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Due to the cost of sampling system performance, it is expensive to obtain performance

characteristics of a complex computer system in different configurations. As an alternative,

in this dissertation, we propose to reuse existing partial and full performance models and ex-

plicitly model the effects of configuration variations, with a goal of substantially reducing the

time and effort required to perform performance reasoning and optimization on cloud-based

systems, applications and services.

We introduce Model Mapping, a novel inductive transfer learning technique for incremen-

tal performance modeling of highly configurable systems. Model Mapping captures many ex-

plicit and latent types of dynamic system evolution, including configuration changes, scaling

and hardware upgrades, by deriving and modeling these kinds of incremental transformations

between system and/or application instances, over time. Modeling these transformations al-

lows us to build accurate models for new configuration instances with just a few samples. We

experimentally test our method on a variety of system performance modeling and optimization

scenarios, using a carefully designed experimental testbed and realistic benchmarks, to obtain

insight on the method’s applicability in real-world cloud computing environments. Among

other examples, we show how our method can be used to quickly derive an accurate resource

allocation split that optimizes a given overall performance goal for co-hosted applications in a

virtualized environment.
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Compared to using conventional direct and incremental modeling techniques, our method

achieves higher accuracy by up to an order of magnitude when the sampling budget is ex-

tremely limited, in particular when samples are limited to between 0% to 5% of an exhaustive

sampling budget.
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Chapter 1

Introduction

Public cloud platforms, such as Amazon Web Services (AWS) [1], Microsoft Azure [66] and

Google Cloud [42], and private cloud systems deployed in large organizations’ datacenters, are

increasingly used for hosting a large variety of applications in a highly dynamic, large-scale

environment, leveraging economies of scale to reduce the cost of serving these applications to

clients. Competition among cloud service providers creates a constant need to use resources

efficiently, in order to lower the cost of operating datacenters. Public cloud providers and orga-

nizations operating their own systems are also interested in minimizing the cost of maintaining

these large IT infrastructures.

Datacenters are extensive IT server and storage infrastructures that are operated at scale,

and the largest individual cost component of operating them is the electricity required to power

the servers themselves and the supporting environmental and cooling systems [80]. For this

reason it is common for cloud infrastructure and service providers to attempt to lower the

operating costs by reducing the number of servers active at any given time, and multiplexing the

collective, heterogeneous resources of a cloud datacenter across the many hosted applications.

Cloud providers are required to respect a contractually agreed Quality of Service (QoS) for

each application or service, and applications’ performance is affected by sharing hardware

resources. Therefore, significant care is placed on the choice of resource allocation. Finding

1



CHAPTER 1. INTRODUCTION 2

Storage Servers

Data Servers

Application Servers

Filesystem VM

Storage System

Filesystem

Application VM

Storage System

Application VM Application VM

Filesystem VM

Database

Client 
Requests

Client 
Requests

Client 
Requests

Figure 1.1: Example virtual infrastructure for multi-tenant filesystem and database service
operation.

the amount and allocation of system resources necessary to satisfy QoS with a minimum cost

is called application consolidation or resource consolidation [95].

Systems of the scale of a datacenter are complex, multi-tiered, interconnected and highly

configurable, and are therefore difficult to model, configure and optimize. Figure 1.1 shows

a simplified example of the internal components of a storage subsystem for a large IT infras-

tructure, composed of layers of interconnected services and subsystems, most of which have

numerous settings, parameters and large configuration spaces. Furthermore, applications and

services are generally highly configurable themselves, which further complicates the challenge

of finding appropriate combinations of resource quotas and application configurations to effi-

ciently use the underlying hardware. Even expert system administrators cannot hold a complete

mental model of the effects individual resources and application configuration parameters have

on the overall efficiency, and therefore rely on a variety of models to predict and verify oppor-

tunities to tune specific subsystems.

As an example. Figure 1.2 shows the results of measuring the latency of a database system
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Figure 1.2: Graph of database performance TPC-C.

using the TPC-C benchmark, while varying the quotas of two system resources available to the

application.

The space of all possible configurations grows exponentially with every resource or config-

uration parameter considered, and it very quickly becomes impractical to enumerate all the pos-

sible configurations. Generally, the task of modeling computer systems behavior is therefore

handled by traditional mathematical modeling methods [10, 29, 30, 45, 114], which perform

well for systems with a relatively limited number of configuration options.

Building empirical models for systems of a higher level of complexity requires adopting

different forms of automated, data-driven modeling, which rely on obtaining a large number

of samples by actuating a system in a series of controlled configurations to produce measure-

ments. Machine learning methods such as Support Vector Machines [89] can be applied to

obtain fast, low-dimensional models from the sets of sparsely sampled measured data, but still

require many samples to approximate the system behavior with reasonable accuracy. The cost

and time required to obtain sufficient samples to model a large system can be prohibitive, and
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the natural tendency of systems behavior to vary over time as a side effect of maintenance and

operation makes constantly rebuilding these models a daunting and expensive task.

In this dissertation, we observe that the challenges faced by system administrators to ap-

propriately operate systems at scale are becoming increasingly insurmountable when using

conventional performance modeling techniques. These systems’ extensive configurability and

constant evolution make it infeasible to rely on human intuition to ascertain the viability of

performance models over time, or to frequently rebuild these models from scratch.

1.1 Problem Statement

The fundamental thesis in this dissertation is that:

The key to preserving the accuracy of an application or a system performance model

throughout its lifetime is to model the configuration transformations that a system experiences,

leveraging existing information in the form of partial or full legacy models. A model of this

kind can therefore be quickly updated, and continuously leveraged for efficient resource provi-

sioning and consolidation.

We introduce Model Mapping, a homogeneous incremental inductive transfer learning

technique [72], for deriving new performance models for dynamic variations in a system and

its hosted applications. These variations may be due to changes in system configuration, such

as scaling, and upgrades, changes in data sets, workloads and so on.

Our technique aims to directly represent the transformations that systems may experience.

The modeled transformation, called a map, relates one or more legacy models of the original

system and a new model of the modified system. This map is itself a mathematical function.

Intuitively, we expect the map to be a linear or nonlinear scaling transformation, and hence

be of lower cardinality than the performance model itself. The map will also be simpler and

faster to build with just a few new samples compared to building a new model for the new

configuration instance from scratch.
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Our solution leverages pre-existing knowledge of a system’s behavior to quickly and effi-

ciently model extensions and variations of its configuration (both physical and parametric), to

preserve the accuracy of performance models throughout a system’s lifetime. This approach

recognizes the value of knowledge encoded in data and/or legacy models, and efficiently rep-

resents the evolution of a system’s behavior through that data.

We are particularly interested in understanding the opportunity of obtaining viable models

in scenarios where the sampling budget is very low (e.g. < 10 samples). Our experiments

indicate that configuration changes affect system performance globally across the entire con-

figuration space, rather than in small portions of the configuration space. This observation

suggests that these transformations are best modeled as a global transformation function when

the sampling budget is very low, rather than leveraging standard transfer learning methods.

In some cases, it is possible that the system or application change is of such a nature that

little or no similarity exists between the original system model and the new model. In such

cases, the cost of building the map may be the same or higher than directly building a new

model from scratch. Therefore, to get the best of both worlds, we may use new samples for

building both the map and the new model, in parallel, until the accuracy of either modelling

approach converges to within a desired threshold.

An important benefit of tracking system and application evolution through a library of his-

torical mapping functions is the ability to derive trends and interpolate across existing models,

even when these models are partial or of different cardinality. Besides obtaining new mod-

els with a low sampling budget, in principle we may derive a new model or answer what-if

scenarios even with no new samples.

When little or no sampling data exists, our method provides higher modeling accuracy,

more flexibility, or both, compared to regression methods based on direct modeling. In our

experiments, we observe that modeling the transfer function explicitly has specific advantages

in scenarios with very limited sampling budgets over conventional modeling methods and other

transfer learning methods. Thus, we find our technique to be uniquely suitable to the dynamic,
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long running and constantly evolving nature of Cloud platforms and their typical applications.

In this dissertation we provide details of Model Mapping and its application to a variety

of performance modeling scenarios. In all scenarios, we find that with a sampling budget

between 0% and 5% of the required samples needed for exhaustive sampling, our method

achieves higher accuracy by up to an order of magnitude, relative to direct modeling, incre-

mental modeling and other forms of transfer learning.

We also introduce ModelMap, a flexible toolkit designed to provide support for experimen-

tation and deployment of Model Mapping and other direct and incremental modeling methods.

ModelMap allows rigorous and systematic comparison of the accuracy of multiple modeling

methods in the presence of varying sampling budgets and partial models. Additionally, Mod-

elMap supports a customizable representation of the transfer maps.

This research is the result of a series of progressively deeper investigations in automated

system performance modeling and optimization in our group at the University of Toronto. Our

work builds on the previous contributions and experiences in our group to apply combinations

of heuristic, semantic and data-driven models towards the goal of obtaining efficient methods

and tools for the management of highly configurable systems [40, 92, 93].

In recent years, incremental modeling and transfer learning have had some initial success

in adjacent fields, although very limited exploration has been conducted in their application to

systems performance. In our investigation, we could find only very limited published work on

the subject, including our own. updatedIn particular, our work on the application of Gaussian

Processes for incremental modeling [24] was an early attempt to improve model reuse in cloud

systems performance modeling.

The main point of reference for baseline comparison is therefore our group’s Chorus frame-

work [25], a powerful system for storage and retrieval of legacy models, which allows for

incremental modeling.

We now provide a summary of the most salient contributions, which constitute the founda-

tions of this dissertation.
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1.2 Contributions

In this dissertation we show that while a system’s behavior changes over time by means of

configuration modifications, it retains some similarities across these changes, and that it is

possible to systematically leverage these similarities to achieve substantial savings in the time

and cost to obtain performance models of transient systems, and therefore to optimize their

configuration.

We introduce Model Mapping, an inductive transfer learning technique for systems per-

formance modeling that embodies this intuition. Given an existing performance model of a

system, we transfer this existing knowledge to an incremental variation of the system or to

a novel system by learning a simple, low-dimensional relationship. This process is used to

improve the accuracy of our approximation for system performance, given a limited sampling

budget.

We also present ModelMap, a toolkit designed to leverage Model Mapping and other forms

of incremental and transfer learning for performance modeling.

Finally, we present three case studies that represent realistic application scenarios in mod-

ern virtualized datacenters. All the scenarios involve datasets that have been systematically

collected from measuring actual physical systems, using realistic benchmarks that are faithful

representation of application load on production systems. The first represents a process for

allocating resources to database systems and their applications in a multi-tenant cloud envi-

ronment. The second represents performance modeling for the configuration of a file storage

system. The third represents performance modeling for a set of configurable hosted applica-

tions and services. All case studies demonstrate the effectiveness of incremental modeling, and

of our technique in particular.

Our contributions are in summary:

1. Model Mapping incremental modeling technique. We study the fundamental charac-

teristics of system performance modeling. We propose a novel inductive transfer learning
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technique to increase the accuracy of new performance models with small sampling bud-

gets. Our technique uses existing information about a system, embodied in legacy mod-

els, to efficiently capture the variations a system may experience by representing their

effects in relation to the legacy models using transfer functions. We observe in some ba-

sic scenarios how the lower dimensionality of a function representing this relation may

provide an advantage over different incremental learning techniques. We then compare

and contrast our technique with a selection of direct and incremental modeling methods,

and find that it is specifically advantageous in situations where the incremental variations

to a system result in non-linear, but not overly complex behavioral modifications.

2. ModelMap toolkit. We design and implement a flexible software toolkit to experiment

and compare Model Mapping with other direct and incremental modeling techniques.

The toolkit is designed to be easily extended and integrated with resource configura-

tion automation systems, by implementing application interfaces compatible with widely

available mathematical modeling libraries such as scikit-learn [85]. ModelMap has been

used to conduct all the experiments for this research, and is publicly available as an

open-source project [67].

3. Application of incremental modeling to transient systems. We apply our technique

and verify its effectiveness on a variety of system performance modeling scenarios, de-

signed to represent situations commonly found in real-world cloud systems. As part of

this effort, we designed and instrumented an experimental testbed to obtain an extensive

collection of performance measurements for a representative virtualized database system.

These samples were collected to model the performance of databases in the presence of

resource quota configurations. The resulting dataset [109] is publicly released as part of

ModelMap. In particular, we examine scenarios representing the performance effects of

configuring a multi-tier virtualized database system, a file storage system, and a set of

hosted applications. In these scenarios we identify three opportunities to leverage incre-
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mental modeling, where we find our technique demonstrates substantial effectiveness:

• Extension of a performance model’s configuration space. We analyze a variety of

scenarios where a performance model built to represent a system or an applica-

tion/service requires extensions to its domain to cover additional resources and/or

parameters that were not previously modeled. We demonstrate how in these sce-

narios, our technique can leverage legacy information and substantially increase the

accuracy of modeling additional resources and parameters with a limited need of

measurements.

• Modeling explicit and latent incremental changes to a system. We observe the ef-

fects of modifications to systems configuration, as a result of direct configuration

alterations or indirect, latent effects. Unsurprisingly, direct configuration varia-

tions, such as changing a specific resource quota, upgrading a hard disk to an SSD

or varying a filesystem scheduler parameter, may have profound, highly non-linear

effects on a system’s performance. Latent effects on performance, such as the size

of a database growing over time, also affects the ability of a service to satisfy the

necessary QoS, although the variations may be less abrupt. In both situations, we

find that applying our technique results in substantial improvement in the accu-

racy of the obtained models, which gives system administrators the ability to react

quickly to these variations.

• Resource optimization and application consolidation in virtual systems. Given the

importance of consolidation to the general operations of large-scale cloud systems,

we observe the ability of incremental models built using our technique of captur-

ing a system’s behavior with sufficient accuracy to be used for the purpose of the

optimization of virtual resource quotas. We show how our technique requires very

few samples to build effective incremental models for this usage scenario, and as

part of the comparison of our technique with other direct and incremental modeling
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methods, we also observe the adverse effects of using inaccurate models.

1.3 Organization

The outline of this dissertation is as follows: Chapter 2 introduces the background and motiva-

tion for this research. Chapter 3 presents Model Mapping, our incremental modeling technique,

and ModelMap, our modeling and transfer learning toolkit. Chapter 4 describes the results of

our experiments on database system performance scenarios. Chapter 5 describes the results of

our experiments on filesystem performance scenarios. Chapter 6 describes the results of our

experiments on hosted applications and services performance scenarios. Chapter 7 presents

related work. Chapter 8 concludes the dissertation and outlines avenues for future work.



Chapter 2

Background and Motivation

Modeling the behavior of complex systems is key to many scientific fields and is often nec-

essary to make well-informed decisions. Our work aims to reduce the effort and improve the

timeliness involved in obtaining accurate models of a computer system’s performance behav-

ior, as it varies due to explicit and latent changes to its configuration. This chapter provides an

overview of the characteristics and challenges of operating cloud systems efficiently, and the

critical importance that accurate performance models have for the task of selecting appropriate

system configurations.

2.1 Performance Modeling and Resource Consolidation

Efficiently operating large computing systems to host numerous applications concurrently is

a delicate balancing act. The vast majority of the cost of operating such systems is directly

related to the energy consumption of the computing and storage servers themselves, plus the

energy consumption of the mechanical systems designed to maintain the appropriate environ-

ment (temperature, humidity) for the servers to operate [12, 76].

However, applications are generally required to satisfy desired levels of responsiveness,

which in cloud environments are defined as Quality of Service (QoS) or Service Level Agree-

ments (SLAs). These SLAs define thresholds of performance that a cloud service provider’s

11
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operations team is required to ensure for all applications hosted by the system.

If cost were not a factor, each application could be hosted by one or more dedicated servers,

in a solution designed to ensure the desired SLA is met in a worst-case demand scenario. In

reality, the requirement to reduce the operating cost, and the realization that systems designed

for worst-case scenarios generally run at a fraction of their capacity [9], pushed operators to

aggregate multiple applications on a shared pool of servers.

Applications have different behaviors and resource demands, so it would be detrimental to

share a server across multiple applications that use the same resource (e.g. the CPU) heav-

ily, while leaving other resources (e.g. system memory) under-utilized. While most modern

operating systems include sophisticated features to handle the management and sharing of in-

dividual system resources among applications, increased pressure to host multiple applications

on the same system required additional levels of application isolation. Additionally, dealing

with issues of precise control of resource utilization and incompatibility of different applica-

tions with different operating systems and security requirements, favored the emergence of

methods to further abstract the hardware resources present on generic servers [18].

Virtualization systems such as VMware ESX Server [122], Xen [8] and KVM [46] intro-

duced a layer of abstraction between hardware and the operating systems and applications,

allowing a greater isolation of applications and a substantially finer-grained control over the

allocation of system resources to applications. However, while virtualization technologies un-

derpin most efforts in performance isolation on individual servers and large distributed systems,

they do not directly assist in the resource allocation. Different applications tolerate resource

starvation differently, so the assignment of Virtual Machines to servers, and the choice of ap-

propriate resource quotas require a thorough understanding of how their performance reacts to

resource availability.

So substantial are the time and cost involved in directly testing the effects of different re-

source allocations, that the ability to model and predict the performance of each application

running in a system, based on how its resource allocation is configured, becomes one of the
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most useful tools for application and resource consolidation [54]. A performance model is a

mathematical function which maps resource configurations to application performance. Specif-

ically, each point in the model represents the predicted application performance, given a set of

system resource quotas e.g., memory, CPU, disk bandwidth. When sufficient knowledge of a

system’s behavior is available in advance, a performance model can take a purely analytical

form, and it is therefore representable by closed-form expressions. Conversely, when the com-

plexity of a system’s behavior is higher and the available information is insufficient to study the

performance function directly, models are built using observations (samples) of the system’s

performance. Covering a system’s configuration space may require performing an extensive set

of measurements, and therefore the most significant challenge is the sampling time and cost.

In particular, in the context of system performance modeling for resource allocation, the

sampling time depends on the number of resources modeled and the number of resource quo-

tas sampled for each resource. Moreover, specific systems require additional care to ensure the

statistical significance of the measurements taken. Measuring the performance of database sys-

tems, for example, needs to allow for cache warm-up time, which increases the time required

to perform a single measurement.

Storage Cache Size (M
B)

128
256

384
512

640
768

896

Buffer Pool Size (MB)

32
64

96
128

160
192

224
256

Latency (m
s)

0
2
4
6
8

10
12
14
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(b) Benchmark = TPC-W

Figure 2.1: Graph of database performance (a) TPC-C and (b) TPC-W.

As an example, Figure 2.1a and Figure 2.1b represent performance models for the TPC-
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C transactional benchmark [106] and the TPC-W e-commerce benchmark [111], respectively,

when running in a virtualized environment. In this scenario, each application is allocated var-

ious quotas of two system resources: storage cache and buffer pool size. These performance

models represent the page access latency at the database buffer pool as a function of the stor-

age cache and buffer pool configuration parameters, varied between 128MB and 896MB, and

between 32MB and 256MB, respectively. Building this model by combinatorial sampling of

the configuration space requires a significant amount of time. Each performance measurement

requires the following steps:

1. Initializing the storage system to a predetermined, deterministic state.

2. Configuring the virtualization system to provide the desired resource quotas to the appli-

cation.

3. Starting the database system’s VMs and waiting for all the services to become available.

4. Waiting for the database cache to warm-up.

5. Running the benchmark application repeatedly to ensure statistical significance.

6. Shutting down the database system’s VMs.

Sampling time for building each of the two models was approximately 10 days. The higher the

number of resources modeled, the higher the sampling cost for building the model.

For many real-world applications with much larger configuration spaces, a sampling time of

weeks or months is prohibitively expensive and infeasible, and therefore exhaustive sampling

is replaced with training regression models (black-box models [47]) using smaller training sets.

The larger the available set of samples, the more accurate the model that can be obtained.

The work by Soundararajan et al. [92] shows the benefits of online resource allocation

adaptation for a database system, studying the effects of applying quotas to two system re-

sources: the database buffer pool and storage cache. The work presents the challenges in
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finding good configurations in a reasonable amount of time, and the related need for applica-

tion performance models to retrieve these configurations efficiently. In this case, modeling the

application performance as a function of resource quotas used Support Vector Machine Re-

gression [89]. Van Aken et al. [118] also apply a machine learning method (Gaussian Process

Regression) for the purpose of automatically tuning the configuration of a database system,

using a smart selection of training samples.

Over time, complex systems such as a cloud infrastructure undergo a multitude of software

and hardware replacements, extensions, upgrades and general maintenance. Any incremental,

but significant, variations of a system’s configuration may render previously obtained perfor-

mance models obsolete. Specifically, situations exist where one may wish to incorporate new

resource types into a system or application, or situations that would require changing the num-

ber of available system resources or configurable parameters. For example, one may wish to

extend an existing performance model of the latency of a storage hierarchy to cover the influ-

ence of imposing CPU quotas.

Furthermore, systems may exhibit latent performance variations, which produce an ad-

ditional source of inaccuracy that negatively effects performance reasoning and optimization

efforts. For example, it has been observed that similar systems deployed in similar environ-

ments, e.g. web servers, suffer from tuning-related delays [6, 27, 70], availability, or per-

formance problems [129, 130]. To compensate for these sources of inaccuracy, performance

models need to be periodically rebuilt, further amplifying the modeling costs. In all these

circumstances, the traditional approach is to build a new model from scratch in any new con-

figuration. This approach yields a model of the application or system in the new configuration,

based on all the sampling data available, using black-box [37] or grey-box models [103], and

may incur in a substantial latency between a configuration change and the availability of a new

model.
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2.2 Transfer Learning

Transfer learning is a branch of research in computer science which aims to reuse knowledge

for the purpose of solving related problems/tasks [73, 105]. This approach mimics the way hu-

mans extract useful experience from different activities and abstract some notions to improve

their ability to solve previously unseen, but related challenges. In particular, transfer learning

leverages partial structural similarity between tasks, expressed as mathematical models, to im-

prove modeling accuracy and to reduce the need for a large number of samples in a model’s

training set.

LetA ∈ Rn andB ∈ Rm and f : A→ B be a function we are interested in modeling. With

a sufficient training set of pairs {x ∈ A, y ∈ B}, f can be approximated by a mathematical

model σ, such that σ ≈ f . Transfer learning methods use knowledge encoded in σ to reduce

the effort in modeling a different function g, where g : A→ D,D 6= B or g : C → B,C 6= A.

An example of transfer learning is presented in Figure 2.2. Figures 2.2a and 2.2b represent

two functions, f and g. Figure 2.2c represents a model of the function g built with only six

samples, shown as black dots. Clearly, the model captures very few of the characteristics of

function g, and therefore exhibits a large error. Using transfer learning and the same set of six

samples, and reusing knowledge of the entire function f , we obtain the model in Figure 2.2d.

Transfer learning effectively leverages the similarities in the two models to produce a much

more accurate model from limited samples.

At the time of writing, transfer learning is a very active field of research, as it is con-

sidered one of the fundamental avenues for the generalization of machine learning models

used in multiple scientific fields, as they get increasingly complex and time consuming to

train [31, 43, 51, 127]. Transfer learning has therefore emerged as a viable set of techniques to

approach at the same time model complexity and scarcity of available training data for super-

vised learning. Many examples of application of transfer learning are present in literature, to

approach problems such as text classification [28], defects analysis and classification in soft-

ware applications [69] and image classification [55].
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(a) Function f (b) Function g

(c) Direct model of g (d) Transfer learning f → g

Figure 2.2: Comparison between direct modeling and transfer learning.
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Based on the information we gathered in this chapter, we acknowledge the importance and

complexity of performance modeling for the goal of successfully and economically operating

cloud systems, and the theoretical advantages transfer learning presents in improving training

speed and accuracy in multiple mathematical modeling scenarios. In the following chapters

we tackle the challenge of incremental modeling of transient systems by introducing a novel

transfer learning approach, and then proceed to experimentally evaluate its effectiveness in a

set of scenarios designed to represent realistic circumstances in cloud systems operations.



Chapter 3

Modeling Systems Performance with

Model Mapping

In this chapter we introduce our proposed Model Mapping technique, we present its funda-

mental characteristics and limitations, and discuss the considerations behind the design and

implementation of ModelMap, our incremental learning toolkit.

Our work builds upon many years of intense experimentation and observation of the behav-

ior of computer systems in our group [24, 25, 40, 92, 93], which led us to choose an approach

to transfer learning that uses the results of these observations. As observed in Section 2.2,

adopting transfer learning for the purpose of performance modeling and optimization has nu-

merous advantages, as it addresses the need to systematically retain information about systems

behavior, and at the same time provide an avenue to reuse this information to quickly react to

explicit and implicit variations.

Model Mapping is a transfer learning technique based around the inherent characteristics

of systems performance modeling, and the goal of reducing the dimensionality of performance

modeling problems in transient systems, by focusing on the essential features that describe

the transformations a system may experience. In particular, it is meant to represent relatively

simple, non-linear, incremental system variations, and it focuses on scenarios where sampling

19
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budgets are extremely low.

Other transfer learning approaches such as layer substitution in deep transfer learning [100]

leverage similarities and differences between models using more extensive features (e.g. a full

covariance matrix or complex non-linear models like Artificial Neural Networks), and often

require larger training sets to be effective.

3.1 Model Mapping

System performance modeling is the task of obtaining a function that represents how a sys-

tem’s configuration parameters affect its performance characteristics. The space of possible

configurations, denoted by C ⊂ Rn, is defined by a set of continuous or discrete parameters.

At the same time, each performance characteristic (the result of measuring performances), is

encoded as a value in a spaceM ⊂ Rm. The relationship between system configurations and

performance characteristics is therefore encoded by a function ρ : C →M.

Given a sufficient sampling of how different configurations perform, we can directly build

a performance model for a new state of a system. Let us assume that, as one may expect in

reality, there already exists a pre-built model ρ0 of a system, which we deem the legacy model

and we take to be trustworthy throughout C. Rather than requiring a costly sampling procedure

in order to build a performance model for the new system state ρ1, it would seem prudent to

utilize information of the system’s behavior encoded in ρ0.

For instance, when a system has a large number of configuration parameters, the curse of

dimensionality [112] makes it infeasible to create a single performance model over the entire

configuration space. Multiple models may be required to capture the performance of different

sub-spaces of configuration space, where a subset of parameters is held constant. After a

trustworthy model is built with a subset of static parameters, it would be prudent to generalize

the model to more parameters rather than exhaustively sampling a different subspace.

Furthermore, multiple performance models would be required to continuously optimize
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Figure 3.1: Graph of the performance function f1, with two incremental variations f2 and f3.

configurations of an evolving system. We claim that, rather than exhaustively sample and build

a model for each passing system, a more effective and efficient strategy would be to model the

system’s variations from historically built models.

That is precisely what our proposed technique prescribes, by building a map (transforma-

tion) σ such that

ρ1 ≈ σ ◦ ρ0, (3.1)

As an example of our technique, let us assume that we have a hypothetical system with a

single configuration parameter x. Let graph f1 in Figure 3.1 be a legacy model for our system, a

function which represents our system’s response to all possible configurations of the parameter

x. Say that an incremental change in the overall system mutates the performance function

to become f2 in Figure 3.1. In such situations, f1 may cease to be sufficiently accurate, so

building a new model of the system may become necessary. Intuitively, we can see that the

optimal transformation of the model from f1 to f2 is in fact the scaling of f1 by a constant.

This is in fact confirmed by plotting a few samples from f1 vs. f2, as can be seen in Figure 3.2.
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f1

f2

Figure 3.2: Graph of the functions f1 vs. f2.

Building a model for f2 directly would likely involve more sampling effort than building a

model of the map between models f1 and f2 in performance space (fromM toM), indepen-

dent of any configuration parameters. Such a map could be resolved from as few as a single

sample from f2:

σ(y) = 2× y y ∈M (3.2)

f2 = σ ◦ f1 = 2× f1. (3.3)

These maps are expressive, but simple. In some situations, the system under consideration

may vary its performance characteristics due to a combination of configuration parameters, as

depicted by f3 in Figure 3.1. In this case the map between f1 and f3 requires some awareness

of x and therefore requires a feature from the configuration space. Even though f3 and the map

have the same dimension, we hypothesize that a generalized map may still be easier to model

than f3.
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There are, of course, circumstances where a simple map is insufficient to appropriately

represent the relation between two models. In such situations higher order maps are required,

but we hypothesize that even in these circumstances, modeling a generalized higher order map

may be simpler than modeling the system’s performance function from scratch.

3.2 A Simple Example

The performance function we intend to model is the memory throughput of a computer sys-

tem, as reported by the Memory Mountain micro-benchmark [17]. In this example, the system

configuration parameters are memory access size and memory access stride, and the perfor-

mance metric being modeled is the overall memory throughput in MB/s. We assume that we

have obtained a trustworthy legacy model which represents the performance function of the

system when an Intel Xeon E5-2650 microprocessor is used (Figure 3.3a).

The goal is to model the entire performance space of the same system, when the micropro-

cessor is replaced with a different one: an Intel Xeon E5-4620 (Figure 3.3b).
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Figure 3.3: Performance graph of the Memory Mountain microbenchmark for two CPU archi-
tectures.

While the average throughput of the Xeon 4620 is nearly 15% higher than the cheaper Xeon

2650, at low and high memory access sizes the throughput is actually 30% lower. Despite these

differences, the structural similarity between the two configurations’ performance spaces can
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be observed in Figure 3.4.
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Figure 3.4: Graph of the relative performance spaces shown in Figures 3.3a and 3.3b.

Our technique exploits this similarity, and the results depicted in Table 3.1 show that it

outperforms direct modeling for small sampling budgets. All the tested modeling methods

(ref. Section 4.3), when used to find the map, exhibit better accuracy than the best performing

method used to model the performance function directly. With a sampling budget of only 10

samples and a 1D map, the Root Mean Squared Error of our technique is up to three times

lower than with direct modeling.

The results show that We see that even a simple 1D map, relating the two performance

spaces independently from the configuration parameters, is sufficient in this case to transfer

information from the legacy model to the new model.

3.3 Generalization of Model Mapping

Recall from Section 3.1 that we aim to model a function ρ1 : C →M, for which the only way

to evaluate it is to perform an experiment/evaluation that is presumably costly. We introduced

the concept of modeling the performance function ρ1 indirectly, through modeling a simple
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 1,833.85±84.91 710.09±68.08
Polynomial regression 2,134.64±73.67 1,677.65±123.61
Linear SVR 1,731.43±69.69 650.22±47.17
Gaussian Process 1,734.27±74.78 1,117.49±91.71

10 Linear regression 1,500.07±34.80 582.29±13.03
Polynomial regression 1,794.36±59.99 1,478.58±119.04
Linear SVR 1,495.99±35.81 535.47±3.78
Gaussian Process 1,355.41±42.92 872.99±75.16

Table 3.1: Root Mean Squared Error of model mapping and direct modeling. Legacy model =
Xeon E5-2650, unknown model = Xeon E5-4620.

relationship between two functions: a previously validated legacy model and ρ1.

The relationship between a previously modeled performance function ρ0 and ρ1, for which

no prior information is available is encoded by a map of the form σ : R→ R so that

ρ1(c) ≈ σ ◦ ρ0(c) c ∈ C. (3.4)

3.3.1 Definitions

Our aim is to define the variations of a system’s performance function based on changes in its

configuration parameters or other latent variables as maps. We therefore introduce and discuss

a taxonomy of such maps according to their input parameters. This taxonomy allows us to

view the simple maps introduced in Section 3.1 as a basic case and to provide a clear direction

for subsequent development.

We assume that, in addition to a given system configuration space C ⊂ Rn, we have already

obtained a space of performance measurementsM ⊂ Rm representing the evaluation of the

system’s performance function ρ1 : C → M. The combination of a particular configuration

and its performance measurements forms a unique set of features for that configuration. From

this perspective, we can reinterpret the task of modeling a performance function by using some

function from the aforementioned features to the desired objective, σ : C × M → R. We
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therefore must find some σ such that

ρ1(c) ≈ σ(c, ρ0(c)) c ∈ C. (3.5)

At first glance, adding more parameters to σ may seem counterproductive, but the hope is

that the available, pre-computed values of ρ0, which constitute a subset of M, may be more

useful than simply the features from C. However, it is only when we write σ in this general

form that we can begin to remove features that are either configurations or performance mea-

surements by forcing σ to ignore those features. This is equivalent to the processes of feature

selection and extraction in machine learning [13], where more relevant features are derived to

reduce modeling complexity.

In this context, we can organize our maps according to the kinds of features they utilize. In

particular, to identify a map we use two sets of features L ⊆ C and K ⊆M. For generality we

choose to classify maps using the cardinality of each set, and we therefore introduce the concept

of a class to identify any particular σ type by the cardinality of the sets L and K it uses, which

we will denote as a tuple (`, k) = (|L|, |K|). This taxonomy provides an alternative perspective

as to how we may want to model ρ1. In the context we have established, using a map of class

(|C|, 0) is equivalent to performing direct modeling.

Transformation functions different from simple composition may also be used. For exam-

ple, one could model the difference between ρ1 and ρ0, as follows:

σ = ρ1 − ρ0 (3.6)

ρ1(c) ≈ σ(c, ρ0(c)) + ρ0(c) c ∈ C (3.7)

3.3.2 Challenges and Limitations

Given a sufficiently general and expressive modeling method, a map of class (|C|, 0) represents

the choice of modeling the performance function directly, assuming the model could approxi-
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mate ρ1 itself, but this is presumably prohibitively expensive, and therefore a map of different

class (` ≤ |C|, 0 < k ≤ |M|) should be selected when legacy information is available. We

assume that the cost of modeling is correlated positively with the number of features used.

In this context we can see the simple mapping technique introduced in Section 3.1 is a case

where the transformation map relating the legacy model and new model was built using only

features from the legacy function’s codomain. The map uses |M| = 1 and σ makes no use of

any features from C, therefore it is of class (0, |M|) = (0, 1).

In general, when using this simplest class of map, it is improbable that the model of ρ1 will

converge to a reasonable approximation due to the strong limitation in the features being used.

For example, this class of 1-dimensional maps imposes a necessary condition that whenever

the condition ρ0(x1) = ρ0(x2) is encountered, then ρ1(x1) ≈ ρ1(x2) must hold as well. A more

general way of stating this limitation is that the existence of a σ of class (0, 1) implies that the

level sets of ρ0 and ρ1 must coincide, and therefore the values of these level sets can be put into

correspondence under σ.

This condition may not hold in general; though in a simple, 1-dimensional case one can

assert that if ρ1 is monotone, then the desired map of class (0, 1) exists because we can have

σ = ρ1 ◦ ρ0−1 where ρ0−1 is the inverse of ρ0. In several scenarios of systems performance, the

postulated relationship is approximately true when x1 and x2 are sufficiently similar.

We can see this assumption verified when analyzing the plot relating the codomains of the

two performance functions reported in Figure 2.1a and Figure 2.1b in Section 2.1. The plot

shows a mostly linear relationship between the two codomains.

Example with 1D function

We can now revisit the simple example from Section 3.1, where we have a hypothetical sys-

tem with a single configuration parameter x, represented by graph f1 in Figure 3.1. When

the system under consideration experiences a variation due to a combination of one or more

configuration parameters, as depicted by f3 in Figure 3.1, a map of class (0, 1) is insufficient to
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model the transformation between f1 and f3. In this case the transformation function between

functions f1 and f3 is a 2D function, which is depicted in Figure 3.5.

x

f1

f3

Figure 3.5: 2-dimensional transformation map between f1 and f3 in Figure 3.1.

The map requires awareness of the configuration parameter x to appropriately capture the

variation, therefore we add x, the single feature from C to the map, increasing its dimensions to

two. This is therefore a map of class (1, 1), as it depends on x, hence it uses one feature from

C and one fromM.

Examples with higher dimension functions

The same reasoning applies to the benefits of the mapping transformation for both of the fol-

lowing cases: when the functions in question, i.e., f1, f2, f3, are i) models of the evolution of

the whole system, or ii) models of the evolution of a certain subset of the system configuration

space e.g., the configuration obtained by keeping one system parameter fixed and varying all
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Figure 3.6: Graph of performance functions f and g incrementally modified by a configuration
parameter

the others.

Figure 3.6 shows a series of 3D models pertaining to several possible successive evolutions

of a system that has two configuration parameters x and y. We can see that, a simple scaling

function, similar to the scenario presented in Section 3.1, suffices to represent all the evolutions

in the first row. This is also the case for all the evolutions in the second row. Therefore, for

building any new 3D model in any of the two sequences represented on each of the two rows,

only a simple 1D transformation function suffices that relates the two functions’ codomains,

and therefore a map of class (0, 1).

However, for any transformation of a model in the first row to the corresponding model in

the second row, we see that we need a more complex transformation function. We denote this

type of transformation a transformation of class (2, 1) because we need two features (x and y),

both pertaining to the function domain, as well as the single codomain feature, to build the new
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model.

The choice of an appropriate map dimension and the selection of features can be performed

using information contained in the legacy model. While it may be impossible to select the best

dimensions and features prior to sampling the system in the unknown configuration, feature

selection may be performed using variance-based sensitivity analysis [84] of the legacy model’s

output, or other related techniques. Ultimately, run-time model ranking and selection by cross-

validation of multiple trained models with different combinations of dimensions and features,

is a valid option when the analysis of the legacy model does not offer useful information.

An additional consideration is that in principle our mapping technique may also be applied

to interpolate or extrapolate across models, even with no new sample points at all. For example,

if the first two or three models in one row of Figure 3.6 are available as legacy information, we

could derive the next one(s) in the sequence without the need for any sampling. The reason is

that we could capture the trend of the transformations the model experiences, as system per-

formance evolves. Using multiple models as features corresponds to using multiple codomain

features, and we classify maps of this type as (` >= 0, k > 1).

As we will see, our technique is orthogonal to the choice of modeling method used to create

the map, as it aims to reuse knowledge from previously available models and model the relation

between models.



CHAPTER 3. MODELING SYSTEMS PERFORMANCE WITH MODEL MAPPING 31

3.4 ModelMap

Studying and verifying the feasibility and effectiveness of our technique, and comparing it with

others, requires the ability to systematically apply it in a variety of controlled and reproducible

experiments.

Several open source mathematical modeling frameworks and programming libraries such

as scikit-learn [85] allow application and comparison of modeling methods. These tools gen-

erally focus on providing easy access to a library of standard modeling methods, and an API

to extend methods, implement new ones, and test them. While offering powerful features for

fitting mathematical models and verifying their accuracy, none of these tools is specific to

the investigation of incremental modeling. Our research seeks to understand how incremental

changes that occur to a system affect modeling accuracy, in relation to the amount of avail-

able information. The goal requires a flexible toolkit, allowing us to run large numbers of

experiments programmatically,

We designed and implemented ModelMap in support of this research, a software toolkit that

combines widely used open-source libraries with dedicated incremental modeling features, and

offers a flexible API to:

• Combine legacy performance data with data from unknown systems configurations

• Compare modeling and transfer learning techniques using multiple error metrics

• Conduct experiments on incremental modeling and track error trends

To obtain the required flexibility, fast experimentation, and wide applicability, we imple-

mented the toolkit using the Python 3 programming language [79], which gained wide support

both in the data science and in the computer engineering communities. The ModelMap toolkit

was written to conform to the PEP-8 coding standards [77].

To ensure ease of use and integration with other applications, ModelMap leverages scikit-

learn, a very popular open-source library for mathematical modeling and data analysis. Scikit-

learn is used as the baseline implementation of most basic mathematical modeling techniques,
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instances of which are used in ModelMap to represent both legacy performance models and

transfer maps models. ModelMap adheres to the scikit-learn general API principles, and the

fundamental interfaces have been retained in our base transfer learning model class, to give

users a familiar construct when using it for a variety of modeling tasks. For dataset manip-

ulation and general input/output, our toolkit leverages pandas [74], a powerful data analysis

library.

The implementation of the ModelMap modeling classes includes functionality to simulta-

neously train models using two different approaches: direct modeling (including incremental

modeling and transfer learning) and Model Mapping, and to experimentally compare the tech-

niques.

The toolkit is designed to allow complete reproducibility of the experiments, therefore each

class performing operations that involve randomness (e.g. sampling selection) uses its own pre-

initialized random number generator.

A repository was created on the Cloud-based code hosting site GitHub [41] to contain all

the source code and datasets that will be used for the experiments required by the current and

future research directions [67].

We now review the fundamental design principles behind the implementation of the toolkit

classes.

ModelMap class

The ModelMap class (ModelMap.py) is the fundamental interface to perform model fitting

and regression using both direct modeling and Model Mapping at the same time. The class

can be initialized to simultaneously use a variety of modeling methods to fit a given dataset

and to model a transfer map that leverages legacy data. It fully implements the base scikit-

learn interfaces BaseEstimator and RegressorMixin, and it is therefore ready to be used in

any application that already makes use of a different scikit-learn regressor, including model

selection.
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The class constructor allows specifying all the necessary parameters for initialization and

the simultaneous runtime training and evaluation of all the specified mathematical models. The

main configuration parameters are as follows:

• authoritative models: a list of one or more instances of pre-trained models compatible

with the scikit-learn Regressor interface, to represent the legacy model the system will

use as the legacy information available to build the transfer map.

• map: an instance of the ModelMapMap class, which is used to represent and train the

map model.

• direct modeling methods: a list of one or more instances of untrained models compatible

with the scikit-learn Regressor interface. These are used as the point of comparison for

the experiments, and may be used as a fallback mechanism in circumstances where the

map model is deemed to perform poorly.

ModelMapMap class

The ModelMapMap class (ModelMapMap.py) implements the abstract interface to define the

type of function composition for a transfer map. Instances of this class store and manipulate

all required data involved in training and querying the transfer map models. The main config-

uration parameters are as follows:

• authoritative models: see the same parameter in the ModelMap class.

• map modeling methods: a list of one or more instances of untrained models compatible

with the scikit-learn Regressor interface. These instances are used to train and store

multiple representations of the transfer map, that the system can track and compare.

ModelMapExperiment class

The ModelMapExperiment class (ModelMapExperiment.py) implements the testing frame-

work used to perform experiments in a controlled, repeatable way. All the experiments in
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this work are expressed as instances of the ModelMapExperiment class, allowing the appropri-

ate parameters for each experiment to be expressed concisely and effectively. The class uses

a collection of pseudo-random number generators to initialize the model instances, in such a

way that the experiments are completely reproducible. Reproducibility is guaranteed in all cir-

cumstances that require stochastic selection, for example in the random sequence of sampling

locations used to determine the training set for the models. The main configuration parameters

are as follows:

• authoritative dataset filename: the filename of the .CSV file containing the dataset rep-

resenting the legacy model.

• unknown dataset filename: the filename of the .CSV file containing the dataset repre-

senting the ground truth for training and measuring the accuracy of the unknown model.

• domain columns, codomain columns: labels of the performance function domain and

codomain columns in the dataset files.

• num runs: number of repetitions for the experiment, to obtain statistics on the behavior

of the models under different random selections of sample points.

• authoritative models: see above.

• map: see above.

• direct modeling methods: see above.

• sampling budgets: an array of values representing multiple sampling budgets (number

of randomly picked samples from the dataset for the model training set) the experiment

uses to produce a trend of accuracy.

Regressor classes

The Regressor classes implement mathematical modeling methods used by the experiments

in addition to the ones present in the scikit-learn framework. These have been designed and
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implemented to expose the same interface for training and evaluation as their scikit-learn coun-

terparts. The modeling methods implemented in ModelMap are the following:

• Database regressor (DatabaseRegressor.py): a non-interpolating model that simply stores

the samples passed to it at training time and returns them upon evaluation. This model

has been developed for the purpose of analyzing categorical datasets, in which continu-

ous interpolation across the parameter space is meaningless, but instead model compar-

isons are performed against an exhaustive dataset, where all the combinations of param-

eters have been sampled.

• Polynomial regressor (PolynomialRegressor.py): a model that interpolates the given data

using a simple polynomial curve of selectable degree.

• Gaussian Process regressor (GPyRegressor.py): a model that uses the Gaussian Process

method to fit the dataset. This class uses the GPy library [44] implementation of Gaussian

Process Regression and wraps it into a scikit-learn compatible interface.

3.5 Summary

In this chapter we introduced Model Mapping, a transfer learning technique that leverages the

characteristics of transient computer systems performance with the goal of improving mod-

eling accuracy in the presence of small sampling budgets. We also presented ModelMap, an

open source software toolkit that implements Model Mapping for the purpose of experimen-

tation, ease of integration with existing performance modeling applications, and deployment

in production systems. In the following chapters we present a set of scenarios, designed to

experimentally evaluate the effectiveness of Model Mapping, in relation to other performance

modeling approaches.



Chapter 4

Database System Performance Modeling

4.1 Introduction

Our database performance experiments are designed to reflect real-world scenarios, focusing

on the typical process for allocating resources to database systems and their applications in

a multi-tenant cloud environment. In these environments, user applications are allocated an

amount of system resources that balance operating costs against the risk of violating service

level agreements, through the following steps:

• Obtain an accurate model of the application’s performance characteristics: find-

ing the appropriate allocation of resources to a given application requires a model of

the application’s performance graph. This model is obtained by running the application

under a set of system configurations in an instrumented system and measuring the appli-

cation’s behavior. The model represents the application’s performance as a function of

the resources allocated to it.

• Search the optimal resource configuration using the obtained model: when an ac-

curate enough model is obtained or when the time budget for modeling is exhausted,

optimization of the system configuration parameters can be performed. The optimiza-

tion process uses the performance model to predict the application’s behavior across the

36
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entire system configuration space.

• Apply the resource configuration: based on the results of the optimization process and

the service level agreement, resources are allocated to the application using hypervisor

control in Virtual Machines or other means of resource throttling.

When a major system configuration change occurs, such as when a new generation of

hardware becomes available, we want to cheaply obtain an accurate model of the application’s

performance characteristics under the new configuration.

In order to test the characteristics and limitations of the Model Mapping technique, we

created five scenarios that are representative of a database system undergoing a variety of mod-

ifications to its resources. The scenarios evaluate our performance modeling technique by in-

troducing increasingly significant modifications in the system configuration. The five scenarios

are as follows:

• Scenario 1: incremental variations of a single resource quota. Increase in CPU resource

allocation to improve performance.

• Scenario 2 and 3: different, increasingly significant system hardware downgrades to

lower the operating cost.

• Scenario 4: incremental variations of latent factors (data accumulation over time).

• Scenario 5: incremental changes on optimal system resource allocation in a multi-tenant

scenario.

4.2 The System Under Test

In order to ascertain the behavior of a representative database system when incrementally vary-

ing its resource allocation, we choose TPC-C, a standard database performance benchmark

[108], as the application under scrutiny.
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The TPC-C benchmark aims to simulate the running conditions of a database system under-

pinning a business operating in multiple sales districts and serving customers from a number of

regional warehouses. Warehouses cover 10 sales districts each, sales districts serve 3000 cus-

tomers each. This performance benchmark uses a combination of multiple types of database

transactions performed by a traditional sales operation. Sales operators use terminals to enter

transactions such as orders, payments, and inventory queries, which are relayed to the central

database system. The types of transactions TPC-C simulates are the following: New Order, De-

livery, Payment, Order Status and Stock Level. The transactions mix used by the benchmark

is a combination of both read and write operations. The benchmark measures the transactions

per minute (tpmC) executed within a given sampling time.

4.2.1 Data Collection Platform

To obtain a sufficiently complex dataset and properly evaluate the effectiveness of our tech-

nique, we set up an instrumented system. We established a complete environment to reproduce

the behavior of a standard cloud application leveraging a database system, backed by a separate

storage subsystem. The system was designed to reliably perform all the required performance

measurements over long periods of time.

In order to obtain statistically reliable data, we executed the TPC-C benchmark multiple

times, and instrumentation was used to detect and filter outliers caused by spurious system

events, such as spikes in system CPU usage unrelated to the benchmark. The instrumentation

consisted in a Unix daemon that logs CPU and memory usage during each execution of the

benchmark. To reduce the chance of the instrumentation system affecting the performance

behavior, we sampled the overall system usage once per second and stored the small traces

(∼1KB per experiment) in a pinned virtual memory page, to avoid incurring in virtual memory-

related exception/interrupt delays. We compared the benchmark running with and without

instrumentation and found the difference to be statistically insignificant.

We used a two-stage Z-score outlier detection [81] procedure, as follows:
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• Stage 1 calculated the Z-score of the TPC-C throughput (tpmC) values of all benchmark

runs, then removed the runs with Z ≤ −3 or Z ≥ 3.

• Stage 2 used the CPU and memory usage traces, by calculating their averages for each

benchmark run, then calculating their Z-scores and removing the runs where Z ≤ −3 or

Z ≥ 3.

The procedure discarded less than 1% of all data points, with all the outliers being detected

by Stage 1. Inspection of the system traces for the outliers detected by Stage 1 showed sud-

den spikes in CPU usage, which we attributed to unrelated background system activity. Our

system ran in a very controlled environment, which resulted in the small number of outliers.

In similar, tightly controlled environments, the selection of an appropriate confidence interval

can lead to fewer sampling repetitions to obtain similarly statistically reliable data. However,

real production systems often operate in more unpredictable conditions and extensive repeated

sampling may be necessary.

4.2.2 Hardware and Software Systems

As one of the key goals of our method is to efficiently predict an application’s performance

behavior in a changing environment, we setup three different hardware platforms, by select-

ing the components for each platform from different generations of server hardware. For each

platform we obtained exhaustive measurements of the application’s performance characteris-

tics, which we subsequently processed using the outlier detection procedure described above

to obtain the datasets for our modeling experiments.

The detailed hardware and software specifications of the servers we used to generate the

data are provided in Table 4.1.
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Platform 1 Platform 2 Platform 3
CPU 2 × Intel Xeon CPU

E5-2640 v3 @
2.60GHz (Haswell)

(Hyper-Threading
enabled)

2 × Intel Xeon CPU
E5-2640 v2 @

2.00GHz (Ivy Bridge
EP) (Hyper-Threading

enabled)

2 × Intel Xeon CPU
W5580 @ 3.20GHz

(Nehalem EP)
(Hyper-Threading

enabled)
Chipset Supermicro

B10DRT-TP
Supermicro

X9DRG-O(T)F
HP 0AECh

BIOS Version 2.0a Version 3.2 Version 3.57
Memory 8 × Hynix

HMA84GL7AMR4N-
TF 32GB DDR4-2133
ECC LRDIMM (total

256GB)

16 × Samsung
M386B4G70DM0-

YK04 32GB
DDR3-1600 ECC

LRDIMM (total
512GB)

6 × SAMSUNG
M393B5170EH1-CH9
4GB DDR3-1333 ECC

Registered (total
24GB)

Hard Disk Seagate Constellation.2
ST9500620NS,

500GB, 7200 RPM,
64MB Cache, SATA

6.0Gb/s

Samsung SSD 850 Pro,
256GB, 2 GB Low

Power DDR3 SDRAM
Cache, SATA 6.0Gb/s

2 ×Western Digital
WD4003FZEX Black,
4TB, 7200 RPM, 128

MB Cache, SATA
6.0Gb/s (RAID 1)

Network
Interface

MT27520, 10 Gbps BCM57840 NetXtreme
II, 10 Gbps

NetXtreme
BCM5764M, 1 Gbps

Operating
System

Base installation of
CentOS Linux release

7.3.1611, Kernel
3.10.0-

514.16.1.el7.x86 64

Same as Platform 1 Same as Platform 1

Table 4.1: Hardware and OS configuration details.

4.2.3 Virtualization and Performance Isolation Strategy

In order to simulate the effects of configuration and performance factors of cloud-based so-

lutions, we created an isolated, virtualized environment. This choice allowed us to quickly

and effectively deploy and reproduce the performance profiling environment on a variety of

hardware, and reliably collect all the performance measurements necessary for our dataset.

The Oracle VirtualBox virtualization platform (version 5.1.22) was used. All the virtual

machines were run on the same hardware server, with a bridged virtual network connecting

them.
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Figure 4.1: Data collection platform setup.

Three Virtual Machines were created to represent the main system components:

• TPC-C application

• Database server

• Storage system (hosting the database filesystem on a NFS server)

Figure 4.1 depicts the overall system layout.

This setup allows us to easily isolate and limit the resource usage of each service/system

component, with levels of control that are similar to what a cloud environment provides. At

the same time, the setup allows ease of management and fast turnaround time for the numerous

configuration changes our data collection effort requires.

All VMs have been configured with the same virtual hardware configuration, as follows:

• CPU: 1 virtual core.

• Memory: 2048 MB

• Network: bridged network, i.e. direct access to the host’s primary network interface

The specific software configuration of each Virtual Machine is as follows:
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• Application VM

– OS: CentOS Linux release 7.3.1611, kernel 3.10.0-514.21.1.el7.x86 64

– TPC-C application: We modified a TPC-C implementation for MySQL [108] to

output additional statistics, formatted for easier capture and further processing, and

compiled it with gcc 4.8.5 20150623 (Red Hat 4.8.5-11), with the default compiler

flags (-w -O3 -g).

• Database VM

– OS: CentOS Linux release 7.3.1611, kernel 3.10.0-514.21.1.el7.x86 64

– Database: MariaDB [62]1 10.2.6-1.el7.centos with InnoDB: 5.7.14. According to

MariaDB technical documentation [63], we do not expect to see any substantial

difference between MariaDB 10.2, which we used in this work, and MySQL 5.7,

required by our selected TPC-C implementation.

• Storage VM

– OS: Ubuntu 14.04.5 LTS, kernel: 4.4.0-31 i686

– NFS server: nfs-kernel-server and nfs-common packages,

version 1:1.2.8-6ubuntu1.2 i386

4.2.4 Data Collection

The TPC-C benchmark tests the response of modern database software to mixed application

requests when running in a cloud environment under a variety of configurations; we therefore

measure and model the variation in the database response performance under varying database

configuration parameters and system-level parameters.

1MariaDB is a community-developed fork of the MySQL RDBMS intended to remain free under the GNU
GPL.
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For data collection we initially configured the TPC-C benchmark on each of the three plat-

forms to populate and exercise a database representing 10 warehouses, for a total database size

on disk of approximately 1.2GB. Before starting the performance measurement activity, TPC-

C initializes the database by creating the appropriate tables and populating them with an initial

dataset. This operation takes a considerable amount of time. During the benchmark operations

the database contents are modified by sequences of write operations, therefore the initializa-

tion procedure is required before each performance measurement to obtain consistent profiling

data. In order to reduce the time taken by profiling the system in each configuration, we used

the TPC-C application to pre-load the database once, then stopped the database, backed up the

contents of its supporting filesystem and reused a clone of the obtained initial database state

for all the subsequent experiments.

For each database configuration change and system configuration change, we allowed the

database cache to warm up for 15 seconds. We then run the benchmark for 3 minutes with 10

simultaneous connections to the database, then gracefully shut down the database, change the

configuration, replace database files with the initial database, and restart the database server.

The above process to obtain a single configuration sample takes approximately 5 minutes.

The data collection involved executing the TPC-C benchmark while exhaustively varying

three system configuration parameters across the identified domain. These parameters repre-

sent the quota of three shared system resources allocated to the database system: I/O, memory,

and CPU. Details about the selected system resources and the choice of tools for controlling

their allocation are reported below.

• Disk I/O quota: maximum allowed system I/O throughput for the storage system applied

by assigning the Storage VM process to a dedicated cgroup and controlling the cgroup’s

I/O allocation by varying the configuration parameters

blkio.throttle.write bps device and

blkio.throttle.read bps device.

• Buffer pool size: size configuration of the MariaDB innodb database buffer pool ap-
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plied by varying the innodb buffer pool size system environment variable in

the Database VM.

• CPU quota: maximum allowed percentage of the system’s CPU allocation for the database

applied by assigning the Database VM process to a dedicated cgroup and controlling the

cgroup’s CPU quota allocation [22] configuration parameter:

cpu.cfs quota us=1000000

and varying the configuration parameter:

cpu.cfs period us.

We wrote a set of shell scripts to alter the three chosen system configuration parameters as

follows:

• Disk I/O quota:

write bps device = read bps device = {1, 2, 4, 8, 16, 32, 48} (MBps).

• Buffer pool size:

innodb buffer pool size = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} (MB).

• CPU quota:

cfs quota us=1000000

cfs period us={100000 (10%), 250000 (25%), 500000 (50%), 1000000 (100%)}.

The total size of the system configurations space is therefore 7 x 11 x 4 = 308 different

configurations.

For the modeling experiments, we modified the TPC-C benchmark code to capture data di-

rectly in the form of the overall transactions per minute metric (tpmC2) rather than parsing the

default output. We ran the benchmark 30 times for each combination of the system configura-

tion parameters values to collect statistically reliable information and stored all the aggregated

2In TPC-C, throughput is defined as number of New-Order transactions per minute while the system is exe-
cuting four other transactions types (Payment, Order-Status, Delivery, Stock-Level) [107].
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results to disk. In all the modeling experiments, for each configuration, we used the average

value of the tpmC throughput as the sample of the performance function. The obtained dataset

for each platform is four-dimensional: three varying domain parameters and a single scalar

codomain (Table A.1, Table A.2, and Table A.3 for Platforms 1, 2, and 3, respectively).

We then proceeded to repeat the data collection process on Platform 1, configuring the

TPC-C benchmark to populate and exercise a database representing, respectively, 20, 40 and 64

warehouses, for a total database size on disk of approximately 2.4GB to 6.4GB. The dataset is

itself an independent contribution of this dissertation and is available for further research [109].

The total time required to obtain the dataset was approximately 4600 CPU-hours.

Visual examples of the gathered data are depicted in Figure 4.2 and Figure 4.3. Throughout

this chapter, the scale of each graph has been selected to highlight the differences in behavior

as the system parameters are varied, independent of scale. Versions of all the graphs with

consistent scale can be found in Appendix A.
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Figure 4.2: Graphs of TPC-C transactions per minute (tpmC) on Platform 1 when the IO
quota varies between 1 and 48 MBps and the Buffer pool varies between 1 and 1024 MB.
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Figure 4.3: Graphs of Transactions per minute (tpmC) on Platform 1, when the CPU quota
varies between 10% and 100% and the Buffer pool varies between 1 and 1024 MB.
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4.3 Techniques Used as Baselines for Comparison

For all the experiments, we evaluate the effectiveness of our Model Mapping technique against

a selection of direct and incremental modeling methods, which are often encountered in litera-

ture.

4.3.1 Direct Modeling Methods

Four methods have been selected for direct modeling, and the same four are also used for

Model Mapping to represent the transfer functions.

Linear Regression

Linear Regression [13] is a method that fits a linear equation to sampled data in order to obtain

a model of the relation between two variables. We used the scikit.learn [85] toolkit implemen-

tation.

Polynomial Regression

Polynomial Regression [13] is a method that fits a polynomial curve of degree n to sampled

data, to model a function. We selected a polynomial of degree 4 after reviewing the character-

istics of the data being modeled. As for the Linear Regression model, we used the scikit.learn

toolkit implementation.

Support Vector Regression with Linear Kernel

Support Vector Regression with linear kernel (Linear SVR) [13, 124] is a method for classi-

fication or regression based on the construction of a set of separating hyper-planes embedded

in high dimension Hilbert spaces. Linear SVR has been successfully applied to model a wide

variety of phenomena [89, 90]. Scikit.learn was used for its Linear SVR implementation as

well.
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Gaussian Process Regression

Gaussian Process Regression (GPR) [13, 125] is a method that leverages the statistical proper-

ties of Gaussian Processes for the purpose of regression and classification. GPR models have

been found to be very effective at modeling high-dimensional phenomena [125]. The selec-

tion of the covariance kernel was performed using combinatorial search, and Matern52 [126]

emerged as the most effective across all our experiments. We used the implementation of

Gaussian Process modeling in the GPy [44] framework.

GPR is a kernel method which leverages the Bayesian treatment of uncertainty. The method

iteratively refines a model of a function by sequentially selecting the sampling locations that

maximize expected improvement of the model’s accuracy. This approach allows for faster

convergence with small sampling budgets. However, in our experiments we cannot assume the

user has the ability to systematically choose the sampling locations. Therefore, all modeling

methods are provided samples selected using a random distribution in the configuration space.

4.3.2 Incremental Modeling Methods

The choice of transfer learning and incremental modeling methods is as follows.

Chorus Incremental Regression

Chen et al. introduced Chorus [24, 25], a state-of-the-art incremental performance modeling

framework. Chorus was designed for performance evaluations and resource allocation in data

center application deployments, and features model storage, retrieval, and reuse. A detailed

description and analysis of Chorus are provided in Section 7.4.1. We use Chorus as a baseline

incremental performance model, as it was reported to show substantial savings in training

time compared to traditional modeling approaches. In particular, Chorus offers facilities for

incremental training of existing models with new samples, similar to the focus of our work.

However, Chorus does not have a facility for Model Mapping.
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Multi-Task Gaussian Process Prediction

Bonilla et al. introduced Multi-Task Gaussian Process Prediction (MTGP) [14], a transfer

learning technique that leverages a presumed correlation among a group of Gaussian Process

models being trained simultaneously for the purpose of achieving a higher modeling accuracy

compared to training the models individually.

In their work, the authors showed very strong results in two key scenarios:

• Simultaneously training multiple positively or inversely correlated models.

• Training an initial model for a task, and subsequently training a new model for a corre-

lated task with a few samples.

The excellent knowledge transfer characteristics displayed by MTGP in the second scenario

motivated our choice to use it as a representative of transfer learning models. Jamshidi et

al. [50] also applied this method successfully for performance modeling of software applica-

tions.

The covariance kernel we selected was Matern52 [126], using combinatorial search. Simi-

lar to Gaussian Process Regression modeling, we used the GPy [44] framework implementation

of Multi-Task Gaussian Process modeling.

The goal of our work is not to recommend the most appropriate learning method for specific

scenarios, but rather to demonstrate that for many incremental systems applications, a map is

likely to be better when applied to model the transformation between two related models. It

should not be assumed that using transfer learning is always advantageous, and procedures

that are commonly used to perform model selection (e.g. cross-validation) are also valid when

using Model Mapping, and should be used to choose the most appropriate modeling approach.

Information Availability and Hyperparameter Tuning

Model hyperparameters, where applicable, have been determined based only on the informa-

tion presumably available to a system administrator before performing the training of the mod-
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els. For direct modeling methods that have hyperparameters, their values were selected under

the assumption that the system administrator has available legacy data that can be used to

perform model selection. Since the administrator has no information about the effects that

variations to the system configuration have on the system performance before it is observed,

we could not perform any hyperparameter tuning for the models used to represent the maps.

We therefore chose to retain the same hyperparameter values selected for the direct models.

From this perspective, direct modeling and Chorus have an advantage over Model Mapping.

In some scenarios, model selection and hyperparameter tuning may be performed on the legacy

data and reused effectively for direct modeling, whereas Model Mapping requires performing

these two procedures at run-time, as samples from the new configuration become available. In

all our experiments, we have not performed any hyperparameter tuning of the map models.

4.4 Scenario 1: Predicting Performance with Increased CPU

Resources

In this scenario, a system administrator is interested in improving a virtualized application’s

performance by increasing its CPU resources. The administrator has already obtained a model

of the application’s performance under variations of other resource quotas, but has no informa-

tion on the effects of varying the CPU quota allocation.

This example shows how, with few new samples, a performance model of the effects that

I/O bandwidth and buffer pool have on the application’s performance can be extended to a new

model that includes CPU resource quota as a new configuration parameter.

Figure 4.2 shows the throughput of the TPC-C benchmark [106] running within a virtu-

alized environment described above, given various quotas of two resources: I/O bandwidth

and buffer pool size. In the virtualized environment, these resource quotas correspond to the

configuration parameters of the virtual machines (VMs) within which the application runs.

Figure 4.4 represents three maps between pairs of CPU resource quota configurations.
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Figure 4.4: Scenario 1: Graph of maps of TPC-C throughput (tpmC) with varying CPU quota
on Platform 1.

4.4.1 Formulation

As reported in Section 4.2.4, our TPC-C dataset consists of measurements of the TPC-C bench-

mark throughput (in queries per minute), by setting the system configuration parameters to all

combinations of the values in Table 4.2.

Configuration parameter Parameter values

Disk I/O quota 1, 2, 4, 8, 16, 32, 48 (MBps)
Buffer pool size 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 (MB)
CPU quota 100000 (10%), 250000 (25%), 500000 (50%), 1000000 (100%)

Table 4.2: TPC-C configuration parameters settings.

The legacy model ρ0 in this scenario was built using a subset of our TPC-C dataset. The

configuration space C0 is a vector of three-dimensional tuples containing all combinations of

the parameters Disk I/O quota and Buffer pool size, with the fixed third parameter CPU quota
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= {25%}, sampled from Platform 1.

C0 ∈ R3 =


Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {25%}

We obtain from our dataset a vectorM0 in which each entry contains the result of measuring

the TPC-C benchmark throughput using the system configuration parameters in the correspond-

ing entry of C0.

M0 ∈ R = TPC-C throughput (transactions per minute)

Legacy model ρ0 : C0 →M0

The new model ρ1 we intend to obtain includes one additional dimension in the configuration

space, to cover a new value for the CPU quota system parameter. It is assumed that the

configuration parameter being evaluated was not subject to variations at the time the legacy

model was created.

C1 ∈ R3 =


Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {50%}

Performance spaceM1 ∈ R = TPC-C throughput (transactions per minute)

Unknown model ρ1 : C1 →M1

Recall from Section 3.1 that in order to use our Model Mapping technique, we need to build

a model of the map σ such that:
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ρ1 = σ ◦ ρ0

In Section 3.3 we classified maps according to the choice of features selected from the

performance function domain and codomain, in the form (`, k). For this scenario, we used

the simplest form of map, which includes a single feature from the performance function’s

codomain:

M0 = TPC-C transactions per minute (tpmC)

K = {M0}

therefore a map of class (0, |K|) = (0, 1).

In order to obtain σ, we train a model of the one-dimensional transfer function σ of class

(0, 1):

σ :M0 →M1

σ : ρ0(C0)→ ρ1(C1)

s.t. ρ1(x) = σ(ρ0(projC0x)) (4.1)

As an example, consider training a linear model to represent the map. Figure 4.5a shows

the plot of ρ0 against ρ1. In order to train our linear model, we assume we have a few samples

ofM1 that we obtained by measuring the system running with a set of configurations selected

from the configuration space C1, represented by Figure 4.5b. We then sample the legacy sys-

tem performance by interrogating ρ0 using the same set of configurations projected into C0,

obtaining a set of tuples,

(x, y) x ∈M0, y ∈M1,

and use it to train a model of the map σ :M0 →M1 using a learning method, such as linear

regression, as depicted by Figure 4.5c. We can then interrogate our new model for ρ1 at any
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location x ∈ C1 by using Equation 4.1.
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(a) Map of CPU quota 25% to 50%
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(b) Selected samples
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(c) Linear model of the map

Figure 4.5: Fitting a linear model to represent the Scenario 1 map. Selected samples are marked
with red x’s

4.4.2 Experimental Procedure

Our experiments have the goal of providing a comparison between multiple modeling tech-

niques, when applied to a number of incremental system variations. In particular, we want to

ascertain the accuracy of our Model Mapping technique in relation to other direct, incremental

and transfer learning approaches. Cross-validation is a commonly used technique to evalu-

ate, compare and contrast the accuracy of selected modeling techniques and their predictive

capabilities. To satisfy our incremental modeling scenarios, where only a fixed set of obser-

vations (sampling budget) is available to the models, we adopt Monte Carlo cross-validation

(MCCV) [78][87][128]. Molinaro [68] and Simon [88] suggest that MCCV is a reasonable
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compromise between the bias introduced by simple techniques such as the holdout method

[65], the lack of explicit training and test set size selection of v-fold cross-validation [39], and

computational expense of exhaustive methods such as leave-one-out cross-validation [56].

4.4.3 Discussion of Error Measurements

In order to measure the accuracy of an individual model, we selected two estimators that are

compromises between robustness and popularity in related literature.

We use Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE):

MAPE =
1

n

n∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣ (4.2)

RMSE =

√∑n
i=1 (Ai − Fi)

2

n
(4.3)

where, Ai is the observed value of sample i and Fi is the predicted value obtained from the

model.

We selected MAPE as our primary choice of estimator, as while being biased, it is not

overly sensitive to outliers, it provides an absolute estimation, and it is commonly used in

literature [61]. For the purpose of comparing performance models, the bias in MAPE to-

wards putting a larger penalty on negative errors leads to conservative estimations, which is

preferrable in forecasting performance for systems subject to adhering to Service Level Agree-

ment constraints.

Our second choice of estimators (RMSE) has been shown to weigh outliers heavily [11, 32],

which is a sensitive issue in performance modeling. However, RMSE is such a widely used

metric for model selection in literature, we elected to use it as it allows us to more directly

compare our results to other published work.

Pseudo-code for the full modeling and accuracy comparison procedure implemented by the

ModelMap toolkit is presented in Algorithm 1, which includes data preparation followed by
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multiple iterations of training set and test set creation, model training and evaluation, according

to the MCCV cross-validation technique.

Algorithm 1: Pseudo-code for experimental procedure using MCCV
Accept ground truth data for the legacy and the unknown functions being modeled;
Perform normalization of all functions’ domain and codomain data;
Construct the legacy mathematical model from data;
i← numIterations;
while i ≥ 0 do

randomSeed← i;
Create training set by performing random selection of samples in the unknown
function ground truth data set, using the sampling budget;

Create test set by using all the remaining samples available in the unknown
function ground truth data set;

Train an instance of the ModelMap class using the training set;
Perform model inference on the test set using the ModelMap class and compare the
accuracy of the different modeling approaches with the ground truth data of the
unknown function;
~error ← iterationError;

i← i− 1;

error ← ~error;

4.4.4 Results

Table 4.3 and Table 4.4 show the results of our experiments using six different learning ap-

proaches. With only five samples (1.5% of total 308 available samples), the best results

provided by a direct model that does not exploit transfer learning or incremental modeling

(Gaussian Process, Linear SVR, Linear Regression and Polynomial regression) are substan-

tially worse than our Model Mapping technique using Linear Regression. In particular, we

observe that the highest relative benefit of Model Mapping is realized when the sampling bud-

get is small. Table 4.3 also shows that our technique outperforms other incremental modeling

and transfer learning techniques (Multi-Task Gaussian Process and Chorus).

In particular, we can observe how the other incremental modeling techniques require 10

samples to reach the same level of accuracy afforded by Model Mapping with 5 samples. In
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 453.41±43.9 93.77±6.4
Polynomial regression 351.60±17.6 153.57±21.3
Linear SVR 385.55±10.7 87.34±4.5
Gaussian Process 327.16±18.2 80.37±2.0
Chorus* 86.95±0.7 N/A
Multi-Task Gaussian Process* 89.69±5.4 N/A

10 Linear regression 336.60±14.6 86.85±4.2
Polynomial regression 266.87±17.4 151.06±24.4
Linear SVR 381.99±13.6 82.93±2.2
Gaussian Process 181.91±19.3 79.19±1.7
Chorus* 84.28±1.4 N/A
Multi-Task Gaussian Process* 80.96±5.8 N/A

Table 4.3: RMSE mean and standard error of the proposed Model Mapping technique and
direct modeling technique with various modeling methods for CPU quota configurations (*
indicates a direct modeling method that uses incremental or transfer learning). Legacy model
CPU quota=25% and unknown model CPU quota=50%.

real-world scenarios, a seemingly negligible reduction of 5 samples can have substantial im-

plications. Recall how, in this scenario, obtaining each performance measurement requires 5

minutes and in order to retrieve statistically significant samples, 30 runs are performed. Re-

trieving 5 samples therefore requires 750 minutes (12.5 hours). The difference between 5 and

10 samples is then between letting the method run overnight and acting on the results in the

morning, instead of running the system for more than a full day before taking any action.

Examining the dataset, we can see that the reason behind these results is that the rela-

tionship between the two configurations’ codomains is approximately linear, as highlighted in

Figure 4.4b. While we predicted that a linear model would approximate the map most effi-

ciently, we also show the results of learning the map with all of the other types of models we

used for comparison.

Recall that when building our TPC-C dataset, we sampled four configurations of the CPU

quota allocation: 10%, 25%, 50% and 100%. While in this scenario we reported the results of

modeling the effects of changing the CPU quota parameter from 25% to 50%, we have also
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 289.55±44.6 40.54±3.1
Polynomial regression 206.96±20.9 34.55±1.8
Linear SVR 188.59±22.4 35.36±1.9
Gaussian Process 133.10±14.0 33.68±1.2
Chorus* 37.41±0.6 N/A
Multi-Task Gaussian Process* 40.73±5.2 N/A

10 Linear regression 202.51±24.9 34.95±1.9
Polynomial regression 153.54±19.6 31.36±1.3
Linear SVR 182.16±24.5 31.69±1.3
Gaussian Process 50.08±4.5 30.58±1.6
Chorus* 36.20±0.9 N/A
Multi-Task Gaussian Process* 29.87±2.2 N/A

Table 4.4: MAPE mean and standard error of the proposed Model Mapping technique and
direct modeling technique with various modeling methods for CPU quota configurations (*
indicates a direct modeling method that uses incremental or transfer learning). Legacy model
CPU quota=25% and unknown model CPU quota=50%.

performed additional experiments that represent a subset of all permutations of variations for

this parameter: 50% to 25%, 10% to 25%, 25% to 10%, 50% to 100% and 100% to 50%. In all

experiments the results showed a similar level of effectiveness for Model Mapping compared

to direct modeling. Extending an existing model with a new dimension to represent the CPU

resource quota is thus significantly aided by our Model Mapping technique. The results of all

these experiments are presented in Appendix B.

4.4.5 Repeated use of Model Mapping

We wanted to further investigate the effects of repeatedly using Model Mapping to obtain mul-

tiple consecutive models, starting from a single legacy model/dataset. We therefore performed

a variation of the reported scenario in this section. In particular, we are interested in obtain-

ing a model of the TPC-C performance with CPU quota=50% by performing two consecutive

mapping steps:

1. Use Model Mapping to obtain a model of CPU quota=25% from a legacy model of CPU
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quota=10%, using 5 samples.

2. Use the obtained model as the legacy model, apply Model Mapping again to obtain a

model of CPU quota=50% using 5 samples.

The goal of this experiment is to observe the effects of error accumulation in applying

our technique multiple times against the advantage of having information from intermediate

system states. We compare multiple strategies to obtain a model of CPU quota=50% with a

total budget of 10 samples, as follows.

a) Map 10→25→50: the strategy illustrated above consisting of two Model Mapping steps,

using 5 samples from CPU quota=25% to build the first map, and 5 samples from CPU

quota=50% to build the second map.

b) Map 10→50: Model Mapping with legacy model CPU quota=10%, using 10 samples

from CPU quota=50% to build the map.

c) Map 25→50: Model Mapping with legacy model CPU quota=25%, using 10 samples

from CPU quota=50% to build the map.

d) Direct 50: direct modeling of CPU quota=50%, using 10 samples from CPU quota=50%

to train the model.

We expect the error resulting from adopting strategy (c) to be lower than the one of (b),

given the incremental configuration change is less significant in the former. We also ex-

pect strategy (c) to outperform (a), as the approximation errors of CPU quota=25% given

by our technique compound the fewer samples available from the unknown system configura-

tion. Lastly, strategy (a) may outperform (b) when the compounding of approximation errors

does not prevail against the partial information available from the more similar intermediate

configuration.

Table 4.5 shows the results of the experiment, with the values in parentheses representing

the measured error for the first of the two mapping steps in the Map 10→25→50 strategy.
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The results confirm that mapping between similar system configurations is consistently ad-

vantageous, as all modeling methods exhibit a lower error when representing the transforma-

tion from CPU quota=25% to CPU quota=50% (Map 25→50 in the table), rather than CPU

quota=10% to CPU quota=50% (Map 10→50 in the table). As expected, we also observe

that the additional information available to strategy (c) (Map 25→50) and the absence of error

accumulation yields better results than the two-step mapping strategy (a) (Map 10→25→50).

The results also show that the two-step mapping strategy (a) (Map 10→25→50) performs

similarly to strategy (b) (Map 10→50). While the total sampling budget for all strategies is

equal (10), the two-step strategy uses only five samples from the unknown system configura-

tion, while the other five are related to an intermediate configuration. In circumstances when

partial information about intermediate system configurations is available, applying Model Map-

ping multiple times may therefore further reduce the latency of modeling unknown configura-

tions.

Additionally, the results show that the two-step mapping strategy (a) is a better choice than

direct modeling (d) in nearly all conditions, and that the error difference between them is often

considerable.

These observations lead us to believe that Model Mapping has the ability to compose, by

performing multiple mapping steps to build a model through successive transformations of a

legacy model. We expect the benefit to be less significant in systems that exhibit behaviors that

affect localized areas of the configuration space, rather than global performance variations.

Error accumulation from the composition of transformations may also limit the number of

mapping steps that can be performed starting from a single legacy dataset, before it outweighs

the benefits of capturing partial information. In these circumstances, it is preferable to collapse

and/or discard some or all mapping steps.
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Modeling Error
Method Strategy RMSE MAPE

Linear
Regression

Map 10→25→50 (66.99±3.15) 207.87±2.56 (40.53±2.41) 90.26±1.45
Map 10→50 207.44±8.70 103.63±6.71
Map 25→50 86.85±4.15 34.95±1.91

Direct 50 336.60±14.57 202.51±24.91

Polynomial
Regression

Map 10→25→50 (60.98±10.88) 187.87±2.17 (26.14±1.37) 68.48±0.77
Map 10→50 196.20±26.72 63.70±3.95
Map 25→50 151.06±24.39 31.36±1.26

Direct 50 266.87±17.44 153.54±19.60

Linear SVR

Map 10→25→50 (65.95±1.64) 200.78±1.92 (37.66±2.59) 81.68±1.10
Map 10→50 205.32±5.15 96.55±5.86
Map 25→50 82.93±2.18 31.69±1.26

Direct 50 381.99±13.62 182.16±24.52

Gaussian
Process

Map 10→25→50 (44.75±1.78) 169.27±1.86 (29.36±1.43) 72.29±0.85
Map 10→50 142.00±4.33 80.40±4.80
Map 25→50 79.19±1.74 30.58±1.61

Direct 50 181.91±19.27 50.08±4.49

Table 4.5: Comparison of different modeling strategies to obtain the unknown model CPU
quota=50%. Values in parentheses represent the measured error for the first of the two mapping
steps in the Map 10→25→50 strategy.

4.5 Scenario 2: Modeling a System Downgrade

In this scenario, a system administrator is interested in the feasibility of reducing the cost of

operating a database service by downgrading the system specifications to use older, less pow-

erful hardware, while maintaining a determined level of performance. The administrator has

already obtained a model of the database’s performance under numerous variations of all avail-

able resource quotas in the system, but needs to know how to adjust the quotas to compensate

for the hardware downgrade, such that the same level of performance can be achieved.

The scenario explains the procedure of incrementally modeling our application’s perfor-

mance when a whole-system architectural modification is performed, moving onto an entirely

new hardware platform.
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4.5.1 Formulation

The legacy model ρ0 in this scenario was built from a subset of our TPC-C dataset, using

all measurements performed on Platform 1 (Figure 4.2), which represents a recent, high-

performance system. The configuration space C0 is a vector of four-dimensional tuples con-

taining all combinations of the three system configuration parameters Disk I/O quota, Buffer

pool size and CPU quota, with the fixed fourth parameter Platform = {Platform 1}.

C0 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

Platform {Platform 1}

We obtain from our dataset a vector M0 in which each entry contains the result of mea-

suring the TPC-C benchmark throughput using the system configuration parameters in the

corresponding entry of C0.

M0 ∈ R = TPC-C throughput (transactions per minute)

Legacy model ρ0 : C0 →M0

The new model ρ1 we intend to obtain includes one additional dimension to cover the

change between hardware platforms from Platform 1 to Platform 3 (Figure 4.6), which repre-

sents an older, lower cost system. Platform 3 is a new configuration for the Platform system

parameter.
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C1 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

Platform {Platform 3}

M1 ∈ R = TPC-C transactions per minute (tpmC)

Unknown model ρ1 : C1 →M1

 0
 200

 400
 600

 800
 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Buffer Pool Size
(MB)

IO Quota (MBps)

tpmC
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

(a) CPU quota=10%

 0
 200

 400
 600

 800
 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 0

 100

 200

 300

 400

 500

 600

 700

Buffer Pool Size
(MB)

IO Quota (MBps)

tpmC
 0
 100
 200
 300
 400
 500
 600
 700

(b) CPU quota=25%

 0
 200

 400
 600

 800
 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Buffer Pool Size
(MB)

IO Quota (MBps)

tpmC
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

(c) CPU quota=50%

 0
 200

 400
 600

 800
 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Buffer Pool Size
(MB)

IO Quota (MBps)

tpmC
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

(d) CPU quota=100%

Figure 4.6: Performance graph of TPC-C transactions per minute (tpmC) on Platform 3 when
IO quota varies between 1 and 48 MBps and Buffer pool varies between 1 and 1024 MB.

For this scenario, we choose to use the simplest form of map, using a single feature from

the performance function’s codomain:
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M0 = TPC-C transactions per minute (tpmC)

K = {M0}

therefore a map of class (0, |K|) = (0, 1). We follow the formulation described in Section 4.4.1

and the experimental procedure described in Section 4.4.2.

4.5.2 Results

Table 4.6 and Table 4.7 show the results of our experiments using six different learning ap-

proaches. With only five samples, we can observe that the best results provided by a direct

model that does not exploit transfer learning or incremental modeling (Gaussian Process, Lin-

ear SVR, Linear Regression and Polynomial regression) are substantially worse than our Model

Mapping technique using any of Gaussian Process, Linear SVR or Linear Regression, to learn

the map. In particular, we observe again that the highest benefit of Model Mapping is realized

when the sampling budget is small. We observe that the Polynomial regression model applied

to the map performs worse with 10 samples than with 5, which we attribute to the 4th order

polynomial overfitting the available data.

Table 4.6 shows that our technique outperforms other incremental modeling and transfer

learning techniques (Multi-Task Gaussian Process and Chorus) when considering the RMSE

error metric. We also observe from Table 4.7 that, for the MAPE metric and using five sam-

ples our technique performs marginally worse than Chorus, but still outperforms Multi-Task

Gaussian Process.

Examining the dataset, we can see that the reason behind these results is that the relationship

between the two configurations’ codomains (Figure 4.7b) is approximately linear. We expect

a linear regression to perform well when modeling the map, although we can see that other

modeling methods are just as effective.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 647.87±67.3 56.63±3.8
Polynomial regression 380.10±14.4 225.74±73.9
Linear SVR 417.11±14.1 52.03±2.2
Gaussian Process 383.90±15.3 43.60±1.1
Chorus* 97.47±0.6 N/A
Multi-Task Gaussian Process* 48.61±2.3 N/A

10 Linear regression 472.55±40.6 51.02±2.2
Polynomial regression 296.55±12.5 449.64±115.0
Linear SVR 392.57±18.2 48.54±1.4
Gaussian Process 298.91±15.3 44.22±1.2
Chorus* 96.58±1.0 N/A
Multi-Task Gaussian Process* 50.75±1.9 N/A

Table 4.6: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model Platform=Platform 1 and unknown
model Platform=Platform 3.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 921.79±191.7 19.55±2.6
Polynomial regression 336.17±42.1 19.42±2.3
Linear SVR 382.90±59.5 15.85±2.3
Gaussian Process 254.13±23.1 16.41±2.1
Chorus* 13.21±0.0 N/A
Multi-Task Gaussian Process* 20.97±2.6 N/A

10 Linear regression 702.11±133.9 22.28±2.2
Polynomial regression 317.78±28.7 19.32±1.4
Linear SVR 337.74±52.7 15.28±1.7
Gaussian Process 172.51±12.9 12.39±1.0
Chorus* 13.16±0.0 N/A
Multi-Task Gaussian Process* 25.01±3.0 N/A

Table 4.7: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model Platform=Platform 1 and unknown
model Platform=Platform 3.
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Figure 4.7: Graph of different maps of Transactions per minute (tpmC) between different plat-
forms.

4.6 Scenario 3: Modeling a Substantial System Downgrade

Similar to the previous scenario, a system administrator is interested in the feasibility of reduc-

ing the cost of operating a database service by migrating the service from a high-performance

system to older, less powerful hardware, while maintaining a determined level of performance.

In this case the difference between the specifications is more substantial than in Scenario 2 in

terms of the amount of system RAM (512GB to 24GB) and the performance of the storage sub-

system (SSD to conventional spinning disks). The administrator has already obtained a model

of the database’s performance under numerous variations of all available resource quotas in the

system, but needs to know how to adjust the quota to compensate for the hardware downgrade.

The scenario represents the procedure of incrementally modeling our application’s perfor-

mance when a larger, whole-system architectural modification is performed, with few samples

obtained by running the application on the new platform.
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4.6.1 Formulation

The modeling problem is almost identical to the one described in Section 4.5.1. The only differ-

ence in this scenario is that the legacy hardware configuration space C0 represents Platform 2

(Figure 4.8) instead of Platform 1, as follows:

C0 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

Platform {Platform 2}

4.6.2 Results

Table 4.8 and Table 4.9 show the results of the experimentation. We can observe that the

best results provided by a direct model that does not exploit transfer learning or incremental

modeling are considerably worse than our Model Mapping technique using any of Gaussian

Process, Linear SVR or Linear Regression. In particular, once again the advantage of Model

Mapping is largest with the smallest sampling budget. Similar to the previous scenario, Model

Mapping outperforms the other incremental modeling techniques as well.

4.7 Scenario 4: Modeling the Effects of Incremental Appli-

cation Performance Variation

A database system’s performance generally decreases as a consequence of data accumulation.

In this scenario, a system administrator wants to understand the evolution of the performance

characteristics of a database service. The purpose is to alter the system resource allocation

quotas to compensate for the performance decreasing over time, while respecting a desired
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 647.87±67.3 168.79±7.3
Polynomial regression 380.10±14.4 1,131.74±338.3
Linear SVR 417.11±14.1 161.53±7.3
Gaussian Process 383.90±15.3 142.04±3.1
Chorus* 159.75±0.3 N/A
Multi-Task Gaussian Process* 168.97±11.0 N/A

10 Linear regression 472.55±40.6 166.32±8.0
Polynomial regression 296.55±12.5 1,558.34±442.2
Linear SVR 392.57±18.2 158.61±8.1
Gaussian Process 298.91±15.3 150.77±4.7
Chorus* 160.28±1.1 N/A
Multi-Task Gaussian Process* 171.67±8.6 N/A

Table 4.8: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model Platform= Platform 2 and unknown
model Platform= Platform 3.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 921.79±191.7 50.69±8.9
Polynomial regression 336.17±42.1 34.24±4.1
Linear SVR 382.90±59.5 32.49±4.8
Gaussian Process 254.13±23.1 25.85±3.0
Chorus* 31.61±0.2 N/A
Multi-Task Gaussian Process* 65.26±12.9 N/A

10 Linear regression 702.11±133.9 44.76±5.8
Polynomial regression 317.78±28.7 34.72±3.2
Linear SVR 337.74±52.7 27.62±3.5
Gaussian Process 172.51±12.9 26.70±3.2
Chorus* 32.10±0.4 N/A
Multi-Task Gaussian Process* 74.20±11.3 N/A

Table 4.9: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model Platform= Platform 2 and unknown
model Platform= Platform 3.
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Figure 4.8: Performance graph of TPC-C transactions per minute (tpmC) on Platform 2 when
IO quota varies between 1 and 48 MBps and Buffer pool varies between 1 and 1024 MB.

Service Level Agreement. The administrator has already obtained a model of the system’s

performance at a specific point in time under numerous variations of all available resource

quotas in the system, but needs to know how to adjust the quota over time to maintain the same

level of expected performance.

The scenario represents the procedure of incrementally modeling our application’s perfor-

mance as it gets affected by a latent, non-configurable variable, with few samples obtained by

running the application in the current state.

4.7.1 Formulation

The legacy model ρ0 in this scenario was built using a subset of our TPC-C dataset that repre-

sents the database engine operating with an on-disk data size of ∼1.2GB, by configuring the

TPC-C benchmark with 10 warehouses.

The configuration space C0 is a vector of four-dimensional tuples containing all combina-
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tions of the three system configuration parameters Disk I/O quota, Buffer pool size and CPU

quota, with the fixed fourth parameter TPC-C Warehouses={10}.

C0 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

TPC-C Warehouses {10}

We obtain from our dataset a vector in the performanceM0 in which each entry contains

the result of measuring the TPC-C benchmark throughput using the system configuration pa-

rameters in the corresponding entry of C0.

M0 ∈ R = TPC-C throughput (transactions per minute)

Legacy model ρ0 : C0 →M0

The new model ρ1 we intend to obtain represents the database engine operating with an

on-disk data size of ∼6GB (64 warehouses). This corresponds to an approximately five-fold

increase in the size of the database on disk.

C1 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

TPC-C Warehouses {64}

M1 ∈ R = TPC-C throughput (transactions per minute)

Unknown model ρ1 : C1 →M1
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For this scenario, we began the experimentation by choosing the simplest form of map,

which includes a single feature from the performance function’s codomain:

M0 = TPC-C transactions per minute (tpmC)

K = {M0}

therefore a map of class (0, |K|) = (0, 1). We follow the formulation described in Section 4.4.1

and the experimental procedure described in Section 4.4.2.

4.7.2 Results

Column Mapping(0,1) in Table 4.10 and Table 4.11 shows the results of our initial experi-

ment using six different learning approaches and a map of class (0, 1). As we can see, the

Model Mapping technique in this situation trails both direct modeling and other transfer learn-

ing methods.

Examining the dataset, we can see that a one-dimensional function is insufficient to model

the relationship between these configurations and their respective performance characteristics

(Figure 4.9). However, this experiment also shows that, even when using a map with the fewest

possible dimensions, our technique is still competitive with direct modeling.

We then added features from the legacy function domain, progressively increasing the di-

mensionality of the map. We experimented with maps of two, three and four dimensions,

respectively of class (1, 1), (2, 1) and (3, 1), as defined in Section 3.3.1. Feature selection for

the different maps was accomplished by ranking them according to their sensitivity over the

legacy model. Given the relatively small size of the configuration space, 2k factorial sensitivity

analysis [15] was used to determine sensitivity.

C0 = Disk I/O quota, Buffer pool size, CPU quota
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping(0,1) Mapping(1,1) Mapping(2,1) Mapping(3,1)

5 Linear regression 46.32±2.8 50.38±9.0 32.56±3.3 91.27±35.9 313.87±111.6
Polynomial regression 28.18±0.6 42.78±0.7 23.56±0.5 22.77±0.8 24.04±0.9
Linear SVR 30.38±0.5 43.58±1.2 23.03±0.8 25.35±1.3 26.83±1.3
Gaussian Process 27.68±0.9 38.69±2.0 22.13±0.8 20.89±1.6 21.48±1.4
Chorus* 43.12±0.0 N/A N/A N/A N/A
Multi-Task Gaussian Process* 36.32±2.9 N/A N/A N/A N/A

10 Linear regression 27.90±0.5 40.57±4.0 27.21±2.8 26.91±3.0 29.15±3.4
Polynomial regression 23.22±0.4 39.18±0.7 21.94±0.4 19.28±0.5 20.05±0.5
Linear SVR 28.57±0.4 38.00±1.2 22.50±0.8 21.42±0.8 21.48±0.9
Gaussian Process 20.54±0.6 35.57±1.9 19.74±1.0 12.31±0.9 14.60±0.7
Chorus* 43.07±0.1 N/A N/A N/A N/A
Multi-Task Gaussian Process* 23.82±1.4 N/A N/A N/A N/A

Table 4.10: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: TPC-C Warehouses=10, unknown
model: TPC-C Warehouses=64.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping(0,1) Mapping(1,1) Mapping(2,1) Mapping(3,1)

5 Linear regression 196.81±13.6 122.01±10.8 64.47±5.4 249.26±116.0 1,071.83±377.7
Polynomial regression 110.22±4.4 213.89±13.1 93.32±7.1 86.99±7.7 90.35±8.0
Linear SVR 108.26±4.0 185.83±18.8 55.00±5.9 74.15±7.5 86.39±7.6
Gaussian Process 90.62±4.8 120.62±11.6 52.29±5.8 57.77±6.7 66.25±8.5
Chorus* 59.52±0.0 N/A N/A N/A N/A
Multi-Task Gaussian Process* 60.18±2.4 N/A N/A N/A N/A

10 Linear regression 107.03±3.2 104.29±6.7 49.09±3.3 65.57±3.6 76.95±6.1
Polynomial regression 71.23±1.9 175.44±9.0 66.23±3.8 56.44±3.3 58.48±3.6
Linear SVR 87.09±2.7 127.27±13.2 44.77±2.9 50.61±3.6 54.48±4.3
Gaussian Process 55.36±2.6 82.21±5.3 34.93±1.5 27.84±1.9 36.84±2.7
Chorus* 59.37±0.0 N/A N/A N/A N/A
Multi-Task Gaussian Process* 39.82±1.3 N/A N/A N/A N/A

Table 4.11: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: TPC-C Warehouses=10, unknown
model: TPC-C Warehouses=64.
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M0 = TPC-C transactions per minute (tpmC)

Mapping(1,1) =


L = {Disk I/O quota}

K = {M0}

Mapping(2,1) =


L = {Disk I/O quota, CPU quota}

K = {M0}

Mapping(3,1) =


L = {Disk I/O quota, Buffer pool size, CPU quota}

K = {M0}

Results of these experiments can be seen in Table 4.10 and Table 4.11, in columns Map-

ping(1,1), Mapping(2,1) and Mapping(3,1).

For the second experiment a two-dimensional map was used. The results show the large

benefit of adding one feature/map dimension, not only relative to a one-dimensional map, but

to the direct modeling and other transfer learning methods. Using 5 samples, the results of

adding further dimensions show a more modest benefit, suggesting that the small training set

is sufficient to train only a two-dimensional model.

With 10 samples, the benefit of using three features is more substantial, which suggests

that the map is best represented by a three-dimensional model, and 10 samples are sufficient to

represent its features. Finally, we note that four dimensions delivers worse accuracy, which we

attribute to an insufficiently large training set for a four-dimensional model.

We conclude from this experiment that, although maps of higher dimensionality are some-

times necessary to represent complex incremental behavior, increasing the map dimensionality

also increases the map complexity, which does not always lead to a more accurate model.



CHAPTER 4. DATABASE SYSTEM PERFORMANCE MODELING 74

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  500  1000  1500  2000  2500  3000  3500

tp
m

C
, 6

4 
w

ar
eh

o
u

se
s 

tpmC, 10 warehouses 

Figure 4.9: Map of Transactions per minute (tpmC) on Platform 1, 10 warehouses to 64
warehouses.

4.8 Scenario 5: Resource Optimization for VM Packing

In all our previous scenarios we aimed to model the performance of a single instance of a

database Virtual Machine (VM), as a function of the system resources allocated to it. In Sce-

nario 4 we measured the accuracy of incrementally modeling the database VM’s performance

as its data size varies over time. We now consider a hosted cloud environment, where multiple

VMs share a common pool of hardware resources. A system administrator wants to solve a VM

packing problem: maximize the aggregate performance of all VMs running database services

sharing the same system resources. Achieving this goal requires finding the optimal resource

allocation among the VMs.

We define ~P to represent the resource quotas (e.g. CPU, I/O, memory, etc.) reserved to an

individual VM running on the system, and ρ to represent the corresponding VM’s performance

function. The total system performance for a system running n VMs is therefore:

T =
n∑

i=1

ρi(~Pi) (4.4)
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We also define ~Ptotal as the total available resources in the system. The VM packing prob-

lem for n VMs can be defined as finding appropriate resource quotas for all VMs, such that the

total system performance is as high as possible:

max
~P1, ~P2,..., ~Pn

n∑
i=1

ρi(~Pi)

s.t.
n∑

i=1

~Pi ≤ ~Ptotal

(4.5)

In this scenario, the administrator intends to find a configuration that maximizes the ag-

gregate throughput of four database VMs, running on Platform 1, a system equipped with 16

cores (two 8-core Intel Xeon Haswell-series processors). As previously reported, our dataset

represents a single VM’s throughput as a function of its resource quotas, sampled in the con-

figuration space reported in Table 4.2, for a total of 308 configurations. Finding the optimal

resource allocation for a single VM only requires sampling each of the 308 possible resource

configurations.

Observing the dataset (Figure 4.3 and Figure 4.2) we notice that, as it is often the case

with complex computer systems [93], multiple combinations of resource allocations yield sim-

ilar performance. For this reason, a resource configuration that evenly subdivides the resource

quotas among the four VMs is not likely to be optimal. Enumerating all 3084 possible con-

figurations is also not feasible. Mathematical optimization is therefore necessary to search

for the most appropriate subdivision of the hardware system’s resources among the four VMs.

While optimal resource allocation in computer systems is outside the scope of this dissertation,

several mathematical optimization methods have been employed in the literature for this task

[71, 91].

This experiment is designed to evaluate the suitability of the models obtained by Model

Mapping to the task of resource allocation optimization. To that effect we need to understand

how different models of the performance function, built with a limited training set, affect the

solutions found by an optimization process.
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4.8.1 Formulation

We assume that the administrator has already obtained an accurate model of the system’s per-

formance at a specific point in time, when the size of the databases in each of the four VMs

was approximately 1.2GB (the legacy system configuration). The goal is to find the optimal

allocation at a later point in time, when the databases inside the VMs have grown to 2.5GB

(the unknown system configuration), with a performance model obtained incrementally. While

an accurate model does not guarantee convergence on an optimal solution, the ability to obtain

an accurate model of the system’s performance with very few samples, reusing any available

legacy information, is still important.

The performance function of a single VM in this new, unknown system configuration is

represented by ρ1. Following the example above, let our four Virtual Machine configuration

parameter sets be represented as vectors, as follows:

~P1, ~P2, ~P3, ~P4 ∈


{1, 2, 4, 8, 16, 32, 48}

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

{10%, 25%, 50%, 100%}


The VMs of all four database instances are hosted on the same hypervisor and are assigned

an aggregate quota for IO bandwidth (total=48MBps), memory for database buffer pool (to-

tal=1024MB) and CPU (total=100%). We therefore define:

~Ptotal =


Disk I/O quota = 48

Buffer pool size = 1024

CPU quota = 100%


For the purpose of this experiment we assume perfect performance isolation between the con-

currently executing applications. Given our single VM performance function ρ1 we can there-

fore calculate the total system throughput by establishing individual configurations and sam-
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pling ρ1 once per VM, and adding the contributions. The total system throughput is then

defined as:

T =
4∑

i=1

ρ1(~Pi) (4.6)

We establish a basic reference performance measurement, corresponding to a naively selected

system configuration, which evenly divides the available resources among the four VMs. In

such configuration, each VM is configured with the following parameters: CPU quota=25%,

IO quota=12Mbps, and Buffer pool size=256MB, as follows:

~P e
1 = ~P e

2 = ~P e
3 = ~P e

4 =


12

256,

25%


We refer to this resource configuration as Equal, to highlight the even partition of the available

resources. With our exhaustively sampled dataset, we can obtain an exact model of ρ1, which

we call ρe. We can sample ρe to retrieve the performance of each VM, as follows:

ρe( ~P e
1 ) = ρe( ~P e

2 ) = ρe( ~P e
3 ) = ρe( ~P e

4 ) = 160.1.

The total system performance for the Equal resource configuration is therefore:

Tequal = 160.1 + 160.1 + 160.1 + 160.1 = 640.4. (4.7)

We can now proceed to establish the main basis of comparison for our experiment, by retrieving

the optimal performance of the system in the unknown configuration. We achieve this goal by
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solving a resource optimization problem using ρe, our exact model of ρ1, as follows:

max
~P1, ~P2, ~P3, ~P4

ρe( ~P1) + ρe( ~P2) + ρe( ~P3) + ρe( ~P4)

s.t. ~P1 + ~P2 + ~P3 + ~P4 ≤


48

1024

100%



~P1, ~P2, ~P3, ~P4 ∈


{1, 2, 4, 8, 16, 32, 48}

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

{10%, 25%, 50%, 100%}



(4.8)

We then use the following equation to retrieve the expected system performance corresponding

to the resulting configuration.

T = ρe( ~P1) + ρe( ~P2) + ρe( ~P3) + ρe( ~P4) (4.9)

We used Simulated Annealing [119] with 30 random restarts, to increase the probability of

retrieving the global optimum. We observed that in all restarts the algorithm converged to a

solution with the same cost.

The configuration recovered by the optimization process is represented in Table 4.12. We

use this configuration to calculate the aggregated throughput as follows:

ρe( ~P1) = 160.5.

ρe( ~P2) = 490.2.

ρe( ~P3) = 41.0.

ρe( ~P4) = 41.0.

Tideal = 160.5 + 490.2 + 41.0 + 41.0 = 732.7.

(4.10)

We refer to this configuration as Ideal, as it was obtained using an exact model of ρ1.
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VM-1 VM-2 VM-3 VM-4

I/O 16 16 8 8
Buffer 256 512 128 128
CPU 25% 50% 10% 10%
Throughput 160.5 490.2 41.0 41.0

Total throughput 732.7

Table 4.12: Ideal resources allocation of four database VMs. This result was obtained by
leveraging an exact model of the (ρ1) performance function in the optimization process in
Equation 4.8. TPC-C configured with 20 warehouses.

We now formulate the problem of retrieving a good resource allocation, using models of the

system’s performance function in the unknown configuration (ρ1), obtained with six different

learning approaches.

The legacy model ρ0 in this scenario was built using a subset of our TPC-C dataset that

represents a single VM of the database system operating on a database size of ∼1.2GB, by

configuring the TPC-C benchmark with 10 warehouses. The configuration space C0 is a vector

of four-dimensional tuples containing all combinations of the three system configuration pa-

rameters Disk I/O quota, Buffer pool size and CPU quota, with the fixed fourth parameter

TPC-C Warehouses = {10}.

C0 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

TPC-C Warehouses {10}

We obtain from our dataset a vector in the performanceM0 in which each entry contains

the result of measuring the TPC-C benchmark throughput using the system configuration pa-

rameters in the corresponding entry of C0.

M0 ∈ R = TPC-C throughput (transactions per minute)
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Legacy model ρ0 : C0 →M0

The new model of ρ1 we intend to obtain represents the performance of a single VM when

its database size is ∼2.4GB (20 warehouses). We call this new model ρm. This corresponds to

an approximately 100% increase in the size of the database on disk.

C1 ∈ R4 =



Disk I/O quota {1, 2, 4, 8, 16, 32, 48}(MBps)

Buffer pool size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}(MB)

CPU quota {10%, 25%, 50%, 100%}

TPC-C Warehouses {20}

M1 ∈ R = TPC-C throughput (transactions per minute)

Unknown model ρm : C1 →M1

In light of the results in Scenario 4, we choose a map which includes two features from the

model’s domain and a single feature from the performance function’s codomain:

C0 = Disk I/O quota, Buffer pool size, CPU quota

M0 = TPC-C transactions per minute (tpmC)

L = {Disk I/O quota, CPU quota}

K = {M0}

therefore a map of class (|L|, |K|) = (2, 1). We follow the same formulation described in

Section 4.4.1.

Similar to the procedure we used earlier, we use each model ρm we obtain using six differ-

ent modeling techniques to solve the following resource allocation optimization problem:
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max
~P1, ~P2, ~P3, ~P4

ρm( ~P1) + ρm( ~P2) + ρm( ~P3) + ρm( ~P4)

s.t. ~P1 + ~P2 + ~P3 + ~P4 ≤


48

1024

100%



~P1, ~P2, ~P3, ~P4 ∈


{1, 2, 4, 8, 16, 32, 48}

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

{10%, 25%, 50%, 100%}



(4.11)

and then measure the real system throughput of the obtained configurations by sampling ρe,

the exact model of ρ1, as follows:

Tunknown = ρe( ~P1) + ρe( ~P2) + ρe( ~P3) + ρe( ~P4) (4.12)

The error is measured as a relative percentage difference between the performance of the

Ideal configuration and the ones retrieved by the optimization processes that use the different

models of ρ1, as follows:

Error =
Tideal − Tunknown

Tideal
∗ 100 (4.13)

4.8.2 Experimental Procedure

To compare the effects of different modeling techniques, we train multiple models of ρ1, and

run the resource optimization procedure described above. Each run of the optimization pro-

cedure yields a resource configuration, and its associated estimation of total system through-

put. We then calculate the error by comparing the performance of each retrieved configuration

against the Ideal configuration obtained earlier. We repeat the entire procedure 30 times to

increase the variation in the selection of the training set. Pseudo-code for the full procedure is
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presented in Algorithm 2.

Algorithm 2: Evaluation of Resource Optimization using approximate performance
function

Accept ground truth data for the legacy and the unknown functions being modeled;
Perform normalization of all functions’ domain and codomain data;
Construct the legacy mathematical model from data;
Sample the TPC-C dataset to obtain the performance of the Ideal configuration
→ idealPerformance;
i← 30;
while i ≥ 0 do

randomSeed← s;
Create training set by performing random selection of samples in the unknown
function ground truth data set, using the sampling budget;

Train an instance of the ModelMap class using the training set;
for model in Models do

Use Simulated Annealing to find the resource configuration using the model as
the optimization objective function;

Sample the ground truth TPC-C dataset to obtain the real performance of the
resulting configuration→ modelPerformance;

(idealPerformance−modelPerformance)/idealPerformance→
iterationError;
~error ← iterationError;

i← i− 1;

error ← ~error;

4.8.3 Results

Figure 4.10 shows the performance of individual VMs and total performance obtained as the

output of the resource optimization process, using direct modeling and our mapping technique,

with a sampling budget of 5.

Table 4.13 shows the configurations retrieved by the resource allocation optimization pro-

cess, using respectively the best performing direct model, Chorus, Multi-Task Gaussian Pro-

cess and Model Mapping to model ρ1, and trained on the TPC-C dataset configured with 20

warehouses, with a sampling budget of 5.

Table 4.14 shows the error of the configurations found using direct models (Direct) and
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Figure 4.10: Resource optimization for four TPC-C instances. Sampling budget=5. Legacy
model TPC-C Warehouses=10, unknown model TPC-C Warehouses=20. Map class: (2, 1)

our technique (Mapping), relative to the Ideal configuration. The results show how with only

5 samples, our technique accurately models the unknown system configuration, while direct

models introduce inaccuracies that induce the optimization process to find suboptimal solu-

tions. The other transfer learning techniques (Chorus and Multi-Task Gaussian Process) also

outperform direct modeling, although Model Mapping achieves an error of only 0.1%.

While the configurations retrieved using Chorus and Model Mapping are considerably dif-

ferent, their performance is similar. The explanation for this result is that the two configurations

are nearly symmetric.

To verify that the optimization procedure for the two highest-performing techniques (Cho-

rus and Model Mapping) converged to maxima, we calculated the aggregate throughput esti-

mated by the two models of ρ1, using the best configuration obtained with the other model.

Following Equation 4.6, we define Tc and Tm as the aggregate throughput function modeled

with Chorus and Model Mapping, respectively. We also define Pa and Pm as the best configu-

rations obtained by Chorus (Table 4.13b) and Model Mapping (Table 4.13d).
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VM-1 VM-2 VM-3 VM-4

CPU 25% 25% 25% 25%
I/O 8 16 16 8
Buffer 128 256 512 128
Thr. 125.1 160.4 196.4 125.1

Total 607.2

(a)

VM-1 VM-2 VM-3 VM-4

CPU 10% 50% 10% 25%
I/O 4 32 4 8
Buffer 128 512 128 256
Thr. 36.4 509.5 36.4 147.1

Total 729.4

(b)

VM-1 VM-2 VM-3 VM-4

CPU 50% 10% 25% 10%
I/O 32 4 8 4
Buffer 512 1 256 1
Thr. 509.5 24.5 147.1 24.5

Total 705.7

(c)

VM-1 VM-2 VM-3 VM-4

CPU 25% 50% 10% 10%
I/O 16 16 8 8
Buffer 256 512 128 128
Thr. 160.5 490.2 41.0 41.0

Total 732.7

(d)

Table 4.13: Resource allocation optimization results. (a):Polynomial direct model.
(b):Chorus. (c):Multi-Task Gaussian Process model. (d):Model Mapping model.

We verified that:

Tc(Pc) > Tc(Pa)

Ta(Pa) > Ta(Pc)

It is clear from the results that direct modeling methods that do not exploit incremental

modeling do not provide accurate models. Using the Model Mapping technique, all learning

methods are capable of producing a model that allows the resource allocation optimization

procedure to find a resource configuration with performance within 1% of Ideal. We conclude

that, while direct modeling may in some circumstances show comparable error scores, trans-

fer learning substantially helps in efficiently recovering the general behavior of a system by

leveraging correlations between configurations. Our Model Mapping technique in particular is

capable of retrieving a near-perfect behavioral model that allows an optimization procedure to

discover the most appropriate resource allocation for our scenario.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 41.81%±5.96% 0.15%±0.04%
Polynomial regression 21.42%±3.97% 0.42%±0.03%
Linear SVR 29.68%±4.46% 0.18%±0.05%
Gaussian Process 25.82%±3.96% 1.21%±0.67%
Chorus* 0.44%±0.00% N/A
Multi-Task Gaussian Process* 1.93%±0.61% N/A

10 Linear regression 21.91%±3.31% 0.09%±0.04%
Polynomial regression 18.08%±2.82% 0.35%±0.04%
Linear SVR 28.94%±4.18% 0.22%±0.05%
Gaussian Process 19.18%±3.23% 0.52%±0.15%
Chorus* 0.44%±0.00% N/A
Multi-Task Gaussian Process* 4.07%±1.28% N/A

Table 4.14: Percentage error for maximum combined throughput in the VM packing sce-
nario, relative to Ideal resource configuration, using the proposed Model Mapping technique
and direct modeling technique with various modeling methods (* indicates a direct modeling
method that uses incremental or transfer learning). Legacy model: Warehouses=10, unknown
model: Warehouses=20.

4.9 Conclusions

Table 4.15 contains a summary of the results of our experiments, as the relative improvement

that our technique has over both direct modeling and incremental/transfer learning. The results

show that our Model Mapping technique is effective in accurately modeling incremental varia-

tions that database systems experience as part of their regular operations and maintenance. The

five scenarios represent situations where system administrators intend to quickly and efficiently

understand the effects of variations in the system’s resource allocation and/or in the system’s

hardware configuration.

It is clear that in each of these scenarios, our technique outperforms traditionally used direct

modeling methods, and presents accuracy advantages over other incremental learning methods,

which ultimately translate in system performance improvement.

In order to ascertain the general applicability of Model Mapping, irrespective of the choice

of modeling method, we measure the success rate of applying our technique. We define a



CHAPTER 4. DATABASE SYSTEM PERFORMANCE MODELING 86

Incremental variation ∆Err ∆Err baseline
Direct T.Learning

Scenario 1 CPU Quota (25%→50%) -75.43% -7.57%
Scenario 2 HW Platform (1→3) -88.53% -10.29%
Scenario 3 HW Platform (2→3) -62.63% -11.09%
Scenario 4 Database size (1.2GB→6GB) -24.53% -42.48%
Scenario 5 Resource optimization -99.29% -65.91%

Table 4.15: Summary of database system performance scenarios. %improvement of Model
Mapping vs. Direct Modeling and baseline Transfer Learning (Multi-Task Gaussian Process /
Chorus). Sampling budget = 5.

successful experiment one where a modeling method applied to represent the map produces a

more accurate result than the same method applied to model the unknown function. Table 4.16

and Table 4.17 show how Model Mapping consistently improves over direct modeling, with all

modeling methods performing better when used with our technique in most circumstances.

We now continue the evaluation of our technique in the following chapter, by introducing a

collection of filesystem performance modeling scenarios, another recurrent situation in cloud

environments operations.

Experiments Success Rate
Linear regression 9/10 90%

Polynomial regression 5/10 50%
Linear SVR 10/10 100%

Gaussian Process 10/10 100%

Table 4.16: Success rate of Model Mapping vs. direct modeling, with different modeling
methods (RMSE).

Experiments Success Rate
Linear regression 9/10 90%

Polynomial regression 10/10 100%
Linear SVR 10/10 100%

Gaussian Process 9/10 90%

Table 4.17: Success rate of Model Mapping vs. direct modeling, with different modeling
methods (MAPE).



Chapter 5

File Storage System Performance

Modeling

5.1 Introduction

The TPC-C dataset used in Chapter 4 was created concurrently with the research and develop-

ment of the Model Mapping technique and the ModelMap toolkit. In order to demonstrate the

general applicability of our work, in this chapter we turn to file storage system performance as

an additional application scenario for experimentation. To achieve this goal, we use a dataset

created independently, by a different research group.

One of the main requirements in operating managed systems, especially large-scale cloud

environments, is minimizing the cost of providing users with an acceptable level of service

performance [3, 4, 64]. Most hosted applications require accessing an underlying file stor-

age system, and many options are available to manage their price/performance characteristics.

From the appropriate choice of filesystem (e.g. ext3, ext4, zfs, etc.), to configuring a filesys-

tem’s parameters (e.g. the scheduling policy), to hardware configurations, the parameter space

is extensive. Similar to other complex systems, appropriately configuring file storage systems

can therefore be time consuming and expensive. To reduce the effort required to establish an

87
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Parameter Abbrev. Values

Disk Type DT SATA, SAS, SAS500, SSD
File System FS Ext3, Ext4
Block Size BS 1, 2, 4 (KB)
Inode Size, Sector Size IS default, 128, 256, 512, 1024, 2048, 4096, 8192 (Bytes)
Block Group BG default, 2, 4, 8, 16, 32, 64, 128, 256
I/O Scheduler I/O Noop, CFQ, Deadline
Journal Option* JO data=ordered
Atime Option* AO relatime

Table 5.1: File storage system benchmark configuration parameters settings (* denotes a fixed
configuration parameter, for which no exhaustive sampling was available)

appropriate system configuration, it is necessary to accurately model the effect that varying the

configuration parameters has on the performance metrics.

We build on the work of Cao et al. [20], who compared different black-box auto-tuning

methods for storage systems optimization. As part of their research, the authors instrumented

a set of hardware platforms, and measured the systems’ performance using four benchmarking

workloads. The extensive dataset obtained by profiling these systems under several thousands

of file system configurations was publicly released [19].

After examining the dataset, we identified and extracted a portion of it for our experiments:

an exhaustive combinatorial sampling of a subset of the available configuration parameters. In

particular, we selected the subset obtained profiling the Filebench-1.4.9.1 [101] benchmark

webserver workload, running on the M2 hardware platform ([20] - Table 3). The resulting

dataset is described in Table 5.1.

Our ModelMap toolkit does not currently support categorical variables and non-numerical

values, therefore we translated them into numerical variables and numbers, respectively, using

the following conversion table:

• Disk Type: SATA=0, SAS=1, 500SAS=2, SSD=3

• File System: Ext3=0, Ext4=1

• Inode Size: default=128
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• Block Group: default=12

• I/O Scheduler: CFQ=0, Deadline=1, Noop=2

We selected five scenarios to represent different incremental changes that a storage system

may experience. The scenarios exercise our performance modeling technique with increasing

the range and significance of change in the file system configuration. The scenarios progress

from the incremental change of one configuration parameter of the file system, the disk type,

to the incremental change of two configuration parameters, the disk type and the file system

scheduling policy, to the change of the entire file system.

The scenarios also exercise variation in the significance of the change in the configuration

parameters. For example, in Scenario 1 we change the hard disk type from SATA to SAS,

while in Scenario 2 we change the SATA hard disk to an SSD, a storage medium with dif-

ferent principles of operation. In Scenario 3 and 4 we apply two simultaneous variations of

increasing effect. In the former we simultaneously change hard disk type from SATA to SAS

and the filesystem I/O scheduling policy from CFQ to Deadline, while in Scenario 4, the disk

is replaced with an SSD, and the scheduling policy is set to noop. In Scenario 5 we change

the filesystem from ext3 to ext4, which includes performance enhancement and different block

allocation strategies.

5.2 Scenario 1: Modeling Effects of Changing Disk Type

In this scenario, a system administrator is interested in modeling the effects of upgrading the

hard disk in a web server system from a 250GB SATA disk to a more reliable and faster 500GB

SAS disk. Such a change is typical in storage systems maintenance and operation and reflects

the availability of new products over time and parts obsolescence.

The administrator has obtained a complete model of the web server performance in the

original configuration, with the SATA disk. The goal is to obtain an accurate model of the

system after the upgrade as quickly as possible, to allow the system administrator to promptly
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reconfigure the filesystem and leverage the difference in performance the upgraded disk pro-

vides.

This example is intended to demonstrate how, with a few samples, we can obtain a model

that covers an incremental change in the system’s hardware specifications.

5.2.1 Formulation

As reported above, the file storage system dataset consists of measurements of the Filebench

benchmark throughput (in I/O operations per second), by setting the system’s configuration

parameters to all combinations of values in Table 5.1.

The legacy model ρ0 in this scenario was built using a subset of the file storage system

dataset. The configuration space C0 is a vector of five-dimensional tuples containing all combi-

nations of the four parameters I/O Scheduler, Block Size, Block Group and Inode Size, with

the fixed fifth parameter Disk Type = SATA, using the ext3 filesystem.

C0 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Noop, CFQ, Deadline}

Disk Type {SATA}

We extract from our dataset a vectorM0, where the entries contain the result of measuring

the Filebench benchmark throughput using the system configuration parameters of the corre-

sponding entry of C0.

M0 ∈ R = Filebench throughput (I/O operations per second)
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Legacy model ρ0 : C0 →M0

The model of the new configuration we intend to obtain extends the legacy model with

one extra dimension in the configuration space, allowing for the representation of the disk

drive change from a SATA disk to a 500GB SAS disk, a new value of the Disk Type system

parameter.

C1 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Noop, CFQ, Deadline}

Disk Type {500SAS}

M1 ∈ R = Filebench throughput (I/O operations per second)

Unknown model ρ1 : C1 →M1

We use a three-dimensional map to represent the transformation function between the two

models. After conducting a feature sensitivity analysis, as described in Section 4.7.2, we in-

cluded the Inode Size and Block Group features from the legacy model’s domain, and the

only available feature from the model’s codomain:

C0 = Block Size, Inode Size, Block Group, I/O Scheduler

M0 = Filebench throughput

L = {Inode Size, Block Group}

K = {M0}
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therefore a map of class (|L|, |K|) = (2, 1). Following the formulation described in Sec-

tion 4.4.1, we train a model of the three-dimensional transfer function σ :M0 →M1 by using

the legacy model and the few samples we obtained from measuring the system in the new con-

figurations selected from C1. We apply the experimental procedure described in Section 4.4.2

to iteratively select sets of samples, perform cross-validation, and measure the accuracy of all

the selected modeling methods.

5.2.2 Results

Results for the experiments are contained in Table 5.2 and Table 5.3. We can observe that

the accuracy of all direct models that do not exploit transfer learning or incremental modeling

is considerably lower than Model Mapping. With a sampling budget of five samples, our

technique shows an RMSE improvement of approximately 40% over the best direct model

(Gaussian Process). The accuracy improvement remains consistent with a sampling budget

of 10 samples. The results also show that our technique improves over the other incremental

modeling methods, which leads us to conclude that Model Mapping is well suited to represent

this type of system configuration change.

5.3 Scenario 2: Modeling Effects of Changing Storage Medium

In this scenario, a system administrator faces a more significant shift in storage technology:

upgrading the hard disk in a web server system with a solid-state drive. Conventional hard disk

drives are electro-mechanical devices, which magnetically store data on rotating platters, and

use actuator arms to move magnetic heads to the appropriate position over the platters’ surfaces

and read/write data. Mechanical friction and inertia set a lower bound on the latency of data

access (seek time) for random access patterns. Conversely, solid-state drives store data using

persistent semiconductor storage cells and have no moving parts, and thus having extremely

low latency for random data access.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 467.72±54.8 291.36±41.2
Polynomial regression 236.51±5.5 134.24±3.3
Linear SVR 239.25±8.3 144.85±4.0
Gaussian Process 223.19±5.2 132.55±3.7
Chorus* 198.96±0.9 N/A
Multi-Task Gaussian Process* 164.45±3.6 N/A

10 Linear regression 255.84±16.1 161.80±7.4
Polynomial regression 224.95±3.7 132.33±2.0
Linear SVR 226.11±4.5 135.73±2.1
Gaussian Process 215.38±3.2 128.70±2.2
Chorus* 198.22±1.2 N/A
Multi-Task Gaussian Process* 151.74±2.2 N/A

Table 5.2: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: Disk Type=SATA. Unknown model:
Disk Type=500SAS.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 2.36±0.30 1.40±0.22
Polynomial regression 1.15±0.04 0.67±0.02
Linear SVR 1.21±0.04 0.72±0.02
Gaussian Process 1.07±0.03 0.65±0.02
Chorus* 0.96±0.01 N/A
Multi-Task Gaussian Process* 0.81±0.02 N/A

10 Linear regression 1.24±0.09 0.78±0.03
Polynomial regression 1.06±0.02 0.65±0.01
Linear SVR 1.10±0.03 0.66±0.01
Gaussian Process 1.01±0.01 0.63±0.01
Chorus* 0.95±0.01 N/A
Multi-Task Gaussian Process* 0.73±0.01 N/A

Table 5.3: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: Disk Type=SATA. Unknown model:
Disk Type=500SAS.
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Having previously obtained a model of the web server performance using the SATA disk

under variations of the filesystem’s configuration parameters, the administrator intends to re-

configure the filesystem to suit the difference in performance the new storage medium provides.

As with the previous scenario, this example aims to extend the model to represent a variation

of an additional configuration parameter, which produces a non-linear variation in the perfor-

mance behavior.

5.3.1 Formulation

The modeling problem and experimental procedure in this scenario are very similar to the one

described in Section 5.2.1. The difference in the configuration change is that the SATA disk

drive is being replaced by an SSD drive, as follows:

C1 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Noop, CFQ, Deadline}

Disk Type {SSD}

5.3.2 Results

Results of our experiments are represented in Table 5.4 and Table 5.5. Relative to Scenario

1, we observe a reduction in the benefit of applying the incremental modeling and transfer

learning techniques (Model Mapping, Multi-Task Gaussian Process and Chorus) compared to

modeling the new system configuration directly. The difference in behavior between a con-

ventional hard disk drive and a solid-state drive greatly affects the performance profile of the

storage system and the applications that leverage it.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 321.83±74.8 170.81±29.5
Polynomial regression 123.29±3.7 129.72±4.9
Linear SVR 143.55±5.1 122.82±4.5
Gaussian Process 126.71±3.9 131.62±6.2
Chorus* 149.84±1.3 N/A
Multi-Task Gaussian Process* 138.55±3.6 N/A

10 Linear regression 102.89±5.2 99.75±6.2
Polynomial regression 107.22±2.8 117.40±4.4
Linear SVR 109.71±4.4 103.96±4.5
Gaussian Process 110.71±3.5 109.73±5.3
Chorus* 145.88±1.3 N/A
Multi-Task Gaussian Process* 116.47±4.5 N/A

Table 5.4: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: Disk Type=500SAS. Unknown
model: Disk Type=SSD.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 1.67±0.39 0.85±0.15
Polynomial regression 0.63±0.02 0.62±0.02
Linear SVR 0.75±0.03 0.60±0.02
Gaussian Process 0.65±0.02 0.65±0.03
Chorus* 0.82±0.01 N/A
Multi-Task Gaussian Process* 0.73±0.02 N/A

10 Linear regression 0.53±0.03 0.49±0.03
Polynomial regression 0.54±0.02 0.57±0.02
Linear SVR 0.56±0.02 0.51±0.02
Gaussian Process 0.57±0.02 0.54±0.02
Chorus* 0.80±0.01 N/A
Multi-Task Gaussian Process* 0.61±0.02 N/A

Table 5.5: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: Disk Type=500SAS. Unknown
model: Disk Type=SSD.
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This substantial difference translates to a more complex relationship between the two sys-

tem configurations, which in turn limits the benefit of applying prior knowledge to the modeling

problem. At the same time, we observe that using our Model Mapping technique, accuracy is

comparable to the best direct modeling technique we tested, which shows the robustness of our

technique in this situation.

5.4 Scenario 3: Modeling multiple system configuration

changes at once

In this scenario, a system administrator is aware of upcoming variations to a web server system

(e.g. a planned hardware upgrade), and intends to introduce related measures generally known

to be effective, and quickly verify the effects of the cumulative changes. For this example,

the system’s 250GB SATA hard disk is being upgraded to a more reliable and faster 500GB

SAS disk. The additional modification is to the filesystem I/O scheduler setting, from CFQ to

deadline to exploit the expected increase in data bus I/O performance. The administrator has

already obtained a model of the web server performance running on the original system con-

figuration. This example shows how to extend a model to cover multiple concurrent variations

of an original performance profile.

5.4.1 Formulation

The legacy model ρ0 is once again a subset of our file storage system dataset. The configuration

space C0 is a vector of five-dimensional tuples containing all combinations of the three param-

eters Block Size, Block Group and Inode Size, with the fixed fourth parameter I/O Scheduler

= CFQ and fifth parameter Disk Type = SATA, using the ext3 filesystem.
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C0 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {CFQ}

Disk Type {SATA}

As with the previous scenarios, we obtain the legacy performance model ρ0 as follows:

M0 ∈ R = Filebench throughput (I/O operations per second)

Legacy model ρ0 : C0 →M0

The new model adds two extra dimensions to the configuration space to represent the

change from a SATA disk drive to a 500GB SAS disk drive, and the filesystem’s I/O scheduler

setting to Deadline, which we consider new configurations for the I/O Scheduler and Disk

Type system parameters.

C1 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Deadline}

Disk Type {500SAS}

M1 ∈ R = Filebench throughput (I/O operations per second)

Unknown model ρ1 : C1 →M1
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We use the same map of class (2, 1) used in the previous scenario to represent the transfor-

mation across the two models, as follows:

C0 = Block Size, Inode Size, Block Group, I/O Scheduler

M0 = Filebench throughput

L = {Inode Size, Block Group}

K = {M0}

and we follow the same experimental procedure described in Section 4.4.2 to evaluate the

accuracy.

5.4.2 Results

Table 5.6 and Table 5.7 show the results of our experiments using six different learning ap-

proaches.

The results show that, even when modeling two different variations at the same time, in-

cremental modeling and transfer learning techniques outperform direct modeling. With only

five samples, the best accuracy provided by a direct model that does not exploit incremental

modeling is once again substantially worse than our Model Mapping technique.

Differently from Scenario 1, the unknown model is three-dimensional, and with one fewer

dimension the direct modeling methods all exhibit a lower error relative to the ones reported in

Scenario 1. At the same time, modeling two simultaneous variations increases the complexity

of the map. As a consequence, while all transfer learning methods are still advantageous in

presence of a very small sampling budget, their advantage over direct models lessens as the

sampling budget increases.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 355.28±51.9 211.97±18.3
Polynomial regression 223.94±6.0 130.59±3.8
Linear SVR 227.35±8.9 139.13±5.4
Gaussian Process 223.15±7.1 127.22±2.9
Chorus* 191.12±3.1 N/A
Multi-Task Gaussian Process* 183.47±5.0 N/A

10 Linear regression 228.64±7.7 148.65±5.1
Polynomial regression 207.98±6.9 127.66±3.7
Linear SVR 214.74±7.2 125.39±4.2
Gaussian Process 200.59±5.4 129.62±4.4
Chorus* 184.85±5.4 N/A
Multi-Task Gaussian Process* 164.26±4.5 N/A

Table 5.6: RMSE mean and standard error of Model Mapping technique and direct modeling
technique with various modeling methods (* indicates a direct modeling method that uses
incremental or transfer learning). Legacy model: Disk Type=SATA, I/O Scheduler=CFQ.
Unknown model: Disk Type=500SAS, I/O Scheduler=Deadline.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 1.80±0.28 1.04±0.10
Polynomial regression 1.09±0.03 0.64±0.02
Linear SVR 1.12±0.05 0.68±0.03
Gaussian Process 1.09±0.04 0.62±0.02
Chorus* 0.89±0.01 N/A
Multi-Task Gaussian Process* 0.90±0.03 N/A

10 Linear regression 1.12±0.04 0.69±0.03
Polynomial regression 1.00±0.04 0.59±0.02
Linear SVR 1.05±0.04 0.58±0.02
Gaussian Process 0.96±0.03 0.63±0.02
Chorus* 0.87±0.02 N/A
Multi-Task Gaussian Process* 0.80±0.02 N/A

Table 5.7: MAPE mean and standard error of Model Mapping technique and direct modeling
technique with various modeling methods (* indicates a direct modeling method that uses
incremental or transfer learning). Legacy model: Disk Type=SATA, I/O Scheduler=CFQ.
Unknown model: Disk Type=500SAS, I/O Scheduler=Deadline.
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5.5 Scenario 4: Modeling Multiple Significant System Con-

figuration Changes at Once

Similar to the previous scenario, a system administrator is interested in modeling the effects

of modifying multiple system configuration parameters at the same time, to reduce the trial

and error in determining the viability of a planned configuration change. For this example, the

variations performed are more substantial than in Scenario 3. The existing 250GB SATA hard

disk is being upgraded to a Solid-State Disk drive.

The administrator understands that overall throughput is more important than fast access

and transfer of large files in a web server. For this reason, a decision is made to implement a

second configuration change at the same time: modifying the filesystem I/O scheduler setting

from CFQ to Noop aims to leverage the substantially faster random access properties of the

Solid State Disk.

Equipped with a baseline model of the web server performance running in the original

configuration, the intention is to quickly model the effects of the configuration change and tune

all the remaining filesystem parameters.

5.5.1 Formulation

This scenario uses the same formulation as described in Section 5.4.1, with differences in the

legacy and unknown configurations:

C0 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {CFQ}

Disk Type {SATA}
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C1 ∈ R5 =



Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Noop}

Disk Type {SSD}

Once again we use the map of class (2, 1) described in Section 5.2.1, as follows:

C0 = Block Size, Inode Size, Block Group, I/O Scheduler

M0 = Filebench throughput

L = {Inode Size, Block Group}

K = {M0}

and follow the experimental procedure described in Section 4.4.2.

5.5.2 Results

Table 5.8 and Table 5.9 show the results of our experiments. We observe that the substantial

variation in the system’s performance between the two configurations greatly diminishes the

effectiveness of incremental modeling.

The simultaneous modification of two highly sensitive parameters translates to a change

that is more complex to model than the system’s behavior itself. In this situation, with five

samples, Polynomial Regression appears to model the unknown configuration best, although

we can see that Model Mapping still performs reasonably well, offering a lower accuracy

degradation relative to the other two incremental modeling and transfer learning techniques.

We can also observe that Linear regression applied to the map improves substantially between
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 166.00±23.9 195.18±34.8
Polynomial regression 110.23±2.7 132.57±4.9
Linear SVR 120.59±4.6 120.03±4.8
Gaussian Process 119.13±3.5 121.00±6.2
Chorus* 128.05±1.7 N/A
Multi-Task Gaussian Process* 122.21±3.5 N/A

10 Linear regression 91.74±1.6 91.46±2.7
Polynomial regression 102.46±1.8 117.97±2.6
Linear SVR 106.82±3.7 102.07±2.8
Gaussian Process 102.64±3.2 99.68±3.5
Chorus* 123.94±2.1 N/A
Multi-Task Gaussian Process* 112.10±3.8 N/A

Table 5.8: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: Disk Type=SATA, I/O Sched-
uler=CFQ. Unknown model: Disk Type=SSD, I/O Scheduler=noop.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 0.88±0.13 0.98±0.17
Polynomial regression 0.57±0.02 0.64±0.02
Linear SVR 0.63±0.03 0.59±0.02
Gaussian Process 0.61±0.02 0.58±0.03
Chorus* 0.67±0.01 N/A
Multi-Task Gaussian Process* 0.63±0.02 N/A

10 Linear regression 0.48±0.01 0.47±0.01
Polynomial regression 0.54±0.01 0.58±0.01
Linear SVR 0.56±0.02 0.51±0.01
Gaussian Process 0.53±0.02 0.50±0.02
Chorus* 0.65±0.01 N/A
Multi-Task Gaussian Process* 0.58±0.02 N/A

Table 5.9: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: Disk Type=SATA, I/O Sched-
uler=CFQ. Unknown model: Disk Type=SSD, I/O Scheduler=noop.
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5 and 10 samples. We attribute this effect and the large standard error for the smaller sampling

budget to the peculiar shape of this map, which causes a large error when outliers are selected

among the 5 samples used to train the model.

5.6 Scenario 5: Modeling Effects of Changing Filesystem

In this scenario, a system administrator is interested in modeling the effects of changing the

type of filesystem deployed in a web server platform. As new versions and revisions of filesys-

tem software are released that increase reliability and performance, administrators need to

understand the effects of the changes and perform regression tests before deployment.

For this example, the filesystem is being upgraded from ext3 to ext4, and the administrator

is interested in understanding the effects of this change quickly, by running only a handful of

experiments. The administrator has already obtained a model of the web server performance

running on the baseline system under numerous variations of the remaining parameters.

5.6.1 Formulation

In this scenario the configuration space C0 is a vector of six-dimensional tuples containing

all combinations of the five filesystem configuration parameters I/O Scheduler, Block Size,

Block Group, Inode Size and Disk Type, with the fixed sixth parameter File System = Ext3.

C0 ∈ R6 =



Disk Type {SATA, SAS, SAS500, SSD}

Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Noop, CFQ, Deadline}

File System {Ext3}
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The unknown model we are looking for covers the configuration change to a different filesys-

tem type, as described below:

C0 ∈ R6 =



Disk Type {SATA, SAS, SAS500, SSD}

Block Size {1, 2, 4}(KB)

Inode Size {128, 256, 512, 1024, 2048, 4096, 8192}(Bytes)

Block Group {2, 4, 8, 12, 16, 32, 64, 128, 256}

I/O Scheduler {Noop, CFQ, Deadline}

File System {Ext4}

After verifying the parameters’ sensitivities using the procedure described in Section 4.7.2,

we use a five-dimensional map, which includes Inode Size, Block Group, Disk Type and I/O

Scheduler, the four features with the highest sensitivity in the legacy model’s domain, and a

single feature from the performance function’s codomain:

C0 = Disk Type, Block Size, Inode Size, Block Group, I/O Scheduler

M0 = Filebench throughput

L = {Inode Size, Block Group, Disk Type, I/O Scheduler}

K = {M0}

therefore a map of class (|L|, |K|) = (4, 1). We proceed using the same experimental procedure

described in Section 4.4.2.

5.6.2 Results

Results for the experiment are contained in Table 5.10 and Table 5.11. We observe that in this

scenario Model Mapping and the other incremental modeling techniques perform effectively
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 166.87±9.2 201.65±21.8
Polynomial regression 110.51±3.3 131.48±7.2
Linear SVR 138.31±3.9 141.71±4.0
Gaussian Process 98.54±2.1 97.80±1.8
Chorus* 102.33±0.1 N/A
Multi-Task Gaussian Process* 109.17±3.1 N/A

10 Linear regression 135.50±5.8 137.37±5.3
Polynomial regression 113.72±2.1 162.25±13.3
Linear SVR 122.00±2.9 126.72±3.6
Gaussian Process 92.96±1.0 93.92±0.9
Chorus* 102.08±0.2 N/A
Multi-Task Gaussian Process* 101.96±2.4 N/A

Table 5.10: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: File System=ext3. Unknown model:
File System=ext4.

on par with direct modeling. The differences between the ext3 and ext4 filesystem behaviors

are sufficient to substantially reduce the advantage of incremental modeling. At the same

time, adopting incremental modeling does not lead to any loss of accuracy, which makes the

approach viable even in these circumstances.

Comparing the values in the ”Polynomial regression” rows of the ”5” and ”10” Sampling

Budget segments in Table 5.10 and Table 5.11, we also notice the performance of the Poly-

nomial model worsens as the sampling budget increases. We attribute the effect to the multi-

modal and discontinuous behavior of both the performance function and the transformation

function. With limited sampling budgets, a small increase in the number of samples results

in a more than proportional increase in the complexity of the model necessary to fit the data.

Further tests seem to confirm our intuition, and show that accuracy begins improving with

sampling budgets larger than 30% of the total size of the dataset.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 0.85±0.05 1.03±0.11
Polynomial regression 0.55±0.02 0.60±0.02
Linear SVR 0.70±0.02 0.72±0.02
Gaussian Process 0.51±0.01 0.50±0.01
Chorus* 0.54±0.00 N/A
Multi-Task Gaussian Process* 0.56±0.01 N/A

10 Linear regression 0.68±0.03 0.69±0.03
Polynomial regression 0.55±0.01 0.64±0.02
Linear SVR 0.61±0.02 0.64±0.02
Gaussian Process 0.48±0.00 0.48±0.00
Chorus* 0.54±0.00 N/A
Multi-Task Gaussian Process* 0.52±0.01 N/A

Table 5.11: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Legacy model: File System=ext3. Unknown model:
File System=ext4.

5.7 Conclusions

A summary of the results is present in Table 5.12, as a percentage improvement in RMSE our

technique has over both direct modeling and incremental/transfer learning approaches.

Incremental variation ∆Err ∆Err baseline
Direct T.Learning

Scenario 1 Disk Type (SATA→500SAS) -40.61% -19.4%
Scenario 2 Disk Type (SATA→SSD) -0.38% -11.35%

Scenario 3 Disk Type (SATA→500SAS)
I/O Scheduler (CFQ→Deadline) -42.99% -30.66%

Scenario 4 Disk Type (SATA→SSD)
I/O Scheduler (CFQ→Noop) +8.89% -1.78%

Scenario 5 Filesystem (ext3→ext4) -0.75% -4.43%

Table 5.12: Summary of storage system performance scenarios, %reduction in RMSE of Model
Mapping vs. Direct Modeling and baseline Transfer Learning (Multi-Task Gaussian Process /
Chorus). Sampling budget = 5.

The results of our experiments show that Model Mapping is generally effective in accu-

rately modeling different incremental variations that emerge in file storage systems as part of
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their regular maintenance and performance tuning. The five scenarios represent a system ad-

ministrator’s goal to rapidly experiment with changes in hardware to leverage new technology

to quickly and efficiently adapt the system configuration to these variations. In most of these

circumstances our technique outperforms both traditional direct modeling methods and other

incremental learning methods. In some scenarios, where a configuration variation results in

substantial difference of system behavior, Model Mapping is less beneficial, but rarely worse

than direct modeling.

As previously discussed in Section 4.9, we report the success rate of applying Model Map-

ping over direct modeling, using the different modeling methods. Table 5.13 and Table 5.14

show that Model Mapping improves over direct modeling in most scenarios.

We conclude that Model Mapping is a generally applicable technique to the problem of

incremental file system storage performance modeling, affording a varying degree of advantage

based on the significance of the incremental variation.

Experiments Success Rate
Linear regression 7/10 70%

Polynomial regression 5/10 50%
Linear SVR 8/10 80%

Gaussian Process 7/10 70%

Table 5.13: Success rate of Model Mapping vs. direct modeling, with different modeling
methods (RMSE).

Experiments Success Rate
Linear regression 7/10 70%

Polynomial regression 5/10 50%
Linear SVR 8/10 80%

Gaussian Process 10/10 100%

Table 5.14: Success rate of Model Mapping vs. direct modeling, with different modeling
methods (MAPE).



Chapter 6

Service Performance Modeling

6.1 Introduction

As we discussed in the previous chapters, in cloud systems it is important to accurately model

the impact of resource availability on fundamental hosted platform services such as databases

and file storage systems. Several large hosted applications are composed of a variety of other

services that are invoked as a response to user demands [60, 104, 113]. These services are

highly configurable and extremely heterogeneous in nature, and range from micro-databases to

audio processing and video transcoding/streaming; their behaviors and resource demands are

substantially different. It is therefore very important to model their performance, as the hard-

ware platforms, operating systems, and other platform services change. To further improve our

understanding of system performance modeling, and in order to study the broader applicability

of our technique to performance problems, we turned our attention to these types of application

services.

After our work on the ModelMap -toolkit was completed, we discovered the work of

Valov et al. [116], who analyzed the accuracy of applying linear models to efficiently transfer

application performance models across hardware changes. Their approach is similar to ours, as

it is effectively equivalent to using a linear model to represent a map of class (0, 1), and using a

108



CHAPTER 6. SERVICE PERFORMANCE MODELING 109

subset of the available legacy data. While we observed in the other chapters that linear models

are insufficient to represent several system and application level configurations, we investigate

applying our technique to the three scenarios reported by the authors. For our experiments we

use the three datasets Valov et al. released publicly as part of their research [117].

As reported in the previous chapter, our ModelMap toolkit does not currently support non-

numerical values, so we performed a translation of the datasets using the following conversion

table:

• X.bail: TRUE=1, FALSE=0

• X.stats: TRUE=1, FALSE=0

• synchronous: ON=1, OFF=0

The three scenarios we report represent realistic hardware changes that a cloud system

may incur over its lifetime. The scenarios provide insight in the efficiency of our performance

modeling technique relative to other techniques, including the linear model transfer proposed

by Valov et al.

Similar to the previous chapters, in each of the three scenarios we verify the accuracy of

modeling the system behavior as a consequence of a modification in its configuration. The

scenarios involve modeling the performance of three configurable applications/services that

exhibit different performance profiles and resource usage patterns, when the underlying hard-

ware platform changes.

For each scenario, the dataset represents measurements of an application’s performance

profile as a function of its configuration parameters. The three applications are: x264 [121],

XZ [102], and SQLite [94]. x264 is a popular tool for compressing and streaming digital video

using the H.264/MPEG-4 AVC video compression standard [49]. XZ is a general-purpose data

compression tool that relies on the LZMA2 compression method [83]. SQLite is a library for

integrating a very compact, file-oriented SQL database into applications.

Differently from the previous chapters, in all the following scenarios we include the linear

transfer function method outlined by Valov et al. (which we denote ”Linear model transfer” in
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the tables) as a baseline for comparison among transfer learning techniques, and we represent

it in the results as a form of mapping. The results we report for the ”Linear model transfer”

technique are based on our own implementation in the ModelMap toolkit.

6.2 Scenario 1: Modeling Effects of a Hardware Change on

a Digital Video Encoding Service

As reported earlier, the scenarios involve a system administrator who intends to understand the

effects of upgrading the hardware platform serving a number of different services, a typical

scenario in both traditional computing clusters and larger managed/hosted systems. In this sce-

nario, the service under consideration is x264, a digital video encoding/decoding/transcoding

tool that uses the H.264/MPEG-4 AVC video compression standard.

The administrator starts the investigation with a model of the service performance on the

current hardware platform, and intends to obtain an accurate model of the service after the

hardware upgrade as efficiently as possible. The purpose of obtaining the new model is to

judge whether the new platform is yielding the necessary performance increase, and whether

a variation in the service configuration would be advisable as a consequence of the platform

upgrade.

This example is intended to demonstrate how, with a few samples, we can obtain a model

that covers an incremental change in the system’s hardware specifications.

6.2.1 Formulation

The x264 application has several configuration options, which the dataset authors converted

to a set of 11 binary variables to express the configuration space. When translated to a set of

binary features, some features are mutually exclusive, therefore the configuration space is not

211.
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The authors did not exhaustively sample the configuration space, but instead selected 165

configurations and measured the application performance in those. The x264 performance

dataset therefore consists of measurements of the application’s performance (wall clock time

to completion in seconds), by setting the system’s configuration parameters to 165 possible

parameters combinations, and performing the experiments on 11 hardware platforms [116],

for a total of 1815 samples.

The legacy model ρ0 in this scenario was built using a subset of the x264 dataset. The

configuration space C0 is a vector of twelve-dimensional tuples containing 165 combinations

of the eleven binary parameters NO DEBLOCK, NO FAST PSKIP, NO MBTREE,

NO MIXED REFS, NO WEIGHTB, –rc-lookahead-20, –rc-lookahead-40, –rc-lookahead-

60, A, B and C, with the fixed twelfth parameter Worker ID = 75.

C0 ∈ R12 =



NO DEBLOCK {0, 1}

NO FAST PSKIP {0, 1}

NO MBTREE {0, 1}

NO MIXED REFS {0, 1}

NO WEIGHTB {0, 1}

–rc-lookahead-20 {0, 1}

–rc-lookahead-40 {0, 1}

–rc-lookahead-60 {0, 1}

A {0, 1}

B {0, 1}

C {0, 1}

Worker ID {75}

We extract from the dataset a vectorM0, where the entries contain the result of measuring
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the x264 application performance using the system configuration parameters of the correspond-

ing entry of C0.

M0 ∈ R = x264 wall clock time (seconds)

Legacy model ρ0 : C0 →M0

The model of the new configuration we intend to obtain extends the legacy model with

one extra dimension in the configuration space, allowing for the representation of the hardware

platform change, a new value of the Worker ID parameter.

C1 ∈ R5 =



NO DEBLOCK {0, 1}

NO FAST PSKIP {0, 1}

NO MBTREE {0, 1}

NO MIXED REFS {0, 1}

NO WEIGHTB {0, 1}

–rc-lookahead-20 {0, 1}

–rc-lookahead-40 {0, 1}

–rc-lookahead-60 {0, 1}

A {0, 1}

B {0, 1}

C {0, 1}

Worker ID {81}

M1 ∈ R = x264 wall clock time (seconds)

Unknown model ρ1 : C1 →M1

The variation from Worker ID 75 to 81 corresponds to a significant modification of the



CHAPTER 6. SERVICE PERFORMANCE MODELING 113

underlying hardware platform, an increase of CPU cores from 2 to 16, a reduction of CPU core

frequency of 800MHz and a 32-fold increase in system memory.

We use a two-dimensional map to represent the transformation function between the two

models. After conducting a feature sensitivity analysis, as described in Section 4.7.2, we in-

cluded the NO MBTREE feature from the legacy model’s domain, and the only available

feature from the model’s codomain:

C0 = NO DEBLOCK,NO FAST PSKIP,NO MBTREE,NO MIXED REFS,

NO WEIGHTB, –rc-lookahead-20, –rc-lookahead-40, –rc-lookahead-60,

A,B,C

M0 = x264 wall clock time

L = {NO MBTREE}

K = {M0}

The map is therefore of class (|L|, |K|) = (1, 1). Following the formulation described in Sec-

tion 4.4.1, we train a model of the two-dimensional transfer function σ :M0 →M1 by using

the legacy model and the few samples obtained from measuring the system in the new config-

urations selected from C1. We apply the experimental procedure described in Section 4.4.2 to

iteratively select sets of samples, perform cross-validation, and measure the accuracy of all the

selected modeling methods.

6.2.2 Results

Results for the experiments are contained in Table 6.1 and Table 6.2. We can observe that trans-

fer learning is effective in this scenario, where the models that do not leverage prior knowledge
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 1.98±0.1 0.66±0.1
Polynomial regression 2.22±0.1 0.76±0.1
Linear SVR 1.69±0.1 0.55±0.0
Gaussian Process 2.05±0.1 0.55±0.0
Chorus* 0.63±0.0 N/A
Multi-Task Gaussian Process* 0.77±0.1 N/A
Linear model transfer* N/A 0.81±0.0

10 Linear regression 2.45±0.3 0.42±0.0
Polynomial regression 1.90±0.0 0.68±0.1
Linear SVR 1.71±0.1 0.45±0.0
Gaussian Process 1.42±0.1 0.49±0.0
Chorus* 0.63±0.0 N/A
Multi-Task Gaussian Process* 0.51±0.0 N/A
Linear model transfer* N/A 0.71±0.0

Table 6.1: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Application: x264. Legacy model: Worker ID=75.
Unknown model: Worker ID=81.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 30.03±1.6 9.81±1.8
Polynomial regression 35.34±1.5 9.38±0.5
Linear SVR 25.37±1.1 8.21±0.5
Gaussian Process 32.26±1.2 8.43±0.3
Chorus* 10.15±0.0 N/A
Multi-Task Gaussian Process* 11.05±0.6 N/A
Linear model transfer* N/A 12.42±0.5

10 Linear regression 36.36±5.0 6.05±0.2
Polynomial regression 29.53±1.1 7.69±0.3
Linear SVR 25.11±1.2 6.31±0.2
Gaussian Process 20.75±1.1 7.30±0.3
Chorus* 10.10±0.0 N/A
Multi-Task Gaussian Process* 7.42±0.4 N/A
Linear model transfer* N/A 11.09±0.2

Table 6.2: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Application: x264. Legacy model: Worker ID=75.
Unknown model: Worker ID=81.
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show considerably lower accuracy. In particular, comparing the values in the ”Direct” Mod-

eling Technique column, ”Linear regression” rows of the ”5” and ”10” Sampling Budget seg-

ments in Table 6.2, we can see that the Linear regression model exhibits a degradation of

performance when increasing the sampling budget from 5 to 10 (30.03±1.6 → 36.36±5.0).

We attribute the error increase to the strongly multi-modal behavior of this system. Increasing

the sampling budget also increases the non-linearity of the dataset and exposes the limitations

of the linear model.

Among the transfer learning methods, we see how using a simple linear model to transfer

information (”Linear model transfer”) shows a substantial improvement over direct modeling

using conventional techniques, which denotes how these hardware platform changes produce a

mostly linear variation in application performance. More sophisticated transfer learning tech-

niques perform better, and offer a more substantial increase in accuracy. In particular, we

observe that Model Mapping is the most effective among them, by using an expressive model

to represent the transfer function and by carefully selecting important features from the original

information.

6.3 Scenario 2: Modeling Effects of a Hardware Change on

a Data Compression Service

Similar to the previous scenario, we are interested in understanding the effects of upgrading

the hardware platform hosting an application or a service. In this scenario, we consider XZ, a

general-purpose data compression library/utility that leverages the LZMA2 lossless compres-

sion method.

We investigate a similar change in the underlying hardware with the purpose of understand-

ing the ability of transfer learning methods to efficiently model an incremental change in the

system’s hardware specifications.
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6.3.1 Formulation

The XZ application is highly configurable, and the dataset authors converted all the available

parameters into a set of 16 binary variables to express the configuration space. Some of the

binary variables originate from multiple settings of individual numerical or categorical config-

uration parameters, therefore the configuration space is substantially smaller than 216.

As with the previous dataset, the authors did not sample the entire configuration space, but

instead selected a subset of 154 representative configurations for the purpose of performance

measurement. The XZ performance dataset thus consists of measurements of the application’s

performance (wall clock time to completion in seconds), by setting the system’s configuration

parameters to 154 parameters combinations, and the measurements of those 154 configurations

were performed on 7 different hardware platforms [116], for a total of 1078 samples.

The legacy model ρ0 in this scenario was built using a subset of the XZ dataset. The con-

figuration space C0 is a vector of seventeen-dimensional tuples containing 154 combinations

of the sixteen binary parameters extreme, sparse, crc32, crc64, none, sha256, -9, -8, -7, -6,

-5, -4, -3, -2, -1 and 0, with the fixed seventeenth parameter Worker ID = 75, representing one

hardware platform.

C0 ∈ R17 =



extreme {0, 1} -9 {0, 1} -3 {0, 1}
sparse {0, 1} -8 {0, 1} -2 {0, 1}
crc32 {0, 1} -7 {0, 1} -1 {0, 1}
crc64 {0, 1} -6 {0, 1} 0 {0, 1}
none {0, 1} -5 {0, 1} Worker ID {75}
sha256 {0, 1} -4 {0, 1}

As with the previous scenario, the vectorM0 represents the application performance mea-

surements, as wall clock time measured in seconds, and the new configuration space C1 in-

volves a different hardware platform, which we represent as a new value for the Worker ID

parameter, which is set to the value of 80.

The variation from Worker ID 75 to 80 is a substantial change in the underlying hardware

platform, an increase of CPU cores from 2 to 8, an increase in CPU core frequency of 200MHz
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and a 8-fold increase in system memory.

For this scenario we use a three-dimensional map to represent the transformation function

between the two models, as follows:

C0 = extreme, sparse, crc32, crc64,none, sha256, -9,

-8, -7, -6, -5, -4, -3, -2, -1, 0

M0 = XZ wall clock time

L = {0, -3}

K = {M0}

therefore a map of class (2, 1). We follow the formulation described in Section 4.4.1 and the

experimental procedure described in Section 4.4.2.

6.3.2 Results

Results for the experiments are contained in Table 6.3 and Table 6.4. We can observe that in this

scenario the difference between direct modeling and incremental modeling/transfer learning is

even more substantial, with a difference in accuracy by up to an order of magnitude in favor of

the latter.

Once again, we see how the system configuration changes considered in these scenarios

result in mostly linear variation in the performance of the considered application. The results

show that for a very limited sampling budget, Chorus and Model Mapping both perform well

in this scenario.

While a generic linear model describes well the relationship between these configurations,

increasing the features available to the model has a significant impact on accuracy when the

available sampling budget is very small.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 9.74±0.3 0.74±0.1
Polynomial regression 11.20±0.2 0.66±0.0
Linear SVR 8.44±0.2 0.72±0.1
Gaussian Process 10.44±0.2 0.57±0.0
Chorus* 0.58±0.0 N/A
Multi-Task Gaussian Process* 0.83±0.1 N/A
Linear model transfer* N/A 0.79±0.1

10 Linear regression 5.78±0.4 0.55±0.0
Polynomial regression 10.57±0.1 0.49±0.0
Linear SVR 5.49±0.3 0.56±0.0
Gaussian Process 9.24±0.2 0.45±0.0
Chorus* 0.58±0.0 N/A
Multi-Task Gaussian Process* 0.89±0.1 N/A
Linear model transfer* N/A 0.64±0.0

Table 6.3: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Application: XZ. Legacy model: Worker ID=75.
Unknown model: Worker ID=80.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 101.44±6.3 6.27±1.0
Polynomial regression 119.95±6.3 6.19±0.5
Linear SVR 88.01±3.1 6.07±0.8
Gaussian Process 118.49±4.6 4.46±0.2
Chorus* 4.97±0.0 N/A
Multi-Task Gaussian Process* 7.37±1.4 N/A
Linear model transfer N/A 7.30±1.2

10 Linear regression 55.17±4.6 4.24±0.2
Polynomial regression 111.10±4.9 4.57±0.4
Linear SVR 52.25±4.0 4.14±0.2
Gaussian Process 100.70±4.3 3.42±0.2
Chorus* 4.94±0.0 N/A
Multi-Task Gaussian Process* 7.77±1.3 N/A
Linear model transfer* N/A 5.52±0.1

Table 6.4: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Application: XZ. Legacy model: Worker ID=75.
Unknown model: Worker ID=80.
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6.4 Scenario 3: Modeling Effects of a Hardware Change on

a Filesystem-backed Database Service

As in the previous two scenarios, we are interested in modeling the performance of an applica-

tion as the underlying hardware is changed.

For this experiment we investigate SQLite, a library for embedding a SQL database engine

on applications backed by simple filesystems.

The goal is still to understand the potential advantages of reusing legacy information for the

purpose of improving the accuracy of the performance models after the configuration change

has been applied.

6.4.1 Formulation

The SQLite database engine exposes a mix of numerical and boolean configuration parameters,

and the dataset authors explored multiple variations of five such parameters for the purpose of

gathering performance data.

The SQLite performance dataset thus consists of measurements of the application’s per-

formance (wall clock time to completion in seconds), by setting the system’s configuration

parameters to 32 parameters combinations, and the sampling was performed on 10 different

hardware platforms [116], for a total of 320 samples.

The legacy model ρ0 in this scenario was built using a subset of the SQLite dataset. In par-

ticular, the configuration space C0 is a vector of six-dimensional tuples containing 32 combi-

nations of the configuration parameters X.bail, X.stats, mmap size, page size, synchronous,

with the fixed sixth parameter Worker ID = 75, representing one hardware platform.

Using the conversion table described in Section 6.1, the configuration space is therefore as

follows:
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C0 ∈ R6 =



X.bail {0, 1}

X.stats {0, 1}

mmap size {0, 268435456}

page size {512, 65536}

synchronous {0, 1}

Worker ID {75}

Once again, the vectorM0 represents the application performance measurements, as wall

clock time measured in seconds, and the new configuration space C1 represents a different

underlying hardware, represented as a new value for the Worker ID parameter, set to 157.

The variation from Worker ID 75 to 157 represents a significant change in the underlying

hardware platform, an increase of CPU cores from 2 to 36, an decrease in CPU core frequency

of 900MHz and a 16-fold increase in system memory.

For this scenario we use a three-dimensional map to represent the transformation function

between the two models, as follows:

C0 = X.bail,X.stats,mmap size,page size, synchronous

M0 = SQLite wall clock time

L = {X.stats, page size}

K = {M0}

therefore a map of class (2, 1). We follow the formulation described in Section 4.4.1 and the

experimental procedure described in Section 4.4.2.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 6.86±0.9 6.69±4.3
Polynomial regression 13.84±0.4 1.75±0.1
Linear SVR 5.60±0.5 1.73±0.1
Gaussian Process 12.22±0.4 1.58±0.0
Chorus* 1.45±0.0 N/A
Multi-Task Gaussian Process* 3.67±1.2 N/A
Linear model transfer* N/A 2.54±0.6

10 Linear regression 1.90±0.1 1.68±0.1
Polynomial regression 11.28±0.3 1.66±0.0
Linear SVR 2.12±0.1 1.55±0.0
Gaussian Process 2.11±0.1 1.55±0.0
Chorus* 1.47±0.0 N/A
Multi-Task Gaussian Process* 2.07±0.1 N/A
Linear model transfer* N/A 1.66±0.0

Table 6.5: RMSE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Application: SQLite. Legacy model: Worker
ID=75. Unknown model: Worker ID=157.

6.4.2 Results

Results for the experiments are contained in Table 6.5 and Table 6.6. We can observe that

in this scenario, Chorus, Linear model transfer and Model Mapping all perform very well,

substantially improving on the accuracy of direct modeling.

Observing the dataset in Figure 6.1, we can see that one feature (X.stats) has by far the

highest sensitivity, and the sharp discontinuity in the performance function caused by its two

states privileges Chorus’ ability to segment the configuration space into separate regions.

6.5 Conclusions

A summary of the results is present in Table 6.7, as a percentage improvement in RMSE our

technique has over both direct modeling and incremental/transfer learning approaches.

The results of these scenarios show the benefits of using transfer learning in the context of
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 13.86±1.9 10.78±5.8
Polynomial regression 29.44±1.1 3.57±0.1
Linear SVR 11.39±1.2 3.56±0.2
Gaussian Process 27.45±1.1 3.25±0.1
Chorus* 3.03±0.0 N/A
Multi-Task Gaussian Process* 8.01±3.2 N/A
Linear model transfer* N/A 5.37±1.5

10 Linear regression 3.78±0.2 3.39±0.1
Polynomial regression 24.26±0.6 3.39±0.1
Linear SVR 4.19±0.2 3.16±0.1
Gaussian Process 4.25±0.2 3.21±0.1
Chorus* 3.04±0.0 N/A
Multi-Task Gaussian Process* 4.17±0.2 N/A
Linear model transfer* N/A 3.43±0.1

Table 6.6: MAPE mean and standard error of the proposed Model Mapping technique and di-
rect modeling technique with various modeling methods (* indicates a direct modeling method
that uses incremental or transfer learning). Application: SQLite. Legacy model: Worker
ID=75. Unknown model: Worker ID=157.
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Figure 6.1: Graph of SQLite performance relative to X.stats configuration parameter.
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Incremental variation ∆Err ∆Err Linear ∆Err baseline
Direct Transf. T.Learning

Scenario 1 Worker ID (75→81) -67.46% -32.1% -12.7%
Scenario 2 Worker ID (75→80) -93.25% -27.85% -1.72%
Scenario 3 Worker ID (75→157) -71.79% -37.8% +8.97%

Table 6.7: Summary of application/service performance scenarios. %reduction in RMSE of
Model Mapping vs. Direct Modeling, Linear model transfer and baseline Transfer Learning
(Multi-Task Gaussian Process / Chorus). Sampling budget = 5.

modeling applications and services performance in the presence of system hardware changes,

which is a recurrent circumstance in the maintenance of hosted systems. In all the scenarios, we

observed that an incremental upgrade in the hardware specifications has a predominantly linear

effect on the applications under scrutiny. While this relationship may be modeled explicitly by

applying a linear or polynomial model as a transfer function, we noted that Model Mapping,

by explicitly considering significant features in the legacy data, and using more expressive

modeling methods such as SVR to represent the transfer function, yields considerably better

results, capturing subtle nuances of the performance variations.

Again, as previously reported in Section 4.9, we report the success rate of applying Model

Mapping over direct modeling, using the different modeling methods. Table 6.8 and Table 6.9

show that Model Mapping improves over direct modeling in all the experiments in this scenario,

with a 100% success rate.

We conclude that Model Mapping is a generally applicable technique to the problem of

incremental hosted applications and services performance modeling, with a substantial accu-

racy advantage over traditional modeling approaches, and generally outperforming all other

incremental and transfer learning methods we studied.
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Experiments Success Rate
Linear regression 6/6 100%

Polynomial regression 6/6 100%
Linear SVR 6/6 100%

Gaussian Process 6/6 100%

Table 6.8: Success rate of Model Mapping vs. direct modeling, with different modeling meth-
ods (RMSE).

Experiments Success Rate
Linear regression 6/6 100%

Polynomial regression 6/6 100%
Linear SVR 6/6 100%

Gaussian Process 6/6 100%

Table 6.9: Success rate of Model Mapping vs. direct modeling, with different modeling meth-
ods (MAPE).



Chapter 7

Related Work

System performance modeling is a vast field and many techniques have been applied to this

task in literature, each offering a compromise between ease of deployment, usage complexity,

data availability requirements, level of operator involvement, etc.

In order to appropriately compare and relate our contributions to the extensive work present

in this field, we classify existing approaches according to their characteristics. While generally

the distinction between modeling approaches is made from the perspective of model inter-

pretability vs. model accuracy [59], we adopt a classification that uses availability of infor-

mation as the main discriminant. In particular, in this chapter we first introduce prior work

according to how each approach leverages a-priori information about a system, and then we

provide context for our method in relation to the state-of-the-art in its category. From this

perspective, the main distinction between approaches stems from the amount of information

available when a performance model is built.

At one end of the spectrum, in circumstances where very detailed information of a system’s

design and implementation are available, and interactions between parameters are known to be

clearly observable and readily explainable, analytical or simple regression models are used,

also referred to as white-box models.

At the opposite end of the spectrum, in situations where little to no information is available
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about a system, and more complex, non-linear interactions exist between parameters, data-

driven models that rely purely on observations, otherwise defined as black-box models, are

used.

A third category of hybrid approaches also exists, based on a combination of partial a-

priori information, such as parameter correlation and smoothness characteristics of the modeled

function’s codomain, and data. Models with these characteristics are referred to as grey-box.

In this framework, we consider Transfer Learning as a type of black-box modeling ap-

proach, as modeling techniques in this category may leverage existing information in the form

of data or parametric models, but they generally rely on further observations to formulate the

relation between existing and new information.

In the following sections, we provide an overview of the different categories of modeling

techniques according to our classification, providing for each category examples of its applica-

tion to the field of system performance modeling.

7.1 White-box Models

A white-box model is generally built from first principles, and ideally it either describes a

system by providing a closed form mathematical representation of its behavior, or it explains

a system’s behavior using one or more simple, observable relationships, such as linear models

or decision trees [82]. For example, the designers of a system, using intimate knowledge of its

characteristics, may build a performance model that satisfies the theoretical system behavior

according to its specifications. If an accurate analytical model of a system can be derived, it is

preferred to any other models of the system, as it is generally extremely efficient to evaluate

and requires no direct observations of a system in action.

As an example of analytical models, Baghsorkhi et al. [7] propose an analytical model of

GPU performance, to provide performance information to an optimizing compiler as a means

to producing efficient code.



CHAPTER 7. RELATED WORK 127

Several examples of advanced white-box models applied to system performance modeling

exist in literature. Uysal et al. formulate an analytical model to predict the throughput of disk

arrays [115], reaching a level of accuracy that was deemed to be sufficient for the purpose

of resource provisioning. Elnikety et al. [30] build an analytical model to predict application

workload scalability on a replicated database system, and tune the parameters of their model by

sampling performance metrics of a workload running on a standalone system. The limitation

of this approach is in its strong reliance on the data access distribution, which is only satisfied

in rare circumstances in real-world applications.

Multi-class analytic queuing models [10, 114] have also been explored for resource con-

trol on CPU-bound multi-tier web servers and general hosted applications. These techniques

use analytical models to accurately perform demand profiling at each service tier, and in turn

appropriately balance resource usage. This approach is effective only in circumstances where

demand follows specific patterns, and does not capture workloads that deviate from the estab-

lished patterns, such as in presence of I/O intensive operations.

Building white-box models requires substantial, in-depth understanding of the underlying

system, which may not always be available with complex heterogeneous environments. Addi-

tionally, a system’s behavior may be governed by a very large set of parameters with substantial

dependencies, which would require compromising modeling accuracy in order to achieve the

level of interpretability that makes using a white-box model a reasonable choice.

In all these circumstances, machine learning approaches based on modeling a system’s

behavior solely based on observations of the system in action constitute a powerful alternative

to white-box models.

7.2 Black-box Models

Obtaining a white-box model of a system is a challenging task for many practical applications,

and especially for complex systems with many parameters, due to the explicit need to capture
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analytical information or to represent complex interactions among the parameters. To build

a performance model of such systems, purely sampling-based black-box methods are more

practical.

Real-world cloud systems and applications may exhibit a considerable number of config-

uration parameters and parameters may have broad ranges, therefore it would require a pro-

hibitively long time to exhaustively sample them [93]. In black-box methods, the performance

model of a system is thus created by tuning the parameters of a mathematical model to fit a

set of observation samples, which are tuples of input parameters and observable characteristics

of the system’s behavior. Different machine learning techniques have been applied to provide

effective approximations for a variety of system performance modeling tasks.

Ganapathi et al. [37] use Kernel Canonical Correlation Analysis (KCCA) [57] to model

database query performance characteristics, such as elapsed time, record used, and disk IO. In

their method, instead of building a cost model for each metric, they extract high level query

features and use them as inputs to KCCA to model all required performance characteristics

directly from the queries themselves. The authors show that in this application, KCCA can

predict the overall execution time of TPC-DS [110] test database queries with considerable

accuracy. The authors also report that their method can be applied to other tasks, such as

MapReduce [26], by customizing the feature vectors, and in subsequent work they evaluate the

performance of their technique in this scenario [36].

Soror et al. [91] build a cost model of a workload for a given resource allocation configu-

ration by sampling various configuration parameters and use this model to estimate an initial

allocation of CPU resources to virtual machines. Gambi et al. [34] introduce a model-driven

approach to automatically engineer an application-specific cloud controller. Leveraging multi-

dimensional Kriging models [97], the authors approximate the performance profile of applica-

tions through a utility function, which is then used to support the controller’s decision-making

process.

Wang et al. [123] use a different machine learning model, CART [16], to predict the per-
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formance of a storage device. The authors improve on prior work by Anderson [2], which

relies on tables that contain pre-sampled performance data, defined as the response time as a

function of input workloads. Building the performance tables is very time consuming, due to

the amount of sampling required, and the models are closely tied to the definitions of the input

workloads themselves. CART is used to interpolate across tables, resulting in a model that

better adapts to variations in the workloads.

Soundararajan et al. [92] propose a method for dynamic partitioning of resource utilization,

based on latency models of multiple applications concurrently accessing a shared database sys-

tem. The authors train a set of support vector machine regression (SVR) models that approx-

imate the latency of each application running in isolation under a variety of database cache

configurations, which they refer to as application surfaces. The performance models are then

used to find an optimal partitioning of the database cache among a group of applications, using

a greedy search procedure. While the approach shows good accuracy, when the runtime sys-

tem detects significant discrepancies between the expected application behavior and the actual

performance measurements, the application surfaces are rebuilt from scratch, which may incur

in a considerable delay.

Duan et al. [29] propose iTuned, a system designed to tune a database configuration and

optimize its performance. iTuned uses Gaussian Process Regression (GPR) to represent the

response surface of the database, defined as the average running time of a given workload

as a function of the database configuration parameters. The authors initialize the GPR by

employing latin hypercube sampling, and then proceed to use an adaptive sampling method,

which automatically selects sample points based on the Gaussian Process ability to efficiently

calculate the points that maximize expected improvements in the model uncertainty. The results

are favorable when compared with other methods, although any variation of additional system

parameters or any latent change in the system’s behavior may invalidate the model’s accuracy

and the ability of the optimization method to tune the system’s configuration.
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7.3 Grey-box Models

In specific circumstances, when individual components of a system exhibit a predictable and

clearly explainable behavior, but the components exhibit a complex interaction to produce an

aggregated system performance, it is possible to use hybrid, grey-box models.

Grey-box models leverage both partial, a-priori information about a system’s behavior and

additional, experimentally measured data to refine the accuracy of the overall models.

For example, Thereska and Ganger [103] analyze why and how performance models get

out-of-sync with the system over time. Through case studies with models for common re-

sources found in distributed systems, they find that traditional models are brittle because they

assume idealized system-workload interactions. The authors show that, in most real-world

scenarios, both the system itself and its models are often erratic or misconfigured, and unan-

ticipated behavior is the norm rather than the exception. To address this problem, they propose

IRONModel, a performance modeling framework which uses a series of expectation-based

analytical models, and decision tree-based machine learning model (Z-CART) to tune the pa-

rameters of the analytical models at runtime.

The authors apply the framework to model a storage system, by constructing a set of ana-

lytical models for the fundamental subsystems: a CPU model, a network model, a buffer pool

model and a disk model. While these individual models on their own are not accurate due to

various factors such as the complexity of caching algorithms, IRONModel uses Z-CART to

continuously tune the parameters for the analytical models designed for their storage system

and to refine their predictions over time. The results show that IRONModel is very effective for

detecting system anomalies against high-level specifications. While the Z-CART decision tree

reacts to performance discrepancies between models and observations, the fundamental under-

lying reliance on a set of analytical models does not allow modeling of emergent, complex

parameters interactions that are due to latent variations.

Herodotou and Babu [48] introduce a What-if Engine as part of Duke University’s Starfish

project [96] for the optimization of cluster resource selection for MapReduce task execution.
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The authors classify MapReduce task profiles as sets of direct fields, such as execution times

of specific portions of a task, and statistical information fields, such as average time to ex-

ecute a portion of the dataflow per input record. A mix of analytical models and black-box

models are used to represent the fields. Given a representative task profile, the system pre-

dicts the total execution time of a related task, with different input data, cluster resources and

configuration parameters. Results show that the accuracy of the predictions was sufficient to

perform configuration tuning and resource allocation for multiple classes of MapReduce tasks.

The What-If Engine in Starfish is very effective, although it requires a considerable amount

of a-priori knowledge to select the most appropriate models to represent each of the system’s

features.

When partial information on a system’s behavior is available, and it can be offered by a

user or an administrator to the modeling framework in an appropriate form, it can be leveraged

to reduce the modeling effort, improve accuracy and detect anomalies. This approach lever-

age information about a system’s characteristics, expressed by domain-specific languages, to

impart specific hints and/or expected behavior.

To assist the inspection of performance behavior of the system, Ghanbari et al. [40] intro-

duce SelfTalk, a declarative, domain-specific language that allows users to encode their high-

level hypotheses about system invariants, expected correlations between system metrics, or

other a-priori derived performance models. While SelfTalk was designed to allow system ad-

ministrators to query and understand the status of a large-scale storage system, and detect

anomalies, Chen et al. [24] in their Ensemble system extend the concept to the area of per-

formance modeling. The authors leverage model templates to express explicit information on

system behavior and system structure, and their system has the ability to answer to queries to

validate these models. They further propose leveraging Direct Sampling Guidelines or clues

in SelfTalk to indicate areas of the configuration space that can be safely ignored due to being

already known, known to be noisy, or known to be invalid configurations. The purpose of the

semantic information is to guide the Ensemble run-time modeling engine to proactively trim
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the configuration space.

All the aforementioned techniques do not explicitly leverage any previously acquired ob-

servations of the systems they are required to model, other than the information that was ini-

tially used to establish the performance modeling approach itself. When legacy data is actively

stored and re-used for the purpose of improving accuracy and to model discrete or continu-

ous variations in a system’s behavior, the modeling approach becomes incremental rather than

static.

7.4 Incremental Modeling and the Chorus Performance Mod-

eling Framework

Incremental models capitalize on all or part of the legacy data available from past observations

of a system, and rely on the realization that variations commonly occur in real-world appli-

cations. These models represent a system’s behavior by incorporating new observation and

adapting existing models instead of re-training them, such that the training time is reduced and

accuracy is improved.

7.4.1 Chorus

Chorus [25] is a comprehensive modeling framework that was created by our group at the

University of Toronto, which explicitly supports incremental modeling. The aim is to use a

combination of a-priori information about a system being modeled, capturing an expert system

administrator’s intuition on the overall system behavior, and actual observations in the form of

stored reusable models.

The fundamental modeling technique underpinning Chorus consists of subdividing a sys-

tem’s configuration space into a regular grid of regions, then fitting an ensemble model in

which multiple template models are trained concurrently and then individually ranked on a
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per-region basis. The template models are of three different categories: Analytical, Grey-Box

and Black-box. The models used by Chorus to create ensembles are the following: Analyti-

cal (white-box), Linear (black-box), Support Vector Machine (black-box), Inverse Exponential

(grey-box), and Curve fitting (grey-box). When training, Chorus uses the training set to fit all

the models in the ensemble, and ranks them according to their accuracy on a per-region basis

using k-fold cross-validation, according to the following error metric:

n = Number of samples

p = Model prediction

m = Observed value

RERR =

∑n
i=1

(
|pi−mi

mi
|
)

n

(7.1)

One of the key aspects in Chorus is the ability for the user to specify prior knowledge

of a system’s behavior, by selecting the parameters of the grid of regions, choosing a suitable

ensemble of template models to represent the expected behavior, and appropriately configuring

the template models’ configuration parameters. When performing regression, for each desired

regression location, Chorus detects the appropriate region, then selects the template model

with highest local accuracy and performs the final regression using the selected model. The

ensemble covers the entire configuration space, although some of the underlying models use a

single set of parameters, while others support per-region fitting and regression.

Chorus Template Models

In Chorus, template models used to represent individual regions are of three different cate-

gories: Analytical, Grey-Box and Black-box. The system allows the creation of model ensem-

bles that mix different categories.

Static Analytical Models (A-STOR) represent information that the Chorus user has ob-

tained by detailed inspection of the system under consideration. Rather than being represented
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directly as analytical formulae, Chorus represents these models as databases of measurements

that have been obtained in advance by sampling user-supplied analytical models at a repre-

sentative set of locations. A limitation of these models is that they do not interpolate, and

therefore their evaluation outside of the locations that were sampled to construct the database

is unavailable.

Linear Models (B-LIN) represent black-box approximations of a system’s performance

behavior obtained by fitting a set of linear models, one per region, each with its own set of

coefficients. This model supports full multi-dimensional regression.

Support Vector Machine Models (B-SVM) represent black-box approximations of a sys-

tem’s performance behavior obtained by fitting a single Support Vector Machine model with

Radial Basis Functions kernel. This model supports full multi-dimensional regression.

Curve Fitting Models (G-RGN) represent grey-box approximations of a system’s perfor-

mance behavior, where the toolkit user has pre-determined the behavior to be representable by

a set of simple functions such as polynomial, exponential, logarithmic. The system performs

fitting of 1-dimensional curve models, each with its own set of coefficients. The user selects

one dimension of the configuration space, which the system uses to fit the models. A regular

grid of locations is then selected by Chorus in the remaining configuration space dimensions,

and for each location, a 1-dimensional curve fitting model is fitted to the available training data

at those locations. Interpolation is therefore only available along the selected dimension.

Inverse Exponential Models (G-INV) represent the system behavior as a set of an 1-

dimensional inverse exponential curves, but are otherwise identical to G-RGN models.

Since not all the template models allow for full, multi-dimensional regression over the en-

tire configuration space, when queried for the value at a location where the highest-ranked

model cannot be evaluated, Chorus progressively interrogates lower-ranked models as a fall-

back mechanism until one is found that covers the desired location. For example, the highest

ranked model for a region may be an A-STAT model, which does not interpolate between the

available training data. If Chorus is requested to evaluate a location that the A-STAT model
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cannot resolve, it automatically interrogates a lower-ranked model until one is found that has

interpolation capabilities, such as B-LIN.

Model Reuse and Incremental Modeling with Chorus

Using the Chorus toolkit, incremental modeling starts from a pre-existing legacy model, then

adds new samples to an existing dataset, and finally re-fits the Chorus ensemble using the new

dataset. The new samples replace the original samples in the locations where they overlap.

The ensemble model then adapts to the new dataset by fitting its template models and ranking

them. The authors report that ([25], Section 5.6.4) the more similar the behavior of the two

systems, the fewer samples are necessary for Chorus to obtain an accurate representation of the

new system’s behavior.

The incremental modeling technique implemented in Chorus has definite advantages over

previous methods that did not leverage existing information, and by using a strategy of replac-

ing old samples with new observations, it performs best in scenarios where variations produce

effects localized to limited portions of the configuration space. In order to capture the more

complex and nuanced relationships between observations of a system undergoing configura-

tion changes, recently multiple attempts to exploit transfer learning techniques are being inves-

tigated as a way to reuse prior knowledge to build black-box models of configurable systems.

As previously introduced in Section 2.2, transfer learning leverages similarity between tasks to

improve modeling accuracy and to reduce the need for a large number of samples in a model’s

training set.

7.5 Transfer Learning for Systems Performance Modeling

In the field of systems performance modeling, homogeneous transfer learning [72] approaches

have so far been the most prominent, as in all the work we found in literature, the domains

of the legacy and unknown models are identical, or a valid bijection of the unknown model’s
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domain onto the legacy model’s domain always exists.

Additionally, for the purpose of performance optimization, models have to be obtained

by inductive learning, which allows the generalization of the transfer of information between

the source and target domains to different codomains. This characteristic is in contrast with

Domain Adaptation [52] and other transductive learning methods [35] that are limited to trans-

ferring information between functions that share a common support.

In particular, inductive homogeneous transfer learning is further classified into three main

categories:

• Instance-based approaches, in which a set of available samples from the legacy function

(the source domain) are added to the limited samples of the unknown function (the target

domain). The enriched sample set of the unknown function is used to directly build a

full model of the unknown function. As an example of instance-based methods, Garcke

and Vanck [38, 120] proposed a technique that considers shifts in domain and co-domain

of the unknown function. In their technique, each sample of the legacy function is in-

dividually assigned a weight corresponding to the estimated similarity of a sample of

the legacy function to an existing sample set of the unknown function. The weight is

measured by influence of the sample on the prediction quality of the unknown function.

Our group at University of Toronto introduced a form of combined transfer learning and

active learning [86] using Gaussian Processes to reuse prior information for the purpose

of reducing training time of a performance model, as part of the Ensemble performance

modeling tool [24].

As part of Ensemble [24], an early method was proposed by our group at the University

of Toronto for extending trained models, to represent the effects of using heterogeneous

hardware environments on application performance. Specifically, a Gaussian Process

was used to model the effects that changes to the hardware configuration have on the

performance of the NPAIRS [98] neuroscience application. The approach (GP Map-

ping) leveraged the ability of Gaussian Processes to find the locations that maximize the
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expected improvement in modeling accuracy in closed form, therefore using a form of

active learning [86] to select the samples used as training set. This method represents

an early use of the concept of leveraging transfer functions, or maps, to correlate perfor-

mance models, and exhibited significant advantages over employing traditional modeling

methods. Our work builds upon that intuition and extends it to use a more general form

of transformation maps. At the same time, our approach adds the ability to represent

the map using multiple modeling methods, and removes the limitation of using active

learning to obtain the model training set.

• Feature-representation-based approaches, in which a shared feature space is created from

the limited features shared between legacy and unknown functions. The shared features

are used to encode and transfer the knowledge from the legacy to the unknown function.

Multi-task learning methods [21] are among the transfer learning methods that follow

this approach. In multi-task learning, given multiple tasks with a few labeled training

data for each task, the goal is to jointly learn individual classifiers for different tasks by

exploring those tasks [5].

Chen et al. [23] propose Experience Transfer, a technique that leverages a Bayesian net-

work to model the correlation between a system’s configuration parameters, and then

use it to optimize the system’s performance. The authors show how a Bayesian Net-

work trained with samples of a system in a given configuration can be effectively used

as the starting point to tune the configuration of a similar system. While Experience

Transfer is very effective for transferring knowledge between systems that exhibit strong

similarities in the covariance of their configuration parameters and for parameter tuning,

the technique does not build a full model of a system and therefore cannot be used for

performance reasoning. It relies on having complete freedom in the choice of sampling

positions, which may not be possible in all scenarios.

Jamshidi et al. [50] use either a linear or a non-linear model (a Gaussian Process) to
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represent the correlation between different configurations of a configurable software sys-

tem. Their approach leverages the similarity between a legacy model and an unknown

new model in the form of a covariance matrix that is formed as samples from the legacy

dataset and samples from the new system configuration are added to a Multi-Task Gaus-

sian Process model. While this method has been found to be very effective in modeling

system performance, it does not directly exploit the intuition that the sparsity of the co-

variance matrix, when only a few samples are available of the second task (the unknown

model), may yield only a local effect based on the choice of Gaussian Process kernel.

These effects may prevent the model from detecting opportunities for simpler, lower-

dimensional constructs that explain the covariance globally. Additionally, the research

does not provide a correlation between the error metric and the ultimate purpose of the

model, e.g. for performance reasoning/forecasting and/or for the purpose of acting as a

surrogate model for resource allocation optimization.

Similar to our work, Valov et al. [116] study the effects of using linear models to rep-

resent a transfer function that transforms a legacy model to cover a new, unknown sys-

tem or application configuration. The choice of a linear model for the transfer function

was justified experimentally, by noticing that a class of system modifications results in

largely linear changes in a system’s behavior. While the work shows substantial accuracy

improvements with limited samples, the technique is inherently limited to representing

simple incremental variations. Additionally, no significant features are identified and

selected in the modeling process, or used in the representation of the transfer function,

which results in suboptimal accuracy, relative to our work (Sections 6.4.2) and other

incremental and transfer learning techniques.

• Model-parameter-based approaches, in which the information to be shared is not directly

in the data, but rather in the models’ hyperparameters. In these approaches the goal

is therefore not to reuse data from the legacy model and perform different forms of

resampling to obtain a dataset representative of the unknown function, but instead to
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focus on modeling the relation between the hyperparameters of the legacy model and

the model representing the unknown function [58]. In our search, we could not find an

example of model-parameter-based approach applied to system performance modeling,

and an interesting future research direction could be applying Model Mapping to model

the relation between models’ hyperparameters.

Most transfer learning techniques [33, 38, 75, 99, 120] rely on available samples of the

unknown system configuration to build the model. As discussed in Section 1.1, in principle

our technique may extrapolate across an ordered set of legacy models to predict the effects of

the unknown system configuration without any additional observations. Additionally in the

works employing Gaussian Processes [50, 86] as the basis for transfer learning, the choice of

kernel is not specified. We found that the kernel choice has a considerable contribution to

modeling accuracy, and requires a form of model selection by itself.

Model Mapping is completely independent of the approach used to create the legacy mod-

els, whereas several other transfer learning techniques apply are created with the same formal-

ism (e.g. neural networks [100]). Similar to Multi-Task Learning we express the relationship

between models, although with Model Mapping we do so in a compact mathematical form

that is more interpretable than other constructs (e.g. a full covariance matrix for Multi-Task

Gaussian Process [14]). We therefore argue that our technique has some advantages over other

transfer learning approaches that adapt existing models to generalize them.



Chapter 8

Conclusion and Future Work

In this chapter, we analyze our contributions in light of all the experimental work, provide

a summary of the findings, and highlight future opportunities for research that emerged as a

direct consequence of this investigation.

8.1 Conclusion

In this dissertation we proposed Model Mapping, a novel inductive transfer learning technique

for system performance modeling and optimization. The motivation for this work is rooted

in the extensive work performed in our group on the topic of capturing, analyzing and under-

standing the behavior of scalable, multi-tiered virtual environments, the computer systems that

underpin them, and the services and applications they host.

The constant effort of operating and maintaining datacenters requires both a deep level of

understanding of the applications’ characteristics and a reactive, dynamic approach to mon-

itoring and balancing the variables that determine a datacenter’s performance. Conventional

techniques for modeling systems performance use static models and are capable of adapting to

variations of system configurations only within the boundaries of their pre-defined heuristics.

We propose to systematically leverage experience in the form of monitoring and obser-

vations, and use this information to trace a virtual performance trajectory a system follows

140
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throughout its lifetime. To this extent, our contribution is the development, implementation,

and detailed experimentation for a targeted form of transfer learning that is particularly effec-

tive at this task.

Model Mapping lends itself to representing the behavior of a system as it varies due to

explicit and latent changes. Our approach transforms the problem of directly modeling sys-

tem performance for the changed system into a problem of modeling the changes themselves,

where the latter is likely to be a problem of lower dimensionality and/or lower complexity than

the former. The technique exploits structural similarity between two system configurations

to construct a compact map between their performance behaviors. In particular, we observed

that the technique is effective in the three use cases we originally set out to explore: extending

existing performance models, modeling incremental variations, and resource optimization/con-

solidation.

This dissertation documents the work behind Model Mapping, from the initial intuition

behind the technique to the experimentation phases. We discussed the reasoning that led to

applying transfer learning to the domain of system performance modeling and outlined the

motivations behind the choice of introducing a dedicated approach over other forms of knowl-

edge transfer (Chapter 2). We then formally described the technique, its generalization, and

overall limitations, and discussed the ModelMap toolkit design considerations and implemen-

tation details (Chapter 3).

We proceeded to evaluate and compare the effectiveness of our technique against different

traditional modeling methods and other forms of incremental modeling (e.g. Chorus) and trans-

fer learning in a number of scenarios. These scenarios were carefully selected to represent a

variety of realistic circumstances that cloud systems experience at design stage and/or while in

operation. The data used for the experiments was collected from direct instrumentation of real

systems, and used a number of applications and benchmarks that are realistic representations

of production hosted workloads and services.

As part of researching and developing the Model Mapping technique, we designed, setup
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and instrumented a performance measurement testbed, for the purpose of creating a new dataset

using the industry-standard TPC-C benchmark. The goal was to document how the perfor-

mance of a database system is affected by different configurations of a number of system-level

and application-level parameters (Chapter 4).

Our technique proved to be very effective in most scenarios, dealing with changes in hard-

ware specifications, application configurations and performance optimization (Chapters 4, 5,

6). We found Model Mapping to be especially efficient in improving accuracy over other tech-

niques where the sampling budget is very low, making it a strong guidance tool for resource

consolidation and optimization, which is very responsive to system changes.

In order to ensure the generality of our technique, we also studied how often the us-

age of Model Mapping results in an accuracy improvement, while using the same modeling

method. We reported that in the large majority of the experiments we conducted, using a mod-

eling method with Model Mapping results in higher accuracy than when the same method used

directly to model the unknown system configuration. On a total of 104 experiments, applying

Model Mapping resulted in a RMSE error reduction in 84 cases (81%), and in a MAPE error

reduction in 92 cases (88%).

We also observed that Model Mapping may be used multiple times consecutively, by per-

forming successive mapping steps to build a model through consecutive transformations of a

legacy model. However, error accumulation introduced by the composition of transformation

may limit the number of steps that can be done before the error becomes prohibitive.

Overall, we found our technique to be successful when the modeling problem presents the

following characteristics:

• Explicit or latent system variations produce incremental, smooth, linear or nonlinear

changes in the performance metrics being modeled. Examples are hardware upgrades

such as CPU and disk improvements, or software configuration alterations such as vari-

ations in resource allocation to Virtual Machines.

• Variations produce global performance changes across the parameter space, and result
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in a nonlinear scaling of the system performance behavior. Examples are changes in

processor clock speed, gradual variations in application demand and latent effects of

data accumulation.

We also observed that, similar to other transfer learning techniques, Model Mapping is not

effective in the following circumstances:

• System configuration changes that result in introducing new discontinuities or removing

sharp features from the performance function. This behavior can be observed when

examining the performance characteristics of an SSD drive compared to a regular Hard

Disk (Sections 5.3 and 5.5).

• Configuration changes that cause shifting of performance features as a result of trigger-

ing different performance bottlenecks. A sudden system failure, or a drastic increase in

available resources may have effects on performance to render its performance charac-

teristic too dissimilar from a legacy configuration, negating the advantage of using prior

knowledge.

We conclude that our technique affords increased levels of accuracy for quickly and ac-

curately modeling the performance characteristics of systems as they experience implicit and

explicit incremental variations.

8.2 Future Work

A promising research direction is to verify the effectiveness of Model Mapping in scenarios

that require model extrapolation, for example to capture and analyze the performance trend

of a system as a transformation function, and then use it to predict when a system upgrade

may be necessary. To this effect, we conducted a preliminary study on model extrapolation us-

ing Model Mapping, using a variation of the scenario described in Section 4.7, which analyzes

how a database performance changes as data accumulates over time.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 46.74±5.7 143.6±47.7
Polynomial regression 28.39±1.2 22.76±0.7
Linear SVR 30.92±1.1 30.34±0.7
Gaussian Process 33.87±1.6 32.73±1.1

10 Linear regression 28.20±1.1 27.03±1.1
Polynomial regression 23.61±0.9 20.18±0.6
Linear SVR 28.84±0.9 30.73±0.6
Gaussian Process 23.06±1.6 27.30±1.5

Table 8.1: RMSE mean and standard error of the proposed Model Mapping technique and
direct modeling technique with various modeling methods for TPC-C number of warehouses
configurations. Legacy models warehouses=10, 20 and 40, unknown model warehouses=64.

In particular, we used two complete legacy models, representing authoritative snapshots of

the database’s performance at specific moments in time, using our dataset for TPC-C number

of warehouses=10 and 20, respectively. We also used a third legacy model, built with a limited

sampling budget, representing the latest information we have on the database’s performance

behavior (TPC-C number of warehouses=40). The unknown model in this what-if scenario

is represented by the database performance when configured with 64 warehouses.

In Table 8.1, the “Direct” column represents the error of using direct modeling, using

samples from the system operating in the unknown configuration (TPC-C number of ware-

houses=64). The “Mapping” column represents the error of using Model Mapping, using

samples from the system operating in the third intermediate configuration (TPC-C number of

warehouses=40), and no samples from the unknown configuration.

We can see that Model Mapping effectively extrapolates the information contained in the

full and partial legacy models and provides a model of reasonable accuracy even without using

any samples from the system in the unknown configuration. Substantial additional verification

will be necessary to ascertain the extrapolation capabilities of our transformation functions, but

we believe that this characteristic may be leveraged most effectively in other scenarios where

a system is subject to constant or steady variations.
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Furthermore, we believe that our approach of expressing system variations explicitly has

the additional advantage of improved interpretability over direct models. Due to their lower-

dimensional nature relative to the models they span, maps can be used to more easily and

visually understand how systems vary over time. Databases of maps may be created to repre-

sent templates of expected behaviors for multiple classes of transient systems, and comparisons

between expected and measured maps may be used to detect and diagnose failures in dynamic

systems.

Our work can also be expanded by improving the modeling and validation capabilities of

our modeling toolkit. We believe that these extensions will give additional benefit to employing

Model Mapping in the field of systems performance reasoning and optimization, by making it

more accessible and readily available for integration into production systems. Additionally,

we believe that our technique is suitable for use in a large number of computer systems ap-

plication scenarios. We therefore intend to further explore the use of Model Mapping and the

ModelMap toolkit in the following directions:

• Consecutive mapping error mitigation

Future work can address the issue of error accumulation by introducing techniques such

as systematically limiting the number of consecutive mapping steps used to transform

a legacy model, by collapsing transformations into a smaller set, and by maintaining a

sliding window of sample sets to use only the last N sets to build the maps.

• Automated map class and model selection

In this work, we classified transfer functions according to their cardinality and usage

of features, but in each modeling scenario, we left it to the user/system administrator

to choose the most appropriate form of map (pure composition, difference, etc.) and

its class. We can improve our ModelMap toolkit to automatically perform sensitivity

analysis and feature extraction from the legacy model, and to recommend to the user the

most appropriate class of map to be used.
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Additionally, the toolkit can be extended to automatically train numerous map classes at

the same time, and perform cross-validation to select the most accurate combination of

modeling method and map class for a given sampling budget. With this improvement, as

more samples are available of the unknown configuration being modeled, the toolkit can

internally perform model evaluation and transparently select the most appropriate model

and map class to perform regression with.

• Database of models and automated selection of appropriate legacy models

Our work focused on reusing information of a system’s behavior, encoded as raw data

or a mathematical model, to assist in reducing the effort of modeling the behavior of the

same system, operating in a different configuration.

We can expand our toolkit to perform the classification of partial and full models, ac-

cording to their overall behavioral similarity, measured as covariance. With such a clas-

sification capability we can build a database of system performance models, which we

can use to serve as legacy models for other systems and applications that exhibit a similar

behavior. Additionally, we can also build a database of map models, which may be used

to directly compare and contrast how different systems evolve as a consequence of the

configuration changes they experience over time.

• Applying Model Mapping to other types of performance modeling applications

The scenarios we presented, while being representative of cloud systems, are only a small

fraction of the use cases where our technique can be applied.

We can apply Model Mapping to other scenarios, to analyze other kinds of transient sys-

tems present in datacenters as their performance metrics change according to the varia-

tion in their configurations. For example, Krzywda et al. [53] show the importance of

CPU power throttling to reduce the chances of exceeding power consumption limits in

datacenters. We can apply Model Mapping to extend a service or a system’s performance

model to account for the performance variations that result from CPU power throttling.
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TPC-C Performance Data
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Figure A.1: Performance graph of TPC-C transactions per minute (tpmC) on Platform 1 when
the IO quota varies between 1 and 48 MBps and the Buffer pool varies between 1 and 1024
MB.
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(f) IO quota = 32MBps
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(g) IO quota = 48MBps

Figure A.2: Performance graph of Transactions per minute (tpmC) on Platform 1, when the
CPU quota varies between 10% and 100% and the Buffer pool varies between 1 and 1024
MB.
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Figure A.3: Performance graph of TPC-C transactions per minute (tpmC) on Platform 3 when
IO quota varies between 1 and 48 MBps and Buffer pool varies between 1 and 1024 MB.
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Figure A.4: Performance graph of TPC-C transactions per minute (tpmC) on Platform 2 when
IO quota varies between 1 and 48 MBps and Buffer pool varies between 1 and 1024 MB.
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Table A.1: Average TPC-C Throughput (tpmC) with its 95% confidence interval - Platform 1

CPU
Quota

Buffer
pool (MB)

Disk IO Quota (MBps)
1 2 4 8 16 32 48

5% 1 8.7±0.3 12.5±0.4 14.4±0.4 15.2±0.4 15.8±0.5 15.7±0.4 16.3±0.5
2 9.2±0.3 12.8±0.4 14.6±0.4 15.4±0.4 16.2±0.5 16.1±0.6 16.1±0.5
4 9.9±0.3 13.3±0.3 15.2±0.4 16.5±0.6 15.9±0.6 16.8±0.5 16.6±0.6
8 9.0±0.2 12.6±0.3 14.1±0.4 15.0±0.5 15.3±0.5 15.7±0.5 15.4±0.5
16 8.9±0.3 12.1±0.4 13.3±0.3 14.7±0.5 15.1±0.4 15.0±0.5 15.2±0.5
32 13.2±0.5 17.0±0.5 19.7±0.8 21.1±1.0 21.1±0.8 21.4±1.0 21.6±1.0
64 13.9±0.5 20.3±0.7 22.4±1.0 24.8±1.3 23.2±1.2 25.1±1.2 24.1±1.3
128 15.6±0.8 23.1±0.9 24.6±1.2 27.5±1.6 29.3±1.6 28.0±1.6 28.0±1.5
256 16.6±0.9 26.3±1.6 27.1±1.6 28.9±2.0 29.0±1.8 29.7±1.7 30.1±1.9
512 15.7±1.1 22.7±1.2 25.6±2.3 29.4±1.7 28.1±1.6 30.6±2.4 31.0±2.3
1,024 18.3±1.1 25.2±1.5 29.0±1.6 33.6±1.8 32.9±2.0 32.1±2.0 33.4±2.1

10% 1 14.9±0.7 25.2±1.1 36.2±0.8 39.8±0.8 42.9±1.1 43.7±1.1 44.4±0.9
2 16.1±0.3 27.6±0.8 37.7±0.6 41.3±0.8 43.1±0.8 43.1±1.0 44.5±1.1
4 16.2±0.3 29.6±0.5 37.9±0.8 40.3±1.1 42.6±1.1 44.4±0.9 43.3±0.9
8 16.2±0.3 27.7±0.6 37.1±0.6 40.3±0.7 41.7±1.1 42.5±1.0 42.8±1.0
16 16.5±0.6 27.7±0.6 36.4±0.7 38.7±0.7 40.3±0.9 40.7±1.1 41.6±0.8
32 22.6±0.3 39.1±0.7 50.3±1.0 54.8±1.2 56.7±1.4 57.2±1.5 56.9±1.4
64 33.9±0.6 49.9±1.1 65.4±1.0 70.6±1.5 74.1±1.2 75.2±1.8 74.5±1.7
128 41.9±0.9 65.1±1.5 84.9±1.8 90.1±2.4 94.7±2.6 95.9±2.7 93.0±2.9
256 62.9±2.3 82.5±2.6 89.6±3.3 111.2±3.8 121.5±4.1 123.5±4.6 122.3±3.9
512 64.7±2.1 85.3±3.6 99.5±4.2 125.4±7.2 139.2±5.1 136.5±5.0 137.3±5.4
1,024 77.8±4.0 98.6±5.1 121.7±7.2 142.4±7.8 153.6±9.1 155.4±8.0 150.9±8.8

25% 1 18.3±1.0 37.3±1.5 77.5±1.7 107.2±1.4 118.1±1.1 123.5±1.6 124.6±1.5
2 19.9±0.4 39.0±1.4 81.0±1.7 109.5±1.2 118.6±1.4 123.4±1.6 122.4±1.1
4 19.9±0.5 43.9±0.9 81.8±1.0 108.6±1.4 117.5±1.4 124.5±1.9 123.2±1.8
8 21.0±0.8 41.3±1.5 85.4±1.3 111.9±1.3 122.5±1.4 126.0±1.5 127.8±1.6
16 23.7±0.5 48.3±1.2 101.2±1.6 126.7±2.2 131.8±2.7 130.0±2.0 131.1±2.0
32 30.1±0.5 62.7±1.1 113.8±1.3 139.5±1.3 152.4±1.6 161.6±1.6 161.7±1.7
64 42.8±0.7 79.7±1.9 161.0±1.9 190.2±1.8 210.6±1.9 219.9±2.1 220.5±2.7
128 59.2±1.1 116.1±3.8 240.5±3.6 286.8±2.3 318.2±3.8 328.5±3.1 326.5±3.4
256 78.4±6.6 129.7±9.9 299.4±8.1 400.4±8.8 458.6±5.4 484.8±6.8 492.4±5.8
512 137.2±10.7 146.2±17.4 399.6±12.7 528.2±13.0 616.4±9.6 651.8±11.3 657.7±8.0
1,024 236.6±13.1 217.6±19.7 495.5±19.5 642.4±12.1 734.1±17.8 761.4±15.2 757.1±17.3

50% 1 18.5±0.8 38.7±2.3 98.6±3.1 198.8±2.6 258.3±3.5 271.4±2.4 270.2±2.3
2 20.6±0.6 41.2±1.7 105.7±2.1 204.1±2.4 259.7±2.3 272.5±3.1 271.7±2.5
4 20.6±0.5 47.8±1.2 106.0±2.9 206.7±2.3 259.2±2.2 270.9±2.5 268.7±3.2
8 21.6±0.6 45.8±1.9 115.0±1.3 210.6±1.9 267.2±2.0 277.3±1.8 277.3±2.6
16 24.7±0.8 51.5±1.5 135.7±1.4 240.3±2.7 284.5±2.8 289.3±3.6 287.7±3.3
32 30.5±0.6 70.7±2.0 177.3±2.2 308.7±3.3 353.2±2.8 353.4±3.1 352.2±3.1
64 43.5±0.9 86.8±2.7 235.2±3.0 402.8±3.9 459.8±3.2 467.9±4.5 473.4±3.2
128 58.4±1.8 129.6±3.4 347.2±3.8 617.2±4.1 733.1±6.0 753.9±4.9 753.6±6.3
256 71.5±9.6 203.9±10.8 469.2±13.0 832.6±13.1 1046.8±14.2 1094.8±14.4 1110.8±12.9
512 90.4±14.7 310.0±13.5 615.9±8.1 1175.2±13.9 1456.3±21.5 1586.4±20.3 1610.2±16.7
1,024 162.0±36.5 480.0±36.6 967.7±27.8 1423.1±28.4 1727.4±23.3 1822.0±28.5 1800.7±29.0

100% 1 16.1±0.9 41.3±1.3 103.0±2.3 226.8±3.0 363.5±3.5 397.6±6.4 406.1±4.7
2 19.8±0.5 41.3±1.8 107.4±2.0 229.8±4.4 366.2±3.6 402.9±5.7 404.9±4.8
4 20.2±0.8 46.8±1.2 110.7±2.8 227.6±4.0 363.7±4.4 389.6±10.2 397.2±5.8
8 22.2±0.6 47.1±1.0 125.2±2.7 276.7±3.2 435.8±3.4 472.3±4.2 466.3±5.8
16 25.4±0.5 54.4±1.1 139.5±1.3 274.7±2.4 415.6±4.1 441.6±10.6 444.5±6.5
32 30.3±0.7 75.2±1.8 199.6±2.8 407.1±2.7 583.3±3.8 608.1±4.9 607.2±5.4
64 44.4±0.9 88.1±2.2 263.6±5.4 548.6±3.5 828.0±5.5 872.7±6.7 875.8±8.8
128 61.3±1.4 130.1±4.5 372.3±6.7 784.7±4.0 1217.9±10.8 1273.4±10.9 1270.6±12.5
256 68.0±9.5 162.1±14.3 489.8±14.5 1038.6±8.9 1729.3±20.3 1856.5±37.0 1863.1±35.4
512 70.2±11.1 310.0±18.4 638.4±17.4 1412.0±13.2 2382.0±28.2 2821.8±71.3 2839.2±56.5
1,024 229.2±29.9 425.3±60.4 1082.7±28.3 1682.3±22.8 2923.5±106.7 3269.8±195.6 3308.7±179.9
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Table A.2: Average TPC-C Throughput (tpmC) with its 95% confidence interval - Platform 2

CPU
Quota

Buffer
pool (MB)

Disk IO Quota (MBps)
1 2 4 8 16 32 48

5% 1 8.0±0.6 10.8±1.0 12.6±0.9 13.7±0.5 14.6±1.1 14.6±1.2 14.2±0.9
2 8.6±0.3 10.5±0.7 12.2±0.9 13.8±0.7 14.1±0.9 14.7±1.1 14.9±1.0
4 8.3±0.5 10.2±0.5 12.7±0.6 14.0±1.0 14.4±1.0 14.4±1.0 14.9±1.0
8 8.0±0.5 10.4±0.5 12.5±0.9 13.6±0.9 14.0±1.1 14.6±1.0 14.7±0.7
16 7.9±0.7 10.1±0.5 12.1±0.7 12.7±0.6 14.0±1.0 14.4±0.7 14.1±1.2
32 10.5±0.8 13.0±0.5 15.3±0.7 16.7±1.0 16.9±1.0 16.9±1.3 17.9±1.3
64 10.7±0.8 15.7±1.1 17.2±1.2 18.4±1.2 19.0±2.1 19.7±1.0 21.0±2.2
128 12.0±0.7 17.0±0.9 18.9±2.6 20.5±2.4 21.2±2.2 23.1±2.6 21.4±2.8
256 13.2±1.1 14.3±0.8 19.1±1.1 21.6±1.5 21.7±2.1 23.5±2.2 21.5±2.5
512 12.2±1.0 16.2±1.4 18.5±0.6 20.8±1.4 22.7±1.9 23.8±1.5 23.2±2.4
1,024 16.7±1.2 18.3±1.3 22.0±1.6 24.2±2.3 24.7±2.4 26.9±3.5 24.5±2.9

10% 1 15.6±0.8 25.6±1.7 34.2±1.2 40.7±1.4 43.0±1.6 46.1±2.2 48.8±2.0
2 15.9±0.8 28.4±1.1 33.9±0.9 39.8±1.3 42.6±1.4 45.7±2.2 45.9±1.6
4 15.9±0.6 28.0±0.8 35.6±0.9 39.5±2.1 42.9±2.0 47.0±1.6 46.1±1.8
8 15.7±0.6 27.3±1.0 35.1±1.1 37.9±1.2 42.0±2.3 45.4±2.7 47.3±1.5
16 15.1±0.7 26.3±1.3 32.2±1.3 37.9±1.4 42.7±1.1 44.9±1.3 44.4±2.1
32 21.7±0.7 36.4±1.3 45.0±1.5 50.9±2.3 54.2±3.1 59.0±3.7 59.7±2.1
64 32.0±1.2 50.0±1.1 58.2±1.7 64.1±2.9 69.8±2.7 71.5±3.0 70.3±3.5
128 39.3±1.5 55.5±4.2 69.4±2.9 76.0±5.7 77.9±3.8 80.2±5.0 82.9±2.8
256 50.7±3.1 60.2±4.5 78.5±5.5 90.9±5.9 86.2±5.2 91.1±4.6 91.7±5.6
512 49.7±5.1 63.0±4.8 83.7±2.8 92.7±7.2 96.7±5.8 97.6±4.9 92.2±3.8
1,024 61.4±6.4 70.5±6.3 85.4±8.7 92.0±7.9 93.7±8.1 93.0±6.0 98.4±6.7

25% 1 17.5±1.6 36.7±1.7 81.6±3.0 115.6±2.8 129.4±1.3 145.4±2.9 145.1±3.6
2 19.3±1.3 42.3±0.9 83.8±2.7 114.9±2.5 132.9±2.9 146.6±2.4 146.9±4.0
4 19.0±1.1 44.7±2.2 84.9±2.6 115.4±3.1 133.1±2.7 144.3±3.1 148.3±2.5
8 21.5±1.0 49.1±1.4 90.0±2.4 118.3±2.1 134.0±1.9 145.0±4.5 147.9±2.9
16 23.7±1.3 53.8±2.6 103.6±4.0 130.3±5.6 141.6±4.4 144.3±3.6 149.4±6.1
32 30.3±1.4 63.6±1.7 117.1±4.4 142.4±2.3 165.2±3.4 174.1±4.7 178.4±2.6
64 43.1±1.5 86.9±2.1 160.8±4.9 189.0±2.4 207.0±5.5 219.2±4.7 219.0±4.6
128 54.0±5.5 116.0±13.0 220.2±5.2 257.8±4.4 278.5±7.4 289.0±7.5 293.0±4.7
256 76.9±16.5 147.3±24.6 265.1±14.8 314.2±6.6 355.8±8.0 364.2±6.1 371.2±7.1
512 90.8±18.0 155.5±28.1 326.3±8.0 374.0±11.8 410.5±13.8 413.9±13.8 421.3±11.3
1,024 117.5±46.2 208.6±26.7 334.9±32.8 392.9±13.8 407.2±16.5 399.9±13.6 417.2±10.3

50% 1 17.1±2.0 40.0±4.2 101.0±4.9 207.1±5.5 283.6±5.0 308.9±5.8 313.5±4.8
2 19.3±1.5 46.9±3.5 103.8±5.3 213.5±3.8 282.7±4.7 308.6±4.2 314.1±3.5
4 19.2±1.4 46.2±2.4 106.4±6.3 210.2±2.9 284.7±3.5 309.7±4.1 308.3±5.7
8 22.9±1.5 51.5±2.0 111.9±3.8 221.5±4.2 293.6±3.2 326.4±4.8 328.0±3.9
16 24.4±1.7 56.3±2.4 138.0±5.6 253.9±5.2 309.3±7.0 334.2±5.9 339.1±5.8
32 30.1±1.6 72.9±1.7 177.2±3.8 313.2±7.7 350.2±5.7 372.1±7.1 376.7±6.0
64 44.0±2.0 93.7±2.1 232.0±5.5 399.2±3.5 448.7±6.9 471.2±5.9 477.6±5.7
128 59.4±6.3 128.4±8.9 344.0±6.5 573.5±8.1 645.1±9.2 660.8±7.2 671.6±7.4
256 78.6±25.4 183.1±29.8 468.3±13.3 741.8±6.4 833.5±9.2 869.9±12.6 878.4±11.0
512 74.0±28.6 304.8±18.9 579.2±21.1 894.0±14.3 962.4±15.3 996.1±14.1 1009.8±10.8
1,024 116.7±44.8 330.0±111.6 826.5±36.5 950.6±14.9 1000.2±19.1 1017.7±21.5 1017.0±16.7

100% 1 18.4±1.9 40.5±1.4 107.1±5.8 235.6±8.0 418.6±7.6 648.4±17.9 716.1±22.1
2 20.3±1.3 48.5±3.4 110.3±6.5 233.1±9.4 421.0±11.4 636.2±15.0 737.3±12.0
4 20.2±1.0 46.4±4.8 114.3±4.0 233.9±6.3 409.9±11.2 647.4±17.9 712.2±18.6
8 22.4±0.8 52.2±1.8 123.8±3.3 275.9±8.9 466.6±9.5 700.3±23.8 739.8±24.4
16 24.9±1.0 58.4±2.0 140.0±3.3 290.4±3.5 499.5±4.3 723.0±18.4 770.4±23.7
32 30.6±1.3 73.8±2.8 201.1±3.6 409.4±6.6 644.3±14.9 862.2±12.3 885.2±45.5
64 43.3±1.6 94.9±2.9 264.4±12.1 532.0±13.1 897.7±18.2 1112.8±55.0 1119.5±59.4
128 57.4±5.2 134.2±8.3 352.1±18.3 754.2±8.3 1242.3±37.7 1566.8±48.6 1702.5±59.9
256 60.2±29.0 203.0±36.3 494.2±12.8 968.7±12.1 1659.9±39.3 2040.2±72.8 2240.7±89.9
512 64.4±22.1 307.8±16.6 636.7±13.8 1259.7±18.3 1970.8±50.5 2447.7±89.0 2574.0±112.6
1,024 94.3±68.7 465.0±134.7 1069.5±45.8 1568.4±61.7 2391.0±90.6 2631.0±113.1 2481.2±173.9
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Table A.3: Average TPC-C Throughput (tpmC) with its 95% confidence interval - Platform 3

CPU
Quota

Buffer
pool (MB)

Disk IO Quota (MBps)
1 2 4 8 16 32 48

5% 1 10.0±0.6 14.4±0.6 16.3±0.7 17.7±0.8 17.9±1.2 17.5±0.8 17.8±1.0
2 10.9±0.6 14.3±0.5 16.0±0.6 16.9±0.9 17.7±1.2 17.3±1.1 17.2±1.2
4 10.6±0.8 14.6±0.8 16.3±1.1 16.3±0.9 16.9±0.9 17.2±1.2 16.3±1.6
8 10.0±0.5 14.0±1.0 15.2±1.5 16.0±1.3 16.8±1.0 17.7±1.5 17.4±1.2
16 10.5±0.8 14.0±0.8 15.5±1.6 15.8±0.6 17.2±1.2 16.4±1.6 16.8±1.3
32 14.4±0.9 17.8±1.1 20.2±1.6 21.3±1.6 22.8±1.2 22.8±2.6 23.4±2.7
64 17.3±2.1 23.8±2.4 25.6±3.7 26.8±3.8 28.9±4.3 27.6±4.5 28.1±3.4
128 20.8±3.0 26.6±3.5 29.0±2.4 29.5±3.7 32.5±4.6 31.2±3.8 32.4±3.7
256 21.5±4.4 25.4±4.0 30.2±3.8 34.3±5.1 35.6±2.2 37.2±1.9 33.8±3.7
512 21.9±3.5 25.2±3.7 31.1±4.5 36.8±4.4 34.0±2.0 36.9±1.9 36.2±3.4
1,024 27.0±4.0 26.0±5.8 31.6±4.5 39.0±7.1 43.5±5.3 40.2±3.7 36.2±3.1

10% 1 15.0±1.0 29.6±1.4 40.3±1.4 45.5±0.8 47.3±1.3 48.1±1.3 49.1±1.4
2 16.1±0.8 30.4±1.2 41.4±1.5 44.9±1.6 45.6±1.5 46.1±4.6 46.7±2.8
4 16.7±0.7 29.4±2.3 40.5±3.3 44.4±2.5 47.3±4.0 46.8±3.9 46.3±3.4
8 16.8±1.1 30.0±2.9 39.6±3.9 43.2±3.7 44.6±3.4 45.1±3.4 46.2±3.8
16 17.6±1.7 31.4±3.2 40.0±3.4 43.3±3.3 45.7±3.2 47.0±4.3 47.4±4.1
32 22.2±2.1 39.4±5.2 49.1±5.3 55.1±4.8 59.0±6.6 59.5±7.5 59.7±7.8
64 34.0±4.0 53.9±7.5 66.0±6.7 74.3±10.1 76.2±8.0 75.9±10.5 77.8±8.4
128 42.7±5.1 68.1±12.0 83.7±11.4 87.1±10.6 97.2±13.3 95.3±11.9 96.9±11.8
256 68.2±8.4 74.2±14.0 95.8±10.0 121.8±7.9 128.3±8.9 127.9±6.6 133.9±4.9
512 72.0±4.5 78.0±8.0 123.1±10.4 129.2±15.4 140.9±18.9 140.4±7.0 148.8±8.5
1,024 92.7±5.6 93.0±7.4 123.7±11.2 155.3±10.6 163.3±11.0 166.0±10.1 159.5±12.8

25% 1 19.2±1.9 37.3±2.3 77.1±2.6 120.1±2.5 136.1±4.8 141.6±3.9 143.8±3.1
2 17.7±3.3 42.9±2.2 82.2±3.1 121.1±3.8 136.0±4.7 134.2±20.7 138.0±15.2
4 19.1±1.5 41.9±3.8 76.2±8.4 116.7±11.9 130.6±12.3 138.7±12.5 136.2±15.9
8 19.8±2.2 45.4±5.4 84.8±11.5 116.6±12.8 132.0±11.4 137.3±15.6 139.1±15.5
16 23.1±2.4 50.0±5.3 101.9±14.9 131.2±17.4 150.8±14.5 159.6±19.3 158.1±19.1
32 27.5±3.4 56.5±9.5 112.5±18.1 148.5±22.8 167.3±16.9 172.8±27.2 172.1±28.9
64 40.0±4.1 79.8±13.6 151.0±29.3 197.5±34.4 226.4±37.1 230.0±36.4 232.4±41.6
128 50.5±10.0 112.1±22.0 219.6±47.1 281.9±47.7 326.3±57.0 339.5±56.4 344.4±61.3
256 65.3±24.3 141.4±31.8 273.0±58.6 379.1±29.1 456.6±28.5 468.2±25.1 476.8±19.8
512 66.3±20.7 178.4±75.2 375.0±29.4 469.5±27.4 548.1±18.7 609.9±32.6 591.2±23.8
1,024 131.3±30.8 244.6±52.7 404.4±54.8 517.5±17.6 593.6±30.6 612.2±24.3 648.3±14.4

50% 1 16.4±1.5 39.7±2.5 93.5±3.4 201.7±5.8 279.1±4.1 303.1±4.6 305.5±4.7
2 20.2±1.6 44.3±3.0 102.1±3.7 195.6±7.6 285.6±6.7 275.4±55.4 284.3±40.8
4 19.4±1.4 42.6±4.7 98.5±12.5 183.4±23.8 263.1±36.0 280.1±45.4 288.0±45.6
8 21.8±2.3 48.0±6.1 102.4±14.2 196.5±32.6 269.5±42.0 281.2±44.8 278.8±56.6
16 22.4±3.5 52.4±6.1 111.2±23.7 222.9±33.6 290.9±43.2 304.6±46.2 302.4±49.5
32 28.1±3.2 64.8±9.6 158.2±27.4 289.5±47.9 362.0±53.4 360.2±81.5 356.0±77.5
64 37.9±6.4 81.1±14.4 198.4±42.5 366.4±90.5 447.5±96.3 462.6±94.2 464.0±89.0
128 53.0±8.6 118.0±29.3 280.1±62.6 533.2±123.5 650.1±150.4 693.2±146.1 687.5±144.0
256 78.4±31.3 158.0±36.6 408.2±100.3 808.7±23.9 1011.8±62.4 1101.3±36.4 1119.0±23.8
512 62.4±19.5 297.3±15.1 595.7±42.7 1085.5±31.3 1306.4±38.0 1422.6±28.9 1456.5±34.3
1,024 124.3±81.9 367.9±122.5 964.7±99.9 1241.0±22.7 1441.2±21.0 1523.4±36.5 1554.2±38.6

100% 1 17.2±1.3 41.9±3.2 98.4±6.8 208.9±5.7 331.6±6.9 373.7±6.7 378.3±4.8
2 18.8±1.8 44.7±1.3 98.3±4.4 207.0±6.0 330.5±6.2 351.7±53.9 346.9±54.3
4 18.7±2.0 42.4±4.1 96.7±13.5 195.3±27.1 310.4±45.9 345.5±61.7 348.3±62.7
8 20.4±2.5 49.0±6.6 112.3±16.7 225.8±38.1 353.3±64.3 380.4±70.5 377.2±67.5
16 23.4±2.5 53.1±5.9 119.9±18.1 235.1±36.1 350.2±59.2 374.3±61.9 365.7±64.0
32 29.3±3.1 67.5±9.3 172.0±28.6 334.5±55.6 461.1±79.8 465.9±119.7 465.5±113.5
64 40.0±5.1 84.4±13.4 210.3±54.5 436.6±110.7 600.7±150.3 622.1±145.7 611.5±142.8
128 53.5±9.6 118.3±24.0 300.0±66.4 604.4±142.4 863.9±225.9 884.7±215.2 870.7±215.3
256 65.7±30.6 178.3±40.6 462.5±24.3 850.2±32.6 1430.1±25.2 1558.2±40.3 1580.1±32.5
512 77.9±32.8 280.2±46.0 615.5±38.7 1207.3±46.2 1964.4±76.2 2570.7±75.7 2630.9±98.1
1,024 145.9±89.5 460.5±135.0 983.9±135.8 1557.4±27.5 2434.8±98.2 3072.8±48.3 3126.4±97.1



Appendix B

Additional Results

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 176.52±13.8 38.07±2.1
Polynomial regression 144.74±7.6 69.42±14.0
Linear SVR 155.09±4.9 36.56±1.9
Gaussian Process 132.16±7.1 34.48±1.3
Chorus* 33.23±0.3 N/A
Multi-Task Gaussian Process* 34.94±2.1 N/A

10 Linear regression 133.80±5.9 35.72±1.3
Polynomial regression 113.10±7.1 71.61±14.6
Linear SVR 153.18±5.4 33.60±0.7
Gaussian Process 73.34±7.6 31.50±0.6
Chorus* 32.52±0.4 N/A
Multi-Task Gaussian Process* 32.00±1.9 N/A

Table B.1: RMSE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=50% and
unknown model CPU quota=25%.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 138.95±17.5 22.93±2.2
Polynomial regression 103.51±10.4 22.51±2.0
Linear SVR 101.20±10.4 18.50±1.0
Gaussian Process 72.33±7.4 18.70±1.2
Chorus* 19.08±0.2 N/A
Multi-Task Gaussian Process* 20.36±1.7 N/A

10 Linear regression 99.58±10.2 20.06±1.3
Polynomial regression 74.80±8.6 21.05±1.3
Linear SVR 101.05±11.0 16.11±0.6
Gaussian Process 30.28±2.2 15.98±0.7
Chorus* 18.69±0.3 N/A
Multi-Task Gaussian Process* 16.77±1.1 N/A

Table B.2: MAPE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=50% and
unknown model CPU quota=25%.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 176.52±13.8 69.24±2.9
Polynomial regression 144.74±7.6 57.59±5.4
Linear SVR 155.09±4.9 66.99±2.1
Gaussian Process 132.16±7.1 49.10±1.1
Chorus* 53.65±0.4 N/A
Multi-Task Gaussian Process* 63.60±3.0 N/A

10 Linear regression 133.80±5.9 66.99±3.2
Polynomial regression 113.10±7.1 60.98±10.9
Linear SVR 153.18±5.4 65.95±1.6
Gaussian Process 73.34±7.6 44.75±1.8
Chorus* 52.43±0.6 N/A
Multi-Task Gaussian Process* 57.19±3.7 N/A

Table B.3: RMSE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=10% and
unknown model CPU quota=25%.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 138.95±17.5 41.65±3.7
Polynomial regression 103.51±10.4 29.19±1.5
Linear SVR 101.20±10.4 39.37±2.9
Gaussian Process 72.33±7.4 34.93±1.9
Chorus* 45.09±0.7 N/A
Multi-Task Gaussian Process* 42.66±4.6 N/A

10 Linear regression 99.58±10.2 40.53±2.4
Polynomial regression 74.80±8.6 26.14±1.4
Linear SVR 101.05±11.0 37.66±2.6
Gaussian Process 30.28±2.2 29.36±1.4
Chorus* 43.57±0.9 N/A
Multi-Task Gaussian Process* 36.62±3.0 N/A

Table B.4: MAPE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=10% and
unknown model CPU quota=25%.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 28.61±2.6 15.18±1.1
Polynomial regression 29.67±1.6 17.84±2.1
Linear SVR 25.33±1.4 14.82±0.7
Gaussian Process 22.21±1.7 10.70±0.1
Chorus* 9.24±0.1 N/A
Multi-Task Gaussian Process* 13.88±0.9 N/A

10 Linear regression 20.50±0.9 14.27±1.1
Polynomial regression 23.51±1.3 14.97±1.5
Linear SVR 23.14±1.0 14.08±0.6
Gaussian Process 11.26±1.5 10.44±0.1
Chorus* 9.07±0.1 N/A
Multi-Task Gaussian Process* 11.82±1.7 N/A

Table B.5: RMSE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=25% and
unknown model CPU quota=10%.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 48.35±4.5 18.96±1.1
Polynomial regression 46.63±4.0 17.48±1.0
Linear SVR 40.76±2.2 18.16±1.6
Gaussian Process 32.51±2.5 15.01±0.5
Chorus* 16.23±0.2 N/A
Multi-Task Gaussian Process* 17.23±0.8 N/A

10 Linear regression 34.97±1.9 18.34±0.8
Polynomial regression 31.22±2.8 14.94±0.6
Linear SVR 37.85±2.2 16.16±0.7
Gaussian Process 16.20±2.2 14.68±0.6
Chorus* 15.97±0.2 N/A
Multi-Task Gaussian Process* 14.90±1.2 N/A

Table B.6: MAPE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=25% and
unknown model CPU quota=10%.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 784.71±61.9 210.28±11.1
Polynomial regression 612.73±30.6 527.84±113.9
Linear SVR 652.57±18.4 209.48±11.8
Gaussian Process 577.76±25.7 171.14±5.6
Chorus* 200.36±3.2 N/A
Multi-Task Gaussian Process* 197.08±11.6 N/A

10 Linear regression 601.57±28.5 201.84±11.5
Polynomial regression 438.97±30.8 493.99±105.5
Linear SVR 627.42±21.8 199.75±10.6
Gaussian Process 348.77±36.3 176.68±5.0
Chorus* 194.50±4.6 N/A
Multi-Task Gaussian Process* 168.13±12.0 N/A

Table B.7: RMSE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=50% and
unknown model CPU quota=100%.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 477.83±86.7 56.25±6.5
Polynomial regression 321.31±33.7 43.09±3.2
Linear SVR 281.00±39.3 42.28±6.4
Gaussian Process 196.84±21.3 37.70±4.9
Chorus* 53.64±1.0 N/A
Multi-Task Gaussian Process* 60.68±13.6 N/A

10 Linear regression 344.68±54.9 47.90±3.4
Polynomial regression 211.14±28.8 32.02±2.4
Linear SVR 246.05±40.6 36.19±3.1
Gaussian Process 76.65±14.8 27.01±2.5
Chorus* 52.46±1.4 N/A
Multi-Task Gaussian Process* 38.08±4.9 N/A

Table B.8: MAPE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct model-
ing method that uses incremental or transfer learning). Legacy model CPU quota=50% and
unknown model CPU quota=100%.

Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 453.41±43.9 132.75±10.5
Polynomial regression 351.60±17.6 406.84±105.8
Linear SVR 385.55±10.7 119.09±8.7
Gaussian Process 327.16±18.2 97.72±3.5
Chorus* 93.68±1.0 N/A
Multi-Task Gaussian Process* 110.38±7.5 N/A

10 Linear regression 336.60±14.6 120.57±8.4
Polynomial regression 266.87±17.4 356.46±78.0
Linear SVR 381.99±13.6 117.05±8.5
Gaussian Process 181.91±19.3 96.23±2.0
Chorus* 91.89±1.5 N/A
Multi-Task Gaussian Process* 94.25±7.0 N/A

Table B.9: RMSE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct modeling
method that uses incremental or transfer learning). Legacy model CPU quota=100% and
unknown model CPU quota=50%.
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Sampling Modeling Technique
Budget Modeling Method Direct Mapping

5 Linear regression 289.55±44.6 38.42±4.3
Polynomial regression 206.96±20.9 34.84±3.2
Linear SVR 188.59±22.4 25.53±2.9
Gaussian Process 133.10±14.0 27.14±1.9
Chorus* 31.16±0.5 N/A
Multi-Task Gaussian Process* 35.80±5.1 N/A

10 Linear regression 202.51±24.9 32.04±2.4
Polynomial regression 153.54±19.6 28.63±1.9
Linear SVR 182.16±24.5 24.76±1.6
Gaussian Process 50.08±4.5 22.24±1.7
Chorus* 30.29±0.7 N/A
Multi-Task Gaussian Process* 25.26±2.8 N/A

Table B.10: MAPE of the proposed Model Mapping technique and direct modeling technique
with various modeling methods for CPU quota configurations (* indicates a direct modeling
method that uses incremental or transfer learning). Legacy model CPU quota=100% and
unknown model CPU quota=50%.
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