Extracting and Exploiting Bounds of Numeric Variables
for Optimal Linear Numeric Planning — Supplementary
Materials

Ryo Kuroiwa?*, Alexander Shleyfman® and J. Christopher Beck®

2Department of Mechanical and Industrial Engineering, University of Toronto
bDepartment of Computer Science, Bar-Ilan University
ORCiD ID: Ryo Kuroiwa https://orcid.org/0000-0002-3753-1644,
Alexander Shleyfman https://orcid.org/0000-0001-9187-2354,
J. Christopher Beck https://orcid.org/0000-0002-4656-8908

PICKUP domain

In this problem, n customers and one depot are given. A worker must
pick up a commodity from each customer, and it can carry at most
C commodities at a time. The number of commodities carried by the
worker is represented by a numeric variable x. At the depot, there
is a truck with a capacity @ to deliver commodities to a center. The
number of commodities loaded into the truck is represented by y,
and the number of commodities delivered to the center is represented
by z. In the initial state, z = y = z = 0. The goal is to deliver
all commodities to the center, i.e., z > n. The worker can load all
commodities to the truck (y += zx and z := 0) if y + < @ at the
depot. If y + = > @, the worker can load commodities as much as
possible (y := @ and z += y — Q). The commodities are delivered
to the center by driving the truck (# += y and y := 0), and the truck
returns to the depot after delivery.

We show a linear numeric planning task of this domain with
n = 2 customers, the worker capacity C' = 1, and the truck ca-
pacity @ = 2. The set of propositions is F = {lo,l1,l2,p1,p2},
where [o represents that the worker is at the depot, [1 (l2) repre-
sent that the worker is at customer 1 (2), and p:1 (p2) represent that
the worker does not pick up the commodity from customer 1 (2).
The set of numeric variables is N' = {z,y, 2z}, the initial state
is s° with 85 = {lo,p1,p2} and s°[x] = °[y] = s°[z] = O,
and the goal condition is G = {z > 2}. The set of actions is
A = {ai1,a2,as3,a4,as,a6,a7,as, a9}, where a1 (az) moves the
worker to customer 1 from the depot (customer 2) and picks up the
commodity, a3 (a4) moves the worker to customer 2 from the depot
(customer 1) and picks up the commodity, as (as) moves the worker
to the depot from customer 1 (2), a7 loads all commodities to the
truck, ag loads as much as possible, and ag delivers the commodities
to the center. The actions are defined in Table 1. The optimal plan is
(a1, as,az7,as, as, ar, ag) with the cost of 49.

When applying a1, a2, a3, or a4, z < 0, so x < 1 after the
application. For a~, the effect on x is « := 0. Therefore, 0 < x < 1.
When applying a7, y < 1, and the effect on y is overestimated by

* Corresponding Author. Email: ryo.kuroiwa@mail.utoronto.ca.

action | pre add del num cost
al lo,pl, —x >0 1 lo, p1 r+=1 3
az lo, p1,—x >0 i la,pr z+=1 5
as lo, p2, =2 >0 lo lo, p2 x+=1 4
aq li,p2, —x >0 lo 1, p2 x+=1 5
as l1 lo Iy 3
a6 lo lo lo 4
T += —x
ar lo, —x—y > -2 Yy 4=z 5
T+=y—2
>
as lo,t+y>3 A= —y+2 5
=y
lo,y>1 o 25
0 0V= y+=-y

Table 1. Actions in the example instance of PICKUP.

y += 1. The effect of a7 on y is y := 2, and the effect of ag on y is
y := 0. Thus, 0 < y < 2, the effect of ag on z is overestimated by
z+=2.

We generate 20 instances with n = 13,14,15,16,17, Q =
[n/2],[n/3], and C = Q, [Q/2]. Coordinates of customers and
the depot are generated uniformly at random in a 1000 x 1000 Eu-
clidean space, and visiting a customer from the depot or another cus-
tomer incurs the travel cost of the Euclidean distance rounded up
to an integer. Loading commodities into the truck incurs the cost of
[1000+/2] (the maximum possible traveling cost), and driving the
truck to the center incurs the cost of [5000+/2] (five times the load-
ing cost).

Extracting Bounds in Numeric Planning

Here, we describe the detailed technical proofs for the bound extrac-
tion method.

Bounds in Linear Numeric Planning

We start with setting the upper bound and lower bounds on each nu-
meric variable v € A to be 7° := oo and v° := —oo. We intend
to update these bounds iteratively. Note that here we assume that
co+c=ocand —0co+c¢c = —o0,and ¢c- 0o = o0 if ¢ > 0, and

https://orcid.org/0000-0002-3753-1644
https://orcid.org/0000-0001-9187-2354
https://orcid.org/0000-0002-4656-8908

¢+ (—00) = o0 if ¢ < 0. The —oo behaves similarly under mul-
tiplication by a constant. Note that in what follows we do not use
—00 + 0o. We define the bounds of the numeric variables of the task
in iteration ¢ as a box B! = XveN[yi,ﬁi], where v* and T are an
upper and a lower bound on v at iteration 4.

Let v, and v, be upper and lower bounds on the domain of v
where the action a can be applied. For example, in the case discussed
by Coles et al. [1], the action a with precondition pre(a) = {v > 1}
has the bounds v, = 1 and v, = oo. Since our bounds com-
puted iteratively we denote them by yfl and 7% for each iteration
i € N. Moreover, we define preB’ := Xue/\/La’ 7h] to be the
|V|-dimensional box that results from application of a to B*~*.

We aim to derive tighter bounds on v, and v, using the linear
preconditions of a. Let ¥ E pre(a) be a numeric precondition of
the form >~ ./ wv > w .Let u € N be a numeric variable s.t.
w¥ # 0. For a to be applicable, the following condition on u must
hold:

wlu + Z w¥si 4 Z wﬁ’l > wy.

v;ﬁu:wg}zo 1)¢qu$§O

Thus, if the appropriate D5 ’s and v’ !’s are finite we can derive
the upper or the lower bound on w, depending on the sign of w¥, i.e.,
P—i—1 Y, i—1 _
bi _ E’u?ﬁuzwgl>0 Wy Vg~ + Zv#u w w'u YV, Wy |
v 0 . ()
—w?

To apply a, we need the bounds to hold altogether, thus

Ei = min Eifl, min bfp,v , 2)
w€pren(a):w$ <0

gfz = max yi_l, max bip,v . 3)
Yepre, (a):wy >0

Thus, we recursively defined preB? using preB:~! and B,

We now calculate the numerical bounds for the effects of a based
on preB_. For the purpose of bound computation we transfer all nu-
meric effect into their assignment form. For the general linear ef-
fectof aonu € N:u += & <= wu := u+ & where
&= enwy™v +wy ™. If action a does not effect the variable u
— for the purpose of bound computation — we add the nominal effect
u := wu. Transforming increment effects into assignment effects may
enable tighter bounds. For example, if we did not obtain any bounds
on v under the application of a, i.e., ﬂfl = oo and g; = —o00, the
increment effect v += —u + 2 will result the bounds on u being
oo and a —oco. However, the assignment effect v := 2 will result in
the upper and lower bounds of 2. Thus, for the rest of this section we
replace all additive linear effects with assignment effects.

For the effect (u := u + &) € eff,(a), we compute the bounds

Zi a,u—1 a,u, 4
&, = E w, Vg + g wy v+ wg™
vAwwy >0 vAuwwy <0
7 a,u, 1 a,u—1
éu: E wy v, + E wy Uy + wy™
vAuwy >0 vEwwy <0

For brevity we transform these into bounds on assigment effects. If

wy'™ > —1, an upper and a lower bound on u made by are given by:
@y = (Wi + 1) + &, “
asn,, , = (Wi + Duy, + & . 5)

If wd® < —1,%} and gfl are swapped in the equations above.

Furthermore, if the linear formula of the effect is used in a precon-
dition of the action, we can exploit the precondition to derive bounds
of the effect. For example, the precondition 2z + 2y < 3 imposes an
upper bound of % on u under the effect u := x + y.

Thus, let us assume that some @) € pre(a) is of the form v :
Y pen Wity < wg’, where u := Y\ wy v + wy™ is one of
the effects of a. If » > 0, we replace the upper bound on the effect
of a on u with mfw := min {mgmwg’/r + wg“} Jifr <
0 we multiply the inequality by —1 and replace the bound Mfw
accordingly.’

Lastly, we set the upper bound on the result of application of a
to be I, , = max{s’[u],asm, ,}, The lower bound on the appli-
cation is defined in a similar fashion 1! =~ = min{s°[u], asnflyu}.

“a,u

Using these bounds we define the following effect box effB% =
veN[l; w Z;u] Note that for each ¢ € N and each a € A it holds
that s° € effBj.
We define the next iteration of the bounds: 7° = maxae. la . and
. This gives us the box B* := X UEN[U“U 1.

is the smallest possible box s.t.

v' = mingeal,,,
Geometrically speakmg, B’
Uaca effBY, C B'.

We first compute Efl and yfl, bounds on variable v when action a
is applicable. Using T, and yfl, we compute bounds on effects of a.
Using bounds on effects of all actions, we compute 7° and v, ;» bounds
on numeric variables. Then, we compute v, and v;"" using v,
and Qa and repeat the process. We sketch the algorithm we use to
compute the bounds.

1. Initialize the initial upper bounds with co and the lower bounds
with —oo.

2. For i € N repeat 3-5 until there is no change or until 7 exceeds
some given %g.

3. Compute T, and v’, for each variable v and action a in an arbitrary
order (Equations - (3))

4. Compute asn,, , and asna ,, for each action a and variable v in
an arbitrary order (Equatlons (4) and (5)).

5. Compute T and v’ for each v € A in an arbitrary order.

Correctness of the Algorithm

A function f is called increasing (decreasing) if for all x and y s.t.
x < yonehas f(z) < f(y) (f(z) > f(y)). Alinear function R™ —
R, Z — Z?:1 ¢;x;+co is increasing in x; if ¢; > 0, and decreasing
if ¢; < 0. Constant functions are both increasing and decreasing.
Let f1 and f> be both increasing (decreasing) functions and let g €
{min, max}, then g(f1, f2) is also increasing (decreasing).

We start the proof of correctness with the following lemma

Lemma 1 For eachi € N it holds that B*t* C B'.

Proof: We prove the claim by induction. Assume that for each k < ¢
it holds that B**! C B and preB**! C preB? for each a € A. The
base of induction is quite obvious since we initialize to

>< [70070017

veN

B’ = preBg =

thus B! C B® and preB_ C preB? foreach a € A.

1 Note that the intervals here belong to [—00, 00], which is a compactifica-
tions of R.

2 Since all linear conditions in pre(a) are represented in their linear normal
form (LNF) [2], we do at most one update per bound.

Let us show that preB:™! C preB’. We will show that 757 < 7.
The lower bound is obtained in practically the same manner. Recall
that

i1 (.) -
A :mm{vz, min b:fv}.

P Epre, (a):w:’f) <0

We inspect this min\max formula element by element. By induction
assumption, we have &° < ©*~!. Note also that bhLl that appears
in the equation can be seen as a linear function in @.’s, and u’’s
where u € N\ v. Since the formula requires w? < 0 we know that
the multiplication constants of upper bounds, —wY /wY¥, are posi-
tive, and the constants of lower bounds are negative. By induction,
we have that 7, < @l ! and u’ > u’~'. Thus, for each ¢ € pre(a)
s.t. w¥ < 0 we have that bi‘"1 < b v Recalling that monotonic-
ity preserved under the min functlon we have that T5t! < ©%. The
inequality v**! > v? is obtained in the same manner.

Our next step is to show that effBiF1 C effB%. It is enough to
show Zf:vl < Z;,v, since the lower bounds are obtained in the same

. i+l 1
fashion. Recall that ,, ,, = = max{s°[v], asnit, }.
As before asn, asna , can be seen as linear functions over w5 !’s, and

u’™s where u € N\ v. Since we already proved that preBZ+1 C

preBa for all a, we know that this bounds behave properly. Thus,
by construction @sny, , is an increasing function, over a shrinking

domain. Thus, asn. ,Jl < asm’, - Since '] < Z;v, thus we have
1.7 <T..,. Therefore, effBit! C effB%.

Furthermore, this observation grants us UaE A effBitt C
U, e effBG. Thus,

| effBi™ B :=) B,

ac€A BeRt

where B = {Bisabox | |J,., effB; C B}. Since B’ is also a
box, we have B‘T1 C B?. O

We proved that B! C B® C C B°, and by construction
(s%)n € B forall i € N. Thus, we can define B* := (2, B,
which we call the bounding of the task, and we know that B* # ().
Moreover, since each sequence of bounds {7°}$2; is a monotonic
sequence bounded by 50 [v], we know that lim;_, o o' = 7*. Thus,
B* forms a box. To finish the proof, we need to show that for every
consequently applicable sequence of actions ™ = (a1, ..., am) that
is applied from s° and resulting in a state s it holds that s, € B*.
Given we are interested in numeric bounds, it is enough to show this
result for a relaxation where we ignore the propositional part, i.e., we
set F = 0.

Lemma?2 Let s, € B* be a proper numeric state® s.t. s, =
pre, (a). Then, s, [a] € B*.

Proof: Let ¢» € pre,(a). Since we know that s, = pre,(a), we
know that 3, _\ wy's[v] > wy . We also know that s, € B*, hence
sn € B’ for each i € N. First, we aim to prove by induction that
sn € preB’ for each i € N. The basis of induction is trivial. Since
B is the whole space, and s,, = pre,, (a) we have that s,, € preB_.
Recall that {preBZ 721 is a nested sequence of boxes, and assume
that s, € ﬁkzlpreBa.

Let us show that s,, € prerfl. Note that for each v it holds that

3 We assume that all values of s,, are finite.

v} < s[v] < @, for each v. WLOG, assume that w? < 0. Then,

-1
s[v] < — Z wy s[u] — wy

ueN\{v}
-1 Y—1 P 7
= v D wiue+ Yo wiug —wf | =0,
uwu>0 u'LuuSO

Since such inequality holds for every ¢ € pre(a) and v s.t. w¥ < 0,
we can write

s[v] < min v, min bH"I} =7gitt
prren(a):wg’<0
Hence, we have that s,, € preB*!, and thus in s,, € preB:.
Let u := £ € num(a) be an assignment numeric effect,* and let
us denote

=z a, ufz a,u, T
& = Wy Uy + E wy vl + wg™,
viwg >0 viwg ™ <0
gsc _ 2 : wiy + 2 : wa uva: + wo

viwg >0
Since v’ < v* < s[v] < v < D. foreachv € N and each i € N,
it holds that £’ < ¢* < s[¢] <& < € foreachi € N.

If there is no ¢ € pre(a) of the form ¢ : v\ wy™v < wgf
we are almost done. Otherwise, assume there is such 1), and WLOG,

w?
assume that > 0. Since s,, |= pre,, (a) we have that s[§] < =% +

wg’™. Thus,
} < —i+1

ie., s[¢] € B!, Since this claim holds for every i we have that
s¢] € B™. O

. P
u' <€ < s[¢] < min {527“”0

These two lemmas provide us with the following result.

Theorem 1 Let II be a linear numeric planning task, let B* to be
the bounding of I1. Let m = (ax, ..., am) be a plan for I1, and let
(s%,...,8™) be the sequence of states that corresponds to . Then,
s% € B* for each k € [m).

Note that since {B’};’il is a sequence of nested boxes s.t. B* C B’
for each i, instead of computing B*, we can compute B* for some
large enough .

Lastly, we present an unsatisfaibility criteria for the linear numeric
planning task. Let Ag be the polytope defined by G, the linear con-
ditions given in the numeric goal part of the task.

Corollary 1 Let II be a linear numeric planning task, let B* be the
bounding of 11, and let A be its goal polytope. Then, B* N Ag =
implies that 11 is unsolvable.

As before, since B* C B for each 4, the task is unsolavble if B N
Ac = 0 for some 4. Note that since both B® and Ag are represented
as a set of linear inequalities, finding if B* N A is empty or not, can
be done in polynomial time [3].

4 The additive effect u += & € num(a) is transformed into assignment
effect u := u + &. As a slight abuse of notation in the transformed effect
we replace the original multlphcatlve constant of w in the additive effect,
wy', with wg'™ = wg™ + 1 transforming the addtive effect into an
assigment effect.

Full Proof of Theorem 2

Theorem 2 Given action a with a SOSE u += y+w and its second-
order supporter ', let nc,, ,, be an upper bound of the effect of a’ on
y and y, be an upper bound of y when a is applicable. The optimal
cost of the following optimization problem is a lower bound of the
cost to achieve numeric condition 1 : ¥ > wg’ from state s using
only a’ and a.

Y — sly]

MCar

stowy —s[z¥] = X (Y + w)
0<X,0<Y <.

min X cost(a) + cost(a’)

The optimal solution (X,Y) = (X*,Y™) for the above problem is
given as follows:

o = sla?]
Y*+w
" (wg — s[x¥])imc,: ,cost(a) Cw
cost(a’)

Proof: Note that the optimization function is increasing in X, since
cost(a) > 0. Thus, we can fix some large enough X, and solve the
problem for 0 < X < Xo, ensuring that the domain is compact, and
the minimum exists.

Using Lagrange multipliers, we get the following function and
KKT conditions:

L(X,Y,\,pu) = Xcost(a)+ 1;;—73[‘7;](:0“(@/)
a’y

“A(s[z¥] —wf + X(Y +w))
+/”“(Y _ga)'

% = cost(a) — A(Y +w) = 0.

oL _ cost(a’) B

¥ " mey, el

% =s[z¥] —w + X(Y +w) =0.

oL

v g <

o Y -5,<0

> 0.

M(Y - ya) = 0

By the last condition, x = 0 or Y = 7. If we assume p = 0, we get

the same solution as

wy — s[z¥]
Y*+w ’

Ve — \/(wg’ — s[z¥])w’cost(a) w. 7

cost(a’)

X* = (6)

where w' is replaced with ¢,/ ,. If such a solution violates Y —
Yy, < 0,ie,Y > 7Yy, then Y = ¥y, must hold instead of x = 0.
Therefore, for Y, we take the minimum of the solution in Equa-
tion (7) and y/,,. O

References

[1] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long, ‘A hy-
brid LP-RPG heuristic for modelling numeric resource flows in plan-
ning’, J. Artif. Intell. Res., 46, 343-412, (2013).

[2] Jorg Hoffmann, ‘The Metric-FF planning system: Translating “ignoring
delete lists” to numeric state variables’, J. Artif. Intell. Res., 20,291-341,
(2003).

[3] Leonid G. Khachiyan, ‘A polynomial algorithm in linear programming’,
Soviet Mathematics — Doklady, 20, 191-194, (1979).

