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Abstract

In recent years, an increasing number of companies and individuals use cloud ser-

vices in their daily life. As their workload increases, the cloud providers pay more

attention on managing their server capacities to reduce their expenses. In this thesis,

we study the short-term capacity planning problem in data centers, and introduce a

hybrid framework based on queuing model and combinatorial model. The framework

calculates a deterministic server set with the minimum operational cost to satisfy the

stochastic workload in a cloud. We embed the short-term framework into another

framework that solves the long-term server capacity planning problem with longer

planning horizon. The long-term framework calculates the periodic server purchasing

plan to satisfy the workload in months or years with the minimum server purchasing

cost and operational cost. Our experimental results indicate that both frameworks

may calculate a solution to satisfy the workload in a reasonable runtime. Moreover,

the solution is closer to the optimal when the workload is more stable.
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Chapter 1

Introduction

Public and private clouds have become an important tool for more and more people.

The clouds consist of data centers that provide all kinds of online services to customers

(i.e. media, computation, storage, etc.). In recent years, the growing demand on

cloud services has force the data centers to expand in both size and operational cost

[8]. Due to the increasing operational cost, it is important to design a precise server

management tool for data centers.

In this work, we focus on the server capacity planning problem in the clouds that

provide infrastructure as a service (IaaS). The IaaS cloud assigns the multiple kinds

of customer requests to virtual machines with the required resources, and the virtual

machines are allocated to the different types of physical machines in the data center.

The IaaS users are sensitive to the latency, so they sign a service level agreement

(SLA) with the cloud provider to set a limitation on the cloud response time. The

response time is measured as the time between the job arrival time and the start of

its execution. An example of the SLA is that 99% of the virtual machines must have

a response time less than 1 second. Thus, the capacity planning problem is to find

the collection of servers that guarantees achievement of the SLAs while minimizing

cost. The short-term problem assumes the workload stays the same, and the solver

produces one set of servers that satisfies the workload with the minimum operating

cost. In the long-term problem, the workload changes over time, so the solver has to

make a periodic server purchasing plan to update the cloud capacity. The objective

of the long-term problem becomes minimizing the total server purchasing cost and

operating cost over the multi-period planning horizon.

The short-term capacity planning problem in cloud has been studied from multiple

approaches, including queuing theory [31] and combinatorial optimization [70]. The

cloud server management has been proved to be a challenging problem [15, 54], and

two of the major challenges are evaluating the deterministic resource requirement

1



2 CHAPTER 1. INTRODUCTION

from a stochastic demands and finding the optimal scheduling strategy to satisfy the

SLAs on the quality of service. In this work, we hybridize queueing theory based

models and combinatorial optimization models to address both challenges.

The long-term capacity planning problem is commonly studied for the manufactur-

ing and service industries [1]. Researchers have shown the computational difficulty of

solving the planning problems with long planning horizon [5]. Thus, we approximate

the optimal solution of the long-term problem by solving the planning problem in

each period separately. Moreover, we prove that following the local optimal solution

in each period achieves the long-term optimal in some special cases.

This thesis applies combinatorial optimization models including linear program-

ming (LP) models and integer programming (IP) models to the short-term and long-

term server capacity planning problems in the cloud. In the short-term problem, the

IP model has to collaborate with queueing models to consider the stochastic behavior

of the cloud. The experimental results show the combinatorial models can solve the

planning problem in the real cloud (Google Cloud) in a reasonable time. However,

the differences between the theoretical assumptions in the problems and the real life

scenarios causes errors in the solutions. The cloud that fits better to the problem

assumptions has a more accurate solution.

1.1 Thesis Outline

Chapter 2 presents the technical background of the mathematical tools we used in

this thesis and reviews the related literature. The first section of the chapter explains

the structure of general queueing models and presents the waiting time distribution

of M/M/n and GI/GI/n queues. Then it formalizes the paradigm of the integer

programming (IP) and its application in variable sized bin packing problem (VSBPP).

The second section of the chapter reviews the studies about the short-term and long-

term capacity planning problems. The works on the short-term problem are grouped

based on their solution models, such as queueing models, combinatorial optimization

models, and hybrid models. The long-term problem is rarely studied in cloud. Thus,

the works on the management problems in other facilities with similar goals are

reviewed, such as the hiring planning problem in service industries and the order

planning problem in manufacturing industries.

Chapter 3 describes the hybrid framework for the short-term capacity planning

problem. The framework solves the problem in two stages. In the first stage, it

introduces service slots to represent the resources reserved for each class of jobs, and

the number of service slots required for a given SLA is calculated by the queueing
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models. The second stage uses an IP model to solve a variant of VSBPP that packs

the service slots to a set of multi-type servers with the minimum operating cost. The

IP model is relaxed to a linear programming (LP) model to reduce the computational

complexity. The experimental results show that the linear relaxation significantly

reduces the runtime and produces a high accuracy approximation of the IP optimal

solution.

Chapter 4 is a case study of applying our short-term framework to the Google

Cloud with Borg system. We use the trace of all jobs that arrived to one Google

Cloud cluster in May 2nd, 2019 available from the public git repository [68] of Borg

data. We observe the job data violates some assumptions in our framework. The

framework assumes the jobs are classified by their resource requirements, but the Borg

dataset does not include the class of the jobs, and none of the jobs has an exactly

same resource requirement compared to another. Moreover, the problem assumes

the jobs do not change their resource requirements while its execution, but the Borg

system always allows the jobs to update their resource requirements. Thus, we group

the jobs with similar resource requirements into the same class and round up their

resource requirements to satisfy the assumptions in the framework, then apply the

framework to approximate the optimal server requirement. The experimental results

indicate that the framework can solve the capacity planning problem of Google Cloud

in a reasonable time, and the quality of the approximation increases as we increase

the number of job classes by classifying the jobs in more detail.

Chapter 5 extends the capacity planning problem to a long-term basis by adding

the decision of purchasing servers as the workload changes through the multi-period

planning horizon. The problem in cloud is similar to the problem in service industries,

since both the servers and the employees are agents for the customers. Thus, we

transform the dynamic programming (DP) model presented in Gans and Zhou’s work

on the employee management in call centers [21] to the cloud environment. Then the

DP model is reformulated as a linear programming (LP) model. We decompose the

LP model into multiple small LP submodels, where each submodel calculates the

optimal server capacity in each period, and the local optimal solutions are combined

to form a myopic long-term server purchasing policy. We prove this myopic policy is

the optimal long-term server purchasing policy when the workload is non-decreasing.

The empirical results support our theorem and show the computational complexity

reduced by decomposing the LP model.

Chapter 6 concludes the results in this thesis and introduces some future directions

for potential improvements.
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1.2 Summary of Contributions

The main contributions of this thesis are listed below:

• We formally define the short-term and long-term server capacity planning prob-

lems in IaaS clouds based on the real cloud structure.

• We introduce a hybrid framework that uses queueing models and combinatorial

optimization models to solve the short-term problem. It uses queueing models to

ensure the performance of the cloud with a stochastic workload, and the combi-

natorial models solve the scheduling problem while considering the fragmentation

loss caused by the imperfect resource allocation.

• We construct a dynamic programming (DP) model based on the existing model

for the call center environment [21] to solve the long-term server capacity plan-

ning problem in cloud.

• We reformulate the DP model to a linear programming (LP) model, and then

calculate a myopic solution by decomposing the LP model to approximate the

optimal long-term solution.

• We prove the myopic solution achieves long-term optimal when the workload is

non-decreasing through the planning horizon.



Chapter 2

Background

Our study combines queueing models and combinatorial models to solve server re-

source planning problems. The solution techniques introduced in this study are mo-

tivated and supported by past works [21, 32, 43, 58, 60, 67] in queueing theory and

combinatorial optimization. Thus, we first present the theoretical background on the

techniques that are used to solve our problems in Section 2.1. Then, Section 2.2

reviews recent studies on the cloud server management problem or problems with

similar goals, including scheduling optimization in stochastic systems and resource

management problems in service centers and in manufacturing industries.

2.1 Preliminaries

In this section, we present the fundamental theoretical background of queueing models

and describe the waiting time of jobs in two types of queues: M/M/n and GI/GI/n.

Then we present the basis of integer programming (IP), a common combinatorial

optimization technique that is used in our solutions. Finally, we explain the variable

sized bin packing problem (VSBPP), since the problem we study in Section 3.3.3 is

a variant of VSBPP.

2.1.1 Queueing Models

Queueing models [61] are mathematical representations that are constructed based

on queueing theory to analyze the performance of queues. A queue, or a waiting line,

is a system that has customers arrive, wait, receive services from agents, and leave

stochastically (see Figure 2.1). The random variable A represents the inter-arrival

time of two consecutive customers in a queue. The random variable L represents

the time that a customer spends receiving services in a queue (also called lifetime).

The waiting time of a customer in a queue is the time between when the customer

5



6 CHAPTER 2. BACKGROUND

Figure 2.1: The life cycle of a customer in a queue system.

enters the queue and when the customer starts receiving services. If a customer is

immediately assigned to an agent upon arrival, then the customer has zero waiting

time. The waiting time of a customer is represented by the random variable W .

There are three basic parameters of a queue required by the queueing model: RA

states the distribution of the random variable that represents the customer inter-

arrival times (A), RL states the distribution of the random variable that represents

the customer lifetimes (L), and n represents the number of agents that provide service

in the queue system. The distribution types of the customer inter-arrival time (A) are

denoted as follows: M stands for Markovian, and RA = M denotes that A follows an

exponential distribution; D stands for deterministic, and RA = D denotes that A is

deterministic; G stands for general, and RA = G denotes that there is no assumption

on the distribution of A. The distribution types of the customer lifetimes (L) are

denoted by RL with the same notation.

A typical notation for the queues is Kendall’s notation [33], which describes the

structure of the queue in form of RA/RL/n. For example, in an M/G/1 queue, the

inter-arrival times of the customers follow an exponential distribution, the lifetimes of

the customers are arbitrarily distributed, and there is one agent in the system. In this

work, we use two kinds of queueing models to analyze the waiting time distribution of

cloud systems with different capacities: M/M/n and GI/GI/n. In cloud, jobs play

the role of the customers.
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M/M/n Queues

As noted, in M/M/n queues the inter-arrival times of jobs follow an exponential

distribution and the lifetimes follow another exponential distribution. The term n in

the notation denotes that the queue may have more than one agent to provide services.

In past works [64, 69], similar assumptions have been made for cloud systems.

In queueing theory, the performance of an M/M/n queue is well-studied [58].

Suppose an M/M/n queue has jobs arriving with expected inter-arrival time of 1
λ

seconds and expected lifetime of 1
µ

seconds. According to the Chapter 2.7 in Sztrik

[58], the probability of a job waiting for more than t seconds in this queue is,

PW

(
1

λ
,

1

µ
, t, n

)
= γ(ρ, n)e−(n−ρ)µt, (2.1)

where

ρ =
λ

µ
(2.2)

and

γ(ρ, n) =

ρn

n!
· n
n−ρ∑n−1

j=0
ρj

j!
+ ρn

n!
· n
n−ρ

. (2.3)

Notice γ(ρ, n) is the Erlang-C formula [19], which represents the probability of delay

in the M/M/n queue.

GI/GI/n Queues

We generalize beyond the M/M/n queue by removing the assumptions on the distri-

butions of the random variables that represent the inter-arrival times and lifetimes

of the jobs. Without these assumptions, the M/M/n queue becomes a GI/GI/n

queue, which means the job arrivals and the lifetimes of the jobs are identically and

independently distributed (i.i.d.), but follow any distribution. GI/GI/n queues are

too complex to have a closed formula representing the probability distribution of the

waiting times of the jobs (see Chapter 4 in Gautam [22]). Fortunately, some approxi-

mations of the waiting time distributions in GI/GI/n queues can be calculated with

closed formulas [67].

Let C(·) be the coefficient of variation function, so for random variable X

C(X) =
σX
E(X)
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where E(X) is the expected value of X and σX is the standard deviation of X.

Consider a GI/GI/n queue that has jobs arriving with expected inter-arrival time
1
λ

seconds and with an expected lifetime 1
µ

seconds. According to Whitt [67], with

the assumption of heavy traffic, the probability distribution of a job waiting for more

than t seconds in this queue can be approximated as follows,

PW

(
1

λ
,

1

µ
, t, n

)
≈ 1

µ
γ(ρ, n) exp

(
−(n− ρ)µt · 2

C(A)2 + C(L)2

)
(2.4)

where A is the random variable representing the inter-arrival times, L is the random

variable representing the lifetimes, and ρ and γ(ρ, n) are defined in Equations 2.2 and

2.3. The detailed derivation of this formula can be found in Appendix A.

2.1.2 Integer Programming

In Section 3.3.3, we introduce an integer programming model to solve the optimization

problem associated with packing jobs onto computational servers in the cloud. Integer

programming (IP) is an exact technique for solving optimization problems with only

discrete decision variables [32]. A generic IP model is formulated as follows:

min cTx (2.5)

s.t. Ax ≤ b (2.6)

x ∈ Zn+ (2.7)

In the model above, c is a vector of n objective function coefficients, x is a vector of n

integer decision variables, and their dot product is the objective value (2.5) that the

model is minimizing. Inequalities (2.6) are the constraints that each feasible solution

must satisfy, where A ∈ Rm×n is a matrix and b is a vector of m real numbers. An

IP solver has to find the optimal x values that minimize the objective value across all

feasible x.

Solving an IP model is NP-hard, so a common technique is to solve the linear

relaxation first [43], since linear programming (LP) models can be solved in polyno-

mial time [34]. The linear relaxation transforms an IP model into an LP model by

expanding the domain of the decision variables (2.7) to x ∈ Rn
+.

With the linear relaxation, a common algorithm for solving IP models is the

branch-and-bound (B&B) algorithm [37]. The B&B algorithm explores the entire

search space of the IP model by examining the nodes in a search tree. Given the

generic IP model (2.5)-(2.7) as the root node Nroot of the search tree, the B&B algo-

rithm will find the optimal solution of the model in following steps:
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1. Initialize an empty queue Q

2. Q← Nroot

3. best sol = None

4. min cost =∞
5. while Q is not empty:

6. N = Q.pop()

7. curr sol, curr cost = solveLP (N)

8. if curr cost < min cost :

9. if all decision variables in curr sol are integers:

10. best sol = curr sol

11. min cost = curr cost

12. else:

13. Pick a decision variable xi that has a non-integer value x∗i in curr sol

14. Nl, Nr = split by(N, xi, x
∗
i )

15. Q← Nl, Nr

16. return (best sol,min cost)

In the pseudocode above, line 1 initializes the queue for open nodes, and line 2 inserts

the root node into the queue as a starting point of the searching process. Line 3 and

4 initialize the variables for the best integer solution (best sol) that the algorithm has

seen and its corresponding objective value (min cost). Line 5-15 are the main search

process of the B&B algorithm. While the queue of open nodes Q is not empty, the

algorithm pops out the first node N in the queue in line 6. The function solveLP (·)
in line 7 takes an IP model and solves the LP relaxation of it. The function returns

the optimal solution and its corresponding objective value of the LP model as the

variables curr sol, curr cost respectively. If the linear relaxation is infeasible, then

the function solveLP (·) returns (None,∞) to guarantee the condition in line 8 is

false, and the node is discarded. If the linear relaxation solution has an objective

value greater than or equal to min cost, then there is no better solution in the search

space defined by node N . Hence, the algorithm skips line 9-15 and moves to the next

node in queue. When curr cost < min cost, if the curr sol is an integer solution,

then the new best integer solution is found and stored. If there exists a non-integer

value x∗i in curr sol, then we split the node N into two IP models as children of N .

Suppose N is the IP model

min cTx

s.t. Ax ≤ b

x ∈ Zn+
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and xi = x∗i in the linear relaxation solution curr sol. The function split by(N, xi, x
∗
i )

generates and returns two IP models:

min cTx

s.t. Ax ≤ b

xi ≤ bx∗i c

x ∈ Zn+

and

min cTx

s.t. Ax ≤ b

xi ≥ dx∗i e

x ∈ Zn+.

These two IP models are inserted into the queue Q as open nodes in line 15. Finally,

after searching all open nodes, the B&B algorithm returns the best solution in the

entire search space of Nroot and its corresponding objective value (best sol,min cost).

If best sol = None, then the original IP model Nroot is infeasible.

2.1.3 Variable Sized Bin Packing Problem

In Section 3.3.3, we solve a variant of the variable sized bin packing problem (VSBPP)

[14, 20]. A VSBPP is defined as follows. Suppose there is a set of items I = 1, ...,m,

where each item i ∈ I has a weight of wi and a set of bins J = 1, ..., n, where each

bin j ∈ J has a capacity of bj. A bin can only contain a set of items Ij ⊆ I with

their total weight less or equal to bj, i.e.
∑

i∈Ij wi ≤ bj. We say that the items in Ij

are packed into the server j. The VSBPP is solved by optimizing an objective value

while packing every item into a bin.

There are a number of variations of VSBPP that have been studied. Friesen and

Langston [20] addressed VSBPP with the objective of minimizing the total capacity

associated with the bins. The authors proposed three approximation algorithms giv-

ing asymptotic worst case lower bounds. Correia, Gouveia, and Saldanha-Da-Gama

[14] looked at the VSBPP with variable bin costs, so each bin j ∈ J has an additional

parameter fj representing the cost of the bin. Their objective was to minimize the

total cost of the bins that are not empty, and they propose two formulations of the

optimization model for this problem.

The problem we define in Section 3.3.3 has an objective of minimizing the total
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operating cost of the used servers (bins), while packing every service slot (item) into a

server. This problem is similar to the VSBPP with variable bin costs, since different

servers may have different operating costs. Thus, we present the integer programming

model for the VSBPP with variable bin costs and an objective of minimizing the total

cost formulated in Correia et al. [14]. In their formulation, fj represents the cost of

each bin j ∈ J , and the goal of the problem is to pack all the items in I into a subset

of bins in J with the minimum cost.

Consider the binary variables xij indicating the item i is packed in the bin j

(i ∈ I, j ∈ J) and binary variables yj indicating whether the bin j is used. Then

the VSBPP with variable costs is formulated as the following integer programming

model:

min
∑
j∈J

fjyj (2.8)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I (2.9)∑
i∈I

wixij ≤ bjyj, ∀j ∈ J (2.10)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (2.11)

yj ∈ {0, 1}, ∀j ∈ J (2.12)

The objective function (2.8) minimizes the cost of the bins used for packing all the

items. Constraints (2.9) ensure that each item i is packed exactly once. Inequalities

(2.10) state that for each bin j, the total weight packed in it cannot exceed the

capacity of the bin. Constraints (2.11)-(2.12) are domain constraints.
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2.2 Literature Review

In this section, we explore the literature on the server management problems in clouds.

There are works solving such problems with different approaches, including queue-

ing theory based models, linear programming models, and constraint programming

models. We compare the problem definitions in the works with different approaches

and discuss the limitations of each solution method. Then, we review the studies

that apply linear programming models and mixed integer programming models to

the inventory management problems in manufacturing industries and service indus-

tries. We discuss the relevance of the inventory management problems to the server

management problems with purchasing, which is rarely studied in cloud environment.

2.2.1 Cloud Computing

Public cloud service has become a reality in last decade. The early stage of the cloud

computing paradigm and the major challenges were studied in detail in 2011 [65].

Here we discuss the different types of cloud and their settings mentioned in the book

[65] that are related to our work.

The cloud systems can be differentiated by the type of service they provide: in-

frastructure as a service (IaaS), platform as a service (PaaS), and software as a ser-

vice (SaaS). In this work, we focus on the resource planning problems for the IaaS

providers. The IaaS providers offer virtualized computation and storage resources

to the customers, where the resources are located in the physical machines in data

centers. Deciding on the set of physical machines with respect to some objective

while satisfying the customer demands is called the resource planning problem, which

significantly affects the profits for the IaaS providers.

The customers and the providers usually sign service level agreements (SLA) to

guarantee the quality of services (QoS) provided. There are multiple types of SLAs

with different restrictions. For example, some SLAs force a set of jobs to execute on

the same or different machines, and some SLAs post minimum response times of the

servers. In practice, the cloud providers use load balancing techniques and admission

control mechanisms to satisfy the SLAs.

Load balancing algorithms assign customer requests onto a set of physical machines

so that the load is equally distributed among multiple machines [53]. The load balanc-

ing algorithms are categorized into the class-agnostic algorithms and the class-aware

algorithms. The class-agnostic load balancing algorithms are agnostic to the type of

each incoming request and the customer who sent it. In contrast, the class-aware load
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balancing algorithms make decisions based on the type of the customer making the

request and/or the type of the service request.

Admission control algorithms decide the set of requests that should be admitted into

the server when the server experiences heavy loads [9, 12]. There are two types of

the admission control algorithms: the QoS-agnostic algorithms and QoS-aware algo-

rithms. The QoS-agnostic admission control algorithms do not pick the requests based

on their SLAs. In contrast, the QoS-aware admission control algorithms prioritize the

requests with more restricted SLAs to guarantee their QoS.

In the rest of the section we explore the literature that studies resource planning

problems in cloud or the problems with similar characteristics. The resource planning

problems are categorized into two types based on their planning horizon: the short-

term resource planning problem and the long-term resource planning problem. Short-

term resource planning problems focus on finding a resource capacity to satisfy a

given workload with respect to some objectives. In contrast, the long-term resource

planning problems consider multiple workloads in different time periods and decides

the amount of resources to purchase to maintain the quality of service across all

time periods. Section 2.2.2 reviews the methods for the short-term resource planning

problems, then Section 2.2.3 reviews the works on the long-term resource planning

problems.

2.2.2 Short-term Resource Planning Problem

Short-term resource planning problems focus on finding the optimal server capacity

and the scheduling strategy of the jobs in a short period. In recent years, increas-

ing number of works had studied the resource management problem in cloud from

different approaches, including combinatorial optimization and queueing theory [42].

The short-term resource planning problems can be classified into six categories

based on their objectives: cost aware resource planning, energy aware resource plan-

ning, load balancing aware resource planning, quality of service (QoS) aware resource

planning and utilization aware resource planning. In our work, we study a prob-

lem with an objective of minimizing the operating cost while satisfying a SLA that

restricts the response time for the jobs. In the six categories, cost aware problems

minimize the different sources of costs in the cloud, such as maintenance costs, delay

penalty, and power costs. The energy aware problems minimize the energy consump-

tion in the cloud, which is a major component in the operating cost. The QoS aware

problems try to reach the highest level of QoS by maximizing the throughput or

minimizing the response time for each job. We focus on the works about cost aware
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Table 2.1: An overview of the problem assumptions in the cloud management literature with
queueing models.

Literature
Problem Assumptions

Objective Server Job SLA
[18] energy

consumption
minimization

homogeneous
servers

homogeneous jobs response time

[28] performance and
energy

consumption
evaluation

homogeneous
servers

homogeneous jobs no SLA

[17] profit
maximization

homogeneous
servers

heterogeneous
jobs

tardiness upper
bound on each job

[35] performance
evaluation

homogeneous
servers

homogeneous jobs no SLA

[11] performance
evaluation

homogeneous
servers

homogeneous jobs no SLA

resource planning, energy aware resource planning, and QoS aware resource planning,

since they have a similar objective to our framework.

The literature has different assumptions on the servers and jobs in the cloud. The

cloud may contain the same type of servers or multi-type servers. Similarly, the jobs

arriving to the cloud are assumed to be identical or varied in different works. We

assume the cloud has heterogeneous servers, and each server can process multiple

heterogeneous jobs simultaneously as long as the resource capacity of the server is

not violated. This is a common assumption for the clouds as cloud providers want to

support more types of services, while using the servers from different generations.

The short-term resource planning problems in the cloud are widely studied with

different mathematical models. We first review the works with queueing theory based

algorithms. Queueing theory have been applied to analyze the performance and find

the resource requirements with respect to the stochastic workload in many clouds. In

contrast, the operating research community use combinatorial optimization models,

such as linear programming (LP) models and constraint programming (CP) models, to

optimize the job-to-machine assignment while considering the jobs with deterministic

arrival and service time. After the discussion of combinatorial optimization works, we

present the studies that use hybridized algorithms to take the advantages of multiple

techniques.
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Table 2.2: An overview of the solution techniques in the cloud management literature with
queueing models.

Literature
Solution Techniques

Solution Model Load Balancing Admission Control
[18] M/M/1/C queue for the

load balancing algorithm
and M/M/n/C queue for

each server

class-agnostic QoS-agnostic

[28] M/M/n/C queue for each
server

class-agnostic QoS-agnostic

[17] M/G/1 queue for each
job class

no load balancing QoS-agnostic

[35] M/G/n queue for the
cloud

class-agnostic QoS-agnostic

[11] M/G/n/C queue for the
cloud

class-agnostic QoS-agnostic

Queueing Theory Based Algorithms

A variety of types of queueing models have been used to represent the cloud systems

and analyze their stochastic behaviors [31]. Tables 2.1 and 2.2 show the problem

definitions and the solution models of the short-term resource planning literature

with queueing models. The papers are ordered by their model complexity from the

simplest to the most complicated, and the works with the same solution model are

listed in chronological order. In this section, we review some works that use the queues

with four parameters Kendall’s notation RA/RL/n/C, where the fourth parameter

C denotes the maximum capacity of the queue, and the queue is assumed to have

infinite capacity if the fourth parameter is not shown (e.g. M/M/n).

Multiple studies have used M/M/n/C queues to model the structure of cloud

systems [18, 28]. With the M/M/n/C queue assumption, the job arrivals are assumed

to follow a Poisson process, the job service times follow an exponential distribution,

the cloud system contains multiple servers to provide services, and a new job is

rejected when there are C jobs waiting in the queue. Kafhali and Salah [18] model the

cloud system in two levels. In the first level, an M/M/1/C queue is used to represent

the load balancing (LB) system. A new coming job is queued in the LB system if the

waiting room for all servers are full, and the new job is rejected if the queue for the

LB system is also full. The second level has an M/M/n/C queue representing each

physical machine, where each machine can process n jobs simultaneously and has a

waiting room with finite size C. Using queueing theory, the authors first calculate

the probability of a job being rejected by the LB system, that is, the probability

of loss, then they calculate the mean queue length and the mean response time of
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each server. In 2019, Hanini, Kafhali, and Salah [28] develop a data center manager

(DCM) by modeling each server in the cloud as an M/M/n/K queue. The DCM is

designed to assign fewer jobs to the servers with queue length greater than th < K.

The authors derive the performance parameters in the cloud with the DCM, such as

the probability of loss, the mean response time, and the power consumption. The

numerical results show the DCM helps the system to decrease these three measures.

Some works have fewer assumptions on the distribution of the job service time and

use M/G/ · /· queues to analyze clouds [17, 35]. The M/G/ · /· queues only assume

the job arrivals are following a Poisson process, and the service time may have any

distribution with a known expected value and variance. Dutta et al. [17] classfy

the jobs based on their priority, then model the queue for the jobs in each class as

an M/G/1 queue. The queue for each job class is assumed to have one server that

contains all the resources reserved for jobs in this class, and the server with more

resources has a higher service rate. The authors designed multiple algorithms to

optimize the resource reservation decisions, or control the service rates in the queues

for each job class, to maximize the profit of the cloud. Instead of using separate

queues, Khazaei et al. [35] model the entire cloud as an M/G/n queue. The authors

assume homogeneous jobs and homogeneous servers in the cloud, so the service rates of

all jobs are independent and identically distributed (i.i.d.). With these assumptions,

the authors evaluate the queue length distribution and the response time distribution

in terms of the job arrival rate, job service rate, and number of servers in the cloud.

The theoretical results allow the cloud provider to calculate a number of servers

required to satisfy the workload with a desired quality of service (QoS).

In practice, the management system buffer that holds the waiting jobs in cloud has

a finite size according to the hardware settings. However, the works above [17, 35]

assume the buffer has an infinite length due to its large size. In contrast, some works

(e.g., [11]) consider the limitation of the queue length and use M/G/n/C queues.

The fourth parameter C in the queue notation denotes the maximum length of the

queue, so the new jobs are blocked if the queue already contains C jobs. Chang et

al. [11] assume the cloud has homogeneous servers and homogeneous jobs, and model

the entire cloud as an M/G/n/C queue. The objective of the work is to evaluate

the cloud performance by calculating the queue length distribution, the response

time distribution, and the probability of loss. The authors develop an algorithm to

approximate the performance parameters, and their numerical results show the high

accuracy of the approximation.

From the literature, we observe some common characteristics of the queueing mod-

els for solving the server capacity planning problems in clouds. By the nature of
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Table 2.3: An overview of the problem assumptions and the solution techniques in the cloud
management literature with combinatorial models.

Literature
Problem Assumptions Solution Techniques

Objective SLA Solution
Model

Load
Balancing

Admission
Control

[57] cost
minimization

no SLA
limitation

integer
programming

model

class-aware QoS-agnostic

[51] operating and
transition cost
minimization

response time integer
programming

model

class-aware QoS-aware

[24] minimizing
the energy

consumption
and the

response time,
maximizing

the robustness
and the

dynamism

response time mixed-integer
programming

model

class-aware QoS-aware

[71] minimizing
the number of

operating
servers

response time constraint
programming

model

class-aware QoS-aware

queueing models, each queue receives homogeneous jobs and serves them in a first-

in-first-out (FIFO) order, which implies the queues cannot support the admission

controls that depend on the QoS of the jobs (see Table 2.2). In our work, we classify

the jobs based on their QoS requirements, and different queues are used to model the

workload of different classes of jobs. Thus, more resources are allocated to the jobs

with higher QoS requirements in the scheduling stage. Another observation is that

a queueing model provides an accurate evaluation of the performance in a stochastic

system, such as a server or a cloud. However, the queueing model cannot provide

a detailed job-to-machine allocation strategy for the cloud system, especially when

multiple types of jobs can be allocated into the same machine. In the next section,

we discuss the works using combinatorial optimization models to find the optimal

job-to-machine allocation for the cloud systems.

Combinatorial Optimization

In the scheduling community, combinatorial optimization techniques including mixed

integer linear programming and constraint programming are used to solve the schedul-

ing optimization problems for cloud systems [70]. Compared to the queueing models,

the combinatorial models can explicitly represent the problems of assigning hetero-
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geneous jobs to heterogeneous servers with the minimum cost. In this section, we

review works that assume the cloud uses servers with different resource capacities to

serve the jobs with different resource requirements, since it fits the assumption in our

work (see Section 3.2), and it is a common assumption in the combinatorial optimiza-

tion works. Table 2.3 shows the problem definitions and the solution models in the

short-term resource planning literature with combinatorial models. The table first

lists the papers using linear models, such as integer programming and mixed-integer

programming models, then the works with CP models are presented. The works with

the same solution models are ordered chronologically.

The linear models including linear programming (LP), integer programming (IP),

and mixed-integer programming (MIP) models are common techniques for the opti-

mization problems with linear objective and constraints (see Section 2.1.2 for details).

Many past works have used the linear models to represent the resource planning prob-

lems in the cloud [57, 51, 24], since the operating cost objective is linear in the number

of operating machines. Among these works, different constraints are considered to

optimize the cost in different clouds. Speitkamp and Bichler [57] formulate an IP

model to find the cheapest set of servers to satisfy the varying workload in clouds.

They assume the number of customer requests changes in different periods, and the

cloud reallocates the jobs in each period while operating the same set of servers in all

periods. The authors introduce a set of linear constraints to restrict the job reallo-

cation, such as forcing a set of jobs to stay in the same server and limiting the total

number of reallocated jobs. They also introduce multiple heuristics based on the lin-

ear relaxation of the IP model to approximate the optimal solution, since they prove

the IP problem is NP-hard. The work includes an extensive empirical evaluation on

the quality of solutions from different heuristics.

To handle the changes in demands, Sharma et al. [51] reallocate the jobs to

satisfy the new workload, and they call the mechanism “migration”. Moreover, the

authors design their resource planning algorithm to support multiple mechanisms

for reconfiguration: local resizing, replication, and migration. The local resizing

mechanism resizes the server capacities to fit the new resource requirements of the

assigned job. The replication mechanism creates new copies of the jobs with new

resource requirements and loads them to the cloud. The migration mechanism is

similar to the job reallocation mentioned above, which is reassigning the in-process

jobs to new servers. Each mechanism has different sources of cost (see Section III - B

in Sharma et al. [51] for details). The experimental studies compare the algorithms

using different mechanisms or combined mechanisms, and the results demonstrate the

benefits of unifying both replication and migration into a single approach.
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Some clouds have more objectives than only minimizing the cost. Guerout et al.

[24] develop a multi-objective mixed integer non-linear problem to manage the servers

in cloud. The objectives are minimizing the energy consumption and the response

time, and maximizing the robustness and the dynamism. They define the robustness

as the opposite of the average number of jobs in each server, since losing fewer jobs

from a server failure leads to a higher robustness. The dynamism is measured by the

amount of extra space in the operating servers that can be used when a workload peak

arrives. They construct a MIP model to solve the problem with an objective func-

tion as the weighted sum of the multiple objectives. The non-linear constraints are

converted to linear constraints by discretizing a continuous variable and introducing

a set of binary selection variables.

Constraint programming (CP) is a logic based approach that finds feasible solu-

tions for the constraint satisfaction problems (CSP), or the optimal solution when

the problem has an objective to optimize [48]. Compared to the LP problems, the

logic-based CP solver can solve the problems with non-linear constraints and objec-

tive [48]. Fewer studies have used constraint programming model to solve the resource

planning problems in cloud compared to the linear models. Zhang et al. [71] consider

the QoS of the jobs by including the performance satisfaction-level of the jobs in the

objective. The performance satisfaction-level is a non-linear performance evaluation

score based on the actual response time and the desired response time of the job.

Thus, the authors introduce a CP model to solve the non-linear optimization prob-

lem. They also utilize CP to solve the resource planning problems to minimize the

number of operating servers.

Compared to the queueing models, combinatorial models relax the stochastic be-

haviors of the cloud and focus on the deterministic scheduling decision optimization.

To take the advantage of both models, some literature hybridizes the techniques and

applies it to the cloud in multiple stages. These works are discussed in the next

section.

Hybrid Algorithms

In previous sections, we reviewed the works that use either queueing models or combi-

natorial models to solve resource planning problems in cloud. However, neither of the

models can fully represent the cloud by themselves. Queueing models assume that

each queue contains the same service units, where each provides one-to-one services

to the jobs. Thus, the queues either assume each machine processes a single job at

a time, or each machine contains multiple virtual machines that process the same

kind of jobs. Neither of the structures considers the job-to-machine allocation with
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multiple types of jobs. In combinatorial optimization models, the allocation problem

is well studied, but all combinatorial models solve deterministic problems. Hence, the

researchers relax the stochastic behavior in the clouds by using the expected values or

assuming a system with deterministic job arrivals and service lengths to apply com-

binatorial models. Table 2.4 and 2.5 show the problem definitions and the solution

techniques of the works that use hybrid algorithms to overcome these difficulties.

Some queueing studies [26, 66, 56] add additional heuristics to optimize the schedul-

ing decisions based on the performance parameters calculated by the queueing models,

such as the waiting time distribution and the queue length distribution. Guo et al.

[26] construct a load balancing heuristic that tries to maximize the throughput of

the cloud with a job-to-machine assignment based on the server performance scores,

which is the weighted sum of the mean waiting time, queue length, and utilization rate

of each server. Each server has a different service rate, and is modeled by an M/M/n

queue. Wang et al. [66] also assume the cloud contains heterogeneous servers with

different service rates, but they use an M/M/n/C queue to model the queue for each

type of servers. Unlike the M/M/n queue, the M/M/n/C queue rejects new jobs if

the queue length reach the limit C (see Section 2.2.2). Moreover, this work considers

impatient customers, which means the customer requests are cancelled when their

individual maximum waiting time (MWT) is reached. The authors analyze the mean

response time and the loss probability of the jobs with a given load balancing strategy

on different types of servers. Based on the performance analysis, the authors design

a heuristic to approximate the optimal load balancing decision within a reasonable

time, where the objective is to maximize the profit in the cloud.

Song et al. [56] use a two-stage management framework to minimize the operating

cost of the cloud. In the first stage, the jobs arrive to the cloud, and each job contains

multi-class tasks. For example, one job may have computing tasks and display tasks,

and another job contains storage tasks only. The authors use an M/G/n/C queue to

model the tasks in each class, then build a task management algorithm to calculate

the number of virtual machines (VM) required in each queue to satisfy the deadline

of the tasks. In the second stage, the framework solves a variant of multi-dimensional

bin packing problem to pack the VMs into the physical machines (PMs) with the

minimum operating cost. The authors modify four existing heuristics to approximate

the optimal VM allocation: user-directed assignment (UDA), Min-Max, Max-Min,

and the suffrage heuristic (see Section 4.4 in Song et al. [56] for details), since the

multi-dimensional bin packing problem is known to be NP-complete. In the end,

the work shows the simulation results of the management framework with different

heuristics, and compares their performance under different simulation settings.
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In the optimization studies, some metaheuristics are used to solve the optimiza-

tion problems with less computational complexity. Alharbi et al. [3] formulate the

cloud resource planning problem as a constraint satisfaction problem (CSP) with an

objective of minimizing the energy consumption. Then they construct an ant colony

system (ACS) based algorithm to solve the CSP. The ant colony system [16] is a

metaheuristic that searches for the optimal solution by leaving stronger pheromone

on the path to the better solution. Thus, the other ants have a higher probability to

follow the paths leading to good solutions, and explore around them for an improve-

ment. The authors construct the ACS embedded with a new heuristic that updates

the pheromone based on the objective value formulated in the CSP. They show the

usefulness of the new heuristic with some empirical results.

Among the reviewed studies, Tran et al. [60] propose the framework that is closest

to our approach in Chapter 3. They assume the cloud uses servers with different

resource capacities to process the jobs with different resource requirements. The au-

thors introduce a three-stage framework to calculate the optimal scheduling strategy

that maximizes the throughput. The first stage of the framework uses queueing the-

ory to formulate the resource requirements of the jobs as a linear expression with their

arrival rates, then it calculates the optimal resource allocation plan of the servers to

maximize the throughput. In the second stage, the authors generate a set of non-

dominated bins for each server to consider the resource loss from imperfect matching

of the server capacity and the actual usage. Based on the optimal resource allocation

plan in the first stage, each non-dominated bin of a server is a set of the jobs that

have a positive number of resources allocated from the server and their total resource

requirements is less or equal to the server capacity. Non-dominated indicates that

adding any job into the bin will violate the server capacity. Then an LP model is intro-

duced to calculate the optimal job allocation plan to maximize the cloud throughput

by assigning the servers to the optimal non-dominated bins. We borrowed the idea of

bin generation and renamed it as the configuration generation in Section 3.3.3 of the

hybrid framework for the short-term server capacity planning problem. In the final

stage, the framework performs online job scheduling based on the solution from the

second stage.

Overall, most of the works with hybridized algorithms have a more complete view

of the cloud compared to the works with only queueing models or combinatorial

models. This observation motivates us to perform hybridization in Chapter 3.
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Table 2.4: An overview of the problem assumptions in the cloud management literature with
hybrid algorithms.

Literature
Problem Assumptions

Objective Server Job SLA
[26] throughput

optimization
heterogeneous

servers
homogeneous jobs no SLA

[66] profit
maximization

heterogeneous
servers

heterogeneous
jobs with different

patience

response time

[56] cost minimization homogeneous
servers

heterogeneous
jobs

response time

[3] energy
consumption
minimization

heterogeneous
servers

heterogeneous
jobs

no SLA

[60] throughput
maximization

heterogeneous
servers

heterogeneous
jobs

no SLA

Table 2.5: An overview of the solution techniques in the cloud management literature with
hybrid algorithms.

Literature
Solution Techniques

Solution Model Load Balancing Admission Control
[26] load balancing heuristic

based on performance
parameters calculated by

the M/M/n queues

class-agnostic QoS-aware

[66] load balancing heuristic
based on performance

parameters calculated by
the M/M/n/C queues

class-aware QoS-agnostic

[56] M/G/n/C queue for VM
requirement calculation
and heuristics for VM to

PM allocation

class-aware QoS-agnostic

[3] CSP solved by ACS
based algorithm

class-aware QoS-aware

[60] hybrid queueing theoretic
and combinatorial

optimization scheduling
algorithm

class-aware QoS-agnostic
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2.2.3 Long-term Resource Planning Problem

In the long-term, the cloud providers need to make periodic server purchasing de-

cisions to update the cloud capacity to satisfy the changing workload. We call the

problem of computing the optimal server purchasing plan with the minimum cost the

long-term resource planning problems. Unfortunately, none of works have studied

the long-term resource planning problems in clouds while considering the price of

purchasing servers. Roy et al. [49] optimize the machine leasing plans in multiple

periods depending on the workloads, while assuming there are infinite servers ready

for leasing.

The inventory control problem in the manufacturing and service industries has

goals similar to the long-term resource planning problem. The goal of an inventory

control problem is to calculate a periodic order plan for the industries to satisfy their

periodic demands. Some of the works have applied linear programming models to

find the optimal order plan with the minimum cost [21, 27].

Gans and Zhou [21] studied the demands in call centers, which are typical service

industries. The call center has to make hiring plans based on the future demands and

the structure of the call center. The authors use linear programming (LP) models

to calculate the optimal hiring plan with the minimum cost in the call centers with

different structures. They have considered the call centers with or without learning,

turnover, and positive training time. The learning effect represents the changes of

the employee types as an employee may change their type due to the promotion or

the new skills learned. The employees also may quit their positions over time, where

the rate of quitting is denoted by the turnover rate, and new employees require a

training period before they start to provide services. Clouds have similar structures

to the call centers, where the learning, turnover, and training time corresponds the

reconfiguration, break down rate, and setting time of the servers, respectively. Thus,

their work may be adapted to the cloud environment.

The manufacturing industries have to purchase raw materials for their production,

and the products are periodically used to meet demand. Extra products and raw

materials must be stored with some cost. Haksever and Moussourakis [27] propose a

mixed-integer programming (MIP) model to optimize the orders of heterogeneous raw

materials to satisfy the demand of multiple products with the minimum storage cost.

Clouds have similar constraints on reserving the resources for the jobs in different

classes compared to the constraints on splitting the the heterogeneous materials to

multiple products in the manufacturing industries. The authors suggest using MIP

models for the inventory control problems with complicated structures, since MIP

can handle a large number of constraints. However, the constraints increase the
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computational complexity of the MIP model, so the authors implemented a dedicated

MIP solver for the inventory control problems. The numerical results show the MIP

model and the solver are viable tools for the existing inventory control problem.

2.3 Summary

In this chapter, we introduced the theoretical background of queueing models and

combinatorial optimization models. Then we reviewed works on resource planning

problems in cloud. The cloud environment has been studied in many approaches, so

we grouped the studies based on their problem definitions and solution techniques.

By comparing the groups of works, we discuss the different focuses of the different

mathematical models.



Chapter 3

Hybrid Framework for Short-term

Capacity Planning in Cloud

Systems

3.1 Introduction

As the demand for cloud computing increases, cloud service providers require capac-

ity management tools that minimize operating costs while maintaining a promised

quality of service. In past studies [64, 69], authors used a variety of queueing models

to analyze the performance of cloud systems considering the stochastic arrival times

and lifetimes of the arriving jobs. However, typical queueing models do not support

processing multiple simultaneous jobs on a single server. In contrast, studies based on

combinatorial optimization focus on scheduling strategies for jobs [38, 62], where mul-

tiple jobs can be allocated to a single server without exceeding its resource capacity.

Yet, since the combinatorial models are deterministic, the stochastic processes in the

cloud systems are usually simplified through the use of expected values. Moreover,

such point estimates only evaluates the average performance but cannot represent the

stochastic operating details of the system, such as the waiting time distribution and

the queue length distribution. In our problem, the cloud providers are assumed to

maintain a Service Level Agreement (SLA) with their customers to guarantee their

jobs will be processed in a short time. Without the response time distribution, it

is hard to develop combinatorial-based frameworks that would be able to guarantee

SLAs in a stochastic system.

A cloud system typically contains multiple clusters, where each cluster has an

independent pool of servers and jobs. Every server pool consists of multiple types

of servers, where each type has its own resource capacity and operating cost. On

25
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the demand side, customer requests can be clustered into classes of jobs, where jobs

in the same class have the same expected resource requirements, inter-arrival time

distributions, and lifetime distributions that may be calculated based on historical

data. In this work, we focus on generating an optimal set of servers per cluster

according to its workload and a scheduling strategy for the servers that satisfies the

SLA of all jobs.

In order to solve this problem that is hard for both pure queueing models and pure

combinatorial models, we combine them by using the queueing models to find a deter-

ministic resource requirement satisfying a strict SLA in the stochastic cloud systems,

and then pack the resource requirement on servers to form a server requirement. The

packing problem is a multi-dimensional bin packing problem, and combinatorial opti-

mization models, such as integer programming (IP) model, are one of the state-of-art

approaches for this problem. Thus, the framework is described in two stages:

• Stage I: a queueing model is formulated for each class of jobs. Based on the

arrival distribution and lifetime distribution of the jobs, the queueing model

calculates the number of “slots” needed to satisfy the SLA of this class, where

each slot can only serve one job at a time.

• Stage II: a combinatorial model is constructed to solve a multi-dimensional bin

packing problem. The objective is to find the optimal set of servers that have

enough resource capacity to pack all the slots required in Stage I with the mini-

mum operating cost.

3.2 Problem Definition

As the operational cost, such as energy cost, in the cloud systems increases, the

problem of finding the set of servers that minimizes the operating cost while satisfying

the service level agreements (SLA) of all jobs becomes increasingly important. We

name this problem the Short-term Server Capacity Optimization Problem (SSC-OP).

To solve the SSC-OP, we define a two-stage framework to find an optimal set of servers

operating in a cloud system. Moreover, the minimum operating cost solution is used

to represent the short-term operating cost in the long-term model studied in Chapter

5.

Table 3.1 contains the parameters used in this chapter. In this short-term frame-

work, the servers used by the cloud system are not all identical, and the jobs may have

different resource requirements, inter-arrival time distributions, lifetime distributions,

and SLA requirements. We differentiate the servers into different types depending on
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Table 3.1: Notation

Job Parameters
I The set of all job classes.
1
λi

The expected inter-arrival time of jobs in class i, i ∈ I.
1
µi

The expected lifetime of jobs in class i, i ∈ I.

ci The expected CPU requirement of jobs in class i, i ∈ I.
mi The expected memory requirement of jobs in class i, i ∈ I.
(ti, αi) The SLA restricts the probability of a jobs in class i waits for

more than ti must be less than or equal to αi, i ∈ I.
Server Parameters
J The set of all valid server types.
Oj The operating cost of each server in type j, j ∈ J .
Cj The CPU capacity of servers in type j, j ∈ J .
Mj The memory capacity of servers in type j, j ∈ J .
Decision Variables
zj The number of type j servers to operate, j ∈ J .

their CPU capacities, memory capacities, and operating costs. Let J be the set of

server types, then for each server with type j ∈ J , it has a CPU capacity of Cj and

a memory capacity of Mj. The operating cost of this server is denoted by Oj.

With a set of job classes I, we assume the jobs belonging to class i ∈ I arrive to the

cloud system stochastically with inter-arrival times being independent and identically

distributed (i.i.d.). The expected inter-arrival time for the jobs in class i is 1
λi

. The

lifetimes of the jobs in each class i are also assumed to be i.i.d. with a mean of 1
µi

.

Each class i job requires ci amount of CPU and mi amount of memory in expectation.

When jobs arrive to the cloud system, they must be assigned to servers with enough

resources or join a queue. We assume that queues have infinite capacities. The waiting

times of the jobs in class i must follow the SLA of its class: the probability of a job

waits for more than ti time units (we use seconds in this chapter) should be less than

or equal to αi. The SLA of class i can be defined as,

P (Wi > ti) ≤ αi (3.1)

where Wi is the random variable that corresponds to the waiting time of the jobs in

class i.

The main challenge is to make a deterministic decision on the number of servers

of each type to operate while minimizing the cost of the underlying stochastic system

and guaranteeing SLAs. We design this framework to split the stochastic side and

the deterministic side of the SSC-OP into two subproblems, and then solve each of

them with dedicated models.
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3.3 Hybrid Framework for Short-term Server Capacity Op-

timization

3.3.1 Two Stage Framework with Service Slots

In order to solve the SSC-OP, we propose a framework that combines queueing models

and combinatorial models. This framework contains two stages: stage I uses queueing

theory to quantify the resource requirements based on the stochastic workload; stage

II applies combinatorial optimization to find an optimal server plan.

Queueing theory studies the performance of a system with stochastic processes,

such as the waiting queue in call centers or banks [7, 36]. However, most queueing

models assume each agent serves one customer at a time, which means the servers

in cloud systems cannot be modelled directly: cloud systems allow each server to

execute multiple jobs simultaneously provided server capacity is respected. Thus, we

introduce the notion of service slots to represent the basic agents in queues where

each slot processes at most one job at a time. More specifically, each service slot is a

unit of capacity reserved in an arbitrary server, which has a resource capacity for one

job only. Service slots for different job classes have different sizes, since the jobs in

different classes have different resource requirements. For example, suppose that jobs

in class i require 4GB of memory and 2 CPU cores in expectation, then the service

slot for jobs in class i will be a package of 4GB memory and 2 CPU cores reserved on

an arbitrary server. We assume the the jobs in the same class have the same resource

requirements that equal to the expectation. The server operating plan produced by

the framework introduced later can guarantee the SLAs of all jobs assuming each job

can fit into a slot for its class. However, the assumption is not always satisfied in

practice. We can set the size of service slot to match the largest resource requirement

of the jobs in each class. With this naive strategy, we spend additional resources to

guarantee the SLAs of all jobs.

Using service slots, we are able to connect the resource requirement solution from

the queueing models to a combinatorial model and obtain the server requirements

as the final result. In the second stage, a combinatorial model is used to assign

each slot to an operating server. There are two main decisions in the combinatorial

model: the set of operating servers and the set of service slots assigned to each server.

We will introduce an integer programming (IP) model in Section 3.3.3 to solve this

multi-dimensional bin packing problem.
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3.3.2 Stage I: Queueing Model

In this stage, we use a queueing model to calculate the number of service slots needed

to satisfy specific service level agreements (SLAs). We experiment two formulations

of the queueing model: an M/M/n queue and a GI/GI/n queue. Each formulation

has different assumptions on the inter-arrival time and lifetime distributions of the

jobs (see Section 2.1.1). Recall that in the problem definition of the SSC-OP, we have

different SLAs for jobs in different classes. Thus, we build separate queueing models,

one per job class, to find the minimum number of service slots for each class. In our

work, we apply M/M/n queues and GI/GI/n queues as a starting point, since they

both are well-studied queues with known waiting-time distributions. In future work,

we can replace stage I by a more sophisticated queueing model, and the framework

should not be affected as long as the queueing model produces the minimum service

slot requirements to satisfy the SLAs.

Waiting Time Distribution

Recall that the jobs in class i have expected inter-arrival time represented by 1
λi

,

expected lifetime of 1
µi

, and that the SLA restricts the probability of these jobs waiting

for more than ti seconds to less than or equal to αi, as defined in Equation 3.1.

The SLA can be verified through the waiting time distribution of the queue. Sup-

pose we have a function PW ( 1
λi
, 1
µi
, ti, ni) which represents the probability that a job

waits more than ti seconds in the queue for class i with ni service slots. Such func-

tions for M/M/n queue and GI/GI/n queue are presented in Section 2.1.1. Thus,

si, the minimum number of service slots needed for the class i jobs can be defined as

the following,

si = min

{
ni ∈ Z+|PW

(
1

λi
,

1

µi
, ti, ni

)
≤ αi

}
.

The queueing models calculate the steady state waiting time distributions of the

queue. In practice, the jobs arrive and leave the cloud with a high frequency (shown

in the dataset experimented in Chapter 4), so the cloud system reaches the steady

state in a short time. Moreover, we make the server management decisions while the

cloud is operating. Thus, it is reasonable to assume the cloud is in a steady state

when we apply the management decisions.

Note the si cannot be calculated directly since there are factorials in the waiting

time distribution calculations, which do not have inverse functions. Therefore, we use

a binary search Algorithm 1 to obtain si. The parameters 1
λi
, 1
µi
, and ti are constants

in the queue of jobs from a single class i, so we use a function p(n) to calculate the
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probability of delay exceeding ti in the queue for class i with n slots, where

p(n) = PW

(
1

λi
,

1

µi
, ti, n

)
.

The minimum service slots required by the cloud system {si}i∈I will be the input to

Algorithm 1 Binary Search for Minimum Service Slot Requirement

max← 1
min← 0
while p(max) > αi do

min← max
max← max ∗ 2

end while
while max−min > 1 do

mid← (max+min)/2
if p(mid) ≤ αi then

max← mid
else

min← mid
end if

end while
return max

the combinatorial mode in the second stage.

3.3.3 Stage II: A Combinatorial Model for Service Slot Packing

Configurations

With the service slot requirements calculated by the queueing models, we aim to find

the cheapest set of servers that have sufficient capacity to pack all service slots. This

problem is a variant of the VSBPP with variable costs (see Section 2.1.3), where we

have two independent weights for each item: CPU and memory requirements. Corre-

spondingly, each server has two independent capacities: CPU and memory capacities.

To consider all possible combinations of service slots in each server with two factors,

we introduce server configurations as vectors describing the number of service slots of

each job class in the servers. We define a configuration v = (v1, v2, ..., v|I|) ∈ Z|I|+ that

contains vi class i service slots for i ∈ I. Configuration v is valid for type j ∈ J servers

if and only if Cj ≥
∑

i∈I civi and Mj ≥
∑

i∈I mivi. For example, suppose there are

three classes of jobs, then a configuration (3, 1, 1) contains three class 1 service slots,

one class 2 service slot and one class 3 service slots. The total CPU requirement of

this configuration is 3c1 +c2 +c3, and the memory requirement is 3m1 +m2 +m3, and

this configuration is valid only for the servers that have sufficient resource capacity

(i.e. Cj ≥ 3c1 + c2 + c3 and Mj ≥ 3m1 +m2 +m3).
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Servers with the same type have the same resource capacity, so the set of valid

server configurations is identical for the same type of servers, which can be defined

as,

Bj =

{
v = (v1, ..., v|I|)|

∑
i∈I

civi ≤ Cj ∧
∑
i∈I

mivi ≤Mj

}
, ∀j ∈ J

where J is the set of server types.

Each server will be assigned to a valid configuration by the combinatorial model

that calculates the optimal set of servers. However, each type of servers may have

a large set of valid configurations to choose from, which significantly increases the

problem size. The goal of the combinatorial model is to use as few servers as possible

to pack all the service slots needed, which means a configuration that allows the

server to pack more service slots is always preferred. With this observation, we can

decrease the size of the combinatorial model by removing the configurations that are

less efficient. We define that a server configuration v̄ dominates another configuration

v if and only if ∀i ∈ I, v̄i ≥ vi. By this definition, we can always assign the server

to a dominant configuration to pack more service slots. Thus, the choices of server

configurations can be reduced to the set of non-dominated service configurations,

which is defined as,

B̄j = {v̄|v̄ ∈ Bj, ∀v ∈ Bj,v 6= v̄⇒ ¬(∀i ∈ I, vi ≥ v̄i)}. ∀j ∈ J

Integer Programming Model

There are many types of combinatorial models available for the packing problems

in this stage, including integer programming (IP) model, constraint programming

(CP) model, satisfiability (SAT), and some dedicated packing problem solvers [23,

47, 55]. The goal of the packing problem is to find the number of servers and their

configurations to satisfy the service slot requirements with the minimum operating

cost. Specifically, each server contributes a number of service slots depending on its

configuration, and the summation of the service slots from all servers must exceed

the service slot requirement. These constraints are naturally expressed as linear

inequalities, so it is easy to construct an IP model for this problem. Based on some

past studies [2, 72], IP models are strong on reasoning about the linear relationship

across all constraints, the strength of CP models comes with their specific structured

global constraints, and SAT performs better on the problems with binary decisions.

Therefore, we choose to use an IP model (see Section 2.1.2) in this chapter as a

starting point, and leave the CP model with specialized global constraints as future

works.
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Consider the problem in this stage: the IP model should decide on the number of

operating servers from each type and their configurations, so the decision variable are

as follows,

Decision Variables:

zj The number of operating servers of type j, ∀j ∈ J
xjv The number of servers in type j that operate in configuration v. ∀j ∈ J,v ∈

B̄j

With the decision variables, the full IP model is as follows.

Integer Programming Model:

min
∑
j∈J

Ojzj (3.2)

s.t.
∑
j∈J

∑
v∈B̄j

vixjv ≥ si, ∀i ∈ I (3.3)

∑
v∈B̄j

xjv = zj, ∀j ∈ J (3.4)

zj ∈ Z+, ∀j ∈ J (3.5)

xjv ∈ Z+. ∀j ∈ J,v ∈ B̄j (3.6)

In this IP model, constraints 3.3 enforce that all service slots required by each class

of jobs are packed into some server. Constraints 3.4 make sure that each server is

assigned to at most one configuration. The objective of this IP model is to minimize

the total operating cost of the servers while satisfying other constraints.

Constraints 3.5 and 3.6 are domain constraints for the decision variables. Con-

straints 3.5 force the number of servers to be an integer. The numbers of servers that

are assigned to each configuration are also required to be integers, which is enforced

by the set of constraints 3.6.

Linear Relaxation

For the IP models, the computational complexity of the model is in the worst-case

exponential in the number of integer variables. In the model above, we used |J | +∑J
j=1 |B̄j| integer variables. According to the definition of the set of non-dominated

configurations {B̄j}j∈J , the cardinality may grow exponentially with respect to the

number of job classes. Thus, as the number of job classes increases, it will become
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impossible to solve the model within a reasonable amount of time. In the experiment,

we show the run-time of the IP model grows quickly as the problem size increases.

In order to reduce the computational complexity of the IP model, we relax the

integer variables zj and xjv to continuous variables z̄j and x̄jv, so the IP model be-

comes a linear programming (LP) model.

Linear Programming Model:

min
∑
j∈J

Oj z̄j (3.7)

s.t.
∑
j∈J

∑
v∈B̄j

vix̄jv ≥ si, ∀i ∈ I (3.8)

∑
v∈B̄j

x̄jv = z̄j, ∀j ∈ J (3.9)

z̄j ∈ R+, ∀j ∈ J (3.10)

x̄jv ∈ R+, ∀j ∈ J,v ∈ B̄j (3.11)

Consider the optimal solution given by the linear relaxation {z̄∗j , x̄∗jv}j∈J,v∈B̄j
. This

optimal solution of the relaxation cannot be used as a capacity plan in the cloud

system, since we cannot operate a half of server with half of its cost. In order to

make the solution valid, we need a rounding strategy for the relaxed solutions. We

implemented two different rounding strategies: Rounding by Ordering and Rounding

by LP Remodeling.

Rounding by Ordering

In this rounding strategy, we try to make the least change on the number of operating

servers suggested by the linear relaxation. First, we round up the number of servers

that should be operating, and the rounded solution becomes

ẑ∗j = dz̄∗j e. ∀j ∈ J

Suppose we round down all of the configuration variables {x̄∗jv}, then for the servers

in each type j, there are qj = ẑ∗j −
∑

v∈B̄j
bx̄∗jvc servers that do not have an assigned

configuration. To decide the configurations for those servers, we sort the variables

{x̄∗jv}v∈B̄j
by their fractional value (x̄∗jv − bx̄∗jvc) in non-decreasing order and with

the variables with the same fractional value ordered arbitrarily. Suppose δj(x̄
∗
jv)

represents the index of the variable x̄∗jv in such order, then the variables in set {x̄∗jv|v ∈
B̄j, δj(x̄

∗
jv) ≤ qj} are rounded up, and the rest of the configuration variables {x̄∗jv|v ∈



34 CHAPTER 3. HYBRID FRAMEWORK FOR SHORT-TERM CAPACITY PLANNING IN CLOUD SYSTEMS

B̄j, δj(x̄
∗
jv) > qj} are rounded down. Notice if the number of servers without a

configuration is greater than the total number of configurations (i.e. qj > |B̄j|), then

assigning these servers one-to-one to configurations cannot guarantee a configuration

for all servers. In Theorem 3.2, we prove that this will never happen in the LP

solution.

Lemma 3.1. d
∑K

k=1 nke ≤
∑K

k=1dnke,∀K ∈ Z+, ∀k ∈ {1, 2, ..., K}, nk ∈ R.

Proof. Note this lemma is well known (e.g., [41]), we present the proof here for com-

pleteness. The lemma is proved by induction.

Base Case: k = 1

dn1e = dn1e

Induction Step: Assume d
∑K

k=1 nke ≤
∑K

k=1dnke, K ∈ Z+.

Consider the summation with an additional item nk+1 ∈ R,
∑K+1

k=1 nk.

Let m1 =
∑K

k=1 nk − b
∑K

k=1 nkc, m2 = nK+1 − bnK+1c.
Notice 0 ≤ m1,m2 < 1, if m1 = m2 = 0,

d
K∑
k=1

nke+ dnK+1e =
K∑
k=1

nk + nK+1

= d
K+1∑
k=1

nke.

If m1 = 0,m2 > 0 or m1 > 0,m2 = 0,

d
K∑
k=1

nke+ dnK+1e = b
K∑
k=1

nkc+ bnK+1c+ 1

= b
K∑
k=1

nkc+ bnK+1c+ dm1 +m2e

= d
K+1∑
k=1

nke.
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If m1 > 0,m2 > 0 and m1 +m2 ≤ 1,

d
K∑
k=1

nke+ dnK+1e = b
K∑
k=1

nkc+ 1 + bnK+1c+ 1

= b
K∑
k=1

nkc+ bnK+1c+ 2

> b
K∑
k=1

nkc+ bnK+1c+ dm1 +m2e

= d
K+1∑
k=1

nke.

If m1 > 0,m2 > 0 and 1 < m1 +m2 ≤ 2,

d
K∑
k=1

nke+ dnK+1e = b
K∑
k=1

nkc+ 1 + bnK+1c+ 1

= b
K∑
k=1

nkc+ bnK+1c+ 2

= b
K∑
k=1

nkc+ bnK+1c+ dm1 +m2e

= d
K+1∑
k=1

nke.

Thus, in all cases, d
∑K

k=1 nke + dnK+1e ≥ d
∑K+1

k=1 nke. According to the assumption

d
∑K

k=1 nke ≤
∑K

k=1dnke,

d
K+1∑
k=1

nke ≤ d
K∑
k=1

nke+ dnK+1e ≤
K+1∑
k=1

dnke.

Theorem 3.2. For any server type j, the number of unassigned servers qj is always

less than or equal to the total number of non-dominated configurations |B̄j|.

Proof. Consider an arbitrary server type j ∈ J . By definition,

qj = ẑ∗j −
∑
v∈B̄j

bx̄∗jvc

= d
∑
v∈B̄j

x̄∗jve −
∑
v∈B̄j

bx̄∗jvc.
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By Lemma 3.1

≤
∑
v∈B̄j

(dx̄∗jve − bx̄∗jvc)

≤
∑
v∈B̄j

(bx̄∗jv + 1c − bx̄∗jvc)

=
∑
v∈B̄j

1

= |B̄j|.

However, with this rounding strategy, the rounded solution is not guaranteed to

be feasible for the original IP problem, since rounding down some of the configuration

variables might violate the service slot requirements. According to the experiment in

a previous study in a similar context [60], the gap between the provided slots and the

demanded slots is insignificant compared to the total slot requirements, since most

servers are properly configured by the relaxed solution when the number of operating

servers is large.

Now we consider the additional cost caused by the rounded linear relaxation so-

lution compared to the solution from the original IP model. Suppose the optimal

solution of the original IP model is {z∗j , x∗jv}j∈J,v∈B̄j
. Notice that this solution is

feasible for the linear relaxation, which means,∑
j∈J

Oj z̄
∗
j ≤

∑
j∈J

Ojz
∗
j . (3.12)

Thus, the extra cost of the rounded linear relaxation solution is an upper bound

of the total operating cost of each server type.

Theorem 3.3. The cost difference between the linear relaxation solution and the

optimal integer solution is bounded by the total operating cost of each server type, i.e.∑
j∈J

Oj ẑ
∗
j −

∑
j∈J

Ojz
∗
j ≤

∑
j∈J

Oj.

Proof.
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According to Equation 3.12∑
j∈J

Oj ẑ
∗
j −

∑
j∈J

Ojz
∗
j ≤

∑
j∈J

Oj ẑ
∗
j −

∑
j∈J

Oj z̄
∗
j

=
∑
j∈J

Ojdz̄∗j e −
∑
j∈J

Oj z̄
∗
j

≤
∑
j∈J

Oj(dz̄∗j e − z̄∗j )

≤
∑
j∈J

Oj.

As the number of operating servers increases, the operating cost calculated by the

LP model will get relatively closer to the operating cost from the IP model. Therefore,

the LP model can produce reasonable approximations for the optimal server capacity

plans in large cloud systems.

Rounding by IP Remodeling

As noted, the previous rounding strategy does not guarantee the service slot require-

ments are satisfied. Thus, we introduce a new rounding strategy for the continuous

solutions that guarantees satisfaction of the service slot requirements.

Consider the optimal solution given by the linear relaxation {z̄∗j , x̄∗jv}j∈J,v∈B̄j
. Ac-

cording to our experiments, the number of configurations that are used in the solution

are much smaller than the number of all non-dominated configurations in every server

type. Based on this observation, we re-solve the problem with the subset of used server

types Ĵ and the subsets of used configurations B̂j in each class j ∈ Ĵ .

Ĵ = {j ∈ J |z̄∗j > 0}, (3.13)

B̂j = {v ∈ B̄j|x̄∗jv > 0}. ∀j ∈ Ĵ (3.14)
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Then we can reformulate the IP model as

min
∑
j∈Ĵ

Oj ẑj (3.15)

s.t.
∑
j∈Ĵ

∑
v∈B̂j

vix̂jv ≥ si, ∀i ∈ I (3.16)

∑
v∈B̂j

x̂jv = ẑj, ∀j ∈ Ĵ (3.17)

ẑj ∈ Z+, ∀j ∈ Ĵ (3.18)

x̂jv ∈ Z+, ∀j ∈ Ĵ ,v ∈ B̂j (3.19)

This new IP model can be considered as the model with additional constraints

that set the variables {zj|j ∈ J\Ĵ} and {xjv|j ∈ Ĵ ,v ∈ B̄j\B̂j} to be zeros compared

to the original IP model. Notice the new IP model is guaranteed to be feasible, which

can be proved as the follows.

Theorem 3.4. The reduced IP model (3.15)-(3.19) has a feasible solution with any

Ĵ and B̂j, such that

Ĵ = {j ∈ J |z̄∗j > 0}, (3.20)

B̂j = {v ∈ B̄j|x̄∗jv > 0}, ∀j ∈ Ĵ (3.21)

where {z̄∗j , x̄∗jv}j∈J,v∈B̄j
is an optimal solution of the LP model (3.7)-(3.11).

Proof. Consider an optimal solution {z̄∗j , x̄∗jv}j∈J,v∈B̄j
of the LP model (3.7)-(3.11).

We know that for all job class i ∈ I, there exist a type of servers ji ∈ J that use a

configuration vi with vii > 0 in the optimal solution, which is

∀i ∈ I,∃ji ∈ J,vi ∈ B̄ji , s.t. v
i
i > 0 ∧ x̄∗jivi > 0.

Otherwise, the optimal solution cannot provide any service slot to some job classes,

so the solution is no longer feasible, which contradicts our assumption. Then by

Equations 3.20 and 3.21, we know ji ∈ Ĵ and vi ∈ B̂ji . Thus, we can construct a

feasible solution {ẑj, x̂jv}j∈Ĵ ,v∈B̂j
for the reduced IP model (3.15)-(3.19), where

x̂jv =

si, If ∃i ∈ I,v = vi

0, Otherwise
, ∀j ∈ Ĵ ,v ∈ B̂j (3.22)

ẑj =
∑
v∈B̂j

x̂jv. ∀j ∈ Ĵ (3.23)
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To verify the solution is feasible, we check all the constraints in the reduced IP model

(3.16)-(3.19). By the definition of configurations, we know vi ∈ Z|I|+ for all i ∈ I, so

vii > 0⇒ vii ≥ 1. Thus, we have∑
j∈Ĵ

∑
v∈B̂j

vix̂jv ≥ vii · x̂jivi

≥ 1 · x̂jivi

≥ si, ∀i ∈ I

so the set of constraints (3.16) is satisfied. The set of constraints (3.17) is directly

implied by Equation 3.23. The domain constraints (3.18)-(3.19) are satisfied since

the solution only contains positive integers. Therefore, {ẑj, x̂jv}j∈Ĵ ,v∈B̂j
is a feasible

solution for the reduced IP model (3.15)-(3.19).

Thus, there exist the optimal solution {ẑ∗j , x̂∗jv}j∈Ĵ ,v∈B̂j
, which is always a feasible

solution for the original IP model with zeros on all of the undefined variables. There-

fore, {ẑ∗j , x̂∗jv}j∈Ĵ ,v∈B̂j
guarantees the satisfaction of the service slot requirements, and

its objective value upper bounds the optimal objective value of the original IP.

3.4 Experimental Results

We perform multiple experiments for different parts of our framework. We first run

a set of simulations that mimic the job arrivals and service events in cloud systems

with different assumptions on their distributions. We compared the quality of the

solutions from M/M/n models and GI/GI/n models in different simulations to find

the best model in each case. Secondly, we want to evaluate the run-time of the

combinatorial models with different problem sizes, and the accuracy of the rounded

LP solution as an approximation. We therefore compare the LP solutions with two

rounding strategies: ordering and IP remodeling (Section 3.3.3). According to the

experimental results, compared to the ordering strategies, the LP model with the

IP remodeling strategy produces a better solution in all problem instances while

satisfying the service slot requirements. With this observation, we apply the two

combinatorial models: the IP model and the LP model with IP remodeling rounding

strategy, to the problems with different sizes. In the end, we compare the run-time of

the full framework with different models. Moreover, since the approximation errors

from the GI/GI/n queueing model and the rounded LP combinatorial model both

affect the solution of the framework, then we want to observe the performance of the

solution with this combined error. Thus, we test the solution produced by the full
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framework on a simulator that mimics the cloud system with multiple job classes.

3.4.1 Queueing Model Experiments

We have introduced two types of queueing models to represent the cloud system:

M/M/n queues and GI/GI/n queues. To understand the performance of the queue-

ing model solutions in different types of queue, we implemented two types of simu-

lators that match the assumptions of M/M/n queues and GI/GI/n queues. Each

simulator simulates the queue of jobs in one class, since our framework uses one

queueing model per job class to calculate its service slot requirement. The simulator

assigns the jobs to a number of service slots based on the solution from the queueing

model. The inter-arrival times and lifetimes of the jobs in the M/M/n simulators

are generated from exponential distributions. In contrast, GI/GI/n simulators use

lognormal distributions to generate the inter-arrival times and lifetimes of the jobs.

A set of queue instances are generated to test the queueing models under different

parameters: inter-arrival time distribution, lifetime distribution, and Service Level

Agreement (SLA). We want to verify the quality of the M/M/n solution and the

GI/GI/n approximation in different environments by observing the job waiting time

in the simulations. In the queue instances, we set the expected inter-arrival time
1
λ

= 1
2

second, with different expected lifetime 1
µ
∈ {40, 80, 120, 160} seconds. The

standard deviations of the inter-arrival time and the lifetime are sd × 1
λ

and sd × 1
µ

respectively, where sd ∈ {2, 4, 8}. The graphs from these different settings have

similar behavior, so we present the graphs with 80 seconds expected lifetime and sd

equal to 4. The other figures are presented in Appendix B. With these settings, as

the SLA changes, the number of service slots required by the M/M/n models and

GI/GI/n models changes.

In Figure 3.1, we compare the service slot requirements calculated by different

models as the SLA changes. The red line and the blue line represent the service slot

requirements calculated by the M/M/n model and the GI/GI/n model respectively.

However, the solution of the GI/GI/n model approximates the minimum number of

service slots required for a desired SLA (see Section 2.1.1), so we use a simulation

method that finds a solution by increasing the number of service slots in the GI/GI/n

simulator until the SLA is satisfied. The green line depicts the solution obtained from

the GI/GI/n simulation method. This solution is considered as the minimum service

slot requirement for the GI/GI/n queue, since Figure 3.3 shows the performance

of the simulation with the solution is close to the SLA limit. The grey dashed line

in Figure 3.1 represents the offered load, which is λ
µ
. If the number of service slots

for a class is less than the offered load, then the queue size will keep increasing as
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Figure 3.1: The number of service slots required by different models as the upper bound on the
probability of a job waits for more than 10 seconds changes.

the system operates, leading to an unstable system. With this lower bound on the

number of service slots required by the system, the M/M/n model solution seems

to be reasonable since it approaches the offered load as the SLA becoming less re-

stricted, and it grows exponentially when the probability of delay approaches zero.

However, the solution of the GI/GI/n model does not approach the offered load as

the SLA becoming less restricted and always over estimates the number of service

slots required. This is caused by the approximation error from the GI/GI/n model.

Recall Equation 2.1

PWM/M/n

(
1

λ
,

1

µ
, t, n

)
= γ(ρ, n)e−(n−ρ)µt,

and Equation 2.4

PWGI/GI/n

(
1

λ
,

1

µ
, t, n

)
≈ 1

µ
γ(ρ, n) exp

(
−(n− ρ)µt · 2

C(A)2 + C(L)2

)
.

Notice the waiting time distribution approximation of the GI/GI/n system (Equation

2.4) contains an additional factor 1
µ

(mean lifetime) compared to the waiting time

distribution of the M/M/n (Equation 2.1). Thus, with a large lifetime (80 in Figure

3.1), the GI/GI/n model always approximates a larger probability of delay compared
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Figure 3.2: The probability of a job waiting for more than 10 seconds in the M/M/n
environment system with number of service slots calculated by different models as the upper
bound on the probability of a job waits for more than 10 seconds changes.

to the M/M/n model while other parameters are kept the same. Based on the

observation in Figure 3.1, as the SLA becomes more restricted, the GI/GI/n model

approximation approaches the result from the GI/GI/n simulation method, which

suggests the accuracy of the approximation is increasing as the system becomes more

restricted.

Figure 3.2 shows the performance of using the solutions from the M/M/n model

and the GI/GI/n model in the simulated cloud system with M/M/n environment.

The simulations run for 1,000,000 seconds, so each simulation is expected to have

2,000,000 jobs. The inter-arrival times and lifetimes of the jobs are obtained from

exponential distributions in an M/M/n environment. The red line and the blue line

in Figure 3.2 depict the probability of a job waits for more than 10 seconds in the

simulations that have their number of service slots calculated by the M/M/n model

and the GI/GI/n model respectively. The grey line shows the maximum allowance

on the probability of more than 10 seconds delay by the SLA. Thus, if the probability

of delay observed in the simulation is above the grey line, then the SLA is violated in

that simulation. As the graph shows, both models find a number of service slots that

satisfies the SLA in all simulations. The solution from the M/M/n model is preferred

for the M/M/n system since it is closer to the minimum number of service slots that
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Figure 3.3: The probability of a job waiting for more than 10 seconds in the GI/GI/n
environment with the number of service slots calculated by different models as the upper bound on
the probability of a job waits for more than 10 seconds changes.

satisfies the SLA compared to the solution from the GI/GI/n model.

Figure 3.3 shows the performance of the solutions from the M/M/n model and the

GI/GI/n model in the simulated cloud system with GI/GI/n environment. The sim-

ulations run for 1,000,000 seconds, with around 2,000,000 jobs. The inter-arrival times

and lifetimes of the jobs are generated from lognormal distributions in a GI/GI/n

environment. The red line, the blue line, and the green line in Figure 3.2 depict the

probability of a job waits for more than 10 seconds in the simulations that have their

number of service slots calculated by the M/M/n model, the GI/GI/n model, and

the GI/GI/n simulation method respectively. The grey line shows the maximum

allowance on the probability of more than 10 seconds delay by the SLA, so the sim-

ulations with their probability of delay above the grey line violate the SLA. In the

GI/GI/n system, the solutions calculated by the M/M/n model cannot guarantee

the SLA in any of the experimental conditions, since the standard deviations of the

inter-arrival times and the lifetimes are greater than the standard deviations in ex-

ponential distributions, which is expected by the M/M/n model. As expected, the

simulation with the solution calculated by the GI/GI/n simulation method has a

performance closest to the SLA limit, since this method is based on the same simu-

lation as the one in the experiment to obtain the solution. However, the simulation
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Table 3.2: Cost Comparison on Different Rounding Strategies

Problem Sizes Ordering IP Remodelling
(|I|, |J |) Optimality Gap Feasibility Optimality Gap Feasibility Run-time
(20, 20) 0.0078% No 0.0078% Yes 3.156ms
(20, 30) 0.0084% Yes 0.0084% Yes 1.503ms
(20, 40) 0.0364% Yes 0.0189% Yes 3.636ms
(20, 50) 0.0307% No 0.0087% Yes 3.861ms
(20, 60) 0.0125% No 0.0125% Yes 1.719ms
(30, 20) 0.0047% No 0.0047% Yes 2.937ms
(40, 20) 0.0047% No 0.0143% Yes 17.423ms

method requires an adjustment to the simulation to be applicable on the queue with

different inter-arrival time and lifetime distributions. Fortunately, the solutions ap-

proximated by the GI/GI/n model always satisfy the SLA in the GI/GI/n system,

and the approximation error reduces as the SLA becomes more restricted.

With these observations, we conclude theM/M/nmodel outperforms theGI/GI/n

model in the cloud systems with the inter-arrival time and lifetime of jobs follow expo-

nential distributions, which is the assumption of the M/M/n queues. When the inter-

arrival time and lifetime of jobs in the cloud system follow some other distributions,

the GI/GI/n model would produce a better solution, and this solution approaches

to the minimum service slot requirement as the SLA becomes more restricted.

3.4.2 LP Relaxation with Different Rounding Strategies

In Table 3.2 and Table 3.3, we experimented with the combinatorial models on the

same set of problem instances. The set contains 5 problem instances in each problem

size, where the numbers of job classes (|I|) and the number of server types (|J |) are

shown in the “(|I|, |J |)” column. The number of service slots required by each class

is set to be 800, and each server has enough capacity for dozens to a hundred jobs.

We used C++ to generate the configurations of all server types, with a 3GB upper

bound on the memory required by the configurations. The LP and IP models were

solved by Gurobi 9.5.1. with a time limit of 300 seconds

We introduced two rounding strategies for the LP model in Section 3.3.3. Table

3.2 shows the comparison of the two strategies in our experiments. The optimality

gap is calculated by comparing the rounded solution with the optimal solution of the

linear relaxation, since the linear relaxation provides a lower bound on the optimal

cost of the IP model (3.2)-(3.6).

Optimality Gap =
Rounded Cost - Linear Relaxation Cost

Linear Relaxation Cost
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The “Feasibility” column in Table 3.2 indicates whether the rounded solution is fea-

sible for the IP model (3.2)-(3.6) or not, and the “Run-time” column corresponds to

the time spent solving the reduced IP model for rounding.

According to these results, reconstructing the reduced IP model and solving it takes

an insignificant amount of time, and the solution cost is very close to the theoretical

lower bound of the original IP model (Optimality Gap < 0.02%). In contrast, the LP

solution rounded by ordering has a larger cost and cannot guarantee the service slot

requirements. Therefore, we chose the IP remodeling strategy for the LP models in

later experiments.

3.4.3 Combinatorial Model Experiments

The two types of the combinatorial models we use in the experiments are the IP

model and the LP model with rounding. We are interested in the different run-times

of the two models and the optimality gap of their solutions compared to the optimal

solution. Based on the observations from Table 3.2, we decided to use IP remodelling

as the rounding strategy for the LP model, since it calculates a lower cost within a

short time.

Table 3.3 shows the average results of running the experiment with the problem

instances with different sizes. The “Problem Sizes” section shows the number of

classes (|I|) and the number of types (|J |) in the problem instances. With each

problem size, we generate 10 problem instances. Then the average time spent on

generating the non-dominated configurations of all servers is presented in “Config

Time”, and the average number of non-dominated configurations is shown in “Config

Size”. The “Reduced Config Size” shows the average number of configurations used

in the LP optimal solution and the reduced IP model. In the experimental results of

each model, “Run-time” is the average time taken to solve the combinatorial model.

The run-time of the LP model with IP remodeling is separated into two parts: the

run-time of the LP model (“LP Run-time”) and the run-time of solving the reduced IP

model (“IP Run-time”). The optimality gap is calculated with respect to the optimal

solution of the IP model, that is Optimality Gap = reduced IP Solution−IP Solution
IP Solution

, since

the IP finds an optimal solution in all instances.

Similar to the observations in Table 3.2, Table 3.3 shows the reduced IP model

takes an insignificant amount of time compared to the run-time of the LP model. This

is not surprising by considering the great reduction in the number of configurations

(millions to hundreds) for the reduced IP model. In all problem instances, the LP

model with the reduced IP model uses less time than the pure IP model, and finds

feasible solutions that are very close to the optimal (optimality gap ≤ 0.011%) in all
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Table 3.3: Run-time and Cost Comparison on Combinatorial Models with Different Problem Sizes

Problem Sizes IP Model LP Model with reduced IP model
(|I|, |J |) Config Time Config Size Run-time Reduced Config Size Run-time LP Run-time IP Run-time Optimality Gap
(20, 20) 0.744s 0.66 million 5.09s 156 1.99s 1.99s 0.0032s 0.0067%
(20, 30) 1.114s 1.05 million 7.29s 182 4.15s 4.15s 0.0015s 0.0010%
(20, 40) 1.248s 1.21 million 4.03s 193 2.44s 2.43s 0.0036s 0.0107%
(20, 50) 1.052s 1.00 million 2.25s 185 1.67s 1.67s 0.0039s 0.0068%
(20, 60) 1.643s 1.59 million 6.32s 201 4.88s 4.88s 0.0017s 0.0000%
(30, 20) 5.347s 4.16 million 26.96s 326 14.90s 14.90s 0.0029s 0.0052%
(40, 20) 35.084s 18.97 million 125.16s 552 85.73s 85.72s 0.0174s 0.0096%

Table 3.4: Run-time and Cost Comparison on the Framework in Different Modes with Changing
Number of Server Types.

Problem Sizes GI/GI/n− IP GI/GI/n − Reduced IP
Number of Types Config Time Config Size Run-time Reduced Config Size Run-time Optimality Gap

30 3.089s 2.3 millions 51.90s 359 16.93s 0.0078%
40 4.060s 3.0 millions 30.43s 316 13.05s 0.0057%
50 5.249s 4.1 millions 308.86s 421 120.11s 0.0000%
60 6.008s 4.7 millions 308.75s 402 103.99s 0.0000%

cases. However, the run-time of the combinatorial models in our experiments are not

close to the time limit of the solver. The bottleneck that limits the size of problem

instances is the size of the configurations. Developing heuristics to reduce the size of

the configuration set is an interesting direction of future works.

3.4.4 Full Framework Experiment

In order to test the entire framework, we generated a set of 36 job classes. Let

the jobs in each class i have an expected inter-arrival time of 1
λi

seconds with a

standard deviation of sdi
µi

seconds. The expected lifetime of the jobs in class i is
1
µi

with a standard deviation of sdi
µi

. The SLA of class i restricts the probabil-

ity that a class i job waits for more than 10 seconds to less than or equal to αi.

The
(

1
λi
, 1
µi
, sdi, αi

)
settings of these 36 job classes are the Cartesian product of

{0.3, 0.9, 1.5} × {70, 170, 270} × {2, 4} ×
{

1
80
, 1

20

}
. We experimented with the frame-

work in two modes: GI/GI/n queueing models with IP optimization and GI/GI/n

queueing models with the reduced IP model. We decided to use the GI/GI/n model

to approximate the service slot requirements since it approximates a solution that

satisfies the SLA with fewer assumptions on the job behaviors in cloud systems com-

pared to the M/M/n models. With different number of server types, the run-times of

the framework and the optimality gaps of the server set solution from different mode

of framework are shown in the Table 3.4.

In Table 3.4, the optimality gap is calculated with respect to the solution of

GI/GI/n− IP model, i.e. Optimality Gap = Reduced IP Solution−Original IP Solution
Original IP Solution

. Sim-
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Table 3.5: Upper Bound of the 95% Confidence Interval on the Probability of Jobs in Each Class
Waiting for More Than 10 Seconds in the Simulation Using the Solution of GI/GI/n − Reduced
IP.

Mean Inter-arrival and Lifetime Standard Deviation Factor and SLA Probability Limit (sdi, αi)(
1
λi
, 1
µi

)
(2, 0.0125) (2, 0.05) (4, 0.0125) (4, 0.05)

(0.3, 70) 0.00178 0.00432 0.00959 0.01930
(0.3, 170) 0.00211 0.00571 0.01485 0.02319
(0.3, 270) 0.00236 0.00566 0.01510 0.03122
(0.9, 70) 0.00193 0.00439 0.01004 0.02058
(0.9, 170) 0.00166 0.00549 0.01549 0.02644
(0.9, 270) 0.00248 0.00617 0.01566 0.03218
(1.5, 70) 0.00187 0.00445 0.00906 0.02122
(1.5, 170) 0.00304 0.00688 0.01410 0.03035
(1.5, 270) 0.00291 0.00684 0.01821 0.03243

ilarly to the experiments of the combinatorial models, the run-time of the framework

is always shorter when using the reduced IP model, and the framework with the

original IP model produces the solution with a better cost. However, in case of the

framework experiment, the amount of the time saved by the reduced IP model is more

meaningful compared to the cost saved by the original IP model, which is always less

than 0.01% in the experiment.

Notice the GI/GI/n model introduced in Equation (2.4) approximates the service

slot requirements in a GI/GI/n queue, and the reformulated IP model also approxi-

mates the optimal solution of the combinatorial problem. Thus, we want to observe

the performance of the cloud system simulator using the result of the framework with

two sources of approximation errors. We constructed a simulator with first in first out

(FIFO) scheduling strategy that has the server capacity and configuration calculated

by the LP model with rounding. Then the simulator was run for 1,000 trials with a

length of 100,000 seconds in each trial. The inter-arrival times and lifetimes of the

jobs in the simulation are generated from lognormal distributions with the predefined

mean and standard deviation. The upper bound of the 95% confidence interval on

the expected probability of the jobs in each class waited for more than 10 seconds

is shown in Table 3.5. Note the upper bound of the confidence interval exceeds the

SLA restriction in the job classes with an expected lifetime ≥ 170 and high standard

deviation. According to our observation, the simulation is more likely to generate

jobs with long lifetimes in these classes, then the large jobs block all service slots

and cause the waiting queue grow substantially. In such case, a large number of jobs

wait in the queue, breaking the SLA. Using the shortest job first (SJF) scheduling

strategy in the simulation will result in a lower average waiting time compared to
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FIFO. Specifically, SJF scheduling strategy gives the highest priority to the jobs with

the shortest lifetime, so the jobs with long lifetimes may experience extremely long

waiting time. In our problem, the cloud want to complete every job. Thus, we choose

to use FIFO in our simulator, since it is a fair scheduling strategy, which means it

guarantees that all jobs will be scheduled eventually. The trade-off between the fair-

ness and efficiency in cloud requires more study and is out of the scope of this work.

The low waiting time on the jobs not in class k suggests an overestimation on the

server capacity in our framework. The overestimation comes from the approximation

from the GI/GI/n model as discussed in the experiment of queueing models, and the

reduced IP model guarantees of having enough service slots in its solution. Therefore,

both approximation errors tend to overestimate the server capacity required in the

cloud system, and the final solution of the framework satisfies the workload except

for one class of jobs.

3.5 Conclusion

In this chapter, we introduced a framework to calculate the set of servers that guar-

antees SLAs in the cloud system with minimum operating cost, where the jobs are

submitted and served by the cloud following some random process.

Specifically, we applied M/M/n queues and GI/GI/n queues as the queueing mod-

els in the framework, and an IP model and its linear relaxation with some rounding

strategies are constructed to solve the packing problem in the second stage. Based

on our experimental results, the framework using GI/GI/n queueing models and an

LP optimization model seems to be the most applicable setting in this work. It could

produce a set of servers that satisfies the SLAs of a cloud system while assuming the

inter-arrival times and lifetimes of the jobs in each class are i.i.d. and following some

arbitrary distribution. The framework finds a solution in a short time with a cost

that is almost the minimum.

According to the structure of this framework, the queueing model in stage I can

be replaced by another type of queueing model, as long as the new model calculates

a minimum service slot requirement that satisfies the SLAs. Similarly, the IP model

in stage II can also be replaced by another solver for the two-dimensional packing

problem. Therefore, this framework has a potential to be applied to more types of

cloud systems by redefining the queueing models and the combinatorial model in the

framework.

In this work, we have studied our framework with two queueing models that both

assume single job arrivals and an infinite queue length. In future work, we pro-
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pose to improved this framework by using more complex queueing models, such as

queues with batch arrivals (MX/G/n queues [73]) and queues with finite queue length

(GI/GI/n/C queues [52]). In the combinatorial models, the size of the configurations

is limiting the model from larger problem instances. The complexity of the models

can be reduced with some machine learning algorithms or heuristics that compare the

configurations for different server types and remove the non-promising ones without

solving the linear relaxation.



Chapter 4

Short-term Case Study: Google

Cloud with Borg System

4.1 Introduction

In this chapter, we test the robustness our short-term capacity planning framework

with a public dataset from the Borg cluster management system in Google Cloud [59].

The full dataset contains the information of all events in multiple Google clusters on

May 2 2019. The size of the original dataset is around 2.4TB, which is too large to

analyze. The goal of our experiments is to observe the behavior of our framework

with the workload in a real cloud, where the job arrivals and lifetimes have different

patterns than the generated distributions we used in Chapter 3. Thus, we extracted

the information of all events in one cluster on May 2 2019, resulting in a dataset

including around 1.2 million tasks with a size of 8GB.

The jobs in Google Cloud [63] have a different definition than the jobs in our

framework, so we call the jobs in Google Cloud collections to avoid ambiguity. In

Google Cloud, each collection consists of multiple tasks that can be assigned to differ-

ent machines. Collections may have constraints that force their tasks to be assigned

to machines with particular attributes, such as processor architecture, OS version, or

external IP address. However, the dataset does not contain the machine attribute

information, so we ignore such constraints in this chapter. Similar to the jobs in our

framework, each task has an independent CPU requirement, memory requirement,

and lifetime in the system.

The Borg dataset contains the events of every task that arrived to the Borg system.

Each event is described with its event type, timestamp, task id, collection id, CPU

requirement, memory requirement, machine id, scheduling class, and priority. Table

4.1 shows all event types and their meaning, and Figure 4.1 (Figure 2 in the Google

50
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Borg paper [63]) depicts the effect of the event on the task state. In all event types

described in Table 4.1, only fail and lost denote the occurrence of system errors that

cause the task to exit the system abnormally. Thus, we discard the tasks that are

failed or lost, and Figure 4.2 shows the life cycle of the remaining tasks that are

normally terminated. Each event has a timestamp in microseconds since 600 seconds

before 00:00 May 1 2019, so an event that happened at 00:00:20 May 1 2019 has a

timestamp of 620×106. The record of each event of a task contains the id of the task

as the “task id”, and “collection id” refers to the id of the collection that contains

the task. The same task ids can be used in different collections to refer to different

tasks, so we merge the “task id” and the “collection id” to create an unique id for

each task, called the uid. Events with the same uid are grouped together to form

the trace of each task. The CPU and memory requirements represent the amount

of resource of the machine “machine id” that is occupied by the task until the next

event of this task happens. The scheduling class is an integer number from 0 to 3

roughly representing the latency sensitivity of the task, where class 3 represents the

most latency-sensitive task and class 0 represents the least latency-sensitive class.

The priority is an integer number with the larger number meaning that the task has

a higher priority considered by the scheduler.

With the dataset described above, we process the trace of each task to construct

a job that fits our framework. Recall that we assume each job has an arrival time,

lifetime, waiting time, CPU requirement, and memory requirement (see Section 3.2).

Consider a task with a life cycle shown in Figure 4.2. The arrival time of the job is set

to be the time of the first submit event of the task. The lifetime of the job is the total

time that the task spent in state “Running”, which is the sum of the time differences

between every schedule event and its next evict, finish, or kill event. Similarly, the

job waiting time is the total time that the task spent in state “Pending”, where the

submit, accept, and evict events enter the “Pending” state and the schedule and

kill events exit the “Pending” state. The CPU and memory requirement of a job is

assumed to be constant, but the CPU and memory requirement may be updated in

the life cycle of the task. Thus, we round the CPU and memory requirement of the

job to the maximum CPU and memory requirement in the life cycle of the task. The

scheduling class and priority number are kept the same in the job, which are used

later to classify the job. After these steps, we construct around 1.14 millions jobs for

our experiments on the framework.
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Table 4.1: Event Types with Meanings Explained in the Borg Dataset Repository [68].

SUBMIT A task was submitted to the cluster manager.
QUEUE A task is queued (deferred) until the scheduler is ready to act

on it.
ENABLE A task became eligible for scheduling; the scheduler will try to

place the task as soon as it can.
SCHEDULE A task was scheduled on a machine.
EVICT A task was descheduled because of a higher priority task, be-

cause the scheduler overcommitted and the actual demand ex-
ceeded the machine capacity, because the machine on which it
was scheduled became unusable (e.g., taken offline for repairs),
or because the task’s data was lost for some reason (this is very
rare).

FAIL A task was descheduled (or, in rare cases, ceased to be eligi-
ble for scheduling while it was pending) due to a user program
failure of some kind such as a segfault, or a process using more
memory than it requested.

FINISH A task completed normally.
KILL A task was cancelled by the user or a driver program, or the

task’s parent exited, or another task on which this job was de-
pendent ended.

LOST A task was presumably ended, but a record indicating its ter-
mination was missing from our source data. The event captures
the moment when this was realized.

UPDATE PENDING A task’s scheduling class or resource requirements were updated
while it was waiting to be scheduled.

UPDATE RUNNING A task’s scheduling class or resource requirements were updated
while it was running (scheduled).
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Figure 4.1: The state diagram for tasks in Google Cloud with Borg system (Figure 2 in the
Google Borg paper [63])

.

Figure 4.2: The state diagram for the normally terminated tasks.
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4.2 Experiment Settings

4.2.1 Server Types

In our short-term server capacity planning framework, we assume the servers are

grouped into different types based on their resource capacities and operating costs.

The Google Cloud dataset does not provide the hardware settings or the costs of the

servers due to security reasons. The history of the processed job in each machine is

given, and the resource requirement of each job is denoted as the percentage of the

CPU and memory it occupies in the assigned machine. Therefore, we assume all the

servers have the same type, and their resource capacity is normalized as 1 CPU and 1

memory. We set the unit operating cost of the servers to be 1 as the cost is irrelevant

when there is only one type of servers.

4.2.2 Job Classes

The jobs are assumed to be classified into different classes based on their service

level agreements (SLAs) and resource requirements in the short-term server capacity

planning framework. These parameters are not directly given in the dataset, so we

pre-process the dataset for the parameters of each job class.

Service Level Agreement

The SLA of the jobs in a class states that the probability that a job waits for more

than t seconds must be less than or equal to α (see Equation 3.1); it is a restriction

on the job latency. The SLAs of the jobs are not given directly in the dataset due to

security reasons. Thus, we assume the Borg system has achieved the hidden SLA, and

we reproduce the SLA based on the observation of the job waiting times. The latency

sensitivity of a job is given by its scheduling class and priority values. We define a

set K of 12 priority levels for the jobs, from the Cartesian product of 4 scheduling

classes and 3 ranges of priority values. We group the jobs with the same priority level

k ∈ K, then we calculate the 90th percentile wk of the waiting times of the jobs.

Finally, we define the SLA of the jobs with priority level k ∈ K as the probability of

waiting for more than wk seconds is less than or equal to 0.1 (t = wk, α = 0.1). The

priority level is not equivalent to class, since the jobs in the same class should also

have the same resource requirements.
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Resource Requirements

We notice most of the jobs in the dataset have different resource requirements, and

there are too many classes if each job belongs to a different class. Thus, we apply the

k-means algorithm in the Python module scikit-learn [45] to cluster the jobs in each

priority level based on their resource requirements. We run two experiments in this

chapter: a 24-class experiment and a 34-class experiment. In the 34-class experiment,

the k-means algorithm is set to produce 3 clusters of jobs in each priority level and

results in 36 clusters of jobs in 12 priority levels. We discard the clusters with less

than or equal to 20 jobs and have 34 clusters of jobs remaining. We define a job

class for each cluster of jobs, where the job class has the resource requirement equal

to the maximum resource requirement in the cluster. For example, if there are only

two jobs in a cluster, one requires 3 CPU cores and 5 GB memory, and the other

requires 5 CPU cores and 3 GB memory. Then the corresponding jobs class has a

resource requirement of 5 CPU cores and 5 GB memory. The service slots for the

jobs belonging to this class have the same size as the resource requirement. The

24-class experiment has the similar procedure for defining the job class, but sets the

k-means algorithm to produce 2 clusters of jobs in each priority level, which results

in 24 clusters of jobs in total. All of these clusters have more than 20 jobs, so the

experiment has 24 classes of jobs.

Inter-arrival Time Distribution and Lifetime Distribution

In Chapter 3, we presented two queueing models for our framework: M/M/n and

G/G/n. We want to know which one fits better on the Borg dataset. The M/M/n

queue assumes the job inter-arrival time follows an exponential distribution and the

job lifetime follows another exponential distribution (see Section 2.1.1). In Figure

4.3, we depict the inter-arrival time distribution and lifetime distribution of the jobs

in two representative classes of the 24-class experiment. Figure 4.3a shows that most

of the jobs in the class 1 of 24-class experiment have small inter-arrival time, which

means a large proportion the jobs arrive to the system in batches. The lifetime of the

jobs in this class is shown in Figure 4.3b, where the distribution has multiple peaks

and a few of the jobs have a much longer lifetime than the others. The inter-arrival

time distribution of the jobs in the class 2 of the 24-class experiment also has a peak

around 0 inter-arrival time (see Figure 4.3c), which indicates the existence of batch

arrivals. However, there are more jobs with larger inter-arrival time compared to

the jobs in the class 1, so the size of the job arrival batches is smaller in the class 2

compared to the class 1. Most of the jobs in the class 2 have a similar short lifetime
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(see Figure 4.3d).

Figure 4.4 shows the inter-arrival time distribution and lifetime distribution of the

jobs in two representative classes of the 34-class experiment. The jobs in class 1 of

the 34-class experiment arrive to the cloud in batches, so most of them have small

inter-arrival times (see Figure 4.4a). Figure 4.4b shows most of the jobs in the class

1 have a lifetime of less than 1000 seconds or around 2500 seconds. The distribution

of the inter-arrival time and lifetime of the class 2 jobs in the 34-class experiment are

shown in Figure 4.4c and Figure 4.4d respectively. The distribution of the job inter-

arrival time is still more right skewed compared to the exponential distribution with

the same mean. The lifetime distribution indicates most jobs have short lifetimes

but with a few exceptions with much longer lifetimes. None of the classes in the

24-class experiment or 34-class experiment have both their job inter-arrival time and

job lifetime exponentially distributed, which violates the assumption of an M/M/n

queue. Therefore, we use G/G/n queueing models in both experiments, since G/G/n

queue assumes the job inter-arrival time and lifetime are arbitrarily distributed (see

Section 2.1.1).

4.3 Experimental Results

Two experiments with different numbers of classes are run in this section: the 24-class

and 34-class experiment. Each experiment has a calculation part and a simulation

part. In the calculation part, the server capacity planning framework (see Section

3.3) is used to optimize the server requirement and the configuration of each server.

The framework uses the G/G/n queueing model to calculate the number of service

slots required by each class. Then it generates the set of non-dominated server con-

figurations (see Section 3.3.3). The framework uses the integer programming (IP)

model (3.2)-(3.6) or the linear programming (LP) model (3.7)-(3.11) with rounding

to calculate the server requirement and the server configuration used in the simula-

tions. The overview of calculation results from different optimization models in both

experiments is shown in Table 4.2. We compare the optimal solution and complex-

ity to analyze the pros and cons of the optimization models and the classification

strategies used in the experiments.

In Table 4.2, the “Config Time” corresponds to the time spent on generating the

set of non-dominated configurations, and the “Config Size” corresponds to the car-

dinality of the configuration set, that is the number of non-dominated configurations

(
∑

j∈J |B̄j|). The 24-class experiment generates around 0.33 million configurations in

0.31 seconds, and the 34-class experiment generates around 45.86 millions configura-
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(a) The distribution of the class 1 job
inter-arrival times.

(b) The distribution of the class 1 job lifetimes.

(c) The distribution of the class 2 job
inter-arrival times.

(d) The distribution of the class 2 job lifetimes.

Figure 4.3: The inter-arrival time and lifetime distributions of the jobs in different classes in the
24-class experiment.



58 CHAPTER 4. SHORT-TERM CASE STUDY: GOOGLE CLOUD WITH BORG SYSTEM

(a) The distribution of the class 1 job
inter-arrival times.

(b) The distribution of the class 1 job lifetimes.

(c) The distribution of the class 2 job
inter-arrival times.

(d) The distribution of the class 2 job lifetimes.

Figure 4.4: The inter-arrival time and lifetime distributions of the jobs in different classes in the
34-class experiment.
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tions in 60.13 seconds. The set of configurations grows exponentially as the number

of classes increases, and the experiment with 4 classes of jobs in each priority level

exceeds our memory limit. The “Runtime” row shows the runtime of each optimiza-

tion model, where the runtime shown for the LP model is the sum of the LP runtime

and the runtime of the small IP model for rounding. As expected, the LP model with

rounding is always faster than the IP model in both experiments.

Both optimization models calculate the same number of servers required in the

cloud system shown in the “Server Requirement” row. It is a single number since

there is only one type of server in each experiment. The 34-class experiment with the

jobs classified in more detail produces a solution that saves a significant number of

servers required compared to the solution of the 24-class experiment. The difference in

their solutions is caused by the error introduced when we classify the jobs and round

their resource requirements to the maximum resource requirement in each class. With

more classes, each class in the 34-class experiment is smaller, and the gap from the job

resource requirement to the maximum in the class is smaller compared to the 24-class

experiment. Thus, the resource requirements of the jobs in the 34-class experiment

are less overestimated and leads to a smaller server requirement compared to the

24-class experiment.

We evaluate the solution of each experiment with a simulator that mimics the

Google Cloud system to check the effectiveness of our framework. In the cloud system

simulation, we use the number of servers and their configurations of service slots

calculated by the server planning framework. The jobs arrive to the simulated system

in the same pattern as the jobs arrive to the real cloud in May 2 2019. For example,

if a job entered the Google Borg system at 00:00:10 May 2 2019, then the simulation

would experience the same job entering at 10 seconds after the start with the same

lifetime and resource requirement. After each job arrival, the simulation makes the

scheduling decision based on the scheme shown in Figure 4.5. When a class i ∈ I

job arrives to the system, if there is an idling class i service slot in a server, then

the job is assigned to this server, otherwise the job is appended to the end of the

waiting queue for the class i jobs. The jobs in the class i waiting queue are ranked

by their arrival time (FIFO), and whenever a class i job terminates, the oldest job

in the waiting queue is assigned to that slot. The job waiting time is recorded in the

simulation when a job leaves a waiting queue. We summarize the job waiting times

in the simulation to check the satisfaction of the SLAs by our framework solutions.

As explained in Section 4.2.2, we define the SLA of the jobs in each class i ∈ I

as: the probability of waiting more than wi is less than or equal to 0.1, where wi is

the 90th percentile of the true job waiting time from the dataset in this class. The
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Table 4.2: Numerical Results of the 24-class and 34-class Experiments

24-class Experiment 34-class Experiment
Config Time 0.31 second 60.13 seconds
Config Size 0.33 million configurations 45.86 million configurations

Optimization Model IP Model LP Model IP Model LP Model
Runtime 1.91 seconds 1.71 seconds 65.25 seconds 40.87 seconds

Server Requirement 32493 servers 32493 servers 19138 servers 19138 servers

Figure 4.5: The scheme of the cloud system simulation scheduling strategy.

probability of jobs waiting more than the time threshold in the simulator with the

24-class experiment solution is presented in Table 4.3. The job waiting time summary

of the 34-class experiment simulation is presented in Table 4.4.

In Table 4.3, the 12 priority levels are listed as rows, where the jobs with the

larger priority level have the higher priority. In the 24-class experiment, the jobs in

each priority is grouped into two classes: Class 0 and Class 1. The number of jobs

in each class is shown in the “Job Count” column, and the “PW” column contains

the probability of a job waiting more than the time threshold in each class in the

simulation. The simulation results that violate the SLAs are colored red. We present

the workload of two job classes with violated SLAs in 24-class experiment simulation

in Figure 4.6a. The class a and the class b in Figure 4.6a correspond to the class 1

in priority level 2 and the class 1 in priority level 5 respectively. We observe high

peaks in the workload of these classes. Moreover, the class 1 in priority level 5 (class
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Table 4.3: Probability of the jobs waiting more than the time threshold in each class in the
24-class experiment. The probability should be less than or equal to 0.1 to satisfy the SLA
(PW≤ 0.1).

Priority Level
Class 0 Class 1

Job Count PW Job Count PW
1 291 0.7216 1781 0.8304
2 493448 0.5549 28544 0.2029
3 25031 0.0000 89 0.0000
4 26848 0.7780 6561 0.7683
5 201623 0.0000 2842 0.9018
6 38171 0.0000 253040 0.0000
7 443 0.0000 68 0.0000
8 3684 0.0000 182 0.0330
9 593 0.0000 8964 0.0000
10 17694 0.4855 2878 0.0653
11 400 0.0000 1452 0.0000
12 2867 0.0000 27110 0.0000

b) has the SLA violated the most (see Table 4.3), and its workload has a higher peak

compared to the workload of the class 1 in priority level 2 (class a). In contrast,

the workload of the class 0 in priority level 3 (class c) and the class 0 in priority

level 6 (class d) that have their SLAs satisfied in the simulation is shown in Figure

4.6b, where the job arrivals are more even in the day compared to the job classes

with violated SLAs. Thus, we conclude the peak workload overloads the service slots

allocated for the class and cause the jobs to wait in the queue, since our framework

does not share the service slots with different classes.

Table 4.4 shows the simulation results of the 34-class experiment. The experiment

has three classes of jobs in each of the 12 priority levels. The two classes with less

than 20 jobs are discarded and denoted as “N/A” in the table. The job classes

with their SLAs violated in the simulation are colored red, and the workload of two

representative classes is presented in Figure 4.7a. The simulation of the 34-class

experiment shows similar results compared to the 24-class experiment. Figure 4.7a

shows the classes with violated SLAs have dense workload in few short periods, where

the class a and class b in the figure are the class 1 in priority level 5 and the class 2 in

priority level 8 respectively. The class 2 in priority level 8 (class b) is the class that has

the shortest waiting time with violated SLAs (see Table 4.4), and it has the workload

with multiple peaks that is sparser than the workload of the other class with violated

SLA. Figure 4.7b shows the classes with satisfied SLAs have even workload among

longer periods, where the class c and class d in the figure are the class 0 in priority

level 3 and the class 0 in priority level 6 respectively. Therefore, the results of the

34-class experiment support our previous conclusion: the peak workload overloads
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(a) The per hour workload of two classes that
have violated the SLAs in the simulation of the
24-class experiment.

(b) The per hour workload of two classes that
have satisfied the SLAs in the simulation of the
24-class experiment.

Figure 4.6: The per hour workload of the representative job classes in the 24-class experiment.

Table 4.4: Probability of the jobs waiting more than the time threshold in each class in the
34-class experiment. The probability should be less than or equal to 0.1 to satisfy the SLA
(PW≤ 0.1).

Priority Level
Class 0 Class 1 Class 2

Job Count PW Job Count PW Job Count PW
1 314 0.7389 1755 0.8279 3 N/A
2 404587 0.5833 27971 0.2053 89434 0.7346
3 20704 0.0000 85 0.0000 4331 0.0000
4 25460 0.7689 4446 0.7501 2903 0.8219
5 169224 0.0000 2842 0.9018 32399 0.0000
6 251524 0.0000 38902 0.0000 785 0.0000
7 54 0.0000 187 0.0000 270 0.0000
8 2412 0.0000 157 0.0382 1297 0.1180
9 1523 0.0000 287 0.0000 7747 0.0000
10 17629 0.4852 2876 0.0650 67 0.0000
11 1419 0.0000 424 0.0000 9 N/A
12 26081 0.0000 3279 0.0000 617 0.0000
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(a) The per hour workload of two classes that
have violated the SLAs in the simulation of the
34-class experiment.

(b) The per hour workload of two classes that
have satisfied the SLAs in the simulation of the
34-class experiment.

Figure 4.7: The per hour workload of the representative job classes in the 34-class experiment.

the system in a short period and causes a large number of jobs waiting in the queue.

4.4 Conclusion

Our analysis of the Google Cloud Borg dataset shows that some of the assumptions in

our framework are too strong for the real cloud systems. The framework assumes the

jobs in the same class have the same resource requirements. In practice, many jobs

may have similar resource requirements but not the same. If the jobs with different

resource requirements belong to different classes, then the number of job classes is

too large for the framework. In the experiments, we cluster the jobs with similar

resource requirements into a class. Then we set the size of the service slots to be

the largest job size in each class, so the service slot can process every job in the

class. In Table 4.3 and Table 4.4, we observe most of the job classes in the 24-class

experiment and the 34-class experiment have 0 probability of waiting more than the

time threshold (PW= 0), but the SLA allows the probability to be less than or equal

to 0.1 (PW≤ 0.1). Hence, the solution of our framework overestimates the server

requirements. In Table 4.2, the total server requirement calculated in the 34-class

experiment is smaller than the total server requirement in the 24-class experiment.

As we increase the number of clusters in the k-means algorithm that classify the jobs

into different classes, the jobs in each cluster have closer resource requirement and the

rounding error is reduced, so the server requirement overestimation is also reduced.

Thus, we can increase the number of job classes to improve the accuracy of the server

requirement calculation.

Our framework makes another strong assumption that the workload is stable over
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time in the cloud. In the dataset, the workload is imbalanced throughout the day (see

Figure 4.6a and 4.7a). In such cases, the solution of the framework cannot guarantee

the SLAs in each class, especially when the job arrivals are too dense. A possible

improvement is to allow some resource sharing. For example, if most of the service

slots for a class are idling, then a proportion of these service slots can be used for the

jobs in other classes. Another strategy is to apply the framework on a shorter period,

such as hours, and solve the framework more frequently. However, the workload

in each hour may still be unstable, so a real-time scheduler based on heuristics or

machine learning algorithms can potentially improve the solution of our framework.

For further improvements, we observe the majority of the job inter-arrival times

are close to 0 from Figure 4.3 and Figure 4.4, suggesting that the jobs tend to arrive

in batches. Adapting the queueing model in the framework to consider batch arrivals

(i.e. GIX/GI/n queue, where X is the random variable representing the size of

batches) will improve the accuracy of our framework on real cloud server management

problems. From the experiment with real cloud data, we observe the deterministic

parameters, including the job resource requirements, assumed by the framework are

hard to satisfy in practice. This mismatch cause the framework to overestimate the

server requirements in order to guarantee the SLAs. A potential improvement is

to consider the problem in the second stage of the framework as a Stochastic Bin

Packing Problem [13], which allows the size of the items to be represented by random

variables.



Chapter 5

Long-term Purchase Plan

Optimization in Data Centers

5.1 Introduction

In Chapter 3, we introduced a framework that manages server capacities and alloca-

tion strategies for cloud systems in the short-term. However, most cloud systems are

intended to operate for a long time horizon: months, years, or decades. In a long-

term server planning problem, the workload on the cloud system may change over

time and the servers in the cloud system may break down. Thus, a server purchase

plan is required in each period to maintain an adequate server capacity that will meet

the service level agreements in the cloud system. In addition, the servers are non-

homogeneous, having different performance for different types of arriving workloads.

For example, servers with more CPU cores perform better on jobs with heavy compu-

tational loads and small memory requirements, while servers with larger memory size

are more efficient on executing jobs with large memory requirements and small com-

putational loads. Therefore, the set of servers that has the best performance given the

workload in one period may have a disadvantage for future workloads. Thus, finding

the best server purchasing plan that minimizes the long-term cost in the cloud is an

interesting and challenging problem.

In past studies, server planning in cloud systems with changing workload [39, 44,

50] has focused on calculating the optimal server capacity plan that minimizes the

power consumption or the operating cost, without considering the cost of purchasing

servers. In Roy, Dubey, and Gokhale’s work [49], cloud systems are assumed to lease

machines instead of purchasing them. Thus, the decisions made in each period will

not affect the cloud system in the future.

Long-term workforce and inventory planning problems were studied in control the-

65
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ory for service and manufacturing industries [21, 25, 27, 40]. However, these tradi-

tional industries have different constraints compared to planning problems considered

in the cloud. In manufacturing industries, inventories are used to cover the demands

in each period [27, 40], while the number of servers in cloud systems does not decrease

as time passes unless they break down. In the service industries, many applications

focus on optimizing recruitment [21, 25], where each employee handles one task at a

time. Servers in cloud systems are able to process multiple jobs simultaneously de-

pending on their resource capacities. This assumption complicates the server demand

calculation as studied in Chapter 3. In addition, employees in service industries may

learn new skills or be promoted to provide services to more kinds of customers. This

phenomenon is studied as learning behavior [21]. Based on the information from our

cloud cooperator, the performance of servers in the cloud depends on their hardware

configurations, and the hardware configurations do not change over time. Hence, the

learning behavior does not apply to cloud systems.

In this chapter, we first define the long-term server purchase plan optimization

problem based on the assumptions relevant in cloud systems. Then, we introduce a

linear programming (LP) model that calculates the optimal solution to the problem

and propose a myopic approximation for the LP model to reduce its computational

complexity. We prove the myopic approximation is optimal when the workload is

non-decreasing over the time horizon. To show the usefulness of our approach, we

conducted experiments that demonstrate the advantage of the myopic approximation

in terms of computational complexity and show the accuracy of the myopic approxi-

mations when the workload is decreasing in some periods.

5.2 Problem Definition

Cloud systems exhibit time changing workload that requires periodic adjustment of

their capacity. Specifically, cloud operators update the system by purchasing a set of

servers in each period to satisfy the workload. Thus, finding the optimal set of servers

that would minimize the total expenditures over a multi-period planning horizon is an

important problem. We refer to the problem of periodically adjusting capacity over

the planning horizon as the long-term purchase plan optimization problem (LPP-OP).

The structure of the cloud system is assumed to be the same as in the short-term

setting (see Section 3.2). Servers are grouped into different types based on their

resource capacities and costs. We denote with J the set of all server types. The jobs

arriving to the system are differentiated into classes by their resource requirements,

and we let I be the set of all job classes.
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Figure 5.1: Scheme of Long-term Purchase Plan Optimization Problem

Figure 5.1 describes the scheme of the LPP-OP. We assume the planning horizon

to be discrete, with 0 < T <∞ being the length of the time horizon. In each period,

the cloud system experiences a specific workload, and the system may purchase a set

of servers to update its server capacity to satisfy the workload. Over each period,

some servers stop functioning and are summarized as the server breakdown in this

period. A long-term server purchase plan optimization model calculates a server

purchase plan for the cloud in each period that minimizes the total cost of the cloud,

considering the workload in the planning horizon. Specifically, in period t ∈ {1, ..., T},
the cloud system has a set of servers ~lt = (l1,t, ..., l|J |,t) at the beginning of the period,

and the system updates the number of servers to ~nt = (n1,t, ..., n|J |,t) after purchasing

~mt = (m1,t, ...,m|J |,t) servers. Thus, ~nt = ~lt + ~mt in all periods t. We denote the

overall server purchasing plan as a matrix M = (~m1, ..., ~mt), and the server capacity

plan is defined as the matrix N = (~n1, ..., ~nm). At the end of each period, we assume

a proportion of the type j ∈ J servers break down, which is denoted by 0 ≤ dj ≤ 1 ,

and therefore,

lj,t = (1− dj)nj,t−1,∀j ∈ J, t ∈ {2, ..., T}.

The number of servers that the cloud system has at the beginning of the first period
~l1 = (l1,1, ..., l|J |,1) is a parameter given in the problem definition.

In order to solve the LPP-OP, we use a dynamic optimization model to calculate

the optimal server purchase plan that minimizes the total costs in the time horizon

T . Specifically, we construct a total cost function that evaluates two time-dependent

sources of costs in the cloud system: operating cost and purchasing cost.
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Operating cost is the cost for operating servers that are owned by the cloud, includ-

ing energy cost and maintenance cost. The operating cost in a period t is assumed to

be calculated by a function O(n1,t, ..., n|J |,t; ~St), where ~St = (s1,t, ..., s|I|,t) represents

the workload in period t, and si,t is the class i ∈ I service slot requirement in period

t. According to the experimental results in Chapter 3, the linear programming (LP)

model (3.7)-(3.11) with rounding calculates a near-optimal solution (optimality gap

≤ 0.02%) in less time compared to the integer programming (IP) model (3.2)-(3.6).

Thus, we define the operating cost function as the optimal objective value of the

following LP model:

O(n1,t, ..., n|J |,t; ~St) = min
∑
j∈J

ojzj (5.1)

s.t. zj ≤ nj,t, ∀j ∈ J (5.2)∑
j∈J

∑
v∈B̄j

vixjv ≥ si,t, ∀i ∈ I (5.3)

∑
v∈B̄j

xjv = zj, ∀j ∈ J (5.4)

zj ∈ R+, ∀j ∈ J (5.5)

xjv ∈ R+, ∀j ∈ J,v ∈ B̄j (5.6)

where

• nj,t is the number of type j servers owned by the cloud system after the purchas-

ing in period t.

• ~St = (s1,t, ..., s|I|,t) is the workload in period t, represented by the service slot

requirement (see in Section 3.3.1) on each job class i ∈ I.

• oj is the operating cost of each type j server in the system.

• B̄j is the set of non-dominated configurations of type j servers (see Section 3.3.3).

• zj is the number of type j servers operating in the system.

• xjv is the number of type j servers that is operating as configuration v.

The LP model above is the LP model in the short-term problem (Equation (3.7)-

(3.11)) with one additional constraint, and we name this model as the operating cost

model in this chapter. Constraints (5.3)-(5.6) are same as (3.8)-(3.11) in the short-

term LP model. The new constraint (5.2) upper bounds the number of operating

servers by the number of servers owned by the cloud system in each period.
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Purchasing cost refers to the cost of purchasing the servers in each period. We use

hj,t to denote the unit price of each type j ∈ J server in period t, while mj,t denotes

the number of type j servers to be purchased in the period. The purchasing cost of

all servers in period t is
∑

j∈J hj,tmj,t. Table 5.1 summarizes the notation used when

defining the total cost function. Thus, the total cost in period t can be formulated as

O(n1,t, ..., n|J |,t; ~St) +
∑
j∈J

hj,tmj,t.

For the total cost over the entire time horizon T , the cost in the future is usually

less valuable compared to the current cost for the cloud operators due to the inflation

rate and the investment interests. To take this into account, we use a discount factor

β ∈ (0, 1] in the total cost function

T∑
t=1

βt−1

(
O(n1,t, ..., n|J |,t; ~St) +

∑
j∈J

hj,tmj,t

)
. (5.7)

The future cost is weighted the same as the current cost when β = 1. Therefore,

the optimal solution {m∗j,t}j∈J,t∈{1,...,T} of the LPP-OP can be obtained by solving the

following dynamic programming (DP) model

min

[
T∑
t=1

βt−1

(
O(n1,t, ..., n|J |,t; ~St) +

∑
j∈J

hj,tmj,t

)]
(5.8)

s.t. lj,t = (1− dj)nj,t−1, ∀j ∈ J, t ∈ {2, ..., T} (5.9)

nj,t = lj,t +mj,t, ∀j ∈ J, t ∈ {1, ..., T} (5.10)

mj,t ∈ R+. ∀j ∈ J, t ∈ {1, ..., T} (5.11)

The objective (5.8) of this DP model is to minimize the total cost in all periods. Con-

straints (5.9)-(5.10) enforce the rules of the server transitions defined in the scheme

(Figure 5.1). Constraint (5.11) is the domain constraint that restricts the system to

purchase a non-negative number of servers in each period.

To solve the DP model, we formulate an LP model and show that the two mod-

els are equivalent. Then we develop a myopic approximation for the problem with

less computational complexity compared to the LP model. We prove the myopic

approximation is equal to the optimal solution under additional assumptions.
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Table 5.1: Notation

T ∈ Z+ The number of periods that the long-term capacity planning
should cover.

β ∈ (0, 1] The discount factor of the future costs.
I The set of all job classes.
si,t ∈ Z+ The number of class i service slot required in period t, i ∈ I, t ∈

{1, ..., T}.
J The set of all valid server types.
hj,t ∈ R+ The unit price of a type j server in period t, j ∈ J, t ∈ {1, ..., T}.
dj ∈ [0, 1] The breakdown rate of servers in type j, j ∈ J .
lj,t ∈ R+ The number of type j servers in the cloud system at the begin-

ning of period t, j ∈ J, t ∈ {1, ..., T}.
M ∈ R|J|×T+ The server purchasing plan, where each element mj,t denotes

the number of type j servers to purchase in period t, j ∈ J, t ∈
{1, ..., T}.

N ∈ R|J|×T+ The server capacity plan, where each element nj,t denotes the
number of type j servers in the cloud system after the purchasing
in period t, j ∈ J, t ∈ {1, ..., T}.

5.3 Linear Programming Model for Long-term Purchase Plan

Optimization Problem

In this section, we transform the DP model (5.8)-(5.11) to a linear programming

(LP) model, since the operating cost function O(·) is defined as the optimal objective

value of an LP model, which makes the full DP model hard to solve. The new LP

model includes the constraints of the operating cost functions O(n1,t, ..., n|J |,t; ~St) in

different periods t ∈ {1, ..., T}. Moreover, we prove that the optimal solution of the

LP model is also the optimal solution of the DP model (5.8)-(5.11). The new LP
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model is defined as:

min
T∑
t=1

βt−1

(∑
j∈J

ojzj,t +
∑
j∈J

hj,tmj,t

)
(5.12)

s.t. nj,t = lj,t +mj,t, ∀j ∈ J, t ∈ {1, ..., T} (5.13)

lj,t = (1− dj)nj,t−1, ∀j ∈ J, t ∈ {2, ..., T} (5.14)∑
j∈J

∑
v∈B̄j

vixjv,t ≥ si,t, ∀i ∈ I, t ∈ {1, ..., T} (5.15)

zj,t ≤ nj,t, ∀j ∈ J, t ∈ {1, ..., T} (5.16)∑
v∈B̄j

xjv,t = zj,t, ∀j ∈ J, t ∈ {1, ..., T} (5.17)

zj,t ∈ R+, ∀j ∈ J, t ∈ {1, ..., T} (5.18)

xjv,t ∈ R+, ∀j ∈ J,v ∈ B̄j, t ∈ {1, ..., T} (5.19)

mj,t ∈ R+. ∀j ∈ J, t ∈ {1, ..., T} (5.20)

The objective (5.12) of this LP model is to minimize the total cost in all periods.

Constraints (5.13)-(5.14) are same as (5.9)-(5.10) in the DP model that enforce the

server transition rules. Constraints (5.15)-(5.17) include constraints (5.2)-(5.4) in the

operating cost model in all periods t ∈ {1, ..., T}. Thus, these constraints guarantee

the service slot requirements are satisfied in all periods. Constraints (5.18)-(5.20) are

the domain constraints.

To simplify the proofs, we first define the feasibility of the DP model (5.8)-(5.11).

Definition 5.1. A solution {mj,t, zj,t}j∈J,t∈{1,...,T} is feasible for the DP model (5.8)-

(5.11) if and only if:

1. The purchase plan is always non-negative, i.e.

mj,t ≥ 0, ∀j ∈ J, t ∈ {1, ..., T}

so the domain constraint (5.11) is satisfied.

2. Suppose N = {nj,t}j∈J,t∈{1,...,T} is the corresponding server capacity of the server

purchase plan M that satisfies the constraints (5.9)-(5.10) in the DP model, i.e.

nj,t = lj,t +mj,t, ∀j ∈ J, t ∈ {1, ..., T}

lj,t = (1− dj)nj,t−1. ∀j ∈ J, t ∈ {2, ..., T}

Then {zj,t}j∈J is a feasible solution in the operating cost model O(n1,t, ..., n|J |,t; ~St)

in each period t.
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Now we prove two propositions that are later used in our main result.

Proposition 1. If a solution {mj,t, zj,t}j∈J,t∈{1,...,T} is feasible for the DP model (5.8)-

(5.11), then it is also feasible for the LP model (5.12)-(5.20).

Proof of Proposition 1. Consider the feasible solution {m′j,t, z′j,t}j∈J,t∈{1,...,T} of the DP

model (5.8)-(5.11) in all periods, where the corresponding server capacities {n′j,t}j∈J,t∈{1,...,T}
are restricted by the constraints (5.9)-(5.10) in the DP model

n′j,t = lj,t +m′j,t, ∀j ∈ J, t ∈ {1, ..., T}

lj,t = (1− dj)n′j,t−1. ∀j ∈ J, t ∈ {2, ..., T}

We know {zj,t}j∈J is feasible in the operating cost model O(n′1,t, ..., n
′
|J |,t;

~St) in any

period t by Definition 5.1.

Since the constraints (5.15)-(5.19) are the union of the constraints (5.2)-(5.6) in

all periods t, the solution {z′j,t}j∈J,t∈{1,...,T} also satisfies the constraints (5.15)-(5.19).

Notice the constraints (5.13)-(5.14) and (5.20) are the same as (5.9)-(5.11) in the DP

model. Therefore, {m′j,t, z′j,t}j∈J,t∈{1,...,T} is feasible in the LP model (5.12)-(5.20).

Proposition 2. The optimal solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} of the LP model (5.12)-

(5.20) is feasible for the DP model (5.8)-(5.11).

Proof of Proposition 2. Consider the optimal solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} of the LP

model (5.12)-(5.20) and its corresponding server capacities {n∗j,t}j∈J,t∈{1,...,T}. By con-

straints (5.13)-(5.14), we get that

n∗j,t = lj,t +m∗j,t, ∀j ∈ J, t ∈ {1, ..., T}

lj,t = (1− dj)n∗j,t−1. ∀j ∈ J, t ∈ {2, ..., T}

The domain constraint (5.20) in the LP model guarantees the optimal server purchase

plan M∗ is non-negative in all elements.

Now we want to show {z∗j,t}j∈J is a feasible solution in O(n∗1,t, ..., n
∗
|J |,t;

~St) for all

t ∈ {1, ..., T}. Notice the constraints (5.2)-(5.6) is a subset of the constraints (5.15)-

(5.19), so {z∗j,t}j∈J is also a feasible solution for O(n∗1,t, ..., n
∗
|J |,t;

~St).

Therefore, the optimal solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} of the LP model is feasible

for the DP model (5.8)-(5.11).

Theorem 5.2. Suppose {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} is the optimal solution of the LP model

(5.12)-(5.20). Then {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} is also the optimal solution of the DP model

(5.8)-(5.11).
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Proof of Theorem 5.2. Now consider the optimal solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} of the

LP model (5.12)-(5.20). Let θ∗ represent the optimal objective value of the LP model,

i.e.

θ∗ =
T∑
t=1

βt−1

(∑
j∈J

ojz
∗
j,t +

∑
j∈J

hj,tm
∗
j,t

)
. (5.21)

By Proposition 2, we know {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} must be feasible for the DP (5.8)-

(5.11). Moreover, the objective value of the DP model with the solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T}
is

T∑
t=1

βt−1

(∑
j∈J

ojz
∗
j,t +

∑
j∈J

hj,tm
∗
j,t

)
,

which equals to the value θ∗.

Suppose the solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} does not minimize the objective value

of the DP model, which means there exists another solution {m′j,t, z′j,t}j∈J,t∈{1,...,T}
such that

T∑
t=1

βt−1

(∑
j∈J

ojz
′
j,t +

∑
j∈J

hj,tm
′
j,t

)
< θ∗.

According to Proposition 1, we know {m′j,t, z′j,t}j∈J,t∈{1,...,T} must be a feasible solution

of the LP model (5.12), then the objective value of the LP model with the solution

{m′j,t, z′j,t}j∈J,t∈{1,...,T} is

T∑
t=1

βt−1

(∑
j∈J

ojz
′
j,t +

∑
j∈J

hj,tm
′
j,t

)
< θ∗.

Therefore, the optimality of the solution {m∗j,t, z∗j,t}j∈J,t∈{1,...,T} in the LP model (5.12)-

(5.20) is contradicted by the existence of the solution {m′j,t, z′j,t}j∈J,t∈{1,...,T}.

We proved the LP model (5.12)-(5.20) can calculate the optimal purchase plan

with the minimum total cost. However, the number of decision variables in the LP

model is linear in T × (|J | +
∑

j∈J |B̄j|), which increases as the planning horizon

T increases. To find a good purchase plan for the LPP-OP with longer planning

horizon, we introduce a solution that minimizes the myopic cost in each period as an

approximation of the optimal solution.
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5.4 Myopic Solution Approximation

Depending on the length of the planning horizon T , finding the optimal solution of

the long-term LP model (5.12)-(5.20) can be computationally expensive. Thus, we

approximate the optimal solution by calculating the server capacity that minimizes

the cost in each period without considering future periods. In the next section, we

prove the myopic server purchase plan is also the optimal solution for the total cost

function in some special cases.

Based on the definition of the total cost in Equation 5.7, we denote the cost in

period t by function

Ht(n1,t, ..., n|J |,t; ~St,~lt) =
∑
j∈J

hj,tnj,t +O(n1,t, ..., n|J |,t; ~St)−
∑
j∈J

hj,tlj,t (5.22)

where O(n1,t, ..., n|J |,t; ~St) is defined as the optimal solution of the operating cost

model (5.1)-(5.6), and ~lt = (l1,t, ..., l|J |,t) is the set of servers in the cloud system at

the beginning of period t, which is a constant.

We define the myopic optimal server capacity ~nHt = {nHj,t}j∈J as the server capacity

that minimizes the short-term cost function Ht(n1,t, ..., n|J |,t; ~St,~lt). We claim the

myopic optimal server capacity ~nHt in period t can be obtained by solving the following

LP model:

min
∑
j∈J

hj,tnj +
∑
j∈J

ojzj (5.23)

s.t.
∑
j∈J

∑
v∈B̄j

vixjv ≥ si,t, ∀i ∈ I (5.24)

zj ≤ nj, ∀j ∈ J (5.25)∑
v∈B̄j

xjv = zj, ∀j ∈ J (5.26)

zj ∈ R+, ∀j ∈ J (5.27)

xjv ∈ R+, ∀j ∈ J,v ∈ B̄j (5.28)

nj ∈ R+. ∀j ∈ J (5.29)

The objective (5.23) is to minimize the purchasing cost and the operating cost in

period t. Constraints (5.24)-(5.28) are same as (5.2)-(5.6) in the operating cost model,

so the service slot requirements are satisfied in period t. The additional constraint

(5.29) is the domain constraint for the server capacity after the purchasing in period

t, since it is a set of decision variables in the myopic problem.
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Here, we prove this claim.

Theorem 5.3. In any period t ∈ {1, ..., T}, the optimal solution {n∗j , z∗j }j∈J of the

LP model (5.23)-(5.29) minimizes the short-term cost function Ht(n1,t, ..., n|J |,t; ~St,~lt)

in period t, i.e. n∗j = nHj,t,∀j ∈ J .

Proof. Fix an arbitrary t ∈ {1, ..., T}. Suppose there exist {n′j}j∈J ∈ R|J | such that

Ht(n
′
1, ..., n

′
|J |;

~St,~lt) < Ht(n
∗
1, ..., n

∗
|J |;

~St,~lt). Since {n′j}j∈J ∈ R|J |, then it is feasible in

the LP model (5.23)-(5.29). Note that the constraints (5.24)-(5.28) are the same as

the constraints in the operating cost model (5.2)-(5.6). Thus, the zj decision variables

have the same feasible region in the LP model (5.23)-(5.29) and the operating cost

model (5.1)-(5.6). Therefore, the feasibility of {n′j}j∈J in the LP model (5.23)-(5.29)

implies∑
j∈J

hj,tn
′
j +O(n′1, ..., n

′
|J |; ~St) ≥

∑
j∈J

hj,tn
∗
j +

∑
j∈J

ojz
∗
j =

∑
j∈J

hj,tn
∗
j +O(n∗1, ..., n

∗
|J |; ~St).

Note that
∑

j∈J hj,tlj,t is a constant term, so

Ht(n
′
1, ..., n

′
|J |; ~St,

~lt) =
∑
j∈J

hj,tn
′
j +O(n′1, ..., n

′
|J |; ~St)−

∑
j∈J

hj,tlj,t

≥
∑
j∈J

hj,tn
∗
j +O(n∗1, ..., n

∗
|J |; ~St)−

∑
j∈J

hj,tlj,t

= Ht(n
∗
1, ..., n

∗
|J |; ~St,

~lt),

and the contradiction forms.

Therefore, the new LP model (5.23)-(5.29) finds the optimal server capacity ~nHt
with the minimum operating cost and purchasing cost in period t, and we define the

myopic purchase plan ~mH
t = (mH

1.t, ...,m
H
|J |,t) as following

lj,t = (1− dj)nHj,t−1, ∀j ∈ J, t ∈ {2, ..., T} (5.30)

mH
j,t =

nHj,t − lj,t, nHj,t ≥ lj,t

0, nHj,t < lj,t
∀j ∈ J, t ∈ {1, ..., T} (5.31)

5.5 Optimal Myopic Purchasing Policy with Non-decreasing

Workload

With the computational complexity reduced by solving the myopic solution instead

of the long-term optimal solution, we are interested in the quality of myopic solutions
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as they may lead to some additional costs in long-term. Consider an example with

two classes of jobs and three types of servers. Suppose class 1 jobs are CPU intensive

and class 2 jobs are memory intensive, and type 1 servers are capable for class 1 jobs

only, type 2 servers are capable for class 2 jobs only, and type 3 servers can process

jobs in any class with a higher price. If the jobs arrive to the cloud are mostly in class

1 in the first period and change to mostly class 2 jobs in the second period, then the

myopic solution will suggest to purchase type 1 servers in first period and get type 2

servers in second period. However, the long-term optimal purchase plan is purchasing

type 3 servers in the first period and operate them in the second period.

In this section, we prove the myopic server purchase plan coincides the long-term

optimal server purchase plan in each period when the workload is non-decreasing.

To simplify the proof, we will prove the equality of the myopic server capacity

{~nHt = (nH1,t, ..., n
H
|J |,t)}t∈{1,...,T} and the long-term optimal server capacity {~n∗t =

(n∗1,t, ..., n
∗
|J |,t)}t∈{1,...,T}, since the server purchase plan is the only set of decision vari-

ables that affects the server capacity. Specifically, ~nHt is the optimal solution of the

myopic LP model (5.23)-(5.29) in each period t, and {~n∗t}t∈{1,...,T} is the server capac-

ity corresponds to the optimal solution {m∗j,t, z∗j,t}t∈{1,...,T} of the long-term DP model

(5.8)-(5.11), where

n∗j,t = lj,t +m∗j,t, ∀j ∈ J, t ∈ {1, ..., T}

lj,t = (1− dj)n∗j,t−1. ∀j ∈ J, t ∈ {2, ..., T}

We define the workload is non-decreasing as follows.

Definition 5.4. Consider the workload from period 1 to period T : ~S1, ..., ~ST . The

workload is non-decreasing if and only if

∂Ht(n1, ..., n|J |; ~St,~lt)

∂nj
≥
∂Ht+1(n1, ..., n|J |; ~St+1,~lt+1)

∂nj
∀j ∈ J, t ∈ {1, ..., T − 1}

(5.32)

According to the definition (see Equation 5.22), Ht(n1, ..., n|J |; ~St,~lt) is the short-

term cost in period t while operating ~n = {n1, ..., n|J |} servers with a given workload ~St

and ~lt installed servers. Then
∂Ht(n1,...,n|J|;~St,~lt)

∂nj
represents the marginal short-term cost

of operating one more type j server in period t when the cloud is already operating

~n servers. Definition 5.4 states that the workload is non-decreasing if and only if the

marginal cost of operating one more server from any type j ∈ J in period t is greater

than or equal to the marginal cost of adding the same server in the next period t+ 1,

while the cloud having the same operating plan ~n in both periods. The intuition is
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that the heavier workload should lead to a smaller marginal cost (a greater marginal

benefit) on operating an additional server in any type. Consider the example with

two classes and three types above, the class 1 jobs strongly impacts the marginal

cost of type 1 servers and slightly affects the marginal cost of other types of servers.

Similarly, the class 2 jobs strongly impacts the marginal cost of type 2 servers and

slightly affects the marginal cost of the others. Thus, the workload shift from class 1

jobs to class 2 jobs causes the marginal cost of type 1 servers to increase, so it is not

a non-decrease workload.

Definition 5.4 uses server marginal costs to focus on the overall workload among all

classes instead of the class specified workload. Thus, the definition of non-decreasing

overall workload is different from non-decreasing workload in every job class, i.e.

si,t ≤ si,t+1,∀i ∈ I, t ∈ {1, ..., T − 1}. For example, in a cloud that serves jobs in

similar classes, the overall workload is still non-decreasing if the workload in one class

falls but the workload from the other classes increases and covers the marginal cost

loss for all servers.

We first prove the convexity of the short-term cost function Ht(n1,t, ..., n|J |,t; ~St,~lt)

in all periods t which is used later in our main result.

Theorem 5.5. For all t ∈ {1, ..., T}, Ht(n1,t, ..., n|J |,t; ~St,~lt) is jointly convex in

(n1,t, ..., n|J |,t).

Proof. Fix the period number t ∈ {1, ..., T} arbitrarily.

First we want to show the operating cost function O(n1,t, ..., n|J |,t; ~St) is jointly

convex in (n1,t, ..., n|J |,t) for any given workload ~St.

Consider the operating cost function O(n′1,t, ..., n
′
|J |,t;

~St) with its optimal solution

{z′j, x′jv}j∈J,v∈B̄j
, and another operating cost function O(n′′1,t, ..., n

′′
|J |,t;

~St) with its op-

timal solution {z′′j , x′′jv}j∈J,v∈B̄j
.

Fix any 0 ≤ λ ≤ 1, then we want to show

{λz′j + (1− λ)z′′j , λx
′
jv + (1− λ)x′′jv}

is a feasible solution in

O(λn′1,t + (1− λ)n′′1,t, ..., λn
′
|J |,t + (1− λ)n′′|J |,t; ~St).

We show that by proving

{λz′j + (1− λ)z′′j , λx
′
jv + (1− λ)x′′jv}
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satisfies all constraints in

O(λn′1,t + (1− λ)n′′1,t, ..., λn
′
|J |,t + (1− λ)n′′|J |,t; ~St).

Constraint 5.2:∑
j∈J

∑
v∈B̄j

vi[λx
′
jv + (1− λ)x′′jv] =

∑
v∈B̄j

viλx
′
jv +

∑
v∈B̄j

vi(1− λ)x′′jv

=λ
∑
v∈B̄j

vix
′
jv + (1− λ)

∑
v∈B̄j

vix
′′
jv

≥λsi,t + (1− λ)si,t

=si,t, ∀i ∈ I

Constraint 5.3:

λz′j + (1− λ)z′′j ≤λn′j,t + (1− λ)n′′j,t, ∀j ∈ J

Constraint 5.4:∑
v∈B̄j

[λx′jv + (1− λ)x′′jv] =
∑
v∈B̄j

λx′jv +
∑
v∈B̄j

(1− λ)x′′jv

=λ
∑
v∈B̄j

x′jv + (1− λ)
∑
v∈B̄j

x′′jv

=λz′j + (1− λ)z′′j , ∀j ∈ J

Constraint 5.5 and 5.6:

λz′j + (1− λ)z′′j ∈ R+, ∀j ∈ J

λx′jv + (1− λ)x′′jv ∈ R+, ∀j ∈ J,v ∈ B̄j

Thus, we know ∑
j∈J

oj[λz
′
j + (1− λ)z′′j ]

≥O(λn′1,t + (1− λ)n′′1,t, ..., λn
′
|J |,t + (1− λ)n′′|J |,t; ~St),

(5.33)

since the operating cost function is defined as the minimum operating cost considering

all feasible operating decisions (see Equation 5.1).
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Now we prove the convexity of O(·; ~St) directly

λO(n′1,t, ..., n
′
|J |,t; ~St) + (1− λ)O(n′′1,t, ..., n

′′
|J |,t; ~St)

=λ
∑
j∈J

ojz
′
j + (1− λ)

∑
j∈J

ojz
′′
j

=
∑
j∈J

oj[λz
′
j + (1− λ)z′′j ]

≥O(λn′1,t + (1− λ)n′′1,t, ..., λn
′
|J |,t + (1− λ)n′′|J |,t; ~St). by Equation 5.33

Therefore, since
∑

j∈J hj,tnj,t is linear and jointly convex in (n1,t, ..., n|J |,t), then

Ht(n1,t, ..., n|J |,t; ~St) is jointly convex in (n1,t, ..., n|J |,t).

Now we prove the main theorem in this section: the myopic solutions are optimal

when the workload is non-decreasing in all periods t ∈ {1, ..., T}.

Theorem 5.6. Suppose the system experiences workload ~S1, ..., ~ST during periods 1

to T . Let ~nHt be the myopic server capacity that minimizes the short-term cost in

Equation 5.22 at each period t, and {~n∗t}t∈{1,...,T} be the long-term optimal server

capacity that optimizes DP model (5.8)-(5.11).

If the workload is non-decreasing across period 1 to period T , then the myopic

server capacity is equal to the long-term optimal server capacity, i.e. ~nHt = ~n∗t ,∀t ∈
{1, ..., T}.

Proof. We prove the theorem in two stages:

(i) If the overall workload is non-decreasing with time, then the myopic server ca-

pacity is non-decreasing, i.e. nHj,t ≤ nHj,t+1,∀j ∈ J, t ∈ {1, ..., T − 1}.

(ii) If nHj,t ≤ nHj,t+1,∀j ∈ J, t ∈ {1, ..., T − 1}, then the myopic server capacity is also

optimal for the total cost function, i.e. ~nHt = ~n∗t ,∀t ∈ {1, ..., T}.

Proof of Part (i): Fix an arbitrary t ∈ {1, ..., T − 1}. Assume the workload is

non-decreasing, then we know
∂Ht(n1,...,n|J|;~St,~lt)

∂nj
≥ ∂Ht(n1,...,n|J|;~St+1,~lt+1)

∂nj
by Definition

5.4.

The first order condition states

lim
nj→nH

j,t

∂Ht(n
H
1,t, ..., nj, n

H
j+1,t, ..., n

H
|J |,t;

~St,~lt)

∂nj
= 0, ∀j ∈ J

and

lim
nj→nH

j,t+1

∂Ht(n
H
1,t+1, ..., nj, n

H
j+1,t+1, ..., n

H
|J |,t+1; ~St+1,~lt+1)

∂nj
= 0. ∀j ∈ J
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According to Theorem 5.5, we know that

nHj,t ≤ nHj,t+1,∀j ∈ J

based on the convexity of the short-term cost function Ht(·).
Proof of Part (ii): We use the similar arguments as the proof of the Proposition

3-1 in Heyman and Sobel’s work [29].

Note that the objective function of the DP model (5.8) can be rewritten as the

summation of the short-term cost in each period t

T∑
t=1

βt−1

(
O(n1,t, ..., n|J |,t; ~St) +

∑
j∈J

hj,tmj,t

)
(5.34)

=
T∑
t=1

βt−1

(∑
j∈J

hj,tnj,t +O(n1,t, ..., n|J |,t; ~St)−
∑
j∈J

hj,tlj,t

)
(5.35)

=
T∑
t=1

βt−1Ht(n1,t, ..., n|J |,t; ~St,~lt). (5.36)

Further, note that the myopic server capacity ~nHt minimizes the short-term cost in

each period t, which means for any server capacity ~nt ∈ R|J |+

Ht(~n
H
t ; ~St,~lt) ≤ Ht(~nt; ~St,~lt). ∀t ∈ {1, ..., T}

Thus, if the myopic server capacity {~nHt }t∈{1,...,T} is feasible in the DP model (5.8)-

(5.11), then it is the optimal solution, since the objective function of the DP model

is a weighted sum of independent cost functions (Equation 5.36).

We want to prove the feasibility of {~nHt }t∈{1,...,T} in the DP model. Notice the

constraints (5.24)-(5.26) and (5.27)-(5.28) are the same as the constraints in the

operating cost model (5.1)-(5.6). Then {~nHt } is feasible in the operating cost model

(5.1)-(5.6) at any period t. Now we want to show mj,t ≥ 0, ∀j ∈ J, t ∈ {1, ..., T}.
Recall

nj,t = lj,t +mj,t, ∀j ∈ J, t ∈ {1, ..., T}

lj,t = (1− dj)nj,t−1, ∀j ∈ J, t ∈ {2, ..., T}

which implies

mj,t = nj,t − (1− dj)nj,t−1. ∀j ∈ J, t ∈ {2, ..., T}

Notice the constraint mj,t ≥ 0 is satisfied by the myopic policy if and only if nHj,t+1 ≥



5.6. EXPERIMENTAL RESULTS 81

(1− dj)nHj,t,∀j ∈ J, t ∈ {1, ..., T − 1}. By assumption, we know

nHj,t+1 ≥ nHj,t ≥ (1− dj)nHj,t. ∀0 ≤ dj ≤ 1, j ∈ J, t ∈ {1, ..., T − 1}

Therefore, if the workload is non-decreasing, then statements (i) and (ii) imply the

myopic policy is a feasible and optimal policy for the long-term cost function.

In practice, solving the individual myopic optimal solutions can save a lot of pro-

cessing time compared to solving the entire LPP-OP with an LP model (5.12)-(5.20).

We show the benefit of the myopic models in our experiments. Furthermore, if the

workload is decreasing in some period, then the myopic solution can still be used

as an approximation of the long-term optimal solution, since the myopic solution is

always feasible for the long-term LP model (5.12)-(5.20).

5.6 Experimental Results

The experiments in this chapter have two main goals:

1. Investigate the run-time advantage of solving the myopic models instead of the

long-term LP model, and also do a sanity check on the optimality of the myopic

solution with non-decreasing workload.

2. Test the quality of the myopic solution compared to the long-term optimal so-

lution when the workload is decreasing in some periods.

To investigate the algorithm behaviour with different problem sizes, we generated

problem instances that have 20 job classes with 20, 30, 40, and 50 server types. Each

problem size has three instances, and every instance is solved by the full LP model and

the myopic model with a planning horizon of 10, 20, and 40 periods. The problem

instances with 10, 20, and 40 periods have a discount factor of 0.65, 0.8, and 0.9

respectively, so the costs after the planning horizon have a weight less than 0.015.

We used Gurobi 9.5.1 to solve the full LP models (5.12)-(5.20) and the myopic LP

models (5.23)-(5.29). Each full LP model is given 100GB of memory and executed

with a time limit of 3600 seconds (1 hour). The myopic LP model for any period

in a problem instance is given 100GB of memory and executed with a time limit

of 300 seconds (5 minutes). The full LP model has longer time limit but the same

memory as each myopic LP model, because the processing time of the myopic models

for different periods accumulates, but the memory usage of the myopic LP model for

the previous period is released when building the next myopic LP model. This is

another advantage of solving the problem with myopic LP models.
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Table 5.2: Run-time Comparison of Different LP models with Non-decreasing Workload

Problem Sizes Full LP Model Myopic LP Models
# classes # types # periods Run-time(s) Total Run-time(s)

20 20 10 85.59 54.63
20 20 20 191.86 106.73
20 20 40 386.53 210.62
20 30 10 121.60 79.04
20 30 20 274.43 155.58
20 30 40 581.64 311.94
20 40 10 196.49 120.86
20 40 20 448.78 241.76
20 40 40 1037.62 482.49
20 50 10 220.05 134.39
20 50 20 472.43 266.54
20 50 40 MemOut 522.17

When the workload is non-decreasing in all job classes, Table 5.2 shows the run-

times of the two different LP models (full and myopic). In all problem instances, the

myopic LP model shows an advantage in processing time, especially as the number

of periods increases. Recall the myopic model solves T LP models, where each model

has the number of decision variables linear to the number of job classes times the

number of server types (|I|× |J |). Thus, the computational complexity of the myopic

LP model is linear in T and exponential in |I| × |J |. In contrast, the number of the

decision variables in the full LP model is linear in T × |I| × |J |, which expands the

search space with a size exponential in T × |I| × |J |.
Other than the run-time, Table 5.2 uses “MemOut” to indicate the scenario that

the LP model could not be implemented within the memory limit. Note that memory

issues only occurred on the Full LP model in our test cases. This observation supports

the advantage of the myopic LP model on the memory usage, since the algorithm only

processes the myopic LP model of one period at a time, and its memory is released

after the model of each period is solved. In all problem instances that the full LP

model could solve, the solution of the myopic LP model is the same as the solution of

the full LP model when the workload is non-decreasing. This observation is consistent

with the Theorem 5.6 in Section 5.5.

Despite the results above, cloud systems may experience declining workload in

some job classes. In this case, Theorem 5.6 cannot guarantee the myopic solution is

optimal in the long-term. We would like to know the quality of the myopic solution

as an approximation of the long-term optimal solution.

In the following experiment, we kept the same settings on the problem instances

with the exception of changing the workload in each period. Instead of the non-
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Figure 5.2: The generated service slots requirement of two job classes with non-monotonic
decreasing workload in 20 consecutive periods.

Figure 5.3: The generated service slots requirement of two job classes with non-monotonic
increasing workload in 20 consecutive periods.

decreasing workload in all classes, we set the workload of each job class in all periods

to be alternatively increasing and decreasing: half of the classes have their workload

increases after odd periods, and the other half of the classes have their workload in-

creases after even periods. For example, Figure 5.2 shows two classes with alternating

workload and the aggregate workload is decreasing overtime, we call this workload

behaviour “non-monotonic decreasing”. Analogously, Figure 5.3 shows two classes

with “non-monotonic increasing” workload.

We want to test the difference between the solutions from the full LP model and

the myopic LP model with the workload settings above. Table 5.3 shows the results

from the models with non-monotonic decreasing workload. In all problem instances,

the myopic LP model has an advantage on the processing time compared to the full

LP model. When the full LP model has enough memory, it always finds the optimal
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Table 5.3: Run-time and Solution Value Comparison of Different LP models with Non-monotonic
Decreasing Workload

Problem Sizes Full LP Model Myopic LP Models
# classes # types # periods Run-time(s) Total Run-time(s) Optimality Gap

20 20 10 94.57 53.15 0.73%
20 20 20 205.92 105.83 0.91%
20 20 40 383.36 206.02 1.16%
20 30 10 134.73 80.46 1.58%
20 30 20 337.49 155.21 0.84%
20 30 40 741.83 308.39 0.96%
20 40 10 215.29 124.94 0.87%
20 40 20 581.05 242.70 0.61%
20 40 40 1331.40 471.27 1.32%
20 50 10 249.77 136.21 0.69%
20 50 20 603.42 265.13 0.64%
20 50 40 MemOut 522.79 N/A

Table 5.4: Run-time and Solution Value Comparison of Different LP models with Non-monotonic
Increasing Workload

Problem Sizes Full LP Model Myopic LP Models
# classes # types # periods Run-time(s) Total Run-time(s) Optimality Gap

20 20 10 91.22 54.64 2.01%
20 20 20 219.57 107.31 2.96%
20 20 40 450.51 203.55 4.62%
20 30 10 151.48 81.94 1.52%
20 30 20 332.83 156.80 3.14%
20 30 40 664.16 309.14 3.28%
20 40 10 224.69 124.53 2.48%
20 40 20 508.21 245.46 3.29%
20 40 40 1208.30 476.49 4.41%
20 50 10 243.52 134.84 1.35%
20 50 20 540.32 264.46 2.66%
20 50 40 MemOut 514.09 N/A
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solution within the time limit in our tests, so the optimality gap is calculated by

Myopic Solution−Optimal Solution

Optimal Solution

where the myopic solution is the solution of the myopic LP model. In the largest

problem of our experiment, the memory runs out for the full LP model. As a result,

the model does not give us any lower bound on the solution and the optimality gap

of the myopic solution cannot be calculated. Similar to the experimental results with

the non-decreasing workload, the run-time of the full LP model grows faster compared

to the run-time of the myopic LP model as the planning horizon increases. However,

the solution from the myopic LP model is no longer optimal without non-decreasing

workload, and across all of our test cases, the optimality gap of the myopic solution

is always less or equal to 2%.

Table 5.4 shows the results from the full LP model and the myopic LP model with

non-monotonic increasing workload. These results also show the runtime advantage

on the myopic LP model, but the optimality gap of the myopic solutions is 2-3%

greater than the results in Table 5.3. We observe both the full model and the myopic

model stop purchasing server in the later periods when the workload is non-monotonic

decreasing, since there are enough servers in the system. Thus, the myopic LP model

only has extra purchasing cost in early periods. When the workload is non-monotonic

increasing, both the full model and the myopic model purchase servers in all periods,

and the myopic model tends to purchase extra servers through the entire planning

horizon with additional costs. Therefore, the myopic model makes more mistakes and

has a larger optimality gap when the workload is non-monotonic increasing.

We observe that the optimality gap of the myopic solution is not always increasing

as the number of periods increases in Table 5.3 and Table 5.4. Intuitively, we expect

the myopic model performs worse on the problems with longer planning horizon, but

this is not what we observe due to the following reason. As the planning horizon

increases, the optimal total cost increases. Thus, if the myopic model makes few

mistakes in later periods, then the extra costs caused by the myopic solution in the

early periods is amortized over more periods resulting in a smaller percentage gap.

5.7 Conclusion

In this chapter, we defined the long-term purchase plan optimization problem (LPP-

OP) to find the best server purchase plans for cloud systems, and introduced a linear

programming (LP) model to solve the problem. To simplify the solution process and
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solve for problems with larger size, we designed a myopic approximation strategy of

the LP model, which solves a set of smaller LP models that each optimizes the cost in

a single period. We proved the myopic approximation is the long-term optimal server

purchase plan when the workload is non-decreasing. With this theorem, we can solve

the server purchase plan optimization problem that only considers the current cost in

each period, as long as the market is growing. The myopic method also removes the

error from the data forecasting in our deterministic framework, since it only uses the

parameters in the current period. However, a fundamental assumption required for

the optimal myopic solution is that the future demand is independent of the current

server capacity in the cloud. The correctness of this assumption requires additional

studies or surveys.

Our experimental results support the advantage of the myopic approximation in

the runtime complexity and the memory complexity compared to the full LP model.

We have a sanity check on the optimality of the myopic solution while the workload is

non-decreasing in our experiment. When the workload in some job classes is decreas-

ing in some periods, the experimental results show the myopic approximation has a

higher accuracy when the overall workload is decreasing in long-term. The intuition

behind is that if the myopic approximation makes mistakes on the server purchasing

plans, then less approximation error is made when there is less purchasing cost. The

operating cost takes a higher percentage in the total cost of the cloud with decreasing

workload, since the cloud requires fewer servers compared to the cloud with increasing

workload.

For future work, an interesting study would be formulating an approach between

the myopic solution and the long-term optimal solution. A possible implementation

is to split the entire planning horizon into multiple groups of consecutive periods,

and calculate the optimal purchase plans in each group. Such an approach seeks to

balance the computational complexity and the solution quality. The choice of the

period groups can be made depending on the workload trend in order to increase the

accuracy of the approximation. Another way to extend the myopic approximation

is to solve the LP model with rolling horizon. With a rolling horizon of length K,

the purchasing plan in each period t is calculated by the LP model with the periods

{t, ..., t + K} as the planning horizon. Our myopic approximation strategy is the

example of solving the LP model with the length 1 rolling horizon.

Our framework may apply to similar systems other than the cloud. For exam-

ple, health care systems make periodic plans for the surgeries while considering the

available recovery wards [4]. Each ward may support multiple patients after different

types of surgery, which is similar to the job-to-server allocation problem. However,



5.7. CONCLUSION 87

the details of the model require more study based on the restrictions in the health

care system.



Chapter 6

Conclusion

This chapter summarizes the results and contributions of the previous chapters, and

discusses some directions for future work.

6.1 Summary of Contributions

In this thesis, we formally defined the short-term and long-term server capacity plan-

ning problems in infrastructure as a service (IaaS) clouds based on the real cloud

structure. In practice, a cloud receives multiple classes of jobs with stochastic arrival

and service time and must assign them to heterogeneous servers. Thus, two major

challenges of the server capacity planning problems are: calculating a deterministic

server capacity to satisfy the stochastic workload and assigning the multi-class jobs to

heterogeneous servers. We applied combinatorial optimization models to solve both

the short-term and long-term server capacity planning problem, and we hybridized

the combinatorial model with queueing models to consider the stochastic behaviors in

the cloud. Finally, we showed the usefulness of the frameworks with some empirical

results.

In Chapter 3, we introduced the hybrid framework based on the combinatorial

optimization models and queueing models to resolve the two challenges in the prob-

lem. Queueing models are used to calculate the resource requirements with respect

to the stochastic workload, and the combinatorial models allocate the resources to a

set of servers with the minimum operating cost. The numerical results including a

case study of the Google Cloud show the hybrid framework can solve the short-term

server capacity planning problem in real cloud in a reasonable time. From the case

study with the dataset from Google Cloud, however, we observed some weaknesses

of the problem definition and the framework. Some of the problem assumptions are

too strong for real cloud systems. For example, the problem assumes that the cloud

88
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experiences a workload with stable job arrival rates across days or weeks. In practice,

the cloud has different workload in different days, and a few hours in the day are much

busier compared to the rest of the hours. This violation on our assumptions causes

our framework to underestimate the resource usage of the cloud, and the framework

produces the solution that fails to satisfy the SLAs during the busy hours.

In our experiments, we also compared different queueing models, and the results

indicate the GI/GI/n queues fit better on the cloud with heavy workload and non-

exponential interarrival or service time compared to the M/M/n queues. The results

also show that a linear programming model with rounding strategy solves the alloca-

tion problem close to the optimal integral solution in a shorter time compared to the

integer programming model.

Chapter 5 extends the server capacity planning problem to a long-term basis, which

involves optimizing the periodic server purchasing plan with respect to the changing

workload. We introduced a linear programming (LP) model to optimize the server

purchasing plan with an objective of minimizing the operating costs and purchasing

costs. However, a longer planning horizon causes the size of the LP model to increase,

as well as its computational complexity and memory requirement. Thus, we develop

a myopic approximation method for the LP model that decomposes the model into

submodels per time period, where each submodel requires much less computation

and memory. Solving the submodels sequentially is shown to have a runtime and

memory advantage compared to solving the full LP model in the experiments, and

we prove the myopic solution is the optimal solution when the workload is non-

decreasing across the entire planning horizon. The numerical results support our

theorem, and present the usefulness of the LP model on small clouds and the myopic

approximation method on large clouds. Unfortunately, the myopic approximation

might be suboptimal when the workload decreases in some periods, and we could not

prove a good theoretical bound on the optimality gap of the myopic approximation.

However, the optimality gap of the myopic approximation is acceptable (< 5%) when

the workload is not non-decreasing in our experiment. Suppose the workload is not

always non-decreasing (e.g. the workload increases and decreases alternatively), the

results show the quality of the myopic approximation is worse when the workload has

an upward trend compared to a downward trend in the long-term. The reason is that

the myopic solutions make mistakes on the server purchasing plans, and more servers

are purchased when the workload has an upward trend instead of downward. The

myopic model correctly calculates the optimal operating cost, and the operating cost

is the major cost when the workload has a downward trend.
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6.2 Future Work

In Chapter 4, we observed that some assumptions are violated by the real cloud

dataset. One of the major assumptions is that the workload of the jobs does not

change over time in the short-term planning problem. In future work, the assumption

can be removed by using time varying queues (e.g. Gt/Gt/nt) to calculate the time

varying service slot requirements si(t) for all job class i ∈ I. The performance of the

time varying queues is studied by Pender and Ko [46], and they provide a promising

approximation on the probability of excessive delay in the time varying queues (see

Section 4.3 in Pender and Ko [46] for details). Therefore, we can discretize the

time horizon into a set of time points T = {t1, t2, ..., tn}, and then use the binary

search algorithm mentioned in Section 3.3.2 to calculate the service slot requirements

{si(t)}i∈I in all time points t ∈ T .

The integer programming (IP) model (3.2)-(3.6) introduced in Chapter 3 considers

only one set of service slot requirements, so the model needs to be reformulated. With

the goal of calculating the cheapest set of servers that satisfies the workload in all

time points, we focus on the time where the workload peak arrives. The time of peak

workload is obtained by the following:

arg max
t∈T

(
α
∑
i∈I

si(t)ci + β
∑
i∈I

si(t)mi

)
,

where ci and mi are the CPU and memory requirement of class i ∈ I jobs, and

the α ∈ [0, 1] and β ∈ [0, 1] are weights for the CPU and memory requirements,

respectively. We obtain multiple time points T̄ = {t1, ..., tm} ⊆ T with peak workload

by different α and β settings depending on the cloud environment. Then the IP model

that considers the peak workload is formulated as the following.

Decision Variables:

zj The number of operating servers of type j through the entire time horizon,

∀j ∈ J

xjvt The number of servers in type j that operate in configuration v at time point

t. ∀j ∈ J,v ∈ B̄j, t ∈ T̄
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IP Model:

min
∑
j∈J

Ojzj (6.1)

s.t.
∑
j∈J

∑
v∈B̄j

vixjvt ≥ si(t), ∀i ∈ I, t ∈ T̄ (6.2)

∑
v∈B̄j

xjvt ≤ zj, ∀j ∈ J, t ∈ T̄ (6.3)

zj ∈ Z+, ∀j ∈ J (6.4)

xjvt ∈ Z+. ∀j ∈ J,v ∈ B̄j, t ∈ T̄ (6.5)

The objective (6.1) of the IP model is to minimize the operating cost of the servers.

Constraints (6.2) force the servers to satisfy the workload at all time t ∈ T̄ with

different configurations. Constraints (6.3) restrict the jobs to be assigned on operating

servers only. Constraints (6.4)-(6.5) are the domain constraints that limit the number

of operating servers and the number of servers taking each configuration to be positive

integers.

The time varying workload IP model (6.1)-(6.5) is about |T̄ | times larger than the

IP model (3.2)-(3.6), since the time varying model has to determine the configurations

of the same set of servers to satisfy multiple workload. To reduce the computational

complexity, we can apply Benders decomposition [6] to the IP model (6.1)-(6.5). A

naive approach is to initialize the master problem (MP) as:

min
∑
j∈J

Ojzj (6.6)

s.t.
∑
v∈B̄j

xjvt ≤ zj, ∀j ∈ J, t ∈ T̄ (6.7)

zj ∈ Z+, ∀j ∈ J (6.8)

xjvt ∈ Z+, ∀j ∈ J,v ∈ B̄j, t ∈ T̄ (6.9)

which is the original IP model (6.1)-(6.5) without the workload information (6.2). The

workload satisfaction problem is decomposed into |T̄ | subproblems P = {P1, P2, ..., P|T̄ |}.
After the MP produces an optimal solution {ẑj, x̂jvt}j∈J,v∈B̄j ,t∈T̄ , each subproblem

Pt, t ∈ T̄ checks the feasibility of the configurations {x̂jvt}j∈J,v∈B̄j
in the following

constraints, ∑
j∈J

∑
v∈B̄j

vixjvt ≥ si(t),∀i ∈ I.

If the configurations are infeasible, then one of the unsatisfied workload constraints is
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added to the MP. The solution of the MP will converge to the optimal server plan by

solving the MP and the subproblems iteratively. According to the designer’s choice,

the algorithm may solve multiple subproblems and add multiple constraints to the

MP in each iteration.

Another approach to reduce the computational complexity is relaxing the integer

variables in the IP model to continuous variables. The rounding strategies presented

in Section 3.3.3 are also applicable to the time varying problem, and the results in

Chapter 3 show the guaranteed feasibility and the accuracy of the rounded solution.

6.3 Conclusion

This thesis formalizes the server capacity planning problem of the cloud with stochas-

tic heterogeneous customer requests and deterministic multi-type server capacity. We

introduce an idea of virtualizing the resources allocated for the jobs as service slots,

then develop a framework that hybridizes queueing models and combinatorial opti-

mization models based on service slots to solve the problem. We extended the plan-

ning problem to consider the server purchasing plan in the long-term, and adapted

the combinatorial models to solve the new problem. We believe the hybrid frame-

work can be applied to other scheduling problems with stochastic workload, such as

hospital management [4] and public transportation management [30, 10].
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Waiting Time Distribution

Approximation of GI/GI/n Queues

Whitt introduced some approximations on the waiting time distributions in GI/GI/n

queues [67]. We choose to use the heavy traffic approximation in this work, since the

cloud is a large system that satisfies the assumptions on heavy traffic, and also this

approximation provides a simple calculation on the waiting time distribution.

Suppose the mean arrival rate of the jobs in a GI/GI/n queue is λ, and the mean

lifetime of the jobs in this queue is 1
µ
. Then the distribution of the random variable

W that represents the waiting time of the jobs in this queue can be approximated as

follows

P (W > t) ≈ αe−ηµt

where,

ρ =
λ

µ

η ≈ 2(n− ρ)

C(A)2 + C(L)2

α ≈ ηE(W ).

In the chapter 2.4 of Whitt [67], a heavy traffic approximation on the expected

waiting time of the jobs in a GI/GI/n queue was also studied

E(W ) ≈ C(A)2 + C(L)2

2
· E(WM/M/n),

where E(WM/M/n) is expected waiting time of the jobs in an M/M/n queue with the

same mean arrival rate and mean lifetime.

The expected waiting time of the jobs in an M/M/n queue is well studied and can
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be calculated by

E(WM/M/n) =
1

µ(n− ρ)
· γ(ρ, n),

where the function γ(·, ·) is defined in Equation 2.3.

Thus, we can simplify the calculations and the simplified approximation becomes

P (W > t) ≈ 1

µ
· γ(ρ, n) exp

(
−µt(n− ρ) · 2

C(A)2 + C(L)2

)
.



Appendix B

Queueing Experiment Graphs

In Chapter 3.4.1, we showed the experimental results of one specific parameter setting

on a set of queueing instances. Here, we present the results from the queueing models

with 0.5 second expected inter-arrival time and different expected lifetimes of 40, 80,

120, or 160 seconds. The standard deviation of the inter-arrival time and the lifetime

is sd times the expected inter-arrival time and the expected lifetime respectively,

where sd is varied as 2, 4, or 8.

In each of the following graphs, we show the service slot requirements calculated

by different models as the service level agreement (SLA) changes. The three sets of

solutions are obtained from the M/M/n queueing model, GI/GI/n queueing model,

and a GI/GI/n queue based simulation method introduced in Chapter 3.4.1. The

grey horizontal lines represent the offered load (i.e. Mean Lifetime
Mean Inter-arrival Time

) in each setting.
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Figure B.1: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 40 seconds, and sd = 2.

Figure B.2: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 40 seconds, and sd = 4.
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Figure B.3: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 40 seconds, and sd = 8.

Figure B.4: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 80 seconds, and sd = 2.
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Figure B.5: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 80 seconds, and sd = 4.

Figure B.6: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 80 seconds, and sd = 8.
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Figure B.7: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 120 seconds, and sd = 2.

Figure B.8: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 120 seconds, and sd = 4.
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Figure B.9: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 120 seconds, and sd = 8.

Figure B.10: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 160 seconds, and sd = 2.
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Figure B.11: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 160 seconds, and sd = 4.

Figure B.12: The number of service slots required in the queues calculated by different models as
the upper bound on the probability of a job waits for more than 10 seconds changes. The queues
have expected lifetime of 160 seconds, and sd = 8.
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