
Extracting and Exploiting Bounds of Numeric Variables
for Optimal Linear Numeric Planning – Supplementary

Materials
Ryo Kuroiwaa;*, Alexander Shleyfmanb and J. Christopher Becka

aDepartment of Mechanical and Industrial Engineering, University of Toronto
bDepartment of Computer Science, Bar-Ilan University

ORCiD ID: Ryo Kuroiwa https://orcid.org/0000-0002-3753-1644,
Alexander Shleyfman https://orcid.org/0000-0001-9187-2354,

J. Christopher Beck https://orcid.org/0000-0002-4656-8908

PICKUP domain

In this problem, n customers and one depot are given. A worker must
pick up a commodity from each customer, and it can carry at most
C commodities at a time. The number of commodities carried by the
worker is represented by a numeric variable x. At the depot, there
is a truck with a capacity Q to deliver commodities to a center. The
number of commodities loaded into the truck is represented by y,
and the number of commodities delivered to the center is represented
by z. In the initial state, x = y = z = 0. The goal is to deliver
all commodities to the center, i.e., z ≥ n. The worker can load all
commodities to the truck (y += x and x := 0) if y + x ≤ Q at the
depot. If y + x > Q, the worker can load commodities as much as
possible (y := Q and x += y −Q). The commodities are delivered
to the center by driving the truck (z += y and y := 0), and the truck
returns to the depot after delivery.

We show a linear numeric planning task of this domain with
n = 2 customers, the worker capacity C = 1, and the truck ca-
pacity Q = 2. The set of propositions is F = {l0, l1, l2, p1, p2},
where l0 represents that the worker is at the depot, l1 (l2) repre-
sent that the worker is at customer 1 (2), and p1 (p2) represent that
the worker does not pick up the commodity from customer 1 (2).
The set of numeric variables is N = {x, y, z}, the initial state
is s0 with s0p = {l0, p1, p2} and s0[x] = s0[y] = s0[z] = 0,
and the goal condition is G = {z ≥ 2}. The set of actions is
A = {a1, a2, a3, a4, a5, a6, a7, a8, a9}, where a1 (a2) moves the
worker to customer 1 from the depot (customer 2) and picks up the
commodity, a3 (a4) moves the worker to customer 2 from the depot
(customer 1) and picks up the commodity, a5 (a6) moves the worker
to the depot from customer 1 (2), a7 loads all commodities to the
truck, a8 loads as much as possible, and a9 delivers the commodities
to the center. The actions are defined in Table 1. The optimal plan is
⟨a1, a5, a7, a3, a6, a7, a9⟩ with the cost of 49.

When applying a1, a2, a3, or a4, x ≤ 0, so x ≤ 1 after the
application. For a7, the effect on x is x := 0. Therefore, 0 ≤ x ≤ 1.
When applying a7, y ≤ 1, and the effect on y is overestimated by

∗ Corresponding Author. Email: ryo.kuroiwa@mail.utoronto.ca.

action pre add del num cost

a1 l0, p1, −x ≥ 0 l1 l0, p1 x += 1 3
a2 l2, p1, −x ≥ 0 l1 l2, p1 x += 1 5
a3 l0, p2, −x ≥ 0 l2 l0, p2 x += 1 4
a4 l1, p2, −x ≥ 0 l2 l1, p2 x += 1 5
a5 l1 l0 l1 3
a6 l2 l0 l2 4

a7 l0, −x− y ≥ −2
x += −x

5
y += x

a8 l0, x+ y ≥ 3
x += y − 2

5
y += −y + 2

a9 l0, y ≥ 1
z += y

25
y += −y

Table 1. Actions in the example instance of PICKUP.

y += 1. The effect of a7 on y is y := 2, and the effect of a8 on y is
y := 0. Thus, 0 ≤ y ≤ 2, the effect of a9 on z is overestimated by
z += 2.

We generate 20 instances with n = 13, 14, 15, 16, 17, Q =
⌈n/2⌉ , ⌈n/3⌉, and C = Q, ⌈Q/2⌉. Coordinates of customers and
the depot are generated uniformly at random in a 1000 × 1000 Eu-
clidean space, and visiting a customer from the depot or another cus-
tomer incurs the travel cost of the Euclidean distance rounded up
to an integer. Loading commodities into the truck incurs the cost of
⌈1000

√
2⌉ (the maximum possible traveling cost), and driving the

truck to the center incurs the cost of ⌈5000
√
2⌉ (five times the load-

ing cost).

Extracting Bounds in Numeric Planning

Here, we describe the detailed technical proofs for the bound extrac-
tion method.

Bounds in Linear Numeric Planning

We start with setting the upper bound and lower bounds on each nu-
meric variable v ∈ N to be v0 := ∞ and v0 := −∞. We intend
to update these bounds iteratively. Note that here we assume that
∞ + c = ∞ and −∞ + c = −∞, and c · ∞ = ∞ if c > 0, and

https://orcid.org/0000-0002-3753-1644
https://orcid.org/0000-0001-9187-2354
https://orcid.org/0000-0002-4656-8908

c · (−∞) = ∞ if c < 0. The −∞ behaves similarly under mul-
tiplication by a constant. Note that in what follows we do not use
−∞+∞. We define the bounds of the numeric variables of the task
in iteration i as a box Bi =

Ś

v∈N [vi, vi], where vi and vi are an
upper and a lower bound on v at iteration i.1

Let va and va be upper and lower bounds on the domain of v
where the action a can be applied. For example, in the case discussed
by Coles et al. [1], the action a with precondition pre(a) = {v ≥ 1}
has the bounds va = 1 and va = ∞. Since our bounds com-
puted iteratively we denote them by via and via for each iteration
i ∈ N. Moreover, we define preBia :=

Ś

v∈N [via, v
i
a] to be the

|N |-dimensional box that results from application of a to Bi−1.
We aim to derive tighter bounds on va and va, using the linear

preconditions of a. Let ψ ∈ pre(a) be a numeric precondition of
the form

∑
v∈N wψv v ≥ wψ0 . Let u ∈ N be a numeric variable s.t.

wψu ̸= 0. For a to be applicable, the following condition on u must
hold:

wψuu+
∑

v ̸=u:wψv ≥0

wψv v
i−1
a +

∑
v ̸=u:wψv ≤0

wψv v
i−1
a ≥ wψ0 .

Thus, if the appropriate vi−1
a ’s and vi−1

a ’s are finite we can derive
the upper or the lower bound on u, depending on the sign of wψu , i.e.,

biψ,u =

∑
v ̸=u:wψv ≥0

wψv v
i−1
a +

∑
v ̸=u:wψv ≤0

wψv v
i−1
a − wψ0

−wψu
. (1)

To apply a, we need the bounds to hold altogether, thus

via = min

{
vi−1, min

ψ∈pren(a):w
ψ
v <0

biψ,v

}
, (2)

via = max

{
vi−1, max

ψ∈pren(a):w
ψ
v >0

biψ,v

}
. (3)

Thus, we recursively defined preBia using preBi−1
a and Bi−1.

We now calculate the numerical bounds for the effects of a based
on preBia. For the purpose of bound computation we transfer all nu-
meric effect into their assignment form. For the general linear ef-
fect of a on u ∈ N : u += ξ ⇐⇒ u := u + ξ, where
ξ =

∑
v∈N wa,uv v + wa,u0 . If action a does not effect the variable u

– for the purpose of bound computation – we add the nominal effect
u := u. Transforming increment effects into assignment effects may
enable tighter bounds. For example, if we did not obtain any bounds
on u under the application of a, i.e., uia = ∞ and uia = −∞, the
increment effect u += −u + 2 will result the bounds on u being
∞ and a −∞. However, the assignment effect u := 2 will result in
the upper and lower bounds of 2. Thus, for the rest of this section we
replace all additive linear effects with assignment effects.

For the effect (u := u+ ξ) ∈ effn(a), we compute the bounds

ξ
i

u =
∑

v ̸=u:wa,uv >0

wa,uv via +
∑

v ̸=u:wa,uv <0

wa,uv via + wa,u0

ξi
u
=

∑
v ̸=u:wa,uv >0

wa,uv via +
∑

v ̸=u:wa,uv <0

wa,uv via + wa,u0 .

For brevity we transform these into bounds on assigment effects. If
wa,uu ≥ −1, an upper and a lower bound on u made by are given by:

asnia,u = (wa,uu + 1)uia + ξ
i

u, (4)

asnia,u = (wa,uu + 1)uia + ξi
u
. (5)

1 Note that the intervals here belong to [−∞,∞], which is a compactifica-
tions of R.

If wa,uu < −1, uia and uia are swapped in the equations above.
Furthermore, if the linear formula of the effect is used in a precon-

dition of the action, we can exploit the precondition to derive bounds
of the effect. For example, the precondition 2x+2y ≤ 3 imposes an
upper bound of 3

2
on u under the effect u := x+ y.

Thus, let us assume that some ψ ∈ pre(a) is of the form ψ :
r
∑
v∈N wa,uv v ≤ wψ0 , where u :=

∑
v∈N wa,uv v + wa,u0 is one of

the effects of a. If r > 0, we replace the upper bound on the effect
of a on u with asnia,u := min

{
asnia,u, w

ψ
0 /r + wa,u0

}
, if r <

0 we multiply the inequality by −1 and replace the bound asnia,u
accordingly.2

Lastly, we set the upper bound on the result of application of a
to be l

i
a,u = max{s0[u], asnia,u}, The lower bound on the appli-

cation is defined in a similar fashion lia,u = min{s0[u], asnia,u}.
Using these bounds we define the following effect box effBia :=
Ś

v∈N [lia,u, l
i
a,u]. Note that for each i ∈ N and each a ∈ A it holds

that s0 ∈ effBia.
We define the next iteration of the bounds: vi = maxa∈A l

i
a,u and

vi = mina∈A l
i
a,u. This gives us the box Bi :=

Ś

v∈N [vi, v
i].

Geometrically speaking, Bi is the smallest possible box s.t.⋃
a∈A effBia ⊆ Bi.
We first compute via and via, bounds on variable v when action a

is applicable. Using via and via, we compute bounds on effects of a.
Using bounds on effects of all actions, we compute vi and vi, bounds
on numeric variables. Then, we compute vi+1

a and vi+1
a using via

and via and repeat the process. We sketch the algorithm we use to
compute the bounds.

1. Initialize the initial upper bounds with ∞ and the lower bounds
with −∞.

2. For i ∈ N repeat 3–5 until there is no change or until i exceeds
some given i0.

3. Compute via and via for each variable v and action a in an arbitrary
order (Equations (1) – (3)).

4. Compute asnia,v and asnia,v for each action a and variable v in
an arbitrary order (Equations (4) and (5)).

5. Compute vi and vi for each v ∈ N in an arbitrary order.

Correctness of the Algorithm

A function f is called increasing (decreasing) if for all x and y s.t.
x ≤ y one has f(x) ≤ f(y) (f(x) ≥ f(y)). A linear function Rn →
R, x⃗→

∑n
j=1 cjxj+c0 is increasing in xj if cj ≥ 0, and decreasing

if cj ≤ 0. Constant functions are both increasing and decreasing.
Let f1 and f2 be both increasing (decreasing) functions and let g ∈
{min,max}, then g(f1, f2) is also increasing (decreasing).

We start the proof of correctness with the following lemma

Lemma 1 For each i ∈ N it holds that Bi+1 ⊆ Bi.

Proof: We prove the claim by induction. Assume that for each k < i
it holds that Bk+1 ⊆ Bk and preBk+1

a ⊆ preBka for each a ∈ A. The
base of induction is quite obvious since we initialize to

B0 = preB0
a =

ą

v∈N
[−∞,∞],

thus B1 ⊆ B0 and preB1
a ⊆ preB0

a for each a ∈ A.

2 Since all linear conditions in pre(a) are represented in their linear normal
form (LNF) [2], we do at most one update per bound.

Let us show that preBi+1
a ⊆ preBia. We will show that vi+1

a ≤ via.
The lower bound is obtained in practically the same manner. Recall
that

vi+1
a = min

{
vi, min

ψ∈pren(a):w
ψ
v <0

bi+1
ψ,v

}
.

We inspect this min\max formula element by element. By induction
assumption, we have vi ≤ vi−1. Note also that bi+1

ψ,v that appears
in the equation can be seen as a linear function in uia’s, and uia’s
where u ∈ N \ v. Since the formula requires wψv < 0 we know that
the multiplication constants of upper bounds, −wψu /wψv , are posi-
tive, and the constants of lower bounds are negative. By induction,
we have that uia ≤ ui−1

a and uia ≥ ui−1
a . Thus, for each ψ ∈ pre(a)

s.t. wψv < 0 we have that bi+1
ψ,v ≤ biψ,v . Recalling that monotonic-

ity preserved under the min function we have that vi+1
a ≤ via. The

inequality vi+1
a ≥ via is obtained in the same manner.

Our next step is to show that effBi+1
a ⊆ effBia. It is enough to

show l
i+1
a,v ≤ l

i
a,v , since the lower bounds are obtained in the same

fashion. Recall that l
i+1
a,v = max{s0[v], asni+1

a,v }.
As before asnia,v can be seen as linear functions over ui+1

a ’s, and
ui+1
a ’s where u ∈ N \ v. Since we already proved that preBi+1

a ⊆
preBia for all a, we know that this bounds behave properly. Thus,
by construction asnia,v is an increasing function, over a shrinking
domain. Thus, asni+1

a,v ≤ asnia,v . Since s0[v] ≤ l
i
a,v , thus we have

l
i+1
a,v ≤ l

i
a,v . Therefore, effBi+1

a ⊆ effBia.
Furthermore, this observation grants us

⋃
a∈A effBi+1

a ⊆⋃
a∈A effBia. Thus,⋃

a∈A

effBi+1
a ⊆ Bi :=

⋂
B∈Bi

B,

where Bi = {B is a box |
⋃
a∈A effBia ⊆ B}. Since Bi is also a

box, we have Bi+1 ⊆ Bi. □

We proved that Bi+1 ⊆ Bi ⊆ · · · ⊆ B0, and by construction
(s0)n ∈ Bi for all i ∈ N. Thus, we can define B∗ :=

⋂∞
i=1 B

i,
which we call the bounding of the task, and we know that B∗ ̸= ∅.
Moreover, since each sequence of bounds {vi}∞i=1 is a monotonic
sequence bounded by s0[v], we know that limi→∞ vi = v∗. Thus,
B∗ forms a box. To finish the proof, we need to show that for every
consequently applicable sequence of actions π = ⟨a1, . . . , am⟩ that
is applied from s0 and resulting in a state s it holds that sn ∈ B∗.
Given we are interested in numeric bounds, it is enough to show this
result for a relaxation where we ignore the propositional part, i.e., we
set F = ∅.

Lemma 2 Let sn ∈ B∗ be a proper numeric state3 s.t. sn |=
pren(a). Then, snJaK ∈ B∗.

Proof: Let ψ ∈ pren(a). Since we know that sn |= pren(a), we
know that

∑
v∈N wψv s[v] ≥ wψ0 . We also know that sn ∈ B∗, hence

sn ∈ Bi for each i ∈ N. First, we aim to prove by induction that
sn ∈ preBia for each i ∈ N. The basis of induction is trivial. Since
B0 is the whole space, and sn |= pren(a) we have that sn ∈ preB1

a.
Recall that {preBia}∞i=1 is a nested sequence of boxes, and assume
that sn ∈ ∩ik=1preB

k
a.

Let us show that sn ∈ preBi+1
a . Note that for each v it holds that

3 We assume that all values of sn are finite.

via ≤ s[v] ≤ via for each v. WLOG, assume that wψv < 0. Then,

s[v] ≤ −1

wψv

 ∑
u∈N\{v}

wψu s[u]− wψ0


≤ −1

wψv

 ∑
u:w

ψ
u≥0

wψuu
i
a +

∑
u:w

ψ
u≤0

wψuu
i
a − wψ0

 = biψ,v.

Since such inequality holds for every ψ ∈ pre(a) and v s.t. wψv < 0,
we can write

s[v] ≤ min

{
vi, min

ψ∈pren(a):w
ψ
v <0

bi+1
ψ,v

}
= vi+1

a .

Hence, we have that sn ∈ preBi+1
a , and thus in sn ∈ preB∗

a.
Let u := ξ ∈ num(a) be an assignment numeric effect,4 and let

us denote

ξ
x
=

∑
v:w

a,u
v ≥0

wa,uv vxa +
∑

v:w
a,u
v ≤0

wa,uv vxa + wa,u0 ,

ξx =
∑

v:w
a,u
v ≤0

wξvv
x
a +

∑
v:w

a,u
v ≥0

wa,uv vxa + wa,u0 .

Since via ≤ v∗a ≤ s[v] ≤ v∗a ≤ via for each v ∈ N and each i ∈ N,
it holds that ξi ≤ ξ∗ ≤ s[ξ] ≤ ξ

∗ ≤ ξ
i

for each i ∈ N.
If there is no ψ ∈ pre(a) of the form ψ : r

∑
v∈N wa,uv v ≤ wψ0

we are almost done. Otherwise, assume there is such ψ, and WLOG,

assume that r > 0. Since sn |= pren(a) we have that s[ξ] ≤ w
ψ
0
r

+
wa,u0 . Thus,

ui+1 ≤ ξi ≤ s[ξ] ≤ min

{
ξ
i
,
wψ0
r

+ wa,u0

}
≤ ui+1

i.e., s[ξ] ∈ Bi+1. Since this claim holds for every i we have that
s[ξ] ∈ B∗. □

These two lemmas provide us with the following result.

Theorem 1 Let Π be a linear numeric planning task, let B∗ to be
the bounding of Π. Let π = ⟨a1, . . . , am⟩ be a plan for Π, and let
⟨s0, . . . , sm⟩ be the sequence of states that corresponds to π. Then,
skn ∈ B∗ for each k ∈ [m].

Note that since {Bi}∞i=1 is a sequence of nested boxes s.t. B∗ ⊆ Bi

for each i, instead of computing B∗, we can compute Bi for some
large enough i.

Lastly, we present an unsatisfaibility criteria for the linear numeric
planning task. Let AG be the polytope defined by Gn the linear con-
ditions given in the numeric goal part of the task.

Corollary 1 Let Π be a linear numeric planning task, let B∗ be the
bounding of Π, and let AG be its goal polytope. Then, B∗ ∩AG = ∅
implies that Π is unsolvable.

As before, since B∗ ⊆ Bi for each i, the task is unsolavble if Bi ∩
AG = ∅ for some i. Note that since both Bi and AG are represented
as a set of linear inequalities, finding if B∗ ∩AG is empty or not, can
be done in polynomial time [3].

4 The additive effect u += ξ ∈ num(a) is transformed into assignment
effect u := u + ξ. As a slight abuse of notation in the transformed effect
we replace the original multiplicative constant of u in the additive effect,
wa,uu , with wa,uu := wa,uu + 1 transforming the addtive effect into an
assigment effect.

Full Proof of Theorem 2

Theorem 2 Given action awith a SOSE u += y+w and its second-
order supporter a′, let ınca′,y be an upper bound of the effect of a′ on
y and ya be an upper bound of y when a is applicable. The optimal
cost of the following optimization problem is a lower bound of the
cost to achieve numeric condition ψ : xψ ≥ wψ0 from state s using
only a′ and a.

minXcost(a) +
Y − s[y]

ınca′,y
cost(a′)

s.t. wψ0 − s[xψ] = X(Y + w)

0 ≤ X, 0 ≤ Y ≤ ya.

The optimal solution (X,Y) = (X∗, Y ∗) for the above problem is
given as follows:

X∗ =
wψ0 − s[xψ]

Y ∗ + w
.

Y ∗ = min

ya,
√

(wψ0 − s[xψ])ınca′,ycost(a)

cost(a′)
− w


Proof: Note that the optimization function is increasing in X , since
cost(a) ≥ 0. Thus, we can fix some large enough X0, and solve the
problem for 0 ≤ X ≤ X0, ensuring that the domain is compact, and
the minimum exists.

Using Lagrange multipliers, we get the following function and
KKT conditions:

L(X,Y, λ, µ) = Xcost(a) +
Y − s[y]

ınca′,y
cost(a′)

−λ(s[xψ]− wψ0 +X(Y + w))

+µ(Y − ya).

∂L
∂X

= cost(a)− λ(Y + w) = 0.

∂L
∂Y

=
cost(a′)

ınca′,y
− λX + µ = 0.

∂L
∂λ

= s[xψ]− wψ0 +X(Y + w) = 0.

∂L
∂µ

= Y − ya ≤ 0

µ ≥ 0.

µ(Y − ya) = 0.

By the last condition, µ = 0 or Y = ya. If we assume µ = 0, we get
the same solution as

X∗ =
wψ0 − s[xψ]

Y ∗ + w
, (6)

Y ∗ =

√
(wψ0 − s[xψ])w′cost(a)

cost(a′)
− w. (7)

where w′ is replaced with ınca′,y . If such a solution violates Y −
ya ≤ 0, i.e., Y > ya, then Y = ya must hold instead of µ = 0.
Therefore, for Y , we take the minimum of the solution in Equa-
tion (7) and ya. □

References
[1] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long, ‘A hy-

brid LP-RPG heuristic for modelling numeric resource flows in plan-
ning’, J. Artif. Intell. Res., 46, 343–412, (2013).

[2] Jörg Hoffmann, ‘The Metric-FF planning system: Translating ”ignoring
delete lists” to numeric state variables’, J. Artif. Intell. Res., 20, 291–341,
(2003).

[3] Leonid G. Khachiyan, ‘A polynomial algorithm in linear programming’,
Soviet Mathematics – Doklady, 20, 191–194, (1979).

