Init. We index propositional variables in VP using i = 0, ..., |VP | − 1 and
denote the i-th variable by ui. In the target state S0 of the DyPDL model, S0[P ′] = {i ∈
{0, ..., |VP | − 1} | α0(ui) = ⊤} and S0[v′] = β0(v) for each numeric variable v ∈ VN .

• We introduce a base case B = ⟨CB , 0⟩ in the DyPDL model. For each propositional condition
ui = ⊤ in Goal, we introduce a condition i ∈ S[P ′] in CB . For each numeric condition
f(v1, ..., vn) relop 0 in Goal, we introduce a condition f(S[v1], ..., S[vn]) relop 0 in CB .

• For each operator o = ⟨Pre,Eff⟩, we introduce a transition o′ = ⟨effo′ , costo′ , preo′ , forcedo′⟩
with costo′(x, S) = x+ 1 and forcedo′ = ⊥.

1https://ipc2023-numeric.github.io/



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 38

• For each propositional condition ui = ⊤ in Pre, we introduce i ∈ S[P ′] in preo′ . For each
numeric condition f(v1, ..., vn) relop 0 in Pre, we introduce f(S[v′1], ..., S[v

′
n]) relop 0 in

preo′ .

• Let Add = {i ∈ {0, ..., |VP | − 1} | ui ← ⊤ ∈ Eff} and Del = {i ∈ {0, ..., |VP | − 1} | ui ← ⊥ ∈
Eff}. We have effo′ [P

′](S) = (S[P ′] \ Del) ∪ Add. We have effo′ [v
′](S) = f(S[v′1], ..., S[v

′
n]) if

v ← f(v1, ..., vn) ∈ Eff and effo′ [v
′](S) = S[v′] otherwise.

• The set of state constraints is empty.

The construction of the DyPDL model is done in finite time. The numbers of propositional variables,
numeric variables, goal conditions, transitions, preconditions, and effects are finite. Therefore, the
DyPDL model is finitely defined.

Let σ = ⟨o′1, ..., o′m⟩ be a solution for the DyPDL model. Let Sj = S0[[σ:j ]] for j = 1, ...,m. Let
(αj , βj) be a numeric planning state such that αj(ui) = ⊤ if i ∈ Sj [P ′], αj(uj) = ⊥ if i /∈ Sj [P ′],
and βj(v) = Sj [v′]. Note that (α0, β0) = Init satisfies the above condition by construction. We
prove that the state transition graph for the numeric planning task has edge ((αj , βj), (αj+1, βj+1))

for j = 0, ...,m− 1, and (αm, βm) satisfies all conditions in Goal.
Let oj = (Prej ,Effj). Since o′j is applicable in Sj , for each propositional condition ui = ⊤

in Prej , the set variable satisfies i ∈ Sj [P ′]. For each numeric condition f(v1, ..., vn) relop 0 in
Prej , the numeric variables satisfy f(Sj [v′1], ..., S

j [v′n]) relop 0. By construction, αj(ui) = ⊤ for
i ∈ Sj [P ′] and f(βj(v1), ..., β

j(vn)) relop 0. Therefore, (αj , βj) satisfies all conditions in Prej .
Similarly, (αm, βm) satisfies all conditions in Goal since Sm satisfies all base cases.

Let Addj = {i ∈ {0, ..., |VP | − 1} | ui ← ⊤ ∈ Effj} and Delj = {i ∈ {0, ..., |VP | − 1} |
ui ← ⊥ ∈ Effj}. By construction, Sj+1[P ′] = (Sj [P ′] \ Delj) ∪ Addj . Therefore, for i with
ui ← ⊥ ∈ Effj , we have i /∈ Sj+1[P ′], which implies αj+1(ui) = ⊥. For i with ui ← ⊤ ∈ Effj , we have
i ∈ Sj+1[P ′], which implies αj+1(ui) = ⊤. For other i, i ∈ Sj+1[P ′] if i ∈ Sj [P ′] and i /∈ Sj+1[P ′] if
i /∈ Sj [P ′], which imply αj+1(ui) = αj(ui). For v with v ← f(v1, ..., vn) ∈ Effj , we have Sj+1[v′] =

f(Sj [v′1], ..., S
j [v′n]) = f(βj(v1), ..., β

j(vn)), which implies βj+1(v) = f(βj(v1), ..., β
j(vn)). For

other v, we have Sj+1[v′] = Sj [v′] = βj(v), which implies βj+1(v) = βj(v). Therefore, edge
((αj , βj), (αj+1, βj+1)) exists in the state transition graph.

Thus, by solving the DyPDL model, we can find a solution for the numeric planning task.
Since the numeric planning task is undecidable, finding a solution for a DyPDL model is also
undecidable.

While we used the numeric planning formalism in Definition 12, Helmert [202] and subsequent
work [174] proved undecidability for more restricted numeric planning formalisms such as subclasses
of a restricted numeric planning task, where functions in numeric conditions are linear, and numeric
effects increase or decrease a numeric variable only by a constant. We expect that these results can
be easily applied to DyPDL since our reduction is straightforward. Previous work also investigated
conditions with which a numeric planning task becomes more tractable, e.g., decidable or PSPACE-
complete [202, 399, 168]. We also expect that we can generalize such conditions to DyPDL. However,
in this dissertation, we consider typical properties in DP models for combinatorial optimization
problems.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 39

Definition 14. A DyPDL model is finite if it is finitely defined, and the set of reachable states is
finite.

Definition 15. A DyPDL model is acyclic if any reachable state is not reachable from itself.

If a model is finite, we can enumerate all reachable states and check if there is a base state in
finite time. If there is a reachable base state, and the model is acyclic, then there are a finite number
of solutions, and each solution has a finite number of transitions. Therefore, by enumerating all
sequences with which a state is reachable, identifying solutions, and computing their costs, we can
find an optimal solution in finite time.

Theorem 2. Given a finite and acyclic DyPDL model, the minimization or maximization problem
has an optimal solution, or the model is infeasible. A problem to decide if a solution whose cost is
less (greater) than a given rational number exists for minimization (maximization) is decidable.

3.1.2 Redundant Information

In AI planning, a model typically includes only information necessary to define a problem [164, 308].
In contrast, in OR, an optimization model often includes information implied by the other parts
of the model, e.g., valid inequalities in mixed-integer programming. Such information is redundant
but can be useful for a solver. While DyPDL is inspired by AI planning, we also value the OR
approach to solving application problems. With this motivation, we defined a forced transition in
DyPDL, which can be used to break symmetries. In addition, we consider redundant information
commonly used in problem-specific DP methods for combinatorial optimization problems. While
such information is typically exploited algorithmically in problem-specific DP methods, in DyPDL,
a user can declaratively provide it as a part of a model, and thus the domain-independence of DIDP
is not broken; a user needs to define only a mathematical model of a problem.

First, we define the notion of dominance. Intuitively, one state S dominates another state S′ if
S always leads to an as good or a better solution, and thus S′ can be ignored once we consider S. In
addition to this intuition, we require that S leads to a shorter solution; otherwise, we may discard
an S-solution that goes through S′ if S′ is dominated by S.

Definition 16 (Dominance). For the minimization problem with a DyPDL model, a state S dom-
inates another state S′, denoted by S′ ⪯ S, iff, for any S′-solution σ′, there exists an S-solution σ

such that costσ(S) ≤ costσ′(S′) and |σ| ≤ |σ′|. For maximization, we replace ≤ with ≥ in the first
inequality.

Our definition of dominance is inspired by simulation-based dominance in AI planning [418].
In that paradigm, S dominates S′ only if for each applicable transition τ ′ in S′, there exists an
applicable transition τ in S such that S[[τ ]] dominates S′[[τ ′]]. Also, if S dominates a base state S′

(a goal state in their terminology), S is also a base state. In addition to the original transitions,
simulation-based dominance adds a NOOP transition, which stays in the current state. In simulation-
based dominance, if we have an S′-solution, we also have S-solution with an equal number of
transitions (or possibly fewer transitions if we exclude NOOP). Therefore, intuitively, Definition 16
is a generalization of simulation-based dominance; a formal discussion is out of the scope of this
dissertation.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 40

Theorem 3. For the minimization or maximization problem with a DyPDL model, the dominance
relation is a preorder, i.e., the following conditions hold.

• S ⪯ S for a state S (reflexivity).

• S′′ ⪯ S′ ∧ S′ ⪯ S → S′′ ⪯ S for states S, S′, and S′′ (transitivity).

Proof. The first condition holds by Definition 16. For the second condition, for any S′′-solution
σ′′, there exists an equal or better S′-solution σ′ with |σ′| ≤ |σ′′|. There exists an equal or better
S-solution σ for σ′ with |σ| ≤ |σ′|. Therefore, the cost of σ is equal to or better than σ′′ with
|σ| ≤ |σ′′|.

In practice, it may be difficult to always detect if one state dominates another or not, and
thus an algorithm may focus on dominance that can be easily detected. We define an approximate
dominance relation to represent such a strategy.

Definition 17. For the minimization problem with a DyPDL model, an approximate dominance
relation ⪯a is a preorder over two states such that S′ ⪯a S → S′ ⪯ S for reachable states S and S′.

An approximate dominance relation is sound but not complete: it always detects the dominance
if two states are the same and may produce a false negative but never a false positive otherwise.

We also define a dual bound function, which underestimates (overestimates) the cost of a solution
in minimization (maximization). We assume that −∞ < x <∞ for any x ∈ Q.

Definition 18. For the minimization problem with a DyPDL model, a function η that maps a state
S to η(S) ∈ Q∪ {∞,−∞} is a dual bound function iff, for any reachable state S and any S-solution
σ, η(S) is a dual bound on costσ(S), i.e., η(S) ≤ costσ(S). For maximization, we replace ≤ with ≥.

A function that always returns −∞ (∞) for minimization (maximization) is trivially a dual bound
function. If there exists an S-solution σ for minimization, η(S) ≤ costσ(S) < ∞. Otherwise, η(S)
can be any value, including ∞. Thus, if a dual bound function can detect that an S-solution does
not exist, the function should return∞ to tell a solver that there is no S-solution. For maximization,
a dual bound function should return −∞ in such a case.

3.1.3 The Bellman Equation for DyPDL

Typically, a DP model is succinctly represented by a recursive equation called a Bellman equation
[27], and we can solve the model by solving the equation. Since DyPDL is a formalism for DP, we
explicitly make a connection to a Bellman equation. For DyPDL, we can use a Bellman equation
under certain conditions. First, the model should be finite and acyclic to avoid infinite recursion.2

Second, the cost expressions need to satisfy the Principle of Optimality [27]: if σ is an optimal
S-solution, σ2: is an optimal S[[σ1]]-solution.

Definition 19. Given a DyPDL model, consider any pair of a reachable state S and its successor
state S[[τ ]] with τ ∈ T (S) such that there exists an S-solution with σ1 = τ . A DyPDL model satisfies
the Principle of Optimality for minimization if for any pair of S[[τ ]]-solutions σ1 and σ2, it holds
that costσ1(S[[τ ]]) ≤ costσ2(S[[τ ]]) → cost⟨τ ;σ1⟩(S) ≤ cost⟨τ ;σ2⟩(S). For maximization, we replace ≤
with ≥.

2Even if a model contains cycles, we may still use a Bellman equation by considering a fixed point of the recursive
equation. However, we do not discuss it further in this dissertation.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 41

With the Principle of Optimality, we give the Bellman equation for a DyPDL model, defining
the value function V that maps a state to the optimal S-solution cost or ∞ (−∞) if an S-solution
does not exist in minimization (maximization).

Theorem 4 (Bellman equation). Consider the minimization problem with a finite and acyclic
DyPDL model ⟨V, S0, T ,B, C⟩ satisfying the Principle of Optimality. For each reachable state S,
there exists an optimal S-solution with a finite number of transitions, or there does not exist an
S-solution. Let V be a function of a state that returns ∞ if there does not exist an S-solution or
the cost of an optimal S-solution otherwise. Then, V satisfies the following equation:

V (S) =



∞ if S ̸|= C

min
B∈B:S|=CB

costB(S) else if ∃B ∈ B, S |= CB

min
τ∈T (S)

costτ (V (S[[τ ]]), S) else if ∃τ ∈ T (S), V (S[[τ ]]) <∞

∞ else.

(3.1)

For maximization, we replace ∞ with −∞ and min with max.

Proof. Since the model is acyclic, we can define a partial order over reachable states where S precedes
its successor state S[[τ ]] if τ ∈ T (S). We can sort reachable states topologically according to this
order. Since the set of reachable states is finite, there exists a state that does not precede any
reachable state. Let S be such a state. Then, one of the following holds: S ̸|= C, S is a base state,
or T (S) = ∅ by Definition 8. If S ̸|= C, there does not exist an S-solution and V (S) =∞, which is
consistent with the first line of Equation (3.1). If S satisfies a base case, since the only S-solution
is an empty sequence by Definition 9, V (S) = minB∈B:S|=CB

costB(S), which is consistent with the
second line of Equation (3.1). If S is not a base state and T (S) = ∅, then there does not exist an
S-solution and V (S) =∞, which is consistent with the fourth line of Equation (3.1).

Assume that for each reachable state S[[τ ]] preceded by a reachable state S in the topological
order, one of the following conditions holds:

1. There does not exist an S[[τ ]]-solution, i.e., V (S[[τ ]]) =∞.

2. There exists an optimal S[[τ ]]-solution with a finite number of transitions with cost V (S[[τ ]]) <

∞.

If the first case holds for each τ ∈ T (S), there does not exist an S-solution, and V (S) = ∞. Since
V (S[[τ ]]) = ∞ for each τ , V (S) = ∞ is consistent with the fourth line of Equation (3.1). The first
case of the assumption also holds for S. If the second case holds for some τ , there exists an optimal
S[[τ ]]-solution with a finite number of transitions and the cost V (S[[τ ]]) < ∞. For any S-solution σ

starting with τ = σ1, by Definition 19,

costσ(S) = costτ (costσ2:
(S[[τ ]]), S) ≥ costτ (V (S[[τ ]]), S),

and we can construct a better or equal S-solution than σ by concatenating τ and an optimal S[[τ ]]-
solution with a finite number of transitions. By considering all possible τ ,

V (S) = min
τ∈T (S)

costτ (V (S[[τ ]]), S),



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 42

which is consistent with the third line of Equation (3.1). The second case of the assumption also
holds for S. We can prove the theorem by mathematical induction. The proof for maximization is
similar.

We can represent the redundant information, i.e., the dominance relation and a dual bound
function, using the value function of the Bellman equation.

Theorem 5. Given a finite and acyclic DyPDL model satisfying the Principle of Optimality, let V
be the value function of the Bellman equation for minimization. Given an approximate dominance
relation ⪯a, for reachable states S and S′,

V (S) ≤ V (S′) if S′ ⪯a S. (3.2)

For maximization, we replace ≤ with ≥.

Proof. For reachable states S and S′ with S′ ⪯a S, assume that there exist S- and S′-solutions.
Then, V (S) (V (S′)) is the cost of an optimal S-solution (S′-solution). By Definition 16, for minimiza-
tion, an optimal S-solution has a smaller cost than any S′-solution, so V (S) ≤ V (S′). If there does
not exist an S-solution, by Definition 16, there does not exist an S′-solution, so V (S) = V (S′) =∞.
If there does not exist an S′-solution, V (S) ≤ V (S′) =∞. The proof for the maximization problem
is similar.

Theorem 6. Given a finite and acyclic DyPDL model satisfying the Principle of Optimality, let V
be the value function of the Bellman equation for minimization. Given a dual bound function η, for
a reachable state S,

V (S) ≥ η(S). (3.3)

For maximization, we replace ≥ with ≤.

Proof. For a reachable state S, if there exists an S-solution, the cost of an optimal S-solution is
V (S). By Definition 18, η(S) is a lower bound of the cost of any S-solution, so η(S) ≤ V (S).
Otherwise, η(S) ≤ V (S) =∞. The proof for maximization is similar.

3.2 YAML-DyPDL: A Practical Modeling Language

As a practical modeling language for DyPDL, we propose YAML-DyPDL on top of a data serial-
ization language, YAML 1.2.3 YAML-DyPDL is inspired by PDDL in AI planning [164]. However,
in PDDL, while a model typically contains only information necessary to define a problem, YAML-
DyPDL allows a user to explicitly model redundant information, i.e., implications of the definition.
Such is the standard convention in OR and is commonly exploited in problem-specific DP algorithms
for combinatorial optimization (e.g., Dumas et al. [109]). In particular, in YAML-DyPDL, a user
can explicitly define an approximate dominance relation (Definition 17) and dual bound functions
(Definition 18).

In the DyPDL formalism, expressions and conditions are defined as functions. In a practical
implementation, the kinds of functions that can be used as expressions are defined by the syntax

3https://yaml.org/



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 43

of a modeling language. In YAML-DyPDL, for example, arithmetic operations (e.g., addition,
subtraction, multiplication, and division) and set operations (e.g., adding an element, removing an
element, union, intersection, and difference) using state variables can be used. We give an example
of YAML-DyPDL here and present a detailed description of the syntax in Appendix A.1.

3.2.1 Example

As a running example of a combinatorial optimization problem, we use the traveling salesperson
problem with time windows (TSPTW) [377]. In TSPTW, a set of customers N = {0, ..., n − 1}
is given. A solution is a tour starting from the depot (index 0), visiting each customer exactly
once, and returning to the depot. Visiting customer j from i incurs the travel time cij ≥ 0. In
the beginning, t = 0. The visit to customer i must be within a time window [ai, bi]. Upon earlier
arrival, waiting until ai is required. The objective is to minimize the total travel time. TSPTW is
a generalization of the traveling salesperson problem (TSP), which does not consider time windows.
Since TSP is strongly NP-hard [334], TSPTW is also strongly NP-hard. Moreover, finding a feasible
solution for TSPTW is known to be NP-complete [377].

First, we present the Bellman equation of a DP model for TSPTW based on Dumas et al. [109].
In this model, a state is a tuple of variables (U, i, t), where U is the set of unvisited customers, i is
the current location, and t is the current time. The value function V maps a state to the optimal
cost of visiting all customers in U and returning to the depot starting from i at time t. At each
step, we consider visiting one of the unvisited customers. We use c∗ij as the shortest travel time
from i to j ignoring time window constraints, which can be replaced with cij when the triangle
inequality holds or precomputed otherwise. Also, we use the minimum travel time to customer j,
cinj = mink∈N\{j} ckj , and the minimum travel time from j, cout

j = mink∈N\{j} cjk. The DP model
is represented by the following Bellman equation:

compute V (N \ {0}, 0, 0) (3.4)

V (U, i, t) =



∞ if ∃j ∈ U, t+ c∗ij > bj

ci0 else if U = ∅

min
j∈U :t+cij≤bj

cij + V (U \ {j}, j,max{t+ cij , aj}) else if ∃j ∈ U, t+ cij ≤ bj

∞ else

(3.5)

V (U, i, t) ≤ V (U, i, t′) if t ≤ t′ (3.6)

V (U, i, t) ≥ max

 ∑
j∈U∪{0}

cinj ,
∑

j∈U∪{i}

cout
j

 . (3.7)

Objective (3.4) declares that the optimal cost is V (N \ {0}, 0, 0), the cost to visit all customers
starting from the depot with t = 0. In Equation (3.5), the second line describes a base case of the
recursion, where all customers are visited. In such a case, the cost is defined to be the travel time
to return to the depot. The third line corresponds to visiting customer j from i. If j is visited, j is
removed from U , the current location i is updated to j, and t is updated to the maximum of t+ cij

and the beginning of the time window aj . If no customer can be visited before the deadline, the
state does not lead to a solution, represented by V (U, i, t) = ∞ in the fourth line. The first line of



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 44

Table 3.1: DyPDL representation of the DP model for TSPTW.

State variable in V Type Target state S0

U set N \ {0}
i element 0
t numeric 0

Transition τ in T effτ costτ (x, S) preτ forcedτ

Visit j
effτ [U ](S) = S[U ] \ {j} cS[i],j + x j ∈ S[U ] ⊥
effτ [i](S) = j S[t] + cS[i],j ≤ bj
effτ [t](S) = max{S[t] + cS[i],j , aj}

Base cases B {⟨{S[U ] = ∅}, cS[i],0⟩}
State constraints C {∀j ∈ S[U ], S[t] + c∗S[i],j ≤ bj}
Dominance S′ ⪯ S if S[t] ≤ S′[t]

Dual bound η max

{ ∑
j∈S[U]∪{0}

cinj ,
∑

j∈S[U]∪{S[i]}
cout
j

}

Equation (3.5) states that if there exists a customer j that cannot be visited by the deadline bj even
if we use the shortest path with travel time c∗ij , then the state does not lead to a solution. This
equation is actually implied by the other lines. However, explicitly defining it can help a solver to
detect infeasibility earlier. Inequality (3.6) defines an approximate dominance relation between two
states: if the set of unvisited customers U and the current location i are the same in two states, a
state having smaller t leads to a better solution. This inequality is also implied by Equation (3.5)
but can be useful for a solver. Indeed, Dumas et al. [109] exploited the first line of Equation (3.5)
and Inequality (3.6) in their DP method in algorithmic ways. Here, we show them declaratively with
the Bellman equation. Note that the dominance implied by Inequality (3.6) satisfies Definition 16
since we need to visit the same number of customers, |U |, in both states (U, i, t) and (U, i, t′).
Inequality (3.7) is a dual bound function of V . The cost of a state can be underestimated by the
sum of the minimum travel time to visit each unvisited customer and the depot (the first term).
Similarly, the cost can be underestimated by the sum of the minimum travel time from each unvisited
customer and the current location (the second term). This dual bound function was not used by
Dumas et al. [109].

In a DyPDL model, Objective (3.4) is defined by the target state. The first line of Equation (3.5)
is defined by a state constraint, the second line is defined by a base case, and the third line is defined
by transitions. In addition, the approximate dominance relation is defined by resource variables,
and the dual bound function is also explicitly defined in the model. We show the description of the
DP model in DyPDL in Table 3.1.

Now, we present how the DyPDL model in Table 3.1 is described by YAML-DyPDL. Following
PDDL, we require two files, a domain file and a problem file, to define a DyPDL model. A domain
file describes a class of problems by declaring state variables and constants and defining transitions,
base cases, and dual bound functions using expressions. In contrast, a problem file describes one
problem instance by defining information specific to that instance, e.g., the target state and the
values of constants.

Figure 3.1 shows the domain file for the DyPDL model of TSPTW. The domain file is a map in
YAML, which associates keys with values. In YAML, a key and a value are split by :. Keys and
values can be maps, lists of values, strings, integers, and floating-point numbers. A list is described
by multiple lines starting with -, and each value after - is an element of the list. In YAML, we can



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 45

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : t
type : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : a

type : i n t e g e r
a r g s :

− customer
− name : b

type : i n t e g e r
a r g s :

− customer
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c s t a r
type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : i n t e g e r
a r g s :

− customer
− name : cout

type : i n t e g e r
a r g s :

− customer

t r a n s i t i o n s :
− name : v i s i t

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
t : (max (+ t ( c i j ) ) ( a j ) )

c o s t : (+ ( c i j ) c o s t )
p r e c o n d i t i o n s :

− (<= (+ t ( c i j ) ) ( b j ) )
c o n s t r a i n t s :

− c o n d i t i o n : (<= (+ t ( c s t a r i j ) ) ( b j ) )
f o r a l l :

− name : j
o b j e c t : U

base_cases :
− c o n d i t i o n s :

− ( is_empty U)
co s t : ( c i 0)

dual_bounds :
− (+ (sum c i n U) ( c i n 0 ) )
− (+ (sum cout U) ( cout i ) )

r educe : min

Figure 3.1: YAML-DyPDL domain file for TSPTW.

also use a JSON-like syntax,4 where a map is described as { key_1: value_1, ..., key_n: value_n },
and a list is described as [value_1, ..., value_n].

The first line defines key cost_type and its value integer, meaning that the cost of the DyPDL
model is computed in integers. While the DyPDL formalism considers numeric expressions that
return a rational number, in a software implementation, it is beneficial to differentiate integer and
continuous values. In YAML-DyPDL, we explicitly divide numeric expressions into integer and
continuous expressions.

The key objects, whose value is a list of strings, defines object types. In the example, the list
only contains one value, customer. An object type is associated with a set of n nonnegative integers
{0, ..., n − 1}, where n is defined in a problem file. The customer object type represents a set of
customers N = {0, ..., n− 1} in TSPTW. The object type is used later to define a set variable and
constants.

The key state_variables defines state variables. The value is a list of maps describing a state
variable. For each state variable, we have key name defining the name and key type defining the
type, which is either element, set, integer, or continuous.

The variable U is the set variable U representing the set of unvisited customers. YAML-DyPDL
requires associating a set variable with an object type. The variable U is associated with the object

4https://www.json.org/json-en.html



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 46

type, customer, by object: customer. Then, the domain of U is restricted to 2N . This requirement
arises from practical implementations of set variables; we want to know the maximum cardinality
of a set variable to efficiently represent it in a computer program (e.g., using a fixed length of a bit
vector).

The variable i is the element variable i representing the current location. YAML-DyPDL also
requires associating an element variable with an object type for readability; by associating an element
variable with an object type, it is easier to understand the meaning of the variable. However, the
domain of the element variable is not restricted by the number of objects, n; while objects are
indexed from 0 to n− 1, a user may want to use n to represent none of them.

The variable t is the numeric variable t representing the current time. For this variable, the
preference is defined by preference: less, which means that a state having smaller t dominates another
state if U and i are the same. Such a variable is called a resource variable.

The value of the key tables is a list of maps declaring tables of constants. A table maps a tuple
of objects to a constant. The table a represents the beginning of the time window aj at customer
j, so the values in the table are integers (type: integer). The concrete values are given in a problem
file. The key args defines the object types associated with a table using a list. For a, one customer j
is associated with the value aj , so the list contains only one string customer. The tables b, cin, and
cout are defined for the deadline bj , the minimum travel time to a customer cinj , and the minimum
travel time from a customer cout

j , respectively. The table c is for ckj , the travel time from customer k
to j. This table maps a pair of customers to an integer value, so the value of args is a list equivalent
to [customer, customer]. Similarly, the shortest travel time c∗kj is represented by the table cstar.

The value of the key transitions is a list of maps defining transitions. Using parameters, we can
define multiple transitions in the same scheme but associated with different objects. The key name
defines the name of the parameter, j, and object defines the object type. Basically, the value of the
key object should be the name of the object type, e.g., customer. However, we can also use the name
of a set variable. In the example, by using object: U, we state that the transition is defined for each
object j ∈ N with a precondition j ∈ U .

The key preconditions defines preconditions by using a list of conditions. In YAML-DyPDL,
conditions and expressions are described by arithmetic operations in a LISP-like syntax. In the
precondition of the transition in our example, (c i j) corresponds to cij , so (<= (+ t (c i j)) (b j))
corresponds to t+ cij ≤ bj . The key effect defines the effect by using a map, whose keys are names
of the state variables. For set variable U, the value is a set expression (remove j U), corresponding to
U \ {j}. For element variable i, the value is an element expression j, corresponding to j. For integer
variable t, the value is an integer expression (max (+ t (c i j)) (a j)), corresponding to max{t+cij , aj}.
The key cost defines the cost expression (+ (c i j) cost), corresponding to cij+x. In the example, the
cost expression must be an integer expression since the cost_type is integer. In the cost expression,
we can use cost to represent the cost of the successor state (x). We can also have a key forced, whose
value is boolean, indicating whether the transition is forced. We do not have it in the example,
which means the transition is not forced.

The value of the key constraints is a list of state constraints. In the DyPDL model, we have
∀j ∈ U, t+c∗ij ≤ bj . Similarly to the definition of transitions, we can define multiple state constraints
with the same scheme associated with different objects using forall. The value of the key forall is a
map defining the name of the parameter and the associated object type or set variable. The value



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 47

object_numbers :
customer : 4

t a r g e t :
U: [ 1 , 2 , 3 ]
i : 0
t : 0

t a b l e_va l u e s :
a : { 1 : 5 , 2 : 0 , 3 : 8 }
b : { 1 : 16 , 2 : 10 , 3 : 14 }
c :

{
[ 0 , 1 ] : 3 , [ 0 , 2 ] : 4 , [ 0 , 3 ] : 5 ,
[ 1 , 0 ] : 3 , [ 1 , 2 ] : 5 , [ 1 , 3 ] : 4 ,
[ 2 , 0 ] : 4 , [ 2 , 1 ] : 5 , [ 2 , 3 ] : 3 ,
[ 3 , 0 ] : 5 , [ 3 , 1 ] : 4 , [ 3 , 2 ] : 3 ,

}
c s t a r :

{
[ 0 , 1 ] : 3 , [ 0 , 2 ] : 4 , [ 0 , 3 ] : 5 ,
[ 1 , 0 ] : 3 , [ 1 , 2 ] : 5 , [ 1 , 3 ] : 4 ,
[ 2 , 0 ] : 4 , [ 2 , 1 ] : 5 , [ 2 , 3 ] : 3 ,
[ 3 , 0 ] : 5 , [ 3 , 1 ] : 4 , [ 3 , 2 ] : 3 ,

}
c i n : { 0 : 3 , 1 : 3 , 2 : 3 , 3 : 3 }
cout : { 0 : 3 , 1 : 3 , 2 : 3 , 3 : 3 }

(a) YAML-DyPDL problem file.

0 1

2 3

[5, 16]

[0, 10] [8, 14]

3

3

4 4

5 5

cin0 = cout
0 = 3

(b) Visualization of the instance. Each circle rep-
resents a customer, the time window is presented
beside each customer, and the travel time from one
customer to another is presented beside the edge
between them. We use undirected edges since the
travel time is symmetric. To visualize the computa-
tion of cin0 = cout

0 , among the edges connected to the
depot (0), we highlight the one with the minimum
travel time in blue and others in orange.

Figure 3.2: Example TSPTW instance.

of the key condition is a string describing the condition, (<= (+ t (cstar i j)) (b j)), which uses the
parameter j.

The value of the key base_cases is a list of maps defining base cases. Each map has two keys,
conditions and cost. The value of the key conditions is a list of conditions, and the value of the
key cost is a numeric expression (must be an integer expression in the example since cost_type is
integer). The condition (is_empty U) corresponds to U = ∅, and the cost (c i 0) corresponds to ci0.

The value of the key dual_bounds is a list of numeric expressions describing dual bound functions.
In the example, we use (+ (sum cin U) (cin 0)) and (+ (sum cout U) (cout i)) corresponding to∑
j∈U c

in
j + cin0 =

∑
j∈U∪{0} c

in
j and

∑
j∈U c

out
j + cout

i =
∑
j∈U∪{i} c

out
j , respectively. Since cost_type

is integer, they are integer expressions. The value of the key reduce is min, which means that we
want to solve the minimization problem with the model.

In Figure 3.2, we present an example TSPTW instance with a YAML-DyPDL problem file with
a visualization. In the problem file, the value of object_numbers is a map defining the number of
objects for each object type. The value of target is a map defining the values of the state variables
in the target state. For the set variable U, a list of nonnegative integers is used to define a set of
elements in the set. The value of table_values is a map defining the values of the constants in the
tables. For a, b, cin, and cout, a key is the index of an object, and a value is an integer. For c and
cstar, a key is a list of the indices of objects.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 48

3.2.2 Complexity

In Section 3.1, we showed that finding a solution for a DyPDL model is undecidable in general
by reducing a numeric planning task to a DyPDL model. YAML-DyPDL has several restrictions
compared to Definition 7. A set variable is associated with an object type, restricting its domain
to a subset of a given finite set. In addition, expressions are limited by the syntax in Figure A.1 of
Appendix A.1. However, these restrictions do not prevent the reduction.

Theorem 7. Finding a solution for a finitely defined DyPDL model is undecidable even with the
following restrictions.

• The domain of each set variable v is restricted to 2Nv where Nv = {0, ..., nv − 1}, and nv is a
positive integer.

• Numeric expressions and element expressions are functions represented by arithmetic opera-
tions {+,−, ·, /}.

• Set expressions are functions constructed by a set of constants, set variables, and the intersec-
tion, union, and difference of two set expressions.

• A condition compares two numeric expressions, compares two element expressions, or checks
if a set expression is a subset of another set expression.

Proof. We can follow the proof of Theorem 1 even with the restrictions. Since the number of
propositional variables in the set VP in a numeric planning task is finite, we can use nP ′ = |VP |
for the set variable P ′ representing propositional variables. Arithmetic operations {+,−, ·, /} are
sufficient for numeric expressions by Definition 12. Similarly, if we consider a condition i ∈ S[P ′],
which checks if i is included in a set variable P ′, as {i} ⊆ S[P ′], the last two restrictions do not
prevent the compilation of the numeric planning task to the DyPDL model.

With the above reduction, we can use a system to solve a YAML-DyPDL model for the numeric
planning formalism in Theorem 1.

3.2.3 DIDPPy: A Python Interface for DyPDL

In addition to YAML-DyPDL, we also provide a library for DyPDL that can be used from a program-
ming language. Such a library is beneficial because a user can use the syntax of the programming
language, and it can be easily integrated with other software in that language. We develop DIDPPy,5

a Python library that has the same features as YAML-DyPDL: tables of constants can be defined
and accessed by using element and set expressions as indices; set and element variables are associ-
ated with object types; resource variables and dual bound functions can be defined. DIDPPy also
includes interfaces of solvers developed in the later chapters, so a user can define a model and give it
to a solver in a Python program. We present an example Python program code defining the DyPDL
model for TSPTW, which is equivalent to the one described in Table 3.1 and Figures 3.1 and 3.2a.

5https://didppy.rtfd.io



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 49

import d idppy as dp

model = dp . Model ( maximize=Fa l s e )

n = 4
a = [0 , 5 , 0 , 8 ]
b = [ 0 , 16 , 10 , 14 ]
c = model . add_int_tab le ( [ [ 0 , 3 , 4 , 5 ] , [ 3 , 0 , 5 , 4 ] , [ 4 , 5 , 0 , 3 ] , [ 5 , 4 , 3 , 0 ] ] )
c s t a r = model . add_int_tab le ( [ [ 0 , 3 , 4 , 5 ] , [ 3 , 0 , 5 , 4 ] , [ 4 , 5 , 0 , 3 ] , [ 5 , 4 , 3 , 0 ] ] )
c i n = model . add_int_tab le ( [ 3 , 3 , 3 , 3 ] )
cout = model . add_int_tab le ( [ 3 , 3 , 3 , 3 ] )

customer = model . add_object_type ( number=n )
u = model . add_set_var ( ob j ec t_type=customer , t a r g e t= l i s t ( range ( n ) ) )
i = model . add_element_var ( ob j ec t_type=customer , t a r g e t =0)
t = model . add_int_resource_var ( t a r g e t =0, l e s s_ i s_b e t t e r=True )

f o r j i n range (1 , n ) :
v i s i t = dp . T r a n s i t i o n (

name=" v i s i t ␣{}" . format ( j ) ,
e f f e c t s =[(u , u . remove ( j ) ) , ( i , j ) , ( t , dp .max ( t + c [ i , j ] , a [ j ] ) ) ] ,
c o s t=c [ i , j ] + dp . I n tExp r . s t a t e_co s t ( ) ,
p r e c o n d i t i o n s =[u . c o n t a i n s ( j ) , t + c [ i , j ] <= b [ j ] ] ,

)
model . a dd_t r a n s i t i o n ( v i s i t )

f o r j i n range (1 , n ) :
model . add_state_const r (~( u . c o n t a i n s ( j ) ) | ( t + c s t a r [ i , j ] <= b [ j ] ) )

model . add_base_case ( [ u . is_empty ( ) ] , c o s t=c [ i , 0 ] )

model . add_dual_bound ( c i n [ u ] + c i n [ 0 ] )
model . add_dual_bound ( cout [ u ] + cout [ 0 ] )

Figure 3.3: Python program with DIDPPy for TSPTW.

3.3 DyPDL Models for Combinatorial Optimization

To demonstrate the modeling capability, we formulate eleven combinatorial optimization problems
as DyPDL models. All models are finite and acyclic and satisfy the Principle of Optimality in
Definition 19. For each problem, we first present the Bellman equation to explain the model and
then present the DyPDL representation as in Table 3.1 to clearly show how the model is formulated
in DyPDL. The YAML-DyPDL files for the models are presented in Appendix A.2.

3.3.1 Capacitated Vehicle Routing Problem (CVRP)

In the capacitated vehicle routing problem (CVRP) [95], customers N = {0, ..., n−1}, where 0 is the
depot, are given, and each customer i ∈ N \ {0} has the demand di ≥ 0. A solution is to visit each
customer in N \ {0} exactly once using m vehicles, which start from and return to the depot. The
sum of demands of customers visited by a single vehicle must be less than or equal to the capacity q.
We assume di ≤ q for each i ∈ N . Visiting customer j from i incurs the travel time cij ≥ 0, and the
objective is to minimize the total travel time. CVRP is strongly NP-hard since it is a generalization
of TSP [421].

We formulate the DyPDL model based on the giant-tour representation [187]. We sequentially
construct tours for the m vehicles. Let U be a set variable representing unvisited customers, i be an
element variable representing the current location, l be a numeric variable representing the current
load, and k be a numeric variable representing the number of used vehicles. Both l and k are resource
variables where less is preferred. At each step, one customer j is visited by the current vehicle or a
new vehicle. When a new vehicle is used, j is visited via the depot, l is reset, and k is increased.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 50

Similar to TSPTW, let cinj = mink∈N\{j} ckj and cout
j = mink∈N\{j} cjk.

compute V (N \ {0}, 0, 0, 1) (3.8)

V (U, i, l, k) =



∞ if (m− k + 1)q < l +
∑
j∈U

dj

ci0 else if U = ∅

min


min

j∈U :l+dj≤q
cij + V (U \ {j}, j, l + dj , k)

min
j∈U

ci0 + c0j + V (U \ {j}, j, dj , k + 1)
else if ∃j ∈ U, l + dj ≤ q ∧ k < m

min
j∈U :l+dj≤q

cij + V (U \ {j}, j, l + dj , k) else if ∃j ∈ U, l + dj ≤ q

min
j∈U

ci0 + c0j + V (U \ {j}, j, dj , k + 1) else if k < m

∞ else

(3.9)

V (U, i, l, k) ≤ V (U, i, l′, k′) if l ≤ l′ ∧ k ≤ k′ (3.10)

V (U, i, l, k) ≥ max

 ∑
j∈U∪{0}

cinj ,
∑

j∈U∪{i}

cout
j

 . (3.11)

The first line of Equation (3.9) represents a state constraint: in a state, if the sum of capacities of the
remaining vehicles ((m−k+1)q) is less than the sum of the current load (l) and the demands of the
unvisited customers (

∑
j∈U dj), it does not lead to a solution. The second line is a base case where

all customers are visited. The model has two types of transitions: directly visiting customer j, which
is applicable when the current vehicle has sufficient space (l + dj ≤ q), and visiting j with a new
vehicle from the depot, which is applicable when there is an unused vehicle (k < m). The third line
is active when both of them are possible, and the fourth and fifth lines are active when only one of
them is possible. Recall that a state S dominates another state S′ iff for any S′-solution, there exists
an equal or better S-solution with an equal or shorter length in Definition 16. If l ≤ l′ and k ≤ k′,
any (U, i, l′, k′)-solution is also a (U, i, l, k)-solution, so the dominance implied by Inequality (3.10)
satisfies this condition. Inequality (3.11) is a dual bound function defined in the same way as
Inequality (3.7) of the DyPDL model for TSPTW. We present the DyPDL representation of the
model in Table 3.2.

3.3.2 Multi-Commodity Pickup and Delivery TSP (m-PDTSP)

A one-to-one multi-commodity pickup and delivery traveling salesperson problem (m-PDTSP) [208]
is to pick up and deliver commodities using a single vehicle. In this problem, customers N =

{0, ..., n − 1}, edges A ⊆ N × N , and commodities M = {0, ...,m − 1} are given. The vehicle can
visit customer j directly from customer i with the travel time cij ≥ 0 if (i, j) ∈ A. Each commodity
k ∈ M is picked up at customer pk ∈ N and delivered to customer dk ∈ N . The load increases
(decreases) by wk at pk (dk) and must not exceed the capacity q. The vehicle starts from 0, visits
each customer once, and stops at n− 1. The objective is to minimize the total travel time. Similar
to CVRP, m-PDTSP is a generalization of TSP [208], so it is strongly NP-hard.

We propose a DyPDL model based on the 1-PDTSP reduction [184] and the DP model by Castro,



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 51

Table 3.2: DyPDL representation of the DP model for CVRP.

State variable in V Type Target state S0

U set N \ {0}
i element 0
l numeric 0
k numeric 1

Transition τ in T effτ costτ (x, S) preτ forcedτ

Visit j

effτ [U ](S) = S[U ] \ {j} cS[i],j + x j ∈ S[U ] ⊥
effτ [i](S) = j S[l] + dj ≤ q
effτ [l](S) = S[l] + dj
effτ [k](S) = S[k]

Visit j via the depot

effτ [U ](S) = S[U ] \ {j} cS[i],0 + c0j + x j ∈ S[U ] ⊥
effτ [i](S) = j S[k] < m
effτ [l](S) = dj
effτ [k](S) = S[k] + 1

Base cases B {⟨{S[U ] = ∅}, cS[i],0⟩}

State constraints C
{
(m− S[k] + 1)q ≥ S[l] +

∑
j∈S[U]

dj

}
Dominance S′ ⪯ S if S[l] ≤ S′[l] and S[k] ≤ S′[k]

Dual bound η max

{ ∑
j∈S[U]∪{0}

cinj ,
∑

j∈S[U]∪{S[i]}
cout
j

}

Cire, and Beck [65]. In a state, a set variable U represents the set of unvisited customers, an element
variable i represents the current location, and a numeric resource variable l represents the current
load. The net change of the load at customer j is represented by δj =

∑
k∈M :pk=j

wk−
∑
k∈M :dk=j

wk,
and the customers that must be visited before j is represented by Pj = {pk | k ∈M : dk = j}, both
of which can be precomputed. The set of customers that can be visited next is X(U, i, l) = {j ∈ U |
(i, j) ∈ A ∧ l + δj ≤ q ∧ Pj ∩ U = ∅}. Let cinj = mink∈N :(k,j)∈A ckj and cout

j = mink∈N :(j,k)∈A cjk.

compute V (N \ {0, n− 1}, 0, 0) (3.12)

V (U, i, l) =


ci,n−1 if U = ∅ ∧ (i, n− 1) ∈ A

min
j∈X(U,i,l)

cij + V (U \ {j}, j, l + δj) else if X(U, i, l) ̸= ∅

∞ else

(3.13)

V (U, i, l) ≤ V (U, i, l′) if l ≤ l′ (3.14)

V (U, i, l) ≥ max

 ∑
j∈U∪{n−1}

cinj ,
∑

j∈U∪{i}

cout
j

 . (3.15)

Similarly to CVRP, Inequalities (3.14) and (3.15) represent resource variables and a dual bound
function. We present the DyPDL representation of the model in Table 3.3.

3.3.3 Orienteering Problem with Time Windows (OPTW)

In the orienteering problem with time windows (OPTW) [238], customers N = {0, ..., n − 1} are
given, where 0 is the depot. Visiting customer j from i incurs the travel time cij > 0 while producing
the integer profit pj ≥ 0. Each customer j can be visited only in the time window [aj , bj ], and the
vehicle needs to wait until aj upon earlier arrival. The objective is to maximize the total profit while
starting from the depot at time t = 0 and returning to the depot by b0. OPTW is NP-hard since it
is a generalization of the orienteering problem, which is NP-hard [238, 176].



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 52

Table 3.3: DyPDL representation of the DP model for m-PDTSP.

State variable in V Type Target state S0

U set N \ {0, n− 1}
i element 0
l numeric 0

Transition τ in T effτ costτ (x, S) preτ forcedτ

Visit j

effτ [U ](S) = S[U ] \ {j} cS[i],j + x j ∈ S[U ] ⊥
effτ [i](S) = j (S[i], j) ∈ A
effτ [l](S) = S[l] + δj S[l] + δj ≤ q

Pj ∩ S[U ] = ∅

Base cases B {⟨{S[U ] = ∅, (S[i], n− 1) ∈ A}, cS[i],n−1⟩}
State constraints C ∅
Dominance S′ ⪯ S if S[l] ≤ S′[l]

Dual bound η max

{ ∑
j∈S[U]∪{n−1}

cinj ,
∑

j∈S[U]∪{S[i]}
cout
j

}

Our DyPDL model is similar to the DP model by Righini and Salani [355] but designed for
DIDP with forced transitions and a dual bound function. A set variable U represents the set of
customers to visit, an element variable i represents the current location, and a numeric resource
variable t represents the current time, where less is preferred. We visit customers one by one using
transitions. Customer j can be visited next if it can be visited and the depot can be reached by the
deadline after visiting j. Let c∗ij be the shortest travel time from i to j. Then, the set of customers
that can be visited next is X(U, i, t) = {j ∈ U | t + cij ≤ bj ∧ t + cij + c∗j0 ≤ b0}. In addition,
we remove a customer that can no longer be visited using a forced transition. If t + c∗ij > bj , then
we can no longer visit customer j. If t + c∗ij + c∗j0 > b0, then we can no longer return to the depot
after visiting j. Thus, the set of unvisited customers that can no longer be visited is represented by
Y (U, i, t) = {j ∈ U | t+ c∗ij > bj ∨ t+ c∗ij + c∗j0 > b0}. The set Y (U, i, t) is not necessarily equivalent
to U \ X(U, i, t) since it is possible that j cannot be visited directly from i but can be visited via
another customer when the triangle inequality does not hold.

If we take the sum of profits over U \ Y (U, i, t), we can compute an upper bound on the value
of the current state. In addition, we use another upper bound considering the remaining time
limit b0 − t. We consider a relaxed problem, where the travel time to customer j is always cinj =

mink∈N\{j} ckj . This problem can be viewed as the well-known 0-1 knapsack problem [306, 249],
which is to maximize the total profit of items included in a knapsack such that the total weight of
the included items does not exceed the capacity of the knapsack. Each customer j ∈ U \ Y (U, i, t)

is an item with the profit pj and the weight cinj , and the capacity of the knapsack is b0 − t − cin0
since we need to return to the depot. Then, we can use the Dantzig upper bound [96], which sorts
items in the descending order of the efficiency einj = pj/c

in
j and includes as many items as possible.

When an item k exceeds the remaining capacity q, then it is included fractionally, i.e., the profit
is increased by ⌊qeink ⌋. This procedural upper bound is difficult to represent efficiently with the
current YAML-DyPDL due to its declarative nature. Therefore, we further relax the problem by
using maxj∈U\Y (U,i,t) e

in
j as the efficiencies of all items, i.e., we use ⌊(b0− t− cin0 )maxj∈U\Y (U,i,t) e

in
j ⌋

as an upper bound. Similarly, based on cout
j = mink∈N\{j} cjk, the minimum travel time from j, we



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 53

also use ⌊(b0 − t− cout
i )maxj∈U\Y (U,i,t) e

out
j ⌋ where eout

j = pj/c
out
j .

compute V (N \ {0}, 0, 0) (3.16)

V (U, i, t) =



0 t+ ci0 ≤ b0 ∧ U = ∅

V (U \ {j}, i, t) else if ∃j ∈ Y (U, i, t)

V (U \ {j}, i, t) else if X(U, i, t) = ∅ ∧ ∃j ∈ U

max
j∈X(U,i,t)

pj + V (U \ {j}, j,max{t+ cij , aj}) else if X(U, i, t) ̸= ∅

−∞ else

(3.17)

V (U, i, t) ≥ V (U, i, t′) if t ≤ t′ (3.18)

V (U, i, t) ≤ min

 ∑
j∈U\Y (U,i,t)

pj ,

⌊
(b0 − t− cin0 ) max

j∈U\Y (U,i,t)
einj

⌋
,

⌊
(b0 − t− cout

i ) max
j∈U\Y (U,i,t)

eout
j

⌋ .

(3.19)

The second line of Equation (3.17) removes an arbitrary customer j in Y (U, i, t), which is imple-
mented by a forced transition. In practice, the one having the smallest index is removed. The third
line also defines a forced transition to remove a customer j in U when no customer can be visited
directly (X(U, i, t) = ∅); in such a case, even if j ∈ U \ Y (U, i, t), i.e., j + c∗ij ≤ bj , the shortest path
to customer j is not available. The base case (the first line of Equation (3.17)) becomes active when
all customers are visited or removed. This condition forces the vehicle to visit as many customers as
possible. Since each transition removes one customer from U , and all customers must be removed in
a base state, all (U, i, t)- and (U, i, t′)-solutions have the same length. If t ≤ t′, more customers can
potentially be visited, so (U, i, t) leads to an equal or better solution than (U, i, t′). Thus, the domi-
nance implied by Inequality (3.18) satisfies Definition 16. We present the DyPDL representation of
the model in Table 3.4.

Table 3.4: DyPDL representation of the DP model for OPTW.

State variable in V Type Target state S0

U set N \ {0}
i element 0
t numeric 0

Transition τ in T effτ costτ (x, S) preτ forcedτ

Remove j by time
effτ [U ](S) = S[U ] \ {j} x j ∈ S[U ] ⊤

effτ [i](S) = S[i]

(
S[t] + c∗S[i],j > bj
∨S[t] + c∗S[i],j + c∗j0 > b0

)
effτ [t](S) = S[t]

Remove j by paths
effτ [U ](S) = S[U ] \ {j} x j ∈ S[U ] ⊤

effτ [i](S) = S[i]

 ∀k ∈ S[U ],
S[t] + cS[i],k > bk
∨S[t] + cS[i],k + c∗k0 > b0


effτ [t](S) = S[t]

Visit j
effτ [U ](S) = S[U ] \ {j} pj + x j ∈ S[U ] ⊥
effτ [i](S) = j S[t] + cS[i],j ≤ bj
effτ [t](S) = max{S[t] + cS[i],j , aj} S[t] + cS[i],j + c∗j0 ≤ b0

Base cases B {⟨{S[t] + cS[i],0 ≤ b0, S[U ] = ∅}, 0⟩}
State constraints C ∅
Dominance S′ ⪯ S if S[t] ≤ S′[t]
Dual bound η RHS of Inequality (3.19)



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 54

3.3.4 Multi-Dimensional Knapsack Problem (MDKP)

The multi-dimensional knapsack problem (MDKP) [306, 249] is a generalization of the 0-1 knap-
sack problem. In this problem, each item i ∈ {0, ..., n − 1} has the integer profit pi ≥ 0 and
m-dimensional nonnegative weights (wi,0, ..., wi,m−1), and the knapsack has the m-dimensional ca-
pacities (q0, ..., qm−1). In each dimension, the total weight of items included in the knapsack must
not exceed the capacity. The objective is to maximize the total profit. MDKP is strongly NP-hard
[155, 61].

In our DyPDL model, we decide whether to include an item one by one. An element variable
i represents the index of the item considered currently, and a numeric variable rj represents the
remaining space in the j-th dimension. We can use the total profit of the remaining items as a dual
bound function. In addition, we consider an upper bound similar to that of OPTW by ignoring
dimensions other than j. Let ekj = pk/wkj be the efficiency of item k in dimension j. Then,
⌊rj maxk=i,...,n−1 ekj⌋ is an upper bound on the cost of a (i, rj)-solution. If wkj = 0, we define
ekj =

∑
k=i,...,n−1 pk, i.e., the maximum additional profit achieved from (i, rj). In such a case,

max{rj , 1} ·maxk=1,...,n−1 eij is still a valid upper bound.

compute V (0, q0, ..., qm−1) (3.20)

V (i, r0, ..., rm−1) =



0 if i = n

max

 pi + V (i+ 1, r0 − wi,0, ..., rm−1 − wi,m−1)

V (i+ 1, r0, ..., rm−1)
else if ∀j ∈M,wij ≤ rij

V (i+ 1, r0, ..., rm−1) else

(3.21)

V (i, r0, ..., rm−1) ≤ min

 ∑
k=i,...,n−1

pk,min
j∈M

⌊
max{rj , 1} · max

k=i,...,n−1
ekj

⌋ (3.22)

where M = {0, ...,m− 1}. We present the DyPDL representation of the model in Table 3.5.

Table 3.5: DyPDL representation of the DP model for MDKP.

State variable in V Type Target state S0

i element 0
∀j ∈ M, rj numeric qj

Transition τ in T effτ costτ (x, S) preτ forcedτ

Pack effτ [i](S) = i+ 1 pS[i] + x ∀j ∈ M,wS[i],j ≤ rS[i],j ⊥
effτ [rj ](S) = S[rj ] − wS[i],j

Ignore effτ [i](S) = i+ 1 x ⊥
effτ [rj ](S) = S[rj ]

Base cases B {⟨{S[i] = n}, 0⟩}
State constraints C ∅
Dominance -

Dual bound η min


∑

k=S[i],...,n−1

pk

min
j∈M

⌊
max{S[rj ], 1} · max

k=S[i],...,n−1
ekj

⌋



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 55

3.3.5 Bin Packing

In a bin packing problem [306], items N = {0, ..., n − 1} are given, and each item i has weight wi.
The objective is to pack items in bins with the capacity q while minimizing the number of bins. We
assume q ≥ wi for each i ∈ N . Bin packing is strongly NP-hard [155].

In our DyPDL model, we pack items one by one. A set variable U represents the set of unpacked
items, and a numeric resource variable r represents the remaining space in the current bin, where
more is preferred. In addition, we use an element resource variable k representing the number of
used bins, where less is preferred. The model breaks symmetry by packing item i in the i-th or
an earlier bin. Thus, X(U, r, k) = {i ∈ U | r ≥ wi ∧ i + 1 ≥ k} represents items that can be
packed in the current bin. When ∀j ∈ U, r < wj , then a new bin is opened, and any item in
Y (U, k) = {i ∈ U | i ≥ k} can be packed. Here, we break symmetry by selecting an item having the
minimum index using forced transitions.

For a dual bound function, we use lower bounds, LB1, LB2, and LB3, used by Johnson [236].
The first lower bound, LB1, is defined as

⌈
(
∑
i∈U wi − r)/q

⌉
, which relaxes the problem by allowing

splitting an item across multiple bins. The second lower bound, LB2, only considers items in
{i ∈ U | wi ≥ q/2}. If wi > q/2, item i cannot be packed with other items considered. If wi = q/2,
at most one additional item j with wj = q/2 can be packed. Let Z(U, (a, b]) = {i ∈ U | a < wi ≤ b},
Z(U, (a, b)) = {i ∈ U | a < wi < b}, and Z(U, a) = {i ∈ U | wi = a}. The number of bins is lower

bounded by
∣∣Z (U, ( q2 , q])∣∣ + ⌈ |Z(U, q2 )|2

⌉
− 1

(
r ≥ q

2

)
, where 1 is an indicator function that returns

1 if the given condition is true and 0 otherwise. The last term considers the case when an item can
be packed in the current bin. Similarly, LB3 only considers items in Z

(
U,
(
q
3 , q
])

, and the number

of bins is lower bounded by
⌈
|Z(U, q3 )|

3 +
|Z(U,( q

3 ,
2q
3 ))|

2 +
2|Z(U, 2q3 )|

3 +
∣∣Z (U, ( 2q3 , q])∣∣⌉− 1

(
r ≥ q

3

)
.

compute V (N, 0, 0) (3.23)

V (U, r, k) =



0 if U = ∅

1 + V (U \ {i}, q − wi, k + 1) else if ∃i ∈ Y (U, k) ∧ ∀j ∈ U, r < wj

min
i∈X(U,r,k)

V (U \ {i}, r − wi, k) else if X(U, r, k) ̸= ∅

∞ else

(3.24)

V (U, r, k) ≤ V (U, r′, k′) if r ≥ r′ ∧ k ≤ k′ (3.25)

V (U, r, k) ≥ max



⌈
(
∑
i∈U wi − r)/q

⌉∣∣Z (U, ( q2 , q])∣∣+ ⌈ |Z(U, q2 )|2

⌉
− 1

(
r ≥ q

2

)⌈
|Z(U, q3 )|

3 +
|Z(U,( q

3 ,
2q
3 ))|

2 +
2|Z(U, 2q3 )|

3 +
∣∣Z (U, ( 2q3 , q])∣∣⌉− 1

(
r ≥ q

3

)
.

(3.26)

Since each transition packs one item, any (U, r, k)- and (U, r′, k′) solutions have the same length. It
is easy to see that (U, r, k) leads to an equal or better solution than (U, r′, k′) if r ≥ r′ and k ≤ k′,
so the dominance implied by Inequality (3.25) is valid.

We present the DyPDL representation of the model in Table 3.6. To compute LB2 and LB3, we



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 56

need to take the cardinalities of the subsets of U . Although taking the cardinality of a set is possible
in YAML-DyPDL, for efficiency, we implement LB2 and LB3 by taking the sum of constants over
items included in U . For LB2, we introduce tables of constants ai and bi, where ai = 1 if wi > q

2

and ai = 0 otherwise, and bi = 1
2 if wi = q

2 and bi = 0 otherwise. Similarly, for LB3, we introduce a
table of constants ci, defined as

ci =



1 if 2q
3 < wi ≤ q

2
3 if wi = 2q

3

1
2 if q

3 < wi <
2q
3

1
3 if wi = q

3

0 else.

The indicator function 1 is implemented by an ‘if-then-else’ expression in YAML-DyPDL, which
returns one value if a given condition is satisfied and another value otherwise.

Table 3.6: DyPDL representation of the DP model for bin packing.

State variable in V Type Target state S0

U set N
r numeric 0
k element 0

Transition τ in T effτ costτ (x, S) preτ forcedτ

Open and pack i
effτ [U ](S) = S[U ] \ {i} 1 + x i ∈ S[U ] ⊤
effτ [r](S) = q − wi i ≥ S[k]
effτ [k](S) = S[k] + 1 ∀j ∈ S[U ], S[r] < wj

Pack i
effτ [U ](S) = S[U ] \ {i} x i ∈ S[U ] ⊥
effτ [r](S) = S[r] − wi S[r] ≥ wi

effτ [k](S) = S[k] i+ 1 ≥ S[k]

Base cases B {⟨{S[U ] = ∅}, 0⟩}
State constraints C ∅
Dominance S′ ⪯ S if S[r] ≥ S′[r] and S[k] ≤ S′[k]

Dual bound η max



⌈
(
∑

i∈U wi − S[r])/q
⌉

∑
i∈S[U]

ai +

⌈ ∑
i∈S[U]

bi

⌉
− 1

(
S[r] ≥ q

2

)
⌈ ∑

i∈S[U]

ci

⌉
− 1

(
S[r] ≥ q

3

)

3.3.6 Simple Assembly Line Balancing Problem (SALBP-1)

The variant of the simple assembly line balancing problem (SALBP) called SALBP-1 [374, 22] is
the same as bin packing except for precedence constraints. In SALBP-1, items are called tasks, bins
are called stations, and we schedule items in stations. Stations are ordered, and each task must be
scheduled in the same or later station than its predecessors Pi ⊆ N . SALBP-1 is strongly NP-hard
since it is a generalization of bin packing [313].

We formulate a DyPDL model based on that of bin packing and inspired by a problem-specific
heuristic search method for SALBP-1 [388, 319]. Due to the precedence constraint, we cannot break
symmetry as we do in bin packing. Thus, we do not use an element resource variable k. Now, the
set of tasks that can be scheduled in the current station is represented by X(U, r) = {i ∈ U | r ≥
wi ∧ Pi ∩U = ∅}. We introduce a transition to open a new station only when X(U, r) = ∅, which is
called a maximum load pruning rule in the literature [233, 383]. Since bin packing is a relaxation of



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 57

SALBP-1, we can use the dual bound function for bin packing.

compute V (N, 0) (3.27)

V (U, r) =


0 if U = ∅

1 + V (U, q) else if X(U, r) = ∅

min
i∈X(U,r)

V (U \ {i}, r − wi) else

(3.28)

V (U, r) ≤ V (U, r′) if r ≥ r′ (3.29)

V (U, r) ≥ max


⌈
(
∑
i∈U wi − r)/q

⌉
|Z(U, ( q2 , q])|+

⌈
|Z(U, q2 )|

2

⌉
− 1

(
r ≥ q

2

)⌈
|Z(U, q3 )|

3 +
|Z(U,( q

3 ,
2q
3 ))|

2 +
2|Z(U, 2q3 )|

3 + |Z(U, ( 2q3 , q])|
⌉
− 1

(
r ≥ q

3

)
.

(3.30)

The length of a (U, r)-solution is the sum of |U | and the number of stations opened, which is the
cost of that solution. Therefore, if r ≥ r′, then state (U, r) leads to an equal or better and shorter
solution than (U, r′), so the dominance implied by Inequality (3.29) is valid. We present the DyPDL
representation of the model in Table 3.7. The transition to open a station is implemented as a forced
transition since other transitions are not applicable when it is applicable.

Table 3.7: DyPDL representation of the DP model for SALBP-1.

State variable in V Type Target state S0

U set N
r numeric 0

Transition τ in T effτ costτ (x, S) preτ forcedτ

Open effτ [U ](S) = S[U ] 1 + x

 ∀i ∈ S[U ],
S[r] < wi

∨Pi ∩ S[U ] ̸= ∅

 ⊤

effτ [r](S) = q

Schedule i
effτ [U ](S) = S[U ] \ {i} x i ∈ S[U ] ⊥
effτ [r](S) = S[r] − wi S[r] ≥ wi

Pi ∪ S[U ] = ∅

Base cases B {⟨{S[U ] = ∅}, 0⟩}
State constraints C ∅
Dominance S′ ⪯ S if S[r] ≥ S′[r]

Dual bound η max



⌈
(
∑

i∈U wi − S[r])/q
⌉

∑
i∈S[U]

ai +

⌈ ∑
i∈S[U]

bi

⌉
− 1

(
r ≥ q

2

)
⌈ ∑

i∈S[U]

ci

⌉
− 1

(
r ≥ q

3

)

3.3.7 Single Machine Total Weighted Tardiness (1||
∑

wiTi)

In single machine scheduling to minimize the total weighted tardiness (1||
∑
wiTi) [123], a set of

jobs N is given, and each job i ∈ N has the processing time pi, the deadline di, and the weight wi,
all of which are nonnegative. The objective is to schedule all jobs on a machine while minimizing
the sum of the weighted tardiness,

∑
i∈N wimax{0, Ci − di} where Ci is the completion time of job

i. This problem is strongly NP-hard [285].
We formulate a DyPDL model based on an existing DP model [198, 2], where one job is scheduled

at each step. Let F be a set variable representing the set of scheduled jobs. A numeric expression



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 58

T (i, F ) = max{0,
∑
j∈F pj + pi − di} represents the tardiness of i when it is scheduled after F . We

introduce a set Pi, representing the set of jobs that must be scheduled before i. While it is not
defined in the problem, Pi can be extracted in preprocessing using precedence theorems without
losing optimality [123].

compute V (∅) (3.31)

V (F ) =


0 if F = N

min
i∈N\F :Pi\F=∅

wiT (i, F ) + V (F ∪ {i}) else
(3.32)

V (F ) ≥ 0. (3.33)

We present the DyPDL representation of the model in Table 3.8.

Table 3.8: DyPDL representation of the DP model for 1||
∑
wiTi.

State variable in V Type Target state S0

F set ∅

Transition τ in T effτ costτ (x, S) preτ forcedτ

Schedule i effτ [F ](S) = S[F ] ∪ {i} wiT (i, S[F ]) + x i /∈ S[F ] ⊥
Pi \ S[F ] = ∅

Base cases B {⟨{S[F ] = N}, 0⟩}
State constraints C ∅
Dominance -
Dual bound η 0

3.3.8 Talent Scheduling

The talent scheduling problem [74] is to find a sequence of scenes to shoot to minimize the total
cost of a film. In this problem, a set of actors A and a set of scenes N are given. In a scene s ∈ N ,
a set of actors As ⊆ A plays for ds days. An actor a incurs the cost cs for each day they are on
location. If an actor plays on days i and j, they are on location on days i, i+1, ..., j even if they do
not play on day i+ 1 to j − 1. The objective is to find a sequence of scenes such that the total cost
is minimized. This problem is strongly NP-hard [74].

We use the DP model proposed by Garcia de la Banda and Stuckey [152]. Let Q be a set variable
representing a set of unscheduled scenes. At each step, a scene s to shoot is selected from Q. A set
expression

L(s,Q) = As ∪

 ⋃
s′∈Q

As′ ∩
⋃

s′∈N\Q

As′


represents the set of actors on location when s is shot. We need to pay the cost ds

∑
a∈L(s,Q) ca to

shoot s.
A set expression L(Q) =

⋃
s∈QAs ∩

⋃
s∈N\QAs is the set of actors on location after shooting

N \Q. If As = L(Q), then s should be immediately shot because all actors are already on location:
a forced transition.

If there exist two scenes s1 and s2 in Q such that As1 ⊆ As2 and As2 ⊆
⋃
s∈N\QAs ∪ As1 , it

is known that scheduling s2 before s1 is always better, denoted by s2 ⪯ s1. Since two scenes with
the same set of actors are merged into a single scene in preprocessing without losing optimality, we



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 59

can assume that all As are different. With this assumption, the relationship is a partial order: it is
reflexive because As1 ⊆ As1 and As1 ⊆

⋃
s∈N\QAs ∪As1 ; it is antisymmetric because if s1 ⪯ s2 and

s2 ⪯ s1, then As1 ⊆ As2 and As2 ⊆ As1 , which imply s1 = s2; it is transitive because if s2 ⪯ s1 and
s3 ⪯ s2, then As1 ⊆ As2 ⊆ As3 and As3 ⊆

⋃
s∈N\QAs∪As2 ⊆

⋃
s∈N\QAs∪As1 , which imply s3 ⪯ s1.

Therefore, the set of candidate scenes to shoot next, R(Q) = {s1 ∈ Q |̸ ∃s2 ∈ Q \ {s1}, s2 ⪯ s1}, is
not empty.

The cost per day to shoot s is lower bounded by bs =
∑
a∈As

ca because actors playing in s must
be on location. Overall, we have the following DyPDL model.

compute V (N) (3.34)

V (Q) =


0 if Q = ∅

dsbs + V (Q \ {s}) else if ∃s ∈ Q,As = L(Q)

min
s∈R(Q)

ds
∑
a∈L(s,Q) ca + V (Q \ {s}) else

(3.35)

V (Q) ≥
∑
s∈Q

dsbs. (3.36)

We present the DyPDL representation of the model in Table 3.9.

Table 3.9: DyPDL representation of the DP model for talent scheduling.

State variable in V Type Target state S0

Q set N

Transition τ in T effτ costτ (x, S) preτ forcedτ

Shoot i with actors on location effτ [Q](S) = S[Q] \ {i} dsbs + x i ∈ S[Q] ⊤
As = L(S[Q])

Shoot i effτ [U ](S) = S[Q] \ {i} ds
∑

a∈L(s,S[Q])

ca + x i ∈ S[Q] ⊥

∀s′ ∈ S[Q] \ {s},¬s′ ⪯ s

Base cases B {⟨{S[Q] = ∅}, 0⟩}
State constraints C ∅
Dominance -
Dual bound η

∑
s∈S[Q]

dsbs

3.3.9 Minimization of Open Stacks Problem (MOSP)

In the minimization of open stacks problem (MOSP) [446], customers C and products P are given,
and each customer c orders a subset of products Pc ⊆ P . A solution is a sequence in which products
are produced. We produce copies of a product for all customers at once. When producing product
i, a stack for customer c with i ∈ Pc is opened, and it is closed when all of Pc are produced. The
objective is to minimize the maximum number of open stacks at a time. MOSP is NP-hard [294].

For MOSP, customer search is a state-of-the-art exact method [79]. It searches for an order of
customers to close stacks, from which the order of products is determined; for each customer c, all
products ordered by c and not yet produced are consecutively produced in an arbitrary order. We
formulate customer search as a DyPDL model. A set variable R represents customers whose stacks
are not closed, and O represents customers whose stacks have been opened. Let Nc = {c′ ∈ C |
Pc ∩ Pc′ ̸= ∅} be the set of customers that have at least one product in common with c. When



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 60

producing items for customer c, we need to open stacks for customers in Nc \ O, and stacks for
customers in O ∩R remain open.

compute V (C, ∅) (3.37)

V (R,O) =

0 if R = ∅

min
c∈R

max {|(O ∩R) ∪ (Nc \O)|, V (R \ {c}, O ∪Nc)} else
(3.38)

V (R,O) ≥ 0. (3.39)

We present the DyPDL representation of the model in Table 3.10.

Table 3.10: DyPDL representation of the DP model for MOSP.

State variable in V Type Target state S0

R set C
Q set ∅

Transition τ in T effτ costτ (x, S) preτ forcedτ

Close c effτ [R](S) = S[R] \ {c} max {|(S[O] ∩ S[R]) ∪ (Nc \ S[O])|, x} c ∈ S[R] ⊥
effτ [O](S) = S[O] ∪Nc

Base cases B {⟨{S[R] = ∅}, 0⟩}
State constraints C ∅
Dominance -
Dual bound η 0

3.3.10 Graph-Clear

In the graph-clear problem [256], an undirected graph (N,E) with the node weight ai for i ∈ N and
the edge weight bij for {i, j} ∈ E is given. In the beginning, all nodes are contaminated. In each
step, one node can be made clean by sweeping it using ai robots and blocking each edge {i, j} using
bij robots. However, while sweeping a node, an already swept node becomes contaminated if it is
connected by a path of unblocked edges to a contaminated node. The optimal solution minimizes
the maximum number of robots per step to make all nodes clean. This optimization problem is
NP-hard since finding a solution whose cost is smaller than a given value is NP-complete [256].

Previous work [317] proved that there exists an optimal solution in which a swept node is never
contaminated again. Based on this observation, the authors developed a state-based formula as the
basis for MIP and CP models. We use the state-based formula directly as a DyPDL model. A set
variable C represents swept nodes, and one node in N \C is swept at each step. We block all edges
connected to c and all edges from contaminated nodes to already swept nodes. We assume that
bij = 0 if {i, j} /∈ E.

compute V (∅) (3.40)

V (C) =


0 if C = N

min
c∈N\C

max

{
ac +

∑
i∈N

bci +
∑
i∈C

∑
j∈(N\C)\{c}

bij , V (C ∪ {c})

}
else

(3.41)

V (C) ≥ 0. (3.42)

We present the DyPDL representation of the model in Table 3.11.



CHAPTER 3. MODELING FORMALISM AND LANGUAGE 61

Table 3.11: DyPDL representation of the DP model for graph-clear.

State variable in V Type Target state S0

C set ∅

Transition τ in T effτ costτ (x, S) preτ forcedτ

Sweep c effτ [C](S) = S[C] ∪ {c} max

{
ac +

∑
i∈N

bci +
∑

i∈S[C]

∑
j∈(N\S[C])\{c}

bij , x

}
c /∈ S[C] ⊥

Base cases B {⟨{S[C] = N}, 0⟩}
State constraints C ∅
Dominance -
Dual bound η 0

3.4 Summary

In this chapter, we introduced Dynamic Programming Description Language (DyPDL), the solver-
independent modeling formalism designed for dynamic programming (DP) models of combinatorial
optimization problems, and analyzed its theoretical properties. We proved that finding a solution for
a DyPDL model is undecidable in general while it is more tractable in some special cases. We also
clarified the connection between DyPDL and the Bellman equation, a mathematical model commonly
used in DP: a finite and acyclic DyPDL model can be represented as the Bellman equation if the
Principle of Optimality is satisfied.

As a practical modeling language for DyPDL, we proposed YAML-DyPDL, which is designed to
allow a user to investigate efficient optimization models. In particular, a user can specify resource
variables, which define dominance between states, and dual bound functions in YAML-DyPDL.
We demonstrated that DP models for eleven combinatorial optimization problem classes can be
formulated in DyPDL with these features.



Chapter 4

Heuristic Search Solvers for
Domain-Independent Dynamic
Programming

In the previous chapter, we defined Dynamic Programming Description Language (DyPDL), the
modeling formalism for domain-independent dynamic programming (DIDP), based on a state tran-
sition system. In this chapter, we develop DIDP solvers using heuristic search, which has achieved
significant success over the past two decades in fields including artificial intelligence (AI) planning
[48, 213, 203, 354]. Even in numeric planning [141], which is undecidable in general [202] as in the
case with DyPDL, heuristic search algorithms have shown good empirical performance in practice
[212, 379, 289, 380, 276, 274].

We show that heuristic search can be applied to solve DyPDL models with the guarantee of opti-
mality under reasonable theoretical conditions. Based on this theory, we develop seven solvers using
existing heuristic search algorithms and exploiting redundant information provided in a DyPDL
model. Six of the seven DIDP solvers follow the standard in model-based paradigms such as mixed-
integer programming (MIP) and constraint programming (CP); they are anytime, i.e., possibly
provide feasible solutions and objective bounds before proving the optimality. We compare the de-
veloped DIDP solvers with commercial MIP and CP solvers and demonstrate that DIDP outperforms
MIP in nine problem classes, CP also in nine problem classes, and both MIP and CP in seven.

In Section 4.1, we formally define heuristic search for DyPDL and show its theoretical proper-
ties. In Section 4.2, we introduce solvers for DyPDL using existing heuristic search algorithms. In
Section 4.3, we experimentally evaluate the developed solvers. Finally, Section 4.4 summarizes the
contributions of this chapter.

Similar to the previous chapter, the work in this chapter is based on the paper currently under
review in Artificial Intelligence [266], which extends the two papers published in the Proceedings of
the International Conference on Automated Planning and Scheduling [267, 270].

62



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 63

4.1 Heuristic Search for DyPDL

In this section, we present definitions of heuristic search algorithms and prove that they can be
used to solve an optimization problem with a DyPDL model under certain conditions. Once we
interpret the state transition system defined by a DyPDL model as a graph, it is intuitive that
we can use heuristic search to solve the model. However, our setting has some differences from
existing approaches, so we need to formally show that heuristic search is indeed a valid method for
a certain class of DyPDL models. For example, the definition of the cost of a solution in DyPDL is
more general than the sum of the weights of edges. Previous work generalized Dijkstra’s algorithm
[105] and A* [190] to more general settings [114], but our setting still has several differences. In
addition, we consider a broader class of heuristic search algorithms including anytime algorithms,
which iteratively improve a solution and exploit the approximate dominance relation in Definition 17
(Section 3.1.2, p. 39). Although previous work combined A* with dominance while preserving the
optimality in AI planning [418], the definition of dominance is different from ours.

4.1.1 State Transition Graph

First, we introduce the notion of the state transition graph for a DyPDL model.

Definition 20. Given a DyPDL model, the state transition graph is a directed graph where nodes
are reachable states (Definition 8 in Section 3.1, p. 35) and there is an edge from S to S′ labeled
with τ , (S, S′, τ), iff S′ is reachable from S with a single transition τ .

It is easy to show that a solution for a DyPDL model corresponds to a path in the state transition
graph.

Theorem 8. Given a DyPDL model, let S be a reachable state. A state S′ is reachable from S

with a sequence of transitions σ = ⟨σ1, ..., σm⟩ iff there exists a path ⟨(S, S1, σ1), (S1, S2, σ2), ...,
(Sm−1, S′, σm)⟩ in the state transition graph.

Proof. If S′ is reachable from S with σ, then by defining Si = S[[σ:i]], edges (S, S1, σ1), (S1, S2, σ2),
..., (Sm−1, S′, σm) exist in the state transition graph. If there exist a path ⟨(S, S1, σ1), (S1, S2, σ2), ...,
(Sm−1, S′, σm)⟩, then S1 is reachable from S, and Si is reachable from Si−1 with σi by Definition 20.
By Lemma 1 (Section 3.1, p. 35), S′ is reachable from S with σ.

Corollary 1. Given a DyPDL model ⟨V, S0, T ,B, C⟩, a sequence of transitions σ = ⟨σ1, ..., σm⟩ is a
solution for the model iff there exists a path ⟨(S0, S1, σ1), ..., (S

m−1, Sm, σm)⟩ in the state transition
graph where Sm is a base state.

We use the term path to refer to both a sequence of edges in the state transition graph and a
sequence of transitions as they are equivalent. Trivially, if a model is acyclic, the state transition
graph is also acyclic.

4.1.2 Cost Algebras

In the minimization or maximization problem with a DyPDL model in Definition 10 (Section 3.1,
p. 35), we want to find a solution that minimizes or maximizes the cost. Shortest path algorithms
such as Dijkstra’s algorithm [105] and A* [190] find the path minimizing the sum of the weights



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 64

associated with the edges. In DyPDL, the cost of a solution can be more general, defined by
cost expressions of the transitions. Edelkamp, Jabbar, and Lafuente [114] extended the shortest
path algorithms to cost-algebraic heuristic search algorithms, which can handle more general cost
structures. In their framework, the cost of a path is computed by applying a binary operator to the
edge weights, and the best path is determined by an operation. Unlike the conventional shortest
path problem, the binary operator is not necessarily addition (+), and the operation to select the
best path is not necessarily minimization. Following their approach, first, we define a monoid, which
specifies properties of a binary operator.

Definition 21. Let A be a set, × : A×A→ A be a binary operator, and 1 ∈ A. A tuple ⟨A,×,1⟩
is a monoid if the following conditions are satisfied.

• x× y ∈ A for x, y ∈ A.

• x× (y × z) = (x× y)× z for x, y, z,∈ A (associativity).

• x× 1 = 1× x = x for x ∈ A (identity).

For example, the set of rational number is a monoid under addition, represented by ⟨Q,+, 0⟩.
Next, we define isotonicity, a property of a set and a binary operator with regard to comparison.

With isotonicity, the order of two elements x and y are preserved after applying a binary operator
with the same element z. Since minimization or maximization over rational numbers is sufficient
for our use case, we restrict the set A to rational numbers, and the comparison operator to ≤. The
original paper by Edelkamp, Jabbar, and Lafuente [114] is more general.

Definition 22 (Isotonicity). Given a set A ⊆ Q∪ {−∞,∞} and a binary operator × : A×A→ A,
A is isotone if x ≤ y → x× z ≤ y × z and x ≤ y → z × x ≤ z × y for x, y, z ∈ A.

For example, Q is isotone under addition. With a monoid and isotonicity, we define a cost
algebra.

Definition 23. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q∪{−∞,∞} is isotone. The monoid ⟨A,×,1⟩
is a cost algebra if ∀x ∈ A,1 ≤ x for minimization or ∀x ∈ A,1 ≥ x for maximization.

4.1.3 Cost-Algebraic DyPDL Models

To apply cost-algebraic heuristic search, we focus on DyPDL models where cost expressions sat-
isfy particular conditions. First, we define a monoidal DyPDL model, where cost expressions are
represented by a binary operator in a monoid.

Definition 24. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q∪{−∞,∞}. A DyPDL model ⟨V, S0, T ,B, C⟩
is monoidal with ⟨A,×,1⟩ if the cost expression of every transition τ ∈ T is represented as
costτ (x, S) = wτ (S) × x where wτ is a numeric expression returning a value in A \ {−∞,∞}, and
the cost costB of each base case B ∈ B is a numeric expression returning a value in A \ {−∞,∞}.

We also define a cost-algebraic DyPDL model, which requires stricter conditions.

Definition 25. A monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with a monoid ⟨A,×,1⟩ is cost-algebraic
if ⟨A,×,1⟩ is a cost algebra.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 65

For example, the dynamic programming (DP) model for the traveling salesperson problem with
time windows (TSPTW) in Section 3.2.1 is cost-algebraic with a cost algebra ⟨Q+

0 ,+, 0⟩ since the
cost expression of each transition is defined as cS[i],j + x with cS[i],j ≥ 0.

When a model is monoidal, we can associate a weight to each edge in the state transition graph.
The weight of a path can be computed by repeatedly applying the binary operator to the weights
of the edges in the path.

Definition 26. Given a monoidal DyPDL model with ⟨A,×,1⟩, the weight of an edge (S, S′, τ) is
wτ (S). The weight of a path ⟨(S, S1, σ1), (S

1, S2, σ2), ..., (S
m−1, Sm, σm)⟩ defined by a sequence of

transitions σ is
wσ(S) = wσ1

(S)× wσ2
(S1)× ...× wσm

(Sm−1).

For an empty path ⟨⟩, the weight is 1.

The order of applications of the binary operator × does not matter due to the associativity.
Differently from the original cost-algebraic heuristic search, the weight of a path corresponding to
an S-solution may not be equal to the cost of the S-solution in Definition 10 (Section 3.1, p. 35)
due to our inclusion of the cost of a base state. In the following lemma, we associate the weight of
a path with the cost of a solution.

Lemma 2. Given a monoidal DyPDL model with a monoid ⟨A,×,1⟩ and a state S, let σ be an
S-solution. For minimization, costσ(S) = wσ(S)×minB∈B:S[[σ]]|=CB

costB(S[[σ]]). For maximization,
we replace min with max.

Proof. If σ is an empty sequence, since wσ(S) = 1 and S[[σ]] = S,

wσ(S)× min
B∈B:S[[σ]]|=CB

costB(S[[σ]]) = min
B∈B:S|=CB

costB(S) = costσ(S)

by Definition 10. Otherwise, let σ = ⟨σ1, ..., σm⟩, S1 = S[[σ1]], and Si+1 = Si[[σi+1]] for i =

1, ...,m− 1. Following Definitions 10 and 24,

costσ(S) = costσ1(costσ2:(S
1), S) = wσ1(S)× costσ2:(S

1).

For 2 ≤ i ≤ m, we get

costσi:
(Si−1) = costσi

(costσi+1:(S
i), Si−1) = wσi

(Si−1)× costσi+1:
(Si).

For i = m+1, costσm+1:
(Sm) = cost⟨⟩(S

m) = minB∈B:Sm|=CB
costB(S

m). Thus, we get the equation
in the lemma by Definition 26. The proof for maximization is similar.

We show that isotonicity is sufficient for the Principle of Optimality in Definition 19 (Section 3.1.3,
p. 40). First, we prove its generalized version in Theorem 9.

Theorem 9. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. For the
minimization problem with a monoidal DyPDL model with ⟨A,×,1⟩, let S′ and S′′ be states reachable
from S with sequences of transitions σ′ and σ′′, respectively, with wσ′(S) ≤ wσ′′(S). If there exist S′-
and S′′-solutions σ1 and σ2 with costσ1(S′) ≤ costσ2(S′′), then ⟨σ′;σ1⟩ and ⟨σ′′;σ2⟩ are S-solutions
with cost⟨σ′;σ1⟩(S) ≤ cost⟨σ′′;σ2⟩(S). For maximization, we replace ≤ with ≥.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 66

Proof. The sequences of transitions ⟨σ′;σ1⟩ and ⟨σ′′;σ2⟩ are S-solutions by Definition 9 (Section 7,
p. 35). By Definition 26, cost⟨σ′;σ1⟩(S) = wσ′(S)× costσ1(S′). Since A is isotone,

cost⟨σ′;σ1⟩(S) = wσ′(S)× costσ1(S′) ≤ wσ′′(S)× costσ1(S′) ≤ wσ′′(S)× costσ2(S′) = cost⟨σ′′;σ2⟩(S).

The proof for maximization is similar.

Corollary 2. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. A monoidal
DyPDL model with ⟨A,×,1⟩ satisfies the Principle of Optimality in Definition 19.

4.1.4 Formalization of Heuristic Search for DyPDL

A heuristic search algorithm searches for a path between nodes in a graph. In particular, we focus
on unidirectional heuristic search algorithms, which visit nodes by traversing edges from one node
(the initial node) to find a path to one of the nodes satisfying particular conditions (goal nodes).
In unidirectional heuristic search, given a node S, a heuristic function h returns a heuristic value
(h-value) h(S). Heuristic values are used in two ways: search guidance and pruning.

For search guidance, typically, the priority of a node S is computed from h(S), and the node
to visit next is selected based on it. For example, greedy best-first search [27] visits the node that
minimizes h(S).

For pruning, a heuristic function needs to be admissible: h(S) is a lower bound of the shortest
path weight from a node S to a goal node. In the conventional shortest path problem, if a heuristic
function h is admissible, given g(S), the weight of a path σ(S) from the initial node to S, g(S)+h(S)
is a lower bound on the weight of any path extending σ(S) to a goal node. Therefore, when we
have found a path from the initial node to a goal node with weight γ, we can prune the path
σ(S) if g(S) + h(S) ≥ γ. With this pruning, a heuristic search algorithm can be considered a
branch-and-bound algorithm [225, 325].

While the above two functionalities of a heuristic function are fundamentally different, it is
common that a single admissible heuristic function is used for both purposes. In particular, A* [190]
visits the node that minimizes the f -value, f(S) = g(S)+ h(S). While A* does not explicitly prune
paths, if the weights of edges are nonnegative, it never discovers a path σ(S) such that g(S)+h(S) >
γ∗, where γ∗ is the shortest path weight from the initial node to a goal node.1 Thus, A* implicitly
prunes non-optimal paths while guiding the search with the f -values. However, in general, we can
use different heuristic functions for the two functionalities, and the one used for search guidance
need not be admissible. Such multi-heuristic search algorithms have been developed particularly for
the bounded-suboptimal setting, where we want to find a solution whose suboptimality is bounded
by a constant factor, and the anytime setting, where we want to find increasingly better solutions
until proving optimality [336, 68, 14, 417, 5, 136].

In DyPDL, a dual bound function can be used as an admissible heuristic function, but we may
use a different heuristic function for search guidance. In this section, we do not introduce heuristic
functions for search guidance and do not specify how to select the next node to visit. Instead, we
provide a generic heuristic search algorithm that uses a dual bound function only for pruning and
discuss its completeness and optimality. To explicitly distinguish pruning from search guidance, for

1While f∗ is conventionally used to represent the optimal path weight, we use γ∗ to explicitly distinguish it from
f -values.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 67

Algorithm 9 Heuristic search for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a and a dual bound function η are given as input.

1: if S0 ̸|= C then return NULL
2: γ ←∞, σ ← NULL ▷ Initialize the solution.
3: σ(S0)← ⟨⟩, g(S0)← 1 ▷ Initialize the g-value.
4: G,O ← {S0} ▷ Initialize the open list.
5: while O ̸= ∅ do
6: Let S ∈ O ▷ Select a state.
7: O ← O \ {S} ▷ Remove the state.
8: if ∃B ∈ B, S |= CB then
9: current_cost← g(S)×minB∈B:S|=CB

costB(S) ▷ Compute the solution cost.
10: if current_cost < γ then
11: γ ← current_cost, σ ← σ(S) ▷ Update the best solution.
12: O ← {S′ ∈ O | g(S′)× η(S′) < γ} ▷ Prune states in the open list.
13: else
14: for all τ ∈ T (S) : S[[τ ]] |= C do
15: gcurrent ← g(S)× wτ (S) ▷ Compute the g-value.
16: if ̸ ∃S′ ∈ G such that S[[τ ]] ⪯a S′ and gcurrent ≥ g(S′) then
17: if gcurrent × η(S[[τ ]]) < γ then
18: if ∃S′ ∈ G such that S′ ⪯a S[[τ ]] and gcurrent ≤ g(S′) then
19: G← G \ {S′}, O ← O \ {S′} ▷ Remove a dominated state.
20: σ(S[[τ ]])← ⟨σ(S); τ⟩, g(S[[τ ]])← gcurrent ▷ Update the g-value.
21: G← G ∪ {S[[τ ]]}, O ← O ∪ {S[[τ ]]} ▷ Insert the successor state.
22: return σ ▷ Return the solution.

a dual bound function, we use η as in Definition 18 (Section 3.1.2, p. 40) instead of h and do not
use f .

We show generic pseudo-code of a heuristic search algorithm for the minimization problem with a
monoidal DyPDL model in Algorithm 9. The algorithm starts from the target state S0 and searches
for a path to a base state by traversing edges in the state transition graph. The open list O stores
candidate states to search. The set G stores generated states to detect duplicate or dominated
states. If the model satisfies isotonicity, with Theorem 9, we just need to consider the best path to
each state in terms of the weight. The sequence of transitions σ(S) represents the best path found
so far from the target state S0 to S. The g-value of S, g(S), is the weight of the path σ(S). The
function η is a dual bound function, which underestimates the cost of an S-solution by the η-value of
S, η(S). The best solution found so far, σ, and its cost γ (i.e., the primal bound) is also maintained.
For maximization, ∞ is replaced with −∞, min is replaced with max, < is replaced with >, and ≥
and ≤ are swapped in Algorithm 9. All the theoretical results shown later can be easily adapted to
maximization.

If the target state S0 violates the state constraints, the model does not have a solution, so we
return NULL (line 1). Otherwise, the open list O and G are initialized with S0 (line 4). The g-value
of S0 is initialized to 1 following Definition 26 (line 3). Initially, the solution cost γ = ∞, and
σ = NULL (line 2). When O is empty, σ is returned (line 22). In such a case, the state transition
graph is exhausted, and the current solution σ is an optimal solution, or the model does not have a
solution if σ = NULL.

When O is not empty, a state S ∈ O is selected and removed from O (lines 6 and 7). We do



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 68

not specify how to select S in Algorithm 9 as it depends on the concrete heuristic search algorithms
implemented. If S is a base state, σ(S) is a solution, so we update the best solution if σ(S) is better
(lines 8–11). If the best solution is updated, we prune a state S′ in O such that g(S′)× η(S′) is not
better than the new solution cost since the currently found paths to such states do not lead to a
better solution (line 12).

If S is not a base state, S is expanded. A successor states S[[τ ]] is generated for each edge
(S, S[[τ ]], τ) in the state transition graph (line 14). In doing so, successor states violating state
constraints are discarded. For each successor state, we check if a state S′ that dominates S[[τ ]] and
has a better or equal g-value is already generated (line 16). In such a case, σ(S′) leads to a better or
equal solution, so we prune S[[τ ]]. Since S[[τ ]] itself dominates S[[τ ]], this check also works as duplicate
detection. If a dominating state in G is not detected, and gcurrent×η(S[[τ ]]) is better than the primal
bound (line 17), we insert it into G and O (line 21). Before doing so, we remove an existing state
S′ from G if S′ is dominated by S[[τ ]] with a worse or equal g-value (line 18).

Algorithm 9 terminates in finite time if the model is finite and cost-algebraic. In addition, even
if the model is not cost-algebraic, if it is acyclic, it still terminates in finite time. First, we show the
termination for a finite and acyclic model. Intuitively, with such a model, Algorithm 9 enumerates
a finite number of paths from the target state, so it eventually terminates.

Theorem 10. Given a finite, acyclic, and monoidal DyPDL model, Algorithm 9 terminates in finite
time.

Proof. Unless the target state violates the state constraints, the algorithm terminates when O be-
comes an empty set. In each iteration of the loop in lines 5–21, at least one state is removed from
O by line 7. However, multiple successor states can be added to O in each iteration by line 21. We
prove that the number of iterations that reach line 21 is finite. With this property, O eventually
becomes an empty set with finite iterations.

A successor state S[[τ ]] is inserted to O if it is not dominated by a state in G with a better or
equal g-value, and gcurrent × η(S[[τ ]]) is less than the current solution cost. Suppose that S[[τ ]] was
inserted into O and G in line 21, and now the algorithm generates S[[τ ]] again in line 14. Suppose
that gcurrent = g(S) × wτ (S) ≥ g(S[[τ ]]). If S[[τ ]] ∈ G, then we do not add S[[τ ]] to O due to
line 18. If S[[τ ]] ̸∈ G, then S[[τ ]] was removed from G, so we should have generated a state S′ such
that S[[τ ]] ⪯a S′ and g(S′) ≤ g(S[[τ ]]) (lines 16 and 19). It is possible that S′ was also removed
from G, but in such a case, we have another state S′′ ∈ G such that S[[τ ]] ⪯a S′ ⪯a S′′ and
g(S′′) ≤ g(S′) ≤ g(S[[τ ]]), so S[[τ ]] is not inserted into O again. Thus, if S[[τ ]] was ever inserted to
G, then S[[τ ]] is inserted to O in line 21 only if gcurrent < g(S[[τ ]]). We need to find a better path
from S0 to S[[τ ]]. Since the model is finite and acyclic, the number of paths from S0 to each state
is finite. Therefore, each state is inserted to O finite times. Since the model is finite, the number
of reachable states is finite. By line 14, we only generate reachable states. Thus, we reach line 21
finitely many times.

When the state transition graph contains cycles, there can be an infinite number of paths even
if the graph is finite. However, if the model is cost-algebraic, the cost monotonically changes along
a path, so having a cycle does not improve a solution. Thus, the algorithm terminates in finite time
by enumerating a finite number of acyclic paths. We start with the following lemma, which confirms
that the g-value is the weight of the path from the target state.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 69

Lemma 3. After line 4 of Algorithm 9, for each state S ∈ O, S is the target state S0, or S is
reachable from S0 with σ(S) such that g(S) = wσ(S)(S

0) at all lines except for 20–21.

Proof. Assume that the following condition holds at the beginning of the current iteration: for each
state S ∈ O, S is the target state S0 with g(S0) = 1, or S is reachable from S0 with σ(S) and
g(S) = wσ(S)(S). In the first iteration, O = {S0}, so the assumption holds. When the assumption
holds, the condition continues to hold until reaching lines 20–21, where the g-value is updated, and
a new state is added to O. If we reach these lines, a non-base state S was removed from O in line 7.
Each successor state S[[τ ]] is reachable from S with τ since S satisfies the state constraints by line 14.
By the assumption, S = S0, or S is reachable from S0 with σ(S). Therefore, S[[τ ]] is reachable from
S0 with ⟨σ(S); τ⟩ by Theorem 1. If S[[τ ]] is inserted into O, then σ(S[[τ ]]) = ⟨σ(S); τ⟩. If S = S0,

g(S[[τ ]]) = g(S0)× wτ (S0) = 1× wτ (S0) = wτ (S
0) = wσ(S[[τ ]])(S

0).

If S is not the target state, since g(S) = wσ(S)(S
0), by Definition 26,

g(S[[τ ]]) = g(S)× wτ (S) = wσ(S)(S
0)× wτ (S) = wσ(S[[τ ]])(S

0).

Thus, S[[τ ]] is reachable from S0 with σ(S[[τ ]]) and g(S[[τ ]]) = wσ(S[[τ ]])(S
0), so the condition holds

after line 21. By mathematical induction, the lemma is proved.

Theorem 11. Given a finite and cost-algebraic DyPDL model, Algorithm 9 terminates in finite
time.

Proof. The proof is almost the same as the proof of Theorem 10. However, now, there may be an
infinite number of paths to a state since the state transition graph may contain cycles. We show that
the algorithm never considers a path containing cycles when the model is cost-algebraic. Assume
that for each state S, the best-found path σ(S) is acyclic up to the current iteration. This condition
holds at the beginning since σ(S0) = ⟨⟩ is acyclic. Suppose that the algorithm generates a successor
state S[[τ ]] that is already included in the path σ(S). Then, S[[τ ]] was generated before. In addition,
S[[τ ]] is not a base state since it has a successor state on σ(S). Since σ(S) is acyclic, S[[τ ]] is included
only once. Let σ(S) = ⟨σ1;σ2⟩ where σ1 is the path from S0 to S[[τ ]]. By Lemma 3, we have

gcurrent = g(S)× wτ (S) = wσ1(S0)× wσ2(S[[τ ]])× wτ (S).

If g(S[[τ ]]) and σ(S[[τ ]]) were updated after S[[τ ]] was generated with σ(S[[τ ]]) = σ1, then a path from
S0 to S[[τ ]] with a smaller weight was found by line 16. Thus, g(S[[τ ]]) ≤ wσ1(S0) = wσ1(S0) × 1.
By Definition 23, 1 ≤ wσ2(S[[τ ]])× wτ (S). Since A is isotone,

gcurrent = wσ1(S0)× wσ2(S[[τ ]])× wτ (S) ≥ wσ1(S0)× 1 ≥ g(S[[τ ]]).

Therefore, S[[τ ]] is not inserted into O, and σ(S[[τ ]]) remains acyclic. Thus, by mathematical induc-
tion, for each state, the number of insertions into O is at most the number of acyclic paths to that
state, which is finite.

We confirm that σ is a solution for a model when it is not NULL even during execution. In other
words, Algorithm 9 is an anytime algorithm that can return a solution before proving the optimality.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 70

Theorem 12. After line 11 of Algorithm 9, if σ ̸= NULL, then σ is a solution for the DyPDL
model with γ = costσ(S

0).

Proof. The solution σ is updated in line 11 when a base state S is removed from O in line 7. If
S = S0, then σ = ⟨⟩, which is a solution. Since g(S0) = 1, γ = minB∈B:S0|=CB

costB(S
0) = costσ(S

0)

by Definition 9. If S is not the target state, σ = σ(S), which is a solution since S is reachable
from S0 with σ(S) by Lemma 3, and S is a base state. Since g(S) = wσ(S)(S

0), it holds that
γ = wσ(S)(S

0)×minB∈B:S|=CB
costB(S) = costσ(S

0) by Lemma 2.

Finally, we prove the optimality of Algorithm 9. Intuitively, the proof clarifies that an optimal
solution is not pruned by dominance.

Lemma 4. In Algorithm 9, suppose that a solution exists for the DyPDL model, and let γ̂ be its
cost. When reaching line 5, at least one of the following two conditions is satisfied:

• γ ≤ γ̂.

• O contains a state Ŝ such that an Ŝ-solution σ̂ exists, and ⟨σ(Ŝ); σ̂⟩ is a solution for the model
with cost⟨σ(Ŝ);σ̂⟩(S

0) ≤ γ̂.

Proof. Once γ ≤ γ̂ holds, γ never increases, so the lemma continues to hold. We only consider γ > γ̂

in the current iteration and examine if the lemma will hold in the next iteration. Now, we further
specify our assumption: γ ≤ γ̂, or O contains a state Ŝ such that an Ŝ-solution σ̂ exists, ⟨σ(Ŝ); σ̂⟩
is a solution for the model with cost⟨σ(Ŝ);σ̂⟩(S

0) ≤ γ̂, and |σ̂| ≤ |σ′| for each S′-solution σ′ with
cost⟨σ(S′);σ′⟩(S

0) ≤ γ̂ for each S′ ∈ G. At the beginning, Ŝ = S0 ∈ O, any solution is an extension
of σ(S0), and G = {S0}, so the assumption holds.

In line 7, S is removed from O. If S is a base state, γ and σ can be updated. If γ becomes
less than or equal to γ̂, the assumption holds in the next iteration. Otherwise, γ > γ̂. Since
there exists a solution extending σ(Ŝ) with the cost at most γ̂ by the assumption, S ̸= Ŝ. By
Lemma 3, g(Ŝ)× η(Ŝ) = wσ(Ŝ)(S

0)× η(Ŝ). By Definition 18, η(Ŝ) ≤ costσ̂(Ŝ). Since A is isotone,
g(Ŝ)× η(Ŝ) ≤ wσ(Ŝ)(S0)× costσ̂(Ŝ) ≤ γ̂ < γ. Thus, Ŝ is not removed from O in line 12.

If S is not a base state, its successor states are generated in lines 14–21. Since S was included
in O, S ∈ G by lines 19 and 21. If there exists an S-solution σ1 with cost⟨σ(S);σ1⟩(S

0) ≤ γ̂, then
|σ1| ≥ |σ̂| by the assumption. We consider the following cases.

1. There does not exist an S-solution σ1 satisfying both cost⟨σ(S);σ1⟩(S
0) ≤ γ̂ and |σ1| ≤ |σ̂|.

2. There exists an S-solution σ1 with cost⟨σ(S);σ1⟩(S
0) ≤ γ̂ and |σ1| = |σ̂|.

In the first case, S ̸= Ŝ. For each successor state S[[τ ]], if there does not exist an S[[τ ]]-solution σ2

such that cost⟨σ(S);τ ;σ2⟩(S
0) ≤ γ̂ holds, adding S[[τ ]] to O in line 21 does not affect the assumption

as long as Ŝ ∈ G. Suppose that there exists an S[[τ ]]-solution σ2 such that cost⟨σ(S);τ ;σ2⟩(S
0) ≤ γ̂

holds. Then, since ⟨τ ;σ2⟩ is an S-solution, |⟨τ ;σ2⟩| > |σ̂|, so |σ2| ≥ |σ̂|. Again, as long as Ŝ ∈ G,
adding S[[τ ]] to G does not affect the assumption. Removing Ŝ from G in line 16 is possible only
if Ŝ ⪯a S[[τ ]] and gcurent = g(S) × wτ (S) ≤ g(Ŝ) in line 19. In such a case, since Ŝ ⪯ S[[τ ]], there
exists an S[[τ ]]-solution σ2 such that costσ2(S[[τ ]]) ≤ costσ̂(Ŝ) with |σ2| ≤ |σ̂|. Since ⟨σ(S); τ ;σ2⟩ is
a solution for the model, by Lemma 3,

cost⟨σ(S);τ ;σ2⟩(S
0) = g(S)× wτ (S)× costσ2(S[[τ ]]).



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 71

Since S[[τ ]] is reachable from S0 with ⟨σ(S); τ⟩, by Theorem 9,

cost⟨σ(S);τ ;σ2⟩(S
0) = g(S)× wτ (S)× costσ2(S[[τ ]]) ≤ g(Ŝ)× costσ̂(Ŝ) = cost⟨σ(Ŝ);σ̂⟩(S

0) ≤ γ̂.

Because |σ2| ≤ |σ̂|, by considering S[[τ ]] as a new Ŝ, the assumption will hold in the next iteration.
In the second case, there exists a transition τ ∈ T (S) such that there exists an S[[τ ]]-solution

σ2, and ⟨σ(S); τ ;σ2⟩ is a solution with cost⟨σ(S);τ ;σ2⟩(S
0) ≤ γ̂ and |⟨τ ;σ2⟩| = |σ̂|, which implies

|σ2| = |σ̂| − 1. Let S[[τ ]] be the first one considered in the loop among such successor states. First,
we show that S[[τ ]] is inserted into O in line 21. Then, we prove that S[[τ ]] or another successor state
replacing S[[τ ]] in line 19 can be considered a new Ŝ in the next iteration. For a successor state
S[[τ ′]] considered before S[[τ ]], if there exists an S[[τ ′]]-solution σ3 with cost⟨σ(S[[τ ′]]);σ3⟩(S

0) ≤ γ̂, then
|⟨τ ′;σ3⟩| > |σ̂|, so |σ3| ≥ |σ̂| > |σ2|. Therefore, adding S[[τ ′]] to G does not affect the assumption.
Suppose that S[[τ ]] is not added to O due to line 16. Then, there exists a state S′ ∈ G such that
S[[τ ]] ⪯a S′ and gcurrent = g(S) × wτ (S) ≥ g(S′). Since S[[τ ]] ⪯a S′, there exists an S′-solution σ′

with costσ′(S′) ≤ costσ2(S[[τ ]]) and |σ′| ≤ |σ2|. However, by the assumption, |σ′| ≥ |σ̂| > |σ2|, which
is a contradiction. Therefore, there does not exist such S′, and the condition in line 16 is true. Next,
we examine the condition in line 17. By Lemma 3,

cost⟨σ(S);τ ;σ2⟩(S
0) = g(S)× wτ (S)× costσ2(S[[τ ]]) ≤ γ̂.

Since η(S[[τ ]]) ≤ costσ2(S[[τ ]]) and A is isotone,

gcurrent × η(S[[τ ]]) = g(S)× wτ (S)× η(S[[τ ]]) ≤ g(S)× wτ (S)× costσ2(S[[τ ]]) ≤ γ̂ < γ.

Therefore, the condition in line 17 is true, and S[[τ ]] is inserted into O. For a successor state S[[τ ′]] gen-
erated after S[[τ ]], suppose that there does not exist an S[[τ ′]]-solution σ3 with cost⟨σ(S);τ ′;σ3⟩(S

0) ≤ γ̂.
Adding S[[τ ′]] to G does not affect the assumption as long as S[[τ ]] ∈ G. If there exists such σ3, then
|σ3| = |σ̂| − 1 or |σ3| ≥ |σ̂| by the assumption. In the former case, adding S[[τ ′]] to G does not
affect the assumption as long as S[[τ ′]] ∈ G since we can consider S[[τ ′]] as a new Ŝ in the next
iteration. In the latter case, adding S[[τ ′]] to G does not affect the assumption as long as S[[τ ]] ∈ G
since |σ3| > |σ2|. The remaining problem is the possibility that S[[τ ]] is removed in line 19. If the
condition in line 16 is true, then g(S)× wτ ′(S) ≤ g(S)× wτ (S), and there exists an S[[τ ′]]-solution
σ3 with costσ3(S[[τ ′]]) ≤ costσ2(S[[τ ]]) and |σ3| ≤ |σ2|. By Theorem 9,

cost⟨σ(S);τ ′;σ3⟩(S
0) = g(S)× wτ ′(S)× costσ3(S[[τ ′]]) ≤ g(S)× wτ (S)× costσ2(S[[τ ]]) ≤ γ̂.

Therefore, if we consider S[[τ ′]] as a new Ŝ in the next iteration instead of S[[τ ]], the situation does
not change. Similarly, if S[[τ ′]] is replaced with another successor state, by considering it as a new
Ŝ, the situation does not change, and the assumption will hold in the next iteration.

Theorem 13. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩, if an optimal solution exists for the mini-
mization problem with the model, and Algorithm 9 returns a solution that is not NULL, then the
solution is optimal. If Algorithm 9 returns NULL, then the model is infeasible.

Proof. Suppose that a solution exists, and let γ̂ be its cost. By Lemma 4, when we reach line 5



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 72

with O = ∅, γ ≤ γ̂. Since γ ̸= ∞, it holds that σ ̸= NULL by line 11. Therefore, if a solution
exists, NULL is never returned, i.e., NULL is returned only if the model is infeasible. Suppose that
an optimal solution exists, and let γ∗ be its cost. Now, consider the above discussion with γ̂ = γ∗.
When we reach line 5 with O = ∅, γ ≤ γ∗. By Lemma 4, σ is a solution with costσ(S

0) = γ. Since
costσ(S

0) ≥ γ∗, γ = γ∗ and σ is an optimal solution. Therefore, if an optimal solution exists, and
the algorithm returns a solution, the solution is optimal.

Corollary 3. Given a finite and cost-algebraic DyPDL model, the minimization or maximization
problem with the model has an optimal solution, or the model is infeasible. A problem to decide if
a solution whose cost is less (greater) than a given rational number exists for minimization (maxi-
mization) is decidable.

Note that Theorem 13 does not require a model to be finite, acyclic, or cost-algebraic. While
the algorithm terminates in finite time if the model is finite and acyclic or cost-algebraic, there is
no guarantee in general due to the undecidability in Theorem 1. However, even for such a model, if
the algorithm terminates, the optimality or infeasibility is proved.

As shown in the proof of Lemma 4, when an optimal solution exists, a state Ŝ such that there
exists an optimal solution extending σ(Ŝ) is included in the open list. For minimization (maximiza-
tion), by taking the minimum (maximum) g(S)× η(S) value in the open list, we can obtain a dual
bound, i.e., a lower (upper) bound on the optimal solution cost.

Theorem 14. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩, if an optimal solution for the minimization
problem with the model exists and has the cost γ∗, and O is not empty in line 5, then

min
S∈O

g(S)× η(S) ≤ γ∗.

Proof. By Lemma 4, if O ̸= ∅, then γ = γ∗, or there exists a state Ŝ ∈ O on an optimal solution,
i.e., there exists an Ŝ-solution σ̂ such that ⟨σ(Ŝ); σ̂⟩ is an optimal solution. If γ = γ∗, by lines 12
and 17, minS∈O g(S)× η(S) < γ∗. Otherwise, Ŝ ∈ O. Since η(Ŝ) ≤ costσ̂(Ŝ) and A is isotone,

min
S∈O

g(S)× η(S) ≤ g(Ŝ)× η(Ŝ) ≤ g(Ŝ)× costσ̂(Ŝ) = γ∗.

4.2 Heuristic Search Algorithms for DyPDL

We introduce existing heuristic search algorithms as instantiations of Algorithm 9 so that we can use
them for DyPDL. In particular, each algorithm differs in how to select a state S to remove from the
open list O in line 6. In addition to A*, which is the most fundamental heuristic search algorithm,
we select anytime algorithms that have been applied to combinatorial optimization problems in
problem-specific settings. For detailed descriptions of the algorithms, please refer to the papers that
proposed them. Similar to A*, in our configuration, these algorithms use a heuristic function h and
guide the search with the f -value, which is computed as f(S) = g(S) × h(S), where × is a binary
operator such as +. As we discussed in Section 4.1.4, h is not necessarily a dual bound function and
not necessarily admissible.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 73

4.2.1 CAASDy: Cost-Algebraic A* Solver for DyPDL

A* selects a state with the best f -value in lines 7 (i.e., the minimum f -value for minimization and
the maximum f -value for maximization). If there are multiple states with the best f -value, one is
selected according to a tie-breaking strategy. Among states with the same f -value, we select a state
with the best h-value (with “best” defined accordingly to the best f -value). In what follows, if we
select a state according to the f -values in other algorithms, we also assume that a state with the
best f -value is selected, and ties are broken by the h-values. If there are multiple states with the
best f - and h-values, we use another tie-breaking strategy, which is not specified here and discussed
later when we describe the implementation. We call our solver cost-algebraic A* solver for DyPDL
(CAASDy) as we originally proposed it only for cost-algebraic models [267]. However, as shown in
Theorems 12 and 13, CAASDy is applicable to monoidal and acyclic models with a monoid ⟨A,×,1⟩
if A is isotone.

In original A*, if h is admissible, the first solution found is optimal. Previous work has generalized
A* to cost-algebraic heuristic search with this property [114]. In our case, if a model is not cost-
algebraic, the first solution may not be an optimal solution. In addition, even if a model is cost-
algebraic, our problem setting is slightly different from Edelkamp, Jabbar, and Lafuente [114]: a
base case has a cost, so the cost of a solution can be different from the weight of the corresponding
path. If a model is cost-algebraic and the costs of the base cases do not matter, we can prove that
the first solution found by CAASDy is optimal.

Theorem 15. Given a cost-algebraic DyPDL model with a monoid ⟨A,×,1⟩, let h be an admissible
heuristic function, i.e., given any reachable solution S and any S-solution σ, h(S) ≤ costσ(S)

for minimization. If an optimal solution exists for the model, the costs of base cases are 1, i.e.,
∀B ∈ B, costB(S) = 1, and h(S) ≥ 1 for any reachable state S, then the first found solution by
CAASDy is optimal.

Proof. Let σ = σ(S) be the first found solution with the cost γ in line 11. Since min
B∈B:S|=CB

costB(S) =

1, γ = g(S). Since 1 ≤ h(S) ≤ min
B∈B:S|=CB

costB(S) = 1, f(S) = g(S)× h(S) = g(S) = γ. If σ(S) is

not an optimal solution, by Lemma 4, O contains a state Ŝ ∈ O such that there exists an Ŝ-solution σ̂
with cost⟨σ(Ŝ);σ̂⟩(S

0) = γ∗ < γ. Since A is isotone, cost⟨σ(Ŝ);σ̂⟩(S
0) = g(Ŝ)× costσ̂(Ŝ) ≥ g(Ŝ)×h(Ŝ).

Therefore,
f(Ŝ) = g(Ŝ)× h(Ŝ) ≤ cost⟨σ(Ŝ);σ̂⟩(S

0) < γ = f(S).

Thus, Ŝ should have been expanded before S, which is a contradiction.

4.2.2 Depth-First Branch-and-Bound (DFBnB)

Depth-First Branch-and-Bound (DFBnB) expands states in the depth-first order, i.e., a state S that
maximizes |σ(S)| is selected in line 6. Concretely, the open list O is implemented as a stack, and the
state on the top of the stack (the state added to O most recently) is selected in line 6. Successor states
of the same state have the same priority, so ties are broken by the f -values. DFBnB has been applied
to state-based formulations of combinatorial optimization problems such as the sequential ordering
problem (SOP) [291], the traveling salesperson problem (TSP), and single machine scheduling [427,
426].



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 74

4.2.3 Cyclic-Best First Search (CBFS)

Cyclic-best first search (CBFS) [239] partitions the open list O into layers Oi for each depth i. A
state S is inserted into Oi if |σ(S)| = i. At the beginning, O0 = {S0} and Oi = ∅ for i > 0. Starting
with i = 0, if Oi ̸= ∅, CBFS selects a state having the best priority from Oi in line 6 and inserts
successor states into Oi+1 in line 21. We use the f -value as the priority. After that, CBFS increases
i by 1. However, when i is the maximum depth, CBFS resets i to 0 instead of incrementing it. The
maximum depth is usually known in a problem-specific setting, but we do not use a fixed parameter
in our setting. Instead, we set i to 0 when a new best solution is found after line 11, or Oj = ∅ for
all j ≥ i. In problem specific settings, CBFS was used in single machine scheduling [239] and the
simple assembly line balancing problem (SALBP-1) [388, 319].

4.2.4 Anytime Column Search (ACS)

Anytime column search (ACS) [427] can be considered a generalized version of CBFS, expanding b
states at each depth. ACS also partitions the open list O into Oi for each depth i and selects a state
from Oi in line 6, starting with i = 0 and O0 = {S0}. ACS increases i by 1 after removing b states
from Oi or when Oi becomes empty, where b is a parameter. We remove the best b states according
to the f -values.

Anytime column progressive search (ACPS) [427] is a non-parametric version of ACS, which
starts from b = 1 and increases b by 1 when it reaches the maximum depth. Similarly to CBFS, we
set i to 0 and increase b by 1 when a new best solution is found or ∀j ≥ i, Oj = ∅. For combinatorial
optimization, ACS and ACPS were evaluated on TSP [427].

4.2.5 Anytime Pack Search (APS)

Anytime pack search (APS) [426] maintains the set of the best states Ob ⊆ O, initialized with {S0},
the set of the best successor states Oc ⊆ O, and a suspend list Os ⊆ O. APS selects states from Ob

in line 6 and inserts the best b successor states according to a priority into Oc and other successor
states into Os. When there are fewer than b successor states, all of them are inserted into Oc. After
expanding states in Ob, APS swaps Ob and Oc and continues the procedure. If Ob and Oc are empty,
the best b states are moved from Os to Ob. We use the f -value as the priority to select states.

Anytime pack progressive search (APPS) [426] starts from b = 1 and increases b by δ if b < b

when the best b states are moved from Os to Ob, where δ and b are parameters. We use δ = 1 and
b =∞ following the configuration in TSP and single machine scheduling [426].

4.2.6 Discrepancy-Based Search

Discrepancy-based search [192] considers the discrepancy of a state, the number of deviations from
the heuristically best path to the state. The target state has a discrepancy of 0. When a state S has
a discrepancy of d, its successor states are assigned priorities, and the state with the best priority
has the discrepancy of d. Other successor states have the discrepancy of d+ 1.

Discrepancy-bounded depth-first search (DBDFS) [26] performs depth-first search that only ex-
pands states having the discrepancy between (i − 1)k and ik − 1 inclusive, where i starts from 1

and increases by 1 when all states within the range are expanded, and k is a parameter. We use the



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 75

f -value as the priority. The open list is partitioned into two sets O0 and O1, and O0 = {S0} and
O1 = ∅ at the beginning. A state is selected from O0 in line 6. Successor states with the discrepancy
between (i− 1)k and ik − 1 are added to O0, and other states are added to O1. When O0 becomes
empty, it is swapped with O1, and i is increased by 1. The discrepancy of states in O1 is ik because
the discrepancy is increased by at most 1 at a successor state. Therefore, after swapping O0 with
O1, the discrepancy of states in O0 falls between the new bounds, ik and (i+1)k−1. For depth-first
search, when selecting a state to remove from O0, we break ties by the f -values. We use k = 1 in our
configuration. Discrepancy-based search was originally proposed as tree search [192, 26] and later
applied to state space search for SOP [291].

4.2.7 Complete Anytime Beam Search (CABS)

Beam search is a heuristic search algorithm that searches the state transition graph layer by layer.
Unlike the other heuristic search algorithms presented above, beam search cannot be considered an
instantiation of Algorithm 9, so we provide dedicated pseudo-code in Algorithm 10. Beam search
maintains states in the same layer, i.e., states that are reached with the same number of transitions,
in the open list O, which is initialized with the target state. Beam search expands all states in O,
inserts the best b successor states into O, and discards the remaining successor states, where b is a
parameter called a beam width. Beam search may discard all successor states leading to solutions,
so it is incomplete, i.e., it may not find a solution.

Complete anytime beam search (CABS) [447] is a complete version of beam search. Zhang [447]
considered a generalized version of beam search, i.e., successor states inserted into O are decided by
a user-provided pruning rule, which can be different from selecting the best b states. In the original
definition, CABS iteratively executes beam search while relaxing the pruning rule so that more and
more states are inserted into O. CABS terminates when it finds a satisfactory solution according to
some criterion. In our case, we use the common definition of beam search, which selects the best b
states according to the f -values. CABS iteratively executes beam search while increasing b in each
iteration until finding an optimal solution or proving infeasibility. In particular, we start from b = 1

and double b after each iteration, following the configuration used in SOP [291] and the permutation
flowshop [292].

In Algorithm 10, beam search maintains the set of states in the current layer using the open list
O, and the set of states in the next layer using G. The open list O is updated to G after generating
all successor states while pruning states based on the bound (line 22). If O contains more than
b states, only the best b states are kept. This operation may prune optimal solutions, so the flag
complete, which indicates the completeness of beam search, becomes ⊥. Beam search terminates
when O becomes empty, or a solution is found (line 5). Even if complete = ⊤, and a solution is
found, when O is not empty, we may miss a better solution (line 25). Therefore, we update complete
to ⊥ in such a case (line 26). We can derive the maximization version of Algorithm 10 in a similar
way as Algorithm 9.

Beam search in Algorithm 10 has several properties that are different from Algorithm 9.

1. The set G, which is used to detect dominance, contains only states in the next layer.

2. A state S may be removed from the open list O even if g(S)× η(S) < γ (line 24).

3. Beam search may terminate when a solution is found even if O ̸= ∅.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 76

Algorithm 10 Beam search for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a, a dual bound function η, a primal bound γ, and
a beam width b are given as input.

1: if S0 ̸|= C then return NULL, ⊤
2: σ ← NULL, complete← ⊤ ▷ Initialize the solution.
3: l← 0, σl(S0)← ⟨⟩, gl(S0)← 1 ▷ Initialize the g-value.
4: O ← {S0} ▷ Initialize the open list.
5: while O ̸= ∅ and σ = NULL do
6: G← ∅ ▷ Initialize the set of states.
7: for all S ∈ O do
8: if ∃B ∈ B, S |= CB then
9: current_cost← gl(S)×minB∈B:S|=CB

costB(S) ▷ Compute the solution cost.
10: if current_cost < γ then
11: γ ← current_cost, σ ← σl(S) ▷ Update the best solution.
12: else
13: for all τ ∈ T (S) : S[[τ ]] |= C do
14: gcurrent ← gl(S)× wτ (S) ▷ Compute the g-value.
15: if ̸ ∃S′ ∈ G such that S[[τ ]] ⪯a S′ and gcurrent ≥ gl+1(S′) then
16: if gcurrent × η(S[[τ ]]) < γ then
17: if ∃S′ ∈ G such that S′ ⪯a S[[τ ]] and gcurrent ≤ gl+1(S′) then
18: G← G \ {S′} ▷ Remove a dominated state.
19: σl+1(S[[τ ]])← ⟨σl(S); τ⟩, gl+1(S[[τ ]])← gcurrent ▷ Update the g-value.
20: G← G ∪ {S[[τ ]]} ▷ Insert the successor state.
21: l← l + 1 ▷ Proceed to the next layer.
22: O ← {S ∈ G | gl(S)× η(S) < γ} ▷ Prune states by the bound.
23: if |O| > b then
24: O ← the best b states in O, complete← ⊥ ▷ Keep the best b states.
25: if complete and O ̸= ∅ then
26: complete← ⊥ ▷ A better solution may exist.
27: return σ, complete ▷ Return the solution.

With Property (1), beam search can potentially save memory compared to Algorithm 9. This
method can be considered layered duplicate detection as proposed in previous work [450]. With
this strategy, we do not detect duplicates when the same states appear in different layers. When a
generated successor state S[[τ ]] in the next layer is the same as a state S′ in the current layer, in
line 19, we do not want to update g(S′) and σ(S′) since we do not check if a better path to S′ is
found. Thus, we maintain l, which is incremented by 1 after each layer (line 21), and use gl and σl

to differentiate g and σ for different layers. Our layered duplicate detection mechanism prevents us
from using beam search when the state transition graph contains cycles; beam search cannot store
states found in the previous layers, so it continues to expand states in a cycle. This issue can be
addressed by initializing G with {S0} outside the while loop, e.g., just after line 4, and removing
line 6. With this modification, beam search can be used for a cyclic but cost-algebraic DyPDL
model. By Properties (2) and (3), there is no guarantee that beam search proves the optimality or
infeasibility unless complete = ⊤. However, CABS (Algorithm 11) has the guarantee of optimality
as it repeats beam search until complete becomes ⊤. In what follows, we formalize the above points.
Once again, we present the theoretical results for minimization, but they can be easily adapted to
maximization.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 77

Algorithm 11 CABS for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a and a dual bound function η are given as in-
put.
1: γ ←∞, σ ← NULL, b← 1 ▷ Initialization.
2: loop
3: σ, complete← BeamSearch(⟨V, S0, T ,B, C⟩, ⪯a, η, γ, b) ▷ Execute Algorithm 10.
4: if costσ(S

0) < γ then
5: γ ← costσ(S

0), σ ← σ ▷ Update the solution.
6: if complete then
7: return σ ▷ Return the solution.
8: b← 2b ▷ Double the beam width.

Theorem 16. Given a finite, acyclic, and monoidal DyPDL model, beam search terminates in finite
time.

Proof. Suppose that we have generated a successor state S[[τ ]], which was generated before. The
difference from Algorithm 9 that we need to consider is Property (1). If S[[τ ]] was generated before
as a successor state of a state in the current layer, by the proof of Theorem 10, there exists a state
S′ ∈ G with S[[τ ]] ⪯a S′. The successor state S[[τ ]] is inserted into G again only if we find a better
path to S[[τ ]]. If S[[τ ]] was generated before as a successor state of a state in a previous layer, the
path to S[[τ ]] at that time was shorter (in terms of the number of transitions) than that of the current
path. The successor state S[[τ ]] may be inserted into G since it is not included in G. In either case,
S[[τ ]] is inserted into G again only if we find a new path to it. Since the number of paths to S[[τ ]] is
finite, we insert S[[τ ]] into G finite times. The rest of the proof follows that of Theorem 10.

As we discussed above, with a slight modification, we can remove Property (1) and prove the
termination of beam search for a cost-algebraic DyPDL model.

Since Properties (1)–(3) do not affect the proofs of Lemma 3 and Theorem 12, the following
theorem holds.

Theorem 17. After line 11 of Algorithm 10, if σ ̸= NULL, then σ is a solution for the model with
γ = costσ(S

0).

We also prove the optimality of beam search when complete = ⊤.

Theorem 18. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, if an optimal solution exists for
the minimization problem with the model, and beam search returns σ ̸= NULL and complete = ⊤,
then σ is an optimal solution. If beam search returns σ = NULL and complete = ⊤, then there does
not exist a solution whose cost is less than γ.

Proof. When complete = ⊤ is returned, during the execution, beam search never reached lines 24 and
26. Therefore, we can ignore Properties (2) and (3). If we modify Algorithm 10 so that G contains
states in all layers as discussed above, we can also ignore Property (1). By ignoring Properties
(1)–(3), we can consider beam search as an instantiation of Algorithm 9. If the model is infeasible,
or an optimal solution exists with the cost γ∗ and γ > γ∗ at the beginning, the proof is exactly the
same. If γ ≤ γ∗ was given as input, beam search has never updated σ and γ, and NULL is returned
if it terminates. In such a case, indeed, no solution has a cost less than γ ≤ γ∗.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 78

The above proof is for beam search with the modification. We confirm that it is also valid with
beam search in Algorithm 10 without modification, i.e., we consider Property (1). The proof of
Theorem 13 depends on Lemma 4, which claims that when a solution with a cost γ̂ exists and γ > γ̂,
the open list contains a state Ŝ such that there exists an Ŝ-solution σ̂ with cost⟨σ(Ŝ);σ̂⟩(S

0) ≤ γ̂.
At the beginning, Ŝ = S0 exists in O. When such a state exists in the current layer, its successor
state Ŝ[[τ ]] with τ = σ̂1 is generated. If Ŝ[[τ ]] is not inserted into G in line 20, another state S′ ∈ G
dominates Ŝ[[τ ]] with a better or equal g-value, so there exists a solution extending σ(S′) with the
cost at most γ̂. Thus, S′ can be considered a new Ŝ. When Ŝ[[τ ]] or S′ is removed from G by line 18,
another state S′′ that dominates Ŝ[[τ ]] or S′ with a better or equal g-value is inserted into G, and
there exists a solution extending σ(S′′) with the cost at most γ̂.

When we consider Property (1), the proof for Algorithm 10 is simpler than the original one
due to the layer by layer nature of beam search. The set G contains only one state for one path.
Therefore, we can exclude the possibility that multiple paths dominate each other, e.g., given two
states S and S′ in G, S dominates a successor state S′[[τ ′]] of S′, and S′ dominates a successor state
S[[τ ]] of S. In the proof of Lemma 4, to show that such a situation does not occur, we introduced
the restriction that Ŝ minimizes the length of σ̂. For layer by layer search, we do not need it.

For CABS, since beam search returns an optimal solution or proves the infeasibility when
complete = ⊤ by Theorem 18, the optimality is straightforward by line 6 of Algorithm 11.

Corollary 4. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩, if an optimal solution exists for the mini-
mization problem with the model, and CABS returns a solution that is not NULL, then it is an
optimal solution. If CABS returns NULL, then the model is infeasible.

We prove that CABS terminates when a DyPDL model is finite, monoidal, and acyclic.

Theorem 19. Given a finite, acyclic, and monoidal DyPDL model, CABS terminates in finite time.

Proof. When the beam width b is sufficiently large, e.g., equal to the number of reachable states
in the model, beam search never reaches line 24. Since the number of reachable states is finite, b
eventually becomes such a large number with finite iterations. Suppose that we call beam search
with sufficiently large b. If complete = ⊤ is returned, we are done. Otherwise, beam search should
have found a new solution whose cost is better than γ in line 11 and reached line 26. In this case,
there exists a solution for the model. Since the state transition graph is finite and acyclic, there are
a finite number of solutions, and there exists an optimal solution with the cost γ∗. Since γ decreases
after each call if complete = ⊥, eventually, γ becomes γ∗, and complete = ⊤ is returned with finite
iterations. By Theorem 16, each call of beam search terminates in finite time. Therefore, CABS
terminates in finite time.

To obtain a dual bound from beam search, we need to slightly modify Theorem 14; since beam
search may discard states leading to optimal solutions, we need to keep track of the minimum (or
maximum for maximization) gl(S)× η(S) value for all discarded states in addition to states in O.

Theorem 20. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, let Dm be the set of states discarded



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 79

in layer m ≤ l − 1 by line 24 of Algorithm 10. If an optimal solution for the minimization problem
with the model exists and has the cost γ∗, just after line 22,

min

{
γ,min
S∈O

gl(S)× η(S), min
m=1,...,l−1

min
S∈Dm

gm(S)× η(S)
}
≤ γ∗

where we assume minS∈O g
l(S)× η(S) =∞ if O = ∅ and minS∈Dm gm(S)× η(S) =∞ if Dm = ∅.

Proof. If γ ≤ γ∗, the inequality holds trivially, so we assume γ > γ∗. We prove that there exists a
state Ŝ ∈ O∪

⋃l−1
m=1Dm on an optimal path, i.e., there exists a Ŝ-solution σ̂ such that ⟨σm(Ŝ); σ̂⟩ is

an optimal solution where m ∈ {0, ..., l}. Initially, O = {S0}, so the condition is satisfied. Suppose
that a state Ŝ on an optimal path is included in O just before line 7. If Ŝ is a base state, we reach
line 9, and current_cost = γ∗. Since γ > γ∗, γ is updated to γ∗ in line 11. Then, γ = γ∗ ≤ γ∗

will hold after line 22. If Ŝ is not a base state, by a similar argument to the proof of Theorem 18
(or Theorem 13 if we consider the modified version where states in all layers are kept in G), a state
on an optimal path, S′, will be included in G just before line 22. Since gl(S′) × η(S′) ≤ γ∗ < γ,
S′ ∈ O holds after line 22, and minS∈O g

l(S) × η(S) ≤ g(S′) × η(S′) ≤ γ∗. After line 24, S′ will
be included in either O or Dl, which can be considered a new Ŝ. Suppose that Ŝ ∈ Dm just before
line 7. Since Ŝ is never removed from Dm, minS∈Dm gm(S) × η(S) ≤ gm(Ŝ) × η(Ŝ) ≤ γ∗ always
holds. By mathematical induction, the theorem is proved.

4.3 Experimental Evaluation

We implement and experimentally evaluate DIDP solvers using combinatorial optimization problems.
For the DIDP solvers, we use the heuristic search algorithms described in Section 4.2. We compare
our DIDP solvers with commercial MIP and CP solvers, Gurobi 10.0.1 [188] and IBM ILOG CP
Optimizer 22.1.0 [277]. We select state-of-the-art MIP and CP models in the literature when multiple
models exist and develop a new model when we do not find an existing one.

4.3.1 Software Implementation of DIDP

We develop didp-rs v0.7.0,2 a software implementation of DIDP in Rust. It has four components,
dypdl,3 dypdl-heuristic-search,4 didp-yaml,5 and DIDPPy.6 dypdl is a library for modeling, and
dypdl-heuristic-search is a library for heuristic search solvers. didp-yaml is a library for parsing
YAML-DyPDL with a command line interface that takes YAML-DyPDL domain and problem files
and a YAML file specifying a solver as input and returns the result. DIDPPy is a Python library
described in Section 3.2.3. In our experiment, we use didp-yaml.

dypdl-heuristic-search implements CAASDy, DFBnB, CBFS, ACPS, APPS, DBDFS, and CABS
as DIDP solvers. These solvers can handle monoidal DyPDL models with a monoid ⟨A,×,1⟩ where
A ⊆ Q∪ {−∞,∞}, × ∈ {+,max}, and 1 = 0 if × = + or 1 is the minimum value in A if × = max.
Note that ⟨A,×,1⟩ is a monoid (Definition 21), and A is isotone (Definition 22), which is a sufficient

2https://github.com/domain-independent-dp/didp-rs/releases/tag/v0.7.0
3https://crates.io/crates/dypdl
4https://crates.io/crates/dypdl-heuristic-search
5https://crates.io/crates/didp-yaml
6https://didppy.readthedocs.io



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 80

condition to prove the optimality or infeasibility when a heuristic search algorithm terminates in
Theorem 13 and Corollary 4. Assuming that x + y ∈ A for x, y ∈ A and 0 ∈ A, by Definition 21,
⟨A,+, 0⟩ is a monoid since x+ (y+ z) = (x+ y) + z (associativity) and x+0 = 0+ x = x (identity)
for x, y, z ∈ A. Since x ≤ y → x+ z ≤ y+ z and x ≤ y → z + x ≤ z + y for x, y, z ∈ A, A is isotone.
In addition, for minimization, if A ⊆ Q+

0 , then ⟨A,+, 0⟩ is a cost algebra (Definition 23) since ∀x ∈
Q+

0 , 0 ≤ x, which is one of the sufficient conditions for a heuristic search algorithm to terminate in
finite time in Theorem 11. Similarly, assuming that max{x, y} ∈ A for x, y ∈ A and 1 is the minimum
value in A, ⟨A,max,1⟩ is a monoid since max{x,max{y, z}} = max{max{x, y}, z} (associativity)
and max{x,1} = max{1, x} = x (identity) for x, y, z ∈ A. Since x ≤ y → max{x, z} ≤ max{y, z}
and x ≤ y → max{z, x} ≤ max{z, y} for x, y, z ∈ A, A is isotone. For minimization, ⟨A,max,1⟩ is
a cost algebra since ∀x ∈ A,1 ≤ x.

In all solvers, we use the dual bound function provided with a DyPDL model as a heuristic
function. Thus, f(S) = g(S) × h(S) = g(S) × η(S). By Theorem 14, the best f -value in the open
list is a dual bound. In CAASDy, states in the open list are ordered by the f -values in a binary
heap, so a dual bound can be obtained by checking the top of the binary heap. Similarly, in DFBnB,
CBFS, and ACPS, since states with each depth are ordered by the f -values, by keeping track of
the best f -value in each depth, we can compute a dual bound. In APPS, when the set of the best
states Ob and the set of the best successor states Oc become empty, the best f -value of states in
the suspend list Os is a dual bound, where states are ordered by the f -values. In DBDFS, we keep
track of the best f -value of states inserted into O1 and use it as a dual bound when O0 becomes
empty. In CABS, based on Theorem 20, the best f -value of discarded states is maintained, and a
dual bound is computed after generating all successor states in a layer. In CAASDy, CBFS, ACPS,
APPS, and CABS, when the f - and h-values of two states are the same, the tie is broken according
to the implementation of the binary heap that is used to implement the open list. In DFBnB and
DBDFS, the open list is implemented with a stack, and successor states are sorted before being
pushed to the stack, so the tie-breaking depends on the implementation of the sorting algorithm.
While a dual bound function is provided in each DyPDL model used in our experiment, it is not
required in general; when no dual bound function is provided, the DIDP solvers use the g-value
instead of the f -value to guide the search and do not perform pruning.

4.3.2 Benchmarks

We used the ten combinatorial optimization problem classes and their DyPDL models introduced
in Section 3.3 in addition to TSPTW introduced in Section 3.2. These models can all be handled
by our DIDP solvers. As discussed in Section 4.3.1, given a monoidal DyPDL model with a monoid
⟨A,+, 0⟩ or ⟨A,max,1⟩ where A ⊆ Q ∪ {−∞,∞} and 1 is the minimum value in A, a solver proves
the optimality or infeasibility if it terminates. In TSPTW, the capacitated vehicle routing problem
(CVRP), and the multi-commodity pickup and delivery traveling salesperson problem (m-PDTSP),
the cost expression of each transition is defined as cS[i],j + x with cS[i],j ≥ 0 (or cS[i],0 + c0j + x

with cS[i],0, c0j ≥ 0), the cost of the base case is cS[i],0 ≥ 0, and the objective is minimization, so
the models are cost-algebraic with a cost-algebra ⟨Q+

0 ,+, 0⟩. Similarly, for 1||
∑
wiTi and talent

scheduling, each cost expression adds a nonnegative value to the cost of the successor state (x), and
the objective is minimization, so the models are cost-algebraic. For the orienteering problem with
time windows (OPTW) and the multi-dimensional knapsack problem (MDKP), the cost expressions



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 81

are similar to the above problem classes, so the models are monoidal with a monoid ⟨Q0
+,+, 0⟩.

However, the DyPDL models are not cost-algebraic since the objective is maximization. For bin
packing and SALBP-1, each cost expression adds 1 to the cost of the successor state (1 + x) or
keeps it as is (x), which can be viewed as adding 0 (0 + x). Since the objective is minimization,
the DyPDL models are cost-algebraic with ⟨Z+

0 ,+, 0⟩. For the minimization of open stacks problem
(MOSP) and graph-clear, the cost expression takes the maximum of a nonnegative integer and the
cost of the successor state, and the objective is minimization, so the models are cost-algebraic with
⟨Z+

0 ,max, 0⟩. Since all models are finite and acyclic, by Theorems 10 and 19, our DIDP solvers
terminate in finite time.

We describe benchmark instances and MIP and CP models for each problem class. We present
all MIP and CP models in Appendix B. All benchmark instances are in text format, so they are
converted to YAML-DyPDL problem files by a Python script. All instances in one problem class
share the same YAML-DyPDL domain file except for MDKP, where the number of state variables
depends on an instance, and thus a domain file is generated for each instance by the Python script.

TSPTW

We use 340 instances from Dumas et al. [109], Gendreau et al. [160], Ohlmann and Thomas [328],
and Ascheuer [10], where travel times are integers; while didp-rs can handle floating point numbers,
the CP solver we use, CP Optimizer, does not. In these instances, the deadline to return to the
depot, b0, is defined, but ∀i ∈ N, bi + ci0 ≤ b0 holds, i.e., we can always return to the depot after
visiting the final customer. Thus, b0 is not considered in the DyPDL model. For MIP, we use
Formulation (1) proposed by Hungerländer and Truden [222]. When there are zero-cost edges, flow-
based subtour elimination constraints [157] are added. We adapt a CP model for a single machine
scheduling problem with time windows and sequence-dependent setup times [49] to TSPTW, where
an interval variable represents the time to visit a customer. We change the objective to the sum of
travel costs (setup time in their model) and add a First constraint ensuring that the depot is visited
first.

CVRP

We use 207 instances in A, B, D, E, F, M, P, and X sets from CVRPLIB [425]. We use a MIP model
proposed by Gadegaard and Lysgaard [151] and a CP model proposed by Rabbouch, Saâdaoui, and
Mraihi [350].

m-PDTSP

We use 1178 instances from Hernández-Pérez and Salazar-González [208], which are divided into
class1, class2, and class3 sets. For MIP, we use the MCF2C+IP formulation [287]. We use the CP
model proposed by Castro, Cire, and Beck [65]. In all models, unnecessary edges are removed by a
preprocessing method [287].

OPTW

We use 144 instances from Righini and Salani [356, 357], Montemanni and Gambardella [315], and
Vansteenwegen et al. [434]. In these instances, service time si spent at each customer i is defined,



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 82

so we incorporate it in the travel time, i.e., we use si + cij as the travel time from i to j. We use
the MIP model described in Vansteenwegen, Souffriau, and Oudheusden [433]. For CP, we develop
a model similar to that of TSPTW, described in Appendix B.

MDKP

We use 276 instances from OR-Library [23], excluding one instance that has fractional item weights;
while the DIDP solvers can handle fractional weights, the CP solver does not. We use the MIP model
described in Cacchiani et al. [61]. For CP, we develop a model using the Pack global constraint [391]
for each dimension (see Appendix B).

Bin Packing

We use 1615 instances in BPPLIB [100], proposed by Falkenauer [130] (Falkenauer U and Falkenauer
T), Scholl, Klein, and Jürgens [384] (Scholl 1, Scholl 2, and Scholl 3), Wäscher and Gau [441]
(Wäscher), Schwerin and Wäscher [385] (Schwerin 1 and Schwerin 2), and Schoenfield [382] (Hard28).
We use the MIP model by Martello and Toth [306] extended with inequalities ensuring that bins are
used in order of index and item j is packed in the j-th bin or earlier as described in Delorme, Iori,
and Martello [99]. We implement a CP model using Pack while ensuring that item j is packed in
bin j or before. For MIP and CP models, the upper bound on the number of bins is computed by
the first-fit decreasing heuristic. We show the CP model in Appendix B.

SALBP-1

We use 2100 instances proposed by Morrison, Sewell, and Jacobson [319]. For MIP, we use the
NF4 formulation [363]. We use a CP model proposed by Bukchin and Raviv [54] but implement it
using the global constraint Pack in CP Optimizer as it performs better than the original model (see
Appendix B). In addition, the upper bound on the number of stations is computed in the same way
as the MIP model instead of using a heuristic.

Single Machine Total Weighted Tardiness

We use 375 instances in OR-Library [23] with 40, 50, and 100 jobs. For MIP, we use the formulation
with assignment and positional date variables (F4) [248]. For CP, we formulate a model using
interval variables and precedence constraints, as described in Appendix B. We extract precedence
relations between jobs using the method proposed by Kanet [237] and incorporate them into the DP
and CP models but not into the MIP model as its performance is not improved.

Talent Scheduling

Garcia de la Banda and Stuckey [152] considered instances with 8, 10, 12, 14, 16, 18, 20, 22 actors and
16, 18, ..., 64 scenes, resulting in 200 configurations in total. For each configuration, they randomly
generated 100 instances. We use the first five instances for each configuration, resulting in 1000
instances in total. We use a MIP model described in Qin et al. [349]. For CP, we extend the model
used in Chu and Stuckey [78] with the AllDifferent global constraint [280], which is redundant but
slightly improves the performance in practice, as described in Appendix B. In all models, a problem
is simplified by preprocessing as described in Garcia de la Banda and Stuckey [152].



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 83

MOSP

We use 570 instances in Constraint Modelling Challenge [402], SCOOP Project,7 Faggioli and Ben-
tivoglio [129], and Chu and Stuckey [79]. The MIP and CP models are proposed by Martin, Yanasse,
and Pinto [307]. From their two MIP models, we select MOSP-ILP-I as it solves more instances
optimally in their paper.

Graph-Clear

We generated 135 instances using planar and random graphs in the same way as Morin et al. [317],
where the number of nodes in a graph is 20, 30, or 40. All instances and the instance generator are
available in our repository.8 For planar instances, we use a planar graph generator [150] with the
input parameter of 1000. We use MIP and CP models proposed by Morin et al. [317]. From the two
proposed CP models, we select CPN as it solves more instances optimally.

4.3.3 Metrics

Since all solvers are exact, we evaluate coverage, the number of instances where an optimal solution
is found and its optimality is proved within time and memory limits. We include the number
of instances where infeasibility is proved in coverage. We also evaluate optimality gap, a relative
difference between primal and dual bounds. Let γ be a primal bound and γ be a dual bound found
by a solver. We define the optimality gap, δ

(
γ, γ

)
, as follows:

δ
(
γ, γ

)
=

0 if γ = γ = 0
|γ−γ|

max{|γ|,|γ|} else.

The optimality gap is 0 when the optimality is proved and positive otherwise. We also use 0 as the
optimality gap when the infeasibility is proved. In the second line, when the signs of the primal
and dual bounds are the same, since |γ − γ| ≤ max{|γ|, |γ|}, the optimality gap never exceeds 1. In
practice, we observe that primal and dual bounds found are always nonnegative in our experiment.
Therefore, we use 1 as the optimality gap when either a primal or dual bound is not found.

To evaluate the performance of anytime solvers, we use the primal integral [39], which considers
the balance between the solution quality and computational time. For an optimization problem, let
σt be a solution found by a solver at time t, σ∗ be an optimal (or best-known) solution, and γ be a
function that returns the solution cost. The primal gap function p is

p(t) =


0 if γ(σt) = γ(σ∗) = 0

1 if no σt or γ(σt)γ(σ∗) < 0

|γ(σ∗)−γ(σt)|
max{|γ(σ∗)|,|γ(σt)|} else.

The primal gap takes a value in [0, 1], and lower is better. Let ti ∈ [0, T ] for i = 1, ..., l − 1 be a
time point when a new better solution is found by a solver, t0 = 0, and tl = T . The primal integral
is defined as P (T ) =

∑l
i=1 p(ti−1) · (ti − ti−1). It takes a value in [0, T ], and lower is better. P (T )

7https://cordis.europa.eu/project/id/32998
8https://github.com/Kurorororo/didp-models



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 84

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS DBDFS CABS

Figure 4.1: The ratio of the coverage against time and the ratio of instances against the optimality
gap averaged over all problem classes.

Table 4.1: Coverage (c.) and the number of instances where the memory limit is reached (m.) in
each problem class. The coverage of a DIDP solver is in bold if it is higher than MIP and CP, and
the higher of MIP and CP is in bold if there is no better DIDP solver. The highest coverage is
underlined.

MIP CP CAASDy DFBnB CBFS ACPS APPS DBDFS CABS CABS/0

c. m. c. m. c. m. c. m. c. m. c. m. c. m. c. m. c. m. c. m.

TSPTW (340) 222 0 47 0 257 83 242 34 257 81 257 82 257 83 256 83 259 0 259 0
CVRP (207) 27 5 0 0 6 201 6 187 6 201 6 201 6 201 6 201 6 0 5 3
m-PDTSP (1178) 940 0 1049 0 952 226 985 193 988 190 988 190 988 190 987 191 1035 0 988 15
OPTW (144) 16 0 49 0 64 79 64 60 64 80 64 80 64 80 64 78 64 0 - -
MDKP (276) 165 0 6 0 4 272 4 272 5 271 5 271 5 271 4 272 5 1 - -
Bin Packing (1615) 1159 0 1234 0 922 632 526 1038 1115 431 1142 405 1037 520 426 1118 1167 4 242 14
SALBP-1 (2100) 1423 248 1584 0 1657 406 1629 470 1484 616 1626 474 1635 465 1404 696 1802 0 1204 1
1||

∑
wiTi (2100) 106 0 150 0 270 105 233 8 272 103 272 103 265 110 268 107 288 0 - -

Talent Scheduling (1000) 0 0 0 0 207 793 189 388 214 786 214 786 206 794 205 795 239 0 231 0
MOSP (570) 231 2 437 0 483 87 524 46 523 47 524 46 523 47 522 48 527 0 - -
Graph-Clear (135) 17 0 4 0 78 57 99 36 101 34 101 34 99 36 82 53 103 19 - -

decreases if the same solution cost is achieved faster or a better solution is found with the same
computational time. When an instance is proved to be infeasible at time t, we use p(t) = 0, so
P (T ) corresponds to the time to prove infeasibility. For TSPTW, CVRP, and 1||

∑
wiTi, we use the

best-known solutions provided with the instances to compute the primal gap. For other problems,
we use the best solutions found by the solvers evaluated.

4.3.4 Experimental Settings

We use Rust 1.70.0 for didp-rs and Python 3.10.2 for the Python scripts to convert instances to
YAML-DyPDL files and the Python interfaces of Gurobi and CP Optimizer. All experiments are
performed on an Intel Xeon Gold 6418 processor with a single thread, an 8 GB memory limit, and
a 30-minute time limit using GNU Parallel [416].

4.3.5 Results

We visualize the coverage and optimality gap in Figure 4.1. In the left-hand side, the x-axis is
time in seconds, and the y-axis is the ratio of coverage over the number of instances achieved with
x seconds. In the right-hand side, the x-axis is the optimality gap, and the y-axis is the ratio of
instance where the optimality gap is less than or equal to x. Since each problem class has a different
number of instances, we compute the coverage ratio per problem class and then present the mean
coverage ratio over problem classes in Figure 4.1. We present similar plots for each problem class



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 85

Table 4.2: Average optimality gap in each problem class. The optimality gap of a DIDP solver is in
bold if it is lower than MIP and CP, and the lower of MIP and CP is in bold if there is no better
DIDP solver. The lowest optimality gap is underlined.

MIP CP CAASDy DFBnB CBFS ACPS APPS DBDFS CABS CABS/0

TSPTW (340) 0.2394 0.7175 0.2441 0.1598 0.1193 0.1194 0.1217 0.1408 0.1151 0.2085
CVRP (207) 0.8696 0.9868 0.9710 0.7484 0.7129 0.7123 0.7164 0.7492 0.6912 0.9111
m-PDTSP (1178) 0.1820 0.1095 0.2746 0.2097 0.1807 0.1807 0.1840 0.2016 0.1599 0.1878
OPTW (144) 0.6643 0.2890 0.5556 0.3583 0.2683 0.2683 0.2778 0.3359 0.2696 -
MDKP (276) 0.0008 0.4217 0.9855 0.4898 0.4745 0.4745 0.4742 0.4854 0.4676 -
Bin Packing (1615) 0.0438 0.0043 0.4291 0.0609 0.0083 0.0075 0.0105 0.0651 0.0049 0.7386
SALBP-1 (2100) 0.2704 0.0108 0.2100 0.0257 0.0115 0.0096 0.0094 0.0273 0.0057 0.3695
1||

∑
wiTi (2100) 0.4897 0.3709 0.2800 0.3781 0.2678 0.2679 0.2878 0.2845 0.2248 -

Talent Scheduling (1000) 0.8869 0.9509 0.7930 0.2368 0.1884 0.1884 0.2003 0.2462 0.1697 0.6667
MOSP (570) 0.3254 0.1931 0.1526 0.0713 0.0362 0.0359 0.0392 0.0655 0.0200 -
Graph-Clear (135) 0.4744 0.4560 0.4222 0.2359 0.0995 0.0996 0.1089 0.2636 0.0607 -

in Appendix C and summarize the results by showing the coverage and the average optimality gap
at the time limit in each problem class in Tables 4.1 and 4.2. Table 4.1 also presents the number
of instances where the memory limit is reached. In the tables, if a DIDP solver is better than MIP
and CP, it is emphasized in bold. If MIP or CP is better than all DIDP solvers, its value is in bold.
The best value is underlined.

On average, the DIDP solvers solve a larger ratio of instances than MIP and CP. Except for
CAASDy, they also outperform MIP and CP in the optimality gap. Since we use the dual bound
function as an admissible heuristic function, by Theorem 15, CAASDy does not find a feasible
solution before proving the optimality when a model is cost-algebraic and the costs of all base cases
are the identity element 1, e.g., 0 for rational numbers under addition. Since the DyPDL models for
bin packing, SALBP-1, 1||

∑
wiTi, talent scheduling, MOSP, and graph-clear satisfy these conditions,

CAASDy does not find feasible solutions for any unsolved instances. In addition, although the
DyPDL models for TSPTW, CVRP, OPTW, and MDKP do not satisfy the conditions,9 CAASDy
does not find feasible solutions for unsolved instances in practice. In these problem instances, since
primal bounds are not provided, the optimality gap is 1.0. The only exception is m-PDTSP, where
CAASDy finds feasible solutions for eleven unsolved instances.

Comparing the DIDP solvers, CABS is the best on average. CABS has lower coverage with
low run-time but eventually outperforms other DIDP solvers. Since CABS repeatedly searches the
same states multiple times, it is less time efficient than other DIDP solvers. However, as shown in
Table 4.1, while other DIDP solvers run out of memory in most of the instances they are unable to
solve, CABS rarely reaches the memory limit, benefitting from the layered duplicate detection. As
a result, CABS has the highest coverage on average and in each problem class at the time limit.

CAASDy, ACPS, APPS, and CABS have higher coverage than both MIP and CP in seven
problem classes: TSPTW, OPTW, SALBP-1, 1||

∑
wiTi, talent scheduling, MOSP, and graph-

clear. In addition, the DIDP solvers except for CAASDy outperform MIP and CP in the class1
instances of m-PDTSP (145 (CABS) and 144 (others) vs. 128 (MIP and CP)). MIP has the highest
coverage in CVRP and MDKP, and CP in m-PDTSP and bin packing. MIP runs out of memory in
some instances while CP never does. In particular, in the MIP model for SALBP-1, the number of
decision variables and constraints is quadratic in the number of tasks in the worst case, and MIP
reaches the memory limit in 248 instances with 1000 tasks.

9The DyPDL models for OPTW and MDKP are not cost-algebraic. The models for TSPTW, CVRP, and m-
PDTSP are cost-algebraic with the identity element 0, but the costs of their base cases can be positive.



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 86

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS

Figure 4.2: The ratio of instances against the primal integral averaged over all problem classes.

Table 4.3: Average primal integral in each problem class. The primal integral of a DIDP solver is
in bold if it is lower than MIP and CP, and the lower of MIP and CP is in bold if there is no better
DIDP solver. The lowest primal integral is underlined.

MIP CP CAASDy DFBnB CBFS ACPS APPS DBDFS CABS CABS/0

TSPTW (340) 509.18 48.97 458.26 46.31 9.49 10.06 29.36 56.65 9.25 13.71
CVRP (207) 1147.11 482.89 1748.23 420.66 423.45 418.29 440.59 523.42 333.68 335.75
m-PDTSP (1178) 177.82 26.04 333.53 23.37 6.51 6.49 9.23 17.87 5.24 5.31
OPTW (144) 443.70 15.58 1018.23 175.49 54.05 54.29 74.37 139.64 57.95 -
MDKP (276) 0.11 15.87 1773.92 236.13 211.70 211.63 211.85 238.01 201.73 -
Bin Packing (1615) 88.45 8.07 778.60 104.49 10.00 8.43 13.85 111.87 5.07 11.58
SALBP-1 (2100) 536.39 28.43 383.35 35.59 10.83 7.28 6.74 38.80 1.92 19.42
1||

∑
wiTi (2100) 64.01 3.49 513.24 136.99 111.19 103.76 105.97 97.34 71.21 -

Talent Scheduling (1000) 111.75 18.86 1435.12 118.98 40.67 40.34 60.07 143.40 25.36 50.73
MOSP (570) 92.63 13.01 275.48 4.41 1.39 1.20 1.37 7.72 0.31 -
Graph-Clear (135) 337.61 83.49 764.00 4.63 0.70 0.74 3.45 87.90 0.37 -

The DIDP solvers closed five class1 instances of m-PDTSP that were previously unsolved. All
DIDP solvers optimally solve p43.3Q6max (the optimal solution cost is 56600) and p43.3Q15max5
(56325) and prove the infeasibility of p43.3Q4max1 and p43.3Q10max5. In addition, CABS closed
p43.3Q7max1 (56120). CP also closed p43.3Q8max1 (29450) and p43.3Q20max5 (29475).

In terms of the optimality gap shown in Table 4.2, ACPS, APPS, and CABS are better than
MIP and CP in the seven problem classes where they have higher coverage. In addition, the DIDP
solvers except for CAASDy outperform MIP and CP in CVRP, where MIP has the highest coverage;
in large instances of CVRP, MIP fails to find feasible solutions, which results in a high average
optimality gap. Comparing the DIDP solvers, CABS is the best in all problem classes except for
OPTW, where CBFS and ACPS are marginally better. CAASDy is the worst among the DIDP
solvers in all problem classes except for 1||

∑
wiTi;

Figure 4.2 shows the ratio of instances against the primal integral averaged over all problem
classes. We present similar plots for each problem class in Appendix C. On average, the DIDP
solvers except for CAASDy outperform MIP, and CABS is the best among the DIDP solvers. As
mentioned above, CAASDy does not find feasible solutions for almost all unsolved instances, resulting
in the worst primal integral. CP is the best though CBFS, ACPS, APPS, and CABS have a higher
ratio of instances than CP when the primal integral is less than a certain threshold. For example,
the lines for CABS and CP cross where the primal integral is around 20.

Table 4.3 shows the average primal integral in each problem class. Similar to Tables 4.1 and
4.2, the primal integral of a DIDP solver is in bold if it is better than MIP and CP, and the best
value is underlined. Comparing the DIDP solvers, CABS is the best in all problem classes except for
OPTW, where CBFS and ACPS are better. CBFS, ACPS, and APPS outperform MIP and CP in



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 87

six problem classes (TSPTW, CVRP, m-PDTSP, SALBP-1, MOSP, and graph-clear). In addition to
these problem classes, CABS achieves a better primal integral than CP in bin packing. In contrast,
CP is the best in OPTW, 1||

∑
wiTi, and talent scheduling. While the number of problem classes

where CABS is better than CP on average is larger than the number of classes where CP is better,
large performance gaps in MDKP and 1||

∑
wiTi (Figures C.16 and C.19 in Appendix C) result in

a better the mean for CP in Figure 4.2.
In CVRP, while MIP solves more instances optimally, the DIDP solvers except for CAASDy

achieve a better average primal integral since MIP fails to find primal bounds for large instances as
mentioned. In m-PDTSP, the DIDP solvers except for CAASDy have a lower primal integral than
CP, which has the highest coverage. In contrast, in OPTW, 1||

∑
wiTi, and talent scheduling, where

the DIDP solvers solve more instances, CP has a better primal integral.

4.3.6 Performance of DIDP Solvers and Problem Characteristics

In CVRP, MIP outperforms the DIDP solvers even though the DyPDL model is similar to other
routing problems (i.e., TSPTW, m-PDTSP, and OPTW) where the DIDP solvers are better. Sim-
ilarly, in bin packing, the DyPDL model is similar to that of SALBP-1, where CABS is the best,
but CP solves more instances. One common feature in the subset of the problem classes where
DIDP is better than MIP or CP is a sequential dependency. In TSPTW and OPTW, a solution is a
sequence of visited customers, the time when a customer is visited depends on the partial sequence
of customers visited before, and time window constraints restrict possible sequences. Similarly, in
m-PDTSP, SALBP-1, and 1||

∑
wiTi, precedence constraints restrict possible sequences. In the

DyPDL models, these constraints restrict possible paths in the state transition graphs and thus
reduce the number of generated states. In contrast, in CVRP, as long as the capacity constraint
is satisfied for each vehicle, customers can be visited in any order. In the DyPDL model for bin
packing, while item i must be packed in the i-th or earlier bin and the first item packed in a new bin
has the minimum index among possible items, the remaining items can be packed in any order. We
hypothesize that this difference, whether a sequential dependency exists or not, may be important
for the performance of the DIDP solvers observed in our experiments.

4.3.7 Evaluating the Importance of Dual Bound Functions

As we described above, our DIDP solvers use the dual bound function defined in a DyPDL model
as an admissible heuristic function, which is used for both search guidance and state pruning. In
1||
∑
wiTi, MOSP, and graph-clear, we use a trivial dual bound function, which always returns 0.

Nevertheless, the DIDP solvers show better performance than MIP and CP. This result suggests
that representing these problems using state transition systems provides a fundamental advantage
on these problems while raising the question of the impact of non-trivial dual bound functions on
problem solving performance. To investigate, we evaluate the performance of CABS with DyPDL
models where the dual bound function is replaced with a function that always returns 0. In other
words, beam search keeps the best b states according to the g-values and prunes a state S if g(S) ≥ γ
in minimization, where γ is a primal bound. Since the zero dual bound function is not valid for
OPTW and MDKP, where the DyPDL models maximize the nonnegative total profit, we use only
TSPTW, CVRP, m-PDTSP, bin packing, SALBP-1, and talent scheduling. We call this configuration



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 88

CABS/0 and show results in Tables 4.1–4.3. In TSPTW, CABS and CABS/0 have the same coverage,
and CABS/0 reaches it slightly faster as shown in Figure C.1 in Appendix C, possibly due to less
expensive computation per state. However, in other problem classes, CABS/0 has a lower coverage
than CABS. In terms of the optimality gap and primal integral, CABS is better than CABS/0 in
all problem classes, and the difference is particularly large in bin packing and SALBP-1. Overall,
using the trivial dual bound function results in performance degradation in proving optimality and
achieving good anytime behavior.

4.3.8 Comparison with Other State-Based Approaches

In Appendix C.2, we compare DIDP with other state-based approaches, domain-independent AI
planning and Picat, a logic programming language hybridized with AI planning (Section 2.4.2).
They are not competitive with DIDP, which is not surprising as AI planners are not designed for
combinatorial optimization. In addition, our evaluation setting is not necessarily the best for these
approaches: while we use models adapted from the DyPDL models, different models might be
better for these solvers. For domain-independent AI planning, while we use the winners of the most
recent International Planning Competition,10 they are not necessarily the most efficient planners for
combinatorial optimization. However, our point is to show that the performance achieved by the
DIDP solvers is not a trivial consequence of the state-based modeling approach, and DIDP is doing
something that existing approaches are not able to easily do.

In the appendix, we also compare DIDP with a decision diagram solver, ddo [171] (Section 2.4.4)
using TSPTW (with a different objective function) and talent scheduling, for which the models for
ddo were developed by previous work [169, 87, 88, 89]. DIDP is better than ddo in terms of coverage
in both problem classes, but ddo has a better average optimality gap in talent scheduling. Note
that ddo requires the specification of a state merging operator which is ignored by DIDP. Thus, the
models being solved are not identical.

4.4 Summary

We introduced a generic heuristic search algorithm and proved its completeness and optimality for
a subclass of Dynamic Programming Description Language (DyPDL) models. While our algorithm
is based on an existing framework, cost-algebraic heuristic search, it has the following new features:
it exploits dominance between states for pruning; it is anytime, i.e., can provide feasible solutions
and optimality gap during search; it is not restricted to cost algebras if a model is finite and acyclic.

Using existing heuristic search algorithms, we developed seven domain-independent dynamic
programming (DIDP) solvers. We experimentally showed that they outperform commercial mixed-
integer programming (MIP) and constraint programming (CP) solvers in seven out of eleven combi-
natorial optimization problem classes evaluated. This result demonstrates that DIDP is a promising
model-based paradigm.

Among the DIDP solvers, complete anytime beam search (CABS) is the best in almost all cases;
while other DIDP solvers run out of the 8GB memory limit before reaching the 30-minute time limit
in most instances, CABS rarely reaches the memory limit, benefitting from the layered duplicate

10https://ipc2023.github.io/



CHAPTER 4. HEURISTIC SEARCH SOLVERS FOR DIDP 89

detection mechanism. This observation raises the importance of memory efficiency in developing
heuristic search solvers.

Using CABS/0, we evaluated the importance of a dual bound function, which is used for both
search guidance and state pruning. The result shows that using a better dual bound function is
essential to achieve better performance in terms of both finding good solutions and proving opti-
mality. Nevertheless, using a dual bound function for search guidance is not necessarily justified as
discussed in Section 4.1.4; we may improve the anytime behavior by using an inadmissible heuristic
function for search guidance. Disentangling search guidance from pruning and developing better
functions for each role is an interesting direction for future work.



Chapter 5

Large Neighborhood Beam Search

In the previous chapter, we demonstrated that heuristic search algorithms, techniques developed
in the artificial intelligence (AI) community, can be successfully applied to domain-independent
dynamic programming (DIDP). In this chapter, we investigate applying a method used in the con-
straint programming (CP) and operations research (OR) communities to DIDP. In particular, we
focus on large neighborhood search (LNS) [392], an algorithmic framework originally developed in
the CP community. An LNS algorithm removes a part of a solution and then performs search in the
induced partial search space (neighborhood) to find a better solution, typically using tree search.
LNS has been applied to combinatorial optimization problems such as routing [392, 368, 234] and
scheduling [93, 332]. LNS algorithms are also used in general-purpose solvers for CP [347, 277, 337]
and mixed-integer programming (MIP) [94, 40, 205, 75] as primal heuristics, algorithms to quickly
obtain high-quality feasible solutions.

We propose large neighborhood beam search (LNBS), a combination of LNS and state space
search designed to achieve high solution quality. LNBS tries to improve a solution path by removing
a partial path between two states and then performing beam search to find a better partial path.
While LNBS has the freedom to select a neighborhood (i.e., a partial path to remove), we propose a
strategy that dynamically adjusts the size of a neighborhood based on a multi-armed bandit problem
[38]. With our strategy, LNBS is complete, i.e., it finds and proves an optimal solution given enough
time, but, of course, it is aimed at problems where its solution quality is more important than proved
optimality.

The novelty of our methodology comes from the adaptive neighborhood selection strategy using a
multi-armed bandit algorithm. Although some existing methods can be considered state space search
algorithms in a neighborhood [352, 149, 324, 170], they do not adaptively select the neighborhood
size. Unlike previous work using multi-armed bandit algorithms with LNS [205, 75, 338], we use
a budgeted multi-armed bandit algorithm [442], which tries to maximize the total reward within a
time limit.

We implement multiple configurations of LNBS as DIDP solvers. The experimental results show
that the LNBS configurations outperform complete anytime beam search (CABS), the best DIDP
solver developed in Chapter 4, in six out of the eleven benchmark problem classes in terms of solution
quality. In addition, LNBS performs better than a commercial CP solver, which uses LNS [277], in
seven problems while CABS is better than CP in only six problems. Since LNBS performs better

90



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 91

than CABS in some problem classes while CABS is better in others, we investigate the reason for
this performance. Our analysis suggests that LNBS tends to perform better than CABS when a
heuristic function is not informative.

After introducing LNS in Section 5.1, we propose LNBS in Section 5.2 and experimentally eval-
uate it in Section 5.3. We discuss future directions to improve LNBS in Section 5.4 and similarities
and differences between LNBS and existing state space search and LNS algorithms in Section 5.5.
Finally, Section 5.6 summarizes the contributions of this chapter.

This work is based on a conference paper published in the International Conference on Principles
and Practice of Constraint Programming [268]. We extend the paper with the following points:

• We generalize LNBS to maximization.

• We add two additional problem classes in the experimental evaluation.

• We conduct an ablation study of LNBS components using all of the eleven problem classes.

• We propose a new hypothesis that LNBS performs better than CABS when a heuristic function
is not informative. Our experimental results are consistent with this hypothesis while they
contradict our previous hypothesis, presented in the conference paper, that LNBS performs
better when partial path costs are diverse.

• We provide a broader and deeper literature review of related work.

5.1 Large Neighborhood Search

Large neighborhood search (LNS) iteratively removes a part of a solution and solves the resulting
subproblem (neighborhood) [392]. We present generic pseudo-code of LNS for minimization following
Pisinger and Ropke [343] in Algorithm 12. Let σ be a solution for a problem, and γ(σ) be its cost.
Let D be a destroy heuristic, a possibly randomized algorithm that returns a partial solution D(σ)

given a complete solution σ, and R be a repair heuristic, an algorithm that returns a complete
solution R(ψ′) given a partial solution ψ′. At each iteration, we use the destroy and repair heuristics
to obtain a new solution σ′ from the current solution σ. While we update the best solution σ only
if a better solution is found, σ can be updated according to a different criterion, represented by a
function A(σ′, σ). For example, simulated annealing [252], which accepts non-improving solutions
with probabilities decreasing over time, is used by previous work [368].

In MIP and CP, a solution is represented as a complete value assignment to decision variables.
Let x1, ..., xn be decision variables and v1, ..., vn be values of the variables representing a solution.
In LNS algorithms for MIP and CP, a subproblem is created by fixing the values of a subset of
decision variables [94, 40, 205, 75, 392, 234, 332, 347, 277]. In other words, the subproblem is to
assign values to a subset of decision variables {xj | j ∈ Y } given a partial value assignment xj = vj

for j /∈ Y , where Y ⊂ {1, ..., n}. A destroy heuristic selects the subset of decision variables Y . A
repair heuristic is typically a tree search algorithm: a search node is a partial value assignment to
decision variables, successor nodes are generated by assigning a value to an unassigned variable, and
a solution corresponds to a leaf node, where all variables are assigned values.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 92

Algorithm 12 Generic pseudo-code of LNS for minimization. A feasible solution σ is given as
input.
1: σ ← σ ▷ Initialize the current solution
2: while the stopping criterion is not met do
3: ψ ← D(σ) ▷ Remove a part of the solution.
4: σ′ ← R(ψ) ▷ Find a new solution.
5: if A(σ′, σ) then
6: σ ← σ′ ▷ Update the current solution.
7: if γ(σ′) ≤ γ(σ) then
8: σ ← σ ▷ Update the best solution.
9: return σ ▷ Return the best solution.

Algorithm 13 Restrict DD nodes (states) in a layer in DD-LNS. A set of states G, a function σ
returning the best sequence of transitions from the target state to each state, the transition τ in the
best solution, and parameters b ≥ 0 and p ∈ [0, 1) are given as input.

1: O ← ∅
2: for S ∈ G do
3: if σ(S)|σ(S)| = τ or r ≤ p where r ∼ [0, 1) then
4: O ← O ∪ {S}
5: if |O| < b then
6: O ← O∪ the best b− |O| states in G \O.
7: return O

5.1.1 Large Neighborhood Search with Decision Diagrams

Gillard and Schaus [170] proposed LNS with decision diagrams (DD-LNS), which uses a DP formu-
lation of a problem as input. Although DD-LNS was not explicitly framed as state space search, the
authors acknowledged that DD-LNS is a hybridization of LNS and beam search [170]. Therefore, we
interpret it as a state space search algorithm. Given a sequence of transitions ⟨σ1, ..., σn⟩, DD-LNS
keeps the first d transitions, σ:d = ⟨σ1, ..., σd⟩, and searches for the remaining transitions. To find
such a sequence, DD-LNS constructs a decision diagram (DD), a directed graph where nodes are
partitioned into layers (Section 2.2.8). In the constructed DD, each node corresponds to a state,
and each edge corresponds to a transition, so it is a state transition graph. The first layer in the DD
contains only the node corresponding to S0[[σ:d]], the state resulting from applying the sequence σ:d
to the target state S0. DD-LNS iteratively compiles a layer by applying transitions to the states in
the current layer.

When compiling a DD, DD-LNS prunes a node based on bounds. For each node, a lower bound
on the path cost via that node is computed. If this lower bound is greater than or equal to the current
best solution cost, the node is removed from the DD as it does not lead to a better solution.1 While
this lower bound could be computed by constructing a relaxed DD from the node (see Section 2.2.8),
doing so for each node is time-consuming. DD-LNS uses computationally less expensive lower bound
functions for this purpose, e.g., the size of the minimum spanning tree for routing problems. The
lower bounds used here are called rough lower bounds (RLBs) in previous work [169, 170] as they
are potentially rougher than the lower bound obtained from relaxed DDs. This procedure can
be viewed as pruning based on the dual bound used by heuristic search algorithms for Dynamic

1DD-LNS was originally proposed for minimization.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 93

Algorithm 14 Compiling a restricted DD from a state Ŝ in DD-LNS for minimization with a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩. An approximate dominance relation ⪯a, a
dual bound function η, the best Ŝ-solution σ̂, a beam width b, and a probability p are given as input.

1: if Ŝ ̸|= C then return NULL, ⊤
2: σ ← NULL, γ ← costσ̂(Ŝ), complete← ⊤ ▷ Initialize the solution.
3: l← 0, σl(Ŝ)← ⟨⟩, gl(Ŝ)← 1 ▷ Initialize the g-value.
4: O ← {Ŝ} ▷ Initialize the open list.
5: while O ̸= ∅ and σ = NULL do
6: G← ∅ ▷ Initialize the set of states.
7: for all S ∈ O do
8: if ∃B ∈ B, S |= CB then
9: current_cost← gl(S)×minB∈B:S|=CB

costB(S) ▷ Compute the solution cost.
10: if current_cost < γ then
11: γ ← current_cost, σ ← σl(S) ▷ Update the best solution.
12: else
13: for all τ ∈ T (S) : S[[τ ]] |= C do
14: gcurrent ← gl(S)× wτ (S) ▷ Compute the g-value.
15: if ̸ ∃S′ ∈ G such that S[[τ ]] ⪯a S′ and gcurrent ≥ gl+1(S′) then
16: if gcurrent × η(S[[τ ]]) < γ then
17: if ∃S′ ∈ G such that S′ ⪯a S[[τ ]] and gcurrent ≤ gl+1(S′) then
18: G← G \ {S′} ▷ Remove a dominated state.
19: σl+1(S[[τ ]])← ⟨σl(S); τ⟩, gl+1(S[[τ ]])← gcurrent ▷ Update the g-value.
20: G← G ∪ {S[[τ ]]} ▷ Insert the successor state.
21: l← l + 1 ▷ Proceed to the next layer.
22: O ← {S ∈ G | gl(S)× η(S) < γ} ▷ Prune states by the bound.
23: if |O| > b then
24: O ← Restrict(O, σl, σ̂l, b, p), complete← ⊥ ▷ Execute Algorithm 13.
25: if complete and O ̸= ∅ then
26: complete← ⊥ ▷ A better solution may exist.
27: return σ, complete ▷ Return the solution.

Programming Description Language (DyPDL) (Section 4.1.4): in minimization, a state S is pruned
if gl(S)×η(S) ≥ γ where gl(S) is the path cost to reach S, η(S) is the dual bound, a lower bound on
the path cost from S, × is a binary operator in a monoid such as + (Definition 21 in Section 4.1.2),
and γ is the current best solution cost.

Even with pruning based on RLBs, constructing an exact DD is usually intractable, so DD-LNS
compiles a restricted DD, which keeps only a subset of states of the exact DD. In constructing a
restricted DD, DD-LNS keeps σl(S), the best path to reach each state S in the l-th layer. When
selecting states in the l-th layer, given a solution σ̂, a state S is kept if σl(S)l = σ̂l, i.e, the last
transition to reach S is the same as the l-th transition of the current best solution. Otherwise, S
is kept with the probability of p. This mechanism to guide the search using an existing solution
can be viewed as a form of solution-guided search [24]. Let the number of states kept by the above
criteria be K. If K is smaller than a parameter b, DD-LNS also keeps the best b−K states from the
remaining states according to a priority function. In practice, Gillard and Schaus [170] selects the
best b−K states minimizing the RLBs. We show pseudo-code for this procedure in Algorithm 13.

Since DD nodes are pruned and selected based on RLBs, the procedure of constructing a restricted
DD can be considered beam search with randomization using a dual bound function for search



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 94

Algorithm 15 DD-LNS for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a, a dual bound function η, the best solution σ, a
beam width b, and a probability p are given as input.

1: d← |σ| − 2, solved← ⊥ ▷ Initialize.
2: while the time limit is not reached and solved = ⊥ do
3: Ŝ ← S0[[σ:d]] ▷ Decide the root node of the DD.
4: σ, exact← CompileRestrictedDD(Ŝ, ⟨V, S0, T ,B, C⟩, ⪯a, η, σd+1: b, p) ▷ Algorithm 14.
5: if d = 0 and exact then
6: solved← ⊤ ▷ The optimality or infeasibility is proved.
7: if σ ̸= NULL then
8: σ ← ⟨σ:d, σ⟩, d← |σ| − 2 ▷ Update the best solution.
9: else

10: if d = 0 then
11: d← |σ| − 2 ▷ Reset the neighborhood size.
12: else
13: d← d− 1 ▷ Increase the neighborhood size.
14: return σ, solved ▷ Return the solution.

guidance and pruning. Based on this interpretation, we present pseudo-code for the procedure to
construct a restricted DD from a DyPDL model in Algorithm 14. In this interpretation, the open
list O can be viewed as the set of DD nodes in the current layer. We have the following differences
from the original implementation:

1. We generalize the cost expression of transition τ by defining costτ (x, S) = wτ (S) × x, where
wτ is a numeric expression and × is a binary operator in a monoid. The original DD-LNS
considers only wτ (S) + x.

2. We use an approximate dominance relation for pruning following Algorithms 9 and 10 in
Sections 4.1.4 and 4.2.7 while the original implementation did not.

3. While the original DD-LNS assumes that all solutions have the same length, our algorithm
does not.

We show pseudo-code for DD-LNS in Algorithm 15. DD-LNS decreases d by 1 if a better solution
is not found with d, starting from d = |σ|− 2 and restarting from d = |σ|− 2 if d = 0, where σ is the
current best solution. Therefore, in terms of LNS, DD-LNS removes a sequence of transitions σd+1:

from the best solution in line 3 as a destroy heuristic, searches for a better solution by compiling a
restricted DD in line 4 as a repair heuristic, and updates the current solution only if a new solution
is better in line 8. DD-LNS terminates when the time limit is reached. In addition, DD-LNS
terminates when it proves optimality or infeasibility (line 6); when d = 0 and exact = ⊤, the exact
DD is constructed, and the state transition graph is exhausted.

Correctness

Algorithm 14 differs from Algorithm 10 in only the following two points: it searches for an Ŝ-
solution instead of S0-solution, and it selects the best states to keep with a different criterion using
Algorithm 13. Therefore, we can straightforwardly obtain the theoretical properties of Algorithm 14,
which correspond to Theorems 16–18 for Algorithm 10 in Section 4.2.7.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 95

Theorem 21. Given a finite, acyclic, and monoidal DyPDL model (Definitions 14 and 15 in Sec-
tion 3.1.1 and Definition 24 in Section 4.1.3), Algorithm 14 terminates in finite time.

Theorem 22. After line 11 of Algorithm 14, if σ ̸= NULL, then σ is an Ŝ-solution with γ =

costσ(Ŝ).

Theorem 23. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q∪{−∞,∞} and A is isotone (Definitions 21
and 22 in Section 4.1.2). Given a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A,
if an optimal solution exists for the minimization problem with the model, and Algorithm 14 returns
σ ̸= NULL and complete = ⊤, then σ is an optimal Ŝ-solution. If Algorithm 14 returns σ = NULL
and complete = ⊤, then there does not exist an Ŝ-solution whose cost is less than γ.

For DD-LNS, we confirm that σ is a solution, and the optimality is proved if solved = ⊤.

Theorem 24. In Algorithm 15, σ is a solution for the model.

Proof. At the beginning, σ is a solution given as input, so the theorem holds. By line 3, Ŝ is
reachable from the target state S0 with σ:d (Definition 8 in Section 3.1). In line 8, σ is updated to
⟨σ:d, σ⟩ if σ ̸= NULL. By Theorem 22, if σ ̸= NULL after line 4, σ is an Ŝ-solution. By Lemma 1
in Section 3.1, a base state is reachable with ⟨σ:d, σ⟩, so it is a solution.

Theorem 25. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩, if an optimal solution exists for the mini-
mization problem with the model, and DD-LNS returns σ ̸= NULL and solved = ⊤, then σ is an
optimal solution.

Proof. If d = 0, Ŝ = S0 in line 3, σ returned by Algorithm 15 is a solution for the model. Therefore,
the theorem is straightforward from Theorem 23.

5.2 Large Neighborhood Beam Search

To develop new DIDP solvers using LNS and state space search, we start with a simple idea:
given a solution path, ⟨(S0, S1, σ1), ..., (Sn−1, Sn, σn)⟩, we remove a partial path ⟨(Si−1, Si, σi), ...,
(Si+d−2, Si+d−1, σi+d−1)⟩ with length d and search for a better partial path from Si−1 to Si+d−1.
If we find a better solution path ⟨(S0, S1, σ1), ..., (Si−1, Ŝi, σ̂i), ..., (Ŝi+d̂−2, Si+d−1, σ̂i+d̂−1), ...,
(Sn−1, Sn, σn)⟩, whose length d̂ can be different from d, we repeat this procedure with the new
solution. While the overview of the algorithm is simple, there are design choices on how to select
a partial path to remove and how to search for a better partial path. The novelty of our method
compared to existing methods arises from such choices in addition to the fact that it is used for
DIDP. First, we describe the modifications of beam search for DyPDL to search for a partial path
from Si−1 to Si+d−1. Then, we propose strategies to select a partial path to remove.

5.2.1 Beam Search in a Partial State Transition Graph

We want to find a path from Si−1 to Si+d−1 instead of from S0 to a base state. We could modify
line 8 of Algorithm 10 in Section 4.1.4 so that it checks if S = Si+d−1 instead of ∃B ∈ B, S |= CB

(base case conditions). However, in DyPDL, it may not be desirable as shown in the following
example.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 96

{1, 2, 3, 4}, 0

{2, 3, 4}, 1

{3, 4}, 2 {2, 4}, 3 {2, 3}, 4

{4}, 3 {3}, 4 {4}, 2 {2}, 4 {3}, 2 {2}, 3

∅, 4 ∅, 3 ∅, 2

1

2 3 4

3 4 2 4 2 3

4 4 3 3 2 2

Figure 5.1: Partial state transition graph induced by the prefix ⟨1⟩ and the suffix ⟨4⟩ (highlighted in
red) in Example 1. The current partial path is highlighted in blue and an alternative partial path
is highlighted in green. Dashed transitions conflict with the suffix (explained in Section 5.2.2).

Algorithm 16 Rolling out a sequence of transitions σ from a state S for minimization with a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩.
1: if ∃B ∈ B, S |= CB then return ⟨⟩ ▷ Return an empty sequence.
2: for i← 1, ..., |σ| do
3: if σi /∈ T (S[[σ:i−1]]) or S[[σ:i]] ̸|= C then return NULL ▷ Check feasibility.
4: if ∃B ∈ B, S[[σ:i]] |= CB then return σ:i ▷ Return the S-solution.
5: return NULL ▷ No base case is satisfied.

Example 1. Consider the following DP formulation, where U ⊆ {0, 1, 2, 3, 4} is a set variable,
i ∈ {0, 1, 2, 3, 4} is an element variable, and cij for i, j ∈ {0, 1, 2, 3, 4} is a constant.

compute V ({1, 2, 3, 4}, 0)

V (U, i) =

minj∈U cij + V (U \ {j}, j) if U ̸= ∅

0 if U = ∅.

Given a state S, each transition in the DyPDL model has precondition j ∈ S[U ] and effect S[U ]\{j}
on U for some j, and so we denote each transition by j. Each solution corresponds to a permutation of
the transitions 1, 2, 3, and 4. A solution ⟨1, 2, 3, 4⟩ corresponds to a sequence of states ⟨({1, 2, 3, 4}, 0),
({2, 3, 4}, 1), ({3, 4}, 2), ({4}, 3), (∅, 4)⟩. Consider removing ⟨2, 3⟩ from the solution. We visualize
the partial state transition graph in Figure 5.1. If an algorithm tries to find a path from ({2, 3, 4}, 1)
to ({4}, 3), the original one, ⟨2, 3⟩, is the only path. However, a partial path ⟨3, 2⟩ from ({2, 3, 4}, 1)
to ({4}, 2) also results in a valid solution ⟨1, 3, 2, 4⟩.

Considering the above example, instead of focusing on a partial path to a state, we focus on a
partial path to a suffix of the solution path. Given a solution σ = ⟨σ1, ..., σn⟩, if we remove a partial
path σi:i+d−1 = ⟨σi, ..., σi+d−1⟩, then σ:i−1 = ⟨σ1, ..., σi−1⟩ is the prefix, and σi+d: = ⟨σi+d, ..., σn⟩ is
the suffix. For a sequence of transitions σ̂, we want to check if ⟨σ:i−1; σ̂;σi+d:⟩ is a valid solution.
Therefore, for a state S found by a search algorithm, we perform a rollout of the suffix from S and
check if each of the resulting states satisfies the state constraints and a base case (Algorithm 16).
Since line 3 checks if each transition in the suffix is applicable and if the resulting state satisfies the
state constraints, the returned value by Algorithm 16 is an S-solution if it is not NULL.

Algorithm 17 is a modified version of beam search that checks a solution using Algorithm 16.
This algorithm takes a prefix prefix and a suffix suffix as input. In line 1, we denote the state resulting



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 97

Algorithm 17 Beam search for minimization in a partial state transition graph induced by prefix,
suffix, and a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩. An approximate dominance
relation ⪯a, a dual bound function η, a primal bound γ, and a beam width b are given as input.

1: Ŝ ← S0[[prefix]] ▷ Apply the prefix.
2: if Ŝ ̸|= C then return NULL, ⊤
3: σ ← NULL, complete← NULL ▷ Initialize the solution.
4: l← |prefix|, σl(Ŝ)← prefix, gl(Ŝ)← wprefix(S

0) ▷ Initialize the g-value.
5: O ← {Ŝ} ▷ Initialize the open list.
6: while O ̸= ∅ and σ = NULL do
7: G← ∅ ▷ Initialize the set of states.
8: for all S ∈ O do
9: σsuffix ← RollOut(suffix, S, ⟨V, S0, T ,B, C⟩) ▷ Execute Algorithm 16.

10: if σsuffix ̸= NULL then
11: current_cost← gl(S)× costσsuffix(S) ▷ Compute the solution cost.
12: if current_cost < γ then
13: γ ← current_cost, σ ← ⟨σl(S);σsuffix⟩ ▷ Update the best solution.
14: else
15: for all τ ∈ T (S) : S[[τ ]] |= C do
16: gcurrent ← gl(S)× wτ (S) ▷ Compute the g-value.
17: if ̸ ∃S′ ∈ G such that S[[τ ]] ⪯a S′ and gcurrent ≥ gl+1(S′) then
18: if gcurrent × η(S[[τ ]]) < γ then
19: if ∃S′ ∈ S such that S′ ⪯a S[[τ ]] and gcurrent ≤ gl+1(S′) then
20: G← G \ {S′} ▷ Remove a dominated state.
21: σl+1(S[[τ ]])← ⟨σl(S); τ⟩, gl+1(S[[τ ]])← gcurrent ▷ Update the g-value.
22: G← G ∪ {S[[τ ]]} ▷ Insert the successor state.
23: l← l + 1 ▷ Proceed to the next layer.
24: O ← {S ∈ G | gl(S)× η(S) < γ} ▷ Prune states by the bound.
25: if |O| > b then
26: O ← the best b states in O, complete← ⊥ ▷ Keep the best b states.
27: if complete and O ̸= ∅ then
28: complete← ⊥ ▷ A better solution may exist.
29: return σ, complete ▷ Return the solution.

from applying the prefix to the target state by Ŝ = S0[[prefix]] and initialize the open list O with Ŝ

in line 5. In lines 9–13, the algorithm performs a rollout of the suffix from S and checks if it results
in a better solution. Other parts are the same as Algorithm 10. Therefore, if S0[[prefix]] is reachable
from S0 with prefix, the first returned value by Algorithm 17 is a valid solution for the model if it
is not NULL. Similar to Algorithm 10, Algorithm 17 can be easily adapted for maximization by
replacing < with > and swapping ≥ with ≤.

We use this modified version of beam search in large neighborhood beam search (LNBS) as
shown in Algorithm 18. In lines 3–5, LNBS selects parameters d, i, and b, which corresponds
to a destroy heuristic. In line 6, LNBS performs beam search in the neighborhood as a repair
heuristic. If an improving solution is found, LNBS updates the current solution σ in line 9. If
the searched neighborhood is the original search space, i.e., i = 1 and d = n, and beam search
proves the optimality or infeasibility, LNBS terminates in line 11. Therefore, if it is guaranteed to
select i = 1 and d = n with sufficiently large b given enough time, LNBS is guaranteed to find the
optimal solution or prove the infeasibility, i.e., it is complete. In fact, CABS can be considered a
configuration of LNBS, where i = 1, d = n, and b increases exponentially. DD-LNS can also be



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 98

Algorithm 18 LNBS for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a, a dual bound function η, and a solution σ
are given as input.
1: while the time limit is not reached do
2: n← |σ|, γ ← costσ(S

0)
3: Select d such that 2 ≤ d ≤ n
4: Select i such that 1 ≤ i ≤ n− d+ 1
5: Select beam width b
6: σ, complete← BeamSearchPartial(σ:i−1, σi+d:, ⟨V, S0, T ,B, C⟩, ⪯a, η, γ, b)
7: ▷ Execute Algorithm 17.
8: if σ ̸= NULL then
9: σ ← σ ▷ Update the best solution.

10: if i = 1 ∧ d = n ∧ complete then
11: return σ, ⊤ ▷ The optimality is proved.
12: return σ, ⊥. ▷ Return the solution.

considered a configuration of LNBS, where i ranges from n−2 to 1, d is n− i+1, and b is fixed while
beam search is extended with the randomization mechanism. We will describe the strategies that
we use to select d, i, and b in Sections 5.2.3–5.2.5 after introducing a method to filter unnecessary
transitions in Section 5.2.2.

Correctness

Algorithm 17 is a generalization of Algorithm 10. We present theorems for Algorithm 17, which
correspond to Theorems 16 and 17 for Algorithm 10.

Theorem 26. Given a finite, acyclic, and monoidal DyPDL model, if prefix and suffix have a finite
number of transitions, Algorithm 17 terminates in finite time.

Proof. Since prefix has a finite number of transitions, computing Ŝ in line 1 is done in finite time.
Unlike Algorithm 10, Algorithm 17 uses Algorithm 16 to detect a solution. Since suffix has a
finite number of transitions, Algorithm 16 terminates in finite time. Other parts are the same as
Algorithm 10, so the theorem is proved by the proof of Theorem 16.

Theorem 27. Given prefix such that S0[[prefix]] is reachable from S0, after line 13 of Algorithm 17,
if σ ̸= NULL, then σ is a solution with γ = costσ(S

0).

Proof. By a similar argument to the proof of Theorem 17, in line 13, S is reachable from Ŝ with
σl(S)|prefix|+1:. By line 1, Ŝ is reachable from S0 with prefix. By Lemma 1, S is reachable from S0

with σl(S) = ⟨prefix;σl(S)|prefix|+1:⟩. Since Algorithm 16 checks if σ is an S-solution by following
the definition (Definition 9 in Section 3.1), if σsuffix ̸= NULL is returned, it is an S-solution. By
Lemma 1, a base state is reachable from S0 with σ = ⟨σl(S);σsuffix⟩, so σ is a solution for the
model.

For LNBS, we confirm that σ is a solution, and the optimality is proved if the second returned
value is ⊤ in Algorithm 18.

Theorem 28. In Algorithm 18, σ is a solution for the DyPDL model.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 99

Proof. At the beginning, σ is a solution given as input, so the theorem holds. In line 9, σ is updated
to σ if σ ̸= NULL. In line 6, Algorithm 17 is given σ:i−1 as prefix. If σ is a solution, S0[[prefix]] is
reachable from S0. Therefore, by Theorem 27, if σ ̸= NULL after line 6, σ = σ is a solution.

Theorem 29. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩, if an optimal solution exists for the min-
imization problem with the model, and LNBS returns σ ̸= NULL with ⊤, then it is an optimal
solution.

Proof. When i = 1 and d = n in Algorithm 18, σ:i−1 = σi+d: = ⟨⟩. Then, Algorithm 17 is exactly
the same as Algorithm 10, so the theorem follows from Theorem 18.

5.2.2 Removing Conflicting Transitions

In Example 1, consider finding a partial path from a prefix ⟨1⟩, which results in state Ŝ = ({2, 3, 4}, 1),
to a suffix ⟨4⟩ using beam search. In Ŝ, three transitions 2, 3, and 4 are applicable. However, applying
transition 4 does not lead to a feasible solution because it is already used in the suffix and cannot
be applied twice: it requires 4 ∈ U and removes 4 from U , but no other transition adds 4 to U , so
applying 4 makes the suffix inapplicable. Generalizing this example, if we know that a transition τ
makes a transition τ ′ in the suffix inapplicable, then we can ignore τ when searching for a partial
path. In particular, we focus on the effects of τ that add/remove an element to/from a set variable
and the preconditions of τ ′ that require the element to be/not to be in that set variable.

Proposition 1. Suppose that a DyPDL model ⟨V, S0, T ,B, C⟩ has a set variable U ∈ V whose
domain is 2N , where N is a set of objects. There does not exist a solution ⟨σ1, ..., σn⟩ such that any
pair of τ = σi and τ ′ = σj for 1 ≤ i < j ≤ n satisfy either of the following conditions:

1. There exists k ∈ N such that effτ [U ](S) = S[U ] \ {k}, (k ∈ S[U ]) ∈ preτ ′ , and each τ ′′ ∈
T \ {τ, τ ′} does not change U or effτ ′′ [U ](S) = S[U ] \ {l} for some l ∈ N .

2. There exists k ∈ N such that effτ [U ](S) = S[U ] ∪ {k}, (k ̸∈ S[U ]) ∈ preτ ′ , and each τ ′′ ∈
T \ {τ, τ ′} does not change U or effτ ′′ [U ](S) = S[U ] ∪ {l} for some l ∈ N .

Proof. For the first case, τ removes k from U , and no other transition adds k to U . Since τ ′ requires
k to be in U , once we apply τ , we cannot apply τ ′ later. The other case is proved similarly.

Before starting beam search in a neighborhood, we remove a transition τ from the model if there
exists a transition τ ′ in the suffix such that τ and τ ′ satisfy one of the conditions in Proposition 1.
Detecting such a pair of transitions is done once before any search by checking the expression trees
representing the preconditions and effects of transitions.

5.2.3 Bandit-Based Depth Selection

Selecting the depth of a neighborhood, d, in line 3 of Algorithm 18 is non-trivial. If d is too small,
it is unlikely that an improving solution exists. However, if d is too large, each neighborhood search
takes a long time. We want to select d such that the total cost improvement is maximized within
the time limit.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 100

We formulate the depth selection as a budgeted multi-armed bandit problem [38]. In a multi-
armed bandit problem, in each round, we select one arm from a set of arms and obtain a reward
associated with the arm, which is a random variable following an unknown probability distribution.
The objective is to maximize the cumulative reward. In LNBS, since we want to maximize the cost
improvement within the time limit, we consider a variant called the budgeted multi-armed bandit
problem with continuous random costs [442]. In this problem, selecting an arm also incurs a cost,
which is a random variable in [0, 1]. A reward is also assumed to be a random variable in [0, 1]. The
objective is to maximize the cumulative reward within a given cost budget. We give a more formal
definition with regard to our setting below.

We have the set of depths D ⊆ {2, ..., n}, corresponding to the set of arms. If we select a depth
d ∈ D and perform search in line 6 of Algorithm 18, we obtain a new solution σ by spending search
time t. Our budget is the time limit T , and t is the cost. As the cost is assumed to take a value in
[0, 1], we divide the actual time by the time limit T . The reward is also assumed to be in [0, 1], so
we use relative cost improvement defined similarly to the primal gap. If the cost costσ(S0) is better
than the current best solution cost γ, the reward is

r = max

{
1,

|γ − costσ(S
0)|

max{|γ|, |costσ(S0)|}

}
. (5.1)

If no better solution is found, the reward is r = 0. We repeat rounds until reaching the time limit
T . We do not know the reward r and time t before finishing a round, so we use random variables
rdk and tdk representing the reward and time if depth d is used at round k. Let a be a strategy that
selects a depth ak at the round k. The number of rounds performed by a by the time limit, KaT ,
is also a random variable. The objective is to find a strategy a that maximizes the total expected
reward E

[∑KaT

k=1 rakk

]
.

We use Budgeted-UCB [442] to address the problem formulated above. Intuitively, it tries to
maximize the reward per cost (time in our case) while exploring arms (depths) that have not been
selected frequently. At each round, if some depths in D have not been selected before, Budgeted-
UCB selects one of them. Otherwise, let mdk be the number of rounds where the depth d is selected
up to round k − 1, and let r̄dk and t̄dk be the average reward and search time for d up to round
k − 1. Budgeted-UCB selects the depth d that maximizes

r̄dk
t̄dk

+
ϵdk
t̄dk

+
ϵdk
t̄dk

min{r̄dk + ϵdk, 1}
max{t̄dk − ϵdk, λ}

(5.2)

where ϵdk =
√

2 log (k−1)
mdk

and λ is a positive lower bound of the search time of each round.
In practice, we initializeD = {2, 4, 8, ..., 2a, n}, where n is the length of the initial feasible solution

and a is the maximum integer such that 2a < n. If we get a solution whose length n′ is different
from n at round k, we replace n with n′ in D using mn′,k+1 = mn,k+1, r̄n′,k+1 = r̄n,k+1, and
t̄n′,k+1 = t̄n,k+1 and ignore depths greater than n′ in D. If multiple depths have not been selected
before or have the same value, we select the minimum depth among them. For λ, we use the time
of the first round divided by 10 while there is no guarantee that it is a lower bound. Thus, the
theoretical analysis of Budgeted-UCB studied in the original paper [442] does not necessarily apply
to our setting. In addition, while Xia et al. [442] assumed that the pairs {(rdk, tdk)}∞k=1 are i.i.d.,
we do not have such a guarantee; for example, the relative cost improvement may become smaller



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 101

as we find better solutions.

5.2.4 Start Selection

Once LNBS determines the depth d to use, it selects a starting point i, which induces the prefix
and the suffix, in line 4 of Algorithm 18. One possible strategy is to select i uniformly at random
from 1 to n− d+1. However, if the partial path starting from i cannot be improved, i is not worth
selecting. Let δdi be the cost change by partial path σi:i+d−1 defined as

δdi = wσ:i+d−1
(S0)− wσ:i−1

(S0). (5.3)

In minimization with a cost-algebraic DyPDL model, the path weight is non-decreasing and δdi ≥ 0,
so δdi = 0 means that the partial path σi:i+d−1 cannot be improved further.2 Therefore, for such a
DyPDL model, we ignore i with δdi = 0.

We consider two strategies to select i from the remaining options: sampling uniformly at random
and using a probability distribution biased by δdi. The second approach is motivated by an intuition
that a larger δdi indicates larger room for improvement in minimization. It selects i with a probability
proportional to δdi. As we explain in the next subsection, for each d and i, the beam width bdi is
maintained. Since smaller bdi leads to a shorter search time, we discount the probability of selecting
i by bdi. Concretely, given the depth d, we select the starting point i with the probability

pdi =
δdi/bdi∑n−d+1

j=1 δdj/bdj
. (5.4)

If a DyPDL model is not cost-algebraic in minimization, a partial path cost can be negative.
Therefore, in such a case, we consider the difference from the minimum partial path cost, i.e.,
δdi −minn−d+1

j=1 δdj , which is always nonnegative. For i = argminn−d+1
j=1 δdj , to avoid the zero proba-

bility to be selected, we use the second smallest value instead of δdi. Overall, for minimization with
a non-cost-algebraic model, we use the probability

pdi =
∆di∑n−d+1

j=1 ∆dj

(5.5)

where

∆di =


1/bdi if ∀j = 1, ..., n− d+ 1, δdi = δdj

(min{δdj |j = 1, ..., n− d+ 1, δdj > δdi} − δdi)/bdi else if i = argminn−d+1
j=1 δdj

(δdi −minn−d+1
j=1 δdj)/bdi else.

(5.6)

Similarly, for maximization, we use Equation (5.5) with

∆di =


1/bdi if ∀j = 1, ..., n− d+ 1, δdi = δdj

(δdi −max{δdj |j = 1, ..., n− d+ 1, δdj < δdi})/bdi else if i = argmaxn−d+1
j=1 δdj

(maxn−d+1
j=1 δdj − δdi)/bdi else.

(5.7)

2Theoretically, a better solution may be found with such i if the suffix is not empty because a partial path may
change the state from which the suffix is applied, which may change the cost of the suffix.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 102

5.2.5 Beam Width Selection

Given the depth d and the starting point i, LNBS selects a beam width b in line 5 of Algorithm 18.
Here, we use a similar strategy to CABS: for each d and i, we initialize the beam width bdi to be 1

and update it to 2bdi after each round with d and i. If we find an improved solution in line 6, we
reset bd′i′ = 1 only for d′ and i′ such that i′ > i or i′ + d′ < i + d; if i′ ≤ i and i′ + d′ ≥ i + d, the
prefix and the suffix for the neighborhood induced by i′ and d′ do not change, and we know that
a better partial path was not found with beam widths smaller than bd′i′ .3 If the neighborhood is
exhausted, i.e., complete = ⊤ in line 6, we ignore the combination of d and i in lines 3 and 4 until a
new solution is found and bdi is reset to 1 (δdi = 0 is used in Equation (5.4), and ∆di = 0 is used in
Equation (5.5)). If all starting points of a partial path with length d are ignored, d is ignored in the
depth selection mechanism. Since the number of neighborhoods is finite, LNBS eventually exhausts
all the neighborhoods and finds the optimal solution, which guarantees completeness.

Theorem 30. Given a finite, acyclic, and monoidal DyPDL model and a sufficiently long time
limit, LNBS with the depth, start, and beam width selection strategies described in Sections 5.2.3–
5.2.5 terminates in finite time reaching line 11.

Proof. In the next paragraph, we prove that given the current solution σ, LNBS finds an improving
solution or reaches line 11 after performing beam search finite times. By Theorem 26, each run of
beam search terminates in finite time. Since there are a finite number of solutions for the finite
and acyclic DyPDL model, after finding finitely many improving solutions, LNBS reaches line 11 in
finite time.

Since the model is finite, the current solution σ has a finite number of transitions. There are
a finite number of neighborhoods defined by d and i. The beam width bdi doubles after each run
of beam search. When an improving solution is found after beam search with d and i, our claim
holds. Otherwise, beam widths are kept in all other neighborhoods. As in the proof of Theorem 19
in Section 4.2.7, complete = ⊤ will be returned in line 6 after selecting the same d and i finitely
many times without finding an improving solution, i.e., the neighborhood defined by d and i will
be exhausted. The depth and start selection strategies always select a neighborhood that is not
exhausted. Therefore, after performing finitely many runs of beam search, LNBS finds a better
solution or exhausts the neighborhood with i = 1 and d = n and reaches line 11.

5.3 Experimental Evaluation

We compare LNBS with MIP, CP, CABS, and DD-LNS using the eleven problem classes used in
Chapter 4: the traveling salesperson problem with time windows (TSPTW) [377], the capacitated
vehicle routing problem (CVRP) [95], the multi-commodity pickup and delivery traveling salesperson
problem (m-PDTSP) [208], the orienteering problem with time windows (OPTW) [238], the multi-
dimensional knapsack problem (MDKP) [306, 249], bin packing [306], the simple assembly line
balancing problem (SALBP-1) [374, 22], single machine total weighted tardiness (1||

∑
wiTi) [123],

talent scheduling [74], the minimization of open stack problem (MOSP) [446], and graph-clear [256].
We use the same instance sets and the same DyPDL, MIP, and CP models as Chapter 4 except for

3Theoretically, a better solution may be found with beam width smaller than bd′i′ if the updated primal bound
changes the search behavior.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 103

the CP model of graph-clear: we use the CPS formulation by Morin et al. [317] since it achieves
better solution quality than the CPN formulation [317] used in Chapter 4. All MIP and CP models
are presented in Appendix B. The problem instances are converted to YAML-DyPDL files by Python
scripts. All DyPDL models are presented in Section 3.3, and their YAML-DyPDL domain files are
in Appendix A.2.

We evaluate two configurations, LNBS/uniform and LNBS/bias, with different start selection
mechanisms introduced in Section 5.2.4. For minimization with a cost-algebraic DyPDL model,
which is the case with problem classes except for OPTW and MDKP, LNBS/uniform and LNBS/bias
ignore the starting point i of a partial path if δdi = 0 in Equation (5.3). Then, LNBS/uniform selects
i uniformly at random, and LNBS/bias selects i using pdi in Equation (5.4). For OPTW and MDKP,
LNBS/uniform selects i uniformly at random from all candidates, and LNBS/bias selects i using
Equations (5.5) and (5.7). LNBS/uniform and LNBS/bias use Budgeted-UCB to select the depth
as described in Section 5.2.3 and geometrically increase the beam width for each neighborhood as
described in Section 5.2.5.

As described in Section 5.2.2, LNBS/uniform and LNBS/bias remove transitions that conflict
with the suffix based on Proposition 1. In the DyPDL models for ten out of the eleven benchmark
problem classes, Proposition 1 is applicable. In TSPTW, CVRP, m-PDTSP, OPTW, bin packing,
talent scheduling, and MOSP (Sections 3.2.1, 3.3.1–3.3.3, 3.3.5, 3.3.8 and 3.3.9), each transition
removes one element from a set variable, and no transition adds an element to the set variable.
In SALBP-1 (Section 3.3.6), except for one transition, which does not change a set variable, each
transition removes one element from the set variable. In 1||

∑
wiTi and graph-clear (Sections 3.3.7

and 3.3.10), each transition adds one element to a set variable, and no transition removes an ele-
ment from the set variable. In MDKP (Section 3.3.4), the DyPDL model has no set variables, so
Proposition 1 is not applicable. In TSPTW, m-PDTSP, bin packing, 1||

∑
i wiTi, talent scheduling,

MOSP, and graph-clear, if a suffix has m transitions, LNBS removes m transitions from the model.
In CVRP, for each element in a set variable, there are two transitions to remove it, so LNBS removes
2m transitions. Similarly, in OPTW, LNBS removes 3m transitions since there are three transitions
to remove each element. In SALBP-1, LNBS removes m− k transitions from the model, where k is
the number of transitions in the suffix that does not change a set variable.

CABS, DD-LNS, and the LNBS configurations are implemented in didp-rs 0.7.0.4 All solvers use
the dual bound function defined in YAML-DyPDL as the heuristic function, i.e., beam search or a
restricted DD keeps the best states according to g(S)×η(S), where g(S) is the path weight to reach
S, × ∈ {+,max} is a binary operator, and η is the dual bound function. In LNBS configurations
and DD-LNS, CABS is run first to find a feasible solution, and then LNBS and DD-LNS are run to
improve the solution. For DD-LNS, we use b = 1000 and p = 0.1 following the original paper [170].

LNBS focuses on improving the solution quality and anytime performance. We use two metrics
explained in Chapter 4: the primal gap, which is the relative difference between the solution cost
achieved by a solver and the best-known solution cost, and the primal integral, which is the integral
of the primal gap over time. For TSPTW, CVRP, and 1||

∑
wiTi, best-known solution costs are

provided with the problem instances. For other problem classes, we use the best cost found by
the solvers used in the evaluation. In addition, to investigate the disadvantage of LNBS in proving

4For LNBS/bias in OPTW and MDKP, didp-rs 0.7.2 is used since maximization is not supported in didp-rs 0.7.0.
didp-rs 0.7.2 does not have other differences from 0.7.0 except for bug fixes irrelevant to the DyPDL models used in
the evaluation.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 104

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure 5.2: The ratio of instances against the primal gap averaged over all problem classes.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure 5.3: The ratio of instances against the primal integral averaged over all problem classes.

optimality, we evaluate coverage, the number of instances where optimality or infeasibility is proved
within the time limit.

Our experimental setting is the same as Chapter 4: we use Python 3.10.2, didp-yaml 0.7.0 for
DIDP, Gurobi 10.0.1 for MIP, and IBM ILOG CP Optimizer 22.1.0 for CP; for each run, we use an
Intel Xeon Gold 6418 processor with an 8 GB memory limit, a 30-minute time limit, and a single
thread. For LNBS and DD-LNS, for each problem instance, we take the median of 5 runs in terms
of the primal gap using different random seeds.

5.3.1 Results

Figure 5.2 shows the cumulative ratio of instances against the primal gap, where the y-axis is averaged
over all problem classes. The x-axis is the primal gap, and the y-axis is the ratio of instances where
the primal gap is less than or equal to x. Similarly, Figure 5.3 shows the cumulative ratio of instances
against the primal integral averaged over all problem classes. We show plots presenting the results
for each problem class in Appendix D. LNBS/bias and LNBS/uniform have similar performance, so
they overlap in the plot. The LNBS configurations outperform MIP, DD-LNS, and CABS, and are
comparable with CP; they have a higher ratio of instances than CP when the primal gap or primal
integral is less than a certain threshold.

Table 5.1 shows the average primal gap in each problem class, and Table 5.2 shows the average
primal integral. The value of LNBS/uniform or LNBS/bias is in bold if it is better than the baselines
(MIP, CP, CABS, and DD-LNS), and the best value is underlined.

The difference between LNBS/uniform and LNBS/bias is not large. LNBS/uniform has a smaller
average primal gap in TSPTW, OPTW, MDKP, and 1||

∑
wiTi, and LNBS/bias has a smaller

primal gap in CVRP. In all of these problem classes except for MDKP, the difference in the average



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 105

Table 5.1: Average primal gap of MIP, CP, CABS, DD-LNS, and LNBS in each problem class. The
primal gap of LNBS/uniform or LNBS/bias is in bold if it is lower than the baselines (MIP, CP,
CABS, and DD-LNS), and the lowest of the baselines is in bold if the LNBS configurations are
worse. The lowest primal gap is underlined.

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

TSPTW (340) 0.2357 0.0259 0.0033 0.0095 0.0017 0.0021
CVRP (207) 0.5950 0.2534 0.1752 0.2501 0.1626 0.1622
m-PDTSP (1178) 0.0842 0.0125 0.0019 0.0100 0.0025 0.0024
OPTW (144) 0.2180 0.0098 0.0279 0.0608 0.0314 0.0318
MDKP (276) 0.0000 0.0058 0.1097 0.0889 0.1019 0.1036
Bin Packing (1615) 0.0417 0.0015 0.0017 0.0190 0.0023 0.0023
SALBP-1 (2100) 0.2697 0.0046 0.0002 0.0067 0.0021 0.0020
1||

∑
wiTi (375) 0.0131 0.0009 0.0329 0.0384 0.0047 0.0051

Talent Scheduling (1000) 0.0395 0.0087 0.0167 0.0596 0.0043 0.0042
MOSP (570) 0.0356 0.0044 0.0000 0.0203 0.0002 0.0002
Graph-Clear (135) 0.1386 0.0151 0.0000 0.0009 0.0000 0.0000

Table 5.2: Average primal integral of MIP, CP, CABS, DD-LNS, and LNBS in each problem class.
The primal integral of LNBS/uniform or LNBS/bias is in bold if it is lower than the baselines (MIP,
CP, CABS, and DD-LNS), and the lowest of the baselines is in bold if the LNBS configurations are
worse. The lowest primal integral is underlined.

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

TSPTW (340) 509.18 48.97 9.25 22.99 6.38 6.90
CVRP (207) 1147.11 482.89 333.68 467.61 319.99 318.93
m-PDTSP (1178) 177.82 26.04 5.25 20.45 5.47 5.02
OPTW (144) 448.17 23.89 65.67 142.16 73.76 74.00
MDKP (276) 0.11 15.87 201.73 171.09 189.52 192.69
Bin Packing (1615) 88.32 7.92 4.90 34.99 8.37 8.26
SALBP-1 (2100) 536.41 28.44 1.93 13.28 6.96 6.90
1||

∑
wiTi (375) 64.01 3.49 71.21 78.56 12.57 13.23

Talent Scheduling (1000) 122.30 30.32 36.77 113.42 11.01 11.01
MOSP (570) 92.63 13.01 0.31 37.02 0.62 0.62
Graph-Clear (135) 337.66 44.34 0.45 2.51 0.51 0.53

primal gap is 0.0004. The difference is even smaller in m-PDTSP, SALBP-1, and talent scheduling
(LNBS/bias is better by 0.00001), and there is no difference in bin packing, MOSP, and graph-clear.
The average primal integral has a similar tendency.

Compared to CABS, LNBS/uniform and LNBS/bias achieve a better average primal gap and
average primal integral in TSPTW, CVRP, MDKP, 1||

∑
wiTi, and talent scheduling. In 1||

∑
wiTi,

while LNBS/uniform and LNBS/bias show a significant improvement from CABS (0.0047 and 0.0051

from 0.0329) outperforming MIP (0.0131), CP is still the best. However, in talent scheduling, LNB-
S/uniform and LNBS/bias outperform CP while CABS does not. Overall, the LNBS configurations
are better than MIP and CP in seven problem classes, TSPTW, CVRP, m-PDTSP, SALBP-1, talent
scheduling, MOSP, and graph-clear, while CABS is better in six problem classes excluding talent
scheduling. CABS has a better average primal gap than LNBS/uniform and LNBS/bias in OPTW
and SALBP-1. While CABS is also better than the LNBS configurations in m-PDTSP, bin packing,
and MOSP, the differences are relatively small. Similarly, in terms of primal integral, CABS is
better in bin packing and SALBP-1, and the differences in m-PDTSP, MOSP, and graph-clear are
relatively small.

Table 5.3 shows the number of instances where the LNBS configurations have a better/same/-
worse primal gap, and Table 5.4 shows the number of instances where the LNBS configurations have
a better/same/worse primal integral. In TSPTW, CVRP, MDKP, 1||

∑
wiTi, and talent scheduling,

the LNBS configurations have a better average primal gap than CABS, and the number of instances



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 106

Table 5.3: Number of instances where LNBS has a better/same/worse primal gap than CABS. A
value in ‘Better’/‘Worse’ is in bold if it is larger than ‘Worse’/‘Better’.

LNBS/uniform LNBS/bias

Better Same Worse Better Same Worse

TSPTW (340) 22 309 9 21 307 12
CVRP (207) 132 42 33 132 40 35
m-PDTSP (1178) 69 1091 18 53 1108 17
OPTW (144) 14 103 27 13 104 27
MDKP (276) 257 6 13 240 5 31
Bin Packing (1615) 9 1529 77 11 1525 79
SALBP-1 (2100) 3 1801 296 4 1802 294
1||

∑
wiTi (375) 78 295 2 78 295 2

Talent Scheduling (1000) 595 385 20 590 389 21
MOSP (570) 0 568 2 0 568 2
Graph-Clear (135) 0 135 0 0 135 0

Table 5.4: Number of instances where LNBS has a better/same/worse primal integral than CABS.
A value in ‘Better’/‘Worse’ is in bold if it is larger than ‘Worse’/‘Better’.

LNBS/uniform LNBS/bias

Better Same Worse Better Same Worse

TSPTW (340) 51 0 289 57 0 283
CVRP (207) 130 19 58 136 19 52
m-PDTSP (1178) 195 2 981 222 2 954
OPTW (144) 21 0 123 20 0 124
MDKP (276) 250 0 26 226 0 50
Bin Packing (1615) 50 0 1565 48 0 1567
SALBP-1 (2100) 191 0 1909 194 0 1906
1||

∑
wiTi (375) 228 0 147 223 0 152

Talent Scheduling (1000) 863 0 137 858 0 142
MOSP (570) 122 0 448 110 0 460
Graph-Clear (135) 7 0 128 30 0 105

where they have a better primal gap is larger than the number of instances where they are worse.
In terms of the primal integral, we observe the same tendency in CVRP, MDKP, 1||

∑
wiTi and

talent scheduling, but not in TSPTW. In m-PDTSP, although the LNBS configurations have a worse
average primal gap than CABS, the number of instances where they have a better primal gap is
larger than the number of instances where they are worse.

Table 5.5 shows the coverage. CABS is equal to or better than LNBS/uniform and LNBS/bias
in all problem classes. LNBS proves optimality or infeasibility only when it selects the entire state
transition graph as a neighborhood and exhausts it. In contrast, CABS always searches the entire
state transition graph when b becomes large enough. Nevertheless, LNBS/uniform and LNBS/bias
prove the optimality of more than 93% of instances that are optimally solved by CABS.

DD-LNS performs worse than CABS, LNBS/uniform, and LNBS/bias in all problem classes
except for MDKP. Previous work has reported that DD-LNS is effective for TSPTW [170]. Note
however that the DD-LNS results in Tables 5.1 and 5.2 are not the results reported by Gillard and
Schaus. To validate that our implementation and experimental settings do not handicap DD-LNS,
we compare the results of DD-LNS with those of the original paper for TSPTW.5 Our DD-LNS
implementation finds a better solution than the original in all instances with the time limit of 600
seconds used in the original paper. This difference is likely due to the difference between the DP
models used by us and Gillard and Schaus. In TSPTW (Section 3.2.1), a solution is a tour that
starts from a depot, visits each customer j within the time window [aj , bj ], and returns to the depot,
and an optimal solution minimizes the total travel time. In both DP models, state variables are the

5https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_t600.txt



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 107

Table 5.5: Coverage of MIP, CP, CABS, DD-LNS, and LNBS in each problem class. The best
coverage of the baselines (MIP, CP, CABS, and DD-LNS) is in bold if LNBS configurations are
worse. The highest coverage is underlined.

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

TSPTW (340) 222 47 259 109 242 242
CVRP (207) 27 0 6 0 6 6
m-PDTSP (1178) 940 1049 1035 459 1035 1035
OPTW (144) 16 49 64 10 62 62
MDKP (276) 165 6 5 2 5 5
Bin Packing (1615) 1159 1234 1167 777 1140 1142
SALBP-1 (2100) 1423 1584 1802 1509 1703 1706
1||

∑
wiTi (2100) 106 150 288 100 281 281

Talent Scheduling (1000) 0 0 239 0 236 237
MOSP (570) 231 437 527 353 524 524
Graph-Clear (135) 17 1 103 3 103 103

set of unvisited customers U , the current customer i, and the current time t, and each transition
corresponds to visiting a customer. Each DP model has a dual bound (called RLB by Gillard and
Schaus), a lower bound on the optimal solution cost. While Gillard and Schaus use a dual bound
based on a minimum spanning tree, we use a simpler and looser one based on the minimum travel
time between customers (see Section 3.2.1). However, we use information that was not considered
by Gillard and Schaus. First, we use dominance between states based on the current time: a state
S dominates another state S′ if S[U ] = S′[U ], S[i] = S′[i], and S[t] ≤ S′[t]. Furthermore, since the
time to visit customer j is underestimated by t+ c∗ij , where c∗ij is the shortest travel time from i to
j, we define state constraints ∀j ∈ S[U ], t + c∗S[i],j ≤ bj . The dominance and the state constraints
are useful to prune states, which potentially explains the performance gap. Another difference is
whether considering the time window constraints at the depot or not. In the benchmark instances
used above, a time window [a0, b0] is defined for the depot. As we explained in Section 4.3.2, in the
problem instances used in the evaluation, we can always return to the depot by the deadline b0 after
visiting the final customer, so we do not need to consider it. Gillard and Schaus explicitly model a
required return to the depot within [a0, b0] while we do not, but this difference does not change the
set of feasible or optimal solutions.

5.3.2 Instance Set-Wise Comparisons in a Subset of Problems

As shown in Section 5.3.1, LNBS/uniform and LNBS/bias are significantly better than CABS in
CVRP, MDKP, 1||

∑
wiTi, and talent scheduling and worse in OPTW and SALBP-1. However, the

performance of CABS and the LNBS configurations are relatively close in other problem classes.
To clearly illustrate the differences, we present instance set-wise comparison for each problem class
where CABS and LNBS perform similarly, i.e., TSPTW, m-PDTSP, bin packing, MOSP, and graph-
clear.

TSPTW

We show the coverage, average primal gap, and average primal integral in each instance set of
TSPTW in Table 5.6. The LNBS/uniform and LNBS/bias show significant improvement over CABS
in OhlmannThomas [328], where no instance is optimally solved by the DIDP solvers. In other
instance sets, CABS and the LNBS configurations are similar. In the AFG set [10], CABS solves
45 out of 50 instances, LNBS/uniform and LNBS/bias solve 43, and CABS and LNBS/uniform



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 108

Table 5.6: Comparison of CABS and LNBS in each instance set of TSPTW. ‘gap’ is the average
primal gap, ‘integral’ is the average primal integral, and ‘c.’ is the coverage. The value of LNB-
S/uniform or LNBS/bias is in bold if it is better than CABS, and the value of CABS is in bold if
LNBS/uniform and LNBS/bias are worse. The best value is underlined.

CABS LNBS/uniform LNBS/bias

gap integral c. gap integral c. gap integral c.

TSPTW Total (340) 0.0033 9.25 259 0.0017 6.38 242 0.0021 6.90 242

AFG (50) 0.0002 1.28 45 0.0002 1.53 43 0.0003 1.55 43
Dumas (135) 0.0000 0.55 135 0.0000 0.71 135 0.0000 0.70 135
GendreauDumasExtended (130) 0.0009 4.84 79 0.0007 4.18 64 0.0013 4.78 64
OhlmannThomas (25) 0.0392 95.07 0 0.0188 58.20 0 0.0217 62.11 0

Table 5.7: Comparison of CABS and LNBS in each instance set of m-PDTSP. ‘gap’ is the average
primal gap, ‘integral’ is the average primal integral, and ‘c.’ is the coverage. The value of LNB-
S/uniform or LNBS/bias is in bold if it is better than CABS, and the value of CABS is in bold if
LNBS/uniform and LNBS/bias are worse. The best value is underlined.

CABS LNBS/uniform LNBS/bias

gap integral c. gap integral c. gap integral c.

m-PDTSP Total (1178) 0.0019 5.25 1035 0.0025 5.47 1035 0.0024 5.02 1035

class1 (248) 0.0091 24.35 145 0.0119 25.40 145 0.0116 23.27 144
class2 (720) 0.0000 0.16 720 0.0000 0.16 720 0.0000 0.16 720
class3 (210) 0.0000 0.13 170 0.0000 0.11 170 0.0000 0.11 145

have the same average primal gap. In the Dumas set [109], all instances are optimally solved by
the DIDP solvers. In the GendreauDumasExtended set [160], CABS/uniform has a slightly better
average primal gap and primal integral.

m-PDTSP

We show the evaluation results in each instance set of m-PDTSP in Table 5.7. All instance sets
are proposed by Hernández-Pérez and Salazar-González [208]. CABS and the LNBS configurations
achieve the same primal gap in all instances of class2 and class3. Although CABS has a better
average primal gap than the LNBS configurations in class1, as shown in Table 5.3, the number of
instances where the LNBS configurations have a better primal gap is larger than the number of
instances where they are worse. Therefore, none of CABS and the LNBS configurations is a clear
winner.

Bin Packing

We show the evaluation results in each instance set of bin packing in Table 5.8. CABS is equal
or better than LNBS/uniform and LNBS/bias in the majority of the instance sets. In Falkenauer
T and U [130], Scholl 2 [384], and Wäscher [441], CABS shows a clear advantage over the LNBS
configurations. In Schwerin 2 [385] and Hard28 [382], CABS and the LNBS configurations achieve
the same average primal gap, and CABS has a better primal integral. In Scholl 1, LNBS/uniform
and LNBS/bias have a better average primal gap while CABS has a better average primal integral.
In this instance set, CABS has a better primal gap than the LNBS configurations in 9 instances and
a worse primal gap in 5 instances. In Schwerin 1 [385], while LNBS configurations are better than
CABS on average, this result is due to only one instance: LNBS/uniform and LNBS/bias optimally



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 109

Table 5.8: Comparison of CABS and LNBS in each instance set of bin packing. ‘gap’ is the average
primal gap, ‘integral’ is the average primal integral, and ‘c.’ is the coverage. The value of LNB-
S/uniform or LNBS/bias is in bold if it is better than CABS, and the value of CABS is in bold if
LNBS/uniform and LNBS/bias are worse. The best value is underlined.

CABS LNBS/uniform LNBS/bias

gap integral c. gap integral c. gap integral c.

Bin Packing Total (1615) 0.0018 4.94 1167 0.0023 8.41 1140 0.0023 8.30 1142

Falkenauer T (80) 0.0073 19.62 24 0.0085 47.25 24 0.0084 46.70 24
Falkenauer U (80) 0.0005 5.26 42 0.0025 9.89 37 0.0025 10.00 37
Hard28 (28) 0.0000 0.12 0 0.0000 0.20 0 0.0000 0.19 0
Scholl 1 (720) 0.0004 1.23 540 0.0003 1.75 530 0.0003 1.71 530
Scholl 2 (480) 0.0033 8.34 392 0.0046 13.00 380 0.0045 12.89 381
Scholl 3 (10) 0.0035 6.79 1 0.0035 8.05 1 0.0018 5.58 2
Schwerin 1 (100) 0.0021 4.36 96 0.0016 4.64 97 0.0016 4.51 97
Schwerin 2 (100) 0.0005 2.18 62 0.0005 3.86 62 0.0005 3.75 62
Wäscher (17) 0.0070 22.32 10 0.0115 33.72 9 0.0115 33.09 9

Table 5.9: Comparison of CABS and LNBS in each instance set of MOSP. ‘gap’ is the average primal
gap, ‘integral’ is the average primal integral, and ‘c.’ is the coverage. The value of LNBS/uniform or
LNBS/bias is in bold if it is better than CABS, and the value of CABS is in bold if LNBS/uniform
and LNBS/bias are worse. The best value is underlined.

CABS LNBS/uniform LNBS/bias

gap integral c. gap integral c. gap integral c.

MOSP Total (570) 0.0000 0.31 527 0.0002 0.62 524 0.0002 0.62 524

Challenge (46) 0.0000 0.02 45 0.0000 0.02 45 0.0000 0.02 45
Chu and Stuckey (200) 0.0000 0.73 161 0.0006 1.39 158 0.0006 1.36 158
Faggioli and Bentivoglio (300) 0.0000 0.01 300 0.0000 0.01 300 0.0000 0.01 300
SCOOP (24) 0.0000 1.21 21 0.0000 3.02 21 0.0000 3.05 21

solve one more instance than CABS with a better primal gap and primal integral. In other instances
in Schwerin 1, LNBS configurations and CABS have the same primal gap, and CABS is better
in the primal integral. Similarly, LNBS/bias optimally solves one instance of Scholl 3 [384] and
achieves a better primal gap and primal integral than CABS. In other instances of Scholl 3, the
LNBS configurations and CABS have the same primal gap, and CABS has a better primal integral.
Overall, as shown in Table 5.3, while the LNBS configurations have a better primal gap and primal
integral than CABS in a small number of instances, CABS is equal or better in a larger number of
instances.

MOSP

We show the evaluation results in each instance set of MOSP in Table 5.9. The difference between
CABS and the LNBS configurations is still not clear; they achieve the same primal gap in all
instances of Challenge [402], Faggioli and Bentivoglio [129], and SCOOP.6 In Chu and Stuckey[79],
CABS has a better primal gap in two instances as shown in Table 5.3. The average primal integral
is the same in Challenge and Faggioli and Bentivoglio, and the difference is small in Chu and Stucky
and SCOOP.

6https://cordis.europa.eu/project/id/32998



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 110

Table 5.10: Comparison of CABS and LNBS in each instance set of graph-clear. ‘gap’ is the
average primal gap, ‘integral’ is the average primal integral, and ‘c.’ is the coverage. The value of
LNBS/uniform or LNBS/bias is in bold if it is better than CABS, and the value of CABS is in bold
if LNBS/uniform and LNBS/bias are worse. The best value is underlined.

CABS LNBS/uniform LNBS/bias

gap integral c. gap integral c. gap integral c.

Graph-Clear Total (135) 0.0000 0.45 103 0.0000 0.51 103 0.0000 0.53 103

Planar n = 20 (20) 0.0000 0.02 20 0.0000 0.02 20 0.0000 0.02 20
Planar n = 30 (20) 0.0000 0.07 20 0.0000 0.10 20 0.0000 0.10 20
Planar n = 40 (20) 0.0000 1.39 19 0.0000 1.19 19 0.0000 1.41 19
Random n = 20 (25) 0.0000 0.09 25 0.0000 0.13 25 0.0000 0.05 25
Random n = 30 (25) 0.0000 0.07 17 0.0000 0.11 17 0.0000 0.11 17
Random n = 40 (25) 0.0002 1.08 2 0.0002 1.49 2 0.0002 1.49 2

Table 5.11: Average primal gap, average primal integral, and coverage of MIP, CP, CABS, DD-LNS,
and LNBS in large instances of m-PDTSP, MOSP, and Graph-Clear. The value of LNBS/uniform
or LNBS/bias is in bold if it is better than the baselines (MIP, CP, CABS, and DD-LNS), and the
best value of the baselines is in bold if LNBS configurations are worse. The best value is underlined.

Primal Gap MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

m-PDTSP (240) 0.5774 0.1509 0.0744 0.1401 0.0718 0.0701
MOSP (760) 0.8810 0.0689 0.0010 0.0418 0.0027 0.0029
Graph-Clear (50) 0.5233 0.5290 0.0012 0.0769 0.0032 0.0040

Primal Integral

m-PDTSP (1178) 1095.72 289.00 157.78 273.58 153.63 151.97
MOSP (570) 1601.08 152.92 5.25 75.65 10.15 10.51
Graph-Clear (135) 963.06 1268.39 8.55 138.74 16.22 17.07

Coverage

m-PDTSP (240) 48 77 100 78 100 100
MOSP (760) 0 0 154 0 148 148
Graph-Clear (50) 0 0 0 0 0 0

Graph-Clear

We show the evaluation results in each instance set of graph-clear in Table 5.9. In graph-clear
(Section 3.3.10), each instance is associated with a graph with n nodes. The instances are generated
by us following Morin et al. [317] (see Section 4.3.2), using n = 20, 30, 40 for planar and random
graphs. Similar to MOSP, the difference between CABS and the LNBS configurations is unclear:
CABS, LNBS/uniform, and LNBS/bias have the same primal gap in all instances and a similar
average primal integral in all instance sets.

5.3.3 Larger Instances for m-PDTSP, MOSP, and Graph-Clear

While we compare CABS, LNBS/uniform, and LNBS/bias in each instance set of TSPTW, m-
PDTSP, bin packing, MOSP, and graph-clear, the conclusion is still not clear for m-PDTSP, MOSP,
and graph-clear. In m-PDTSP, we observe that none of CABS and the LNBS configurations is a
clear winner. In MOSP and graph-clear, CABS, LNBS/uniform, and LNBS/bias achieve the same
primal gap in almost all instances. Therefore, we evaluate the DIDP solvers using larger instance
sets of m-PDTSP, MOSP, and graph-clear. We describe instances used in this additional evaluation
below.

In m-PDTSP (Section 3.3.2), a vehicle visits all customers, picks up some commodities at some
customers, and delivers them to others. Each commodity has a weight and the total weight of



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 111

Table 5.12: Number of large instances of m-PDTSP, MOSP, and graph-clear where LNBS has a
better/same/worse primal gap or primal integral than CABS. A value in ‘Better’/‘Worse’ is in bold
if it is larger than ‘Worse’/‘Better’.

LNBS/uniform LNBS/bias

Better Same Worse Better Same Worse

Primal Gap

m-PDTSP (240) 71 150 19 88 142 10
MOSP (760) 19 611 130 13 608 139
Graph-Clear (50) 11 10 29 7 10 33

Primal Integral

m-PDTSP (240) 143 15 82 150 15 75
MOSP (760) 43 0 717 42 0 718
Graph-Clear (50) 2 0 48 3 0 47

commodities that a vehicle can carry is limited by the capacity. In the benchmark set for m-
PDTSP, three types of instances are used: class1, class2, and class3 [208], and class1 instances are
generated from instances of the sequential ordering problem (SOP) [11]. We generate larger class1
instances by using 30 SOP instances in TSPLIB7 that were not used by the previous work. The
original instances have at most 47 customers, and the new instances have 42 to 378 customers. We
use the same methods as the previous work [208] with the maximum weight q ∈ {1, 5} and the
capacity Q ∈ {5q, 10q, 20q, 100q}, resulting in 240 instance in total.

In MOSP (Section 3.3.9), an instance is represented by a matrix, and the original set uses at
most 125× 125 matrices. We add instances using 150× 150 to 1000× 1000 matrices [64, 146].

For graph-clear, as explained in Section 5.3.2, each instance is associated with a graph. We
generate 50 instances using random graphs with 100 and 200 nodes following Morin et al. [317].

We show the average primal gap, primal integral, and the coverage in Table 5.11. We also
present the number of instances where the LNBS configurations have a better/same/worse primal
gap or primal integral in Table 5.12. LNBS/uniform and LNBS/bias clearly outperform CABS in
m-PDTSP in the primal gap and the primal integral, but CABS is better in MOSP and graph-clear.
LNBS/uniform is slightly better than LNBS/bias in MOSP and graph-clear while LNBS/bias is
better in m-PDTSP.

5.3.4 Ablation Study

The experimental results presented above show that there are no large differences on average between
LNBS/uniform and LNBS/bias. To evaluate the importance of other components in LNBS, we
consider two additional configurations: LNBS/conflicts does not remove transitions that conflict
with the suffix (Section 5.2.2); LNBS/no-bandit selects the depth d of a neighborhood uniformly
at random instead of using Budgeted-UCB. In both of them, other components are the same as
LNBS/uniform. We evaluate these configurations using the eleven problem classes. For m-PDTSP,
MOSP, and graph-clear, we use the larger instance sets introduced in Section 5.3.3. Tables 5.13–5.15
show the average primal gap, the average primal integral, and the coverage.

Compared to LNBS/uniform, LNBS/conflicts shows a better average primal gap and primal in-
tegral in m-PDTSP, OPTW, and MOSP. However, it is worse than LNBS/uniform in the remaining
eight problem classes. In particular, LNBS/conflicts performs worse than baselines that are outper-

7http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 112

Table 5.13: Average primal gap of MIP, CP, CABS, and LNBS configurations in each problem class.
The primal gap of an LNBS configuration is in bold if it is lower than the baselines (MIP, CP, and
CABS), and the lowest of the baselines is in bold if the LNBS configurations are worse. The lowest
primal gap is underlined. For m-PDTSP, MOSP, and graph-clear, large instances introduced in
Section 5.3.3 are used.

LNBS/

MIP CP CABS uniform bias conflicts no-bandit

TSPTW (340) 0.2357 0.0259 0.0033 0.0017 0.0021 0.0034 0.0033
CVRP (207) 0.5950 0.2534 0.1752 0.1626 0.1622 0.1666 0.1751
m-PDTSP (240) 0.5774 0.1509 0.0744 0.0718 0.0701 0.0699 0.0745
OPTW (144) 0.2180 0.0098 0.0279 0.0314 0.0318 0.0352 0.0279
MDKP (276) 0.0000 0.0058 0.1097 0.1019 0.1036 0.1017 0.1097
Bin Packing (1615) 0.0417 0.0015 0.0017 0.0023 0.0023 0.0028 0.0017
SALBP-1 (2100) 0.2697 0.0046 0.0002 0.0021 0.0020 0.0022 0.0005
1||

∑
wiTi (375) 0.0131 0.0009 0.0329 0.0047 0.0051 0.0209 0.0331

Talent Scheduling (1000) 0.0395 0.0087 0.0167 0.0043 0.0042 0.0122 0.0168
MOSP (760) 0.8810 0.0689 0.0010 0.0027 0.0029 0.0023 0.0011
Graph-Clear (50) 0.5233 0.5290 0.0012 0.0032 0.0040 0.0038 0.0012

Table 5.14: Average primal integral of MIP, CABS, CP, and LNBS configurations in each problem
class. The primal integral of an LNBS configuration is in bold if it is lower than the baselines (MIP,
CP, and CABS), and the lowest of the baselines is in bold if the LNBS configurations are worse.
The lowest primal integral is underlined. For m-PDTSP, MOSP, and graph-clear, large instances
introduced in Section 5.3.3 are used.

LNBS/

MIP CP CABS uniform bias conflicts no-bandit

TSPTW (340) 509.18 48.97 9.25 6.38 6.90 10.45 9.39
CVRP (207) 1147.11 482.89 333.69 319.99 318.93 325.02 341.53
m-PDTSP (240) 1095.72 289.00 157.78 153.63 151.97 150.63 158.75
OPTW (144) 448.17 23.89 65.67 73.76 74.00 79.37 65.79
MDKP (276) 0.11 15.87 201.73 189.52 192.69 189.18 201.73
Bin Packing (1615) 88.32 7.92 4.90 8.37 8.26 8.85 5.34
SALBP-1 (2100) 536.41 28.52 1.93 6.96 6.90 7.36 2.77
1||

∑
wiTi (375) 64.01 3.49 71.21 12.57 13.23 51.77 71.19

Talent Scheduling (1000) 122.30 30.32 36.77 11.01 11.01 29.42 37.52
MOSP (760) 1601.08 152.92 5.25 10.15 10.51 9.25 5.72
Graph-Clear (50) 963.06 1268.39 8.70 16.37 17.22 18.15 9.05

formed by LNBS/uniform. In TSPTW, LNBS/conflicts has a worse primal gap and primal integral
than CABS. LNBS/conflicts also has a worse primal gap than MIP in 1||

∑
wiTi and than CP in

talent scheduling.
LNBS/no-bandit is similar to CABS: it has better coverage than LNBS/uniform in all problem

classes and a better primal gap and primal integral in OPTW, bin packing, SALBP-1, MOSP, and
graph-clear while LNBS/uniform has a better primal gap and primal integral in TSPTW, CVRP,
m-PDTSP, MDKP, 1||

∑
wiTi, and talent scheduling. The average primal gap, the average primal

integral, and the coverage of LNBS/no-bandit are similar to those of CABS. This result is probably
because the largest depth, which makes LNBS the same as CABS, is more likely to be selected by
uniform sampling.

In conclusion, removing transitions that conflict with the suffix improves the performance in
eight out of the eleven problem classes. In particular, it is crucial to outperform baselines in three
problem classes. Sampling a depth uniformly at random makes LNBS almost the same as CABS,
so using Budgeted-UCB is essential to achieve different behavior.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 113

Table 5.15: Coverage of MIP, CABS, CP, and LNBS configurations in each problem class. The
coverage of an LNBS configuration is in bold if it is higher than the baselines (MIP, CP, and CABS),
and the highest of the baselines is in bold if the LNBS configurations are worse. The highest coverage
is underlined. For m-PDTSP, MOSP, and graph-clear, large instances introduced in Section 5.3.3
are used.

LNBS/

MIP CP CABS uniform bias conflicts no-bandit

TSPTW (340) 222 47 259 242 242 235 259
CVRP (207) 27 0 6 6 6 6 6
m-PDTSP (240) 48 77 100 100 100 95 100
OPTW (144) 16 49 64 62 62 52 64
MDKP (276) 165 6 5 5 5 5 5
Bin Packing (1615) 1159 1234 1167 1140 1142 1140 1167
SALBP-1 (2100) 1423 1584 1802 1703 1706 1703 1802
1||

∑
wiTi (375) 106 150 288 281 281 273 288

Talent Scheduling (1000) 0 0 239 236 237 189 240
MOSP (760) 0 0 154 148 148 103 151
Graph-Clear (50) 0 0 0 0 0 0 0

5.3.5 Analysis of Problem Characteristics

We have shown that LNBS/uniform and LNBS/bias are better than CABS in six problem classes,
TSPTW, CVRP, (large instances of) m-PDTSP, MDKP, 1||

∑
wiTi, and talent scheduling. In

contrast, the LNBS configurations are worse in OPTW, bin packing, SALBP-1, MOSP, and graph-
clear. In this section, we investigate problem characteristics that may contribute to the performance
difference between CABS and LNBS. We propose two hypotheses:

1. LNBS is better than CABS when path costs are diverse.

2. LNBS is better than CABS when search guidance is weak.

Diversity of Path Costs

One characteristic that might be beneficial for LNBS is the diversity of path costs. For example, in
routing problems, i.e., TSPTW, CVRP, and m-PDTSP introduced in Sections 3.2.1, 3.3.1, and 3.3.2,
where the LNBS configurations are better than CABS, a solution is a route visiting all customers,
and its cost is the travel time of the route. In the DyPDL models for these problem classes, each
transition corresponds to visiting one customer, and the cost of a partial path increases when a
transition is applied. We expect that different partial solutions tend to have different costs; because
the order in which customers are visited is the prime determinant of the path cost. It is also likely to
be relatively easy to find improving partial paths because, unless the current partial path is optimal,
better partial paths are included in a partial state transition graph with high density. In such a
case, LNBS is likely to find a better partial path although it searches in a fraction of the partial
state transition graph restricted by the beam width.

In contrast, in bin packing and SALBP-1 introduced in Sections 3.3.5 and 3.3.6, the problem
is to pack items into capacitated bins (or schedule tasks in stations in SALBP-1) while minimizing
the number of bins. In the DyPDL models, each transition packs one item into a bin, and the cost
increases only when a new bin is opened. We expect that many partial paths tend to have the same
cost, making it difficult to improve a solution by searching only a partial state transition graph. In
the DyPDL models for MOSP and graph-clear, the cost is computed by taking the maximum weight



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 114

0 2 4 6 8 10 12

Cost entropy

100

101

102

103

S
o

lu
ti

o
n

le
n

g
th

LNBS better

TIE

CABS better

(a) Problem classes where partial path costs are diverse: TSPTW, CVRP, m-PDTSP, MDKP, 1||
∑

wiTi,
and talent scheduling. All problem classes in this plot have instances with cost entropy larger than 6.

0 2 4 6 8 10 12

Cost entropy

100

101

102

103

S
o

lu
ti

o
n

le
n

g
th

LNBS better

TIE

CABS better

(b) Problem classes where partial path costs are not diverse: OPTW, bin packing, SALBP-1, MOSP, and
graph-clear. All problem classes in this plot do not have instances with cost entropy larger than 4.

Figure 5.4: Entropy of the cost distribution over partial paths vs. the solution length in each
problem instance. ‘LNBS better’ means LNBS/uniform finds a better solution, ‘TIE’ means that
LNBS/uniform and CABS achieve the same solution cost, and ‘CABS better’ means that CABS
finds a better solution.

of edges in a path, and so does not increase unless a new edge has a higher weight than the current
maximum. Again, we expect that many partial paths share the same cost.

To quantitatively evaluate the diversity of partial path costs, we measure the diversity of costs
in a partial state transition graph using entropy in information theory [390]. Given a solution for a
DyPDL model σ = ⟨σ1, ..., σn⟩, let Ndi(σ) be the set of solution paths whose prefix is ⟨σ1, ..., σi−1⟩
and the suffix is ⟨σi+d, ..., σn⟩. Let C = {costψ(S0) | ψ ∈ Ndi(σ)} be the set of the solution costs.
Then, the entropy of the path costs is defined as follows:

H(Ndi(σ)) = −
∑
c∈C

|{ψ ∈ Ndi(σ) | costψ(S0) = c}|
|Ndi(σ)|

log2
|{ψ ∈ Ndi(σ) | costψ(S0) = c}|

|Ndi(σ)|
. (5.8)

As this value gets larger, the cost distribution becomes more diverse, and we expect that LNBS
will perform better than CABS. However, even if the entropy is large, if the problem itself is easy,
both CABS and LNBS will find optimal or near-optimal solutions. To consider such cases, we also
measure the length of the initial solution found by CABS.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 115

We evaluate entropy and the length of the initial solution found for each problem instance used in
Sections 5.3.1 and 5.3.3. We first run CABS until it finds a feasible solution and record the length of
the solution. Then, we remove the first eight transitions from the solution and enumerate all feasible
prefixes of the solution, i.e., we use d = 8 and i = 1. In Figure 5.4, we show a scatter plot of entropy
and the solution length divided into two plots to emphasize the differences between the problem
classes where partial path costs are diverse (TSPTW, CVRP, m-PDTSP, MDKP, 1||

∑
wiTi, and

talent scheduling) and those where partial path costs are less diverse (OPTW, bin packing, SALBP-
1, MOSP, and graph-clear). This classification is consistent with problem classes where LNBS is
better/worse than CABS. With low entropy, CABS tends to be better. For higher entropy, the
solution length makes differences: for short solutions, CABS and LNBS/uniform perform equally
but for longer solutions, LNBS/uniform tends to perform better. This observation is consistent with
our first hypothesis.

Strength of Search Guidance

Our second hypothesis is that LNBS performs better than CABS when search guidance is weak.
We explain the intuition behind this hypothesis as follows. Beam search keeps the best b states
according to the f -values. The f -value of state S is f(S) = g(S) × h(S), where g(S) is the path
weight to reach S, h(S) is the estimated path cost by a heuristic function, and × ∈ {+,max} is a
binary operator. When f is weak, i.e., f(S) is not well correlated with the optimal solution cost via
S, beam search would make many mistakes in selecting the best states. In such a case, many short
partial paths possibly have room for improvement, so LNBS would easily find better solutions. In
contrast, if f is stronger, beam search makes fewer mistakes, and most partial paths do not have
room for improvement. LNBS may become stuck in local minima, i.e., partial paths that cannot be
improved further, while CABS will not since it always searches in the entire state transition graph.

To test this hypothesis, we evaluate CABS and LNBS/uniform with weaker heuristic functions
in problem classes where CABS performs better than LNBS/uniform. Beam search uses the dual
bound function η as the heuristic function h in our evaluation, i.e., f(S) = g(S)× η(S). Following
Section 4.3.7, we use the zero dual bound function, which always returns 0 (η(S) = h(S) = 0).
We compare CABS and LNBS/uniform with the zero dual bound function, called CABS/0 and
LNBS/uniform/0, in bin packing and SALBP-1.

MOSP and graph-clear (Sections 3.3.9 and 3.3.10), where CABS is better than LNBS/uni-
form, cannot be used for this evaluation since their DyPDL models are already using the zero
dual bound function. In these DyPDL models, the cost expression takes the maximum of edge
weights (costτ (x, S) = max{wτ (S), x}), so f(S) = max{g(S), h(S)} = max{g(S), 0} = g(S). Since
f(S) = g(S) becomes exactly the same as the optimal solution cost via S at a point when a transi-
tion having the maximum weight is applied, we expect that beam search has strong search guidance
even with the zero dual bound function.

In addition to the above problem classes, CABS is also better than LNBS/uniform in OPTW. In
the DyPDL model for OPTW, since the objective is to maximize the nonnegative total profit, the zero
dual bound function is not applicable. Therefore, we evaluate CABS and LNBS/uniform without
the dual bound function, called CABS/blind and LNBS/uniform/blind. In these configurations,
beam search is guided only by the g-value.

Table 5.16 presents the average primal gap and primal integral of CABS, LNBS/uniform, CABS/0,



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 116

Table 5.16: Average primal gap and primal integral of CABS and LNBS/uniform in each instance set
of bin packing and SALBP-1 using the original and zero dual bound functions. ‘gap’ is the primal
gap at the time limit, and ‘integral’ is the primal integral. The value is in bold if one is strictly
better than the other.

Original dual bound Zero dual bound

CABS LNBS/uniform CABS/0 LNBS/uniform/0

gap integral gap integral gap integral gap integral

Bin Packing Total (1615) 0.0018 4.94 0.0023 8.41 0.0058 11.46 0.0054 12.47

Falkenauer T (80) 0.0073 19.62 0.0085 47.25 0.0232 44.77 0.0228 55.19
Falkenauer U (80) 0.0005 5.26 0.0025 9.89 0.0078 15.95 0.0066 15.78
Scholl 1 (720) 0.0003 1.23 0.0003 1.75 0.0019 3.84 0.0013 3.08
Scholl 2 (480) 0.0033 8.34 0.0045 13.00 0.0075 14.44 0.0072 15.95
Scholl 3 (10) 0.0035 6.79 0.0035 8.05 0.0106 19.43 0.0106 20.41
Wäscher (17) 0.0070 22.32 0.0115 33.72 0.0445 80.32 0.0445 80.34
Schwerin 1 (100) 0.0021 4.36 0.0016 4.64 0.0063 15.35 0.0063 20.93
Schwerin 2 (100) 0.0005 2.18 0.0005 3.86 0.0045 8.54 0.0045 9.25
Hard28 (28) 0.0000 0.12 0.0000 0.20 0.0000 0.12 0.0000 0.17

SALBP-1 Total (2100) 0.0002 1.92 0.0021 6.96 0.0100 19.43 0.0096 19.30

Small n = 20 (525) 0.0000 0.01 0.0000 0.01 0.0000 0.01 0.0000 0.01
Medium n = 50 (525) 0.0000 0.06 0.0000 0.05 0.0002 0.58 0.0002 0.71
Large n = 100 (525) 0.0007 1.88 0.0009 2.37 0.0062 14.01 0.0062 14.27
Very Large n = 1000 (525) 0.0002 5.74 0.0074 25.38 0.0338 63.10 0.0320 62.21

Table 5.17: Number of instances where LNBS has a better/same/worse primal gap than CABS in bin
packing and SALBP-1 with the original and zero dual bound functions. We compare LNBS/uniform
with CABS and LNBS/uniform/0 with CABS/0. A value in ‘Better’/‘Worse’ is in bold if it is larger
than ‘Worse’/‘Better’.

LNBS/uniform LNBS/uniform/0

Better Same Worse Better Same Worse

Primal Gap

Bin Packing (1615) 9 1529 77 50 1545 20
SALBP-1 (2100) 3 1801 296 210 1825 65

Primal Integral

Bin Packing (1615) 50 0 1565 104 0 1511
SALBP-1 (2100) 191 0 1909 291 0 1809

and LNBS/uniform/0 in each instance set of bin packing and SALBP-1. In bin packing, with the
original dual bound function, CABS achieves a better primal gap in four out of the nine instance sets
and is worse only in Schwerin 1. With the zero dual bound function, LNBS/uniform/0 has a better
primal gap than CABS/0 in four out of the nine instance sets and an equal primal gap in other
sets. We also present the number of bin packing instances where LNBS/uniform is better/same/-
worse than CABS and the number of instances where LNBS/uniform/0 is better/same/worse than
CABS/0 in Table 5.17. The number of instances where LNBS/uniform/0 has a better primal gap
than CABS/0 (50) is larger than the number of instances where LNBS/uniform/0 is worse (20).
While CABS/0 is better than LNBS/uniform/0 in terms of the average primal integral, it is mainly
because CABS/0 has a better primal integral than LNBS/uniform/0 in most instances where they
achieve the same primal gap (1483 out of 1545). In 42 out of 50 instances where LNBS/uniform/0
has a better primal gap than CABS/0, LNBS/uniform/0 has a better primal integral.

Each instance set of SALBP-1 is introduced by Morrison, Sewell, and Jacobson [319] and is
composed of instances with the same size; the Small instances have 20 tasks, the Medium instances
have 50 tasks, the Large instances have 100 tasks, and the Very Large instances have 1000 tasks.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 117

Table 5.18: Average primal gap and primal integral of CABS and LNBS/uniform in each instance
set of OPTW with and without the dual bound functions. ‘gap’ is the primal gap at the time limit,
and ‘integral’ is the primal integral. The value is in bold if one is strictly better than the other.

Original dual bound No dual bound

CABS LNBS/uniform CABS/blind LNBS/uniform/blind

gap integral gap integral gap integral gap integral

OPTW Total (144) 0.0279 65.76 0.0314 73.76 0.0024 8.35 0.0023 9.06

RS2006 Solomon (29) 0.0000 2.53 0.0011 2.71 0.0000 0.12 0.0000 0.12
RS2008 Solomon (29) 0.0028 12.30 0.0026 14.83 0.0000 1.16 0.0000 1.43
RS2008 Cordeau (10) 0.0184 61.05 0.0310 81.07 0.0000 7.39 0.0004 9.88
MG2009 Solomon (27) 0.0918 190.04 0.0958 203.96 0.0130 32.86 0.0117 31.43
MG2009 Cordeau (10) 0.1008 219.81 0.1152 254.59 0.0000 8.83 0.0008 16.48
VSVV2009 Solomon (29) 0.0028 12.33 0.0026 14.82 0.0000 1.11 0.0000 1.41
VSVV2009 Cordeau (10) 0.0188 62.18 0.0292 81.98 0.0000 8.37 0.0009 10.68

Table 5.19: Number of instances where LNBS has a better/same/worse primal gap than CABS in
OPTW with and without the dual bound function. We compare LNBS/uniform with CABS and
LNBS/uniform/blind with CABS/blind. A value in ‘Better’/‘Worse’ is in bold if it is larger than
‘Worse’/‘Better’.

LNBS/uniform LNBS/uniform/blind

Better Same Worse Better Same Worse

Primal Gap in OPTW (144) 14 103 27 8 126 10
Primal Integral in OPTW (144) 21 0 123 51 0 93

In SALBP-1, while CABS is better in Large and Very Large with the original dual bound function,
LNBS/uniform/0 is better than CABS/0 in Very Large and achieves the same primal gap in other
sets. This result is consistent with our observation in TSPTW that LNBS/uniform performs better
than CABS in more difficult instances (Section 5.3.2). The number of instances where LNBS/uni-
form/0 has a better primal gap than CABS/0 (210) is larger than the number of instances where
LNBS/uniform/0 is worse (65).

Table 5.18 and Table 5.19 show the results for CABS, LNBS/uniform, CABS/blind, and LNB-
S/uniform/blind in OPTW. There are seven instance sets, one introduced by Righini and Salani [356]
(RS2006 Solomon), two introduced by Righini and Salani [357] (RS2008 Solomon and RS2008
Cordeau), two introduced by Montemanni and Gambardella [315] (MG2009 Solomon and MG2009
Cordeau), and two introduced by Vansteenwegen et al. [434] (VSVV2009 Solomon and VSVV2009
Cordeau). The instance sets with ‘Solomon’ in their names are based on the instances of the vehicle
routing problem with time windows [102] by Solomon [405], and the instance sets with ‘Cordeau’ in
their names are based on the instances of the multi-depot vehicle routing problem [316] by Cordeau,
Gendreau, and Laporte [90]. CABS/blind and LNBS/uniform/blind achieve a better primal gap
and primal integral than CABS and LNBS/uniform in all instance sets. This result shows that the
overhead to compute the dual bound function in the original DyPDL model does not pay off in
terms of finding a good solution. However, we observe that using the dual bound function is benefi-
cial in terms of the average optimality gap (0.2696 for CABS, 0.2855 for LNBS/uniform, 0.5208 for
CABS/blind, and 0.5278 for LNBS/uniform/blind). LNBS/uniform/blind achieves a worse average
primal gap than CABS/blind in RS2008 Cordeau, MG2009 Cordeau, and VSVV2009 Cordeau and a
worse average primal integral in all instance sets except for MG2009 Solomon. In MG2009 Solomon,
LNBS/uniform/blind outperforms CABS/blind in the primal gap and primal integral. The num-
ber of instances where LNBS/uniform/blind is better than CABS/uniform/blind is less than the



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 118

number of instances where LNBS/uniform/blind is worse. However, compared to LNBS/uniform
and CABS, in a larger number of instances, LNBS/uniform/blind achieves the same primal gap as
CABS/blind and a better primal integral than CABS/blind. Overall, CABS/blind is still better
than LNBS/uniform/blind in many cases, but the performance gap between them is closer than
that of LNBS/uniform and CABS.

In summary, with the weaker heuristic functions, we observe that LNBS/uniform/0 (LNBS/uni-
form/blind) becomes better than or closer to CABS/0 (CABS/blind) in bin packing, SALBP-1, and
OPTW. These results are consistent with our second hypothesis that LNBS performs better when
search guidance is weaker. In bin packing, SALBP-1, and OPTW, as shown in Figure 5.4b, the cost
entropy is relatively small. Therefore, the results in these problem classes are counterexamples for
our first hypothesis that LNBS performs better when partial path costs are diverse.

Further investigation of the hypothesis, e.g., evaluating CABS and LNBS using heuristic functions
with parametrized strength, is future work. Generalizing this analysis to other types of LNS is also
an interesting direction. For example, for LNS in CP, we may analyze the performance of LNS with
different strengths of value and variable selection heuristics, which guide the search; when these
heuristics make fewer mistakes, many neighborhoods may not have room for improvement.

5.4 Discussion

Through the empirical evaluation, we have shown that LNBS/uniform and LNBS/bias perform
better than CABS in six of the eleven problem classes. LNBS has three components to select a
neighborhood: selecting the depth of the partial path, selecting the starting point of the partial
path, and selecting the beam width. Given a neighborhood, LNBS removes conflicting transitions
considering the suffix, the transitions after the selected partial paths. While we have presented the
importance of the current configuration in the ablation study (Section 5.3.4), each component has
room for improvement or alternative design choices. It may also be useful to exploit the problem
characteristics that affect the relative performance of LNBS compared to CABS (Section 5.3.5),
during search.

As shown in Section 5.3.4, removing conflicting transitions (Section 5.2.2) improves the per-
formance in most problem classes. To remove conflicting transitions, we use Proposition 1, which
focuses on transitions that add/remove one element to/from a set variable. While this method is
applicable to ten out of the eleven problem classes evaluated, to handle broader classes of problems,
we may want to generalize Proposition 1. A straightforward extension would be considering transi-
tions that add/remove multiple elements to/from a set variable. Furthermore, considering numeric
variables may also be possible. For example, if a numeric variable represents the remaining capacity,
and each transition in the suffix decreases the value of the variable, we may exclude some transitions
based on the capacity constraint.

The ablation study in Section 5.3.4 also shows that LNBS/no-bandit, which selects a depth uni-
formly at random, is not much different from CABS. In other words, the depth selection mechanism
using Budgeted-UCB (Section 5.2.3) makes LNBS/uniform and LNBS/bias different from CABS.
While using completely different strategies to select a depth might be possible as alternative choices,
variants of Budgeted-UCB are worth considering: Budgeted-UCB uses Equation (5.2) to balance
exploration and exploitation, so different behavior can be obtained by scaling each term, for example.



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 119

Compared to the depth selection mechanism, other components use relatively simple strategies
in the current configurations. To select the starting point of a partial path, uniform sampling and
cost-biased sampling (Section 5.2.4) are considered; however, they do not make much difference in
practice. All evaluated LNBS configurations double the beam width after selecting a neighborhood,
following CABS (Section 5.2.5). The current solution (σ in Algorithm 12) is updated only when an
improving solution is found. For these components, similar to Budgeted-UCB, it may be possible
to develop adaptive strategies that consider statistics so far, following previous work in LNS [368].
Furthermore, we may consider using other heuristic search algorithms than beam search, e.g., A*
[190], to search for a better partial path.

In Section 5.3.5, we have observed that CABS performs better than LNBS when the search
guidance is strong. While Budgeted-UCB may eventually converge to selecting larger depths in
such a case, measuring the strength of the search guidance during search and explicitly switching to
CABS or larger depths might be beneficial.

5.5 Related Work

We discuss the novelty of LNBS compared with existing methods. In particular, we consider related
work in the literature from the following two perspectives: state space search algorithms that search
in a neighborhood and LNS algorithms using multi-armed bandits.

5.5.1 State Space Search in a Neighborhood

There exist several state space search algorithms that improve a solution path by searching in a
neighborhood. However, except for DD-LNS, they were not framed as LNS or applied to combina-
torial optimization.

Ratner and Pohl [352] proposed local path A* (LPA*) and applied it to the 15-puzzle. They
consider the shortest path problem in an unweighted graph where the length of the path is equivalent
to the path cost. Similar to LNBS, LPA* tries to find a better partial path between two nodes on
a given path, but they only consider partial paths with a fixed length d. Given a feasible path
⟨(S0, S1), ..., (Sn−1, Sn)⟩, LPA* maintains the starting point of a partial path i, which is initialized
with 0. At each iteration, LPA* runs A* to find a shortest path from Si to Si+d. If the newly
found partial path is shorter, then LPA* runs A* to update subsequent partial paths with length
d: each partial path ⟨(Sj , Sj+1), ..., (Sj+d−1, Sj+d)⟩ for j = i + d, i + 2d, ..., i +md, where m is the
maximum integer such that i + (m + 1)d ≤ n, is replaced with the shortest partial path found by
A*. If a better partial path from Si to Si+d is not found, LPA* updates i to i+ δ and repeats the
procedure, where δ is a constant parameter. Therefore, LPA* can be viewed as an instantiation of
LNBS, where the size of a neighborhood is fixed, the starting point of a partial path is selected by
the above strategy, and A* is used instead of beam search.

Ratner and Pohl [352] also proposed Joint, another heuristic search algorithm in a neighborhood.
Joint first divides a feasible path into consecutive segments with length d, replaces them with shortest
partial paths, and tries to improve partial paths connecting two segments. Given a feasible path
⟨(S0, S1)..., (Sn−1, Sn)⟩, each partial path ⟨(Sj , Sj+1), ..., (Sj+d−1, Sj+d)⟩ for j = 0, d, 2d, ...,md,
where m is the maximum integer such that (m+ 1)d ≤ n, is replaced with the shortest partial path
found by A*. The set of nodes called joints are initialized with J = {Sj+d | j = 0, d, 2d, ...,md}. At



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 120

each iteration, Joint selects a joint Si ∈ J with the minimum i and tries to improve a partial path
from Si−d/2 to Si+d/2. Once Si is selected, joints far from Si+d/2 are removed. Concretely, a joint
Sj with j < i+d/2− δ is removed, where δ is a constant parameter. In practice, they used δ < d/2,
so the selected joint Si is always removed. Joint replaces a partial path from Si−d/2 to Si+d/2 by
the shortest path found by A*. If the newly found path is better, Si−d/2 and Si+d/2 are added to
J . This procedure is repeated until J becomes empty. Similar to LPA*, Joint can be considered
an instantiation of LNBS with a fixed neighborhood size, the special mechanism to select a starting
point, and A* instead of beam search.

Iterative tunneling A* (ITA*) [149] searches in a neighborhood constructed by including states
reachable from a given path with a limited number of edges. This neighborhood construction is
different from LNBS, DD-LNS, LPA*, and Joint, which remove a partial path from a given path.
Given a feasible path ⟨(S0, S1), ..., (Sn−1, Sn)⟩, ITA* runs A* from S0 to Sn to find the shortest path
in a neighborhood of the path, which grows iteratively. Intuitively, the neighborhood in iteration j

contains states that are reachable from the states on the current path with at most j edges. Nodes
on the current path, S0, ..., Sn, are assigned an iteration number of 0. A successor state of a state
whose iteration number is k is assigned an iteration number k + 1 when it is first generated. A* in
the j-th iteration only expands states whose iteration number is less than or equal to j. Starting
from j = 1, ITA* repeats this procedure until reaching the memory limit. ITA* was applied to the
48-puzzle and Rubik’s Cube.

Plan Neighborhood Graph Search (PNGS) is a method to improve a plan in classical AI planning
[324]. PNGS first constructs a neighborhood graph and then finds a shortest path in the graph.
Similarly to ITA*, PNGS is different from LNBS in that it does not construct a neighborhood by
removing a partial path. Given a feasible path ⟨(S0, S1), ..., (Sn−1, Sn)⟩, PNGS runs a state space
search algorithm from each node Sj for j = 0, ..., n until expanding L nodes. The neighborhood
graph includes the expanded nodes and edges traversed by the search algorithm. PNGS runs a
shortest path algorithm in the neighborhood graph to find a solution. An anytime version of PNGS
iteratively runs this procedure while increasing L. The original paper used A* or A* together with
backward breadth-first search to construct the neighborhood graph and Dijkstra’s algorithm to find
a shortest path in the neighborhood.

As explained in Section 5.1.1, DD-LNS [170] was applied to combinatorial optimization and can
be considered a state space search algorithm and an instantiation of LNBS. Although it tries to find
a better partial path starting from the middle of a given path, the suffix must be empty, unlike
LNBS. In addition, DD-LNS uses a fixed beam width.

5.5.2 Multi-Armed Bandits for Large Neighborhood Search

The multi-armed bandit problem [364] is a decision-making problem with various application fields
including clinical trials, recommendation systems, and algorithm selection [50]. In a multi-armed
bandit problem, we are given a set of arms D. At each round k, we pull one arm d ∈ D and obtain
a reward rdk, which is a random variable following an unknown probability distribution associated
with the arm d. Let ak be the arm selected by strategy a at round k, and rakk be the reward
obtained at round k. The objective is to find a strategy to maximize the total expected reward
over K rounds, E

[∑K
k=1 rakk

]
. In this paper, we used a variant called the budgeted bandit problem

[423], where pulling arm a incurs the cost ta, and the number of trials is limited by the budget T .



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 121

In particular, we used the budgeted bandit problem with continuous random costs [442], where ta
is a continuous random variable following an unknown distribution (Section 5.2.3).

Previous work has combined multi-armed bandits with LNS, but the budgeted bandit problem
was not used. Hendel [205] used a multi-armed bandit algorithm with LNS in a general-purpose
MIP solver. In MIP, a neighborhood corresponds to a subproblem, where a subset of integer decision
variables are assigned fixed values [94, 40]. As a repair heuristic, LNS runs branch-and-bound for
the subproblem where the number of nodes is limited by an adaptively adjusted parameter. Hendel
formulated a problem to select a subproblem from multiple candidates generated by different destroy
heuristics as a multi-armed bandit problem. Each subproblem corresponds to an arm, and the reward
depends on the result of branch-and-bound. They used a reward function combining the following
three reward functions, all of which take a value in [0, 1]: rsol returns 1 if a better solution is found
or optimality is proved and 0 otherwise; rgap = c−c

c−c , where c is the current primal bound, c is the
current dual bound, and c is the updated primal bound; rfail returns 1 if a better solution is found or
optimality is proved and returns a value negatively proportional to the number of explored branch-
and-bound nodes otherwise. While rgap is similar to our reward function in that it considers the
cost improvement, they also incorporated the time taken by the subproblem in the reward function
using rfail, instead of separately considering it using the budgeted multi-armed bandit.

Chmiela et al. [75] also used multi-armed bandit with LNS in a general-purpose MIP solver.
Differently from Hendel, they used a multi-armed bandit algorithm to select a primal heuristic
from multiple candidates, some of which are LNS algorithms. Chmiela et al. used reward functions
similar to Hendel, one of which is proportional to the cost improvement, and another is negatively
proportional to the number of explored nodes.

Phan et al. [338] used multi-armed bandit in LNS for multi-agent path finding (MAPF), a
problem in finding collision-free paths for multiple agents [407]. In their setting, the objective is to
minimize the total delay, where the delay for each agent is the difference between the actual path
length including waiting and the shortest path length ignoring collision. Given a set of paths for the
agents, LNS selects a subset of the agents using a destroy heuristic and tries to improve the paths for
them using a repair heuristic [290]. The repair heuristic is prioritized planning [401], which computes
a path for each agent one by one using heuristic search in a space-time graph, considering already
computed paths of other agents as obstacles. Thus, LNS for MAPF can be considered another form
of a combination of LNS and state space search. Phan et al. used multi-armed bandit algorithms in
two levels: selecting a destroy heuristic and selecting the number of agents for the destroy heuristic
to select, i.e., the neighborhood size. Similar to our LNBS configuration, the number of agents is
selected from {2e | e ∈ 1, ..., E}, where E is a parameter. In both levels, the reward is defined as the
cost improvement, c− c, and the time taken by each arm is not considered.

5.6 Summary

We proposed large neighborhood beam search (LNBS), a state space search algorithm based on large
neighborhood search (LNS) and beam search. Our configuration of LNBS exploits the multi-armed
bandit problem and random sampling to select a neighborhood. As a domain-independent dynamic
programming (DIDP) solver, LNBS finds better quality solutions on average than complete anytime
beam search (CABS) in six out of the eleven benchmark problem classes. In particular, our analysis



CHAPTER 5. LARGE NEIGHBORHOOD BEAM SEARCH 122

suggests that LNBS performs better than CABS when the search guidance is weaker. A deeper
investigation of the characteristics of the problems that make LNS effective in state space search
and tree search is an interesting direction for future work. Based on such analysis, improving each
component of LNBS may also be possible.



Chapter 6

Parallel Beam Search

In the previous two chapters, we developed domain-independent dynamic programming (DIDP)
solvers and demonstrated their promising performance using a number of combinatorial optimization
problem classes. However, unlike state-of-the-art general-purpose solvers for other paradigms, such
as mixed-integer programming (MIP) [188] and constraint programming (CP) [277], the DIDP solvers
cannot utilize multiple threads. To meet this standard, in this chapter, we develop multi-thread
DIDP solvers.

The currently developed DIDP solvers are based on heuristic search algorithms studied in artificial
intelligence (AI). In the AI community, parallelization of state space search algorithms, which include
heuristic search algorithms, has been actively studied over the past three decades [263, 127, 303,
367, 448, 451, 436, 55, 253, 339, 235, 272, 271, 320, 322, 443, 395]. We leverage such previous work
in the AI community to develop multi-thread DIDP solvers.

As a base solver, we focus on the state-of-the-art DIDP solver, complete anytime beam search
(CABS) [447] (Section 4.2.7), which is based on beam search. We propose two types of parallel beam
search algorithms using existing parallelization mechanisms for state space search. The experimental
results show that our multi-thread DIDP solvers achieve significant performance improvement over
sequential CABS. In addition, our solvers perform better and achieve a higher average speedup
than commercial multi-thread MIP and CP solvers in multiple combinatorial optimization problem
classes. Our multi-thread DIDP solvers are 9 to 36 times faster on average than sequential CABS
using 32 threads; they sometimes achieve super linear speedups in two of the six problem classes
tested. We also observe that the multi-thread solvers are slower than sequential CABS in some
instances of these problem classes. Our experimental analysis suggests that a strong dual bound
function makes parallel CABS diverge from sequential CABS while our solvers benefit from this
phenomenon on average.

We introduce parallelization mechanisms for state space search in Section 6.1 and propose par-
allel beam search algorithms based on them in Section 6.2. We empirically evaluate the proposed
algorithms in Section 6.3. Section 6.4 provides a review of parallel state space search algorithms,
covering a broader range of work than Section 6.1. Finally, Section 6.5 summarizes the contribution
of this chapter.

This work is based on a conference paper published in the Proceedings of the AAAI Conference
on Artificial Intelligence [269]. We extend the paper with the following points:

123



CHAPTER 6. PARALLEL BEAM SEARCH 124

• We present formal proofs of the correctness of the proposed algorithms.

• We include detailed experimental results.

• We provide a broader and deeper literature review of related work.

6.1 Parallel State Space Search

In this section, we introduce existing parallelization mechanisms for state space search related to
our parallel beam search algorithms. First, we recap sequential state space search algorithms and
explain shared memory and distributed environments. Then, we introduce three mechanisms: layer
synchronization, a shared hash table for duplicate detection, and hash-based work distribution. We
give a broader review of existing parallel state space search algorithms in Section 6.4.

6.1.1 Sequential State Space Search Algorithms

A state space search algorithm searches for a path in a state transition graph between two states, the
initial state and a goal state. For the sake of simplicity, we assume minimization, i.e., the shortest
path problem, in this chapter, but state space search algorithms can be adapted to maximization
under some conditions as described in Section 4.1.4. As shown in Algorithm 9 of Section 4.1.4,
a state space search algorithm maintains an open list that contains the set of candidate states to
search. At each iteration, the algorithm expands one state from the open list, i.e., removes the state
from the open list, generates its successor states, and inserts them into the open list. The order
in which states are expanded from the open list depends on the specific algorithm. Breadth-first
search (BrFS) searches layer by layer, i.e. expands all states having the same depth (the number
of edges to reach the states) and then goes to the next depth. Best-first search (BFS) expands
a state S that minimizes the priority value, denoted f(S) (the f -value). For example, A* [190]
(Section 4.2.1) is a BFS algorithm that uses f(S) = g(S) + h(S), where g(S) (the g-value) is the
current best path cost to reach S, and h(S) (the h-value) is an estimated path cost from S to a
goal state by a heuristic function h. Beam search (Algorithm 10 in Section 4.2.7) can be viewed
as a hybridization of BrFS and BFS. It searches layer by layer similar to BrFS but keeps only the
best b states according to the f -values, where b is a parameter called beam width. A* and beam
search are heuristic search algorithms since they use a heuristic function to guide the search. In
contrast, BrFS does not use a heuristic function to decide what state to expand next. However, if
an admissible heuristic function, which always underestimates the optimal path cost from a given
state, and an upper bound on the optimal cost are given, BrFS can prune states based on f -values.
This algorithm is called breadth-first heuristic search (BFHS) [450].

Typically, a state space search algorithm performs duplicate detection: if a generated state S
(or a state dominating S) has already been expanded or is included in the open list with a better
g-value, S is not added to the open list. The standard approach is to store generated states in a
hash table, as described in Russell and Norvig [372]. A search algorithm checks if a generated state
is already included in the hash table and stores it if not.



CHAPTER 6. PARALLEL BEAM SEARCH 125

6.1.2 Shared Memory and Distributed Environments

Parallelization uses multiple cores simultaneously to accelerate an algorithm. There are mainly two
types of environments for parallelization: shared memory and distributed [331]. In a shared memory
environment, multiple threads execute an algorithm in parallel. The threads share the same memory,
so communication between threads can be achieved by using shared data structures. In a distributed
environment, multiple processes work together in parallel, but each process has its own memory and
cannot directly access others’. Communication between processes is achieved by message passing,
where a process sends data in its memory as messages to other processes. Typically, the message
passing interface (MPI) [309] is used, which enables a process to send messages through network
communication. Message passing can also be implemented for multiple threads in a shared memory
environment, e.g., a thread sends a message by putting it on the message queue of another thread.
Thus, parallel algorithms developed for distributed environments can usually be implemented in
shared memory environments but not vice versa.

6.1.3 Layer Synchronization

Zhang and Hansen [448] proposed a parallel BFHS algorithm for a shared memory environment using
layer synchronization: all threads expand states in the same layer in parallel and then proceed to the
next layer. Layer synchronization is motivated by layered duplicate detection [450], which reduces
memory consumption by storing only states in a small number of layers for duplicate detection. At
the beginning of each layer, a single control thread distributes states in the layer to multiple worker
threads. Each worker thread stores the states in its local open list and expands them. When a
worker thread finishes expanding states, it needs to wait until other threads finish expansions. To
reduce the waiting time, Zhang and Hansen introduced a dynamic load balancing mechanism, which
allows a worker thread to send a subset of its open list to another worker thread that is waiting.

Frohner et al. [148] used layer synchronization to parallelize beam search in a shared memory
environment. They parallelized a for loop to expand all states in the current layer using the Threads
module of Julia,1 which manages the assignments of threads to loop iterations. After generating
states in the next layer, the f -value of the b-th best state is identified by a parallel counting sort
algorithm, and states having worse f -values are removed.

6.1.4 Shared Hash Tables for Duplicate Detection

Parallel state space algorithms usually perform duplicate detection in parallel. One approach to
parallelize duplicate detection in a shared memory environment is to use a single shared hash table.
In this approach, multiple threads expand states and perform duplicate detection simultaneously
in parallel with the shared hash table while avoiding contention using some mechanism. A simple
approach is to make sure that only one thread accesses the hash table at a time using a mutually
exclusive lock [436, 122].

Locking the whole hash table may be too restrictive; it is safe that different threads access
different keys in the hash table simultaneously. Based on such ideas, concurrent data structures
have been designed to be accessed by multiple threads in parallel. The parallel BFHS algorithm by
Zhang and Hansen [448] uses a concurrent hash table for duplicate detection. Inspired by the Java

1https://docs.julialang.org/en/v1/manual/multi-threading/



CHAPTER 6. PARALLEL BEAM SEARCH 126

concurrency package,2 their concurrent hash table is divided into multiple segments, each of which is
a hash table with a lock. A key is uniquely assigned to a segment based on the hash value. Different
threads can mutate different segments in parallel, and multiple threads can read values from the
same segment in parallel as long as no thread is mutating that segment. The parallel beam search
algorithm by Frohner et al. [148] also employs a concurrent hash table, implemented as an array of
linked lists with a lock for each linked list.

A concurrent hash table can also be implemented without locks. A lock-free data structure
is a concurrent data structure that does not use locks and guarantees that at least one thread
completes its operation after a finite number of time steps [206]. Typically, lock-free data structures
are implemented with atomic compare-and-swap operations. Lock-free hash tables were used for
duplicate detection in BFS by previous work [55, 271].

6.1.5 Hash-Based Work Distribution

An alternative approach to parallelize duplicate detection is hash-based work distribution [127],
designed for distributed environments. Hash-based work distribution combines parallel duplicate
detection with static load balancing. Each process has its local open list and expands states from it.
However, the generated states are not necessarily inserted into the local open list. When a state is
generated, it is sent to its owner process, uniquely determined by the hash value of the state. Given
the hash value hash(S), the owner of state S is process i ∈ {1, ..., k} with i = (hash(S) mod k)+1.
Since the same state is always sent to the same process, duplicate detection is performed by each
process independently using a local hash table. When receiving a state, each process checks the local
hash table and inserts the state into its local open list if there is no duplicate. If the hash function
uniformly distributes states to hash values, the workload is uniformly distributed to all processes.

In the original paper by Evett et al. [127], message passing in hash-based work distribution
was performed synchronously: a sender process waits until the message is received by the receiver
process. Romein et al. [367] introduced asynchronous message passing: a sender process does not
wait until the message is received. On the receiver side, each process periodically checks if there are
incoming messages and receives them if they exist. Kishimoto, Fukunaga, and Botea [253] proposed
hash-distributed A* (HDA*), a distributed parallel A* algorithm using hash-based work distribution
with asynchronous message passing.

6.2 Parallel Beam Search for DIDP

Using the ideas presented in Section 6.1, we propose two parallel beam search algorithms: shared
beam search (SBS) and hash-distributed beam search (HDBS). Both algorithms use layer synchro-
nization (Section 6.1.3), i.e., all threads expand states in the same layer in parallel. We have the
same motivation as Zhang and Hansen [448] to use layer synchronization: our sequential CABS
solver for DIDP consumes less memory as it keeps only states in the current layer, which results in
the superior performance to other DIDP solvers as we observed in Section 4.3.5. We present the
parallel beam search algorithms after explaining our baseline implementation of sequential beam
search for DIDP.

2https://gee.cs.oswego.edu/dl/concurrency-interest/index.html



CHAPTER 6. PARALLEL BEAM SEARCH 127

6.2.1 Sequential Beam Search Implementation for DIDP

The pseudo-code of beam search for a Dynamic Programming Description Language (DyPDL) model
is presented in Algorithm 10 of Section 4.2. For each state in the open list, beam search generates
successor states (line 13) and inserts them into the set G (line 20) if they are not dominated by a
state in G having an equal or smaller g-value (line 15). If a successor state dominates a state S′

in G having an equal or larger g-value (line 17), S′ is removed from G (line 18). These procedures
work as duplicate detection since a state dominates itself. After expanding all states in G, the best
b states minimizing the f -values are kept (line 24). In practice, we use f(S) = g(S) × h(S), where
× ∈ {+,max} is a binary operator in a monoid such that the cost expression of each transition τ is
represented as costτ (x, S) = wτ (S)× x using a numeric expression wτ (Definition 21 in Section 23).

In DyPDL, a state is defined by state variables (Definitions 1 and 2 in Section 3.1). In our
modeling language, YAML-DyPDL (Section 3.2), an approximate dominance relation (Definition 17
in Section 3.1.2) is defined by resource variables (Definition 28 in Appendix A.1.1). A state S

dominates another state S′, denoted by S′ ⪯a S, if the values of resource variables in S are better
than those of S′. In addition, a dual bound function η, which returns a dual bound (lower bound
for minimization) on the optimal S-solution cost given a state S, can be defined in a YAML-
DyPDL model. Our current DIDP solvers developed in Chapters 4 and 5 use h(S) = η(S) and thus
f(S) = g(s)× η(S) if η is defined. Otherwise, they do not use h, i.e., f(S) = g(S).

In our implementation, a data structure called a search node has a pointer to a state and its g-
h-, and f -values. The set G is represented by a hash table where the key is the values of non-resource
variables and the hash-table entry is a list of search nodes. When a state is generated, a new search
node for the state is created, and compared with existing search nodes in the corresponding hash-
table entry. If the new node dominates an existing node in the list, it replaces the dominated one.
Otherwise, the new node is appended to the list if it is not dominated.

To save memory and computation, selecting the best b states is performed incrementally. Search
nodes are stored in a binary heap in descending order of f -values, and ties are broken by h-values.
When a new search node is generated, if the number of states in G is equal to b, and the f - and
h-values are worse than or equal to those of the top of the binary heap, then the node is discarded.
Otherwise, we perform duplicate detection as described in the previous paragraph. A search node
also has a binary flag indicating if the state is included in G. When state S′ is removed from G due
to dominance, the flag in the search node for S′ is set to be false, and a counter tracking the number
of states in G is decremented. The dominated search node is removed as soon as it becomes the
top of the binary heap. After dominance detection, if G still contains b states, the top of the binary
heap is removed before inserting the new search node into the binary heap.

As described in Section 4.3.1, we compute the dual bound on the optimal cost using Theorem 20
in Section 4.2.7. After expanding all states in the current layer (just after line 22 in Algorithm 10),
we compute γO = minS∈O g

l(S)× η(S). We also maintain γD, the minimum gm(S)× η(S) of search
nodes that are not dominated but discarded due to the beam width up to the current layer. We
assume γO = ∞ if O = ∅ and γD = ∞ if no state is discarded. In the actual implementation, we
incrementally update γO and γD when a search node is generated or removed from the binary heap.
Using these values, the dual bound on the optimal cost is computed as min{γ, γO, γD}, where γ is
a primal bound (upper bound on the optimal cost for minimization).



CHAPTER 6. PARALLEL BEAM SEARCH 128

6.2.2 Shared Beam Search (SBS)

We propose shared beam search (SBS), a parallel beam search algorithm using a shared hash table
for duplicate detection. We use a concurrent hash table, DashMap,3 in Rust. While a lock-free hash
table such as LeapFrog4 could be a choice, we select DashMap since it has better performance than
lock-free hash tables when entries are frequently inserted in parallel.5 DashMap has an architecture
similar to the concurrent hash table used by Zhang and Hansen [448]; it is divided into multiple
segments, and each segment has a lock. Multiple threads can access the same segment if all of them
are reading. If one thread is mutating a segment, other threads cannot read or mutate that segment.
Regarding this property, in our implementation, a thread first checks if a search node is dominated
by another search node in the hash table by just reading it. If not, a thread acquires the lock of
the corresponding segment for writing, checks dominance again since a new node might have been
inserted before acquiring the lock, and then inserts the search node if not dominated.

We show pseudo-code of SBS in Algorithm 19. Similar to sequential beam search, SBS has
a single open list O and maintains the best solution found so far (σ) and a flag indicating the
completeness of search (complete). The set G, which stores successor states, is divided into multiple
subsets G1, ..., GK , corresponding to segments in the concurrent hash table. SBS checks base states
(lines 6–9) before expanding states. Then, SBS expands states in the open list O and generates
successor states (lines 11–22). These for loops (lines 6–9 and lines 11-22) are performed in parallel
by a thread pool using Rayon,6 a multi-threading library in Rust. Assignments of the threads to
loop iterations are managed by Rayon. Lines 8–9 are performed in two phases: take the minimum
of current_cost in parallel using Rayon and then update σ to the corresponding solution.

While the sequential implementation incrementally selects the best b states from the generated
states, parallelizing this step is not straightforward. In our implementation of SBS, for the open list
O, we use an array of search nodes instead of a binary heap. If |O| > b, search nodes are sorted in
parallel by the f - and h-values, and the best b nodes are selected (line 26). For this step, we use the
parallel sorting algorithm provided by Rayon. If the flag of a search node indicates that the state is
not included in G, that search node is removed before sorting. The difference between incremental
selection in sequential beam search and sorting in SBS may change the search behavior as a tie can
be broken differently when multiple states have the same f - and h-values.

Correctness

In Section 4.2.7, we proved several properties for beam search: it terminates in finite time given a
finite and acyclic DyPDL model (Theorem 16); the return value is a feasible solution if it is not
NULL (Theorem 17); it proves optimality given a sufficiently large beam width (Theorem 18); the
dual bound on the optimal path cost can be computed by taking the minimum gl(S) × η(S) over
states in the open list O and discarded states so far (Theorem 20). We prove the same properties for
SBS, confirming that the features of SBS do not affect the assumptions used in the original proofs
for sequential beam search.

3https://crates.io/crates/dashmap
4https://docs.rs/crate/leapfrog
5https://github.com/robclu/conc-map-bench
6https://crates.io/crates/rayon



CHAPTER 6. PARALLEL BEAM SEARCH 129

Algorithm 19 SBS for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩.
An approximate dominance relation ⪯a, a dual bound function η, a primal bound γ, and a beam
width b are given as input.

1: if S0 ̸|= C then return NULL, ⊤
2: σ ← NULL, complete← ⊤ ▷ Initialize the solution.
3: l← 0, σ0(S0)← ⟨⟩, gl(S0)← 1 ▷ Initialize the g-value.
4: O ← {S0} ▷ Initialize the open list
5: while O ̸= ∅ and σ = NULL do
6: for all S ∈ O with ∃B ∈ B, S |= CB in parallel do
7: current_cost← gl(S)×minB∈B:S|=CB

costB(S) ▷ Compute the solution cost.
8: if current_cost < γ then
9: γ ← current_cost, σ ← σl(S) ▷ Update the best solution.

10: Gi ← ∅ for i = 1, ...,K ▷ Initailize the sets of states.
11: for all S ∈ O with ∄B ∈ B, S |= CB in parallel do
12: for all τ ∈ T (S) with S[[τ ]] |= C do
13: gcurrent ← gl(S)× wτ (S) ▷ Compute the g-value.
14: if gcurrent × η(S[[τ ]]) < γ then
15: determine segment j for S[[τ ]].
16: lock Gj
17: if ̸ ∃S′ ∈ Gj such that S[[τ ]] ⪯a S′ and gcurrent ≥ gl+1(S′) then
18: if ∃S′ ∈ Gj such that S′ ⪯a S[[τ ]] and gcurrent ≤ gl+1(S′) then
19: Gj ← Gj \ {S′} ▷ Remove a dominated state.
20: σl+1(S[[τ ]])← ⟨σl(S); τ⟩, gl+1(S[[τ ]])← gcurrent ▷ Update the g-value.
21: Gj ← Gj ∪ {S[[τ ]]} ▷ Insert the successor state.
22: unlock Gj
23: l← l + 1 ▷ Proceed to the next layer.
24: O ← {S ∈

⋃K
i=1Gi | gl(S)× η(S) < γ} ▷ Prune states by the bound.

25: if |O| > b then
26: O ← the best b states in O, complete← ⊥ ▷ Keep the best b states.
27: if complete and O ̸= ∅ then
28: complete← ⊥ ▷ A better solution may exist.
29: return σ, complete ▷ Return the solution.

Theorem 31. Given a finite, acyclic, and monoidal DyPDL model (Definitions 14 and 15 in Sec-
tion 3.1.1 and Definition 24 in Section 4.1.3), SBS terminates in finite time.

Proof. First, we clarify that a deadlock never happens: if a thread locks Gj in line 16, the thread
unlocks it after a finite number of time steps in line 22. Therefore, as in the original proof for
Theorem 16, it is sufficient to show that a successor state S[[τ ]] is inserted into G only if a new path
to S[[τ ]] is found. The differences from sequential beam search are that G is divided into G1, ..., GK ,
the for loop in lines 11–22 is executed in parallel, and Gj is updated in parallel. Suppose that
multiple paths to S[[τ ]] are found by different threads in the current layer. Since S[[τ ]] is assigned
to a segment Gj according to the values of the non-resource variables, all threads access Gj . Only
one thread can access Gj at a time due to the lock, so the threads check and potentially update Gj
in some sequential order. Therefore, in the current layer, S[[τ ]] is inserted into Gj with the same
g-value only once. If S[[τ ]] was included in Gj in a previous layer, as explained in the original proof,
we have found a longer path to S[[τ ]] in the current layer.



CHAPTER 6. PARALLEL BEAM SEARCH 130

Theorem 32. In line 10 of Algorithm 19, if σ ̸= NULL, then σ is a solution for the model with
γ = costσ(S

0).

Proof. For a successor state S[[τ ]], σl+1(S[[τ ]]) and gl+1(S[[τ ]]) are updated one by one in line 20 since
Gj is locked. For the parent state S, σl(S) and gl(S) are not modified by any thread in the current
iteration. By mathematical induction in the same way as the proof of Theorem 12, after line 20,
S[[τ ]] is reachable from the target state with σl(S), and the path weight of σl(S) is equal to gl(S).
In lines 8–9, as explained above, SBS first identifies the best solution cost γ and then updates σ to
the corresponding σl(S). When SBS finishes the loop and reaches line 10, by the same argument in
the proof of Theorem 12, we can prove that σ is a solution.

Theorem 33. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q∪{−∞,∞} and A is isotone (Definitions 21
and 22 in Section 4.1.2). Given a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈
A, if an optimal solution exists for the minimization problem with the model, and SBS returns
σ ̸= NULL and complete = ⊤, then σ is an optimal solution. If SBS returns σ = NULL and
complete = ⊤, then there does not exist a solution whose cost is less than γ.

Proof. Similar to the proof of Theorem 18, since complete = ⊤, we assume that we never reach
lines 26 and 28. It is sufficient to prove the claim of Lemma 4 in Section 4.1.4: when a solution with
a cost γ̂ exists and γ > γ̂, the open list contains a state Ŝ such that there exists an Ŝ-solution σ̂ with
cost⟨σl(Ŝ);σ̂⟩(S

0) ≤ γ̂. While the set of states in the next layer, G, is divided into G1, ..., GK in SBS,
all generated and not dominated states are inserted into one of them, and the open list is updated
to {

⋃K
i=1Gi | gl(S) × η(S) ≤ γ} in line 24. Thus, it does not make a difference in the argument of

the proof of Theorem 18.

Theorem 34. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, let Dm be the set of states discarded
in layer m ≤ l − 1 by line 26 of Algorithm 19. If an optimal solution for the minimization problem
with the model exists and has the cost γ∗, just after line 24,

min

{
γ,min
S∈O

gl(S)× η(S), min
m=1,...,l−1

min
S∈Dm

gm(S)× η(S)
}
≤ γ∗

where we assume minS∈O g
l(S)× η(S) =∞ if O = ∅ and minS∈Dm

gm(S)× η(S) =∞ if Dm = ∅.

Proof. For sequential beam search, the proof of Theorem 20 uses mathematical induction to show
that if γ∗ < γ, a state Ŝ is included in O ∪

⋃l−1
m=1Dm, and there exists an Ŝ-solution σ̂ such that

⟨σm(Ŝ); σ̂⟩ is an optimal solution where m ∈ {1, ..., l}. Similar to the proof of Theorem 33, this
property is not changed in SBS since generated successor states are inserted into one of G1, ..., GK ,
and the open list is updated to the union of them in line 24.

In practice, to compute the dual bound, we need to compute γO = minS∈O g
l(S) × η(S). In

sequential beam search, we incrementally update γO when a search node is generated or removed
from the binary heap. Since SBS generates search nodes in parallel and stores them in the array
in an arbitrary order decided by Rayon, computing γO requires additional effort. However, if the
array has more than b states, and the dual bound function is used as a heuristic function, we can
obtain γO for free since we sort the array to select the best b states according to the f -values, where



CHAPTER 6. PARALLEL BEAM SEARCH 131

f(S) = gl(S) × h(S) = gl(S) × η(S). Accordingly, to compute γD, the minimum gl(S) × η(S) of
discarded states in the current layer can be obtained by taking the b + 1-th f -value of the sorted
array in each layer. Therefore, SBS computes the dual bound on the optimal cost only when it
reaches line 26.

Comparison to Previous Work

Conceptually, SBS is similar to the parallel beam search algorithm proposed by Frohner et al. [148]:
both of them use layer synchronization, a concurrent hash table for duplicate detection, and parallel
sorting. In terms of implementation, there are several differences. While Frohner et al. used Julia
and its Threads module, we use Rust and the Rayon library for SBS. Moreover, while Frohner
et al. implemented a concurrent hash table by themselves, we use DashMap, a library in Rust.
For parallel sorting, Frohner et al. implemented a parallel counting sort algorithm, but we use the
algorithm provided by Rayon in SBS. This design choice in SBS is because the parallel counting
sort algorithm by Frohner et al. is tied to their randomization mechanism, which is not used in
SBS. In their parallel counting sort algorithm, each thread counts the numbers of states in buckets
associated with different ranges of f -values. They use floating point numbers for f -values, obtained
by adding Gaussian noise to g(S) + h(S), and each bucket is associated with range [i, i+1) where i
is an integer. In SBS, we do not use such a randomization mechanism and do not assume f -values
to be continuous numbers.

6.2.3 Hash-Distributed Beam Search (HDBS)

As an alternative approach to SBS, we propose hash-distributed beam search (HDBS), which uses
hash-based work distribution with layer synchronization. We propose two variants, HDBS1 and
HBDS2, with different layer synchronization mechanisms. Before explaining these variants, we
describe their common features. As explained in Section 6.1.5, in hash-based work distribution,
each process has its local open list and a hash table for duplicate detection. Using asynchronous
message passing, a process sends a generated state to its owner process that is uniquely determined
by the state’s hash value. In each layer, one process keeps its best b/k states, where k is the number
of processes. This mechanism does not guarantee that the best b states in that layer are kept; if a
process owns only states having large f -values, and another process owns only states having small
f -values, HDBS may keep states that would have been discarded by sequential beam search and
discard states that would have been kept.

HDBS1

HDBS1 takes a straightforward approach to layer synchronization: all processes are synchronized af-
ter expanding all states in a layer by broadcast. We present pseudo-code for HDBS1 in Algorithm 20.
Each process i has an open list O, a set of successor states G, and a first-in-first-out message queue
Qi. While all variables are specific to process i, we use a subscript i for the message queue Qi and
data sent to process 1: solution_foundi, emptyi, completei, γi, and γ

i
. When a successor state is

generated, its owner is computed based on the hash value and it is sent to its owner (lines 20 and
21). As explained in Section 6.1.5, owner(S) = (hash(S) mod k) + 1 where hash(S) is the hash
value of state S. The hash value is based on the values of non-resource variables so that dominance



CHAPTER 6. PARALLEL BEAM SEARCH 132

Algorithm 20 HDBS1 for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a, a dual bound function η, a primal bound γ,
and a beam width b are given as input.

1: if S0 ̸|= C then return NULL, ∞, ⊤
2: Qi ← [] for i = 1, ..., k ▷ Initialize the message queues.
3: for i = 1, ..., k in parallel do
4: l← 0, σ ← NULL, O ← ∅, completei ← ⊤, γi = γ, γD ←∞ ▷ Data for process i.
5: if i = owner(S0) then σl(S0)← ⟨⟩, gl(S0)← 1, O ← {S0} ▷ Initalize the open list.
6: loop
7: G← ∅, c← 0, sent_all← ⊥ ▷ Data in the current layer.
8: while c < k do
9: recv_state(Qi, l, c, G, γi) ▷ Execute Algorithm 21.

10: if ∃S ∈ O then
11: O ← O \ {S} ▷ Remove a state.
12: if ∃B ∈ B, S |= CB then
13: current_cost← gl(S)×minB∈B:S|=CB

costB(S) ▷ Compute the solution cost.
14: if current_cost < γi then
15: γi ← current_cost, σ ← σl(S) ▷ Update the best solution.
16: else
17: for all τ ∈ T (S) with S[[τ ]] |= C do
18: gcurrent ← gl(S)× wτ (S) ▷ Compute the g-value.
19: if gcurrent × η(S[[τ ]]) < γi then
20: j ← owner(S[[τ ]]) ▷ Determine the owner.
21: send(Qj , (S[[τ ]], ⟨σl(S); τ⟩, gcurrent, η(S[[τ ]]))) ▷ Send a message.
22: else if not sent_all then
23: sent_all← ⊤, send(Qj ,NULL) for j = 1, ..., k ▷ Notify that all states were sent.
24: l← l + 1 ▷ Proceed to the next layer.
25: O ← {S ∈ G | gl(S)× η(S) < γi}, γi ← min

{
γi, γ

D,minS∈O g
l(S)× η(S)

}
26: solution_foundi ← σ ̸= NULL, emptyi ← O = ∅
27: send solution_foundi, emptyi, completei, γi, and γ

i
to process 1

28: if i = 1 then aggregate(γ) ▷ Execute Algorithm 22.

29: receive α, is_optimal, and γ from process 1 ▷ Receive a broadcasted message.
30: if i = α then
31: return σ, is_optimal, γ ▷ Return the solution.
32: else if α ̸= NULL then
33: break ▷ Terminate.
34: if |O| > b/k then
35: O ← the best b/k states in O, completei ← ⊥ ▷ Keep the best b/k states.

36: γD ← min

{
γD, min

S∈discarded states from O
gl(S)× η(S)

}
▷ Check discarded states.

can be detected in each process. The send operation is asynchronous, i.e., the process does not wait
until the message is received. Each process checks its message queue in line 9 using Algorithm 21.
This operation is also asynchronous; if the message queue is empty, the process does not wait for
messages. If the message queue contains a message, the process receives a state and inserts it into
G while pruning dominated states (line 6–12 of Algorithm 21). In Algorithm 20, for simplicity, a
process sends a state to its owner by message passing even if the process itself is the owner. In
practice, such a state is immediately processed without using message passing.

After expanding all states in the open list, each process notifies other processes that it has sent



CHAPTER 6. PARALLEL BEAM SEARCH 133

Algorithm 21 Receive states from a message queue. A message queue Qi, the index of the current
layer l, a counter c, a set of states G, and a primal bound γi are given as input.

1: while Qi has an incoming message do
2: message← recv(Q) ▷ Receive a message.
3: if message = NULL then
4: c← c+ 1 ▷ Received all states from a process.
5: else
6: (S, σcurent, gcurrent, η(S))← message ▷ Received a state.
7: if gcurrent × η(S) < γi then
8: if ̸ ∃S′ ∈ G such that S ⪯a S′ and gcurrent ≥ gl+1(S′) then
9: if ∃S′ ∈ G such that S′ ⪯a S and gcurrent ≤ gl+1(S′) then

10: G← G \ {S′} ▷ Remove a dominated state.
11: σl+1(S)← σcurrent, gl+1(S)← gcurrent ▷ Update the g-value.
12: G← G ∪ {S} ▷ Insert the state.

Algorithm 22 Aggregate information of the current layer. The current dual bound on the optimal
cost γ is given as input.

1: receive solution_foundj , emptyj , completej , γj , and γ
j

from j = 1, ..., k

2: solution_found←
∨k
j=1 solution_foundj , empty←

∧k
j=1 emptyj , complete←

∧k
j=1 completej

3: is_optimal← empty ∧ complete ▷ Check the optimality.
4: γ ← max

{
γ,minj=1,...,k γj

}
▷ Update the dual bound on the optimal cost.

5: α← NULL ▷ Index of the process that should return the result.
6: if solution_found then
7: let α ∈ argminj=1,...,k γj ▷ Process α found the best solution.
8: is_optimal← is_optimal ∨ γ = γα ▷ Check the optimality using the bounds.
9: else if empty then

10: α← 1 ▷ There are no states to search, so let process 1 return NULL.
11: broadcast α, is_optimal, γ

all states by sending a special message NULL (line 23). Here, the flag ‘sent_all’ is used to send the
special message only once for each layer. Using c, each process maintains the number of processes
from which it has received all successor states, which is incremented in line 4 of Algorithm 21. When
c becomes the number of processes, k, a process has received all states in the next layer from all
processes. Since the process also sends the special message to itself (again, such a message is imme-
diately processed without message passing in practice), it also means that the process has expanded
all states in the current layer. Therefore, the process exits the while loop when c = k (line 8). Then,
the process sends the status of the current layer to process 1 in line 27: solution_foundi is a flag in-
dicating if a solution is found (line 26); emptyi is a flag indicating if the new layer is empty (line 26);
completei is a flag indicating if any state has been discarded due to the beam width so far (lines 4
and 35); γi is a primal bound, which is initialized with an input value γ (line 4) and updated when
a better solution is found (line 15); γ

i
is a candidate for the dual bound on the optimal cost, which

we explain later. Process 1 aggregates the flags over all processes and produces solution_found,
empty, and complete using Algorithm 22. If solution_found = ⊤, then process α, which has found
the best solution, is identified in line 7. If empty = complete = ⊤, all states that are not pruned
by dominance or bounds have been searched, so the solution is optimal, and the flag is_optimal
becomes ⊤ (line 3). Process 1 broadcasts α and is_optimal, process α returns the solution with the



CHAPTER 6. PARALLEL BEAM SEARCH 134

optimality flag (line 31 in Algorithm 20), and other processes exit the loop and terminate (line 33).
If solution_found = ⊥ and empty = ⊤ is true, HDBS1 terminates without a solution. Algo-

rithm 22 assigns 1 to α (line 10) and lets process 1 return NULL. If is_optimal = ⊤ in addition,
no state has been discarded, indicating that there is no solution whose cost is better than the given
primal bound. If solution_found = empty = ⊥, then α remains NULL, and all processes search the
next layer. Since broadcast is used, all processes are synchronized in line 29, which achieves layer
synchronization.

While the computation of the dual bound using Theorem 20 in Section 4.2.7 is implicit in
sequential beam search (Algorithm 10) and SBS (Algorithm 19), we explicitly describe it in Al-
gorithm 20 since it requires message passing. Similar to the sequential beam search implementa-
tion described in Section 6.2.1, process i maintains γD, the minimum gm(S) × η(S) of discarded
states due to the beam width (line 35). After process i expands all states in the current layer, in
line 25, O becomes the set of states in the new layer. Following Theorem 20, process i computes
γ
i
= min

{
γi, γ

D,minS∈O g
l(S)× η(S)

}
using only local information. This value is not guaran-

teed to be the dual bound on the optimal cost since other processes may have states with smaller
gl(S)×η(S). Therefore, γ

i
is sent to process 1, which takes the minimum of all processes, updates γ

if a better bound is found (line 4 in Algorithm 22), and broadcasts it. If γ = γα, an optimal solution
is found, so is_optimal becomes ⊤ (line 8).

Correctness We prove the theoretical properties of HDBS1. We make the following assumption
for message passing.

Assumption 1. A message arrives in finite time. When multiple messages are sent from one process
to another, those messages arrive in the order of sending.

We prove that HDBS1 searches layer by layer as in sequential beam search.

Definition 27. In Algorithm 20, a process is in layer m when l = m. A message sent is in layer m
if the process is in layer m when it sends the message.

Lemma 5. In Algorithm 20, when all processes are synchronized in line 29, they are in the same
layer.

Proof. When a process reaches line 29 for the first time, l = 1 since l is initialized to be 0 in line 4
and is incremented by 1 in line 24. When a process reaches line 29 with l = 1, it waits until all other
processes reach there with l = 1. Thus, the lemma holds for m = 1. Suppose that the lemma holds
up to l = m. When all processes are synchronized in line 29 with l = m, if α ̸= NULL, all processes
terminate. Otherwise, all processes proceed to the next iteration of the loop. When each process
reaches line 29 for the next time, due to line 24, l = m+1, and thus the lemma holds for l = m+1.
Therefore, by mathematical induction, the lemma holds.

Lemma 6. In Algorithm 20, the following two conditions hold:

• During the while loop in lines 8–23, a process receives only messages in layer l.

• When a process exits the while loop, it has received all messages sent to it in layer l.



CHAPTER 6. PARALLEL BEAM SEARCH 135

Proof. When process i enters the while loop with l = m, we have the following assumption: no
message in layer l ≤ m − 1 was sent to i, or all messages in layer l ≤ m − 1 sent to process i were
received. By the assumption, all messages received during the while loop are in layer l ≥ m. To
send a message in layer l > m, a process needs to pass line 29 with l = m + 1, which requires all
processes to reach line 29 with l = m+1 by Lemma 5. However, since process i cannot reach line 29
with l = m+1 before exiting the while loop, process i in layer m cannot receive a message in a layer
l > m. Therefore, the first condition holds for l = m.

When process i exits the while loop, i received k special messages, NULL, in layer m sent by
line 23. To reach line 23, sent_all must be ⊥, which becomes ⊤ after reaching line 23. Thus, in
layer m, each process sent a special message only once, so process i must have received one special
message from each process. When a process reaches line 23, O = ∅, so it has sent all successor
states. By Assumption 1, process i needs to receive all successor states before receiving the special
messages. Therefore, the second condition holds for l = m.

We proved that our assumption, no message in layer l ≤ m − 1 was sent to i, or all messages
in layer l ≤ m − 1 sent to process i were received, implies the lemma for l = m. This assumption
is valid for m = 0 since l ≤ −1 never holds, and thus no message is sent with l ≤ −1. When the
lemma holds for l = m, the assumption holds for l = m+1 since process i has received all messages
in layer m. By mathematical induction, the lemma holds for l ≥ 0.

Theorem 35. In Algorithm 20, in lines 26–36 and lines 7–23, each state S ∈ O satisfies |σl(S)| = l.

Proof. We never reach lines 26–36 in Algorithm 20 with l = 0 since l is initialized to be 0 in line 2
and is incremented by 1 in line 24. In lines 7–23, if l = 0, then O = {S0} with |σ0(S0)| = 0 for
process owner(S0) and O = ∅ for other processes. Since no state is added to O in lines 7–23, the
theorem holds for l = 0. Suppose that the theorem holds up to l = m. In lines 7–23 with l = m,
by Lemma 6, a process only receives messages in layer m. Each of the states received in line 21
is a successor state S[[τ ]] of S ∈ O generated in the sender process, where |⟨σm(S); τ⟩| = m + 1

since |σm(S)| = m by the assumption. When receiving this state, |σcurrent| = m + 1 in line 6 of
Algorithm 21, and thus |σm+1(S[[τ ]])| = m + 1 when it is inserted into G in line 12. After exiting
the while loop, l becomes m + 1, and O is updated to a subset of G in lines 25 of Algorithm 20.
Each state S ∈ O satisfies |σm+1(S)| = m+1. If all processes terminate in lines 30–33, we are done.
Otherwise, all processes go to the next iteration of the loop. Since line 35 only removes states from
O, the condition continues to hold until line 24, where l is incremented. Thus, the theorem holds
for l = m+ 1. By mathematical induction, the theorem holds for l ≥ 0.

Now, we prove that HDBS1 terminates in finite time.

Lemma 7. Given a finitely defined DyPDL model (Definition 11 in Section 3.1.1), in Algorithm 20,
one iteration of the while loop in lines 8–23 finishes in finite time.

Proof. By lines 34–35, when a process enters the while loop, O contains at most b/k states, so the
process expands a finite number of states during the while loop. Since the model is finite, the number
of transitions is finite, and each process generates a finite number of successor states and sends a
finite number of messages in layer l. By Lemma 6, each process in layer l receives only messages in
layer l, which are finitely many, so it executes finitely many loop iterations in Algorithm 21, and G
always contains at most a finite number of states. Since G contains at most a finite number of states,



CHAPTER 6. PARALLEL BEAM SEARCH 136

dominance detection in Algorithm 21 is done in finite time. Since the model is finitely defined, each
operation with the model, e.g., checking base cases and generating successor states, is done in finite
time. Sending a message in line 21 or 23 does not wait until the message is received. Thus, each
iteration of the while loop is done in finite time.

Lemma 8. Algorithm 20 satisfies the following three conditions:

• When the first process enters the while loop in lines 8–23 with l = m, all processes will enter
the while loop with l = m in finite time.

• Once a process enters the while loop with l = m, it will expand all states in O, generate all
successor states, send all messages in layer m, and receive all messages in layer m in finite
time.

• When the last process enters the while loop with l = m, all processes are in the while loop with
l = m and will exit in finite time.

Proof. Assume that the first condition holds up to m = n. For m = 0, this assumption is valid since
once HDBS1 starts, all processes enter the while loop with l = 0 in finite time. When a process i
enters the while loop with l = n, since all processes have not received the special message NULL in
layer n from process i, by Lemma 6, all processes have not exited the while loop with l = n. Thus,
when the last process enters the while loop with l = n, all processes are in the while loop with l = n.

When a process enters the while loop with l = n, O contains at most b/k states due to lines 34–35.
Since each iteration of the while loop removes one state from O and takes finite time by Lemma 7, O
will become empty in finite time. After expanding all states, O becomes empty, and the process sends
special messages in layer n to all processes in line 23. Therefore, each process sends all messages in
layer n in finite time after entering the while loop with l = n.

If a process j has already entered the while loop when i enters, j may have already sent some
messages in layer n to process i, but they have not been received yet by Lemma 6. By Assumption 1,
all messages arrive in finite time. By Lemma 7, each loop iteration is done in finite time, so process
i reaches line 9 in finite time after a message arrives in the message queue Qi. Therefore, process i
receives all messages in layer n, including the special messages sent in line 23, from all k processes
in finite time and exits the while loop. Thus, with the previous paragraphs, the second and third
conditions are proved.

Once process i exits the while loop, it reaches line 29 in finite time and waits for other processes.
Since i exited the while loop, all processes have at least entered the while loop with l = n, and all
processes have already exited or will exit the while loop in finite time. Thus, all processes will be
synchronized again in line 29 with l = n + 1 in finite time. Due to the broadcast in line 29, α is
the same in all processes in line 30. If α ̸= NULL, all processes terminate. Otherwise, all processes
proceed to the next iteration of the loop and will enter the while loop with l = n+ 1 in finite time.
Therefore, the first condition holds for m = n+1. By mathematical induction, the lemma holds for
m ≥ 0.

Theorem 36. Given a finite, acyclic, and monoidal DyPDL model, HDBS1 terminates in finite
time.



CHAPTER 6. PARALLEL BEAM SEARCH 137

Proof. By Lemma 8, after all processes are synchronized in line 29 with l = m, all processes will
terminate or be synchronized in line 29 with l = m + 1 in finite time. By Theorem 35, after
line 25, O contains only states reached with l transitions. Since the model is finite and acyclic, all
paths in the state transition graph have a finite number of transitions. Therefore, when l becomes
a sufficiently large finite number, O becomes empty in all processes. When O is empty in all
processes, by Algorithm 22, α becomes 1, and all processes terminate in lines 30–33. Therefore,
HDBS1 terminates in finite time.

We also confirm that HDBS1 is an anytime algorithm.

Theorem 37. In line 15 of Algorithm 20, if σ ̸= NULL, then σ is a solution for the model with
γi = costσ(S

0).

Proof. The proof is the same as the proof of Theorems 12 and 17 since parallelization does not change
how σl and gl are maintained: for each successor state S[[τ ]] of S, we set σl+1(S[[τ ]]) = ⟨σl(S); τ⟩ and
gl+1(S[[τ ]]) = gl(S)×wτ (S). These values are sent with the successor state by message passing.

In Algorithm 20, we explicitly maintain γ, the dual bound on the optimal solution cost, and
claim is_optimal = ⊤ if γ coincides with the primal bound. Thus, before proving the optimality
of HDBS1, we confirm that γ is indeed a valid dual bound. First, we prove a lemma similar to
Lemma 4.

Lemma 9. In Algorithm 20, suppose that a solution exists for the DyPDL model, and let γ̂ be its
cost. Just after line 29, there exists a process i where at least one of the following conditions is
satisfied:

• completei = ⊥.

• γi ≤ γ̂.

• O contains a state Ŝ such that an Ŝ-solution σ̂ exists, and ⟨σl(Ŝ); σ̂⟩ is a solution for the model
with cost⟨σl(Ŝ);σ̂⟩(S

0) ≤ γ̂.

Proof. Assume that there exists process i which satisfies the third condition when it reaches line 7
with l = m. This assumption is valid for l = 0 since S0 ∈ O in process owner(S0). Consider that
all processes have exited the while loop with l = m, updated l to m + 1, and passed line 29. If
completei = ⊥ in some process, the lemma continues to hold in subsequent iterations. Otherwise,
no state has been discarded in line 35 so far in all processes. In layer m, by Lemma 8, all processes
expanded all states in O and sent all generated successor states before exiting the while loop in
line 8–23. In addition, all processes received all successor states before exiting the while loop. Thus,
no successor state is lost. If Ŝ does not have successor states, it must be a base state, and process
i found a solution whose cost is γi ≤ γ̂, which is the second condition. Otherwise, since received
successor states are handled in the same way as sequential beam search, by a similar argument to
the proof of Theorem 18, there exists a process i that satisfies the third condition in the lemma.
Therefore, the lemma holds for l = m + 1. If all processes terminate in lines 30–33, or completei
becomes ⊥ after lines 34-36, we are done. Otherwise, no process has found a solution, O is not
changed after line 29, and all processes proceed to line 7. Thus, there exists process i which satisfies
the third condition of the lemma when it reaches line 7 with l = m + 1, and the lemma holds for
l = m+ 2. By mathematical induction, the lemma holds for l ≥ 1.



CHAPTER 6. PARALLEL BEAM SEARCH 138

Theorem 38. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, if an optimal solution for the
minimization problem with the model exists and has the cost γ∗, just after line 29 of Algorithm 20,
γ ≤ γ∗.

Proof. If γ ≤ γ∗, it trivially holds since γ ≤ γ
i
≤ γi ≤ γ. We assume that γ∗ < γ. Suppose that

no state has been discarded in line 35 so far in all processes, and so γD = ∞ and completei = ⊤
in all processes. This assumption is valid when each process reaches line 25 for the first time. By
Lemma 9, in some process i, γi ≤ γ∗, or O contains a state Ŝ such that an Ŝ-solution σ̂ exists, and
⟨σl(Ŝ); σ̂⟩ is a solution for the model with the cost γ∗. In the first case, the theorem continues to
hold in subsequent iterations. In the second case, by a similar argument to the proof of Theorem 20,

γ
i
= min

{
γi,∞,min

S∈O
gl(S)× η(S)

}
≤ gl(Ŝ)× η(Ŝ) ≤ γ∗.

If process i with Ŝ ∈ O does not discard Ŝ in line 35, we can repeat the same argument in the next
iteration. Otherwise, after line 36, γ

D
≤ gl(Ŝ)× η(Ŝ). Therefore, in the next iteration,

γ
i
= min

{
γi, γD,min

S∈O
gl(S)× η(S)

}
≤ γ

D
≤ γ∗.

The above inequality will hold in subsequent iterations since γ
D

never increases.

Theorem 39. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, if an optimal solution exists for
the minimization problem with the model, and HDBS1 returns σ ̸= NULL and is_optimal = ⊤, then
σ is an optimal solution. If HDBS1 returns σ = NULL and is_optimal = ⊤, then there does not
exist a solution whose cost is less than γ.

Proof. We focus on cases where is_optimal = ⊤ is returned by HDBS1. In such cases, α ̸= NULL
and is_optimal = ⊤ just after line 29 of Algorithm 20. After executing Algorithm 22, at least one
of the following conditions held: empty = complete = ⊤ or γ = γα.

Suppose that empty = complete = ⊤. Then, completei = ⊤ and O = ∅ in all processes. If there
exists a solution whose cost is γ̂ < γ, by Lemma 9, γi ≤ γ̂ in some process i. Since γi ≤ γ̂ < γ,
process i should have reached line 15, and solution_foundi = ⊤. Due to line 7 of Algorithm 22,
γα ≤ γi ≤ γ̂ < γ, and process α should have updated σ to a solution with the cost γα by Theorem 37.
Therefore, when empty = complete = ⊤, if a solution whose cost is less than γ exists, HDBS1 returns
a solution σ ̸= NULL whose cost is at most γ̂ < γ. If an optimal solution exists, HDBS1 returns an
optimal solution. By contraposition, when empty = complete = ⊤, if HDBS1 returns σ = NULL,
there is no solution whose cost is less than γ.

Suppose that γ = γα. If there exists an optimal solution with the cost γ∗ and σ ̸= NULL, by
Theorem 39, γα = γ ≤ γ∗. Since σ ̸= NULL, process α should have reached line 15, and σ is a
solution with cost γα = γ∗. If σ = NULL, process α has never reached line 15, and γα = γ. In all
processes, due to line 25,

min
S∈O

gl(S)× η(S) ≥ γ = γα = γ.

Therefore, any solution extending σl(S) for S ∈ O has a higher cost than γ. In all processes, due to



CHAPTER 6. PARALLEL BEAM SEARCH 139

line 36, for each discarded state S in layer m ∈ {1, ..., l− 1}, gm(S)× η(S) ≥ γ = γ. Therefore, any
solution extending σm(S) for a discarded state S in layer m has a higher cost than γ. Thus, there
is no solution with a smaller cost than γ.

HDBS2

In HDBS1, each process needs to wait until all processes receive all states in the next layer. However,
once a process i has expanded all states in layer m and received all generated states in layer m+ 1

from other processes, no more states will be added in layer m+1 for process i. Process i can expand
states in layer m+ 1 as long as it does not send generated states in layer m+ 2 to another process
j that is still waiting for states in layer m+ 1. For such process j, process i stores generated states
in a buffer. Process j notifies process i once it proceeds to layer m+1, and then process i sends the
buffered states to process j. We call this approach HDBS2.

We show pseudo-code for HDBS2 in Algorithm 23. Similar to Algorithm 20, while all variables
are specific to each process, we use subscript i for message queues Qi and Ri. In addition, we
differentiate γi, the primal bound in each process, from γ, the primal bound given as input.

After expanding all states in the current layer and receiving all states in the next layer, process i
notifies each process j that it has proceeded to the next layer by asynchronously sending a message
via message queue Rj (line 43). As a receiver, process i maintains J , the set of processes from
which i received the notification via Ri. Process i can immediately send states to process j if j ∈ J
(line 29). Otherwise, it stores states in a buffer Pj (line 31) and sends all of them once receiving the
notification from j (line 15). For the first layer, HDBS2 sends dummy notifications (line 6).

The notification also works as termination detection as it carries the information used by Algo-
rithm 22 in HDBS1: a flag indicating if a solution is found (σ ̸= NULL), a flag indicating if the open
list is empty (O = ∅), a flag indicating if any state is discarded so far (complete), the cost of the best
solution in the previous layer found by that process (γl−1), and a candidate for the dual bound on
the optimal cost (γl). Unlike HDBS1, where process 1 aggregates the information and broadcasts
the result, in HDBS2, each process aggregates the information and decides whether to terminate
using Algorithm 24. In this algorithm, α is the index of the process that should return the solution,
and γl−1 is the cost of the best solution in the previous layer. If solution_foundj = ⊤, process j
has found a solution whose cost is γl−1

j in the previous layer. If γl−1
j is better, γl−1 is updated, and

α becomes j. If γl−1
j = γl−1, α is updated if j < α (line 6). In this way, α eventually becomes the

same value in all processes regardless of the orders in which messages arrive, and all processes agree
on which process returns the solution. Similarly to Algorithm 22, when no solution is found and
empty = ⊤ holds after receiving all messages, process 1 returns NULL (line 34 in Algorithm 23).
The primal bound γi is updated whenever a better solution is found (line 12) while the dual bound
γ is updated only after receiving the information from all processes (line 13).

In line 32, before sending the special message NULL, process i makes sure that it has received
the messages via the message queue Ri from all processes (|J | = k). Therefore, at this point, process
i does not have any message in buffers P1, ..., Pk.

Correctness We verify the completeness and optimality of HDBS2, proving similar theoretical
claims to those for HDBS1. Our proofs are similar to the original ones, but there are some changes
regarding the different layer synchronization mechanisms. First, we prove a lemma for HDBS2 that



CHAPTER 6. PARALLEL BEAM SEARCH 140

Algorithm 23 HDBS2 for minimization with a monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with
⟨A,×,1⟩. An approximate dominance relation ⪯a, a dual bound function η, a primal bound γ,
and a beam width b are given as input.

1: if S0 ̸|= C then return NULL, ⊤
2: Qi, Ri ← [] for i = 1, ..., k ▷ Initialize the message queues.
3: for i = 1, ..., k in parallel do
4: l← 0, σ ← NULL, O ← ∅, complete← ⊤, γi ← γ, γ ← η(S0), γD ←∞ ▷ Data for i.
5: if owner(S0) = i then σl(S0)← ⟨⟩, gl(S0)← 1, O ← {S0} ▷ Initialize the open list.
6: send(Rj , (i,⊥, O = ∅, complete, γi, γ)) for i = 1, ..., k ▷ Send the initial information.
7: loop
8: G← ∅, c← 0, sent_all← ⊥, Pj ← [] for j = 1, ..., k ▷ Data in the current layer.
9: J ← ∅, α← NULL, empty← ⊥, γl−1, γl, γl ←∞ ▷ Initialize the information.

10: while c < k do
11: recv_info(Ri, J, α, empty, complete, γl−1, γl) ▷ Execute Algorithm 24.
12: γi = min

{
γi, γ

l−1
}

▷ Update the primal bound.
13: if |J | = k then γ = max

{
γ, γl

}
▷ Update the dual bound.

14: for all j ∈ J such that Pj contains messages do
15: send(Qj , message) for message in Pj , Pj ← [] ▷ Send buffered messages.
16: recv_state(Qi, l, G, c, γi) ▷ Execute Algorithm 21.
17: if ∃S ∈ O then
18: O ← O \ {S} ▷ Remove a state.
19: if ∃B ∈ B, S |= CB then
20: current_cost← gl(S)×minB∈B:S|=CB

costB(S) ▷ Compute the solution cost.
21: if current_cost < γi then
22: γi, γ

l ← current_cost, σ ← σl(S) ▷ Update the best solution.
23: else
24: for all τ ∈ T (S) with S[[τ ]] |= C do
25: gcurrent ← gl(S)× wτ (S) ▷ Compute the g-value.
26: if gcurrent × η(S[[τ ]]) < γi then
27: j ← owner(S[[τ ]]) ▷ Determine the owner.
28: if j ∈ J then
29: send(Qj , (S[[τ ]], ⟨σ(S); τ⟩, gcurrent, η(S[[τ ]]))) ▷ Send a message.
30: else
31: push(Pj , (S[[τ ]], ⟨σ(S); τ⟩, gcurrent, η(S[[τ ]]))) ▷ Buffer a message.
32: else if not sent_all and |J | = k then
33: sent_all← ⊤, send(Qj ,NULL) for j = 1, ..., k ▷ Notify that all states were sent.
34: if i = α ∨ (empty ∧ i = 1) then
35: return σ, (empty ∧ complete) ∨ γ = γi, γ ▷ Return the solution.
36: else if α ̸= NULL ∨ empty then
37: break ▷ Terminate.
38: l← l + 1 ▷ Proceed to the next layer.
39: O ← {S ∈ G | gl(S)× η(S) < γi}, γl ← min

{
γi, γ

D,minS∈O g
l(S)× η(S)

}
40: if |O| > b/k then
41: O ← the best b/k states in O, complete← ⊥ ▷ Keep the best b/k states.

42: γD ← min

{
γD, min

S∈discarded states from O
gl(S)× η(S)

}
▷ Check discarded states.

43: send(Rj , (i, σ ̸= NULL, O = ∅, complete, γl−1, γl)) for i = 1, ..., k

is equivalent to Lemma 6 for HDBS1.



CHAPTER 6. PARALLEL BEAM SEARCH 141

Algorithm 24 Receive the information of a layer. A message queue Ri, a set of process indices J ,
a process index α, flags empty and complete, the best solution cost found in the previous layer γl−1,
and a candidate for the dual bound on the optimal cost γl are given as input.

1: while Ri has an incoming message and |J | < k do
2: (j, solution_foundj , emptyj , completej , γj , γj)← recv(Ri)
3: J ← J ∪ {j}
4: emptyi ← emptyi ∧ emptyj , complete← complete ∧ completej
5: if solution_foundj and (γj < γl−1 ∨ (γj = γl−1 ∧ j < α)) then
6: γl−1 ← γj , α← j

7: γl = min
{
γl, γ

j

}

Lemma 10. In Algorithm 23, the following two conditions hold:

• During the while loop in lines 10–33, a process receives only messages in layer l.

• When a process exits the while loop, it has received all messages sent to it in layer l.

Proof. Following the proof of Lemma 6, when a process enters the while loop with l = m, we assume
that no message in layer l ≤ m − 1 was sent to a process, or all messages in layer l ≤ m − 1 sent
to that process were received. We prove that this assumption implies the lemma for l = m. By the
assumption, all messages received by a process during the while loop are in layer l ≥ m. If process
i sends a message in layer l > m to any other process j via the message queue Rj , i needs to exit
the while loop with l = m and reach line 38 to increase l. Suppose that i is the first process that
exits the while loop with l = m. Then, process i only receives messages in layer m since all other
processes have not reached layer l > m. To exit the while loop, process i needs to receive k special
messages in layer m. Since one process sends only one special message in layer m to each process,
process i needs to receive one special message from each process. When process j sends the special
messages in line 33, it has already received k messages via the message queue Rj since |J | = k is
required by line 32. Each of k processes sends only one message in layer m to process j via Rj ,
so process j has received all k messages in layer m via Rj . Since line 1 in Algorithm 24 requires
|J | < k, process j will not receive more messages via Rj after sending the special messages and
before exiting the while loop. Therefore, when process i exits the while loop with l = m, in terms
of the message queues R1, .., Rk, all processes have received all k messages in layer m and will not
receive messages in layer l > m before exiting the while loop.

If process i sends a message in layer l > m to process j via the message queue Qj , process i
needs to exit the while loop with l = m, enter the while loop with l = m + 1, and reach line 15 or
29, which requires j ∈ J . To achieve j ∈ J , after entering the while loop with l = m + 1, process
i needs to receive a message from process j via the message queue Ri. By the previous paragraph,
all messages in layer m via Ri were already received, so this message from process j should be in
layer l > m. Therefore, process j should have exited the while loop with l = m + 1 when process
i reaches line 15 or 29, and process j in layer m does not receive messages in layer m + 1 via Qj .
Thus, the first condition holds for l = m. The rest of the proof, i.e., proving the second condition
for l = m and the first condition for l = m+ 1, is the same as the last two paragraphs in the proof
of Lemma 6.

Since Theorem 35, which states that HDBS1 searches layer by layer, only depends on Lemma 6,



CHAPTER 6. PARALLEL BEAM SEARCH 142

we can derive a corresponding theorem for HDBS2 from Lemma 10.

Theorem 40. In Algorithm 23, in lines 40–43 and lines 8–33, each state S ∈ O satisfies |σl(S)| = l.

As in Theorem 36 for HDBS1, we prove that HDBS2 terminates in finite time given a finite and
acyclic DyPDL model. We prove lemmas corresponding to Lemmas 7 and 8 first.

Lemma 11. Given a finitely defined DyPDL model, in Algorithm 23, one iteration of the while loop
in lines 10–33 finishes in finite time.

Proof. While HDBS2 has additional operations in each iteration compared to HDBS1, except for
line 11, which calls Algorithm 24, it is clear that all operations finish in finite time. In Algorithm 24,
by Lemma 10, HDBS2 receives only messages in layer l. Since each process sends one message in
layer l, Algorithm 24 receives at most k messages in each iteration. Therefore, line 11 in Algorithm 23
finishes in finite time.

Lemma 12. Algorithm 23 satisfies the following three conditions:

• When the first process enters the while loop in lines 10–33 with l = m, all processes will enter
the while loop with l = m in finite time.

• Once a process enters the while loop with l = m, it will expand all states in O, generate all
successor states, send all messages in layer m, and receive all messages in layer m in finite
time.

• When the last process enters the while loop with l = m, all processes are in the while loop with
l = m and will exit in finite time.

Proof. Following the proof of Lemma 8, we assume that the first condition of the lemma holds up to
m = n and prove the second and third conditions for l = n and the first condition for l = n+1. The
assumption is valid for n = 0 as in the original proof. It is also straightforward that when the last
process enters the while loop with l = n, all processes are in the while loop with l = n since they
have not received the special message NULL in layer n from the last process. If n = 0, all processes
have reached line 6 and sent messages in layer 0 to all processes via message queues R1, ..., Rk before
entering the while loop. If n > 0, all processes have reached line 43 and sent messages in layer n
to all processes via message queues R1, ..., Rk before entering the while loop. In either case, all k
messages in layer n have been sent to each process via R1, ..., Rk. With a similar argument to the
original proof, using Lemmas 10 and 11, we can prove that each process i receives the k messages
in layer n via Ri in finite time after entering the while loop with l = n. Once receiving these k
messages, |J | becomes k, and process i will send all messages in layer n in finite time in lines 15, 29,
and 33. Each process will also receive these messages in finite time and exit the while loop, so the
second and third conditions hold.

When a process i exits the while loop with l = n, by Lemma 10, it has received all messages in
layer n. As discussed in the previous paragraph, all processes have already exited or will exit the
while loop with l = n in finite time. Process i received one message in layer n from each process via
Ri, and each process sent the same messages in layer n to all processes via R1, ..., Rk. Therefore,
in all processes, Algorithm 24 processes the same set of messages in layer n during the while loop
with l = n. By lines 5–6 in Algorithm 24, regardless of the order in which the messages arrived, α is



CHAPTER 6. PARALLEL BEAM SEARCH 143

uniquely determined. If α ̸= NULL in process i, it holds in all processes. In such a case, all processes
terminate, and process α returns a solution. Otherwise, α = NULL, and all processes proceed to
the next iteration. When the first process enters the while loop with l = n + 1, all processes will
exit or have already exited the while loop with l = n and will enter the while loop with l = n+ 1 in
finite time, so the first condition of the lemma holds for l = n+ 1.

Similarly to Theorem 36 for HDBS1, by using Theorem 40 and Lemma 12, we can prove that
HDBS2 terminates given a finite and acyclic DyPDL model.

Theorem 41. Given a finite, acyclic, and monoidal DyPDL model, HDBS2 terminates in finite
time.

We also omit the proof for the following theorem as it is exactly the same as that of Theorem 37.

Theorem 42. In line 22 of Algorithm 23, if σ ̸= NULL, then σ is a solution for the model with
γl = costσ(S

0).

Finally, we show theorems corresponding to Theorems 38 and 39.

Lemma 13. In Algorithm 23, suppose that a solution exists for the DyPDL model, and let γ̂ be its
cost. In each layer, there exists a process i where at least one of the following conditions is satisfied
when it exits the while loop in 10–33:

• complete = ⊥.

• γi ≤ γ̂.

• G contains a state Ŝ such that an Ŝ-solution σ̂ exists, and ⟨σl+1(Ŝ); σ̂⟩ is a solution for the
model with cost⟨σl+1(Ŝ);σ̂⟩(S

0) ≤ γ̂.

Proof. The proof is straightforward from the proof of Lemma 9 while we use G instead of O and
l+ 1 instead of l in the third condition. We use Lemma 12 instead of Lemma 8 used in the original
proof.

Theorem 43. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, if an optimal solution for the
minimization problem with the model exists and has the cost γ∗, in lines 4–43, γ ≤ γ∗.

Proof. The theorem holds just after line 4 since γ = η(S0) ≤ γ∗. Only line 13 updates γ. In line 39,
O is updated to {S ∈ G | gl(S) × η(S) ≤ γi}, and γl is computed. By a similar argument to the
proof of Theorem 38, by Lemma 13, there exists a process j such that γl ≤ γ∗ holds. Let this γl

be γl
j
. When process i reaches line 13 with |J | = k, it has received all messages in layer l via the

message queue Ri using Algorithm 24. Therefore, γl in process i becomes at most γl
j
, and updating

γ to γl does not break the condition.

Theorem 44. Let ⟨A,×,1⟩ be a monoid where A ⊆ Q ∪ {−∞,∞} and A is isotone. Given a
monoidal DyPDL model ⟨V, S0, T ,B, C⟩ with ⟨A,×,1⟩ and γ ∈ A, if an optimal solution exists for
the minimization problem with the model, and HDBS2 returns σ ̸= NULL and is_optimal = ⊤, then
σ is an optimal solution. If HDBS2 returns σ = NULL and is_optimal = ⊤, then there does not
exist a solution whose cost is less than γ.



CHAPTER 6. PARALLEL BEAM SEARCH 144

Proof. Following the proof of Theorem 39 for HDBS1, we consider is_optimal = ⊤ is returned and
focus on two cases: empty = complete = ⊤ or γ = γi in line 35.

Suppose that empty = complete = ⊤. Then, when each process reached line 43 in the current
layer, O = ∅. Let the current layer be m. No state was inserted into G in the while loop in layer m,
and G = ∅. If there exists a solution whose cost is γ̂ < γ, by Lemma 13, γj ≤ γ̂ in some process j.
Since γj was initialized to be γ > γ̂, it was updated by line 12 or line 22. If γj was updated by line 12
in layer n ≤ m, by Algorithm 24, some process β found a solution with the cost γn−1 = γj ≤ γ̂ in
layer n− 1. In this case, in layer n, solution_foundβ ̸= NULL in Algorithm 24 and α ̸= NULL, so
all processes would not proceed to layer n + 1. Thus, n = m, and the solution was found in the
previous layer m− 1. If γj was updated by line 22, process j found a solution with the cost γj . In
layer m, since O = ∅ when process j entered the while loop, γj was not updated by line 22. Thus,
the solution was found in the previous layer m − 1. By Algorithm 24, process i = α has found the
best solution in layer m − 1, so γm−1

α ≤ γm−1
j = γj . Process i returns a solution with the cost

γm−1
i ≤ γj ≤ γ̂ < γ. Therefore, when empty = complete = ⊤, if a solution whose cost is less than γ

exists, HDBS2 returns a solution whose cost is at most γ̂ < γ. If an optimal solution exists, HDBS2
returns an optimal solution. By contraposition, when empty = complete = ⊤, if HDBS2 returns
σ = NULL, there is no solution whose cost is less than γ.

Suppose that γ = γi. If there exists an optimal solution with the cost γ∗ and σ ̸= NULL, by
a similar argument to the previous paragraph, process i has reached line 22 in the previous layer
m− 1, and γm−1 = γm−1

i = γm−1
α in Algorithm 24. At that time, γi was updated to the cost of σ.

If process i reached line 22 also in layer m, σ was updated to a new solution, and γi was updated
to the cost of the solution. Therefore, when process i returns the solution σ, γi is the cost of the
solution. Since γi ≥ γ∗ and γi = γ ≤ γ∗ by Theorem 43, γi = γ∗, and σ is an optimal solution. If
γ = γi and σ = NULL, by a similar argument to the proof of Theorem 39, there is no solution with
a smaller cost than γ.

Comparison to Previous Work

HDBS is based on hash-based work distribution with asynchronous message passing, which was
proposed by previous work [127, 367]. While hash-based work distribution has been used for BFS
algorithms including A* [127, 253, 254, 235, 272] and iterative deepening A* (IDA*) [258] with a
transposition table [353], it has not previously been used to parallelize beam search. Barnat, Brim,
and Chaloupka [18] used an idea similar to hash-based work distribution with layer synchronization
to parallelize BrFS for model checking. A high-level overview of their algorithm is the same as
hash-based work distribution: each process expands a state from its open list and sends a successor
state to its owner process using message passing. However, the owner process is determined by
a mechanism specific to model checking instead of a hash function. Their layer synchronization
mechanism is similar to HDBS1: all processes are synchronized after expanding all states in the
current layer.



CHAPTER 6. PARALLEL BEAM SEARCH 145

6.3 Experimental Evaluation

We implement multi-thread DIDP solvers using CABS with SBS (CASBS), HDBS1 (CAHDBS1),
and HDBS2 (CAHDBS2) on top of didp-rs 0.4.07 with Rust 1.65.0. For SBS, we use DashMap 5.4.0
and Rayon 1.7.0. For the number of segments in the concurrent hash table, we follow the default of
DashMap 5.4.0: 4 times the number of threads, i.e., K = 4k. We use Fx Hash from rust-hash 1.1.08

for the hash function of HDBS. While HDBS can be implemented for a distributed environment, we
focus on a shared memory environment and use threads instead of processes. We use Crossbeam
Channel 0.5.89 for message passing and bus 2.4.010 for broadcast in HDBS1.

We experimentally compare the multi-thread DIDP solvers with the single-thread CABS solver,
a commercial multi-thread MIP solver (Gurobi 10.0.1), and a commercial CP solver (IBM ILOG CP
Optimizer 22.1.0). To evaluate the performance of the solvers, we use three metrics in Section 4.3.3:
the coverage, the optimality gap, and the primal integral. Coverage is the number of optimally solved
instances. The optimality gap is the relative difference between primal and dual bounds obtained
by a solver. The primal integral is the integral of the primal gap, the relative difference between the
primal bound and the best-known solution cost, over time. In addition, we evaluate the speedup
achieved by the multi-thread solvers.

All experiments are run on a machine with 2 Intel Xeon Gold 6148 CPUs (40 cores in total).
While we used 8 GB memory limit for each run in the previous chapters (Chapters 4 and 5), since
multi-thread solvers can use multiple CPU cores, we give all available memory, 188 GB, to each
run as a memory limit. Due to the limitation of the available computational resources, we use a
shorter time limit, 5 minutes instead of 30 minutes for both single-thread and multi-thread solvers.
In addition, we focus on representative problem classes from those used in the previous chapters.
First, we select problem classes where we have a strong motivation to use CABS. In the experiment
comparing the sequential solvers (Section 4.3.5), there are four problem classes where CABS has the
highest coverage, lowest optimality gap, and lowest primal integral, outperforming MIP and CP:
the traveling salesperson problem with time windows (TSPTW), the simple assembly line balancing
problem (SALBP-1), the minimization of open stacks problem (MOSP), and graph-clear. We use
these four problem classes in our evaluation. In addition, we use problems where using MIP or CP
is better than DIDP: the capacitated vehicle routing problem (CVRP) and bin packing. For CVRP,
we focus on A, B, E, F, and P instance sets from CVRPLIB [425] since no sequential solver could
optimally solve any instance in other instance sets even with the 30-minute time limit, and thus we
are unable to measure the speedup.

Since this chapter is based on the work [269] done before the previous chapters, there are other
differences in the experimental settings. As mentioned above, our implementation is based on didp-
rs 0.4.0, which is older than the version (0.7.0) used in Chapters 4 and 5. While the multi-thread
DIDP solvers are also implemented in didp-rs 0.7.0, we have not re-run experiments with it due to
the limitation of computational resources. In terms of algorithms, the only difference between the
two versions is the computation of the dual bound on the optimal cost in beam search. As explained
in Section 6.2.1, beam search computes the dual bound on the optimal cost by maintaining γO, the
minimum gl(S)×η(S) of the states in the open list, and γD, the minimum gm(S)×η(S) of discarded

7https://github.com/domain-independent-dp/didp-rs/releases/tag/parallel-aaai24
8https://crates.io/crates/rustc-hash/1.1.0
9https://crates.io/crates/crossbeam-channel/0.5.8

10https://crates.io/crates/bus/2.4.0



CHAPTER 6. PARALLEL BEAM SEARCH 146

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure 6.1: The ratio of the coverage against time and the ratio of instances against the optimality
gap averaged over all problem classes using 1 thread and 32 threads.

states in layers m = 1, ..., l−1. As explained in Sections 6.2.2 and 6.2.3, SBS and HDBS also perform
similar computation. In our implementation of sequential beam search and SBS based on didp-rs
0.4.0, we only maintain γO and compute the dual bound on the optimal cost only when no state
is discarded, i.e., γD = ∞. Since we do not obtain the dual bound once beam search discards a
state, it potentially results in a worse optimality gap than the newer version. Similarly, in HDBS1,
Algorithm 22 computes γ only when complete = ⊤. In HDBS2, Algorithm 24 computes γl only
when complete = ⊤. Note that in Algorithm 23, when |O| > b/k, HDBS2 sends the flag complete
after line 41, where complete becomes ⊥. However, γl was computed before discarding states in
line 39, so HDBS2 could actually compute the dual bound on the optimal cost using γl if that is
the first time to reach line 41. As a result, in terms of the dual bound on the optimal cost, HDBS2
can be worse than sequential beam search and HDBS1. We emphasize that these implementations
in the older version give the same disadvantages to sequential beam search, SBS, and HDBS1 and a
larger disadvantage to HDBS2. The performance of the parallel DIDP solvers can be improved by
using the newer version.

Another difference is that we use DIDPPy (Section 3.2.3) as the modeling interface for the
DyPDL models instead of didp-yaml used in the previous chapters. For SALBP-1, bin packing,
MOSP, and graph-clear, we use DyPDL models equivalent to those implemented in YAML-DyPDL.
For TSPTW and CVRP, there is a minor difference. In the DyPDL models for TSPTW and CVRP,
a solution corresponds to a tour visiting all customers starting from and returning to the depot. In
the DyPDL models presented in Section 3.3, returning to the depot is represented by a base case
whose cost is the distance between the current location and the depot. In the DyPDL models used
in this chapter, returning to the depot is represented by a transition, which updates the current
location to the depot and increases the cost by the distance. In the base case, whose cost is zero, all
customers must be visited, and the current location must be the depot. For these DyPDL models,
while we use DIDPPy, we present equivalent YAML-DyPDL domain files in Appendix A.2. For MIP
and CP, we use the same model as Section 4.3, and the versions of Gurobi and CP Optimizer are also
the same. We use Python 3.11.2 for all solvers with jemalloc 5.2.1 [126] as the memory allocator.

6.3.1 Results

First, we evaluate the multi-thread solvers using the metrics used for the sequential solvers in the
previous chapters. Figure 6.1 shows the coverage and the optimality gap achieved with 1 thread
and 32 threads. In the left-hand side, the x-axis is time in seconds, and the y-axis is the ratio of



CHAPTER 6. PARALLEL BEAM SEARCH 147

Table 6.1: Coverage of multi-thread solvers with 32 threads and sequential solvers. The coverage
of a multi-thread DIDP solver is in bold if it is higher than MIP, CP, and sequential CABS, and
the higher of MIP and CP is in bold if there is no better DIDP solver. The highest coverage is
underlined.

MIP CP CABS CASBS CAHDBS1 CAHDBS2

#threads 1 32 1 32 1 32 32 32

TSPTW (340) 192 239 42 27 235 260 262 262
CVRP (90) 13 29 0 0 5 6 8 8
Bin Packing (1615) 1122 1192 1189 1251 1110 1077 1239 1239
SALBP-1 (2100) 1354 1397 1563 1581 1714 1818 1824 1824
MOSP (570) 216 238 421 397 507 526 531 531
Graph-Clear (135) 6 16 4 3 92 103 113 113

Table 6.2: Average optimality gap of multi-thread solvers with 32 threads and sequential solvers. The
optimality gap of a multi-thread DIDP solver is in bold if it is lower than MIP, CP, and sequential
CABS, and the lower of MIP and CP is in bold if there is no better DIDP solver. The lowest
optimality gap is underlined.

MIP CP CABS CASBS CAHDBS1 CAHDBS2

#threads 1 32 1 32 1 32 32 32

TSPTW (340) 0.3174 0.2128 0.7292 0.7572 0.1607 0.1239 0.1170 0.1174
CVRP (90) 0.8556 0.6778 0.9743 0.9736 0.5985 0.5936 0.5747 0.5763
Bin Packing (1615) 0.0491 0.0357 0.0082 0.0044 0.0060 0.0086 0.0054 0.0055
SALBP-1 (2100) 0.3130 0.2654 0.0166 0.0148 0.0077 0.0062 0.0051 0.0051
MOSP (570) 0.3768 0.3202 0.2135 0.2473 0.0777 0.0591 0.0488 0.0515
Graph-Clear (135) 0.6454 0.5880 0.4702 0.4655 0.1675 0.1251 0.0786 0.0885

coverage over the number of instances achieved with x seconds. In the right-hand side, the x-axis is
the optimality gap, and the y-axis is the ratio of instance where the optimality gap is less than or
equal to x. The y-axis is averaged over all problem classes. We present a plot presenting the result
for each problem class in Appendix E, and Tables 6.1 and 6.2 summarize the results by presenting
the coverage and the average optimality gap achieved by the time limit in each problem class.

The multi-thread DIDP solvers outperform multi-thread MIP and CP on average and in TSPTW,
SALBP-1, MOSP, and graph-clear, problem classes where sequential CABS is better than sequential
MIP and CP. MIP with 32 threads has the highest coverage in CVRP, and CP with 32 threads has
the highest coverage and the lowest optimality gap in bin packing. In summary, parallelization does
not change the ranking of the different solution paradigms on any problem class.

The multi-thread DIDP solvers show the performance improvement over the sequential CABS.
In particular, CAHDBS1 and CAHDBS2 are better than CASBS. CAHDBS1 is slightly better than
CAHDBS2 in the optimality gap on average and in all problem classes except for SALBP-1. To
investigate this difference between CAHDBS1 and CAHBDS2, we evaluate the average primal gap
in Table 6.3. In all problem classes, CAHDBS1 and CAHDBS2 achieve almost the same primal
gap, i.e., they almost always find the same quality solution within the time limit. Therefore, the
difference in the optimality gap comes from the difference in the dual bound, which is probably
caused by our unideal implementations of HDBS1 and HDBS2 based on didp-rs 0.4.0 as described
above.

CASBS solves fewer instances than sequential CABS in bin packing; while CASBS solves 69



CHAPTER 6. PARALLEL BEAM SEARCH 148

Table 6.3: Average primal gap of multi-thread solvers with 32 threads and sequential solvers. The
primal gap of a multi-thread DIDP solver is in bold if it is lower than MIP, CP, and sequential
CABS, and the lower of MIP and CP is in bold if there is no better DIDP solver. The lowest primal
gap is underlined.

MIP CP CABS CASBS CAHDBS1 CAHDBS2

#threads 1 32 1 32 1 32 32 32

TSPTW (340) 0.3131 0.2101 0.0282 0.0246 0.0061 0.0028 0.0017 0.0017
CVRP (90) 0.2319 0.1142 0.0847 0.0506 0.0546 0.0552 0.0402 0.0401
Bin Packing (1615) 0.0470 0.0338 0.0057 0.0016 0.0028 0.0058 0.0025 0.0026
SALBP-1 (2100) 0.3123 0.2637 0.0110 0.0092 0.0021 0.0012 0.0003 0.0003
MOSP (570) 0.0595 0.0499 0.0082 0.0053 0.0003 0.0004 0.0000 0.0000
Graph-Clear (135) 0.2135 0.1873 0.0478 0.0403 0.0001 0.0001 0.0000 0.0000

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure 6.2: The ratio of instances against the primal integral averaged over all problem classes using
1 thread and 32 threads.

instances not solved by CABS, it fails to solve 102 instances solved by sequential CABS. We also
observe that among bin packing instances solved by sequential CABS, CAHDBS1 fails to solve 47
instances, and CAHDBS2 fails to solve 52 instances. In other problem classes, the multi-thread
DIDP solvers solve all instances solved by sequential CABS.

CP with 32 threads has lower coverage than sequential CP in TSPTW, MOSP, and graph-clear
and higher optimality gap in TSPTW and MOSP, resulting in the inferior performance on average
in Figure 6.1. However, as shown in Table 6.3, CP with 32 threads achieves better solution quality
in these problem classes.

Figure 6.2 shows the ratio of instances against the primal integral averaged over all problem
classes. We present a plot presenting the result for each problem class in Appendix E and show the
average primal integral in each problem class in Table 6.4. CAHDBS2 and CAHDBS2 are better
than CASBS on average and in all problem classes, and the difference between CAHDBS1 and
CAHDBS2 is small. Again, while parallelization improves the performance of DIDP in most cases,
the ranking is not changed.

6.3.2 Speedup

We now evaluate the speedup achieved by the multi-thread DIDP solvers. Focusing on TSPTW,
SALBP-1, MOSP, and graph-clear, where we have a strong motivation to use CABS, we present
the geometric mean speedup using 8, 16, and 32 threads in Figure 6.3. We take the geometric
mean over instances optimally solved by the sequential solver in 10 to 300 seconds. As discussed



CHAPTER 6. PARALLEL BEAM SEARCH 149

Table 6.4: Average primal integral of multi-thread solvers with 32 threads and sequential solvers. The
primal integral of a multi-thread DIDP solver is in bold if it is lower than MIP, CP, and sequential
CABS, and the lower of MIP and CP is in bold if there is no better DIDP solver. The lowest primal
integral is underlined.

MIP CP CABS CASBS CAHDBS1 CAHDBS2

#threads 1 32 1 32 1 32 32 32

TSPTW (340) 108.26 77.45 9.56 17.10 2.88 1.48 1.08 1.07
CVRP (90) 121.80 81.47 28.26 19.66 18.63 18.49 13.76 13.80
Bin Packing (1615) 19.26 15.45 4.55 1.33 4.91 3.61 1.77 1.78
SALBP-1 (2100) 99.29 87.96 16.53 15.96 1.96 0.95 0.46 0.47
MOSP (570) 26.37 22.89 4.19 4.85 0.21 0.32 0.09 0.10
Graph-Clear (135) 80.45 72.62 22.60 22.04 0.32 0.22 0.08 0.08

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(a) TSPTW

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(b) SALBP-1

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(c) MOSP

8 16 32
#threads

4

8

12

16

20

24

28

32

Sp
ee

du
p

Per expansion
CASBS
CAHDBS1
CAHDBS2

(d) Graph-Clear

Figure 6.3: Geometric mean speedup in instances optimally solved by sequential CABS in 10-300
seconds. ‘Per expansion’ shows the speedup of search time per expansion.



CHAPTER 6. PARALLEL BEAM SEARCH 150

Table 6.5: Speedup of multi-thread solvers with 32 threads against a sequential solver. ‘s.’ shows
the speedup of the search time, ‘s./e.’ shows the speedup of the search time per expansion, and ‘e.r.’
shows the expansion ratio. All values are geometric mean over instances solved in 10-300 seconds
by a sequential solver. The largest speedup among the DIDP solvers is in bold.

MIP CP CASBS CAHDBS1 CAHDBS2

s. s. s. s./e.. e.r. s. s./e. e.r. s. s./e. e.r.

TSPTW (340) 4.2 0.1 9.5 9.2 0.968 13.0 13.5 1.036 13.3 13.8 1.035
CVRP (90) 5.3 - 5.2 5.2 0.983 9.3 9.3 0.999 9.3 9.3 1.000
Bin Packing (1615) 6.4 9.2 3.9 4.2 1.089 36.4 10.5 0.288 39.6 11.0 0.278
SALBP-1 (2100) 2.0 1.4 6.3 6.0 0.952 16.7 14.1 0.845 18.8 14.5 0.773
MOSP (570) 3.1 0.3 5.4 5.3 0.987 8.9 9.0 1.012 9.0 9.1 1.015
Graph-Clear (135) 2.0 3.2 6.0 6.0 0.999 10.4 10.5 1.011 10.3 10.5 1.011

in Section 6.3.1, the multi-thread DIDP solvers fail to solve some instances in bin packing. When
taking the geometric mean, such instances are excluded. All multi-thread DIDP solvers continue to
speed up as we increase the number of threads up to 32 threads. Comparing the different solvers,
similar to other metrics presented above, CAHDBS2 and CAHDBS1 achieve better speedup than
CASBS. CAHDBS2 is better than CAHDBS1 in TSPTW and SALBP-1, and the difference in MOSP
and graph-clear is small. In Appendix E, we present the coverage over time and the distributions
of the optimality gap and the primal integral in TSPTW, SALBP-1, MOSP, and graph-clear for
CAHDBS2 with 8, 16, and 32 threads.

Table 6.5 presents the geometric mean speedup (‘s.’) using 32 threads in all problem classes.
The multi-thread DIDP solvers achieve a higher speedup than MIP and CP in all problem classes.
CP even shows slowdown in TSPTW and MOSP while the solution quality is improved in these
problem classes as shown in Table 6.3. Note that a larger speedup does not necessarily mean better
performance when the baseline sequential solvers are different. Indeed, using 32 threads does not
change the ranking of the paradigms, as observed in Section 6.3.1. It does however show that the
solver is making better use of the computational resources made available.

CAHDBS1 and CAHDBS2 achieve a super linear speedup in bin packing, which is likely to come
from the different search behavior caused by parallelization. To normalize such effect, in Table 6.5,
we evaluate the mean speedup per expansion (‘s./e.’), the speedup of the average time taken to
expand one state, and the mean expansion ratio (‘e.r.’), the number of expansions by a multi-
thread CABS divided by that of sequential CABS. We also present the speedup per expansion in
Figure 6.3. We do not observe a super linear speedup per expansion. CASBS expands slightly fewer
states than sequential CABS in all problem classes except for bin packing, where it expands more.
For CAHDBS1 and CAHDBS2, in TSPTW, CVRP, MOSP, and graph-clear, the actual speedup
is almost the same as the speedup per expansion. In bin packing and SALBP-1, CAHDBS1 and
CAHDBS2 expand significantly fewer states than sequential CABS, which makes the actual speedup
larger than the speedup per expansion. Such phenomenon is known as speedup anomaly in parallel
branch-and-bound [284], and a similar behavior is observed in parallel BFS [272, 271]. Comparing
CAHDBS1 and CAHDBS2 in bin packing and SALBP-1, CAHBDS2 expands fewer states than
CAHDBS1, resulting in a better speedup. In terms of the speedup per expansion, CAHDBS2 is still
slightly better than CADHBS1.

For a detailed evaluation of speedup, we compare the time taken by sequential and 32-thread



CHAPTER 6. PARALLEL BEAM SEARCH 151

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(a) CASBS

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(b) CAHDBS1

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(c) CAHDBS2

Figure 6.4: Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of TSPTW. Unsolved instances are shown at ‘n.a.’.

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(a) CASBS

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(b) CAHDBS1

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(c) CAHDBS2

Figure 6.5: Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of CVRP. Unsolved instances are shown at ‘n.a.’.

CABS to solve each instance in Figures 6.4–6.9. In these plots, each point represents one problem
instance, the x-axis is the time taken by sequential CABS, and the y-axis is the time taken by
a multi-thread solver. In all problem classes, the speedup tends to be larger as sequential CABS
takes more time to solve. While CABS sometimes solves an instance in fewer than 0.01 seconds,
the multi-thread solvers take at least 0.01 seconds to solve a problem instance, possibly due to the
initialization of multiple threads.

For bin packing and SALBP-1, we confirm the tendency observed in Table 6.5. In bin packing, all
multi-thread DIDP solvers show super linear speedups in a number of instances. At the same time,
they show slowdowns in relatively difficult instances where CABS takes at least 1 second to solve.
Moreover, as we mentioned in Section 6.3.1, the multi-thread solvers fail to solve some instances
that are solved by sequential CABS. Therefore, while the multi-thread DIDP solvers, particularly
CAHDBS1 and CAHDBS2, seem to benefit from the change in search behavior on average, they
also suffer from it in some instances. In SALBP-1, CAHDBS1 and CAHDBS2 achieve super linear
speedups in multiple instances, but they do not show slowdowns in difficult instances. For these
observations, we hypothesize that the large diversity in the search time is due to the strong dual
bound function used in the DyPDL models of bin packing and SALBP-1: in some instances of bin



CHAPTER 6. PARALLEL BEAM SEARCH 152

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s)

(S0) = *

1x
1/8x
1/16x
1/32x

(a) CASBS

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s)

(S0) = *

1x
1/8x
1/16x
1/32x

(b) CAHDBS1

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s)

(S0) = *

1x
1/8x
1/16x
1/32x

(c) CAHDBS2

Figure 6.6: Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of bin packing. Unsolved instances are shown at ‘n.a.’. ‘η(S0) = γ∗’ means instances where the dual
bound value of the target state is equal to the optimal solution cost.

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s)

(S0) = *

1x
1/8x
1/16x
1/32x

(a) CASBS

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s)

(S0) = *

1x
1/8x
1/16x
1/32x

(b) CAHDBS1

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s)

(S0) = *

1x
1/8x
1/16x
1/32x

(c) CAHDBS2

Figure 6.7: Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of SALBP-1. Unsolved instances are shown at ‘n.a.’. ‘η(S0) = γ∗’ means instances where the dual
bound value of the target state is equal to the optimal solution cost.

packing and SALBP-1, η(S0), the dual bound value of the target state, is equal to the optimal
solution cost γ∗. In such a case, CABS proves the optimality as soon as it finds an optimal solution
even if it discards some states due to the beam width. Therefore, the set of kept states, which can be
changed by different tie-breaking in SBS or hash-based work distribution in HDBS, affects not only
the solution quality but also the time to optimally solve an instance. To validate this hypothesis, for
bin packing and SALBP-1, we plot instances with η(S0) = γ∗ in a different color. In bin packing, a
super linear speedup or slowdown occurs mostly in instances with η(S0) = γ∗. The distribution of
other instances is less diverse while there are several outliers. The tendency in SALBP-1 is similar.

We also compare the number of expansions in each instance of bin packing and SALBP-1 in
Figures 6.10 and 6.11. The number of expansions by multi-thread CABS is correlated with that
of sequential CABS, but the variance is large. In particular, in bin packing, multi-thread CABS
sometimes expands thousands of times more states than sequential CABS and vice versa. However,
if we focus on instances with η(S0) ̸= γ∗, the number of expansions by multi-thread CABS is close
to that of sequential CABS in most cases. Therefore, we suspect that the speedup anomaly observed



CHAPTER 6. PARALLEL BEAM SEARCH 153

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(a) CASBS

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(b) CAHDBS1

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(c) CAHDBS2

Figure 6.8: Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of MOSP. Unsolved instances are shown at ‘n.a.’.

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(a) CASBS

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(b) CAHDBS1

10 2 100 102 n.a.
Time with 1 thread (s)

10 3

10 2

10 1

100

101

102

n.a.

Ti
m

e 
wi

th
 3

2 
th

re
ad

s (
s) 1x

1/8x
1/16x
1/32x

(c) CAHDBS2

Figure 6.9: Comparison of sequential and 32-thread CABS in time to optimally solve each instance
of graph-clear. Unsolved instances are shown at ‘n.a.’.

102 104 106 108

Expansions with 1 thread

101
102
103
104
105
106
107
108

Ex
pa

ns
io

ns
 w

ith
 3

2 
th

re
ad

s

(S0) = *

0.1x
1x
10x

(a) CASBS

102 104 106 108

Expansions with 1 thread

101
102
103
104
105
106
107
108

Ex
pa

ns
io

ns
 w

ith
 3

2 
th

re
ad

s

(S0) = *

0.1x
1x
10x

(b) CAHDBS1

102 104 106 108

Expansions with 1 thread

101
102
103
104
105
106
107
108

Ex
pa

ns
io

ns
 w

ith
 3

2 
th

re
ad

s

(S0) = *

0.1x
1x
10x

(c) CAHDBS2

Figure 6.10: Comparison of sequential and 32-thread CABS in the number of expanded states to
optimally solve each instance of bin packing. ‘η(S0) = γ∗’ means instances where the dual bound
value of the target state is equal to the optimal solution cost.



CHAPTER 6. PARALLEL BEAM SEARCH 154

102 104 106 108

Expansions with 1 thread

101
102
103
104
105
106
107
108

Ex
pa

ns
io

ns
 w

ith
 3

2 
th

re
ad

s

(S0) = *

0.1x
1x
10x

(a) CASBS

102 104 106 108

Expansions with 1 thread

101
102
103
104
105
106
107
108

Ex
pa

ns
io

ns
 w

ith
 3

2 
th

re
ad

s

(S0) = *

0.1x
1x
10x

(b) CAHDBS1

102 104 106 108

Expansions with 1 thread

101
102
103
104
105
106
107
108

Ex
pa

ns
io

ns
 w

ith
 3

2 
th

re
ad

s

(S0) = *

0.1x
1x
10x

(c) CAHDBS2

Figure 6.11: Comparison of sequential and 32-thread CABS in the number of expanded states to
optimally solve each instance of SALBP-1. ‘η(S0) = γ∗’ means instances where the dual bound
value of the target state is equal to the optimal solution cost.

in bin packing and SALBP-1 is caused by the strong dual bound function, which makes finding an
optimal solution sufficient to prove the optimality without exhaustive search. Indeed, in problems
whose objective is to find a single feasible solution rather than optimization, such as satisfiability,
constraint satisfaction, and satisfycing heuristic search, it is known that small perturbations in search
can result in significantly different performance [179, 180, 82], and parallel algorithms sometimes
suffer from it [272, 271]. While HDBS happens to benefit from it on average, previous work explicitly
exploited this structure by using randomized algorithms in sequential and parallel solvers [181, 178,
83].

6.4 Related Work

To provide a deeper context for the work in this chapter, we review existing parallel state space search
algorithms focusing on graph search algorithms, i.e., algorithms that try to find a path in a state
transition graph while performing duplicate detection. As described in Section 6.1.2, there are mainly
two types of environments for parallel algorithms: shared memory and distributed environments
[331]. We introduce parallel state space algorithms developed for these two environments. While
there are parallel search algorithms that use other environments, e.g., external memory search [111]
and search on graphics processing units (GPUs) [120, 409, 452], we do not discuss such algorithms
as they are not directly related to our approach. We also present parallel search algorithms that try
to keep similar search behavior to their sequential counterparts to reduce search overhead, including
those coming from speedup anomalies. Finally, we discuss future directions given the existing work.
We summarize our parallel beam search algorithms and existing algorithms introduced in this section
in Tables 6.6.

6.4.1 Parallel Search in Shared Memory Environments

We classify parallel state space search algorithms in shared memory environments into three ap-
proaches: parallel search with shared data structures, parallel structured duplicate detection, and
parallel edge evaluation. In the first two approaches, multiple threads expand states in parallel. In



CHAPTER 6. PARALLEL BEAM SEARCH 155

Table 6.6: Parallel state space search algorithms in the literature. ‘DD’ means duplicate detection,
‘shared’ means shared memory, ‘TTP’ means the traveling tournament problem, and ‘alignment’
means sequence alignment problems.

References Paradigm Algorithm Open list DD Other features Applications

SBS (Section 6.2.2) shared beam search array concurrent layer synchronization DIDP
parallel sort

Vidal et al. [436] shared BFS locked locked OpenMP AI planning
El Baz et al. [122] shared BFS locked locked OpenMP AI planning
Zhang & Hansen [448] shared BFHS distributed concurrent layer synchronization AI planning

dynamic distribution
Frohner et al. [148] shared beam search array concurrent layer synchronization TTP

parallel counting sort
Kumar et al. [264] shared A* concurrent separate TSP, VCP
Lock-free parallel A* [55] shared A* lock-free lock-free pathfinding
Stivala et al. [408] shared memoization - lock-free knapsack

MOSP
alignment

Zhou & Hansen [451] shared BFHS PSDD PSDD layer synchronization AI planning
PBNF [55] shared BFS PSDD PSDD pathfinding

puzzles
AI planning

PA*SE [339] shared A* locked locked no re-expansion motion planning
ePA*SE [320, 443, 322] shared A* locked locked no re-expansion motion planning

parallel edge evaluation
MPLP [321] shared A* sequential sequential parallel edge evaluation motion planning
PUHF [271, 395] shared GBFS locked lock-free bounded search overhead AI planning

HDBS (Section 6.2.3) distributed beam search distributed distributed hash-based distribution DIDP
async. message passing
layer synchronization

Evett et al. [127] distributed A* distributed distributed hash-based distribution puzzles
TDS [367] distributed IDA* distributed distributed hash-based distribution puzzles

async. message passing
HDA* [253, 254, 235] distributed A* distributed distributed hash-based distribution puzzles

async. message passing AI planning
abstract hashing alignment

pathfinding
Kumar et al. [264] distributed A* distributed separate dynamic distribution TSP, VCP
QE [110, 303] distributed A* distributed distributed dynamic distribution TSP

local hashing
LG [272] distributed GBFS distributed distributed hash-based distribution AI planning

async. message passing
Bergman et al. [34] distributed DD-B&B centralized separate dynamic distribution optimization

contrast, parallel edge evaluation uses multiple threads to expand a single state.

Parallel Search with Shared Data Structures

Typically, a state space search algorithm uses two data structures: a hash table for duplicate detec-
tion and an open list to store states to expand. One approach for parallelization in a shared memory
environment is to use multiple threads to perform search while sharing the hash table and/or the
open list. In doing so, we need to avoid contention, e.g., multiple threads mutating the same memory
location at the same time. We review three mechanisms to avoid contention: mutually exclusive
locks, concurrent data structures, and lock-free data structures.

Mutually Exclusive Locks A mutually exclusive lock ensures that only one thread executes a
particular region of a program [331]. With mutually exclusive locks, a parallel algorithm can use
the same data structures used in the corresponding sequential algorithm. For example, in OpenMP
[70], only one thread can execute program lines inside the critical directive at the same time, and
other threads need to wait until the thread finishes those lines. Vidal, Lucas, and Hamadi [436] and
El Baz et al. [122] parallelized BFS using the critical directive for the open list and the hash table
for duplicate detection.



CHAPTER 6. PARALLEL BEAM SEARCH 156

Concurrent Data Structures Using a single lock can be too restrictive: it might be safe to
allow different threads to access different regions of the same data structure. A concurrent data
structure is designed so that multiple threads can access it simultaneously without contention. In
Section 6.1.4, we explained concurrent hash tables for duplicate detection, which use multiple locks
for different segments. These concurrent hash tables are used by parallel BFHS [448] and parallel
beam search [148]. As explained in Section 6.1.3, the parallel BFHS algorithm uses distributed open
lists, and the parallel beam search algorithm distributes states in the open list using the Thread
module of Julia. In contrast, Kumar, Ramesh, and Rao [264] parallelized A* using a concurrent
priority queue [323] for the shared open list. In this algorithm, each thread has its local hash table,
and duplicate detection across multiple threads is not performed.

Lock-Free Data Structures Lock-free data structures [206] are concurrent data structures hav-
ing a theoretical guarantee that at least one thread completes its operation in a finite number of
steps, i.e., the whole system will make progress regardless of failures or delays of individual threads.
Typically, a concurrent data structure uses atomic compare-and-swap operations instead of locks.
Burns et al. [55] proposed lock-free parallel A*, which uses a lock-free priority queue [410] for the
open list and a hash table implemented as an array of lock-free linked lists [189] for duplicate de-
tection. Stivala et al. [408] parallelized a dynamic programming (DP) algorithm using a lock-free
hash table [310]. In their algorithm, multiple threads perform recursion with memoization (Sec-
tion 2.2.4) in parallel using a shared lock-free hash table to store states. While there is no open list,
the recursive computation can be viewed as depth-first search. The work distribution is achieved by
randomizing the order in which states are evaluated in each thread.

Parallel Structured Duplicate Detection

Sharing a single data structure by multiple threads requires synchronization, e.g., acquiring a mu-
tually exclusive lock or performing an atomic operation, each time a thread accesses it. To reduce
this overhead, parallel structured duplicate detection (PSDD) [451] uses multiple hash tables and
avoids contention by exploiting problem structure. In PSDD, using problem-specific information, an
abstract state transition graph is constructed, where nodes are abstracted states. An abstract state
corresponds to a set of states, and each state is mapped to one abstracted state by an abstraction
function. The abstract state transition graph has an edge from an abstract state A to B if there
exists an edge from a state in A to a state in B in the original state transition graph. Since a state is
uniquely mapped to an abstract state, for duplicate detection, checking states mapped to the same
abstract state is sufficient. A set of states mapped to the same abstract state is called an nblock,
and one hash table is used for each nblock. Multiple threads can expand states in different nblocks
and perform duplicate detection in parallel if the generated successor states are mapped to different
abstract states. PSDD was originally used to parallelize BFHS [451] with layer synchronization. In
BFHS with PSDD, states in the current layer are partitioned into nblocks, and each thread acquires
an nblock and expands all states in it. To ensure that nblocks expanded by different threads in
parallel do not interfere, the abstract state transition graph is shared with a lock, and the number of
threads using each abstract state is maintained: an abstract state is used if an nblock corresponding
to that abstract state, its parent, or an abstract state having common successors is being expanded.
Otherwise, the nblock is free and can be expanded.



CHAPTER 6. PARALLEL BEAM SEARCH 157

Burns et al. [55] proposed Parallel Best-NBlock-First (PBNF), a parallel BFS algorithm with
PSDD. PBNF uses one priority queue as an open list for each nblock. Similar to BFHS with PSDD,
PBNF maintains the abstract state transition graph to identify free nblocks. A thread acquires a
free nblock that minimizes the best f -value of states in its open list, expands states from the open
list in the best-first order, and releases the nblock when the best f -value in the open list becomes
worse than other free nblocks.

Parallel Edge Evaluation

In the algorithms presented above, multiple threads expand different states in parallel, and each
thread sequentially generates all successor states of the expanded state. An alternative approach is
to use multiple threads to generate successor states of a single state in parallel. Such algorithms are
effective in problems where generating a successor state is expensive. Edge-Based Parallel A* for
Slow Evaluations (ePA*SE) [320] stores pairs of a state and a transition in a shared open list instead
of states. Each thread removes a pair from the open list and applies the transition to the state
to generate a successor state. For duplicate detection, a single hash table is shared by all threads.
ePA*SE is designed for robot motion planning, where evaluating the edge weight is expensive, and
accessing the shared data structures is not a bottleneck [320]. Extensions of ePA*SE were developed
by subsequent work [322, 443]. With a similar motivation to ePA*SE, Massively Parallel Lazy
Planning (MPLP) [321] was developed for motion planning. Since evaluating the edge weight is
expensive in motion planning, MPLP performs sequential BFS based on optimistic estimations of
the edge weights. To eventually obtain the correct edge weights, MPLP evaluates the actual edge
weights in parallel using multiple threads that are not used for the search.

6.4.2 Parallel Search in Distributed Environments

We classify distributed parallel state space search algorithms into two categories, focusing on load
balancing mechanisms: hash-based work distribution and dynamic work distribution. In addition,
we also present a parallelization of decision diagram-based branch-and-bound (Section 2.2.8), which
can be considered a state space search algorithm.

Hash-Based Work Distribution

As described in Section 6.1.5, in hash-based work distribution [127], a state is uniquely assigned to
its owner process based on the hash value. Each process performs search using a local open list and
a local hash table for duplicate detection while sending generated states to their owner processes
by message passing. If hash values are uniformly distributed, hash-based work distribution achieves
good load balancing. Since the same state is always sent to the same process, it also achieves
duplicate detection across different threads.

Hash-based work distribution was originally proposed by Evett et al. [127] to parallelize A*. In
their algorithm, message passing is synchronous, i.e., each process waits until the sent message is
received. In contrast, Romein et al. [367] introduced asynchronous message passing, where a process
periodically receives a message from a message queue, and the sender process does not wait until
the message is received. With this mechanism, Romein et al. [367] proposed transposition-driven
scheduling (TDS), a parallelization of IDA* [258] with a fixed size hash table for duplicate detection



CHAPTER 6. PARALLEL BEAM SEARCH 158

called a transposition table [353]. Kishimoto, Fukunaga, and Botea [253] proposed hash-distributed
A* (HDA*), a parallel A* algorithm using hash-based work distribution and asynchronous message
passing, and demonstrated that asynchronous message passing outperforms synchronous message
passing.

Abstract Zobrist Hashing To achieve good load balancing, Romein et al. [367] and Kishimoto,
Fukunaga, and Botea [253] used Zobrist hashing [453], which tends to uniformly distribute states to
hash values. The drawback of such a hash function is the high frequency of communications: with
k processes, k−1

k generated states are sent to other processes on average. As we use more processes,
the communication overhead increases. To reduce the number of states sent to other processes,
Jinnai and Fukunaga [235] proposed Abstract Zobrist hashing, with which a successor state is more
likely to be assigned the same hash value as its parent. Zobrist hashing takes the XOR of predefined
random numbers for features of a state. For example, in the 15-puzzle, a state is represented by
positions of fifteen tiles numbered from 1 to 15 in a 4 × 4 frame, so a feature can be a pair of a
tile and its position in the frame. One random number is defined for each pair, and Zobrist hashing
takes the XOR of the fifteen random numbers corresponding to the locations of the tiles in a state.
In contrast, Abstract Zobrist hashing takes the XOR of random numbers for abstract features. In
our example of the 15-puzzle, an abstract feature can be a row in which a tile is placed. In this
way, Abstract Zobrist hashing still takes XOR of fifteen random numbers, but horizontally sliding
a tile does not change the hash value. As in this example, if states tend to share abstract features
with their successor states, generated states are more likely to be kept in the same process. With
Abstract Zobrist hashing, communications become less frequent, but the state distribution becomes
less uniform, so a good abstraction should balance this tradeoff. Jinnai and Fukunaga [235] manually
designed abstract features for the sliding-tile puzzles and multiple sequence alignment. For classical
AI planning, they developed methods to automatically construct abstract features given a problem
instance. In their evaluation, HDA* with Abstract Zobrist hashing outperforms HDA* with Zobrist
hashing in all problem classes.

Dynamic Work Distribution

While hash-distributed work distribution with asynchronous message passing is state of the art,
early work investigated dynamic work distribution for distributed parallel A*. In such an algorithm,
similar to hash-based work distribution, each process has an open list and independently performs
search while dynamically distributing states. Unlike hash-based work distribution, dynamic work
distribution requires a separate mechanism to detect duplicate states across different processes.

Kumar, Ramesh, and Rao [264] investigated three load balancing strategies for distributed par-
allel A*: random, ring, and blackboard strategies. In the random strategy, each process sends some
of the generated states to randomly assigned processes. In the ring strategy, assuming a ring net-
work topology where each process has neighbors, processes that can be communicated with with
small latency, each process sends some of the generated states to its neighbors. The blackboard
strategy tries to equalize the lowest f -value in the open list in each process. As discussed later
in Section 6.4.3, if the lowest f -value in a process is higher than other processes, the process may
expand states that are never expanded by sequential A*. The blackboard strategy is designed to
reduce such unnecessary expansions. The blackboard strategy maintains a shared BLACKBOARD,



CHAPTER 6. PARALLEL BEAM SEARCH 159

which stores states having low f -values. If a process has states whose f -values are significantly lower
than the states in the BLACKBOARD, the process sends some of them to the BLACKBOARD. If a
process has states whose f -values are significantly higher than the states in the BLACKBOARD, the
process receives some states from the BLACKBOARD. For duplicate detection, Kumar, Ramesh,
and Rao [264] used one hash table for each process, but duplicate states across different processes
are not removed. In their evaluation using the traveling salesperson problem (TSP) and the vertex
cover problem (VCP), the blackboard strategy outperforms the other two.

Dutt and Mahapatra [110] proposed quality equalizing (QE) balancing strategies for distributed
parallel A* in the hypercube architecture, where each process has neighbors, similar to the ring
topology. With the same motivation as the blackboard strategy, the QE strategy tries to equalize
the lowest f -value in the open list in each process via the exchange of information about the open
lists with neighboring processes. A process requests to receive states with lower f -values from its
neighbors if the lowest f -value in the local open list is significantly higher than that of the neighbors.
The same authors (Mahapatra and Dutt [303], in a different order) combined QE with duplicate
detection of hash-based work distribution. In their algorithm called global hashing (GOHA), a
generated state is first sent to its owner process for duplicate detection, but the state can be forwarded
to another process by QE. To reduce communication overhead, Mahapatra and Dutt also proposed
local hashing (LOHA), where the distributed hash table is partitioned by layers of states: each
process has a hash table storing states in the same layer, and neighbors have hash tables for the
adjacent layers. Therefore, each process sends generated successor states to its neighbor processes.
This strategy is sufficient to detect duplicates in problems such as TSP, where duplicate states are
always in the same layer. In their evaluation using TSP, LOHA outperforms GOHA.

Parallel Decision Diagram-Based Branch-and-Bound

In the operations research (OR) community, Bergman et al. [34] parallelized decision diagram-
based branch-and-bound (DD-B&B) [35] in a distributed memory environment. As we discussed in
Section 4.1, DD-B&B can be viewed as a state space search algorithm. In each iteration, DD-B&B
selects a node from a relaxed decision diagram (DD) and constructs restricted and relaxed DDs
to obtain primal and dual bounds. In the parallelized version, a single master process manages
candidate nodes and dynamically distributes them to worker processes. Worker processes construct
DDs from different nodes independently in parallel and send new DD nodes to the master process.
This procedure can be viewed as a distributed parallel state space search algorithm with dynamic
load balancing and without duplicate detection across different processes.

6.4.3 Reducing Search Overhead

As we empirically observed in Section 6.3.2, a parallel state space search algorithm may expand more
or fewer states than its sequential counterpart, resulting in a slowdown or super linear speedup, since
parallelization may change the search behavior. This phenomenon is known as speedup anomaly in
parallel branch-and-bound [278]. For parallel A*, a super linear speedup or a significant slowdown
was rarely reported, but an increase in the number of expansions, sometimes called search overhead,
was observed by previous work [264, 110, 55, 253, 235]. The search overhead of parallel A* comes
from three sources: expansions in the last f -layer, unnecessary expansions, and re-expansions. Given



CHAPTER 6. PARALLEL BEAM SEARCH 160

an admissible heuristic function h, where h(S) is a lower bound on the optimal path cost from S,
A* never expands states having higher f -values than the optimal cost, and the first found solution
is optimal [190, 98]. For states in the last f -layer, states whose f -values are the same as the optimal
cost, the number of expansions depends on the tie-breaking strategy. Parallelization may change
the tie-breaking, which may result in a different number of expansions in the last f -layer, similar to
what we observed with parallel CABS in Section 6.3.2.

Moreover, due to the change in the expansion order, parallel A* can expand states whose f -values
are higher than the optimal solution cost, which are never expanded by sequential A* with any tie-
breaking strategy. The first found solution may no longer be the optimal solution, and parallel A*
needs to wait until states having smaller f -values than the found solution cost are eliminated from the
open list [264, 110, 55, 253, 235]. If the heuristic function is consistent, i.e., h(S) ≤ w(S, S′)+ h(S′)

where w(S, S′) is the weight of an edge (S, S′) in the state transition graph, sequential A* never
re-expands already expanded states. In contrast, due to the change of the expansion order, parallel
A* may later find a better path to an already expanded state and re-expand it. As mentioned in
Section 6.4.2, to reduce the search overhead, distributed parallel A* algorithms try to simulate the
best-first expansion order by uniformly distributing states [253] or dynamically distributing states
with low f -values [264, 110]. In a shared memory environment, Phillips, Likhachev, and Koenig [339]
proposed Parallel A* for Slow Expansions (PA*SE), which never re-expands a state given a consistent
heuristic. This property is guaranteed by a mechanism to make sure that an optimal path to reach
a state is found before expanding it. Since this check is expensive, PA*SE is suited to problems
where expanding a state is expensive, such as motion planning [339]. ePA*SE [320], the parallel A*
algorithm for motion planning presented in Section 6.4.1, is an extension of PA*SE.

Kuroiwa and Fukunaga [272] evaluated HDGBFS, an adaptation of HDA* to greedy best-first
search (GBFS) [107], which expands a state minimizing the h-value. They observed a large search
overhead of HDGBFS compared to sequential GBFS in some problem instances and proposed Lo-
cally Greedy HDGBFS (LG), which reduces the search overhead using an ad hoc mechanism. In
subsequent work [271], Kuroiwa and Fukunaga proved that under some assumptions, there is no
theoretical upper bound on the search overhead of parallel GBFS algorithms that perform duplicate
detection in parallel. They proposed Parallel Under High-water mark First (PUHF), which expands
only states that could be expanded by sequential GBFS with some tie-breaking strategy. Similar to
PA*SE, this property is guaranteed by a mechanism to check a state before expanding it using a
sufficient criterion. Shimoda and Fukunaga [395] improved PUHF by using more permissive criteria.

6.4.4 Discussion

We introduced parallel state space search algorithms designed for different environments with differ-
ent approaches. In this section, based on the existing work, we discuss future directions for parallel
DIDP solvers.

In the current implementation of HDBS, we use Fx Hash in Rust, which uniformly distributes
states to hash values. To reduce communication overhead in hash-based work distribution, Jinnai
and Fukunaga [235] used a hash function that tends to assign the same hash value of a state to its
successor states (Section 6.1.5). Developing such a hash function for DyPDL is a promising direction
to improve HDBS.

Jinnai and Fukunaga [235] compared HDA* [253, 235], which uses hash-based work distribution,



CHAPTER 6. PARALLEL BEAM SEARCH 161

and PBNF [55], which uses PSDD [451] (Section 6.4.1), in a shared memory environment. In their
evaluation, HDA* with Zobrist hashing or Abstract Zobrist hashing performs better than PBNF
in difficult instances of the sliding-tile puzzle. In contrast, PBNF is better than HDA* in grid
pathfinding. Given this result, as an alternative to hash-based work distribution, PSDD is worth
considering for parallel DIDP solvers in a shared memory environment.

While previous work in parallel BFS investigated mechanisms to achieve a similar expansion
order to sequential BFS (Section 6.4.3), HDBS benefits from perturbations in the set of states kept
in the open list on average. As in other fields [181, 178, 83], explicitly exploiting such perturbations
in parallel and sequential DIDP solvers is an interesting direction.

As presented in Table 6.6, some of the introduced parallel state space search algorithms were
used for AI planning. However, they have not been integrated with the mainstream AI planners such
as Fast Downward [203]11 and ENHSP [379].12 In contrast, commercial MIP and CP solvers such
as Gurobi and CP Optimizer natively support multi-threading, as used in Section 6.3. In DIDP,
following MIP and CP, parallel beam search algorithms are integrated into the release version of
didp-rs. Since didp-rs is open-source, a researcher can implement new algorithms based on it, which
possibly boosts research in parallel state space search.

6.5 Summary

We proposed parallel beam search algorithms and developed multi-thread domain-independent dy-
namic programming (DIDP) solvers by using them in complete anytime beam search (CABS). We in-
vestigated two ideas used to parallelize heuristic search algorithms in the AI community: concurrent
data structures and hash-based work distribution. In our experimental evaluation, hash-distributed
beam search (HDBS), which uses hash-based work distribution, outperforms shared beam search
(SBS), which uses a concurrent data structure. Our multi-thread solvers based on HDBS achieve
significant speedup and performance improvement over sequential CABS on average. Moreover, the
multi-thread DIDP solvers outperform commercial multi-thread MIP and CP solvers in four out of
six problem classes.

In some problem instances, we observed super linear speedups or slowdowns of the multi-thread
solvers. This phenomenon seems to be caused by the strong dual bound function, which makes
perturbations in the set of states kept by beam search lead to a significant difference in perfor-
mance. While HDBS happens to benefit from it on average, explicitly exploiting this characteristic
in sequential and parallel solvers might be beneficial.

A potential bottleneck of HDBS is frequent communications between threads. In parallel A* with
hash-based work distribution, such communication overhead is reduced by using abstract hashing
[235], which tends to assign the same process to a state and its successor states by exploiting problem
structures. Developing abstract hashing for DyPDL is a promising direction to improve HDBS. As
an alternative approach, parallel structured duplicate detection (PSDD) [451] may also be useful.

11https://www.fast-downward.org/
12https://sites.google.com/view/enhsp/



Chapter 7

Concluding Remarks

In this dissertation, we developed domain-independent dynamic programming (DIDP). DIDP en-
ables a user to declaratively model and solve combinatorial optimization using dynamic programming
(DP), which has been used as a problem-specific solving method in previous work. DIDP is domain
independent in that it requires only a declarative mathematical model as input. Although such
declarative problem-solving approaches for combinatorial optimization were achieved by existing
model-based paradigms used in operations research (OR), they are based on constraint-based prob-
lem representations. In contrast, DIDP is a model-based paradigm using a state-based problem
representation of DP. Our DIDP solvers use heuristic search, a class of algorithms studied in arti-
ficial intelligence (AI) to solve state-based problems such as AI planning. We demonstrated that
DIDP outperforms existing model-based paradigms, mixed-integer programming (MIP) and con-
straint programming (CP), in multiple combinatorial optimization problem classes, which validates
our thesis statement that DP can be used as a practical model-based paradigm for combinatorial
optimization.

In Chapter 3, we developed the modeling formalism, Dynamic Programming Description Lan-
guage (DyPDL), and its practical modeling language, YAML-DyPDL. DyPDL and YAML-DyPDL
are inspired by modeling formalisms and languages for AI planning, but they also follow the approach
of OR, which allows a user to investigate better optimization models by incorporating redundant
information.

In Chapter 4, we developed general-purpose DIDP solvers using heuristic search algorithms. Our
solvers exploit redundant information given in a DyPDL model. In addition, they meet the standard
of general-purpose solvers for MIP and CP: they continuously improve the solution quality, eventually
solve the problem optimally, and provide the optimality gap. In particular, complete anytime beam
search (CABS), which iteratively executes beam search, achieved the best performance among the
DIDP solvers.

In Chapter 5, we developed a DIDP solver using large neighborhood search (LNS), an algorithmic
framework widely used in MIP and CP. We proposed large neighborhood beam search (LNBS), which
combines LNS and beam search, and iteratively improves a partial path in the current solution path.
Our DIDP solver based on LNBS uses multi-armed bandits to adaptively select the length of a partial
path to improve.

In Chapter 6, we developed multi-thread DIDP solvers using parallel beam search algorithms. We

162



CHAPTER 7. CONCLUDING REMARKS 163

considered two approaches: shared beam search (SBS) based on a shared data structure and parallel
sorting, and hash-distributed beam search (HDBS) based on hash-based work distribution with
asynchronous message passing. Our multi-thread DIDP solvers based on HDBS achieve significant
performance improvement and speedup over the sequential CABS solver.

7.1 Summary of Contributions

This dissertation contributes to two fields: combinatorial optimization, for which we developed
solving methods, and heuristic search, with which we solved problems that heuristic search had not
been previously used to solve. We summarize the contributions in the following lists.

7.1.1 Contributions to Combinatorial Optimization

1. We developed domain-independent dynamic programming (DIDP), a model-based paradigm
for combinatorial optimization.

2. We developed Dynamic Programming Description Language (DyPDL), a declarative modeling
language for DP designed for combinatorial optimization.

3. We developed didp-rs, a new open-source model-based solver for combinatorial optimization
using DIDP. In terms of modeling, it provides a command line interface that takes DyPDL
files as input in addition to a Python modeling library. In terms of solving, it provides exact,
anytime, and multi-thread solvers based on heuristic search.

4. We developed the DyPDL models by adapting existing DP approaches to eleven combinatorial
optimization problem classes. We also implemented the state-of-the-art MIP and CP models
for these problem classes and developed improved CP models for the simple assembly line
balancing problem to minimize the number of stations (SALBP-1) and talent scheduling.

5. We applied DP to the eleven combinatorial optimization problem classes through DIDP and
compared its performance with state-of-the-art MIP and CP models solved by commercial
MIP and CP solvers.

6. We updated the best-known solutions for two instances of the traveling salesperson problem
with time windows (TSPTW).1 We also closed seven instances of the multi-commodity pickup
and delivery traveling salesperson problem (m-PDTSP) [270].

7.1.2 Contributions to Heuristic Search

1. We developed a generic heuristic search procedure to solve a class of DyPDL models exploiting
dominance between states and a dual bound function. We provide theoretical proofs for its
correctness, completeness, and optimality.

2. We developed a new open-source software platform (didp-rs) in which a researcher can imple-
ment and parallelize heuristic search algorithms.

1https://lopez-ibanez.eu/tsptw-instances#traveltime



CHAPTER 7. CONCLUDING REMARKS 164

3. We provide a benchmark set for heuristic search algorithms composed of eleven combinatorial
optimization problem classes in the form of the DyPDL models.

4. We empirically evaluated existing heuristic search algorithms using the eleven combinatorial
optimization problems.

5. We proposed large neighborhood beam search (LNBS), a new heuristic search algorithm using
large neighborhood search (LNS) and multi-armed bandits.

6. We proposed shared-memory and distributed parallel beam search algorithms, which scale up
to at least 32 threads.

7.2 Future Work

We present future research directions for DIDP. One of the future directions is to apply DIDP to
more diverse problems. To widen the application fields or achieve better performance, we may need
to extend the modeling formalism and language. The current DIDP solvers also have significant
room for improvement.

7.2.1 Applications

Since DIDP is a model-based paradigm, it has great potential for applications. In particular, we con-
sider three directions: modeling diverse optimization problems, hybridization with other paradigms,
and an application to AI planning. In addition, investigating characteristics of models that can be
efficiently solved by DIDP is also important.

Modeling Diverse Optimization Problems

The eleven combinatorial optimization problem classes used in this dissertation are studied in the
OR literature: as mentioned in Section 4.3.2, MIP and CP models were previously developed for
most of them, and the benchmark instances of problem classes except for graph-clear were previously
published. Modeling and solving other well-known problems in OR can demonstrate the significance
of DIDP. However, to investigate the flexibility and limitations of DIDP, modeling and solving more
complex optimization problems, such as those arising from industry, is necessary. The work by
Golestanian et al. [177] is one example of the latter. They formulated a pickup and delivery problem
using an aircraft with a complicated capacity constraint: the cargo capacity can be increased or
decreased during a route by removing or adding passenger seats. The problem is motivated by
real-world air service for remote communities in Canada’s north. Using didp-rs, they succeeded in
formulating the problem as a DyPDL model and demonstrated superior performance to MIP and
CP. To investigate the limitations of the current DIDP, we need to investigate more diverse and
realistic problems.

Hybridization with Other Paradigms

Another potential application in combinatorial optimization is to combine DIDP with other model-
based paradigms. In particular, we may use DIDP to solve the subproblems of a decomposed



CHAPTER 7. CONCLUDING REMARKS 165

optimization model in another paradigm or decompose a DP model and use another paradigm to
solve the subproblems. For example, in column generation [101], a linear programming (LP) model is
decomposed into a master problem and pricing subproblems. The subproblems are sometimes solved
by labeling algorithms (Section 2.2.5), which are based on DP [103, 16, 299, 298, 373]. By using
DIDP in column generation, a user just needs to declaratively define pricing subproblems rather
than implementing problem-specific DP algorithms. To solve pricing problems efficiently, we may
need to develop DIDP solvers that exploit techniques used in problem-specific labeling algorithms.
It may also be possible to combine DIDP with other decomposition approaches such as Benders
decomposition [30, 215].

Application to AI Planning

DIDP can solve numeric AI planning: we showed that a numeric planning problem can be automat-
ically compiled into a DyPDL model in Section 3.1.1. Moreover, we may manually develop better
DyPDL models for planning problems, possibly by incorporating redundant information. As dis-
cussed in Section 2.3.3, such an approach is different from the standard convention in the AI planning
community, which uses the same model for a planning problem to compare the performance of dif-
ferent domain-independent planners. However, this approach is useful to solve application problems.
Indeed, developing better planning models has been studied in CP [12] and logic programming [19].

Investigation of Model Characteristics

In this dissertation, we showed that DIDP is better than MIP and CP in some problem classes but
worse in others. The characteristics of problems and their models that make differences in different
paradigms is an interesting research question. Answering this question would help practitioners in
selecting tools to tackle their problems. Moreover, through this investigation, we may find better
modeling strategies for DIDP and other paradigms or improved solving algorithms to address the
weaknesses of a particular framework. As described in Section 4.3.5, we have an insight on this
question: the DIDP solvers perform better than the MIP and CP solvers in problems where con-
straints such as time window constraints and precedence constraints can be used to limit the size of
the state transition graph. A deeper analysis of problem characteristics, e.g., evaluating the solvers
using synthetic problems with varying tightness of constraints, is one of our future directions. Sim-
ilar analyses were previously conducted in multiple problems including NP-complete problems such
as the traveling salesperson problem (TSP) [71], satisfiability (SAT) [387], constraint satisfaction
problems (CSPs) [404, 345], classical planning [57, 359], and satisficing heuristic search [84].

7.2.2 Improvements in Modeling

DyPDL and YAML-DyPDL have significant room for improvement. In particular, we discuss the
limitations of modeling dominance in DyPDL and YAML-DyPDL and dual bound functions in
YAML-DyPDL. We also consider the possibility of extending DyPDL to stochastic DP.

Refinement of the Dominance Definition in DyPDL

In the theoretical formalism, DyPDL, a state dominates another if it leads to a better or equal
solution with a smaller or equal number of transitions (Definition 16 in Section 3.1.2). The latter



CHAPTER 7. CONCLUDING REMARKS 166

requirement, a smaller or equal number of transitions, is necessary to ensure that a state does not
dominate its successors and descendants. However, this requirement might be too restrictive: a
state S may dominate another state S′ if S leads to a better but longer solution than S′ as long as
S′ is not reached from S by that solution. Refining the definition of dominance considering such a
condition is desirable for exploiting dominance in a broader class of DyPDL models.

Extensions of Dominance in YAML-DyPDL

In YAML-DyPDL, dominance is defined by specifying preference, less is better or less is worse, for
element and numeric variables (Definition 28 in Appendix A.1). We may want to define dominance
based on set variables, e.g., one state S dominates another state S′ if the value of the set variable in
S is a superset or subset of that of S′. Moreover, similar to an approach used in a decision diagram
(DD) solver [89] (Section 2.4.4), allowing a user to define dominance more flexibly, e.g., as a function
that compares two states and returns one of them, is worth considering.

Improved Modeling of Dual Bound Functions in YAML-DyPDL

In terms of the dual bound, the current DyPDL models for the orienteering problem with time
windows (OPTW) in Section 3.3.3 and the multi-dimensional knapsack problem (MDKP) in Sec-
tion 3.3.4 are not ideal. The dual bound functions in these models are based on relaxing the problems
to the 0-1 knapsack problem, where we select items included so that their total weight does not ex-
ceed the capacity of the knapsack while maximizing the total profit. The Dantzig upper bound [96]
computes the upper bound on the maximum profit as follows: it sorts items by descending order
of the profit per weight, includes as many items as possible following the order, and fractionally
includes the item that does not fit in the remaining capacity. In our YAML-DyPDL files, we used
relaxations of the Dantzig upper bound because we were unable to efficiently represent it: to model
the Dantzig upper bound, we need to use one ‘if-then-else’ expression to check if including the first
j items in the knapsack is possible for each j = 1, ..., n, where n is the number of items, resulting in
a large expression tree. Improving the expressiveness and flexibility of YAML-DyPDL is necessary
to address such an issue. Furthermore, it would be beneficial if a user could define dual bound
functions as optimization models such as LP and MIP models.

Extension to Stochastic Dynamic Programming

In this dissertation, we focused on deterministic DP. Stochastic DP is another major branch of
DP, which is typically represented by a Markov decision process (MDP) [27, 219] (Section 2.1.2).
Extending DyPDL to model stochastic DP or MDPs is possible for future work. In this direction,
we need to investigate the value of using DyPDL compared to the existing modeling languages for
MDPs such as PPDDL [444] and Relational Dynamic Influence Diagram Langauge (RDDL) [375]
developed in the AI planning community.

7.2.3 Improvements in Solving

In this section, we present future directions to improve the performance of DIDP solvers. We
discuss six topics: memory-efficient solvers, dual bound and heuristic functions, DD-based branch-
and-bound, primal heuristics, randomization, and massively parallel solvers.



CHAPTER 7. CONCLUDING REMARKS 167

Development of Better Memory-Efficient Solvers

In Section 4.3.5, we showed that CABS outperforms other DIDP solvers due to its memory efficiency:
other solvers reach the 8 GB memory limit before the 30-minute time limit. However, CABS is
less time efficient, e.g., it takes more time to solve the same number of problems as other solvers
when memory is not a constraining resource. Developing faster memory-efficient DIDP solvers is
an important direction for future work. For this direction, using memory-efficient heuristic search
algorithms studied in the AI community [117, 118, 119] is a promising direction. Indeed, CABS uses
one such technique, layered duplicate detection [450]. As another example, a transposition table,
which stores a fixed number of states in memory [353], might be useful.

Development of Dual Bound and Heuristic Functions

The current DIDP solvers use the dual bound function defined in a DyPDL model for two purposes:
pruning states that do not lead to better solutions and guiding the search as a heuristic function.
As shown in Section 4.3.7, using a dual bound function significantly improves the performance of
the DIDP solvers. While the current DIDP solvers use the dual bound function defined in a DyPDL
model, a user may not always define a good dual bound function in a model. Moreover, a user
may not define a dual bound function at all since it is not required. Therefore, we should develop
methods to automatically obtain dual bound and heuristic functions, which are not necessarily the
same. We discuss three topics related to this issue: domain-independent dual bound functions,
domain-independent heuristic functions, and learning heuristic functions.

Domain-Independent Dual Bound Functions To automatically obtain dual bound functions,
we are considering two approaches based on different fields: OR and AI. In OR, state space relaxation
obtains a dual bound by solving a relaxed version of the DP formulation [76] (Section 2.2.7). While
state space relaxation methods were used for specific combinatorial optimization problems in previous
work [76, 1, 144, 46, 357, 355, 183, 16, 17, 365], we may develop dual bound functions for DyPDL
by generalizing them. In AI, abstraction, an idea similar to state space relaxation as pointed out by
Holte and Fan [214], is used to obtain admissible heuristic functions, which returns a lower bound on
the shortest path cost from a state. In particular, methods to automatically construct such heuristic
functions have been studied for domain-independent AI planning [112, 193, 204, 386]. In addition,
admissible heuristic functions computed by LP and MIP have also been proposed [85, 47, 344, 231,
378, 340, 380, 276]. Adapting these approaches to DyPDL is another option to develop dual bound
functions for DIDP.

Domain-Independent Heuristic Functions While a dual bound function can be used as a
heuristic function, as discussed in Section 4.1.4, they are not necessarily the same. A dual bound
function is admissible, but inadmissible heuristic functions can be beneficial to quickly find good
solutions. To automatically obtain inadmissible heuristic functions, we may use approaches inspired
by domain-independent AI planning, similar to the above-mentioned approach for dual bound func-
tions. For example, as mentioned in Section 2.3.3, inadmissible heuristic functions for AI planning
can be obtained from the delete relaxation [48], which ignores the effects of actions that negatively
change a state. While the optimal solution cost for the delete relaxation is admissible, since op-
timally solving it is NP-hard [58], some heuristic functions inadmissibly estimate the optimal cost



CHAPTER 7. CONCLUDING REMARKS 168

using polynomial-time algorithms [48, 194, 213, 250]. Although generalizing the delete relaxation
to DyPDL is not trivial, its fundamental idea of relaxing the part of a model and approximating
the solution cost might be useful for DIDP. As an alternative approach, we may use restricted DDs
(Section 2.2.8), which give an upper bound on the shortest path cost, to obtain inadmissible heuristic
functions.

Learning Heuristic Functions Using machine learning to obtain a heuristic function is also a
possible direction. As mentioned in Section 2.3.2, Cappart et al. [62] solved CP models based on DP
formulations using a CP solver whose value ordering heuristic is obtained by reinforcement learning
with the same DP formulations as the CP models. This framework can be combined with DIDP by
replacing the CP solver with a DIDP solver and using reinforcement learning to obtain a heuristic
function. Besides this approach, learning heuristic functions has been studied for state space search
problems such as combinatorial puzzles [4, 329, 131] and domain-independent AI planning [393, 134,
135, 445, 133, 132, 200, 72].

Integration with Decision Diagram-Based Branch-and-Bound

As described in Sections 2.2.8 and 2.4.4, DD-based branch-and-bound can be used to solve a DP
model, and a general-purpose DD solver, ddo, has been developed [171]. Using DD-based branch-
and-bound as a DIDP solver is an interesting direction for future work. To use DD-based branch-
and-bound, we need a merging operator to create relaxed DDs. Ddo requires a user to provide a
merging operator as a part of the model. If we follow this approach, we need to extend DyPDL so
that a user can define a merging operator in a model. An alternative approach is to develop a method
to automatically create a merging operator, similar to the above-mentioned ideas of automatically
obtaining dual bound and heuristic functions. In either approach, a merging operator can be used not
only for DD-based branch-and-bound but also for dual bound functions since a relaxed DD provides
a dual bound. Indeed, relaxed DDs have been used to obtain an admissible heuristic function in
classical planning [66].

Development of Efficient Primal Heuristics

In Chapter 5, we proposed LNBS as a primal heuristic, a method to obtain high-quality solutions
quickly. One approach to developing a better primal heuristic is to improve LNBS. While LNBS
outperforms CABS in six out of the eleven problem classes, CABS is better in the other five problem
classes. As discussed in Section 5.3.5, the experimental result suggests that LNBS tends to perform
better than CABS when a heuristic function is not informative. Given this observation, for example,
developing a mechanism to detect the informativeness of a heuristic function and control the behavior
of LNBS might be useful. Another possible approach is to develop different algorithms from LNBS.
For example, as in constraint-based local search (CBLS) [431] (Section 2.3.2), integrating local search
in DIDP might be possible. When we have multiple primal heuristics, as in MIP [75] (Section 5.5.2),
selecting one of them using multi-armed bandits is worth considering.



CHAPTER 7. CONCLUDING REMARKS 169

Exploitation of Randomization

In Section 6.3.2, we observed that our multi-thread DIDP solvers sometimes achieve super linear
speedups, benefitting from perturbations in the search behavior caused by parallelization. According
to our experimental result, this behavior seems to be caused by a tight dual bound function, with
which a solver proves optimality as soon as it finds an optimal solution. A similar phenomenon,
i.e., large performance differences caused by small perturbations, is observed in SAT [179], CSPs
[180], and satisficing heuristic search [82], whose objective is to find a single feasible solution. In
these problems, solvers exploiting this phenomenon, e.g., by randomly restarting an algorithm with
different parameters, were developed [181, 178, 83]. We may develop sequential and parallel DIDP
solvers using such approaches.

Development of Massively Parallel Solvers

One of our parallel beam search algorithms, HDBS, is based on message passing. Therefore, it can
be implemented in a distributed environment, where a parallel algorithm uses multiple processes
that exchange data through network communications. Developing massively parallel optimization
solvers that work in a large-scale distributed environment is beneficial to optimally solving difficult
problem instances. For example, in previous work, an open-source MIP solver was parallelized with
80,000 processors [396, 397], a commercial MIP solver was parallelized with 43,344 processors [398],
and a heuristic search algorithm was parallelized with 2,400 processors [253].

Massively parallel DIDP solvers are not necessarily restricted to beam search. The advantage
of the DIDP solvers based on beam search is their memory efficiency as observed in Section 4.3.5.
However, with a large amount of memory available in a distributed environment, heuristic search
algorithms that are less memory-efficient but more time-efficient can be better choices. If we use
hash-based work distribution (Section 6.1.5) to parallelize a heuristic search algorithm, abstract
hashing, which reduces communications between processes by exploiting problem-specific structures
[235] (Section 6.4.2), would be useful to achieve higher scalability.



Appendix A

Details of YAML-DyPDL

We present the syntax of YAML-DyPDL and the YAML-DyPDL domain files for the eleven combi-
natorial optimization problem classes for which we defined models in Chapter 3.

A.1 Syntax of YAML-DyPDL

In YAML-DyPDL files, the built-in types in YAML (i.e., maps, lists, strings, integers, floating-point
numbers, and booleans) are used. Expressions and conditions are defined by strings. We summarize
the notation for expressions in Table A.1 and explain their syntax in Section A.1.2. We divide
numeric expressions and cost expressions into integer and continuous expressions, which should be
processed using integers and floating-point numbers, respectively.

Table A.1: Notation for expressions in YAML-DyPDL.

Notation Expression

⟨eexpr⟩ element expression
⟨sexpr⟩ set expression
⟨iexpr⟩ integer expression
⟨cexpr⟩ continuous expression
⟨cond⟩ condition
⟨icexpr⟩ integer cost expression
⟨ccexpr⟩ continuous cost expression

In YAML-DyPDL, one problem instance is defined by two files, a domain file and a problem file.
A domain file is a map that has keys listed in Table A.2. The value of the key cost_type defines
whether the cost expression, the cost of a base case, and dual bound functions should be integer
or continuous expressions. It is assumed to be integer by default. The value of the key objects is a
list of strings, each of which is the name of an object type. Given the number of objects, n, which
is defined in a problem file, we can use a set of objects indexed from 0 to n − 1. For the name of
the object type (or other entities described later), the names of the functions used in the syntax of
expressions (Figure A.1) should be avoided. The key state_variables is required, and its value is a
list of maps defining a state variable. We denote such a map by {variable} and describe the details
in Table A.3. The value of the key table is a list of maps defining a table of constants, denoted by

170



APPENDIX A. DETAILS OF YAML-DYPDL 171

{table} and described in Table A.4. The key transitions is required, and its value is a list of maps
defining a transition, denoted by {transition} and described in Table A.6. The key base_case is
required, and its value is a list defining base cases. Each element of the list is a map denoted by
{base case} described in Table A.9 or a list of conditions. If a list of conditions is given, the cost of
the base case is assumed to be 0. Transitions and base cases can be defined in the problem file, and
in such a case, they are optional in the domain file. The value of the key constraints is a list defining
state constraints. Each element of the list is a map denoted by {forall} or a condition. The value of
the key dual_bounds is a list of numeric expressions defining dual bound functions. If cost_type is
integer (continuous), it must be an integer (a continuous) expression. The value of the key reduce is
either min or max, specifying minimization or maximization. Minimization is assumed by default.

Table A.2: Keys of a domain file.

Key Value Requirement

cost_type ‘integer’ or ‘continuous’ optional, ‘integer’ by default
objects list of strings optional
state_variables list of {variable} required
tables list of {table} optional
transitions list of {transition} required if not defined in the problem file
base_cases list of {base case} and lists of ⟨cond⟩ required if not defined in the problem file
constraints list of {forall} and ⟨cond⟩ optional
dual_bounds list of ⟨iexpr⟩ or ⟨cexpr⟩ optional
reduce ‘min’ or ‘max’ optional, ‘min’ by default

In Table A.3, we show the keys of {variable}. The key name defines the name, which is required.
The key type defines the type of the state variable. For type, by using integer and continuous,
YAML-DyPDL differentiates integer and continuous variables in numeric variables. The key object
is required for element and set variables, and its value must be one of the names of the object types
defined with the key objects. Element, integer, and continuous variables are resource variables if
preference is defined. Resource variables are used to define an approximate dominance relation as
explained in Section A.1.1.

Table A.3: Keys of {variable}.

Key Value Requirement

name string required
type ‘element’, ‘set’, ‘integer’, or ‘continuous’ required
object string, the name of a defined object required for element and set variables
preference ‘greater’ or ‘less’ optional for element and numeric variables

In Table A.4, we show the keys of {table}. The key name, which defines the name, and the key
type, which defines the type, are required. The table is an element table if type: element, a set table
if type: set, an integer table if type: integer, a continuous table if type: continuous, and a boolean
table if type: bool. If the key args is not defined, the table is 0-dimensional and defines one constant.
Otherwise, the value of the key args must be a list of the names of the object types defined with
the key objects. If there are n elements in the list, the table is n-dimensional. An n-dimensional
table associates an n-tuple of the indices of objects with a constant. The key default defines the
default value of the table, whose value is a constant depending on the type as shown in Table A.5.



APPENDIX A. DETAILS OF YAML-DYPDL 172

For element, integer, and continuous, the value is assumed to be 0 if the key is omitted. The value
is assumed to be false for bool and an empty list for set. For a set table, the key object must be
defined, whose value is the name of an object type defined with objects. Each value in the set table
is restricted to be in 2N where N = {0, ..., n− 1}, and n is the number of the associated objects.

Table A.4: Keys of {table}.

Key Value Requirement

name string required
type ‘element’, ‘set’, ‘integer’, ‘continuous’, or ‘bool’ required
args list of strings, names of object types optional
default constant depending on ‘type’ optional, Table A.5 defines the default value
object name of an object type required if ‘type’ is ‘set’

Table A.5: Constants for different types.

Type Value Default

element nonnegative integer ‘0’
set list of nonnegative integers ‘[]’
integer integer ‘0’
continuous floating-point number ‘0.0’
bool boolean (true or false) ‘false’

In Table A.6, we show the keys of {transition}. The key name, which defines the name, is
required. The key effect defines the effect of the transition using a map. In the map, each key is the
name of a state variable defined with state_variable. The value must be an element expression if it
is an element variable, a set expression if it is a set variable, an integer expression if it is an integer
variable, and a continuous expression if it is a continuous variable. If the name of variable v is omitted
in the map, the effect of that variable is assumed to be no change, i.e., effτ [v](S) = S[v]. The value
of the key cost is an integer cost expression if cost_type is integer and a continuous cost expression
if continuous. In the cost expression, we can use cost, which represents the cost of the successor
state resulting from applying the transition. The key preconditions defines the preconditions of the
transition, whose value is a list of {forall} described in Table A.8 and conditions. The value of forced
is a boolean value (true or false), indicating whether the transition is a forced transition or not.

Table A.6: Keys of {transition}.

Key Value Requirement

name string required
parameters list of {parameters} optional
effect map (keys: variables names, values: expressions) required
cost ⟨icexpr⟩ or ⟨ccexpr⟩ optional, ‘cost’ by default
preconditions list of {forall} and ⟨cond⟩ optional
forced boolean optional, ‘false’ by default

The key parameters shown in Table A.7 parametrizes the transition. The key name defines the
name of the parameter, and the key object defines the associated object type or set variable. If the
value of object is the name of an object type defined with objects, then one transition is defined for
each index i of the objects. If the value is the name of a set variable U , one transition is defined



APPENDIX A. DETAILS OF YAML-DYPDL 173

for each index i of the objects associated with the variable, and each transition has a precondition
i ∈ U . In expressions and conditions in effects, the cost expression, and preconditions, the name
of the parameter can be used as an element expression referring to the index i of the object. If
multiple parameters are defined, then one transition is defined for each combination of indices. In
the DyPDL formalism, forced transitions are totally ordered. In YAML-DyPDL, we use the order
in which the transitions are defined. When multiple forced transitions are defined with parameters,
they are associated with the indices of objects. We order such transitions by the lexicographic
ascending order of the associated indices.

Table A.7: Keys of {parameter}.

Key Value Requirement

name string required
object string, the name of an object type or a set variable required

By using {forall}, we define the conjunction of multiple conditions. The condition described with
the key condition is defined for each combination of indices of objects specified by the value of the
key forall. In the condition, we can use the names of the parameters.

Table A.8: Keys of {forall}.

Key Value Requirement

forall list of {parameter} required
condition ⟨cond⟩ required

In Table A.9, we show the keys of {base case}. The key conditions defines a list of conditions in
a base case, and the key cost defines the cost using a numeric expression.

Table A.9: Keys of {base case}.

Key Value Requirement

conditions list of {forall} and ⟨cond⟩ required
cost ⟨iexpr⟩ or ⟨cexpr⟩ required

A problem file is a map described in Table A.10. Transitions, base cases, state constraints,
and dual bounds can be also defined in a problem file, which allows problem-specific extensions of
a DyPDL model. The value of the key object_numbers is a map whose keys are the names of the
object types defined in a domain file. The values are positive integers defining the number of objects.
The value of the key target is a map whose keys are the names of the state variables defined in a
domain file, meaning the values of the state variables in the target state. The value is a constant
depending on the type of a state variable as shown in Table A.5.

The value of the key table_values is a map whose keys are the names of the tables defined in a
domain file. For a 0-dimensional table, i.e., a constant, the value is a constant depending on the type
as shown in Table A.5. For a 1-dimensional table, the value is a map whose keys are nonnegative
integers, and the values are constants. The nonnegative integer of a key must be less than n, the
number of the associated objects specified by args in a domain file. For an m-dimensional table with
m > 1, the value is a map whose keys are lists of nonnegative integers, and the values are constants.



APPENDIX A. DETAILS OF YAML-DYPDL 174

The length of each list must be m. If a key is not defined, its value is assumed to be the value of
default defined in a domain file.

Table A.10: Keys of a problem file.

Key Value Requirement

object_numbers map (keys: names of object types, values: integers) required if objects are defined
target map (keys: variable names, values: constants) required
table_values map (keys: table names, values: maps or constants) required if tables are defined
transitions list of {transition} optional
base_cases list of {base case} and a list of ⟨cond⟩ optional
constraints list of {forall} and ⟨cond⟩ optional
dual_bounds list of ⟨iexpr⟩ or ⟨cexpr⟩ optional

A.1.1 Redundant Information in YAML-DyPDL

A user can define resource variables and dual bound functions in YAML-DyPDL. However, they
must be consistent with the DyPDL model defined by the YAML-DyPDL files. First, we define the
preference between states specified by the preference of the resource variables.

Definition 28 (Preference of states). Given a pair of YAML-DyPDL files defining an optimization
problem with a DyPDL model, let S and S′ be states. The state S is preferred to S′ iff S[v] ≥ S′[v]

for each resource variable v where greater is preferred (preference: greater), S[v] ≤ S′[v] for each
resource variable where less is preferred (preference: less), and S[v] = S′[v] for each non-resource
variable v.

We show that the preference is a preorder, which is one of the conditions of an approximate
dominance relation (Definition 17 in Section 3.1.2).

Theorem 45. Given a pair of YAML-DyPDL files defining an optimization problem with a DyPDL
model, the preference between states is a preorder.

Proof. For a state S, since S[v] = S[v], S is preferred to S, so reflexivity holds. For three states
S, S′, and S′′, suppose that S is preferred to S′, and S′ is preferred to S′′. For resource variable
v where greater is preferred, S[v] ≥ S′[v] ≥ S′′[v]. For resource variable v where less is preferred,
S[v] ≤ S′[v] ≤ S′′[v]. For non-resource variable v, S[v] = S′[v] = S′′[v]. Thus, S is preferred to S′′,
so transitivity holds.

With the formal definition of the preference, we introduce the notion of the validity of the
YAML-DyPDL files.

Definition 29 (Valid YAML-DyPDL). A pair of YAML-DyPDL files defining an optimization
problem with a DyPDL model is valid iff the following conditions are satisfied:

• The preference defined by resource variables is an approximate dominance relation, i.e., S
dominates S′ if S is preferred to S′ for reachable states S and S′.

• Numeric expressions defined with the key dual_bounds are dual bound functions.

A user should always provide valid YAML-DyPDL files.



APPENDIX A. DETAILS OF YAML-DYPDL 175

A.1.2 Syntax of Expressions

⟨eexpr⟩ ::= ⟨nonnegative integer⟩ | ⟨parameter name⟩ | ⟨element variable name⟩
| ‘(’ ⟨element table name⟩ ⟨eexpr⟩* ‘)’ | ‘(’ ⟨ebop⟩ ⟨eexpr⟩ ⟨eexpr⟩ ‘)’ | ‘(if’ ⟨cond⟩ ⟨eexpr⟩ ⟨eexpr⟩ ‘)’

⟨ebop⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘max’ | ‘min’

⟨arg⟩ ::= ⟨eexpr⟩ | ⟨sexpr⟩

⟨sexpr⟩ ::= ⟨set variable name⟩ | ‘(’ ⟨set table name⟩ ⟨eexpr⟩* ‘)’ | ‘(’ ⟨srop⟩ ⟨set table name⟩ ⟨arg⟩* ‘)’
| ‘(complement’ ⟨sexpr⟩ ‘)’ | ‘(’ ⟨sbop⟩ ⟨sexpr⟩ ⟨sexpr⟩ ‘)’
| ‘(add’ ⟨eexpr⟩ ⟨sexpr⟩ ‘)’ | ‘(remove’ ⟨eexpr⟩ ⟨sexpr⟩ ‘)’ | ‘(if’ ⟨cond⟩ ⟨sexpr⟩ ⟨sexpr⟩ ‘)’

⟨srop⟩ ::= ‘union’ | ‘intersection’ | ‘disjunctive_union’

⟨sbop⟩ ::= ‘union’ | ‘intersection’ | ‘difference’

⟨iexpr⟩ ::= ⟨integer⟩ | ⟨integer variable name⟩
| ‘(’ ⟨integer table name⟩ ⟨eexpr⟩* ‘)’ | ‘(’ ⟨nrop⟩ ⟨integer table name⟩ ⟨arg⟩* ‘)’
| ‘(abs’ ⟨iexpr⟩ ‘)’ | ‘(’ ⟨ibop⟩ ⟨iexpr⟩ ⟨iexpr⟩ ‘)’ | ‘(’ ⟨round⟩ ⟨cexpr⟩ ‘)’ | ‘|’ ⟨sexpr⟩ ‘|’
| ‘(if’ ⟨cond⟩ ⟨iexpr⟩ ⟨iexpr⟩ ‘)’

⟨nrop⟩ ::= ‘sum’ | ‘max’ | ‘min’

⟨ibop⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘max’ | ‘min’

⟨round⟩ ::= ‘ceil’ | ‘floor’ | ‘round’ | ‘trunc’

⟨cexpr⟩ ::= ⟨integer⟩ | ⟨floating-point number⟩ | ⟨integer variable name⟩ | ⟨continuous variable name⟩
| ‘(’ ⟨integer table name⟩ ⟨eexpr⟩* ‘)’ | ‘(’ ⟨nrop⟩ ⟨integer table name⟩ ⟨arg⟩* ‘)’
| ‘(’ ⟨continuous table name⟩ ⟨eexpr⟩* ‘)’ | ‘(’ ⟨nrop⟩ ⟨continuous table name⟩ ⟨arg⟩* ‘)’
| ‘(abs’ ⟨cexpr⟩ ‘)’ | ‘(sqrt’ ⟨cexpr⟩ ‘)’ | ‘(’ ⟨cbop⟩ ⟨cexpr⟩ ⟨cexpr⟩ ‘)’ | (’ ⟨round⟩ ⟨cexpr⟩ ‘)’
| ‘|’ ⟨seexpr⟩ ‘|’ | ‘(continuous’ ⟨iexpr⟩ ‘)’ | ‘(if’ ⟨cond⟩ ⟨cexpr⟩ ⟨cexpr⟩ ‘)’

⟨cbop⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘max’ | ‘min’ | ‘pow’ | ‘log’

⟨cond⟩ ::= ‘(’ ⟨boolean table name⟩ ⟨eexpr⟩* ‘)’ | ‘(not’ ⟨cond⟩ ‘)’
| ‘(and’ ⟨cond⟩ ⟨cond⟩ ‘)’ | ‘(or’ ⟨cond⟩ ⟨cond⟩ ‘)’
| ‘(’ ⟨comp⟩ ⟨eexpr⟩ ⟨eexpr⟩ ‘)’ | ‘(’ ⟨comp⟩ ⟨iexpr⟩ ⟨iexpr⟩ ‘)’ | ‘(’ ⟨comp⟩ ⟨cexpr⟩ ⟨cexpr⟩ ‘’)’
| ‘(is_empty’ ⟨sexpr⟩ ‘)’ | ‘(’ ⟨scomp⟩ ⟨sexpr⟩ ⟨sexpr⟩ ‘)’ | ‘(is_in’ ⟨eexpr⟩ ⟨sexpr⟩ ‘)’

⟨comp⟩ ::= ‘=’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

⟨scomp⟩ ::= ‘=’ | ‘!=’ | ‘is_subset’

Figure A.1: BNF of expressions.

We define the syntax of expressions and conditions using the Backus-Naur form (BNF). An
expression following the syntax may not have a well-defined meaning, e.g., zero division. In such a
case, the computational result is undefined, and a system should raise an exception in practice.

An element expression (⟨eexpr⟩) can refer to a nonnegative integer (⟨nonegative integer⟩), the
name of a parameter (⟨parameter name⟩) referring to the index of an object, and the name of
an element variable (⟨element variable name⟩). With ‘(’ ⟨element table name⟩ ⟨eexpr⟩∗ ‘)’, we can
access a constant in a table. Here, ⟨element table name⟩ is the name of an element table, and
⟨eexpr⟩∗ is a sequence of element expressions separated by white spaces, meaning arguments. Thus,
‘(’ ⟨element table name⟩ ⟨eexpr⟩∗ ‘)’ refers to a constant in the table with the key specified by the
element expressions. If the key is undefined, e.g., an element expression returns a value greater



APPENDIX A. DETAILS OF YAML-DYPDL 176

than the number of associated objects to the argument, the result is undefined. The addition (+),
subtraction (-), multiplication (*), division (/), and modulo (%) of two element expressions yields a
new element expression. If a negative value results from subtraction, the behavior is undefined. For
division, we truncate fractions. Zero-division is undefined. We can also take the maximum (max)
and the minimum (min) of two element expressions.

In a set expression (⟨sexpr⟩), we can take the union (union), intersection (intersection), and
difference (difference) of two set expressions. We can also add (add) an element expression to a
set expression and remove (remove) an element expression from a set expression. Set variables and
set tables are associated with object types. When we take the union, intersection, and difference
of two set expressions, they should be associated with the same object type, and the resulting set
expression is associated with that object type. If they are associated with different object types,
the behavior is undefined. Similarly, if we add or remove an element whose index is greater than or
equal to the number of the associated objects, the behavior is undefined. Since a set expression is
associated with an object type, the maximum index that can be included in the set is known (n−1 if
there are n objects), so we can take the complement (complement) of a set expression. We can also
take the union (union), intersection (intersection), and disjunctive union (disjunctive_union)
of multiple constants in a set table over multiple indices with ‘(’ ⟨srop⟩ ⟨set table name⟩ ⟨arg⟩∗ ‘)’.
Here, each argument ⟨arg⟩ can be an element or a set expression. We consider the set of indices
defined by the Cartesian product of the arguments, considering an element expression as a set with a
single element. Then, we take the union, intersection, and disjunctive union of sets in the table over
the set of indices. For example, suppose a 3-dimensional set table E, each of whose element is denoted
by Eijk. Let the value of a set variable A be {0, 1} and the value of a set variable B be {1, 3}. If
we use (union E 0 A B), then, we consider a set of indices I = {(0, 0, 1), (0, 0, 3), (0, 1, 1), (0, 1, 3)},
and the expression returns

⋃
(i,j,k)∈I Eijk.

In an integer expression (⟨iexpr⟩), we can refer to an integer (⟨integer⟩), an integer variable
(⟨integer variable name⟩), and an integer table (⟨integer table name⟩). We can take the summation
(sum), maximum (max), and minimum (min) of constants in an integer table over multiple indices
defined by element and set expressions. Arithmetic operations are defined in the same way as in
an element expression, while a negative result is allowed in subtraction. In addition, we can take
the absolute value (abs) of an integer expression. We can also round a continuous expression to an
integer expression by using the ceiling function (ceil) and the floor function (floor). If we use
round, it returns the nearest integer (the lower one for a half-way between two integers). If we use
trunc, fractions are truncated. We can take the cardinality of a set expression by using ‘|’ ⟨sexpr⟩
‘|’.

A continuous expression (⟨cexpr⟩) is defined similarly to an integer expression. The modulo, ‘(% x

y)’, is defined to be x− trunc(x/y) · y, where trunc truncates fractions. In a continuous expression,
we can take the square root (sqrt), the exponentiation (pow, where the second argument is the
exponent), and the logarithm (log, where the second argument is the base). The square root of a
negative value is undefined. For the logarithm, if either of the arguments is negative, the result is
undefined. We can convert an integer expression into a continuous expression by using continuous.
In addition, integers, integer variables, and integer tables can be considered continuous expressions.

In a condition (⟨condition⟩), we can refer to a constant in a boolean table (⟨boolean table name⟩),
the negation of a condition (not), and the conjunction (and) or disjunction (or) of two conditions.



APPENDIX A. DETAILS OF YAML-DYPDL 177

For two element, set, integer, or continuous expressions, we can check if they return the same value
(=) or different values (!=). In addition, for two element, integer, or continuous expressions, we can
check if one is greater than the other (>), one is greater than or equal to the other (>=), one is less
than the other (<), or one is less than or equal to the other (<=). When we compare two expressions
that can be parsed as both integer and continuous expressions, e.g., integers, a parser can assume
that they are integer expressions. This assumption does not change the result of the comparison.
For two set expressions, we can check if the first one is a subset of the second one (is_subset).
For an element expression and a set expression, we can check if the element is included in the set
(is_in). We can check if a set expression returns an empty set (is_empty). With a condition, we
can use an ‘if-then-else’ expression (if), which returns the second argument if the condition (the
first argument) holds and the third argument otherwise.

An integer cost expression (⟨icexpr⟩) and a continuous cost expression (⟨ccexpr⟩) are defined in
the same way as integer and continuous expressions, respectively. In addition, ‘cost’ can be used
as an integer or a continuous cost expression, which refers to the cost of the successor state (x of
a cost expression costτ (x, S)). In element expressions, set expressions, and conditions used in cost
expressions, we can use integer and continuous cost expressions instead of integer and continuous
expressions.

A.2 YAML-DyPDL Domain Files

We present YAML-DyPDL domain files for the DyPDL models of the eleven combinatorial optimiza-
tion problems introduced in Section 3.3. For the traveling salesperson problem with time windows
(TSPTW) and the capacitated vehicle routing problem (CVRP), we present domain files where the
cost of the base case is zero in Figures A.2 and A.5, which are equivalent to the models used in
Chapter 6. In Figure A.3, we present a domain file for TSPTW to minimize the makespan, which
is used in Appendix C.2. For the orienteering problem with time windows (OPTW), the definition
of the dual bound function depends on an instance, so we present a domain file in Figure A.7 and
an example problem file in Figure A.8. For the multi-dimensional knapsack problem (MDKP), since
the number of state variables depends on an instance, we show domain and problem files for a
two-dimensional instance, i.e., m = 2 in Figure A.9.



APPENDIX A. DETAILS OF YAML-DYPDL 178

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : t
type : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : a

type : i n t e g e r
a r g s :

− customer
− name : b

type : i n t e g e r
a r g s :

− customer
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c s t a r
type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : i n t e g e r
a r g s :

− customer
− name : cout

type : i n t e g e r
a r g s :

− customer

t r a n s i t i o n s :
− name : v i s i t

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
t : (max (+ t ( c i j ) ) ( a j ) )

c o s t : (+ ( c i j ) c o s t )
p r e c o n d i t i o n s :

− (<= (+ t ( c i j ) ) ( b j ) )
− name : r e t u r n

p r e c o n d i t i o n s :
− ( is_empty U)
− (!= i 0)

e f f e c t :
i : 0
t : (+ t ( c i 0 ) )

c o s t : (+ ( c i 0) c o s t )
c o n s t r a i n t s :

− c o n d i t i o n : (<= (+ t ( c s t a r i j ) ) ( b j ) )
f o r a l l :

− name : j
o b j e c t : U

base_cases :
− c o n d i t i o n s :

− ( is_empty U)
− (= i 0)

c o s t : 0
dual_bounds :

− (+ (sum c i n U) ( i f (!= i 0) ( c i n 0) 0 ) )
− (+ (sum cout U) ( i f (!= i 0) ( cout i ) 0 ) )

r educe : min

Figure A.2: YAML-DyPDL domain file for the traveling salesperson problem with time windows
(TSPTW) where the cost of the base case is zero.



APPENDIX A. DETAILS OF YAML-DYPDL 179

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : t
type : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : a

type : i n t e g e r
a r g s :

− customer
− name : b

type : i n t e g e r
a r g s :

− customer
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c s t a r
type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : i n t e g e r
a r g s :

− customer
− name : cout

type : i n t e g e r
a r g s :

− customer

t r a n s i t i o n s :
− name : v i s i t

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
t : (max (+ t ( c i j ) ) ( a j ) )

c o s t : (+ (max ( c i j ) (− ( a j ) t ) ) c o s t )
p r e c o n d i t i o n s :

− (<= (+ t ( c i j ) ) ( b j ) )
c o n s t r a i n t s :

− c o n d i t i o n : (<= (+ t ( c s t a r i j ) ) ( b j ) )
f o r a l l :

− name : j
o b j e c t : U

base_cases :
− c o n d i t i o n s :

− ( is_empty U)
co s t : ( c i 0)

dual_bounds :
− (+ (sum c i n U) ( c i n 0 ) )
− (+ (sum cout U) ( cout i ) )

r educe : min

Figure A.3: YAML-DyPDL domain file for the traveling salesperson problem with time windows to
minimize the makespan (TSPTW-M).



APPENDIX A. DETAILS OF YAML-DYPDL 180

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : l
t ype : i n t e g e r
p r e f e r e n c e : l e s s

− name : k
type : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : m

type : i n t e g e r
− name : q

type : i n t e g e r
− name : d

type : i n t e g e r
a r g s :

− customer
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : i n t e g e r
a r g s :

− customer
− name : cout

type : i n t e g e r
a r g s :

− customer

t r a n s i t i o n s :
− name : v i s i t

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
l : (+ l ( d j ) )

c o s t : (+ ( c i j ) c o s t )
p r e c o n d i t i o n s :

− (<= (+ l ( d j ) ) q )
− name : v i s i t −v ia−depot

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
l : ( d j )
k : (+ k 1)

co s t : (+ (+ ( c i 0) ( c 0 j ) ) c o s t )
p r e c o n d i t i o n s :

− (< k m)
c o n s t r a i n t s :

− c o n d i t i o n : (>= (+ (∗ (− m k ) q ) q ) (+ l ( sum d U) ) )
base_cases :

− c o n d i t i o n s :
− ( is_empty U)

co s t : ( c i 0)
dual_bounds :

− (+ (sum c i n U) ( c i n 0 ) )
− (+ (sum cout U) ( cout i ) )

r educe : min

Figure A.4: YAML-DyPDL domain file for the capacitated vehicle routing problem (CVRP).



APPENDIX A. DETAILS OF YAML-DYPDL 181

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : l
t ype : i n t e g e r
p r e f e r e n c e : l e s s

− name : k
type : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : m

type : i n t e g e r
− name : q

type : i n t e g e r
− name : d

type : i n t e g e r
a r g s :

− customer
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : i n t e g e r
a r g s :

− customer
− name : cout

type : i n t e g e r
a r g s :

− customer

t r a n s i t i o n s :
− name : v i s i t

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
l : (+ l ( d j ) )

c o s t : (+ ( c i j ) c o s t )
p r e c o n d i t i o n s :

− (<= (+ l ( d j ) ) q )
− name : v i s i t −v ia−depot

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
l : ( d j )
k : (+ k 1)

co s t : (+ (+ ( c i 0) ( c 0 j ) ) c o s t )
p r e c o n d i t i o n s :

− (< k m)
− name : r e t u r n

p r e c o n d i t i o n s :
− ( is_empty U)
− (!= i 0)

e f f e c t :
i : 0

c o s t : (+ ( c i 0) c o s t )
c o n s t r a i n t s :

− c o n d i t i o n : (>= (+ (∗ (− m k ) q ) q ) (+ l ( sum d U) ) )
base_cases :

− c o n d i t i o n s :
− ( is_empty U)
− (= i 0)

c o s t : 0
dual_bounds :

− (+ (sum c i n U) ( i f (!= i 0) ( c i n 0) 0 ) )
− (+ (sum cout U) ( i f (!= i 0) ( cout i ) 0 ) )

r educe : min

Figure A.5: YAML-DyPDL domain file for the capacitated vehicle routing problem (CVRP) where
the cost of the base case is zero.



APPENDIX A. DETAILS OF YAML-DYPDL 182

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : l
t ype : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : goa l

t ype : e l ement
o b j e c t : customer

− name : q
type : i n t e g e r

− name : P
type : s e t
o b j e c t : customer
a r g s :

− customer
− name : d e l t a

type : i n t e g e r
a r g s :

− customer
− name : A

type : boo l
a r g s :

− customer
− customer

d e f a u l t : f a l s e
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : i n t e g e r
a r g s :

− customer
− name : cout

type : i n t e g e r
a r g s :

− customer

t r a n s i t i o n s :
− name : v i s i t

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)
i : j
l : (+ l ( d e l t a j ) )

c o s t : (+ ( c i j ) c o s t )
p r e c o n d i t i o n s :

− (A i j )
− (<= (+ l ( d e l t a j ) ) q )
− ( is_empty ( i n t e r s e c t i o n U (P j ) ) )

base_cases :
− c o n d i t i o n s :

− ( is_empty U)
− (A i goa l )

c o s t : ( c i goa l )
dual_bounds :

− (+ (sum c i n U) ( c i n goa l ) )
− (+ (sum cout U) ( cout i ) )

r educe : min

Figure A.6: YAML-DyPDL domain file for multi-commodity pickup and delivery traveling salesper-
son problem (m-PDTSP).



APPENDIX A. DETAILS OF YAML-DYPDL 183

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : customer

− name : i
t ype : e l ement
o b j e c t : customer

− name : t
type : i n t e g e r
p r e f e r e n c e : l e s s

t a b l e s :
− name : p

type : i n t e g e r
a r g s :

− customer
− name : a

type : i n t e g e r
a r g s :

− customer
− name : b

type : i n t e g e r
a r g s :

− customer
− name : c

type : i n t e g e r
a r g s :

− customer
− customer

− name : c s t a r
type : i n t e g e r
a r g s :

− customer
− customer

− name : c s t a r_c s t a r 0
type : i n t e g e r
a r g s :

− customer
− customer

− name : c_csta r0
type : i n t e g e r
a r g s :

− customer
− customer

− name : c i n
type : c on t i nuou s
a r g s :

− customer
− name : cout

type : c on t i nuou s
a r g s :

− customer
− name : e i n

type : c on t i nuou s
a r g s :

− customer
− name : eout

type : c on t i nuou s
a r g s :

− customer

t r a n s i t i o n s :
− name : remove−by−t ime

pa ramete r s :
− name : j

o b j e c t : U
e f f e c t :
U : ( remove j U)

co s t : c o s t
p r e c o n d i t i o n s :

− >
( or (> (+ t ( c s t a r i j ) ) ( b j ) )

(> (+ t ( c s t a r_c s t a r 0 i j ) ) ( b 0 ) ) )
f o r c e d : t r u e

− name : remove−by−paths
pa ramete r s :

− name : j
o b j e c t : U

e f f e c t :
U : ( remove j U)

p r e c o n d i t i o n s :
− c o n d i t i o n : >

( or (> (+ t ( c i k ) ) ( b k ) )
(> (+ t ( c_csta r0 i k ) ) ( b 0 ) ) )

f o r a l l :
− name : k

o b j e c t : U
co s t : c o s t
f o r c e d : t r u e

− name : v i s i t
pa ramete r s :

− name : j
o b j e c t : U

e f f e c t :
U : ( remove j U)
i : j
t : (max (+ t ( c i j ) ) ( a j ) )

c o s t : (+ (p j ) c o s t )
p r e c o n d i t i o n s :

− (<= (+ t ( c i j ) ) ( b j ) )
− (<= (+ t ( c_csta r0 i j ) ) ( b 0 ) )

base_cases :
− − ( is_empty U)

− (<= (+ t ( c i 0 ) ) ( b 0 ) )
r educe : max

Figure A.7: YAML-DyPDL domain file for the orienteering problem with time windows (OPTW).



APPENDIX A. DETAILS OF YAML-DYPDL 184

object_numbers :
customer : 4

t a r g e t :
U: [ 1 , 2 , 3 ]
i : 0
t : 0

t a b l e_va l u e s :
p : { 1 : 1 , 2 : 2 , 3 : 3 }
a : { 0 : 0 , 1 : 5 , 2 : 0 , 3 : 8 }
b : { 0 : 20 , 1 : 16 , 2 : 10 , 3 : 14 }
c :

{
[ 0 , 1 ] : 3 , [ 0 , 2 ] : 4 , [ 0 , 3 ] : 5 ,
[ 1 , 0 ] : 3 , [ 1 , 2 ] : 5 , [ 1 , 3 ] : 4 ,
[ 2 , 0 ] : 4 , [ 2 , 1 ] : 5 , [ 2 , 3 ] : 3 ,
[ 3 , 0 ] : 5 , [ 3 , 1 ] : 4 , [ 3 , 2 ] : 3 ,

}
c s t a r :

{
[ 0 , 1 ] : 3 , [ 0 , 2 ] : 4 , [ 0 , 3 ] : 5 ,
[ 1 , 0 ] : 3 , [ 1 , 2 ] : 5 , [ 1 , 3 ] : 4 ,
[ 2 , 0 ] : 4 , [ 2 , 1 ] : 5 , [ 2 , 3 ] : 3 ,
[ 3 , 0 ] : 5 , [ 3 , 1 ] : 4 , [ 3 , 2 ] : 3 ,

}
c_csta r0 :

{
[ 0 , 1 ] : 6 , [ 0 , 2 ] : 8 , [ 0 , 3 ] : 10 ,
[ 1 , 0 ] : 3 , [ 1 , 2 ] : 9 , [ 1 , 3 ] : 9 ,
[ 2 , 0 ] : 4 , [ 2 , 1 ] : 8 , [ 2 , 3 ] : 8 ,
[ 3 , 0 ] : 5 , [ 3 , 1 ] : 7 , [ 3 , 2 ] : 7 ,

}
c s t a r_c s t a r 0 :

{
[ 0 , 1 ] : 6 , [ 0 , 2 ] : 8 , [ 0 , 3 ] : 10 ,
[ 1 , 0 ] : 3 , [ 1 , 2 ] : 9 , [ 1 , 3 ] : 9 ,
[ 2 , 0 ] : 4 , [ 2 , 1 ] : 8 , [ 2 , 3 ] : 8 ,
[ 3 , 0 ] : 5 , [ 3 , 1 ] : 7 , [ 3 , 2 ] : 7 ,

}
c i n : { 0 : 3 , 1 : 3 , 2 : 3 , 3 : 3 }
cout : { 0 : 3 , 1 : 3 , 2 : 3 , 3 : 3 }
e i n : { 1 : 0 . 334 , 2 : 0 . 667 , 3 : 1 . 0 }
eout : { 1 : 0 . 334 , 2 : 0 . 667 , 3 : 1 . 0 }

dual_bounds :
− >

(+ ( i f ( and ( i s_ i n 1 U)
( and (<= (+ t ( c s t a r i 1 ) ) 16)

(<= (+ t ( c s t a r_c s t a r 0 i 1 ) ) 20 ) ) ) 1 0)
(+ ( i f ( and ( i s_ i n 2 U)

( and (<= (+ t ( c s t a r i 2 ) ) 10)
(<= (+ t ( c s t a r_c s t a r 0 i 2 ) ) 20 ) ) ) 2 0)

( i f ( and ( i s_ i n 3 U)
( and (<= (+ t ( c s t a r i 3 ) ) 14)

(<= (+ t ( c s t a r_c s t a r 0 i 3 ) ) 20 ) ) ) 3 0 ) ) )
− >

( f l o o r (∗ (− (− 20 t ) ( c i n i ) )
(max ( i f ( and ( i s_ i n 1 U)

( and (<= (+ t ( c s t a r i 1 ) ) 16)
(<= (+ t ( c s t a r_c s t a r 0 i 1 ) ) 20 ) ) ) 0 .334 0)

(max ( i f ( and ( i s_ i n 2 U)
( and (<= (+ t ( c s t a r i 2 ) ) 10)

(<= (+ t ( c s t a r_c s t a r 0 i 2 ) ) 20 ) ) ) 0 .667 0)
( i f ( and ( i s_ i n 3 U)

( and (<= (+ t ( c s t a r i 3 ) ) 14)
(<= (+ t ( c s t a r_c s t a r 0 i 3 ) ) 20 ) ) ) 1 . 0 0 ) ) ) ) )

− >
( f l o o r (∗ (− (− 20 t ) 3)

(max ( i f ( and ( i s_ i n 1 U)
( and (<= (+ t ( c s t a r i 1 ) ) 16)

(<= (+ t ( c s t a r_c s t a r 0 i 1 ) ) 20 ) ) ) 0 .334 0)
(max ( i f ( and ( i s_ i n 2 U)

( and (<= (+ t ( c s t a r i 2 ) ) 10)
(<= (+ t ( c s t a r_c s t a r 0 i 2 ) ) 20 ) ) ) 0 .667 0)

( i f ( and ( i s_ i n 3 U)
( and (<= (+ t ( c s t a r i 3 ) ) 14)

(<= (+ t ( c s t a r_c s t a r 0 i 3 ) ) 20 ) ) ) 1 . 0 0 ) ) ) ) )

Figure A.8: YAML-DyPDL problem file for the orienteering problem with time windows (OPTW).



APPENDIX A. DETAILS OF YAML-DYPDL 185

cost_type : i n t e g e r
o b j e c t s :

− item
s t a t e_ v a r i a b l e s :

− name : i
t ype : e l ement
o b j e c t : i tem

− name : r0
type : i n t e g e r

− name : r1
type : i n t e g e r

t a b l e s :
− name : p

type : i n t e g e r
a r g s :

− item
− name : sum_p

type : i n t e g e r
a r g s :

− item
− name : w0

type : i n t e g e r
a r g s :

− item
− name : w1

type : i n t e g e r
a r g s :

− item
− name : e0

type : c on t i nuou s
a r g s :

− item
− name : e1

type : c on t i nuou s
a r g s :

− item
t r a n s i t i o n s :

− name : pack
e f f e c t :

i : (+ i 1)
r0 : (− r0 (w0 i ) )
r1 : (− r1 (w1 i ) )

c o s t : (+ (p i ) c o s t )
p r e c o n d i t i o n s :

− (>= r0 (w0 i ) )
− (>= r1 (w1 i ) )

− name : i g n o r e
e f f e c t :

i : (+ i 1)
c o s t : c o s t

dual_bounds :
− (sum_p i )
− ( f l o o r (∗ ( e0 i ) (max r0 1 ) ) )
− ( f l o o r (∗ ( e1 i ) (max r1 1 ) ) )

r educe : max

object_numbers :
i tem : 4

t a r g e t :
i : 0
r0 : 8
r1 : 6

t ab l e_va l u e s :
p : { 0 : 1 , 1 : 2 , 2 : 3 , 3 : 0 }
sum_p : { 0 : 6 , 1 : 5 , 2 : 3 , 3 : 0 }
w0 : { 0 : 2 , 1 : 3 , 2 : 4 , 3 : 0 }
w1 : { 0 : 3 , 1 : 4 , 2 : 2 , 3 : 0 }
e0 : { 0 : 0 . 5 , 1 : 0 . 667 , 2 : 0 . 75 , 3 : 0 }
e1 : { 0 : 0 . 34 , 1 : 0 . 5 , 2 : 1 . 5 , 3 : 0 }

base_cases :
− − (= i 3)

Figure A.9: YAML-DyPDL domain and problem files for the multi-dimensional knapsack problem
(MDKP).



APPENDIX A. DETAILS OF YAML-DYPDL 186

cost_type : i n t e g e r
o b j e c t s :

− item
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : i tem

− name : r
type : i n t e g e r
p r e f e r e n c e : g r e a t e r

− name : k
type : e l ement
o b j e c t : i tem
p r e f e r e n c e : l e s s

t a b l e s :
− name : q

type : i n t e g e r
− name : w

type : i n t e g e r
a r g s :

− item
− name : a

type : i n t e g e r
a r g s :

− item
d e f a u l t : 0

− name : b
type : c on t i nuou s
a r g s :

− item
d e f a u l t : 0 . 0

− name : c
type : c on t i nuou s
a r g s :

− item
d e f a u l t : 0 . 0

t r a n s i t i o n s :
− name : open−and−pack

pa ramete r s :
− name : i

o b j e c t : U
e f f e c t :
U : ( remove i U)
r : (− q (w i ) )
k : (+ k 1)

c o s t : (+ 1 co s t )
p r e c o n d i t i o n s :

− (>= i k )
− f o r a l l :

− name : j
o b j e c t : U

c o n d i t i o n : (< r (w j ) )
f o r c e d : t r u e

− name : pack
pa ramete r s :

− name : i
o b j e c t : U

e f f e c t :
U : ( remove i U)
r : (− r (w i ) )

c o s t : c o s t
p r e c o n d i t i o n s :

− (>= r (w i ) )
− (>= (+ i 1) k )

base_cases :
− − ( is_empty U)

dual_bounds :
− ( c e i l (/ (− ( sum w U) r ) q ) )
− (− (+ (sum a U) ( c e i l ( sum b U) ) ) ( i f (>= r (/ q 2 . 0 ) ) 1 0 ) )
− (− ( c e i l ( sum c U) ) ( i f (>= r (/ q 3 . 0 ) ) 1 0 ) )

r educe : min

Figure A.10: YAML-DyPDL domain file for bin packing.



APPENDIX A. DETAILS OF YAML-DYPDL 187

cost_type : i n t e g e r
o b j e c t s :

− ta s k
s t a t e_ v a r i a b l e s :

− name : U
type : s e t
o b j e c t : t a s k

− name : r
type : i n t e g e r
p r e f e r e n c e : g r e a t e r

t a b l e s :
− name : q

type : i n t e g e r
− name : w

type : i n t e g e r
a r g s :

− ta s k
− name : P

type : s e t
o b j e c t : t a s k
a r g s :

− ta s k
d e f a u l t : [ ]

− name : a
type : i n t e g e r
a r g s :

− ta s k
d e f a u l t : 0

− name : b
type : c on t i nuou s
a r g s :

− ta s k
d e f a u l t : 0 . 0

− name : c
type : c on t i nuou s
a r g s :

− ta s k
d e f a u l t : 0 . 0

t r a n s i t i o n s :
− name : open−new−s t a t i o n

f o r c e d : t r u e
e f f e c t :

r : q
c o s t : (+ 1 co s t )
p r e c o n d i t i o n s :

− f o r a l l :
− name : i

o b j e c t : U
c o n d i t i o n : ( o r (> (w i ) r ) (> | ( i n t e r s e c t i o n U (P i ) ) | 0 ) )

− name : s c h edu l e
pa ramete r s :

− name : i
o b j e c t : U

e f f e c t :
U : ( remove i U)
r : (− r (w i ) )

c o s t : c o s t
p r e c o n d i t i o n s :

− ( is_empty ( i n t e r s e c t i o n U (P i ) ) )
− (<= (w i ) r )

base_cases :
− − ( is_empty U)

dual_bounds :
− ( c e i l (/ (− ( sum w U) r ) q ) )
− (− (+ (sum a U) ( c e i l ( sum b U) ) ) ( i f (>= r (/ q 2 . 0 ) ) 1 0 ) )
− (− ( c e i l ( sum c U) ) ( i f (>= r (/ q 3 . 0 ) ) 1 0 ) )

r educe : min

Figure A.11: YAML-DyPDL domain file for the simple assembly line balancing problem (SALBP-1).

cost_type : i n t e g e r
o b j e c t s :

− job
s t a t e_ v a r i a b l e s :

− name : F
type : s e t
o b j e c t : j ob

t a b l e s :
− name : ’N’

type : s e t
o b j e c t : j ob

− name : p
type : i n t e g e r
a r g s :

− job
− name : d

type : i n t e g e r
a r g s :

− job
− name : w

type : i n t e g e r
a r g s :

− job
− name : P

type : s e t
o b j e c t : j ob
a r g s :

− job

t r a n s i t i o n s :
− name : s c h edu l e

pa ramete r s :
− name : i

o b j e c t : j ob
e f f e c t :

F : ( add i F)
c o s t : (+ (∗ (w i ) (max 0 (− (+ (sum p F) ( p i ) ) ( d i ) ) ) ) c o s t )
p r e c o n d i t i o n s :

− ( not ( i s_ i n i F ) )
− ( is_empty ( d i f f e r e n c e (P i ) F ) )

base_cases :
− − (= F N)

dual_bounds :
− 0

reduce : min

Figure A.12: YAML-DyPDL domain file for single machine total weighted tardiness (1||
∑
wiTi).



APPENDIX A. DETAILS OF YAML-DYPDL 188

cost_type : i n t e g e r
o b j e c t s :

− scene
− ac t o r

s t a t e_ v a r i a b l e s :
− name : Q

type : s e t
o b j e c t : s c ene

t a b l e s :
− name : A

type : s e t
o b j e c t : a c t o r
a r g s :

− scene
− name : d

type : i n t e g e r
a r g s :

− scene
− name : c

type : i n t e g e r
a r g s :

− a c t o r
− name : db

type : i n t e g e r
a r g s :

− scene
− name : P

type : s e t
o b j e c t : s c ene
a r g s :

− scene

t r a n s i t i o n s :
− name : shoot−with−ac to r s −on−l o c a t i o n

pa ramete r s :
− name : s

o b j e c t : Q
e f f e c t :
Q: ( remove s Q)

co s t : (+ ( db s ) c o s t )
p r e c o n d i t i o n s :

− (= (A s ) ( i n t e r s e c t i o n ( un ion A Q) ( un ion A ~Q) ) )
f o r c e d : t r u e

− name : shoot
pa ramete r s :

− name : s
o b j e c t : Q

e f f e c t :
Q: ( remove s Q)

co s t : >
(+ (∗ ( d s )

( sum c ( un ion (A s )
( i n t e r s e c t i o n ( un ion A Q) ( un ion A ~Q) ) ) ) )

c o s t )
p r e c o n d i t i o n s :

− f o r a l l :
− name : t

o b j e c t : Q
c o n d i t i o n : >

( not ( and ( i s_ i n t (P s ) )
( i s_sub s e t (A t ) ( un ion ( un ion A ~Q) (A s ) ) ) ) )

base_cases :
− − ( is_empty Q)

dual_bounds :
− ( sum db Q)

reduce : min

Figure A.13: YAML-DyPDL domain file for talent scheduling.

cost_type : i n t e g e r
o b j e c t s :

− customer
s t a t e_ v a r i a b l e s :

− name : R
type : s e t
o b j e c t : customer

− name : O
type : s e t
o b j e c t : customer

t a b l e s :
− name : ’N’

type : s e t
o b j e c t : customer
a r g s :

− customer

t r a n s i t i o n s :
− name : c l o s e

pa ramete r s :
− name : c

o b j e c t : R
e f f e c t :
R : ( remove c R)
O: ( un ion O (N c ) )

c o s t : >
(max | ( un ion ( i n t e r s e c t i o n O R) ( d i f f e r e n c e (N c ) O) ) | c o s t )

base_cases :
− − ( is_empty R)

dual_bounds :
− 0

reduce : min

Figure A.14: YAML-DyPDL domain file for the minimization of open stacks problem (MOSP).



APPENDIX A. DETAILS OF YAML-DYPDL 189

cost_type : i n t e g e r
o b j e c t s :

− node
s t a t e_ v a r i a b l e s :

− name : C
type : s e t
o b j e c t : node

t a b l e s :
− name : ’N’

type : s e t
o b j e c t : node

− name : a
type : i n t e g e r
a r g s :

− node
− name : b

type : i n t e g e r
a r g s :

− node
− node

d e f a u l t : 0

t r a n s i t i o n s :
− name : sweep

pa ramete r s :
− name : c

o b j e c t : node
e f f e c t :
C : ( add c C)

co s t : (max (+ ( a c ) (+ ( sum b c N) ( sum b C ( remove c ~C ) ) ) ) c o s t )
p r e c o n d i t i o n s :

− ( not ( i s_ i n c C) )
base_cases :

− − (= C N)
dual_bounds :

− 0
reduce : min

Figure A.15: YAML-DyPDL domain file for graph-clear.



Appendix B

Mixed-Integer Programming and
Constraint Programming Models

We present the mixed-integer programming (MIP) and constraint programming (CP) models for the
combinatorial optimization problems used in the experimental evaluation.

B.1 Traveling Salesperson Problem with Time Windows

In the traveling salesperson problem with time windows (TSPTW) [377] introduced in Section 3.2.1,
a set of customers N = {0, ..., n− 1}, where 0 is the depot, the travel time cij from customer i to j,
and time window [aj , bj ] for each customer j ∈ N \ {0} are given. The objective is to minimize the
total travel time of a tour that visits each customer exactly once within time window starting from
and returning to the depot.

B.1.1 MIP Model

We use the MIP model proposed by Hungerländer and Truden [222]. They reduced edges between
customers based on time windows. A customer j can be visited after another customer i only if
ai ≤ bj . Furthermore, if there exists a customer k such that bi < ak and bk < aj , k must be visited
after i and before j.1 Therefore, edge (i, j) with i ̸= j belongs to the set of edges considered, Ẽ,
when one of the following conditions is satisfied:

• i = 0 or j = 0.

• ai ≤ bj and there does not exists k ∈ N \ {0} such that bi < ak and bk < aj .2

In the MIP model, binary decision variable xij with (i, j) ∈ Ẽ represents whether j is visited
directly after i, and integer decision variable ti represents the time when i is visited. Since we assume
that the tour starts from and ends at the depot, we introduce a decision variable tn, the time when

1The original paper used ai < bj , bi ≤ ak, and bk ≤ aj assuming cik, cij , cjk > 0.
2Since the original paper used ai < bj , bi ≤ ak, and bk ≤ aj , they explicitly included (i, j) with ai = aj and

bi = bj in addition.

190



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 191

the tour ends at the depot. In addition, the original paper considered the service time si at customer
i, but we assume si = 0;

min
∑

(i,j)∈Ẽ

cijxij (B.1)

s.t.
∑

(j,i)∈Ẽ

xji =
∑

(i,j)∈Ẽ

xij = 1 ∀i ∈ N (B.2)

ai ≤ ti ≤ bi i ∈ N \ {0} (B.3)

ti − tj + (bi − aj + cij)xij ≤ bi − aj ∀(i, j) ∈ Ẽ ∧ i ̸= 0 ∧ j ̸= 0 (B.4)

ti − c0ix0i ≥ 0 ∀i ∈ N \ {0} (B.5)

ti + ci0 ≤ tn ∀i ∈ N \ {0} (B.6)

xij ∈ {0, 1} ∀(i, j) ∈ Ẽ (B.7)

ti ≥ 0 ∀i ∈ N ∪ {n}. (B.8)

Constraint (B.2) ensures that each customer is visited once. Constraint (B.3) is the time window
constraint. Constraint (B.4) ensures that when j is visited after i, i.e., xij = 1, ti+cij ≤ tj . When j
is not visited after i, i.e., xij = 0, it becomes ti − tj ≤ bi − aj , which is always satisfied since ti ≤ bi
and tj ≥ aj . Constraints (B.5) and (B.6) ensure that the tour starts from and returns to the depot.
When the travel time is always positive, Constraints (B.4)–(B.6) are sufficient to eliminate subtours,
cycles that do not visit all customers. However, if there exists (i, j) ∈ Ẽ with cij = 0, a solution
for the above MIP model may include subtours. If there are such (i, j), the following flow-based
subtour elimination constraints [157] are added to the model before solving.

yij ≤ (n− 1)xij ∀(i, j) ∈ Ẽ (B.9)

y0i = n− 1 ∀i ∈ N \ {0} (B.10)∑
(i,j)∈Ẽ

yij −
∑

(j,k)∈Ẽ

yjk = 1 ∀j ∈ N \ {0} (B.11)

yij ≥ 0 ∀(i, j) ∈ Ẽ. (B.12)

B.1.2 CP Model

We adapt a CP model for a single machine scheduling problem with time windows and sequence-
dependent setup times [49]. We define an interval variable xi that represents visiting customer i in
[ai, bi] with the service time of 0. We use a sequence variable π to sequence the interval variables.

min
∑
i∈N

ci,TypeOfNext(π,xi) (B.13)

s.t. NoOverlap(π, {cij | (i, j) ∈ N ×N}) (B.14)

First(π, x0) (B.15)

xi : intervalVar(0, [ai, bi]) ∀i ∈ N \ {0} (B.16)

x0 : intervalVar(0, [0, 0]) (B.17)

π : sequenceVar({xi | i ∈ N}). (B.18)



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 192

In Objective (B.13), TypeOfNext(π, xi) represents the index of the next variable in sequence π. For
example, if xj comes directly after xi in π, TypeOfNext(π, xi) = j. For the last variable in the
sequence, we define TypeOfNext(π, xi) = 0. Constraint (B.14) ensures that if xj comes directly after
xi in π, the distance between them is at least cij , using cii = 0. Constraint (B.15) ensures that the
tour starts from the depot.

B.2 Capacitated Vehicle Routing Problem

In the capacitated vehicle routing problem (CVRP) [95] introduced in Section 3.3.1, a set of cus-
tomers N = {0, ..., n − 1}, where 0 is the depot, and m vehicles are given. Each customer has the
demand di, and each vehicle has the capacity q. If a vehicle visits customer i, the load increases by
di, and the total load of the vehicle must not exceed q. Visiting customer j from i incurs the travel
time cij . The objective is to visit all customers using the vehicles starting from and returning to the
depot.

B.2.1 MIP Model

We use the MIP model proposed by Gadegaard and Lysgaard [151]. The model is based on a flow-
based formulation [157] but exploits symmetry assuming that cij = cji. The idea is to represent a
route for a vehicle as two paths from the depot to one customer, called a peak customer, and consider
two flows from the depot to the peak customer. The peak customer is defined to be the customer
who has the highest index in the route. The model uses binary decision variable xij representing
visiting j directly after i. Considering a tour that visits only j, x0j can be assigned 2 in addition
to 0 and 1. A binary decision variable pi represents if i is a peak customer. To make sure that
i is the maximum index in the route when pi = 1, a decision variable ui is used, which satisfies
ui = i if pi = 1 and i ≤ ui ≤ n − 2 otherwise. Since n − 1 is always a peak customer, un−1 is not
considered. A decision variable fij represents the load of the vehicle when it visits j directly after i,



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 193

and ti represents the total load of the route whose peak customer is i.

min
∑

i∈N,j∈N\{i}

cijxij (B.19)

s.t.
∑

j∈N\{i}

xji − pi =
∑

j∈N\{i}

xij + pi = 1 ∀i ∈ N \ {0}

(B.20)

ti +
∑

j∈N\{i}

fij =
∑

k∈N\{i}

fki + qi ∀i ∈ N \ {0}

(B.21)

dixij ≤ fij ≤ (q − dj)xij ∀i ∈ N \ {0}, j ∈ N \ {0, i}
(B.22)

dipi ≤ ti ≤ qpi ∀i ∈ N \ {0}
(B.23)∑

i∈N\{0}

x0i = 2m (B.24)

∑
i∈N\{0}

pi = m (B.25)

i ≤ ui ≤ ipi + (n− 2)(1− pi) ∀i ∈ N \ {0, n− 1}
(B.26)

ui − uj + (n− j − 2)xij + (n−max{i, j} − 2)xji ≤ n− j − 2 ∀i ∈ N \ {0, n− 1}
(B.27)

∑
i∈N :i≥j

pi ≥


∑

i∈N :i≥j

di/q

 ∀j ∈ N \ {0}

(B.28)

xij ∈ {0, 1} ∀i ∈ N \ {0}, j ∈ N \ {0, i}
(B.29)

x0j ∈ {0, 1, 2} ∀j ∈ N \ {0}
(B.30)

pi ∈ {0, 1} ∀i ∈ N \ {0}.
(B.31)

Constraint (B.20) ensures that all customers, excluding the depot and peak customers, are visited
only once by paths from the depot to a peak customer. Since

∑
j∈N\{i} xji = 2 if pi = 1, a peak

customer is visited by two paths forming a tour. Similarly, since
∑
j∈N\{i} xij = 0 if pi = 1,

no customer is visited from a peak customer. Constraints (B.21)–(B.23) are capacity constraints,
considering capacity increase at each customer. Constraints (B.24) and (B.25) ensure that there are
2m paths and m peak customers, corresponding to m routes. Constraints (B.26) and (B.27) ensure
that pi = 1 iff i is the maximum index in the route visiting i. Constraint (B.28) is a valid inequality,
which is redundant but improves the performance.



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 194

B.2.2 CP Model

We use the CP model proposed by Rabbouch, Saâdaoui, and Mraihi [350]. The model has interval
variable xi representing visiting customer i, optional interval variable yki representing visiting cus-
tomer i using the k-th vehicle, and sequence variable πk representing the tour of the k-th vehicle.
We use xn and ykn to represent returning to the depot.

min

m∑
k=1

∑
i∈N

ci,TypeOfNext(πk,yki) (B.32)

s.t. NoOverlap(πk, {cij | (i, j) ∈ N ×N}) k = 1, ...,m (B.33)

First(πk, yk0) k = 1, ...,m (B.34)∑
i∈N

diPres(yki) ≤ q k = 1, ...,m (B.35)

Alternative(xi, {yki | k = 1, ...,m}) i ∈ N \ {0} (B.36)

xi : intervalVar(1, [0,∞)) i ∈ N (B.37)

yk0 : intervalVar(1, [0,∞)) k = 1, ...,m (B.38)

yki : optIntervalVar(1, [0,∞)) k = 1, ...,m, i ∈ N \ {0} (B.39)

πk : sequenceVar({yki | i ∈ N}) k = 1, ...,m (B.40)

We assume that TypeOfNext(πk, yki) returns i if yki is not present and cii = 0. For the last interval
variable in πk, we assume TypeOfNext(πk, yki) = 0. Constraint (B.35) is the capacity constraint,
where Pres(yki) = 1 if yki presents and Pres(yki) = 0 otherwise. Constraint (B.36) ensures that only
one optional interval variable presents from {yki | k = 1, ...,m}, i.e., each customer is visited by one
vehicle.

B.3 Multi-Commodity Pickup and Delivery TSP

In the multi-commodity pickup and delivery traveling salesperson problem (m-PDTSP) [208] intro-
duced in Section 3.3.2, a set of customers N = {0, ..., n− 1}, a set of edges A ⊆ N ×N , and a set of
commodities M = {0, ...,m − 1} are given. Each commodity k has the weight wk and is picked up
at customer pk ∈ N and delivered to dk ∈ N . The total weight of picked-up commodities must not
exceed the capacity q. Visiting customer j directly after i is possible only if (i, j) ∈ A and incurs the
travel time cij . The objective is to minimize the total travel time to deliver all commodities while
visiting each customer exactly once, starting from 0, and finishing at n− 1.

Previous work proved that some edges can be removed from A without loss of optimality [9, 15,
125, 184, 287]. The set of customers that must be visited before i is given by Pi = {pk | k ∈ M :

dk = i} ∪ {0}, and let P = {(i, j) ∈ N ×N | i ∈ Pj}. We define Pn−1 = N \ {n− 1}. The set of all
customers that must be visited before i is given by

P̃i = {j ∈ N | j ∈ Pi ∨ ∃k ∈ P̃j , j ∈ P̃k}. (B.41)



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 195

Similarly, the set of all customers that must be visited after i is given by

S̃i = {j ∈ N | i ∈ Pj ∨ ∃k ∈ S̃i, j ∈ S̃k}. (B.42)

Let P̃ = {(i, j) ∈ N ×N | i ∈ P̃j} and P− = {(i, j) ∈ P̃ | S̃i ∩ P̃j = ∅}. In other words, P− is the
set of precedence relations that cannot be inferred from other precedence relations. It is known that
edge (i, j) can be removed from A without loss of optimality if (j, i) ∈ P̃ or (i, j) ∈ P̃ \ P− [9, 15,
125].

Gouveia and Ruthmair [184] proposed removing edges based on the capacity. They construct a
weighted graph (N,P−) with the following procedure:

• Initialize the graph with (N,P ), where the weight of edge (pk, dk) ∈ P is wk.

• While there exists an edge (pk, dk) ∈ P \ P̃ in the graph, remove (pk, dk) and increase the
weight of each edge in paths from pk to dk by wk.

Let the weight of edge (p, d) in the resulting graph be w−
pd. We can remove edge (i, j) from A if one

of the following conditions is satisfied:

•
∑

(p,d)∈P−∧p∈N\{i,j}∧d∈{i,j} w
−
pd > q.

•
∑

(p,d)∈P−∧((p=i∧d∈N\{i})∨(p∈N\{j}∧d=j)) w
−
pd > q.

•
∑

(p,d)∈P−∧p∈{i,j}∧d∈N\{i,j} w
−
pd > q.

In the MIP, CP, and DyPDL models, edges satisfying the above conditions are removed from A. In
what follows, we assume that A does not contain such edges.

B.3.1 MIP Model

We use the MCF2C+IP formulation by Letchford and Salazar-González [287]. In this MIP model,
binary decision variable xij represents traveling from i to j, and fpdij represents traveling from i to
j after visiting p and before visiting d. If any of the following conditions are satisfied, we can use
fpdij = 0 without loss of optimality.

• i ∈ P̃p ∪ S̃d ∪ {d}.

• j ∈ P̃p ∪ S̃d ∪ {p}.

•
∑

(k,i)∈P− w
−
ki +

∑
(k,j)∈P− w

−
kj + w−

pd > q.

•
∑

(k,l)∈P−:(k=i∧l∈N\{i})∨(k∈N\{j}∧l=j) w
−
kl + w−

pd > q.

•
∑

(i,k)∈P− w
−
ik +

∑
(j,k)∈P− w

−
jk + w−

pd > q.

Let F be the set of (p, d, i, j) satisfying one of the above conditions. We use δi =
∑
k∈M :pk=i

wi −∑
k∈M :dk=i

wi, i.e., the net load increase at customer i. Let πi be the set of edges in a shortest path



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 196

from 0 to j in the graph (N,P−), which is precomputed.

min
∑

(i,j)∈A

cijxij (B.43)

s.t.
∑

(i,j)∈A

xij = 1 ∀i ∈ N \ {n− 1}

(B.44)∑
(i,j)∈A

xij = 1 ∀j ∈ N \ {0}

(B.45)∑
(p,j)∈A

fpdpj −
∑

(j,p)∈A

fpdjp = 1 ∀(p, d) ∈ P−

(B.46)∑
(d,j)∈A

fpddj −
∑

(j,d)∈A

fpdjd = −1 ∀(p, d) ∈ P−

(B.47)∑
(i,j)∈A

fpdij −
∑

(j,i)∈A

fpdji = 0 ∀(p, d) ∈ P−,∀i ∈ P− \ {p, d}

(B.48)

0 ≤ fpdij ≤ xij ∀(p, d) ∈ P−, (i, j) ∈ A
(B.49)∑

(p,d)∈P−

w−
pdf

pd
ij ≤ (q −max{0,−δi, δj})xij ∀a ∈ A

(B.50)∑
(p,d)∈πj

∑
(i,k)∈A

fpdik +
∑

(p,d)∈πi

∑
(j,k)∈A

fpdjk = 1 ∀i, j ∈ N \ {0, n− 1}, i ̸= j, (i, j) /∈ P̃ , (j, i) /∈ P̃

(B.51)

fpdij = 0 ∀(p, d, i, j) ∈ F
(B.52)

xij ∈ {0, 1} (i, j) ∈ A.
(B.53)

Constraints (B.46)–(B.49) ensure pickup and delivery while eliminating subtours. Constraint (B.50)
is an enhanced version of the capacity constraint. Constraint (B.51) is a valid inequality.



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 197

B.3.2 CP Model

We use the CP model proposed by Castro, Cire, and Beck [65]. The model uses interval variable xi
representing visiting customer i. Let u be an upper bound on the objective cost.

min StartOf(xn−1)− n+ 1 (B.54)

s.t. NoOverlap(π, {cij | (i, j) ∈ N ×N}) (B.55)

Before(π, xi, xj) ∀j ∈ N, i ∈ Pj (B.56)∑
i∈N

StepAtStart(xi, δi) ≤ q (B.57)

First(π, x0) (B.58)

Last(π, xn−1) (B.59)

xi : intervalVar(1, [0, u+ n]) i ∈ N (B.60)

π : sequenceVar({xi ∈ N}). (B.61)

In Objective (B.54), StartOf(xn−1) represents the time when xn−1 starts, i.e., when n− 1 is visited.
In Constraint (B.55), we use cii = 0 and cij = u+ n if (i, j) /∈ A. Constraint (B.56) ensures that xi
presents before xj in π if i ∈ Pj . Constraint (B.57) is the capacity constraint, representing that the
load increases by δi at customer i and must not exceed the capacity q. Constraint (B.59) ensures
that n− 1 is visited at the end. In our implementation, we use u =

∑n
i=0 maxj∈N :(i,j)∈A cij .

B.4 Orienteering Problem with Time Windows

In the orienteering problem with time windows (OPTW) [238] introduced in Section 3.3.3, we are
given a set of customers N = {0, ..., n−1}, the travel time cij from customer i to j, and the profit pi
of customer i. A customer can be visited within the time window [ai, bi]. We start from the depot
(0) and need to return to the depot by b0. The objective is to maximize the total profit of customers
visited.

B.4.1 MIP Model

We use the MIP model based on Vansteenwegen, Souffriau, and Oudheusden [433]. This model uses
binary decision variable xij that represents visiting j from i and decision variable ti that represents
the time i is visited. We introduce xin that represents returning to the depot from i and tn that



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 198

represents the time to return to the depot, using ci0 = cin.

max
∑

i∈N\{0}

∑
j∈(N\{0,i})∪{n}

pixij (B.62)

s.t.
∑

i∈(N\{0})∪{n}

x0i =
∑
i∈N

xin = 1 (B.63)

∑
i∈N\{j}

xij ≤ 1 ∀j ∈ (N \ {0}) ∪ {n} (B.64)

∑
j∈(N\{0,i})∪{n}

xij ≤ 1 ∀i ∈ N (B.65)

ti + cij − tj ≤M(1− xij) ∀i ∈ N, j ∈ (N \ {0, i}) ∪ {n} (B.66)

0 ≤ tn ≤ b0 (B.67)

ai ≤ ti ≤ bi ∀i ∈ N (B.68)

xij ∈ {0, 1} ∀i ∈ N, j ∈ (N \ {0, i}) ∪ {n} (B.69)

where M is an upper bound of the left-hand side in Constraint (B.66). In our implementation, we
use M = bi+ cij − aj . Differently from Vansteenwegen, Souffriau, and Oudheusden, we do not have
a separate time budget from b0.

B.4.2 CP Model

In our CP model, we define an optional interval variable xi that represents visiting customer i in
[ai, bi]. We also introduce an interval variable xn that represents returning to the depot (0) and
define cii = 0, cin = ci0, and cni = c0i for each i ∈ N .

max
∑

i∈N\{0}

piPres(xi) (B.70)

s.t. NoOverlap(π, {cij | (i, j) ∈ (N ∪ {n})× (N ∪ {n})}) (B.71)

First(π, x0) (B.72)

Last(π, xn) (B.73)

xi : optIntervalVar(0, [ai, bi]) ∀i ∈ N \ {0} (B.74)

x0 : intervalVar(0, [0, 0]) (B.75)

xn : intervalVar(0, [0, b0]) (B.76)

π : sequenceVar({x0, ..., xn}). (B.77)

B.5 Multi-Dimensional Knapsack Problem

In the multi-dimensional knapsack problem (MDKP) [306, 249] introduced in Section 3.3.4, we
are given a set of items N , the profit pi of item i, the capacity qj of the knapsack in dimension
j = 0, ...,m− 1, and the weight wij of item i in dimension j. The objective is to maximize the total
profit of items included in the knapsack.



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 199

B.5.1 MIP Model

We use the MIP model described in Cacchiani et al. [61]. The model has binary decision variable xi
representing whether item i is included in the knapsack or not.

max
∑
i∈N

pixi (B.78)

s.t.
∑
i∈N

wijxi ≤ qj j = 0, ...,m− 1 (B.79)

xi ∈ {0, 1} ∀i ∈ N. (B.80)

B.5.2 CP Model

In our CP model, we use the Pack global constraint [391] and consider packing all items into two
bins; one represents the knapsack, and the other represents items not selected. We introduce a
binary variable xi representing the bin where item i is packed (xi = 0 represents that the item is in
the knapsack). We define an integer variable yj0 representing the total weight of the items in the
knapsack in dimension j and yj1 representing the total weight of the items not selected.

max
∑
i∈N

pi(1− xi) (B.81)

s.t. Pack({yj0, yj1}, {xi | i ∈ N}, {wij | i ∈ N}) j = 0, ...,m− 1 (B.82)

yj0 ≤ qj j = 0, ...,m− 1 (B.83)

yj0, yj1 ∈ Z+
0 j = 0, ...,m− 1 (B.84)

xi ∈ {0, 1} ∀i ∈ N. (B.85)

B.6 Bin Packing

In bin packing [306] introduced in Section 3.3.5, we are given a set of items N = {0, ..., n− 1}, the
weight wi of each item i ∈ N , and the capacity of a bin q. The objective is to minimize the number
of bins to pack all items. In the MIP and CP models, we compute the upper bound m̄ on the number
of bins using the first-fit decreasing (FFD) heuristic and use M = {0, ..., m̂ − 1}. FFD selects an
item in a non-decreasing order of weights and packs it in the first bin where it fits. If there is no
such bin, FFD opens a new bin.

B.6.1 MIP Model

We use the MIP model described in Delorme, Iori, and Martello [99], which extends a model in
Martello and Toth [306] with symmetry breaking. In this model, binary decision variable xij repre-
sents that item i is included in bin j, and yj represents whether bin j is opened. We define xij only



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 200

for i ≤ j, i.e., item i is packed in bin j or earlier, to break the symmetry.

min
∑
j∈M

yj (B.86)

s.t.
∑
i∈N

wixij ≤ qyj ∀j ∈M (B.87)∑
j∈M :i≤j

xij = 1 ∀i ∈ N (B.88)

yj ∈ {0, 1} ∀j ∈M (B.89)

xij ∈ {0, 1} ∀i ∈ N, j ∈M, i ≤ j. (B.90)

B.6.2 CP Model

In our CP model, we use xi to represent the index of the bin where item i is packed and yj to
represent the total weight of items packed in bin j. We use Pack and ensure that item i is packed
in bin i or earlier.

minmax
i∈N

xi + 1 (B.91)

s.t. Pack({yj | j ∈M}, {xi | i ∈ N}, {wi | i ∈ N}) (B.92)

0 ≤ yj ≤ q ∀j ∈M (B.93)

0 ≤ xi ≤ i ∀i ∈ N (B.94)

yj ∈ Z ∀j ∈M (B.95)

xi ∈ Z ∀i ∈ N. (B.96)

B.7 Simple Assembly Line Balancing Problem

In the simple assembly line balancing problem (SALBP-1) [374, 22] introduced in Section 3.3.6, in
addition to tasks N and the capacity q of a station as in bin packing, we are given Pi, the set of the
predecessors of task i. A task has weight wi, and the total weight of tasks scheduled in one station
must not exceed q. The objective is to minimize the number of stations to schedule all tasks satisfying
the precedence constraints. In the MIP and CP Model, we use m̄ = min{n, 2⌈

∑
i∈N wi/q⌉} as an

upper bound on the number of stations, following Ritt and Costa [363], and use M = {0, ..., m̄− 1}.
We also use the set of all direct and indirect predecessors of task i, P̃i = {j ∈ N | j ∈ Pi ∨ ∃k ∈
P̃j , j ∈ P̃k}. Similarly, the set of all direct and indirect successors of task i is S̃i = {j ∈ N | i ∈
Pj ∨ ∃k ∈ S̃i, j ∈ S̃k}.

B.7.1 MIP Model

We use the NF4 formulation by Ritt and Costa [363]. In this model, binary decision variable xij
represents that task i is scheduled in station j, and yj represents whether station j is opened. Let
ei be the index of the earliest station and li be the index of the latest station where task i can be
scheduled. Then, xij is defined only for i and j such that ei ≤ j ≤ li. We also use lij , the latest



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 201

possible station where task i can be scheduled when we use at most j stations.

min
∑
j∈M

yj (B.97)

∑
i∈N :ei≤j≤li

wixij ≤ qyj ∀j ∈M (B.98)

li∑
j=ei

xij = 1 ∀i ∈ N (B.99)

lp∑
k=ep:k≤j

xpk ≥
li∑

k=ei:k≤j

xik ∀i ∈ N, p ∈ Pi, j ∈M (B.100)

li∑
k=ei:k≥lij

xik ≤ yj ∀i ∈ N, j ∈M (B.101)

xij ∈ {0, 1} ∀i ∈ N, j ∈M, ei ≤ j ≤ li. (B.102)

Constraint (B.100) is the precedence constraint. Constraint (B.101) is a valid inequality. Following
Ritt and Costa, we use ei =

⌈
wi+

∑
j∈P̃i

wj

q

⌉
, li = m + 1 −

⌈
wi+

∑
j∈S̃i

wj

q

⌉
, and lij = j + 1 −⌈

wi+
∑

k∈S̃i
wk

q

⌉
.

B.7.2 CP Model

We implement the CP model proposed by Bukchin and Raviv [54] with the addition of Pack. Let
m be the number of stations, xi be the index of the station of task i, and yj be the sum of the

weights of tasks scheduled in station j. We use ei =
⌈
wi+

∑
k∈P̃i

wk

q

⌉
, a lower bound on the number of

stations required to schedule task i, li =
⌊
wi−1+

∑
k∈S̃i

wk

q

⌋
, a lower bound on the number of stations

between the station of task i and the last station, and dij =
⌊
wi+wj−1+

∑
k∈S̃i∩P̃j

wk

q

⌋
, a lower bound

on the number of stations between the stations of tasks i and j.

min m (B.103)

s.t. Pack({yj | j ∈M}, {xi | i ∈ N}, {wi | i ∈ N}) (B.104)

0 ≤ yj ≤ q ∀j ∈M
(B.105)

ei − 1 ≤ xi ≤ m− 1− li ∀i ∈ N
(B.106)

xi + dij ≤ xj ∀j ∈ N, ∀i ∈ P̃j , ̸ ∃k ∈ S̃i ∩ P̃j : dij ≤ dik + dkj

(B.107)

m ∈ Z (B.108)

yj ∈ Z ∀j ∈M
(B.109)

xi ∈ Z ∀i ∈ N.
(B.110)



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 202

Constraint (B.106) states the lower and upper bounds on the index of the station of i. Con-
straint (B.107) is an enhanced version of the precedence constraint using dij . In the original paper,
m is computed by a heuristic.

B.8 Single Machine Total Weighted Tardiness

In single machine total weighted tardiness (1||
∑
wiTi) [123] introduced in Section 3.3.7, we are given

a set of jobs N , the processing time pi of job i, the deadline di for i, the weight wi for i, and the
set Pi of jobs processed before i, extracted by preprocessing in Kanet [237]. We schedule jobs in a
single machine, and the objective is to minimize the total weighted tardiness, which is computed as∑
i∈N wimax{Ci − di, 0}, where Ci is the completion time of job i.

B.8.1 MIP Model

For MIP, we use the F4 formulation, which is based on using assignment and positional date variables
[248]. In this model, binary decision variable uik represents whether job i ∈ N is assigned to position
k ∈ {0, ..., |N | − 1}, i.e., i is the k-th job in the schedule if uik = 1. Decision variable γk represents
the completion time of the k-th job, Ci represents the completion time of job i, and Ti represents
the tardiness of job i.

min
∑
i∈N

wiTi (B.111)

s.t.
|N |−1∑
k=0

uik = 1 ∀i ∈ N (B.112)∑
i∈N

uik = 1 k = 0, ..., |N | − 1 (B.113)

γ0 ≥
∑
i∈N

piui0 (B.114)

γk ≥ γk−1 +
∑
i∈N

piuik k = 1, ..., |N | − 1 (B.115)

Ci ≥ γk −M(1− uik) ∀i ∈ N, k = 0, ..., |N | − 1 (B.116)

Ti ≥ Ci − di ∀i ∈ N (B.117)

γk ≥ 0 k = 0, ..., |N | − 1 (B.118)

Ci, Ti ≥ 0 ∀i ∈ N (B.119)

uik ∈ {0, 1} ∀i ∈ N, k = 0, ..., |N | − 1 (B.120)

where M in Constraint (B.116) is an upper bound on γk. We use M =
∑
i∈N pi. Constraints (B.112)

and (B.113) ensure that each job is assigned a position, and each position is assigned to a job. Con-
straints (B.114) and (B.115) ensure that γk is the completion time of position k. Constraints (B.116)
and (B.119) ensure that Ci is the completion time of job i since Ci ≥ γk if uik = 1 and Ci ≥ 0

otherwise. Constraints (B.117) and (B.119) ensure that Ti is the tardiness of job i. While valid in-
equalities are proposed in the original paper, we do not use them since the performance was degraded
in our preliminary experiment. We do not use precedence constraints extracted by preprocessing for



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 203

the same reason.

B.8.2 CP Model

We use an interval variable xi with the duration pi and the starting time within [0,
∑
j∈N pj ],

representing the time interval when job i is processed.

min
∑
i∈N

wimax{EndOf(xi)− di, 0} (B.121)

s.t. NoOverlap(π) (B.122)

Before(π, xi, xj) ∀j ∈ N, i ∈ Pj (B.123)

xi : intervalVar

pi,
0,∑

j∈N
pj

 ∀i ∈ N (B.124)

π : seqeunceVar({xi | i ∈ N}). (B.125)

In Objective (B.121), EndOF(xi) is the time when xi ends in π.

B.9 Talent Scheduling

In talent scheduling [74] introduced in Section 3.3.8, we are given a set of scenes N = {0, ..., n− 1},
a set of actors A = {0, ...,m− 1}, the set of actors As ⊆ A playing in scene s, and the set of scenes
Na ⊆ N where actor a plays. A scene s has duration ds. An actor a is on location from the first to
the last days that require a. We need to pay the cost ca per day when actor a is on location. The
objective is to minimize the total cost of shooting all scenes.

Garcia de la Banda, Stuckey, and Chu [153] proposed the following preprocessing methods to
reduce the size of an instance:

• Remove actor a if a plays in only one scene s. The total cost for the original problem is
reconstructed by adding dsca to the total cost of the reduced problem.

• Merge two scenes s and s′ with as = as′ into a single scene s′′ with as′′ = as and ds′′ = ds+ds′ .

The MIP, CP, and DyPDL models use the above preprocessing methods.

B.9.1 MIP Model

We use the MIP model proposed by Qin et al. [349]. In this model, binary decision variable xsr
represents if scene r is shot immediately after scene s. We introduce dummy scenes −1 and n

representing the first and last scenes. Integer decision variable ts represents the starting day of
scene s, ea represents the day actor a comes to the location, and la represents the day actor a leaves



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 204

the location. An auxiliary variable zsr represents trxsr.

min
∑
a∈A

ca(la − ea + 1) (B.126)

s.t.
∑
s∈N

x−1,s =
∑
s∈N

xsn = 1 (B.127)∑
r∈(N\{s})∪{n}

xsr =
∑

(r∈N\{s})∪{−1}

xrs = 1 ∀s ∈ N (B.128)

t−1 = 0 (B.129)

tn =
∑
s∈N

ds + 1 (B.130)∑
r∈N\{s}

zsr = ts + ds ∀s ∈ N ∪ {−1} (B.131)

ea ≤ ts ∀s ∈ N, a ∈ As (B.132)

ts + ds − 1 ≤ la ∀s ∈ N, a ∈ As (B.133)

0 ≤ zsr ≤ tr ∀s ∈ N ∪ {−1}, r ∈ N \ {s} (B.134)

tr +M(xsr − 1) ≤ zsr ≤Mxsr ∀s ∈ N ∪ {−1}, r ∈ N \ {s} (B.135)

xsr ∈ {0, 1} ∀s ∈ N ∪ {−1}, r ∈ (N \ {s}) ∪ {n} (B.136)

ea, la ∈ Z+
0 ∀a ∈ A (B.137)

ts ∈ Z+
0 ∀s ∈ N ∪ {−1, n} (B.138)

where M in Constraint (B.135) is an upper bound on trxsr. We use M =
∑
s∈N ds. Con-

straints (B.127) and (B.128) ensure that all scenes are shot, and each scene is shot once. Con-
straints (B.129)–(B.131) ensure that ts is the day when s is shot. Constraints (B.132) and (B.133)
ensure that actor a is on location from day ea to day la, which are used in Objective (B.126).
Constraints (B.134) and (B.135) ensure that zsr = tsxsr.

B.9.2 CP Model

We extend the model used by Chu and Stuckey [78], originally implemented with MiniZinc [326],
with the AllDifferent global constraint [280]. Let xk be a variable representing the k-th scene in the
schedule, bsk be a variable representing if scene s is shot before the k-th scene, oak be a variable
representing if any scene in Na is shot by the k-th scene, and fak be a variable representing if all



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 205

scenes in Na finish before the k-th scene. The CP model is

min

|N |−1∑
k=0

dxk

∑
a∈A

caoak(1− fak) (B.139)

s.t. AllDifferent({xk | k = 0, ..., |N | − 1}) (B.140)

bs0 = 0 ∀s ∈ N (B.141)

bsk = bs,k−1 + 1(xk−1 = s) ∀s ∈ N, k = 1, ..., |N | − 1 (B.142)

bsk = 1→ xk ̸= s ∀s ∈ N, k = 1, ..., |N | − 1 (B.143)

oa0 = 1

( ∨
s∈Na

x0 = s

)
∀a ∈ A (B.144)

oak = 1

(
oa,k−1 = 1 ∨

∨
s∈Na

xk = s

)
∀a ∈ A, k = 1, ..., |N | − 1 (B.145)

fak =
∏
s∈Na

bsk ∀a ∈ A, k = 0, ..., |N | − 1 (B.146)

xk ∈ N k = 0, ..., |N | − 1 (B.147)

bsk, fsk ∈ {0, 1} ∀s ∈ N, k = 0, ..., |N | − 1 (B.148)

where 1 is a function that returns 1 if a given condition holds and 0 otherwise. In Objective (B.139),
oak(1 − fak) represents if actor a is on location when the k-th scene is shot. Constraint (B.140)
(AllDifferent) is redundant, but it slightly improved the performance in our preliminary experiment.
Other constraints logically declare the relationships between the decision variables.

B.10 Minimization of Open Stacks Problem

In the minimization of open stacks problem (MOSP) [446] introduced in Section 3.3.9, a set of
customers C and a set of products P are given, and each customer c orders a subset of products
Pc ⊆ P . We decide the order in which products are produced. The stack for customer c is opened
when product p ∈ Pc is produced and is closed when all products in Pc are produced. The objective
is to minimize the maximum number of open stacks at a time.

B.10.1 MIP Model

We use the MOSP-ILP-I formulation proposed by Martin, Yanasse, and Pinto [307]. Similar to
the DyPDL model, this model considers the order in which stacks are closed. Let Nc = {c′ ∈ C |
Pc ∩ Pc′ ̸= ∅} be the set of customers that order the same product as c. Binary decision variable
xck represents that stack for customer c is closed at time step k, and yck represents that stack for
c has been opened (and was possibly closed) up to k. Integer decision variable V represents the
objective. Let l be a lower bound on the objective. After closing |N |−l stacks, since only l stacks are
remaining, the order in which these stacks are closed does not change the objective value. Therefore,
the model considers closing all remaining stacks at time step |N | − l, and xck and yck are defined



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 206

for k = 0, ..., |N | − l.

min V (B.149)

s.t.
∑
c∈C

xck = 1 k = 0, ..., |N | − l − 1 (B.150)∑
c∈C

xc,|N |−l = l (B.151)

|N |−l∑
k=0

xck = 1 ∀c ∈ C (B.152)

∑
d∈Nc

k∑
i=0

xdi ≤ min{k, |Nc|}yck ∀c ∈ C, k = 0, ..., |N | − l − 1 (B.153)

yc,|N |−l = 1 ∀c ∈ C (B.154)

V ≥
∑
c∈C

yck − k k = 0, ..., |N | − l (B.155)

xck ∈ {0, 1} ∀c ∈ C, k = 0, ..., |N | − l (B.156)

yck ∈ {0, 1} ∀c ∈ C, k = 0, ..., |N | − l (B.157)

V ∈ Z+
0 . (B.158)

Constraints (B.150) and (B.151) ensure that one stack is closed at time step t ≤ |N | − l − 1, and
l stacks are closed at t = |N | − l. Constraint (B.152) ensures that each stack is closed only once.
Constraints (B.153) and (B.154) ensure that yct = 1 if stack for customer c has been opened up to t.
Constraint (B.155) ensure that V is the maximum number of open stacks at a time since

∑
c∈C yck

stacks have been opened and k stacks have been closed at time step k. Following Martin, Yanasse,
and Pinto, we use l = minc∈C |NC |.

B.10.2 CP Model

Martin, Yanasse, and Pinto [307] also proposed a CP model. The model considers the order in which
products are produced and uses interval variable xp representing that product p is produced. It also
uses interval variable yc representing the duration when the stack for customer c is opened, which
has a variable length in [|Pc|, |P |]. The objective is represented by integer decision variable V .

min V (B.159)

s.t. NoOverlap(π) (B.160)

Span(yc, {xp | p ∈ Pc}) ∀c ∈ C (B.161)

V ≥
∑
c∈C

Pulse(yc, 1) (B.162)

xp : intervalVar(1, [0, |P |]) ∀p ∈ P (B.163)

yc : intervalVar([|Pc|, |P |], [0, |P |]) ∀c ∈ C (B.164)

π : sequenceVar({xp | p ∈ P}) (B.165)

V ∈ Z+
0 . (B.166)



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 207

Constraints (B.160), (B.163), and (B.165) ensure that {xp | p ∈ P} are ordered in one sequence, and
each interval variable has the duration of 1, starts in [0, |P | − 1], and finishes in [1, |P |]. In contrast,
the interval variables {yc | c ∈ C} defined in Constraint (B.164) can overlap and have variable
durations. Constraint (B.161) ensures that yc covers interval variables {xp | p ∈ Pc}, i.e., the stack
for customer c is open during products in Pc are produced. In Constraint (B.162), Pulse(yc, 1) states
that the right-hand side increases by 1 during the time duration covered by yc. Thus, the maximum
value of the right-hand side over time corresponds to the maximum number of open stacks at a time.

B.11 Graph-Clear

In graph-clear [256] introduced in Section 3.3.10, an undirected graph (N,E) is given, where the
weight of node i ∈ N is ai, and the weight of edge {i, j} ∈ E is bij . Initially, all nodes are
contaminated. In each step, one node i is swept by ai robots, and each edge {i, j} connected to i
must be blocked by bij robots. A node becomes clean when it is swept, but it becomes contaminated
again if any path connecting the node and a contaminated node is not blocked. The objective
is to make all nodes clean while minimizing the maximum number of robots used at a time. As
described in Section 3.3.10, there exists an optimal solution where already swept nodes never become
contaminated again [317]. In such an optimal solution, given a set of swept nodes C, to clean node
c, we need to use ac +

∑
i∈N :{c,i}∈E bci +

∑
i∈C

∑
j∈(N\C)\{c}:{i,j}∈E bij robots to block all edges

connecting swept nodes and contaminated nodes. The MIP, CP, and DyPDL models are based
on this observation. In the MIP and CP models proposed by Morin et al. [317], the objective is
represented by a decision variable Z, and lower and upper bounds Z and Z are used. Following
Morin et al., we use Z = 1 and Z = maxc∈N ac +

∑
{i,j}∈E bij .



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 208

B.11.1 MIP Model

In the MIP model proposed by Morin et al. [317], binary decision variable xik represents if node i is
clean at time step k, and yijk represents if edge {i, j} is blocked at time step k.

min Z (B.167)

s.t. Z ≥
∑
i∈N

aixi0 +
∑

{i,j}∈E

bijyij0 (B.168)

Z ≥
∑
i∈N

ai(xik − xi,k−1) +
∑

{i,j}∈E

bijyijk k = 1, ..., |N | − 1 (B.169)

∑
i∈N

xik = k k = 0, ..., |N | − 1 (B.170)

xik ≤ xi,k+1 ∀i ∈ N, k = 0, ..., |N | − 2 (B.171)

xik − xjk ≤ yijk ∀{i, j} ∈ E, k = 0, ..., |N | − 1 (B.172)

xjk − xik ≤ yijk ∀{i, j} ∈ E, k = 0, ..., |N | − 1 (B.173)

xik − xi,k−1 ≤ yijk ∀{i, j} ∈ E, k = 1, ..., |N | − 1 (B.174)

xik ∈ {0, 1} ∀i ∈ N, k = 0, ..., |N | − 1 (B.175)

yijt ∈ {0, 1} ∀{i, j} ∈ E, k = 0, ..., |N | − 1 (B.176)

Z ≤ Z ≤ Z. (B.177)

Constraints (B.169) and (B.170) ensure that the objective is to minimize the maximum number of
robots used at a time. Constraint (B.170) ensures that one node is swept at each time step. Con-
straint (B.171) states that a swept node never becomes contaminated again. Constraints (B.172)
and (B.173) ensure that edges connecting clean and contaminated nodes are blocked, and Con-
straint (B.174) ensures that edges connected to the node being swept are blocked.

B.11.2 Node-Based CP Model (CPN)

Since edges connecting clean and contaminated nodes are blocked, an edge {i, j} starts to be blocked
when either i or j is swept, and it is released after the remaining one is swept. Since an already swept
node never becomes contaminated again, the edge will never be blocked again after released. Based
on this observation, in the node-based CP model (CPN) proposed by Morin et al. [317], integer
decision variable lij represents the time step when {i, j} starts to be blocked, and uij represents the
time step when {i, j} is released. Integer decision variable ti represents the time step at which node
i is swept. In addition, integer decision variable sk represents the cost to sweep a node, rk represents
the cost to block edges that are not connected to the node being swept at time step k. To define
domains of these variables, the maximum cost to sweep a node, s, and the maximum cost to block
edges, r, are used. Binary decision variable yijk represents if edge {i, j} is blocked at time step k



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 209

while i and j are not being swept.

min Z (B.178)

s.t. Z = max
k=0,...,|N |−1

sk + rk (B.179)

ti = k → sk = ai +
∑

j∈N :{i,j}∈E

bij ∀i ∈ N, k = 0, ..., |N | − 1 (B.180)

AllDifferent({ti | i ∈ N}) (B.181)

ti < tj → lij = ti ∀{i, j} ∈ E (B.182)

ti < tj → uij = tj ∀{i, j} ∈ E (B.183)

(lij ≤ k ∧ uij ≥ k) ∧ (ti ̸= k ∧ tj ̸= k)→ yijk = 1 ∀{i, j} ∈ E, k = 0, ..., |N | − 1 (B.184)

rk =
∑

{i,j}∈E

bijyijt k = 0, ..., |N | − 1 (B.185)

ti ∈ {0, ..., |N | − 1} ∀i ∈ N (B.186)

lij , uij ∈ {0, ..., |N | − 1} ∀{i, j} ∈ E (B.187)

sk ∈ {1, ..., s} k = 0, ..., |N | − 1 (B.188)

rk ∈ {1, ..., r} k = 0, ..., |N | − 1 (B.189)

yijt ∈ {0, 1} k = 0, ..., |N | − 1 (B.190)

Z ≤ Z ≤ Z (B.191)

Z ∈ Z+. (B.192)

Constraint (B.179) ensures that Z is the objective. Constraint (B.180) ensures that sk is the cost to
sweep node i at time step k. Constraints (B.182) and (B.183) ensure that lij is the time step when
edge {i, j} starts to be blocked, and uij is the time step when {i, j} is released. Constraint (B.184)
ensures that yijk = 1 if {i, j} is blocked while i and j are not being swept. Constraint (B.185)
ensures that rk is the cost to block edges that are not connected to the node being swept at k.
Following Morin et al., we use s = maxc∈N ac +

∑
i∈N :{c,i}∈E bci and r =

∑
{i,j}∈E bij .

B.11.3 Sequence-Based CP Model (CPS)

In the sequence-based CP model (CPS) proposed by Morin et al. [317], integer decision variable xk
represents the node swept at time step k.

min Z (B.193)

s.t. AllDifferent({xk | k = 0, ..., |N | − 1}) (B.194)

Z ≥ axk
+

∑
i∈N :{xk,i}∈E

bxki +
∑
i∈C

∑
j∈(N\C)\{xk}:{i,j}∈E

bij k = 0, ..., |N | − 1 (B.195)

xk ∈ N k = 0, ..., |N | − 1 (B.196)

Z ≤ Z ≤ Z (B.197)

Z ∈ Z+. (B.198)



APPENDIX B. MIXED-INTEGER PROGRAMMING AND CONSTRAINT PROGRAMMING MODELS 210

We observe that CPS achieves better solution quality than CPN, while CPN solves more instances
to optimality.



Appendix C

Additional Results for Chapter 4

C.1 Detailed Comparison of the MIP, CP, and DIDP Solvers

Figures C.1–C.11 show the coverage over time and the distributions of the optimality gap over
instances. On the left-hand side of each figure, the x-axis is time in seconds, and the y-axis is the
ratio of coverage achieved within x seconds over the total number of instances. On the right-hand
side, the x-axis is the optimality gap, and the y-axis is the ratio of instances where the optimality
gap is less than or equal to x. Similarly, Figures C.12–C.22 show the distributions of the primal
integral over instances. Higher and left is better in all figures.

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CAASDy DFBnB CBFS ACPS APPS DBDFS CABS CABS/0

Figure C.1: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the traveling salesperson problem with time windows (TSPTW).

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS CABS/0

Figure C.2: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the capacitated vehicle routing problem (CVRP).

211



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 212

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS CABS/0

Figure C.3: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the multi-commodity pickup and delivery traveling salesperson problem (m-PDTSP).

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS DBDFS CABS

Figure C.4: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the orienteering problem with time windows (OPTW).

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS DBDFS CABS

Figure C.5: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the multi-dimensional knapsack problem (MDKP).

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS CABS/0

Figure C.6: The ratio of the coverage against time and the ratio of instances against the optimality
gap in bin packing.



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 213

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS CABS/0

Figure C.7: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the simple assembly line balancing problem (SALBP-1).

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS DBDFS CABS

Figure C.8: The ratio of the coverage against time and the ratio of instances against the optimality
gap in single machine total weighted tardiness (1||

∑
wiTi).

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS CABS/0

Figure C.9: The ratio of the coverage against time and the ratio of instances against the optimality
gap in talent scheduling.

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS DBDFS CABS

Figure C.10: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the minimization of open stacks problem (MOSP).



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 214

0 300 600 900 1200 1500 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time to solve optimally (s) | Optimality gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS DBDFS CABS

Figure C.11: The ratio of the coverage against time and the ratio of instances against the optimality
gap in graph-clear.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS
CABS/0

Figure C.12: The ratio of instances against the primal integral in the traveling salesperson problem
with time windows (TSPTW).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS
CABS/0

Figure C.13: The ratio of instances against the primal integral in the capacitated vehicle routing
problem (CVRP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS
CABS/0

Figure C.14: The ratio of instances against the primal integral in the multi-commodity pickup and
delivery traveling salesperson problem (m-PDTSP).



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 215

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS

Figure C.15: The ratio of instances against the primal integral in the orienteering problem with time
windows (OPTW).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS

Figure C.16: The ratio of instances against the primal integral in the multi-dimensional knapsack
problem (MDKP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS
CABS/0

Figure C.17: The ratio of instances against the primal integral in bin packing.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS
CABS/0

Figure C.18: The ratio of instances against the primal integral in the simple assembly line balancing
problem (SALBP-1).



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 216

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS

Figure C.19: The ratio of instances against the primal integral in single machine total weighted
tardiness (1||

∑
wiTi).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS
CABS/0

Figure C.20: The ratio of instances against the primal integral in talent scheduling.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS

Figure C.21: The ratio of instances against the primal integral in the minimization of open stack
problem (MOSP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CAASDy
DFBnB

CBFS
ACPS

APPS
DBDFS

CABS

Figure C.22: The ratio of instances against the primal integral in graph-clear.



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 217

C.2 Comparison of DIDP and Other State-Based Approaches

We compare DIDP with other state-based approaches: domain-independent artificial intelligence
(AI) planning [165] (Section 2.3.3), Picat [449], a logic programming language hybridized with AI
planning (Section 2.4.2), and ddo [171], a decision diagram solver (Section 2.4.4). We explain how
we formulate state-based models for these approaches before presenting the experimental results.

C.2.1 Domain-Independent AI Planning

We model the traveling salesperson problem with time windows (TSPTW) (Section 3.2.1), the ca-
pacitated vehicle routing problem (CVRP) (Section 3.3.1), the multi-commodity pickup and delivery
traveling salesperson problem (m-PDTSP) (Section 3.3.2), bin packing (Section 3.3.5), and the sim-
ple assembly line balancing problem to minimize the number of stations (SALBP-1) (Section 3.3.6)
as linear numeric planning tasks [212] (Section 3.1.1), where preconditions and effects of actions
are represented by linear formulas of numeric state variables. In these models, the objective is to
minimize the sum of nonnegative action costs, which is a standard in optimal numeric planning [378,
340, 341, 380, 286, 276, 274, 400, 273]. We use Planning Domain Definition Language (PDDL) 2.1
[141] to formulate the models and NLM-CutPlan Orbit [275], the winner of the optimal numeric
track of the International Planning Competition (IPC) 2023,1 to solve the models. NLM-CutPlan
Orbit uses A* [190] with an admissible heuristic function [274, 273] and symmetry breaking [400].
The PDDL models are adaptations of the DyPDL models presented in Section 3.3, where a numeric
or element variable in DyPDL becomes a numeric variable in PDDL (except for the element variable
representing the current location in the routing problems as explained in the next paragraph), a
set variable is represented by a predicate and a set of objects, the target state becomes the initial
state, base cases become the goal conditions, and a transition becomes an action. However, we are
unable to model dominance between states and dual bound functions in PDDL. In addition, we
cannot differentiate forced transitions and other transitions. We explain other differences between
the PDDL models and the DyPDL models in the following paragraphs.

In the DyPDL models of the routing problems (TSPTW, CVRP, and m-PDTSP), each transition
visits one customer and increases the cost by the travel time from the current location to the
customer. Since a goal state in PDDL is not associated with a cost unlike a base case in DyPDL,
we also define a transition to return to the depot, which increases the cost by the travel time to
the depot. While the travel time depends on the current location, for NLM-CutPlan Orbit, the
cost of an action must be a nonnegative constant independent of a state, which is a standard in
admissible heuristic functions for numeric planning [378, 341, 380, 276, 274, 273]. Thus, in the
PDDL models, similar to the model presented in Figure 2.2 of Section 2.3.3, we define one action
with two parameters, the current location (?from) and the destination (?to), so that the cost of each
grounded action becomes a state-independent constant (c ?from ?to) corresponding to the travel
time. We define a predicate (visited ?customer) representing if a customer is visited and (location
?customer) representing the current location. In each action, we use (location ?from) and (not (visited
?to)) as preconditions and (not (location ?from)), (location ?to), and (visited ?to) as effects.

In the DyPDL models of TSPTW, each transition updates the current time t to max{t+cij , aj},
where cij is the travel time and aj is the beginning of the time window at the destination. While

1https://ipc2023-numeric.github.io/



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 218

this effect can be written as (assign (t) (max (+ (t) (c ?from ?to)) (a ?to))) in PDDL, to represent
effects as linear formulas, we introduce two actions: one with a precondition (>= (+ (t) (c ?from
?to)) (a ?to)) and an effect (increase (t) (c ?from ?to)), corresponding to t ← t+ cij if t+ cij ≥ aj ,
and another with a precondition (< (+ (t) (c ?from ?to)) (a ?to)) and an effect (assign (t) (a ?to)),
corresponding to t← aj if t+ cij < aj .

In the DyPDL models of TSPTW and CVRP, we have redundant state constraints. While a
state constraint could be modeled by introducing it as a precondition of each action, we do not use
the state constraints in the PDDL models of TSPTW and CVRP because efficiently modeling them
is non-trivial: straightforward approaches result in an exponential number of actions. For TSPTW,
the state constraint checks if all unvisited customers can be visited by the deadline, represented as
∀j ∈ U, t + c∗ij ≤ bj , where U is the set of the unvisited customers, c∗ij is the shortest travel time
from the current location to customer j, and bj is the deadline. One possible way to model this
constraint is to define a disjunctive precondition (or (visited ?j) (<= (+ (t) (cstar ?from ?j)) (b ?j)))
for each customer ?j, where (t) is a numeric variable corresponding to t, (cstar ?from ?j) is a numeric
constant corresponding to c∗ij , and (b ?j) is a numeric constant corresponding to bj . However,
the heuristic function used by NLM-CutPlan Orbit does not support disjunctive preconditions,
and NLM-CutPlan Orbit compiles an action with disjunctive preconditions into a set of actions
with different combinations of the preconditions.2 In our case, each action has one of the two
preconditions, (visited ?j) or (<= (+ (t) (cstar ?from ?j)) (b ?j)), resulting in 2n actions in total,
where n is the number of customers. In CVRP, the state constraint takes the sum of demands over
all unvisited customers. To model this computation independently of a state, we need to define an
action for each possible set of unvisited customers, resulting in 2n actions in total.

In the DyPDL models of bin packing and SALBP-1, each transition packs an item in the current
bin (schedules a task in the current station for SALBP-1) or opens a new bin. When opening a new
bin, the transition checks if no item can be packed in the current bin as a precondition, which is
unnecessary but useful to exclude suboptimal solutions. However, for similar reasons to the state
constraint in TSPTW, we do not model this precondition in the PDDL models. We could model this
condition by defining (or (packed ?j) (> (w ?j) (r))) for each item ?j, where (packed ?j) represents if
?j is already packed, (w ?j) represents the weight of ?j, and (r) is the remaining capacity. However,
as discussed above, NLM-CutPlan Orbit would generate an exponential number of actions with this
condition.

In addition to the above problem classes, we also use the minimization of open stacks problem
(MOSP) (Section 3.3.9): it was used as a benchmark domain in the classical planning tracks of the
International Planning Competitions from 2006 to 2014. This PDDL formulation is different from
our DyPDL model. To solve the model, we use Ragnarok [108], the winner of the optimal classical
track of IPC 2023,3 which is a portfolio of multiple optimal classical planners.

We do not use other problem classes since their DyPDL models do not minimize the sum of
the state-independent and nonnegative action costs. In single machine total weighted tardiness
(1||

∑
wiTi) (Section 3.3.7) and talent scheduling (Section 3.3.8), since the cost of each transition

depends on a set variable, we need an exponential number of actions to make it state-independent.
In the orienteering problem with time windows (OPTW) (Section 3.3.3) and the multi-dimensional

2This approach is inherited from Fast Downward [203], the standard classical planning framework on which NLM-
CutPlan Orbit is based.

3https://ipc2023-classical.github.io/



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 219

knapsack problem (MDKP) (Section 3.3.4), the objective is to maximize the sum of the nonnegative
profits. In graph-clear (Section 3.3.10), the objective is to minimize the maximum value of state-
dependent weights associated with transitions.

C.2.2 Picat

Picat is a logic programming language, in which dynamic programming (DP) can be used with
tabling without implementing a DP algorithm. Picat provides an AI planning module based on
tabling, where a state, goal conditions, and actions can be programmatically described by expressions
in Picat. While the cost of a plan is still restricted to the sum of the nonnegative action costs, each
action cost can be state-dependent. In addition, an admissible heuristic function can be defined
and used by a solving algorithm. Thus, we can define a dual bound function as an admissible
heuristic function in the AI planning module. However, we cannot model dominance between states.
Using the AI planning module, we formulate models for TSPTW, CVRP, m-PDTSP, bin packing,
SALBP-1, 1||

∑
wiTi, and talent scheduling, which are the same as the DyPDL models except that

they do not define dominance. To solve the formulated models, we use the best_plan_bb predicate,
which performs a branch-and-bound algorithm using the heuristic function. For OPTW, MDKP,
MOSP, and graph-clear, we do not use the AI planning module due to the objective structure of
their DyPDL models. We define DP models for these problem classes, which are the same as the
DyPDL models except that they do not define dominance and dual bound functions, using tabling
without the AI planning module.

C.2.3 Ddo

Since ddo requires a user to define a merging operator and a ranking operator in addition to DP
models, our DyPDL models cannot be used with ddo. We use TSPTW and talent scheduling for
our evaluation, for which previous work developed models for ddo [169, 87, 88, 89]. For TSPTW,
while we minimize the total travel time, which does not include the waiting time, the model for ddo
minimizes the makespan, which is the time spent until returning to the depot. Therefore, we adapt
our DyPDL model to minimize the makespan: when visiting customer j from the current location
i with time t, we increase the cost by max{cij , aj − t} instead of cij . We present a YAML-DyPDL
domain file for this formulation in Figure A.3 in Appendix A.2. To avoid confusion, in what follows,
we call TSPTW to minimize the makespan TSPTW-M.

C.2.4 Experimental Results

We evaluate NLM-CutPlan Orbit4 and Ragnarok5 using GCC 12.3, Picat 3.6, and ddo 2.0.0 using
Rust 1.70.0. For Ragnarok, we use IBM ILOG CPLEX 22.1.1 as a linear programming solver. We
use the ddo models for TSPTW-M and talent scheduling obtained from the published repository of
ddo.6 For domain-independent AI planning, a problem instance is translated to PDDL files by a
Python script before using a planner. For Picat, a problem instance of CVRP, m-PDTSP, OPTW,
SALBP-1, 1||

∑
wiTi, and talent scheduling is preprocessed and formatted by a Python script so

4https://github.com/ipc2023-numeric/team-1
5https://github.com/ipc2023-classical/planner17/tree/latest
6https://github.com/xgillard/ddo/tree/b2e68bfc085af7cc09ece38cc9c81acb0da6e965/ddo/examples



APPENDIX C. ADDITIONAL RESULTS FOR CHAPTER 4 220

Table C.1: Coverage of MIP, CP, domain-independent AI planners, Picat, and CABS. ‘AI planning’
represents the result of domain-independent AI planners, where Ragnarok is used for MOSP, and
NLM-CutPlan Orbit is used for the other problem classes. The coverage of a solver is in bold if it is
higher than MIP and CP, and the higher of MIP and CP is in bold if there is no better solver. The
highest coverage is underlined.

MIP CP AI Planning Picat CABS

TSPTW (340) 222 47 61 210 259
CVRP (207) 27 0 1 6 6
m-PDTSP (1178) 940 1049 1031 804 1035
OPTW (144) 16 49 - 26 64
MDKP (276) 165 6 - 3 5
Bin Packing (1615) 1159 1234 18 895 1167
SALBP-1 (2100) 1423 1584 871 1590 1802
1||

∑
wiTi (2100) 106 150 - 199 288

Talent Scheduling (1000) 0 0 - 84 239
MOSP (570) 231 437 193 162 527
Graph-Clear (135) 17 4 - 45 103

Table C.2: Coverage and the average optimality gap of ddo and CABS in TSPTW-M and talent
scheduling. For TSPTW-M, the optimality gap is not presented since ddo runs out of 8 GB memory
in all unsolved instances of TSPTW-M and does not report intermediate solutions. For talent
scheduling, the average optimality gap is computed from 976 instances where ddo does not reach
the memory limit. The better value is in bold.

Ddo CABS

coverage optimality gap coverage optimality gap

TSPTW-M (340) 213 - 260 -
Talent Scheduling (1000) 210 0.1424 239 0.1730

that Picat can easily parse it. We use the same experimental setting as Section 4.3.4: each solver
uses a single thread, an 8 GB memory limit, and a 30-minute time limit.

Since the domain-independent AI planners and Picat return only an optimal solution, we evaluate
only coverage, the number of optimally solved instances, for them. While ddo returns the best
solution and dual bound found within the time limit, it does not return intermediate solutions
and bounds during solving. Since we manage the memory limit using an external process, when ddo
reaches the memory limit, it is killed without returning the best solution. In TSPTW-M, ddo reaches
the memory limit in all unsolved instances. Therefore, we evaluate only coverage in TSPTW-M and
present the average optimality gap computed from 976 out of 1000 talent scheduling instances where
ddo does not reach the memory limit.

We present the coverage of the AI planners and Picat in Table C.1. We also include mixed-
integer programming (MIP), constraint programming (CP), and complete anytime beam search
(CABS) (Section 4.2.7), the best DIDP solver in Section 4.3. CABS has higher or equal coverage
than the planners and Picat in all problem classes. As discussed in Section 4.3.8, this result is not
surprising since the planners and the AI planning module and tabling in Picat are not designed for
combinatorial optimization. It might be possible to improve the PDDL and Picat models so that
they are more suited for these approaches. Moreover, for domain-independent AI planning, different
planners might be better for combinatorial optimization. However, our point is to show that the
performance achieved by the DIDP solvers is not a trivial consequence of the state-based modeling
approach, and DIDP is doing something that existing approaches are not able to easily do.

We compare ddo and CABS in Table C.2. CABS is better than ddo in TSPTW-M and talent
scheduling in coverage, but ddo has a better average optimality gap in talent scheduling.



Appendix D

Additional Results for Chapter 5

Figures D.1–D.14 show the distributions of the primal gap over instances for mixed-integer program-
ming (MIP), constraint programming (CP), complete anytime search (CABS), large neighborhood
search with decision diagrams (DD-LNS) [170], and large neighborhood beam search (LNBS) con-
figurations. CABS/0 and LNBS/uniform/0 evaluated in bin packing and the simple assembly line
balancing problem (SALBP-1) are CABS and LNBS using the zero dual bound function. CAB-
S/blind and LNBS/uniform/blind used in OPTW do not use a dual bound function. The x-axis is
the primal gap, and the y-axis is the ratio of instances where the primal gap is less than or equal
to x. Higher and left is better. Similarly, Figures D.15–D.28 show the distributions of the primal
integral over instances.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.1: The ratio of instances against the primal gap in the traveling salesperson problem with
time windows (TSPTW).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.2: The ratio of instances against the primal gap in the capacitated vehicle routing problem
(CVRP).

221



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 222

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure D.3: The ratio of instances against the primal gap in the multi-commodity pickup and delivery
traveling salesperson problem (m-PDTSP).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.4: The ratio of instances against the primal gap in the large instances of the multi-
commodity pickup and delivery traveling salesperson problem (m-PDTSP).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS
DD-LNS

LNBS/uniform
LNBS/bias

LNBS/conflicts LNBS/no-bandit CABS/blind LNBS/uniform/blind

Figure D.5: The ratio of instances against the primal gap in the orienteering problem with time
windows (OPTW).



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 223

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.6: The ratio of instances against the primal gap in the multi-dimensional knapsack problem
(MDKP).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS
DD-LNS

LNBS/uniform
LNBS/bias

LNBS/conflicts LNBS/no-bandit CABS/0 LNBS/uniform//0

Figure D.7: The ratio of instances against the primal gap in bin packing.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS
DD-LNS

LNBS/uniform
LNBS/bias

LNBS/conflicts LNBS/no-bandit CABS/0 LNBS/uniform//0

Figure D.8: The ratio of instances against the primal gap in the simple assembly line balancing
problem (SALBP-1).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.9: The ratio of instances against the primal gap in single machine total weighted tardiness
(1||

∑
wiTi).



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 224

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.10: The ratio of instances against the primal gap in talent scheduling.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure D.11: The ratio of instances against the primal gap in the minimization of open stacks
problem (MOSP).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.12: The ratio of instances against the primal gap in the large instances of the minimization
of open stacks problem (MOSP).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure D.13: The ratio of instances against the primal gap in graph-clear.



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 225

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Primal gap

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.14: The ratio of instances against the primal gap in the large instances of graph-clear.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.15: The ratio of instances against the primal integral in the traveling salesperson problem
with time windows (TSPTW).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.16: The ratio of instances against the primal integral in the capacitated vehicle routing
problem (CVRP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure D.17: The ratio of instances against the primal integral in the multi-commodity pickup and
delivery traveling salesperson problem (m-PDTSP).



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 226

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.18: The ratio of instances against the primal integral in the large instances of the multi-
commodity pickup and delivery traveling salesperson problem (m-PDTSP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS
DD-LNS

LNBS/uniform
LNBS/bias

LNBS/conflicts LNBS/no-bandit CABS/blind LNBS/uniform/blind

Figure D.19: The ratio of instances against the primal integral in the orienteering problem with time
windows (OPTW).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.20: The ratio of instances against the primal integral in the multi-dimensional knapsack
problem (MDKP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS
DD-LNS

LNBS/uniform
LNBS/bias

LNBS/conflicts LNBS/no-bandit CABS/0 LNBS/0

Figure D.21: The ratio of instances against the primal integral in bin packing.



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 227

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS
DD-LNS

LNBS/uniform
LNBS/bias

LNBS/conflicts LNBS/no-bandit CABS/0 LNBS/0

Figure D.22: The ratio of instances against the primal integral in the simple assembly line balancing
problem (SALBP-1).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.23: The ratio of instances against the primal integral in single machine total weighted
tardiness (1||

∑
wiTi).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.24: The ratio of instances against the primal integral in talent scheduling.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure D.25: The ratio of instances against the primal integral in the minimization of open stacks
problem (MOSP).



APPENDIX D. ADDITIONAL RESULTS FOR CHAPTER 5 228

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1
Ra

tio
 o

f i
ns

ta
nc

es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.26: The ratio of instances against the primal integral in the large instances of the mini-
mization of open stacks problem (MOSP).

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS/uniform LNBS/bias

Figure D.27: The ratio of instances against the primal integral in graph-clear.

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP
CP

CABS DD-LNS LNBS/uniform LNBS/bias LNBS/conflicts LNBS/no-bandit

Figure D.28: The ratio of instances against the primal integral in the large instances of graph-clear.



Appendix E

Additional Results for Chapter 6

Figures E.1–E.6 show the coverage over time and the distributions of the optimality gap over in-
stances for mixed-integer programming (MIP), constraint programming (CP), complete anytime
search (CABS) with 1 thread and with 32 threads. For CABS, we show different parallelization meth-
ods, shared beam search (CASBS) and two variants of hash-distributed beam search (CAHDBS1
and CAHDBS2). Figures E.7–E.12 show the distribution of the primal integral. Figures E.13–E.20
show the results for CABS with 1 thread and CAHDBS2 with 8, 16, and 32 threads.

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure E.1: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the traveling salesperson problem with time windows (TSPTW).

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure E.2: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the capacitated vehicle routing problem (CVRP).

229



APPENDIX E. ADDITIONAL RESULTS FOR CHAPTER 6 230

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure E.3: The ratio of the coverage against time and the ratio of instances against the optimality
gap in bin packing.

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure E.4: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the simple assembly line balancing problem (SALBP-1).

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure E.5: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the minimization of open stacks problem (MOSP).

0 30 60 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

. 2

. 4

. 6

. 8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS1 CAHDBS2 1 thread

Figure E.6: The ratio of the coverage against time and the ratio of instances against the optimality
gap in graph-clear.



APPENDIX E. ADDITIONAL RESULTS FOR CHAPTER 6 231

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure E.7: The ratio of instances against the primal integral in the traveling salesperson problem
with time windows (TSPTW).

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure E.8: The ratio of instances against the primal integral in the capacitated vehicle routing
problem (CVRP).

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure E.9: The ratio of instances against the primal integral in bin packing.

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure E.10: The ratio of instances against the primal integral in the simple assembly line balancing
problem (SALBP-1).



APPENDIX E. ADDITIONAL RESULTS FOR CHAPTER 6 232

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure E.11: The ratio of instances against the primal integral in the minimization of open stacks
problem (MOSP).

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS CASBS CAHDBS CAHDBS2 1 thread

Figure E.12: The ratio of instances against the primal integral in graph-clear.

0 30 60 90 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 thread
16 thread
8 thread
1 thread

Figure E.13: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the traveling salesperson problem with time windows (TSPTW) for CAHDBS2.

0 30 60 90 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 thread
16 thread
8 thread
1 thread

Figure E.14: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the simple assembly line balancing problem (SALBP-1) for CAHDBS2.



APPENDIX E. ADDITIONAL RESULTS FOR CHAPTER 6 233

0 30 60 90 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 thread
16 thread
8 thread
1 thread

Figure E.15: The ratio of the coverage against time and the ratio of instances against the optimality
gap in the minimization of open stacks problem (MOSP) for CAHDBS2.

0 30 60 90 120 150 180 210 240 270 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
         Time to solve optimally (s) | Optimality gap       

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 thread
16 thread
8 thread
1 thread

Figure E.16: The ratio of the coverage against time and the ratio of instances against the optimality
gap in graph-clear for CAHDBS2.

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 threads
16 threads
8 threads
1 thread

Figure E.17: The ratio of instances against the primal integral in the traveling salesperson problem
with time windows (TSPTW) for CAHDBS2.

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 threads
16 threads
8 threads
1 thread

Figure E.18: The ratio of instances against the primal integral in the simple assembly line balancing
problem (SALBP-1) for CAHDBS2.



APPENDIX E. ADDITIONAL RESULTS FOR CHAPTER 6 234

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 threads
16 threads
8 threads
1 thread

Figure E.19: The ratio of instances against the primal integral in the minimization of open stacks
problem (MOSP) for CAHDBS2.

0 30 60 90 120 150 180 210 240 270 300
Primal integral

0

.2

.4

.6

.8

1

Ra
tio

 o
f i

ns
ta

nc
es

32 threads
16 threads
8 threads
1 thread

Figure E.20: The ratio of instances against the primal integral in graph-clear for CAHDBS2.



Bibliography

[1] T. S. Abdul-Razaq and C. N. Potts. “Dynamic Programming State-Space Relaxation for
Single-Machine Scheduling”. In: The Journal of the Operational Research Society 39.2 (1988),
pp. 141–152. doi: 10.1057/jors.1988.26.

[2] T. S. Abdul-Razaq, C. N. Potts, and L. N. Van Wassenhove. “A Survey of Algorithms for the
Single Machine Total Weighted Tardiness Scheduling Problem”. In: Discrete Applied Mathe-
matics 26.2 (1990), pp. 235–253. doi: 10.1016/0166-218X(90)90103-J.

[3] Tobias Achterberg. “Constraint Integer Programming”. PhD thesis. Technische Universität
Berlin, 2007.

[4] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. “Solving the Ru-
bik’s Cube with Deep Reinforcement Learning and Search”. In: Nature Machine Intelligence
1.8 (2019), pp. 356–363. doi: 10.1038/s42256-019-0070-z.

[5] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang, and Maxim
Likhachev. “Multi-Heuristic A*”. In: International Journal on Robotics Research 35.1–3 (2016),
pp. 224–243. doi: 10.1177/0278364915594029.

[6] Johannes Aldinger and Bernhard Nebel. “Interval Based Relaxation Heuristics for Numeric
Planning with Action Costs”. In: KI 2017: Advances in Artificial Intelligence. Cham: Springer
International Publishing, 2017, pp. 15–28. doi: 10.1007/978-3-319-67190-1_2.

[7] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. “A Constraint Store Based on
Multivalued Decision Diagrams”. In: Principles and Practice of Constraint Programming –
CP 2007. 2007, pp. 118–132. doi: 10.1007/978-3-540-74970-7_11.

[8] Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming using Eclipse. Cambridge
University Press. doi: 10.1017/CBO9780511607400.

[9] N. Ascheuer, L. F. Escudero, M. Grötschel, and M. Stoer. “A Cutting Plane Approach to the
Sequential Ordering Problem (with Applications to Job Scheduling in Manufacturing)”. In:
SIAM Journal on Optimization 3.1 (1993), pp. 25–42. doi: 10.1137/0803002.

[10] Norbert Ascheuer. “Hamiltonian Path Problems in the On-Line Optimization of Flexible
Manufacturing Systems”. PhD thesis. Technische Universität Berlin, 1995.

[11] Norbert Ascheuer, Michael Jünger, and Gerhard Reinelt. “A Branch & Cut Algorithm for
the Asymmetric Traveling Salesman Problem with Precedence Constraint”. In: Computational
Optimization and Applications 17 (2000), pp. 25–42. doi: 10.1023/A:1008779125567.

235



BIBLIOGRAPHY 236

[12] Behzad Babaki, Gilles Pesant, and Claude-Guy Quimper. “Solving Classical AI Planning
Problems Using Planning-Independent CP Modeling and Search”. In: Proceedings of the 13th
International Symposium on Combinatorial Search (SoCS). AAAI Press, 2020, pp. 2–10. doi:
10.1609/socs.v11i1.18529.

[13] Christer Bäckström and Bernhard Nebel. “Complexity Results for SAS+ Planning”. In: Com-
putational Intelligence 11 (1995), pp. 625–656. doi: 10.1111/j.1467-8640.1995.tb00052.x.

[14] Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. “A Heuristic Search Approach
to Planning with Temporally Extended Preferences”. In: Artificial Intelligence 173.5 (2009).
Advances in Automated Plan Generation, pp. 593–618. doi: 10.1016/j.artint.2008.11.
011.

[15] Egon Balas, Matteo Fischetti, and William R. Pulleyblank. “The Precedence-Constrained
Asymmetric Traveling Salesman Polytope”. In: Mathematical Programming 68 (1995), pp. 241–
265. doi: 10.1007/BF01585767.

[16] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. “New Route Relaxation and
Pricing Strategies for the Vehicle Routing Problem”. In: Operations Research 59.5 (2011),
pp. 1269–1283. doi: 10.1287/opre.1110.0975.

[17] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. “New State-Space Relaxations
for Solving the Traveling Salesman Problem with Time Windows”. In: INFORMS Journal on
Computing 24.3 (2012), pp. 356–371. doi: 10.1287/ijoc.1110.0456.

[18] J. Barnat, L. Brim, and J. Chaloupka. “Parallel Breadth-First Search LTL Model-Checking”.
In: 18th IEEE International Conference on Automated Software Engineering, 2003. Proceed-
ings. 2003, pp. 106–115. doi: 10.1109/ASE.2003.1240299.

[19] Roman Barták, Lukáš Chrpa, Agostino Dovier, Jindřich Vodrážka, and Neng-Fa Zhou. “Mod-
eling and Solving Planning Problems in Tabled Logic Programming: Experience from the
Cave Diving Domain”. In: Science of Computer Programming 147 (2017). Selected and Ex-
tended papers from the International Symposium on Principles and Practice of Declarative
Programming 2015, pp. 54–77. doi: 10.1016/j.scico.2017.04.007.

[20] Roman Barták and Daniel Toropila. “Reformulating Constraint Models for Classical Plan-
ning”. In: Proceedings of the 21st International Florida Artificial Intelligence Research Society
Conference (FLAIRS). AAAI Press, 2008, pp. 525–530.

[21] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. “Learning to Act Using Real-
Time Dynamic Programming”. In: Artificial Intelligence 72.1 (1995), pp. 81–138. doi: 10.
1016/0004-3702(94)00011-O.

[22] İlker Baybars. “A Survey of Exact Algorithms for the Simple Assembly Line Balancing Prob-
lem”. In: Management Science 32.8 (1986), pp. 909–932. doi: 10.1287/mnsc.32.8.909.

[23] J. E. Beasley. “OR-Library: Distributing Test Problems by Electronic Mail”. In: The Journal
of the Operational Research Society 41.11 (1990), pp. 1069–1072. doi: 10.2307/2582903.

[24] J. Christopher Beck. “Solution-Guided Multi-Point Constructive Search for Job Shop Schedul-
ing”. In: Journal of Artificial Intelligence Research 29 (2007), pp. 49–77. doi: 10.1613/jair.
2169.



BIBLIOGRAPHY 237

[25] J. Christopher Beck and Mark S. Fox. “A Generic Framework for Constraint-Directed Search
and Scheduling”. In: AI Magazine 19.4 (1998), p. 103. doi: 10.1609/aimag.v19i4.1426.

[26] J. Christopher Beck and Laurent Perron. “Discrepancy-Bounded Depth First Search”. In:
Second International Workshop on Integration of AI and OR Technologies for Combinatorial
Optimization Problems, CPAIOR 2000. 2000.

[27] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[28] Richard Bellman. “Dynamic Programming Treatment of the Travelling Salesman Problem”.
In: Journal of the ACM 9.1 (1962), 61–63. doi: 10.1145/321105.321111.

[29] Richard Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathematics 16.1 (1958),
pp. 87–90. doi: 10.1090/qam/102435.

[30] J. F. Benders. “Partitioning Procedures for Solving Mixed-Variables Programming Problems”.
In: Numerische Mathematik 4.1 (1962), pp. 238–252. doi: 10.1007/BF01386316.

[31] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine Learning for Combinatorial
Optimization: A Methodological Tour d’Horizon”. In: European Journal of Operational Re-
search 290.2 (2021), pp. 405–421. doi: 10.1016/j.ejor.2020.07.063.

[32] David Bergman and Andre A. Cire. “Decomposition Based on Decision Diagrams”. In: Integra-
tion of AI and OR Techniques in Constraint Programming – 13th International Conference,
CPAIOR 2016. Cham: Springer International Publishing, 2016, pp. 45–54. doi: 10.1007/978-
3-319-33954-2_4.

[33] David Bergman and Andre A. Cire. “Discrete Nonlinear Optimization by State-Space De-
compositions”. In: Management Science 64.10 (2018), pp. 4700–4720. doi: 10.1287/mnsc.
2017.2849.

[34] David Bergman, Andre A. Cire, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, and
Willem-Jan van Hoeve. “Parallel Combinatorial Optimization with Decision Diagrams”. In:
Integration of AI and OR Techniques in Constraint Programming – 11th International Con-
ference, CPAIOR 2014. Cham: Springer International Publishing, 2014, pp. 351–367. doi:
10.1007/978-3-319-07046-9_25.

[35] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N. Hooker. “Discrete Opti-
mization with Decision Diagrams”. In: INFORMS Journal on Computing 28.1 (2016), pp. 47–
66. doi: 10.1287/ijoc.2015.0648.

[36] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N. Hooker. “Optimization
Bounds from Binary Decision Diagrams”. In: INFORMS Journal on Computing 26.2 (2014),
pp. 253–268. doi: 10.1287/ijoc.2013.0561.

[37] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and Tallys Yunes. “BDD-Based
Heuristics for Binary Optimization”. In: Journal of Heuristics 20.2 (2014), pp. 211–234. doi:
10.1007/s10732-014-9238-1.

[38] Donald A. Berry and Bert Fristedt. Bandit Problems: Sequential Allocation of Experiments.
London: Chapman and Hall, 1985.

[39] Timo Berthold. “Measuring the Impact of Primal Heuristics”. In: Operations Research Letters
41.6 (2013), pp. 611–614. doi: 10.1016/j.orl.2013.08.007.



BIBLIOGRAPHY 238

[40] Timo Berthold. “Primal Heuristics for Mixed Integer Programs”. Master’s Thesis. Technische
Universität Berlin, 2006.

[41] Christian Bessiere. “Constraint Propagation”. In: Handbook of Constraint Programming. Ed.
by Francesca Rossi, Peter van Beek, and Toby Walsh. Vol. 2. Foundations of Artificial Intel-
ligence. Elsevier, 2006. Chap. 3, pp. 29–83. doi: 10.1016/S1574-6526(06)80007-6.

[42] R. S. Bird. “Tabulation Techniques for Recursive Programs”. In: ACM Computing Surveys
12.4 (1980), pp. 403–417. doi: 10.1145/356827.356831.

[43] Johannes Bisschop and Marcel Roelofs. “The Modeling Language AIMMS”. In: Modeling
Languages in Mathematical Optimization. Ed. by Josef Kallrath. Boston, MA: Springer, 2004,
pp. 71–104. doi: 10.1007/978-1-4613-0215-5_6.

[44] Gustav Björdal, Jean-Noël Monette, Pierre Flener, and Justin Pearson. “A Constraint-Based
Local Search Backend for MiniZinc”. In: Constraints 20.3 (2015), pp. 325–345. doi: 10.1007/
s10601-015-9184-z.

[45] Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Vol. 52. Cambridge
University Press, 2021.

[46] Natashia Boland, John Dethridge, and Irina Dumitrescu. “Accelerated Label Setting Algo-
rithms for the Elementary Resource Constrained Shortest Path Problem”. In: Operations
Research Letters 34.1 (2006), pp. 58–68. doi: 10.1016/j.orl.2004.11.011.

[47] Blai Bonet. “An Admissible Heuristic for SAS+ Planning Obtained from the State Equa-
tion”. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
IJCAI-13. Menlo Park, California: AAAI Press/International Joint Conferences on Artificial
Intelligence Orginization, 2013, pp. 2268–2274.

[48] Blai Bonet and Héctor Geffner. “Planning as Heuristic Search”. In: Artificial Intelligence 129.1
(2001), pp. 5–33. doi: 10.1016/S0004-3702(01)00108-4.

[49] Kyle E.C. Booth, Tony T. Tran, Goldie Nejat, and J. Christopher Beck. “Mixed-Integer and
Constraint Programming Techniques for Mobile Robot Task Planning”. In: IEEE Robotics
and Automation Letters 1.1 (2016), pp. 500–507. doi: 10.1109/LRA.2016.2522096.

[50] Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. “Survey on Applications of Multi-Armed
and Contextual Bandits”. In: 2020 IEEE Congress on Evolutionary Computation (CEC).
IEEE Press, 2020, pp. 1–8. doi: 10.1109/CEC48606.2020.9185782.

[51] Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. XCSP3-
core: A Format for Representing Constraint Satisfaction/Optimization Problems. 2022. arXiv:
2009.00514 [cs.AI].

[52] Craig Boutilier, Ray Reiter, and Bob Price. “Symbolic Dynamic Programming for First-Order
MDPs”. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence,
IJCAI-01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 690–697.

[53] Nils Boysen, Philipp Schulze, and Armin Scholl. “Assembly Line Balancing: What Happened
in the Last Fifteen Years?” In: European Journal of Operational Research 301.3 (2021),
pp. 797–814. doi: 10.1016/j.ejor.2021.11.043.



BIBLIOGRAPHY 239

[54] Yossi Bukchin and Tal Raviv. “Constraint Programming for Solving Various Assembly Line
Balancing Problems”. In: Omega 78 (2018), pp. 57–68. doi: 10.1016/j.omega.2017.06.008.

[55] Ethan Burns, Sofia Lemons, Wheeler Ruml, and Rong Zhou. “Best-First Heuristic Search for
Multicore Machines”. In: Journal of Artificial Intelligence Research 39 (2010), pp. 689–743.
doi: 10.1613/jair.3094.

[56] Michael R. Bussieck and Alex Meeraus. “General Algebraic Modeling System (GAMS)”.
In: Modeling Languages in Mathematical Optimization. Ed. by Josef Kallrath. Boston, MA:
Springer, 2004, pp. 137–157. doi: 10.1007/978-1-4613-0215-5_8.

[57] Tom Bylander. “A Probabilistic Analysis of Prepositional STRIPS Planning”. In: Artificial
Intelligence 81.1 (1996). Frontiers in Problem Solving: Phase Transitions and Complexity,
pp. 241–271. doi: 10.1016/0004-3702(95)00055-0.

[58] Tom Bylander. “The Computational Complexity of Propositional STRIPS Planning”. In:
Artificial Intelligence 69.1 (1994), pp. 165–204. doi: 10.1016/0004-3702(94)90081-7.

[59] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird, Bethany L. Nichol-
son, John D. Siirola, Jean-Paul Watson, and David L. Woodruff. Pyomo–Optimization Mod-
eling in Python. Third Edition. Vol. 67. Springer Optimization and Its Applications. Cham:
Springer, 2021. doi: 10.1007/978-3-030-68928-5.

[60] Nicolás Cabrera, Andrés L. Medaglia, Leonardo Lozano, and Daniel Duque. “An Exact Bidi-
rectional Pulse Algorithm for the Constrained Shortest Path”. In: Networks 76.2 (2020),
pp. 128–146. doi: 10.1002/net.21960.

[61] Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. “Knapsack Prob-
lems — An Overview of Recent Advances. Part II: Multiple, Multidimensional, and Quadratic
Knapsack Problems”. In: Computers & Operations Research 143 (2022), p. 105693. doi:
10.1016/j.cor.2021.105693.

[62] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A. Cire. “Combining Reinforcement Learning and Constraint Programming for Combi-
natorial Optimization”. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI). Palo Alto, California USA: AAAI Press, 2021, pp. 3677–3687. doi: 10.1609/aaai.
v35i5.16484.

[63] Matteo Cardellini, Enrico Giunchiglia, and Marco Maratea. “Symbolic Numeric Planning with
Patterns”. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI).
Washington, DC, USA: AAAI Press, 2024, pp. 20070–20077. doi: 10.1609/aaai.v38i18.
29985.

[64] Marco Antonio Moreira De Carvalho and Nei Yoshihiro Soma. “A Breadth-First Search Ap-
plied to the Minimization of the Open Stacks”. In: Journal of the Operational Research Society
66.6 (2015), pp. 936–946. doi: 10.1057/jors.2014.60.

[65] Margarita P. Castro, Andre A. Cire, and J. Christopher Beck. “An MDD-Based Lagrangian
Approach to the Multicommodity Pickup-and-Delivery TSP”. In: INFORMS Journal on Com-
puting 32.2 (2020), pp. 263–278. doi: 10.1287/ijoc.2018.0881.



BIBLIOGRAPHY 240

[66] Margarita Paz Castro, Chiara Piacentini, Andre Augusto Cire, and J. Christopher Beck.
“Solving Delete Free Planning with Relaxed Decision Diagram Based Heuristics”. In: Journal
of Artificial Intelligence Research 67 (2020). doi: 10.1613/jair.1.11659.

[67] Alfonso Catalano, Stefania Gnesi, and Ugo Montanari. “Shortest Path Problems and Tree
Grammars: An Algebraic Framework”. In: Graph-Grammars and Their Application to Com-
puter Science and Biology. Berlin, Heidelberg: Springer, 1979, pp. 167–179. doi: 10.1007/
BFb0025719.

[68] P.P. Chakrabarti, S. Ghose, A. Pandey, and S.C. De Sarkar. “Increasing Search Efficiency
Using Multiple Heuristics”. In: Information Processing Letters 30.1 (1989), pp. 33–36. doi:
10.1016/0020-0190(89)90171-3.

[69] Félix Chalumeau, Ilan Coulon, Quentin Cappart, and Louis-Martin Rousseau. “SeaPearl: A
Constraint Programming Solver Guided by Reinforcement Learning”. In: Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research – 18th International
Conference, CPAIOR 2021. Cham: Springer International Publishing, 2021, pp. 392–409.
doi: 10.1007/978-3-030-78230-6_25.

[70] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff McDonald.
Parallel Programming in OpenMP. Morgan kaufmann, 2001.

[71] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. “Where the Really Hard Problems
Are”. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence,
IJCAI-91. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1991, pp. 331–337.

[72] Dillon Z. Chen, Sylvie Thiébaux, and Felipe Trevizan. “Learning Domain-Independent Heuris-
tics for Grounded and Lifted Planning”. In: Proceedings of the 38th AAAI Conference on
Artificial Intelligence (AAAI). Washington, DC, USA: AAAI Press, 2024, pp. 20078–20086.
doi: 10.1609/aaai.v38i18.29986.

[73] Yixin Chen, Ruoyun Huang, Zhao Xing, and Weixiong Zhang. “Long-Distance Mutual Ex-
clusion for Planning”. In: Artificial Intelligence 173.2 (2009), pp. 365–391. doi: 10.1016/j.
artint.2008.11.004.

[74] T. C. E. Cheng, J. E. Diamond, and B. M. T. Lin. “Optimal Scheduling in Film Production
to Minimize Talent Hold Cost”. In: Journal of Optimization Theory and Applications 79.3
(1993), pp. 479–492. doi: 10.1007/BF00940554.

[75] Antonia Chmiela, Ambros Gleixner, Pawel Lichocki, and Sebastian Pokutta. “Online Learning
for Scheduling MIP Heuristics”. In: Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research – 20th International Conference, CPAIOR 2023. Cham:
Springer Nature Switzerland, 2023, pp. 114–123. doi: 10.1007/978-3-031-33271-5_8.

[76] Nicos Christofides, A. Mingozzi, and P. Toth. “State-Space Relaxation Procedures for the
Computation of Bounds to Routing Problems”. In: Networks 11.2 (1981), pp. 145–164. doi:
10.1002/net.3230110207.

[77] Geoffrey Chu, Maria Garcia de la Banda, and Peter J. Stuckey. “Exploiting Subproblem
Dominance in Constraint Programming”. In: Constraints 17 (2012), pp. 1–38. doi: 10.1007/
s10601-011-9112-9.



BIBLIOGRAPHY 241

[78] Geoffrey Chu and Peter J. Stuckey. “Learning Value Heuristics for Constraint Programming”.
In: Integration of AI and OR Techniques in Constraint Programming – 12th International
Conference, CPAIOR 2015. Cham: Springer International Publishing, 2015, pp. 108–123.
doi: 10.1007/978-3-319-18008-3_8.

[79] Geoffrey Chu and Peter J. Stuckey. “Minimizing the Maximum Number of Open Stacks by
Customer Search”. In: Principles and Practice of Constraint Programming – CP 2009. Berlin,
Heidelberg: Springer, 2009, pp. 242–257. doi: 10.1007/978-3-642-04244-7_21.

[80] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. “Weak, Strong, and Strong Cyclic Plan-
ning via Symbolic Model Checking”. In: Artificial Intelligence 147.1 (2003). Planning with
Uncertainty and Incomplete Information, pp. 35–84. doi: 10.1016/S0004-3702(02)00374-0.

[81] Andre A. Cire and Willem-Jan van Hoeve. “Multivalued Decision Diagrams for Sequencing
Problems”. In: Operations Research 61.6 (2013), pp. 1411–1428. doi: 10.1287/opre.2013.
1221.

[82] Eldan Cohen and J. Christopher Beck. “Fat- and Heavy-Tailed Behavior in Satisficing Plan-
ning”. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI). Palo
Alto, California USA: AAAI Press, 2018, pp. 6136–6143. doi: 10.1609/aaai.v32i1.12092.

[83] Eldan Cohen and J. Christopher Beck. “Local Minima, Heavy Tails, and Search Effort for
GBFS”. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence,
IJCAI-18. Main track. International Joint Conferences on Artificial Intelligence Organization,
2018, pp. 4708–4714. doi: 10.24963/ijcai.2018/654.

[84] Eldan Cohen and J. Christopher Beck. “Problem Difficulty and the Phase Transition in
Heuristic Search”. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI). Palo Alto, California USA: AAAI Press, 2017, pp. 780–786. doi: 10.1609/aaai.
v31i1.10658.

[85] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long. “A Hybrid LP-RPG Heuristic
for Modelling Numeric Resource Flows in Planning”. In: Journal of Artificial Intelligence
Research 46.1 (2013), pp. 343–412. doi: 10.1613/jair.3788.

[86] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long. “COLIN: Planning with Con-
tinuous Linear Numeric Change”. In: Journal of Artificial Intelligence Research 44 (2012),
pp. 1–96. doi: 10.1613/jair.3608.

[87] Vianney Coppé, Xavier Gillard, and Pierre Schaus. “Boosting Decision Diagram-Based Branch-
And-Bound by Pre-Solving with Aggregate Dynamic Programming”. In: 29th International
Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023, 13:1–13:17. doi: 10.4230/LIPIcs.CP.2023.13.

[88] Vianney Coppé, Xavier Gillard, and Pierre Schaus. “Decision Diagram-Based Branch-and-
Bound with Caching for Dominance and Suboptimality Detection”. In: INFORMS Journal
on Computing (2024). doi: 10.1287/ijoc.2022.0340.



BIBLIOGRAPHY 242

[89] Vianney Coppé, Xavier Gillard, and Pierre Schaus. “Modeling and Exploiting Dominance
Rules for Discrete Optimization with Decision Diagrams”. In: Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research – 21st International Conference,
CPAIOR 2024. 2024.

[90] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. “A Tabu Search Heuristic for
Periodic and Multi-Depot Vehicle Routing Problems”. In: Networks 30.2 (1997), pp. 105–119.
doi: 10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G.

[91] “CPlan: A Constraint Programming Approach to Planning”. In: Proceedigns of the 16th Na-
tional Conference on Artificial Intelligence (AAAI). Menlo Park, California: AAAI Press,
1999, pp. 585–590.

[92] Marco Daniele, Paolo Traverso, and Moshe Y. Vardi. “Strong Cyclic Planning Revisited”. In:
Recent Advances in AI Planning, Proceedings of the Fifith European Conference on Planning
(ECP). Berlin, Heidelberg: Springer, 1999, pp. 35–48. doi: 10.1007/10720246_3.

[93] Emilie Danna and Laurent Perron. “Structured vs. Unstructured Large Neighborhood Search:
A Case Study on Job-Shop Scheduling Problems with Earliness and Tardiness Costs”. In:
Principles and Practice of Constraint Programming – CP 2003. Berlin, Heidelberg: Springer,
2003, pp. 817–821. doi: 10.1007/978-3-540-45193-8_59.

[94] Emilie Danna, Edward Rothberg, and Claude Le Pape. “Exploring Relaxation Induced Neigh-
borhoods to Improve MIP Solutions”. In: Mathematical Programming 102 (2005), pp. 71–90.
doi: 10.1007/s10107-004-0518-7.

[95] G. B. Dantzig and J. H. Ramser. “The Truck Dispatching Problem”. In: Management Science
6.1 (1959), pp. 80–91. doi: 10.1287/mnsc.6.1.80.

[96] George B. Dantzig. “Discrete-Variable Extremum Problems”. In: Operations Research 5.2
(1957), pp. 266–277. doi: 10.1287/opre.5.2.266.

[97] Rina Dechter. “Bucket Elimination: A Unifying Framework for Reasoning”. In: Artificial In-
telligence 113.1 (1999), pp. 41–85. doi: 10.1016/S0004-3702(99)00059-4.

[98] Rina Dechter and Judea Pearl. “Generalized Best-First Search Strategies and the Optimality
of A*”. In: Journal of the ACM 32.3 (1985), pp. 505–536. doi: 10.1145/3828.3830.

[99] Maxence Delorme, Manuel Iori, and Silvano Martello. “Bin Packing and Cutting Stock Prob-
lems: Mathematical Models and Exact Algorithms”. In: European Journal of Operational
Research 255.1 (2016), pp. 1–20. doi: 10.1016/j.ejor.2016.04.030.

[100] Maxence Delorme, Manuel Iori, and Silvano Martello. “BPPLIB: A Library for Bin Packing
and Cutting Stock Problems”. In: Optimization Letters 12.2 (2018), pp. 235–250. doi: 10.
1007/s11590-017-1192-z.

[101] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Column Generation. New
York, NY: Springer. doi: 10.1007/b135457.

[102] Guy Desaulniers, Oli B. G. Madsen, and Stefan Ropke. “The Vehicle Routing Problem with
Time Windows”. In: Vehicle Routing: Problems, Methods, and Applications. Ed. by Paolo
Toth and Daniele Vigo. Second Edition. Society for Industrial and Applied Mathematics,
2014. Chap. 5, pp. 119–159. doi: 10.1137/1.9781611973594.



BIBLIOGRAPHY 243

[103] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. “A New Optimization Algorithm
for the Vehicle Routing Problem with Time Windows”. In: Operations Research 40.2 (1992),
pp. 342–354. doi: 10.1287/opre.40.2.342.

[104] Martin Desrochers and Francois Soumis. “A Generalized Permanent Labelling Algorithm For
The Shortest Path Problem With Time Windows”. In: INFOR: Information Systems and
Operational Research 26.3 (1988), pp. 191–212. doi: 10.1080/03155986.1988.11732063.

[105] Edsger W Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numerische
Mathematik 1 (1959), pp. 269–271. doi: 10.1007/BF01386390.

[106] Minh Binh Do and Subbarao Kambhampati. “Planning as Constraint Satisfaction: Solving the
Planning Graph by Compiling It Into CSP”. In: Artificial Intelligence 132.2 (2001), pp. 151–
182. doi: 10.1016/S0004-3702(01)00128-X.

[107] J. E. Doran and D. Michie. “Experiments with the Graph Traverser Program”. In: Proceed-
ings of the Royal Society of London. Series A, Mathematical and Physical Sciences 294.1437
(1966), pp. 235–259. doi: 10.1098/rspa.1966.0205.

[108] Dominik Drexler, Daniel Gnad, Paul Höft, Jendrik Seipp, David Speck, and Simon Ståhlberg.
Ragnarok. 2023. url: https://ipc2023-classical.github.io/abstracts/planner17_
ragnarok.pdf.

[109] Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. “An Optimal Al-
gorithm for the Traveling Salesman Problem with Time Windows”. In: Operations Research
43.2 (1995), pp. 367–371. doi: 10.1287/opre.43.2.367.

[110] S. Dutt and N.R. Mahapatra. “Scalable Load Balancing Strategies for Parallel A* Algo-
rithms”. In: Journal of Parallel and Distributed Computing 22.3 (1994), pp. 488–505. doi:
10.1006/jpdc.1994.1106.

[111] Stefan Edelkamp. “External-Memory State Space Search”. In: Algorithm Engineering: Selected
Results and Surveys. Ed. by Lasse Kliemann and Peter Sanders. Cham: Springer International
Publishing, 2016, pp. 185–225. doi: 10.1007/978-3-319-49487-6_6.

[112] Stefan Edelkamp. “Planning with Pattern Databases”. In: Proceedings of the Sixth E (ECP)uropean
Conference on Planning (ECP). 2001, pp. 13–24.

[113] Stefan Edelkamp and Jörg Hoffmann. PDDL2.2: The Language for the Classical Part of the
4th International Planning Competitions. Tech. rep. No. 195. Institut für Informatik, Albert-
Ludwigs-Universität Freiburg, 2004.

[114] Stefan Edelkamp, Shahid Jabbar, and Alberto Lluch Lafuente. “Cost-Algebraic Heuristic
Search”. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI).
AAAI Press, 2005, pp. 1362–1367.

[115] Stefan Edelkamp and Stefan Schrödl. “Automatically Created Heuristics”. In: Heuristic Search.
San Francisco: Morgan Kaufmann, 2012. Chap. 4, pp. 161–192. doi: 10.1016/B978-0-12-
372512-7.00004-3.

[116] Stefan Edelkamp and Stefan Schrödl. Heuristic Search: Theory and Applications. San Fran-
cisco: Morgan Kaufmann, 2012. doi: 10.1016/C2009-0-16511-X.



BIBLIOGRAPHY 244

[117] Stefan Edelkamp and Stefan Schrödl. “Linear-Space Search”. In: Heuristic Search. San Fran-
cisco: Morgan Kaufmann, 2012. Chap. 5, pp. 195–225. doi: 10.1016/B978-0-12-372512-
7.00005-5.

[118] Stefan Edelkamp and Stefan Schrödl. “Memory-Restricted Search”. In: Heuristic Search. San
Francisco: Morgan Kaufmann, 2012. Chap. 6, pp. 227–281. doi: 10.1016/B978- 0- 12-

372512-7.00006-7.

[119] Stefan Edelkamp and Stefan Schrödl. “Symbolic Search”. In: Heuristic Search. San Francisco:
Morgan Kaufmann, 2012. Chap. 7, pp. 283–318. doi: 10.1016/B978-0-12-372512-7.00007-
9.

[120] Stefan Edelkamp, Damian Sulewski, and Cengizhan Yücel. “Perfect Hashing for State Space
Exploration on the GPU”. In: Proceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS). AAAI Press, 2010, pp. 57–64. doi: 10.1609/icaps.
v20i1.13414.

[121] Jason Eisner, Eric Goldlust, and Noah A. Smith. “Compiling Comp Ling: Weighted Dy-
namic Programming and the Dyna Language”. In: Proceedings of Human Language Tech-
nology Conference and Conference on Empirical Methods in Natural Language Processing
(HLT/EMNLP). USA: Association for Computational Linguistics, 2005, pp. 281–290. doi:
10.3115/1220575.1220611.

[122] Dwidier El Baz, Bilal Fakih, Romeo Sanchez Nigenda, and Vincent Boyer. “Parallel Best-
First Search Algorithms for Planning Problems on Multi-Core Processors”. In: The Journal
of Supercomputing 78.3 (2022), pp. 3122–3151. doi: 10.1007/s11227-021-03986-z.

[123] Hamilton Emmons. “One-Machine Sequencing to Minimize Certain Functions of Job Tardi-
ness”. In: Operations Research 17.4 (1969), pp. 701–715. doi: 10.1287/opre.17.4.701.

[124] Gary D. Eppen and R. Kipp Martin. “Solving Multi-Item Capacitated Lot-Sizing Problems
Using Variable Redefinition”. In: Operations Research 35.6 (1987), pp. 832–848. doi: 10.
1287/opre.35.6.832.

[125] L.F. Escudero. “An Inexact Algorithm for the Sequential Ordering Problem”. In: European
Journal of Operational Research 37.2 (1988), pp. 236–249. doi: 10.1016/0377-2217(88)
90333-5.

[126] Jason Evans. “A Scalable Concurrent malloc(3) Implementation for FreeBSD”. In: Proceedigns
of BSDCan 2006. 2006.

[127] M. Evett, J. Hendler, A. Mahanti, and D. Nau. “PRA*: Massively Parallel Heuristic Search”.
In: Journal of Parallel and Distributed Computing 25.2 (1995), pp. 133–143. doi: 10.1006/
jpdc.1995.1036.

[128] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. “Using the Context-enhanced Addi-
tive Heuristic for Temporal and Numeric Planning”. In: Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS). AAAI Press, 2009, pp. 130–
137. doi: 10.1609/icaps.v19i1.13373.

[129] Enrico Faggioli and Carlo Alberto Bentivoglio. “Heuristic and Exact Methods for the Cutting
Sequencing Problem”. In: European Journal of Operational Research 110.3 (1998), pp. 564–
575. doi: 10.1016/S0377-2217(97)00268-3.



BIBLIOGRAPHY 245

[130] Emanuel Falkenauer. “A Hybrid Grouping Genetic Algorithm for Bin Packing”. In: Journal
of Heuristics 2.1 (1996), pp. 5–30. doi: 10.1007/BF00226291.

[131] Dieqiao Feng, Carla P Gomes, and Bart Selman. “Left Heavy Tails and the Effectiveness of
the Policy and Value Networks in DNN-based best-first search for Sokoban Planning”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 35. Curran Associates,
Inc., 2022, pp. 36295–36307.

[132] Patrick Ferber, Florian Geißer, Felipe Trevizan, Malte Helmert, and Jörg Hoffmann. “Neural
Network Heuristic Functions for Classical Planning: Bootstrapping and Comparison to Other
Methods”. In: Proceedings of the 32nd International Conference on Automated Planning and
Scheduling (ICAPS). 2022, pp. 583–587. doi: 10.1609/icaps.v32i1.19845.

[133] Patrick Ferber, Florian Geißer, Felipe Trevizan, Malte Helmert, and Jörg Hoffmann. “Neural
Network Heuristic Functions for Classical Planning: Reinforcement Learning and Comparison
to Other Methods”. In: PRL Workshop Series – Bridging the Gap Between AI Planning and
Reinforcement Learning. 2021. url: https://prl- theworkshop.github.io/prl2021/

papers/PRL2021_paper_20.pdf.

[134] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. “Neural Network Heuristics for Classical
Planning: A Study of Hyperparameter Space”. In: ECAI 2020 – 24th European Conference
on Artificial Intelligence. Vol. 325. Frontiers in Artificial Intelligence and Applications. IOS
Press, 2020, pp. 2346–2353. doi: 10.3233/FAIA200364.

[135] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. “Reinforcment Learning for Planning
Heuristics”. In: Proceedings of the First Workshop on Bridging the Gap Between AI Planning
and Reinforcement Learning (PRL). 2020, pp. 119–126.

[136] Maximilian Fickert, Tianyi Gu, and Wheeler Ruml. “New Results in Bounded-Suboptimal
Search”. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI). Palo
Alto, California USA: AAAI Press, 2022, pp. 10166–10173. doi: 10.1609/aaai.v36i9.21256.

[137] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving”. In: Artificial Intelligence 2.3 (1971), pp. 189–208.
doi: 10.1016/0004-3702(71)90010-5.

[138] L. R. Ford. Network Flow Theory. Santa Monica, CA: RAND Corporation, 1956.

[139] Robert Fourer, David M. Gay, and Brian W. Kernighan. “AMPL: A Mathematical Program-
ing Language”. In: Algorithms and Model Formulations in Mathematical Programming. Ed. by
Stein W. Wallace. Berlin, Heidelberg: Springer, 1989, pp. 150–151.

[140] Maria Fox and Derek Long. “Modelling Mixed Discrete-Continuous Domains for Planning”. In:
Jorunal of Artifiicial Intelligence Research 27 (2006), pp. 235–297. doi: 10.1613/jair.2044.

[141] Maria Fox and Derek Long. “PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains”. In: Journal of Artificial Intelligence Research 20 (2003), pp. 61–124.
doi: 10.1613/jair.1129.

[142] Guillem Francès and Hector Geffner. “Modeling and Computation in Planning: Better Heuris-
tics from More Expressive Languages”. In: Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS). 2015, pp. 70–78. doi: 10.1609/icaps.
v25i1.13722.



BIBLIOGRAPHY 246

[143] Guillem Francès, Miquel Ramirez, and Collaborators. Tarski: An AI Planning Modeling
Framework. https://github.com/aig-upf/tarski. 2018.

[144] M. Frantzeskakis and C. D. T. Watson-Gandy. “The Use of State Space Relaxation for the
Dynamic Facility Location Problem”. In: Annals of Operations Research 18.1 (1989), pp. 187–
211. doi: 10.1007/BF02097803.

[145] Eugene Freuder. “In Pursuit of the Holy Grail”. In: Constraints 2.1 (1997), pp. 57–61. doi:
10.1023/A:1009749006768.

[146] Rafael de Magalhães Dias Frinhani, Marco Antonio Moreira de Carvalho, and Nei Yoshihiro
Soma. “A PageRank-Based Heuristic for the Minimization of Open Stacks Problem”. In: PLoS
ONE 13.8 (2018), pp. 1–24. doi: 10.1371/journal.pone.0203076.

[147] Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martínez-Hernández, and Ian
Miguel. “ESSENCE: A Constraint Language for Specifying Combinatorial Problems”. In:
Constraints 13.3 (2008), pp. 268–306. doi: 10.1007/s10601-008-9047-y.

[148] Nikolaus Frohner, Jan Gmys, Nouredine Melab, Günther Raidl, and El-Ghazali Talbi. “Par-
allel Beam Search for Combinatorial Optimization”. In: Workshop Proceedings of the 51st
International Conference on Parallel Processing. 2023. doi: 10.1145/3547276.3548633.

[149] David A Furcy. “ITSA*: Iterative Tunneling Search with A*”. In: Heuristic Search, Memory-
Based Heuristics and Their Applications: Papers from AAAI Workshop. Menlo Park, Cali-
fornia: AAAI Press, 2006, pp. 21–26.

[150] Éric Fusy. “Uniform Random Sampling of Planar Graphs in Linear Time”. In: Random Struc-
tures and Algorithms 35.4 (2009), pp. 464–522. doi: 10.1002/rsa.20275.

[151] S. L. Gadegaard and J. Lysgaard. “A Symmetry-Free Polynomial Formulation of the Capac-
itated Vehicle Routing Problem”. In: Discrete Applied Mathematics 296 (2021), pp. 179–192.
doi: 10.1016/j.dam.2020.02.012.

[152] Maria Garcia de la Banda and Peter J. Stuckey. “Dynamic Programming to Minimize the
Maximum Number of Open Stacks”. In: INFORMS Journal on Computing 19.4 (2007),
pp. 607–617. doi: 10.1287/ijoc.1060.0205.

[153] Maria Garcia de la Banda, Peter J. Stuckey, and Geoffrey Chu. “Solving Talent Scheduling
with Dynamic Programming”. In: INFORMS Journal on Computing 23.1 (2011), pp. 120–
137. doi: 10.1287/ijoc.1090.0378.

[154] Ángel García Olaya, Sergio Jiménez, and Carlos Linares López. The 2011 International Plan-
ning Competition - Description of Participant Planners. 2011. url: http : / / www . plg .

inf.uc3m.es/ipc2011-deterministic/attachments/ParticipatingPlanners/ipc2011-

booklet.pdf.

[155] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York: W. H. Freeman and Company, 1979.

[156] Antonio Garrido, Marlene Arangu, and Eva Onaindia. “A Constraint Programming Formula-
tion for Planning: from Plan Scheduling to Plan Generation”. In: Journal of Scheduling 12.3
(2009), pp. 227–256. doi: 10.1007/s10951-008-0083-7.



BIBLIOGRAPHY 247

[157] Bezalel Gavish and Stephen C. Graves. The Travelling Salesman Problem and Related Prob-
lems. Tech. rep. Working Paper OR 078-78. Operations Research Center, Massachusetts In-
stitute of Technology, 1978.

[158] Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Optimizer
(COPT) User Guide. https://guide.coap.online/copt/en-doc. 2022.

[159] Héctor Geffner. “Functional Strips: A More Flexible Language for Planning and Problem
Solving”. In: Logic-Based Artificial Intelligence. Ed. by Jack Minker. Boston, MA: Springer
US, 2000, pp. 187–209. doi: 10.1007/978-1-4615-1567-8_9.

[160] Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. “A Generalized Insertion
Heuristic for the Traveling Salesman Problem with Time Windows”. In: Operations Research
46.3 (1998), pp. 330–346. doi: 10.1287/opre.46.3.330.

[161] Ian P. Gent, Chris Jefferson, and Ian Miguel. “MINION: A Fast, Scalable, Constraint Solver”.
In: ECAI 2006 – 17th European Conference on Artificial Intelligence. Vol. 141. Frontiers in
Artificial Intelligence and Applications. NLD: IOS Press, 2006, pp. 98–102.

[162] Rebecca Gentzel, Laurent Michel, and W.-J. van Hoeve. “HADDOCK: A Language and Ar-
chitecture for Decision Diagram Compilation”. In: Principles and Practice of Constraint Pro-
gramming – CP 2020. Cham: Springer International Publishing, 2020, pp. 531–547. doi:
10.1007/978-3-030-58475-7_31.

[163] Alfonso Gereveni and Derek Long. Plan Constraints and Preferences in PDDL3. Tech. rep.
Department of Electronics for Automation, University of Brescia, 2005.

[164] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL - The Planning Domain Definition Lan-
guage. Tech. rep. CVC TR-98-003/DCS TR-1165. Yale Center for Computational Vison and
Control, 1998.

[165] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning. The Morgan Kaufmann
Series in Artificial Intelligence. Burlington: Morgan Kaufmann, 2004. doi: 10.1016/B978-
1-55860-856-6.X5000-5.

[166] Nina Ghanbari Ghooshchi, Majid Namazi, M. A. Hakim Newton, and Abdul Sattar. “Encod-
ing Domain Transitions for Constraint-Based Planning”. In: Journal of Artificial Intelligence
Research 58 (2017), pp. 905–966. doi: 10.1613/jair.5378.

[167] Robert Giegerich and Carsten Meyer. “Algebraic Dynamic Programming”. In: Proceedings of
the Ninth Algebraic Methodology and Software Technology. Berlin, Heidelberg: Springer, 2002,
pp. 349–364. doi: 10.1007/3-540-45719-4_24.

[168] Nicola Gigante and Enrico Scala. “On the Compilability of Bounded Numeric Planning”.
In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI-
23. Main track. International Joint Conferences on Artificial Intelligence Organization, 2023,
pp. 5341–5349. doi: 10.24963/ijcai.2023/593.



BIBLIOGRAPHY 248

[169] Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto Cire. “Improving the
Filtering of Branch-and-Bound MDD Solver”. In: Integration of Constraint Programming,
Artificial Intelligence, and Operations Research – 18th International Conference, CPAIOR
2021. Cham: Springer International Publishing, 2021, pp. 231–247. doi: 10.1007/978-3-
030-78230-6_15.

[170] Xavier Gillard and Pierre Schaus. “Large Neighborhood Search with Decision Diagrams”.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI-
22. Main track. International Joint Conferences on Artificial Intelligence Organization, 2022,
pp. 4754–4760. doi: 10.24963/ijcai.2022/659.

[171] Xavier Gillard, Pierre Schaus, and Vianney Coppé. “Ddo, a Generic and Efficient Framework
for MDD-Based Optimization”. In: Proceedings of the 29th International Joint Conference
on Artificial Intelligence, IJCAI-20. Demos. International Joint Conferences on Artificial
Intelligence Organization, 2020, pp. 5243–5245. doi: 10.24963/ijcai.2020/757.

[172] Michael Gimelfarb, Ayal Taitler, and Scott Sanner. “JaxPlan and GurobiPlan: Optimization
Baselines for Replanning in Discrete and Mixed Discrete and Continuous Probabilistic Do-
mains”. In: Proceedings in the 34th International Conference on Automated Planning and
Scheduling (ICAPS). Washington, DC, USA: AAAI Press, 2024, pp. 230–238. doi: 10.1609/
icaps.v34i1.31480.

[173] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke,
Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano.
“MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library”.
In: Mathematical Programming Computation 13 (2021), pp. 443–490. doi: 10.1007/s12532-
020-00194-3.

[174] Daniel Gnad, Malte Helmert, Peter Jonsson, and Alexander Shleyfman. “Planning over Inte-
gers: Compilations and Undecidability”. In: Proceedings of the 23rd International Conference
on Automated Planning and Scheduling (ICAPS). Palo Alto, California USA: AAAI Press,
2023, pp. 148–152. doi: 10.1609/icaps.v33i1.27189.

[175] Stefania Gnesi, Ugo Montanari, and Alberto Martelli. “Dynamic Programming as Graph
Searching: An Algebraic Approach”. In: Journal of the ACM 28.4 (1981), 737–751. doi:
10.1145/322276.322285.

[176] Bruce L. Golden, Larry Levy, and Rakesh Vohra. “The Orienteering Problem”. In: Naval
Research Logistics (NRL) 34.3 (1987), pp. 307–318. doi: 10.1002/1520-6750(198706)34:
3<307::AID-NAV3220340302>3.0.CO;2-D.

[177] Arnoosh Golestanian, Giovanni Lo Bianco, Chengyu Tao, and J. Christopher Beck. “Op-
timization Models for Pickup-And-Delivery Problems with Reconfigurable Capacities”. In:
29th International Conference on Principles and Practice of Constraint Programming (CP
2023). Vol. 280. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 17:1–17:17. doi: 10.4230/
LIPIcs.CP.2023.17.



BIBLIOGRAPHY 249

[178] Carla P. Gomes and Bart Selman. “Algorithm Portfolios”. In: Artificial Intelligence 126.1
(2001). Tradeoffs under Bounded Resources, pp. 43–62. doi: 10.1016/S0004- 3702(00)

00081-3.

[179] Carla P. Gomes, Bart Selman, and Nuno Crato. “Heavy-Tailed Distributions in Combinatorial
Search”. In: Principles and Practice of Constraint Programming – CP97. Berlin, Heidelberg:
Springer, 1997, pp. 121–135. doi: 10.1007/BFb0017434.

[180] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. “Heavy-Tailed Phenomena
in Satisfiability and Constraint Satisfaction Problems”. In: Journal of Automated Reasoning
24.1 (2000), pp. 67–100. doi: 10.1023/A:1006314320276.

[181] Carla P. Gomes, Bart Selman, and Henry Kautz. “Boosting Combinatorial Search Through
Randomization”. In: Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI). AAAI Press, 1998, pp. 431–437.

[182] Jaime E. González, Andre A. Cire, Andrea Lodi, and Louis-Martin Rousseau. “Integrated
Integer Programming and Decision Diagram Search Tree with an Application to the Maximum
Independent Set Problem”. In: Constraints 25.1 (2020), pp. 23–46. doi: 10.1007/s10601-
019-09306-w.

[183] Luis Gouveia, Ana Paias, and Stefan Voß. “Models for a Traveling Purchaser Problem with
Additional Side-Constraints”. In: Computers & Operations Research 38.2 (2011), pp. 550–558.
doi: 10.1016/j.cor.2010.07.016.

[184] Luis Gouveia and Mario Ruthmair. “Load-Dependent and Precedence-Based Models for
Pickup and Delivery Problems”. In: Computers & Operations Research 63 (2015), pp. 56–
71. doi: 10.1016/j.cor.2015.04.008.

[185] Peter Gregory, Derek Long, and Maria Fox. “Constraint Based Planning with Composable
Substate Graphs”. In: ECAI 2010 – 19th European Conference on Artificial Intelligence.
Vol. 215. Frontiers in Artificial Intelligence and Applications. IOS Press, 2010, pp. 453–458.
doi: 10.3233/978-1-60750-606-5-453.

[186] Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck. “Planning Modulo Theories:
Extending the Planning Paradigm”. In: Proceedings of the 22nd International Conference on
Automated Planning and Scheduling. AAAI Press, 2012, pp. 65–73. doi: 10.1609/icaps.
v22i1.13505.

[187] J. Gromicho, J. J. Van Hoorn, A. L. Kok, and J. M.J. Schutten. “Restricted Dynamic Pro-
gramming: A Flexible Framework for Solving Realistic VRPs”. In: Computers & Operations
Research 39.5 (2012), pp. 902–909. doi: 10.1016/j.cor.2011.07.002.

[188] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023. url: https://www.
gurobi.com.

[189] Timothy L. Harris. “A Pragmatic Implementation of Non-blocking Linked-Lists”. In: Pro-
ceedings of the 15th International Conference on Distributed Computing. DISC 2001. Berlin,
Heidelberg: Springer-Verlag, 2001, pp. 300–314. doi: 10.1007/3-540-45414-4_21.

[190] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.1968.300136.



BIBLIOGRAPHY 250

[191] William E Hart, Jean-Paul Watson, and David L Woodruff. “Pyomo: Modeling and Solving
Mathematical Programs in Python”. In: Mathematical Programming Computation 3.3 (2011),
pp. 219–260.

[192] William D. Harvey and Matthew L. Ginsberg. “Limited Discrepancy Search”. In: Proceedings
of the 14th International Joint Conference on Artificial Intelligence, IJCAI-95. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 607–613.

[193] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. “Domain-Independent
Construction of Pattern Database Heuristics for Cost-Optimal Planning”. In: Proceedings of
the 22nd AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 2007, pp. 1007–
1012.

[194] Patrik Haslum and Héctor Geffner. “Admissible Heuristics for Optimal Planning”. In: Pro-
ceedings of the Fifth International Conference on Artificial Intelligence Planning Systems
(AIPS). AAAI Press, 2000, pp. 140–149.

[195] Emmanuel Hebrard. “Mistral, a Constraint Satisfaction Library”. In: Proceedings of the Third
International CSP Solver Competition. 2008, pp. 31–39.

[196] Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan. “Constraint Programming and
Combinatorial Optimisation in Numberjack”. In: Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems – 7th International Con-
ference, CPAIOR 2010. Berlin, Heidelberg: Springer, 2010, pp. 181–185. doi: 10.1007/978-
3-642-13520-0_22.

[197] Stefan Heinz, Wen-Yang Ku, and J. Christopher Beck. “Recent Improvements Using Con-
straint Integer Programming for Resource Allocation and Scheduling”. In: Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
CPAIOR 2013. Berlin, Heidelberg: Springer, 2013, pp. 12–27. doi: 10.1007/978-3-642-
38171-3_2.

[198] Michael Held and Richard M. Karp. “A Dynamic Programming Approach to Sequencing
Problems”. In: Journal of the Society for Industrial and Applied Mathematics 10.1 (1962),
pp. 196–210. doi: 10.1137/0110015.

[199] Michael Held and Richard M. Karp. “The Traveling-Salesman Problem and Minimum Span-
ning Trees”. In: Operations Research 18.6 (1970), pp. 1138–1162. doi: 10.1287/opre.18.6.
1138.

[200] Daniel Heller, Patrick Ferber, Julian Bitterwolf, Matthias Hein, and Jörg Hoffmann. “Neural
Network Heuristic Functions: Taking Confidence into Account”. In: Proceedings of the 17th
International Symposium on Combinatorial Search (SoCS). AAAI Press, 2022, pp. 223–228.
doi: 10.1609/socs.v15i1.21771.

[201] Paul Helman. “A New Theory of Dynamic Programming.” PhD thesis. University of Michigan,
Ann Arbor, 1982.

[202] Malte Helmert. “Decidability and Undecidability Results for Planning with Numerical State
Variables”. In: Proceedings of the Sixth International Conference on Artificial Intelligence
Planning Systems (AIPS). AAAI Press, 2002, pp. 44–53.



BIBLIOGRAPHY 251

[203] Malte Helmert. “The Fast Downward Planning System”. In: Journal of Artificial Intelligence
Research 26 (2006), pp. 191–246. doi: 10.1613/jair.1705.

[204] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. “Merge-and-Shrink Abstrac-
tion”. In: Journal of the ACM 61.3 (2014), pp. 1–63. doi: 10.1145/2559951.

[205] Gregor Hendel. “Adaptive Large Neighborhood Search for Mixed Integer Programming”. In:
Mathematical Programming Computation 14 (2022), pp. 185–221. doi: 10.1007/s12532-
021-00209-7.

[206] Maurice Herlihy. “A Methodology for Implementing Highly Concurrent Data Objects”. In:
ACM Transactions on Programing Languages Systems 15.5 (1993), pp. 745–770. doi: 10.
1145/161468.161469.

[207] István T. Hernádvölgyi, Robert C. Holte, and Toby Walsh. “Experiments with Automati-
cally Created Memory-Based Heuristics”. In: Abstraction, Reformulation, and Approximation.
SARA 2000. Berlin, Heidelberg: Springer, 2000, pp. 281–290. doi: 10.1007/3-540-44914-
0_18.

[208] Hipólito Hernández-Pérez and Juan José Salazar-González. “The Multi-Commodity One-to-
One Pickup-and-Delivery Traveling Salesman Problem”. In: European Journal of Operational
Research 196.3 (2009), pp. 987–995. doi: 10.1016/j.ejor.2008.05.009.

[209] Frederick S Hillier and Gerald J Lieberman. Introduction to Operations Research. McGraw-
Hill, 2015.

[210] Samid Hoda, Willem-Jan van Hoeve, and J. N. Hooker. “A Systematic Approach to MDD-
Based Constraint Programming”. In: Principles and Practice of Constraint Programming –
CP 2010. Berlin, Heidelberg: Springer, 2010, pp. 266–280. doi: 10.1007/978-3-642-15396-
9_23.

[211] Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig Boutilier. “SPUDD: Stochastic Planning
using Decision Diagrams”. In: UAI ’99: Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999,
pp. 279–288.

[212] Jörg Hoffmann. “The Metric-FF Planning System: Translating ”Ignoring Delete Lists” to
Numeric State Variables”. In: Journal of Artificial Intelligence Research 20 (2003), pp. 291–
341. doi: 10.1613/jair.1144.

[213] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan Generation Through
Heuristic Search”. In: Journal of Artificial Intelligence Research 14 (2001), pp. 253–302. doi:
10.1613/jair.855.

[214] Robert Holte and Gaojin Fan. “State Space Abstraction in Artificial Intelligence and Op-
erations Research”. In: Planning, Search, and Optimization: Papers from the 2015 AAAI
Workshop. 2015, pp. 55–60.

[215] J. N. Hooker and G. Ottosson. “Logic-Based Benders Decomposition”. In: Mathematical Pro-
gramming 96.1 (2003), pp. 33–60. doi: 10.1007/s10107-003-0375-9.

[216] John Hooker. “Nonserial Dynamic Programming”. In: Logic-Based Methods for Optimization.
John Wiley & Sons, Ltd, 2000. Chap. 20, pp. 423–441. doi: 10.1002/9781118033036.ch20.



BIBLIOGRAPHY 252

[217] John N. Hooker. “Decision Diagrams and Dynamic Programming”. In: Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems – 10th
International Conference, CPAIOR 2013. Berlin, Heidelberg: Springer, 2013, pp. 94–110. doi:
10.1007/978-3-642-38171-3_7.

[218] Holger H. Hoos and Edward Tsang. “Local Search Methods”. In: Handbook of Constraint
Programming. Ed. by Francesca Rossi, Peter van Beek, and Toby Walsh. Vol. 2. Foundations
of Artificial Intelligence. Elsevier, 2006. Chap. 5, pp. 135–167. doi: 10.1016/S1574-6526(06)
80009-X.

[219] Ronald A. Howard. “Dynamic Programming and Markov Process”. In: New York: John Wiley
& Sons, Inc., 1960.

[220] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. “A Novel Transition Based Encoding
Scheme for Planning as Satisfiability”. In: Proceedings of the 24th AAAI Conference on Ar-
tificial Intelligence (AAAI). Palo Alto, California USA: AAAI Press, 2010, pp. 89–94. doi:
10.1609/aaai.v24i1.7544.

[221] Q. Huangfu and J. A. J. Hall. “Parallelizing the Dual Revised Simplex Method”. In: Math-
ematical Programming Computation 10.1 (2018), pp. 119–142. doi: 10.1007/s12532-017-
0130-5.

[222] Philipp Hungerländer and Christian Truden. “Efficient and Easy-to-Implement Mixed-Integer
Linear Programs for the Traveling Salesperson Problem with Time Windows”. In: Transporta-
tion Research Procedia 30 (2018), pp. 157–166. doi: 10.1016/j.trpro.2018.09.018.

[223] Daniel Höller and Gregor Behnke. “Encoding Lifted Classical Planning in Propositional
Logic”. In: Proceedings of the 32nd International Conference on Automated Planning and
Scheduling (ICAPS). Palo Alto, California USA: AAAI Press, 2022, pp. 134–144. doi: 10.
1609/icaps.v32i1.19794.

[224] Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert Fiorino, Damien
Pellier, and Ron Alford. “HDDL: An Extension to PDDL for Expressing Hierarchical Planning
Problems”. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI).
Palo Alto, California USA: AAAI Press, 2020, pp. 9883–9891. doi: 10.1609/aaai.v34i06.
6542.

[225] Toshihide Ibaraki. “Branch-and-Bound Procedure and State-Space Representation of Com-
binatorial Optimization Problems”. In: Information and Control 36.1 (1978), pp. 1–27. doi:
10.1016/S0019-9958(78)90197-3.

[226] Toshihide Ibaraki. “Classes of Discrete Optimization Problems and Their Decision Problems”.
In: Journal of Computer and System Sciences 8.1 (1974), pp. 84–116. doi: 10.1016/S0022-
0000(74)80024-3.

[227] Toshihide Ibaraki. “Finite State Representations of Discrete Optimization Problems”. In:
SIAM Journal on Computing 2.3 (1973), pp. 193–210. doi: 10.1137/0202016.

[228] Toshihide Ibaraki. “Representation Theorems for Equivalent Optimization Problems”. In:
Information and Control 21.5 (1972), pp. 397–435. doi: 10.1016/S0019-9958(72)90125-8.



BIBLIOGRAPHY 253

[229] Toshihide Ibaraki. “Solvable Classes of Discrete Dynamic Programming”. In: Journal of Math-
ematical Analysis and Applications 43.3 (1973), pp. 642–693. doi: 10.1016/0022-247X(73)
90283-7.

[230] IBM Corporation, White Plains, N.Y. Mathematical Programming System/360 Version 2,
Linear and Separable Programming—User’s Manual. Publication H20-0476-2. 1969.

[231] Tatsuya Imai and Alex Fukunaga. “On a Practical, Integer-Linear Programming Model for
Delete-FreeTasks and its Use as a Heuristic for Cost-Optimal Planning”. In: Journal of Arti-
ficial Intelligence Research 5 (2015), pp. 631–677. doi: 10.1613/jair.4936.

[232] Stefan Irnich and Guy Desaulniers. “Shortest Path Problems with Resource Constraints”. In:
Column Generation. Ed. by Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon.
Boston, MA: Springer, 2005, pp. 33–65. doi: 10.1007/0-387-25486-2_2.

[233] James R. Jackson. “A Computing Procedure for a Line Balancing Problem”. In: Management
Science 2.3 (1956), pp. 261–271. doi: 10.1287/mnsc.2.3.261.

[234] Siddhartha Jain and Pascal Van Hentenryck. “Large Neighborhood Search for Dial-a-Ride
Problems”. In: Principles and Practice of Constraint Programming – CP 2011. Berlin, Hei-
delberg: Springer, 2011, pp. 400–413. doi: 10.1007/978-3-642-23786-7_31.

[235] Yuu Jinnai and Alex Fukunaga. “On Hash-Based Work Distribution Methods for Parallel
Best-First Search”. In: Journal of Artifiicial Intelligence Research 60 (2017), pp. 491–548.
doi: 10.1613/jair.5225.

[236] Roger V. Johnson. “Optimally Balancing Large Assembly Lines with ‘Fable’”. In: Management
Science 34.2 (1988), pp. 240–253. doi: 10.1287/mnsc.34.2.240.

[237] J. J. Kanet. “New Precedence Theorems for One-Machine Weighted Tardiness”. In: Mathe-
matics of Operations Research 32.3 (2007), pp. 579–588. doi: 10.1287/moor.1070.0255.

[238] Marisa G. Kantor and Moshe B. Rosenwein. “The Orienteering Problem with Time Windows”.
In: The Journal of the Operational Research Society 43.6 (1992), pp. 629–635. doi: 10.1057/
jors.1992.88.

[239] Gio K. Kao, Edward C. Sewell, and Sheldon H. Jacobson. “A Branch, Bound, and Remember
Algorithm for the 1|rt|

∑
ti Scheduling Problem”. In: Journal of Scheduling 12.2 (2009),

pp. 163–175. doi: 10.1007/s10951-008-0087-3.

[240] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of Computer
Computations: Proceedings of a Symposium on the Complexity of Computer Computations.
Boston, MA: Springer US, 1972, pp. 85–103. doi: 10.1007/978-1-4684-2001-2_9.

[241] Richard M. Karp and Michael Held. “Finite-State Processes and Dynamic Programming”. In:
SIAM Journal on Applied Mathematics 15.3 (1967), pp. 693–718. doi: 10.1137/0115060.

[242] Michael Katz and Carmel Domshlak. “Optimal Admissible Composition of Abstraction Heuris-
tics”. In: Artificial Intelligence 174.12 (2010), pp. 767–798. doi: 10.1016/j.artint.2010.
04.021.

[243] Henry Kautz and Bart Selman. “Planning as Satisfiability”. In: ECAI ’92: Proceedings of the
10th European Conference on Artificial Intelligence. USA: John Wiley & Sons, Inc., 1992,
pp. 359–363.



BIBLIOGRAPHY 254

[244] Henry Kautz and Bart Selman. “Pushing the Envelope: Planning, Propositional Logic, and
Stochastic Search”. In: Proceedings of the 13th National Conference on Artificial Intelligence
(AAAI). 1996, pp. 1194–1201.

[245] Henry Kautz and Bart Selman. “Unifying SAT-Based and Graph-Based Planning”. In: Pro-
ceedings of the 16th International Joint Conference on Artifical Intelligence, IJCAI-99. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 318–325.

[246] Henry Kautz and Joachim P. Walser. “State-Space Planning by Integer Optimization”. In:
Proceedings of the 16th National Conference on Artificial Intelligence (AAAI). AAAI Press,
1999, pp. 526–533.

[247] Henry A. Kautz, David A. McAllester, and Bart Selman. “Encoding Plans in Propositional
Logic”. In: Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1996, pp. 374–384.

[248] Ahmet B. Keha, Ketan Khowala, and John W. Fowler. “Mixed Integer Programming For-
mulations for Single Machine Scheduling Problems”. In: Computers & Industrial Engineering
56.1 (2009), pp. 357–367. doi: 10.1016/j.cie.2008.06.008.

[249] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Berlin, Heidelberg:
Springer, 2004. doi: 10.1007/978-3-540-24777-7.

[250] Emil Keyder and Héctor Geffner. “Heuristics for Planning with Action Costs Revisited”.
In: ECAI 2008 – 18th European Conference on Artificial Intelligence. Vol. 178. Frontiers in
Artificial Intelligence and Applications. NLD: IOS Press, 2008, pp. 588–592. doi: 10.3233/
978-1-58603-891-5-588.

[251] L.G. Khachiyan. “Polynomial Algorithms in Linear Programming”. In: USSR Computational
Mathematics and Mathematical Physics 20.1 (1980), pp. 53–72. doi: 10.1016/0041-5553(80)
90061-0.

[252] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”. In:
Science 220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.4598.671.

[253] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. “Evaluation of a Simple, Scalable, Parallel
Best-First Search Strategy”. In: Artificial Intelligence 195 (2013), pp. 222–248. doi: 10.1016/
j.artint.2012.10.007.

[254] Yoshikazu Kobayashi, Akihiro Kishimoto, and Osamu Watanabe. “Evaluations of Hash Dis-
tributed A* in Optimal Sequence Alignment”. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, IJCAI-11. Menlo Park, California: AAAI Press/Inter-
national Joint Conferences on Artificial Intelligence Orginization, 2011, pp. 584–590. doi:
10.5591/978-1-57735-516-8/IJCAI11-105.

[255] Walter H. Kohler and Kenneth Steiglitz. “Characterization and Theoretical Comparison of
Branch-and-Bound Algorithms for Permutation Problems”. In: Journal of the ACM 21.1
(1974), pp. 140–156. doi: 10.1145/321796.321808.



BIBLIOGRAPHY 255

[256] Andreas Kolling and Stefano Carpin. “The GRAPH-CLEAR Problem: Definition, Theoretical
Properties and its Connections to Multirobot Aided Surveillance”. In: Proceedings of IEEE
International Conference on Intelligent Robots and Systems (IROS). 2007, pp. 1003–1008.
doi: 10.1109/IROS.2007.4399368.

[257] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. “Deep Policy Dynamic
Programming for Vehicle Routing Problems”. In: Integration of Constraint Programming,
Artificial Intelligence, and Operations Research – 19th International Conference, CPAIOR
2022. Berlin, Heidelberg: Springer-Verlag, 2022, pp. 190–213. doi: 10.1007/978-3-031-
08011-1_14.

[258] Richard E Korf. “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search”. In:
Artificial Intelligence 27.1 (1985), pp. 97–109. doi: 10.1016/0004-3702(85)90084-0.

[259] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Sixth
Edition. Berlin, Heidelberg: Springer, 2018. doi: 10.1007/978-3-662-56039-6.

[260] Robert A. Kowalski. “Predicate Logic as Programming Language”. In: Information Processing,
Proceedings of the Sixth IFIP Congress 1974. North-Holland, 1974, pp. 569–574.

[261] Bjarni Kristjansson and Denise Lee. “The MPL Modeling System”. In: Modeling Languages in
Mathematical Optimization. Ed. by Josef Kallrath. Boston, MA: Springer, 2004, pp. 239–266.
doi: 10.1007/978-1-4613-0215-5_13.

[262] K. Kuchcinski and R. Szymanek. JaCoP - Java Constraint Programming Solver. Abstract
from CP Solvers: Modeling, Applications, Integration, and Standardization, co-located with
the 19th International Conference on Principles and Practice of Constraint Programming –
CP 2013. 2013.

[263] Vipin Kumar and Laveen N. Kanal. “The CDP: A Unifying Formulation for Heuristic Search,
Dynamic Programming, and Branch-and-Bound”. In: Search in Artificial Intelligence. Ed. by
Laveen Kanal and Vipin Kumar. New York, NY: Springer, 1988, pp. 1–27. doi: 10.1007/978-
1-4613-8788-6_1.

[264] Vipin Kumar, K. Ramesh, and V. Nageshwara Rao. “Parallel Best-First Search of State-
Space Graphs: A Summary of Results”. In: Proceedings of the Seventh National Conference
on Artificial Intelligence (AAAI). AAAI Press, 1988, pp. 122–127.

[265] Ryo Kuroiwa and J. Christopher Beck. “A Branch-and-Cut Approach for a Mixed Integer
Linear Programming Compilation of Optimal Numeric Planning”. In: ICAPS 2021 Workshop
on Heuristics and Search for Domain-independent Planning (HSDIP). 2021. url: https:
//openreview.net/forum?id=vKLrYM4t_tB.

[266] Ryo Kuroiwa and J. Christopher Beck. Domain-Independent Dynamic Programming. 2024.
arXiv: 2401.13883 [cs.AI].

[267] Ryo Kuroiwa and J. Christopher Beck. “Domain-Independent Dynamic Programming: Generic
State Space Search for Combinatorial Optimization”. In: Proceedings of the 33rd International
Conference on Automated Planning and Scheduling (ICAPS). Palo Alto, California USA:
AAAI Press, 2023, pp. 236–244. doi: 10.1609/icaps.v33i1.27200.



BIBLIOGRAPHY 256

[268] Ryo Kuroiwa and J. Christopher Beck. “Large Neighborhood Beam Search for Domain-
Independent Dynamic Programming”. In: 29th International Conference on Principles and
Practice of Constraint Programming (CP 2023). Vol. 280. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2023, 23:1–23:22. doi: 10.4230/LIPIcs.CP.2023.23.

[269] Ryo Kuroiwa and J. Christopher Beck. “Parallel Beam Search Algorithms for Domain-Independent
Dynamic Programming”. In: Proceedings of the 38th AAAI Conference on Artificial Intelli-
gence (AAAI). Washington, DC, USA: AAAI Press, 2024, pp. 20743–20750. doi: 10.1609/
aaai.v38i18.30062.

[270] Ryo Kuroiwa and J. Christopher Beck. “Solving Domain-Independent Dynamic Programming
Problems with Anytime Heuristic Search”. In: Proceedings of the 33rd International Confer-
ence on Automated Planning and Scheduling (ICAPS). Palo Alto, California USA: AAAI
Press, 2023, pp. 245–253. doi: 10.1609/icaps.v33i1.27201.

[271] Ryo Kuroiwa and Alex Fukunaga. “Analyzing and Avoiding Pathological Behavior in Parallel
Best-First Search”. In: Proceedings of the 30th International Conference on Automated Plan-
ning and Scheduling (ICAPS). AAAI Press, 2020, pp. 175–183. doi: 10.1609/icaps.v30i1.
6659.

[272] Ryo Kuroiwa and Alex Fukunaga. “On the Pathological Search Behavior of Distributed
Greedy Best-First Search”. In: Proceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS). 2019, pp. 255–263. doi: 10.1609/icaps.v29i1.3485.

[273] Ryo Kuroiwa, Alexander Shleyfman, and J. Christopher Beck. “Extracting and Exploiting
Bounds of Numeric Variables for Optimal Linear Numeric Planning”. In: ECAI 2023 – 26th
European Conference on Artificial Intelligence. Vol. 372. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2023, pp. 1332–1339. doi: 10.3233/FAIA230409.

[274] Ryo Kuroiwa, Alexander Shleyfman, and J. Christopher Beck. “LM-Cut Heuristics for Op-
timal Linear Numeric Planning”. In: Proceedings of the 32nd International Conference on
Automated Planning and Scheduling (ICAPS). Palo Alto, California USA: AAAI Press, 2022,
pp. 203–212. doi: 10.1609/icaps.v32i1.19803.

[275] Ryo Kuroiwa, Alexander Shleyfman, and J. Christopher Beck. NLM-CutPlan. 2023. url:
https://ipc2023-numeric.github.io/abstracts/NLM_CutPlan_Abstract.pdf.

[276] Ryo Kuroiwa, Alexander Shleyfman, Chiara Piacentini, Margarita P. Castro, and J. Christo-
pher Beck. “The LM-Cut Heuristic Family for Optimal Numeric Planning with Simple Con-
ditions”. In: Journal of Artificial Intelligence Research 75 (2022), pp. 1477–1548. doi: 10.
1613/jair.1.14034.

[277] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. “IBM ILOG CP Optimizer for
Scheduling”. In: Constraints 23.2 (2018), pp. 210–250. doi: 10.1007/s10601-018-9281-x.

[278] Ten-Hwang Lai and Sartaj Sahni. “Anomalies in Parallel Branch-and-Bound Algorithms”. In:
Communications of the ACM (1984), pp. 594–602. doi: 10.1145/358080.358103.

[279] A. H. Land and A. G. Doig. “An Automatic Method of Solving Discrete Programming Prob-
lems”. In: Econometrica 28.3 (1960), pp. 497–520. doi: 10.2307/1910129.



BIBLIOGRAPHY 257

[280] Jena-Lonis Lauriere. “A Language and a Program for Stating and Solving Combinatorial
Problems”. In: Artificial Intelligence 10.1 (1978), pp. 29–127. doi: 10.1016/0004-3702(78)
90029-2.

[281] Christophe Lecoutre. ACE, A Generic Constraint Solver. 2023. arXiv: 2302.05405 [cs.AI].

[282] Christophe Lecoutre and Nicolas Szczepanski. PyCSP3: Modeling Combinatorial Constrained
Problems in Python. 2023. arXiv: 2009.00326 [cs.AI].

[283] C. Y. Lee. “Representation of Switching Circuits by Binary-Decision Programs”. In: The Bell
System Technical Journal 38.4 (1959), pp. 985–999. doi: 10.1002/j.1538- 7305.1959.
tb01585.x.

[284] Daniel B. Leifker and Laveen N. Kanal. “A Hybrid SSS*/Alpha-Beta Algorithm for Parallel
Search of Game Trees”. In: Proceedings of the Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI-85. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1985, pp. 1044–1046.

[285] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. “Complexity of Machine Scheduling
Problems”. In: Annals of Discrete Mathematics 1 (1977), pp. 343–362. doi: 10.1016/S0167-
5060(08)70743-X.

[286] Francesco Leofante, Enrico Giunchiglia, Erika Ábráham, and Armando Tacchella. “Optimal
Planning Modulo Theories”. In: Proceedings of the 29th International Joint Conference on
Artificial Intelligence, IJCAI-20. Main track. International Joint Conferences on Artificial
Intelligence Organization, 2020, pp. 4128–4134. doi: 10.24963/ijcai.2020/571.

[287] Adam N. Letchford and Juan-José Salazar-González. “Stronger Multi-Commodity Flow For-
mulations of the (Capacitated) Sequential Ordering Problem”. In: European Journal of Op-
erational Research 251.1 (2016), pp. 74–84. doi: 10.1016/j.ejor.2015.11.001.

[288] Art Lew and Holger Mauch. Dynamic Programming: A Computational Tool. Berlin, Heidel-
berg: Springer, 2006. doi: 10.1007/978-3-540-37014-7.

[289] Dongxu Li, Enrico Scala, Patrik Haslum, and Sergiy Bogomolov. “Effect-Abstraction Based
Relaxation for Linear Numeric Planning”. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI-18. Main track. International Joint Conferences
on Artificial Intelligence Organization, 2018, pp. 4787–4793. doi: 10.24963/ijcai.2018/665.

[290] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. “Anytime Multi-
Agent Path Finding via Large Neighborhood Search”. In: Proceedings of the 30th International
Joint Conference on Artificial Intelligence, IJCAI-21. Main track. International Joint Con-
ferences on Artificial Intelligence Organization, 2021, pp. 4127–4135. doi: 10.24963/ijcai.
2021/568.

[291] Luc Libralesso, Abdel-Malik Bouhassoun, Hadrien Cambazard, and Vincent Jost. “Tree Search
for the Sequential Ordering Problem”. In: ECAI 2020 – 24th European Conference on Arti-
ficial Intelligence. Vol. 325. Frontiers in Artificial Intelligence and Applications. IOS Press,
2020, pp. 459–465. doi: 10.3233/FAIA200126.

[292] Luc Libralesso, Pablo Andres Focke, Aurélien Secardin, and Vincent Jost. “Iterative Beam
Search Algorithms for the Permutation Flowshop”. In: European Journal of Operational Re-
search 301.1 (2022), pp. 217–234. doi: 10.1016/j.ejor.2021.10.015.



BIBLIOGRAPHY 258

[293] Shu Lin, Na Meng, and Wenxin Li. “Optimizing Constraint Solving via Dynamic Program-
ming”. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence,
IJCAI-19. Main track. International Joint Conferences on Artificial Intelligence Organization,
2019, pp. 1146–1154. doi: 10.24963/ijcai.2019/160.

[294] Alexandre Linhares and Horacio Hideki Yanasse. “Connections Between Cutting-Pattern Se-
quencing, VLSI Design, and Flexible Machines”. In: Computers & Operations Research 29.12
(2002), pp. 1759–1772. doi: 10.1016/S0305-0548(01)00054-5.

[295] Nir Lipovetzky and Hector Geffner. “Best-First Width Search: Exploration and Exploitation
in Classical Planning”. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI). Palo Alto, California USA: AAAI Press, 2017. doi: 10.1609/aaai.v31i1.11027.

[296] Yaxin Liu, Sven Koenig, and David Furcy. “Speeding Up the Calculation of Heuristics for
Heuristic Search-Based Planning”. In: Proceedings of the 18th National Conference on Artifi-
cial Intelligence (AAAI). AAAI Press, 2002, pp. 484–491.

[297] Adriana Lopez and Fahiem Bacchus. “Generalizing GraphPlan by Formulating Planning as
a CSP”. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence,
IJCAI-03. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 954–960.

[298] Leonardo Lozano, Daniel Duque, and Andrés L. Medaglia. “An Exact Algorithm for the
Elementary Shortest Path Problem with Resource Constraints”. In: Transportation Science
50.1 (2016), pp. 348–357. doi: 10.1287/trsc.2014.0582.

[299] Leonardo Lozano and Andrés L. Medaglia. “On an Exact Method for the Constrained Shortest
Path Problem”. In: Computers & Operations Research 40.1 (2013), pp. 378–384. doi: 10.
1016/j.cor.2012.07.008.

[300] Leonardo Lozano and J. Cole Smith. “A Binary Decision Diagram Based Algorithm for Solv-
ing a Class of Binary Two-Stage Stochastic Programs”. In: Mathematical Programming 191.1
(2022), pp. 381–404. doi: 10.1007/s10107-018-1315-z.

[301] Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat, and Juan
Pablo Vielma. “JuMP 1.0: Recent Improvements to a Modeling Language for Mathematical
Optimization”. In: Mathematical Programming Computation (2023). doi: 10.1007/s12532-
023-00239-3.

[302] Alan K. Mackworth. “Consistency in Networks of Relations”. In: Artificial Intelligence 8.1
(1977), pp. 99–118. doi: 10.1016/0004-3702(77)90007-8.

[303] N.R. Mahapatra and S. Dutt. “Scalable Duplicate Pruning Strategies for Parallel A* Graph
Search”. In: Parallel and Distributed Processing, IEEE Symposium on. Los Alamitos, CA,
USA: IEEE Computer Society, 1993, pp. 290–297. doi: 10.1109/SPDP.1993.395520.

[304] A. Martelli and U. Montanari. “From Dynamic Programming to Search Algorithms with
Functional Costs”. In: Proceedings of the Fourth International Joint Conference on Artificial
Intelligence, IJCAI-75. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1975,
pp. 345–350.

[305] A. Martelli and U. Montanari. “On the Foundations of Dynamic Programming”. In: Topics
in Combinatorial Optimization. Ed. by Sergio Rinaldi. Vienna: Springer, 1975, pp. 145–163.
doi: 10.1007/978-3-7091-3291-3_9.



BIBLIOGRAPHY 259

[306] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[307] Mateus Martin, Horacio Hideki Yanasse, and Maria José Pinto. “Mathematical Models for
the Minimization of Open Stacks Problem”. In: International Transactions in Operational
Research 29.5 (2021), pp. 2944–2967. doi: 10.1111/itor.13053.

[308] Drew M. McDermott. “The 1998 AI Planning Systems Competition”. In: AI Magazine 21.2
(2000), pp. 35–55. doi: 10.1609/aimag.v21i2.1506.

[309] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.1.
2023. url: https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf.

[310] Maged M. Michael. “High Performance Dynamic Lock-Free Hash Tables and List-Based Sets”.
In: Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA). New York, NY, USA: Association for Computing Machinery, 2002, pp. 73–82. doi:
10.1145/564870.564881.

[311] L. Michel, P. Schaus, and P. Van Hentenryck. “MiniCP: a Lightweight Solver for Constraint
Programming”. In: Mathematical Programming Computation 13.1 (2021), pp. 133–184. doi:
10.1007/s12532-020-00190-7.

[312] Donald Michie. ““Memo” Functions and Machine Learning”. In: Nature 218.5136 (1968),
pp. 19–22. doi: 10.1038/218019a0.

[313] Eduardo Álvarez Miranda and Jordi Pereira. “On the Complexity of Assembly Line Balancing
Problems”. In: Computers & Operations Research 108 (2019), pp. 182–186. doi: 10.1016/j.
cor.2019.04.005.

[314] Federico Miretti, Daniela Misul, and Ezio Spessa. “DynaProg: Deterministic Dynamic Pro-
gramming Solver for Finite Horizon Multi-Stage Decision Problems”. In: SoftwareX 14 (2021),
p. 100690. doi: 10.1016/j.softx.2021.100690.

[315] Roberto Montemanni and Luca Maria Gambardella. “Ant Colony System for Team Orien-
teering Problems with Time Windows”. In: Foundations of Computing and Decision Sciences
34 (2009), pp. 287–306.

[316] Jairo R. Montoya-Torres, Julián López Franco, Santiago Nieto Isaza, Heriberto Felizzola
Jiménez, and Nilson Herazo-Padilla. “A Literature Review on the Vehicle Routing Problem
with Multiple Depots”. In: Computers & Industrial Engineering 79 (2015), pp. 115–129. doi:
10.1016/j.cie.2014.10.029.

[317] Michael Morin, Margarita P. Castro, Kyle E.C. Booth, Tony T. Tran, Chang Liu, and J.
Christopher Beck. “Intruder Alert! Optimization Models for Solving the Mobile Robot Graph-
Clear Problem”. In: Constraints 23.3 (2018), pp. 335–354. doi: 10.1007/s10601-018-9288-
3.

[318] Thomas L. Morin and Roy E. Marsten. “Branch-And-Bound Strategies for Dynamic Program-
ming”. In: Operations Research 24.4 (1976), pp. 611–627. doi: 10.1287/opre.24.4.611.

[319] David R. Morrison, Edward C. Sewell, and Sheldon H. Jacobson. “An Application of the
Branch, Bound, and Remember Algorithm to a New Simple Assembly Line Balancing Dataset”.
In: European Journal of Operational Research 236.2 (2014), pp. 403–409. doi: 10.1016/j.
ejor.2013.11.033.



BIBLIOGRAPHY 260

[320] Shohin Mukherjee, Sandip Aine, and Maxim Likhachev. “ePA*SE: Edge-Based Parallel A*
for Slow Evaluations”. In: Proceedings of the 17th International Symposium on Combinatorial
Search (SoCS). AAAI Press, 2022, pp. 136–144. doi: 10.1609/socs.v15i1.21761.

[321] Shohin Mukherjee, Sandip Aine, and Maxim Likhachev. “MPLP: Massively Parallelized Lazy
Planning”. In: IEEE Robotics and Automation Letters 7.3 (2022), pp. 6067–6074. doi: 10.
1109/LRA.2022.3157544.

[322] Shohin Mukherjee and Maxim Likhachev. “GePA*SE: Generalized Edge-Based Parallel A*
for Slow Evaluations”. In: Proceedings of the 18th International Symposium on Combinatorial
Search (SoCS). Washington, DC, USA: AAAI Press, 2023, pp. 153–157. doi: 10.1609/socs.
v16i1.27295.

[323] R.V. Nageshwara and V. Kumar. “Concurrent Access of Priority Queues”. In: IEEE Trans-
actions on Computers 37.12 (1988), pp. 1657–1665. doi: 10.1109/12.9744.

[324] Hootan Nakhost and Martin Müller. “Action Elimination and Plan Neighborhood Graph
Search: Two Algorithms for Plan Improvement”. In: Proceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAPS). AAAI Press, 2010, pp. 121–
128. doi: 10.1609/icaps.v20i1.13402.

[325] Dana S. Nau, Vipin Kumar, and Laveen Kanal. “General Branch and Bound, and its Relation
to A* and AO*”. In: Artificial Intelligence 23.1 (1984), pp. 29–58. doi: 10.1016/0004-
3702(84)90004-3.

[326] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. “MiniZinc: Towards a Standard CP Modelling Language”. In: Principles and
Practice of Constraint Programming – CP 2007. Berlin, Heidelberg: Springer, 2007, pp. 529–
543.

[327] Peter Norvig. “Techniques for Automatic Memoization with Applications to Context-Free
Parsing”. In: Computational Linguistics 17.1 (1991), pp. 91–98. url: https://aclanthology.
org/J91-1004.

[328] Jeffrey W. Ohlmann and Barrett W. Thomas. “A Compressed-Annealing Heuristic for the
Traveling Salesman Problem with Time Windows”. In: INFORMS Journal on Computing
19.1 (2007), pp. 80–90. doi: 10.1287/ijoc.1050.0145.

[329] Laurent Orseau and Levi H. S. Lelis. “Policy-Guided Heuristic Search with Guarantees”.
In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI). Palo Alto,
California USA: AAAI Press, 2021, pp. 12382–12390. doi: 10.1609/aaai.v35i14.17469.

[330] OscaR Team. OscaR: Scala in OR. Available from https://bitbucket.org/oscarlib/oscar.
2012.

[331] Peter S. Pacheco and Matthew Malensek. An Introduction to Parallel Programming. Second
Edition. Philadelphia: Morgan Kaufmann, 2022. doi: 10.1016/B978- 0- 12- 804605- 0.
00010-5.



BIBLIOGRAPHY 261

[332] Dario Pacino and Pascal Van Hentenryck. “Large Neighborhood Search and Adaptive Ran-
domized Decompositions for Flexible Jobshop Scheduling”. In: Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence, IJCAI-11. Menlo Park, California:
AAAI Press/Intertnational Joint Conferences on Artificial Intelligence Organization, 2011,
pp. 1997–2002. doi: 10.5591/978-1-57735-516-8/IJCAI11-333.

[333] Stefan Panjkovic and Andrea Micheli. “Abstract Action Scheduling for Optimal Temporal
Planning via OMT”. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence
(AAAI). Washington, DC, USA: AAAI Press, 2024, pp. 20222–20229. doi: 10.1609/aaai.
v38i18.30002.

[334] Christos H. Papadimitriou. “The Euclidean Travelling Salesman Problem is NP-Complete”.
In: Theoretical Computer Science 4.3 (1977), pp. 237–244. doi: 10.1016/0304-3975(77)
90012-3.

[335] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. USA:
Addison-Wesley Longman Publishing Co., Inc., 1984. doi: 10.5555/525.

[336] Judea Pearl and Jin H. Kim. “Studies in Semi-Admissible Heuristics”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-4.4 (1982), pp. 392–399. doi: 10.1109/
TPAMI.1982.4767270.

[337] Laurent Perron, Frédéric Didier, and Steven Gay. “The CP-SAT-LP Solver”. In: 29th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023, 3:1–3:2. doi: 10.4230/LIPIcs.CP.2023.3.

[338] Thomy Phan, Taoan Huang, Bistra Dilkina, and Sven Koenig. “Adaptive Anytime Multi-
Agent Path Finding Using Bandit-Based Large Neighborhood Search”. In: Proceedings of
the 38th AAAI Conference on Artificial Intelligence (AAAI). Washington, DC, USA: AAAI
Press, 2024, pp. 17514–17522. doi: 10.1609/aaai.v38i16.29701.

[339] Mike Phillips, Maxim Likhachev, and Sven Koenig. “PA*SE: Parallel A* for Slow Expansions”.
In: Proceedings of the 24th International Conference on Automated Planning and Scheduling
(ICAPS). AAAI Press, 2014, pp. 208–216. doi: 10.1609/icaps.v24i1.13652.

[340] Chiara Piacentini, Margarita Castro, Andre Cire, and J. Christopher Beck. “Compiling Opti-
mal Numeric Planning to Mixed Integer Linear Programming”. In: Proceedings of the 28th In-
ternational Conference on Automated Planning and Scheduling (ICAPS). AAAI Press, 2018,
pp. 383–387. doi: 10.1609/icaps.v28i1.13919.

[341] Chiara Piacentini, Margarita P. Castro, Andre A. Cire, and J. Christopher Beck. “Linear and
Integer Programming-Based Heuristics for Cost-Optimal Numeric Planning”. In: Proceedings
of the 32nd AAAI Conference on Artificial Intelligence (AAAI). Palo Alto, California USA:
AAAI Press, 2018, pp. 6254–6261. doi: 10.1609/aaai.v32i1.12082.

[342] Michael L. Pinedo. Planning and Scheduling in Manufacturing and Services. Second Edition.
New York, NY: Springer, 2009. doi: 10.1007/978-1-4419-0910-7.

[343] David Pisinger and Stefan Ropke. “Large Neighborhood Search”. In: Handbook of Metaheuris-
tics. Ed. by Michel Gendreau and Jean-Yves Potvin. Cham: Springer International Publishing,
2019, pp. 99–127. doi: 10.1007/978-3-319-91086-4_4.



BIBLIOGRAPHY 262

[344] Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. “LP-Based Heuristics
for Cost-Optimal Planning”. In: Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS). AAAI Press, 2014, pp. 226–234. doi: 10.1609/
icaps.v24i1.13621.

[345] Patrick Prosser. “An Empirical Study of Phase Transitions in Binary Constraint Satisfac-
tion Problems”. In: Artificial Intelligence 81.1 (1996). Frontiers in Problem Solving: Phase
Transitions and Complexity, pp. 81–109. doi: 10.1016/0004-3702(95)00048-8.

[346] Charles Prud’homme and Jean-Guillaume Fages. “Choco-solver: A Java Library for Con-
straint Programming”. In: Journal of Open Source Software 7.78 (2022), p. 4708. doi: 10.
21105/joss.04708.

[347] Charles Prud’homme, Xavier Lorca, and Narendra Jussien. “Explanation-Based Large Neigh-
borhood Search”. In: Constraints 19.4 (2014), pp. 339–379. doi: 10.1007/s10601-014-9166-
6.

[348] Jakob Puchinger and Peter J. Stuckey. “Automating Branch-and-Bound for Dynamic Pro-
grams”. In: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation. PEPM ’08. New York, NY, USA: Association for
Computing Machinery, 2008, 81–89. doi: 10.1145/1328408.1328421.

[349] Hu Qin, Zizhen Zhang, Andrew Lim, and Xiaocong Liang. “An Enhanced Branch-and-Bound
Algorithm for the Talent Scheduling Problem”. In: European Journal of Operational Research
250.2 (2016), pp. 412–426. doi: 10.1016/j.ejor.2015.10.002.

[350] Bochra Rabbouch, Foued Saâdaoui, and Rafaa Mraihi. “Constraint Programming Based Al-
gorithm for Solving Large-Scale Vehicle Routing Problems”. In: Hybrid Artificial Intelligent
Systems. Cham: Springer International Publishing, 2019, pp. 526–539. doi: 10.1007/978-3-
030-29859-3_45.

[351] Miquel Ramirez, Nir Lipovetzky, and Christian Muise. Lightweight Automated Planning ToolKiT.
http://lapkt.org/. tccessed: 2020. 2015.

[352] Daniel Ratner and Ira Pohl. “Joint and LPA*: Combination of Approximation and Search”.
In: Proceedings of the Fifith National Conference on Artificial Intelligence (AAAI). AAAI
Press, 1986, pp. 173–177.

[353] A. Reinefeld and T.A. Marsland. “Enhanced Iterative-Deepening Search”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 16.7 (1994), pp. 701–710. doi: 10.1109/
34.297950.

[354] Silvia Richter and Matthias Westphal. “The LAMA Planner: Guiding Cost-Based Anytime
Planning with Landmarks”. In: Journal of Artificial Intelligence Research 39 (2010), pp. 127–
177. doi: 10.1613/jair.2972.

[355] Giovanni Righini and Matteo Salani. “Decremental State Space Relaxation Strategies and
Initialization Heuristics for Solving the Orienteering Problem with Time Windows with Dy-
namic Programming”. In: Computers & Operations Research 36.4 (2009), pp. 1191–1203. doi:
10.1016/j.cor.2008.01.003.



BIBLIOGRAPHY 263

[356] Giovanni Righini and Matteo Salani. Dynamic Programming for the Orienteering Problem
with Time Windows. Tech. rep. 91. Crema, Italy: Dipartimento di Tecnologie dell’Informazione,
Universita degli Studi Milano, 2006.

[357] Giovanni Righini and Matteo Salani. “New Dynamic Programming Algorithms for the Re-
source Constrained Elementary Shortest Path Problem”. In: Networks 51.3 (2008), pp. 155–
170. doi: 10.1002/net.20212.

[358] Giovanni Righini and Matteo Salani. “Symmetry Helps: Bounded Bi-Directional Dynamic
Programming for the Elementary Shortest Path Problem with Resource Constraints”. In:
Discrete Optimization 3.3 (2006). Graphs and Combinatorial Optimization, pp. 255–273.
doi: 10.1016/j.disopt.2006.05.007.

[359] Jussi Rintanen. “Phase Transitions in Classical Planning: an Experimental Study”. In: Pro-
ceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS).
AAAI Press, 2004, pp. 101–110.

[360] Jussi Rintanen. “Planning as Satisfiability: Heuristics”. In: Artificial Intelligence 193 (2012),
pp. 45–86. doi: 10.1016/j.artint.2012.08.001.

[361] Jussi Rintanen. “Temporal Planning with Clock-Based SMT Encodings”. In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence, IJCAI-17. Main track.
International Joint Conferences on Artificial Intelligence Orginization, 2017, pp. 743–749.
doi: 10.24963/ijcai.2017/103.

[362] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. “Planning as Satisfiability: Parallel Plans
and Algorithms for Plan Search”. In: Artificial Intelligence 170.12 (2006), pp. 1031–1080. doi:
10.1016/j.artint.2006.08.002.

[363] Marcus Ritt and Alysson M. Costa. “Improved Integer Programming Models for Simple As-
sembly Line Balancing and Related Problems”. In: International Transactions in Operational
Research 25.4 (2018), pp. 1345–1359. doi: 10.1111/itor.12206.

[364] Herbert Robbins. “Some Aspects of the Sequential Design of Experiments”. In: Bulletin of
the American Mathematical Society 58 (1952).

[365] Roberto Roberti and Aristide Mingozzi. “Dynamic ng-Path Relaxation for the Delivery Man
Problem”. In: Transportation Science 48.3 (2014), pp. 413–424. doi: 10.1287/trsc.2013.
0474.

[366] Nathan Robinson, Charles Gretton, Duc-Nghia Pham, and Abdul Sattar. “A Compact and
Efficient SAT Encoding for Planning”. In: Proceedings of the 18th International Conference
on Automated Planning and Scheduling (ICAPS). AAAI Press, 2008, pp. 296–303.

[367] J.W. Romein, H.E. Bal, J. Schaeffer, and A. Plaat. “A Performance Analysis of Transposition-
Table-Driven Work Scheduling in Distributed Search”. In: IEEE Transactions on Parallel and
Distributed Systems 13.5 (2002), pp. 447–459. doi: 10.1109/TPDS.2002.1003855.

[368] Stefan Ropke and David Pisinger. “An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows”. In: Transportation Science 40.4 (2006),
pp. 455–472. doi: 10.1287/trsc.1050.0135.

[369] Francesca Rossi, Peter van Beek, and Toby Walsh, eds. Handbook of Constraint Programming.
Vol. 2. Foundations of Artificial Intelligence. Elsevier, 2006.



BIBLIOGRAPHY 264

[370] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Fourth Edition.
Pearson, 2020. url: http://aima.cs.berkeley.edu/.

[371] Stuart Russell and Peter Norvig. “Making Complx Decisions”. In: Artificial Intelligence: A
Modern Approach. Fourth Edition. Pearson, 2020. Chap. 17, pp. 562–598. url: http://aima.
cs.berkeley.edu/.

[372] Stuart Russell and Peter Norvig. “Solving Problems by Searching”. In: Artificial Intelligence:
A Modern Approach. Fourth Edition. Pearson, 2020. Chap. 3, pp. 63–109. url: http://
aima.cs.berkeley.edu/.

[373] Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. “A Bucket Graph-Based Labeling Algo-
rithm with Application to Vehicle Routing”. In: Transportation Science 55.1 (2021), pp. 4–28.
doi: 10.1287/trsc.2020.0985.

[374] M. E. Salveson. “The Assembly-Line Balancing Problem”. In: The Journal of Industrial En-
gineering 6.3 (1955), pp. 18–25. doi: 10.1115/1.4014559.

[375] Scott Sanner. “Relational Dynamic Influence Diagram Language (RDDL): Language Descrip-
tion”. 2010. url: http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf.

[376] Scott Sanner and Craig Boutilier. “Approximate Linear Programming for First-Order MDPs”.
In: UAI 05, Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence.
Arlington, Virginia, USA: AUAI Press, 2005, pp. 509–517.

[377] M. W. P. Savelsbergh. “Local Search in Routing Problems with Time Windows”. In: Annals
of Operations Research 4.1 (1985), pp. 285–305. doi: 10.1007/BF02022044.

[378] Enrico Scala, Patrik Haslum, Daniele Magazzeni, and Sylvie Thiébaux. “Landmarks for Nu-
meric Planning Problems”. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence, IJCAI-17. Main track. International Joint Conferences on Artificial
Intelligence Organization, 2017, pp. 4384–4390. doi: 10.24963/ijcai.2017/612.

[379] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramírez. “Interval-Based Relax-
ation for General Numeric Planning”. In: ECAI 2016 – 22nd European Conference on Arti-
ficial Intelligence. Vol. 285. Frontiers in Artificial Intelligence and Applications. IOS Press,
2016, pp. 655–663. doi: 10.3233/978-1-61499-672-9-655.

[380] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramírez. “Subgoaling Techniques
for Satisficing and Optimal Numeric Planning”. In: Journal of Artificial Intellingence Research
68 (2020), pp. 691–752. doi: 10.1613/jair.1.11875.

[381] Enrico Scala, Miquel Ramírez, Patrik Haslum, and Sylvie Thiebaux. “Numeric Planning with
Disjunctive Global Constraints via SMT”. In: Proceedings of the 26th International Conference
on Automated Planning and Scheduling (ICAPS). AAAI Press, 2016, pp. 276–0284. doi:
10.1609/icaps.v26i1.13766.

[382] J. E. Schoenfield. Fast, Exact Solution of Open Bin Packing Problems Without Linear Pro-
gramming. Tech. rep. Hutsville, Alabama, USA: US Army Space and Missile Defense Com-
mand, 2002.

[383] Armin Scholl and Robert Klein. “SALOME: A Bidirectional Branch-and-Bound Procedure
for Assembly Line Balancing”. In: INFORMS Journal on Computing 9.4 (1997), pp. 319–335.
doi: 10.1287/ijoc.9.4.319.



BIBLIOGRAPHY 265

[384] Armin Scholl, Robert Klein, and Christian Jürgens. “Bison: A Fast Hybrid Procedure for
Exactly Solving the One-Dimensional Bin Packing Problem”. In: Computers & Operations
Research 24.7 (1997), pp. 627–645. doi: 10.1016/S0305-0548(96)00082-2.

[385] Petra Schwerin and Gerhard Wäscher. “The Bin-Packing Problem: A Problem Generator and
Some Numerical Experiments with FFD Packing and MTP”. In: International Transactions
in Operational Research 4.5 (1997), pp. 377–389. doi: 10.1016/S0969-6016(97)00025-7.

[386] Jendrik Seipp and Malte Helmert. “Counterexample-Guided Cartesian Abstraction Refine-
ment for Classical Planning”. In: Journal of Artificial Intelligence Research 62 (2018), pp. 535–
577. doi: 10.1613/jair.1.11217.

[387] Bart Selman, David G. Mitchell, and Hector J. Levesque. “Generating Hard Satisfiability
Problems”. In: Artificial Intelligence 81.1 (1996). Frontiers in Problem Solving: Phase Tran-
sitions and Complexity, pp. 17–29. doi: 10.1016/0004-3702(95)00045-3.

[388] E. C. Sewell and S. H. Jacobson. “A Branch, Bound, and Remember Algorithm for the
Simple Assembly Line Balancing Problem”. In: INFORMS Journal on Computing 24.3 (2012),
pp. 433–442. doi: 10.1287/ijoc.1110.0462.

[389] Lei Shang, Vincent T’Kindt, and Federico Della Croce. “Branch & Memorize Exact Algo-
rithms for Sequencing Problems: Efficient Embedding of Memorization into Search Trees”. In:
Computers & Operations Research 128 (2021), p. 105171. doi: 10.1016/j.cor.2020.105171.

[390] C. E. Shannon. “A Mathematical Theory of Communication”. In: The Bell System Technical
Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[391] Paul Shaw. “A Constraint for Bin Packing”. In: Principles and Practice of Constraint Pro-
gramming – CP 2004. Berlin, Heidelberg: Springer, 2004, pp. 648–662. doi: 10.1007/978-
3-540-30201-8_47.

[392] Paul Shaw. “Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems”. In: Principles and Practice of Constraint Programming – CP98. Berlin,
Heidelberg: Springer, 1998, pp. 417–431. doi: 10.1007/3-540-49481-2_30.

[393] William Shen, Felipe Trevizan, and Sylvie Thiébaux. “Learning Domain-Independent Plan-
ning Heuristics with Hypergraph Networks”. In: Proceedings of the 30th International Con-
ference on Automated Planning and Scheduling (ICAPS). AAAI Press, 2020, pp. 574–584.
doi: 10.1609/icaps.v30i1.6754.

[394] Alfonso Shimbel. “Structural Parameters of Communication Networks”. In: The Bulletin of
Mathematical Biophysics 15.4 (1953), pp. 501–507. doi: 10.1007/BF02476438.

[395] Takumi Shimoda and Alex Fukunaga. “Improved Exploration of the Bench Transition System
in Parallel Greedy Best First Search”. In: Proceedings of the 16th International Symposium
on Combinatorial Search (SoCS). Washington, DC, USA: AAAI Press, 2023, pp. 100–107.
doi: 10.1609/socs.v16i1.27285.

[396] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch. “ParaS-
CIP: A Parallel Extension of SCIP”. In: Competence in High Performance Computing 2010.
Berlin, Heidelberg: Springer, 2012, pp. 135–148.



BIBLIOGRAPHY 266

[397] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch, and Michael
Winkler. “Solving Open MIP Instances with ParaSCIP on Supercomputers Using up to 80,000
Cores”. In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
2016, pp. 770–779. doi: 10.1109/IPDPS.2016.56.

[398] Yuji Shinano, Timo Berthold, and Stefan Heinz. “ParaXpress: an Experimental Extension
of the FICO Xpress-Optimizer to Solve Hard MIPs on Supercomputers”. In: Optimization
Methods and Software 33.3 (2018), pp. 530–539. doi: 10.1080/10556788.2018.1428602.

[399] Alexander Shleyfman, Daniel Gnad, and Peter Jonsson. “Structurally Restricted Fragments of
Numeric Planning – a Complexity Analysis”. In: Proceedings of the 36th AAAI Conference on
Artificial Intelligence (AAAI). Washington, DC, USA: AAAI Press, 2023, pp. 12112–12119.
doi: 10.1609/aaai.v37i10.26428.

[400] Alexander Shleyfman, Ryo Kuroiwa, and J. Christopher Beck. “Symmetry Detection and
Breaking in Linear Cost-Optimal Numeric Planning”. In: Proceedings of the 33rd International
Conference on Automated Planning and Scheduling (ICAPS). Palo Alto, California USA:
AAAI Press, 2023, pp. 393–401. doi: 10.1609/icaps.v33i1.27218.

[401] David Silver. “Cooperative Pathfinding”. In: Proceedings of the First AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE). AAAI Press, 2021,
pp. 117–122. doi: 10.1609/aiide.v1i1.18726.

[402] Barbara Smith and Ian Gent. Constraint Modelling Challenge Report 2005. https://ipg.
host.cs.st-andrews.ac.uk/challenge/. 2005.

[403] Barbara M. Smith. “Caching Search States in Permutation Problems”. In: Principles and
Practice of Constraint Programming – CP 2005. Berlin, Heidelberg: Springer, 2005, pp. 637–
651. doi: 10.1007/11564751_47.

[404] Barbara M. Smith and Martin E. Dyer. “Locating the Phase Transition in Binary Constraint
Satisfaction Problems”. In: Artificial Intelligence 81.1 (1996). Frontiers in Problem Solving:
Phase Transitions and Complexity, pp. 155–181. doi: 10.1016/0004-3702(95)00052-6.

[405] Marius M. Solomon. “Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints”. In: Operations Research 35.2 (1987), pp. 254–265. doi: 10.1287/opre.
35.2.254.

[406] A. Srinivasan, T. Ham, S. Malik, and R.K. Brayton. “Algorithms for Discrete Function Ma-
nipulation”. In: 1990 IEEE International Conference on Computer-Aided Design. Digest of
Technical Papers. 1990, pp. 92–95. doi: 10.1109/ICCAD.1990.129849.

[407] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski.
“Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks”. In: Proceedings of the 12th
International Symposium on Combinatorial Search (SoCS). AAAI Press, 2019, pp. 151–158.
doi: 10.1609/socs.v10i1.18510.

[408] Alex Stivala, Peter J. Stuckey, Maria Garcia de la Banda, Manuel Hermenegildo, and Anthony
Wirth. “Lock-Free Parallel Dynamic Programming”. In: Journal of Parallel and Distributed
Computing 70.8 (2010), pp. 839–848. doi: 10.1016/j.jpdc.2010.01.004.



BIBLIOGRAPHY 267

[409] Damian Sulewski, Stefan Edelkamp, and Peter Kissmann. “Exploiting the Computational
Power of the Graphics Card: Optimal State Space Planning on the GPU”. In: Proceedings of
the 21st International Conference on Automated Planning and Scheduling (ICAPS). AAAI
Press, 2011, pp. 242–249. doi: 10.1609/icaps.v21i1.13464.

[410] H. Sundell and P. Tsigas. “Fast and Lock-Free Concurrent Priority Queues for Multi-Thread
Systems”. In: Proceedings International Parallel and Distributed Processing Symposium. 2003,
pp. 609–627. doi: 10.1109/ipdps.2003.1213189.

[411] Olle Sundstrom and Lino Guzzella. “A Generic Dynamic Programming Matlab Function”. In:
2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC). 2009, pp. 1625–1630.
doi: 10.1109/CCA.2009.5281131.

[412] Richard S. Sutton and Andrew G. Barto. “Dynamic Programming”. In: Reinforcement Learn-
ing: An Introduction. Second Edition. Cambridge, MA, USA: A Bradford Book, 2018. Chap. 4.

[413] Richard S. Sutton and Andrew G. Barto. “Finite Markov Decision Process”. In: Reinforcement
Learning: An Introduction. Second Edition. Cambridge, MA, USA: A Bradford Book, 2018.
Chap. 3.

[414] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second
Edition. Cambridge, MA, USA: A Bradford Book, 2018.

[415] Hisao Tamaki and Taisuke Sato. “OLD Resolution with Tabulation”. In: Third International
Conference on Logic Programming (ICLP). Berlin, Heidelberg: Springer, 1986, pp. 84–98.

[416] Ole Tange. “GNU Parallel - The Command-Line Power Tool”. In: ;login: The USENIX Mag-
azine 36 (2011), pp. 42–47.

[417] Jordan T. Thayer and Wheeler Ruml. “Bounded Suboptimal Search: A Direct Approach
Using Inadmissible Estimates”. In: Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI-11. Menlo Park, California: AAAI Press/International Joint
Conferences on Artificial Intelligence Orginization, 2011, pp. 674–679. doi: 10.5591/978-1-
57735-516-8/IJCAI11-119.

[418] Álvaro Torralba and Jörg Hoffmann. “Simulation-Based Admissible Dominance Pruning”.
In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI-
15. Palo Alto, California USA: AAAI Press/International Joint Conferences on Artificial
Intelligence Organization, 2015, pp. 1689–1695.

[419] Álvaro Torralba and Florian Pommerening. Planner Abstracts for the Classical Tracks in
the International Planning Competition 2018. 2018. url: https://ipc2018-classical.
bitbucket.io/planner-abstracts/ipc-2018-planner-abstracts-classical-tracks.

pdf.

[420] Alejandro Torreño, Eva Onaindia, Antonín Komenda, and Michal Štolba. “Cooperative Multi-
Agent Planning: A Survey”. In: ACM Computing Surveys 50.6 (2017). doi: 10.1145/3128584.

[421] Paolo Toth and Daniele Vigo. “Models, Relaxations and Exact Approaches for the Capaci-
tated Vehicle Routing Problem”. In: Discrete Applied Mathematics 123.1 (2002), pp. 487–512.
doi: 10.1016/S0166-218X(01)00351-1.



BIBLIOGRAPHY 268

[422] Paolo Toth and Daniele Vigo. Vehicle Routing: Problems, Methods, and Applications. Sec-
ond Edition. Society for Industrial and Applied Mathematics, 2014. doi: 10 . 1137 / 1 .

9781611973594.

[423] Long Tran-Thanh, Archie Chapman, Enrique Munoz de Cote, Alex Rogers, and Nicholas R.
Jennings. “Epsilon-First Policies for Budget-Limited Multi-Armed Bandits”. In: Proceedings
of the 24th AAAI Conference on Artificial Intelligence (AAAI). Palo Alto, California USA:
AAAI Press, 2010, pp. 1211–1216. doi: 10.1609/aaai.v24i1.7758.

[424] Michael A. Trick. “A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints”. In: Annals of Operations Research 118.1 (2003), pp. 73–84. doi:
10.1023/A:1021801522545.

[425] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Sub-
ramanian. “New Benchmark Instances for the Capacitated Vehicle Routing Problem”. In:
European Journal of Operational Research 257.3 (2017), pp. 845–858. doi: 10.1016/j.ejor.
2016.08.012.

[426] Satya Gautam Vadlamudi, Sandip Aine, and Partha Pratim Chakrabarti. “Anytime Pack
Search”. In: Natural Computing 15.3 (2016), pp. 395–414. doi: 10.1007/978-3-642-45062-
4_88.

[427] Satya Gautam Vadlamudi, Piyush Gaurav, Sandip Aine, and Partha Pratim Chakrabarti.
“Anytime Column Search”. In: AI 2012: Advances in Artificial Intelligence. Berlin, Heidelberg:
Springer, 2012, pp. 254–265. doi: 10.1007/978-3-642-35101-3_22.

[428] Mauro Vallati, Lukáš Chrpa, and Thomas L. McCluskey. The 2014 International Planning
Competition – Description of Participant Planners of the Deterministic Track. 2014. url:
https://helios.hud.ac.uk/scommv/IPC-14/repository/booklet2014.pdf.

[429] Peter van Beek. “Backtracking Search Algorithms”. In: Handbook of Constraint Programming.
Ed. by Francesca Rossi, Peter van Beek, and Toby Walsh. Vol. 2. Foundations of Artificial
Intelligence. Elsevier, 2006. Chap. 4, pp. 85–134. doi: 10.1016/S1574-6526(06)80008-8.

[430] Menkes van den Briel, Thomas Vossen, and Subbarao Kambhampati. “Reviving Integer Pro-
gramming Approaches for AI Planning: A Branch-and-Cut Framework”. In: Proceedings of
the 15th International Conference on Automated Planning and Scheduling (ICAPS). AAAI
Press, 2005, pp. 310–319.

[431] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local Search. Cambridge: MIT
Press, 2005.

[432] Willem-Jan van Hoeve and Irit Katriel. “Global Constraints”. In: Handbook of Constraint
Programming. Ed. by Francesca Rossi, Peter van Beek, and Toby Walsh. Vol. 2. Foundations
of Artificial Intelligence. Elsevier, 2006. Chap. 6, pp. 169–208. doi: 10.1016/S1574-6526(06)
80010-6.

[433] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. “The Orienteering Prob-
lem: A Survey”. In: European Journal of Operational Research 209.1 (2011), pp. 1–10. doi:
10.1016/j.ejor.2010.03.045.



BIBLIOGRAPHY 269

[434] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oudheusden.
“Iterated Local Search for the Team Orienteering Problem with Time Windows”. In: Comput-
ers & Operations Research 36.12 (2009). New Developments on Hub Location, pp. 3281–3290.
doi: 10.1016/j.cor.2009.03.008.

[435] Vincent Vidal and Héctor Geffner. “Branching and Pruning: An Optimal Temporal POCL
Planner Based on Constraint Programming”. In: Artificial Intelligence 170.3 (2006), pp. 298–
335. doi: 10.1016/j.artint.2005.08.004.

[436] Vincent Vidal, Bordeaux Lucas, and Youssef Hamadi. “Adaptive K-Parallel Best-First Search:
A Simple but Efficient Algorithm for Multi-Core Domain-Independent Planning”. In: Proceed-
ings of the Third International Symposium on Combinatorial Search (SOCS). AAAI Press,
2010. doi: 10.1609/socs.v1i1.18165.

[437] Tim Vieira, Matthew Francis-Landau, Nathaniel Wesley Filardo, Farzad Khorasani, and Ja-
son Eisner. “Dyna: Toward a Self-Optimizing Declarative Language for Machine Learning Ap-
plications”. In: Proceedings of the First ACM SIGPLAN Workshop on Machine Learning and
Programming Languages (MAPL). ACM, 2017, pp. 8–17. doi: 10.1145/3088525.3088562.

[438] Thomas Vossen, Michael Ball, Amnon Lotem, and Dana Nau. “On the Use of Integer Pro-
gramming Models in AI Planning”. In: Proceedings of the 16th International Joint Conference
on Artifical Intelligence, IJCAI-99. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1999, pp. 304–309.

[439] Laurence Wolsey. “Cutting Plane Algorithms”. In: Integer Programming. John Wiley & Sons,
Ltd, 2020. Chap. 8, pp. 139–166. doi: 10.1002/9781119606475.ch8.

[440] Laurence Wolsey. Integer Programming. Second Edition. John Wiley & Sons, Inc., 2020. doi:
10.1002/9781119606475.

[441] Gerhard Wäscher and Thomas Gau. “Heuristics for the Integer One-Dimensional Cutting
Stock Problem: A Computational Study”. In: Operations-Research-Spektrum 18.3 (1996),
pp. 131–144. doi: 10.1007/BF01539705.

[442] Yingce Xia, Xu-Dong Zhang, Nenghai Yu, Geoffrey Holmes, and Yan Liu. “Budgeted Bandit
Problems with Continuous Random Costs”. In: Proceedings of the Seventh Asian Conference
on Machine Learning (ACML). 2015, pp. 317–332.

[443] Hanlan Yang, Shohin Mukherjee, and Maxim Likhachev. “A-ePA*SE: Anytime Edge-Based
Parallel A* for Slow Evaluations”. In: Proceedings of the 18th International Symposium on
Combinatorial Search (SoCS). Washington, DC, USA: AAAI Press, 2023, pp. 163–167. doi:
10.1609/socs.v16i1.27297.

[444] Håkan L. S. Younes and Michael L. Littman. PPDDL1.0: An Extension to PDDL for Ex-
pressing Planning Domains with Probabilistic Effects. Tech. rep. CMU-CS-04-167. 2004.

[445] Liu Yu, Ryo Kuroiwa, and Fukunaga Alex. “Learning Search-Space Specific Heuristics Using
Neural Network”. In: Proceedings of the 12th Workshop on Heuristics and Search for Domain-
Independent Planning (HSDIP). 2020, pp. 1–8.

[446] Boon J Yuen and Ken V Richardson. “Establishing the Optimality of Sequencing Heuristics
for Cutting Stock Problems”. In: European Journal of Operational Research 84.3 (1995),
pp. 590–598. doi: 10.1016/0377-2217(95)00025-L.



BIBLIOGRAPHY 270

[447] Weixiong Zhang. “Complete Anytime Beam Search”. In: Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI). AAAI Press, 1998, pp. 425–430.

[448] Yang Zhang and Eric A. Hansen. “Parallel Breadth-First Heuristic Search on a Shared-
Memory Architecture”. In: Heuristic Search, Memory-Based Heuristics and Their Applica-
tions: Papers from the AAAI Workshop. Menlo Park, California: AAAI Press, 2006, pp. 33–
38.

[449] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. Constraint Solving and Plan-
ning with Picat. Cham: Springer, 2015. doi: 10.1007/978-3-319-25883-6.

[450] Rong Zhou and Eric A. Hansen. “Breadth-First Heuristic Search”. In: Artificial Intelligence
170.4 (2006), pp. 385–408. doi: 10.1016/j.artint.2005.12.002.

[451] Rong Zhou and Eric A. Hansen. “Parallel Structured Duplicate Detection”. In: Proceedings of
the 22nd AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 2007, pp. 1217–
1223.

[452] Yichao Zhou and Jianyang Zeng. “Massively Parallel A* Search on a GPU”. In: Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 2015, pp. 1248–
1254.

[453] Albert L. Zobrist. A New Hashing Method With Application for Game Playing. Tech. rep.
Department of Computer Sciences, University of Wisconsin-Madison, 1970. url: http://
digital.library.wisc.edu/1793/57624.

[454] Christian Höner zu Siederdissen, Sonja J. Prohaska, and Peter F. Stadler. “Algebraic Dynamic
Programming over General Data Structures”. In: BMC Bioinformatics 16.19 (2015). doi:
10.1186/1471-2105-16-S19-S2.


