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Abstract
Domain-independent dynamic programming (DIDP) is a re-
cently proposed model-based paradigm for combinatorial op-
timization where a problem is formulated as dynamic pro-
gramming (DP) and solved by a generic solver. In this paper,
we develop anytime heuristic search solvers for DIDP, which
quickly find a feasible solution and continuously improve it to
prove optimality. We implement six anytime heuristic search
algorithms previously used as problem-specific methods and
evaluate them on nine different problem classes. Our exper-
imental results show that most of the anytime DIDP solvers
outperform an existing A*-based solver, mixed-integer pro-
gramming, and constraint programming in proving optimal-
ity, solution quality, and primal integral across multiple prob-
lem classes. In particular, complete anytime beam search
(CABS) performs the best, improving on the best-known
solution for one instance of traveling salesperson problem
with time windows and closing five instances of one-to-
one multi-commodity pick-and-delivery traveling salesper-
son problems.

Introduction
Many challenges in planning and scheduling arise from
combinatorial optimization, which requires making discrete
decisions to optimize an objective function. In model-based
approaches for combinatorial optimization, a problem is for-
mulated as a mathematical model and solved by a generic
solver. Such approaches are seen as the Holy Grail of com-
puter programming, and, indeed, AI planning, where a user
just needs to state the problem to solve it (Freuder 1997).

While mixed-integer programming (MIP) and constraint
programming (CP) are widely used model-based approaches
for combinatorial optimization, domain-independent dy-
namic programming (DIDP) is a recently proposed model-
based paradigm based on dynamic programming (DP)
(Kuroiwa and Beck 2023b). DIDP is also related to AI plan-
ning, in that the modeling language, DyPDL, is inspired
by PDDL (Ghallab et al. 1998), and the existing prototype
solver, CAASDy, employs heuristic search.

Although CAASDy outperforms commercial MIP and CP
solvers on multiple problem classes, it has a serious limita-
tion since it uses A* (Hart, Nilsson, and Raphael 1968): it ei-
ther finds an optimal solution or does not find any solution at
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all. As many combinatorial optimization problems are NP-
hard, optimally solving large-scale problems requires pro-
hibitive computational time and/or space. In contrast, MIP
and CP solvers are usually anytime, i.e., they often quickly
find a feasible solution and continuously improve until, if
given enough time, proving optimality. With an anytime
solver, a user can trade off the computational time for so-
lution quality while still proving optimality given enough
run-time.

In this paper, we develop solvers for DIDP using anytime
heuristic search algorithms. We show the state-of-the-art
performance of our solvers through a comprehensive eval-
uation. Concretely, our contributions are as follows:

1. We develop DIDP solvers using six anytime heuristic
search algorithms previously used in problem-specific
settings.

2. We evaluate the anytime solvers on nine problem classes,
demonstrating state-of-the-art performance across most
problem classes.

3. We demonstrate that the best solver, complete anytime
beam search (CABS), outperforms CAASDy, MIP, and
CP on multiple problem classes, closing a number of
open problem instances.

Domain-Independent Dynamic Programming
In DP, the cost of a problem is represented by recursive
equations defining a value function, which maps a state
to a numeric value. To formulate recursive equations as a
DP model, DIDP uses DyPDL, a modeling formalism inde-
pendent of solving algorithms (Kuroiwa and Beck 2023b).
A DyPDL model is a tuple ⟨V, S0,K, T ,B, C, h⟩, where
V = {v1, ..., vn} is the set of state variables, S0 is the target
state, K is the set of constants, T is the set of transitions, B
is the set of base cases, C is the set of state constraints, and h
is the dual bound. Each state variable vi ∈ V = {v1, ..., vn}
is either of a set, an element, or a numeric variable and has
a domain Di. A set or an element variable vi is associated
with a set of ni objects Ni = {0, ..., ni − 1}, Di = 2Ni if
vi is a set variable, and Di = Ni if vi is an element vari-
able. If vi is a numeric variable, Di = R ∪ {∞}. A state
is a value assignment to the variables, represented by a tu-
ple ⟨d1, ..., dn⟩ ∈ D where D is the cartesian product of
D1, ..., Dn. We denote the value of a variable vi in a state



S by S[vi]. For an element or a numeric variable, prefer-
ence, either of less or more, can be specified, and such a
variable is called a resource variable. Let D≤ be resource
variables where less is preferred, D≥ be resource variables
where more is preferred, andD= be the other state variables.
For two states S and S′, S dominates S′, i.e., S leads to
an equal or better solution than S′, denoted by S′ ⪯ S,
if ∀v ∈ D≤, S[v] ≤ S′[v], ∀v ∈ D≥, S[v] ≥ S′[v], and
∀v ∈ D=, S[v] = S′[v].

The target state S0 ∈ D is a state for which we want to
compute the value function. A constant in K can be a set, an
element, or a numeric constant. A set constant is a subset of
Ni for some vi, an element constant is an element of Ni, and
a numeric constant is a real value. A transition τ ∈ T is a 4-
tuple ⟨effτ , costτ , preτ , forcedτ ⟩. The effect effτ : D → D
maps a state S to another state S[[τ ]], the cost expression
costτ : R∪{∞}×D → R∪{∞}maps a real value r and a
state S to a value costτ (r, S). Preconditions preτ are condi-
tions on state variables, e.g., v ≥ 0 for a numeric variable v,
and τ is applicable in a state S only if all preconditions are
satisfied, denoted by S |= preτ . The last element, forcedτ ,
is a boolean, and τ is a forced transition when forcedτ = ⊤.
When a forced transition is applicable, all other transitions
are ignored. The set of applicable transitions in a state S is

T (S) =
{
{τ} if ∃τ ∈ T , S |= preτ ∧ forcedτ
{τ ∈ T | S |= preτ} otherwise.

If S |= preτ for multiple forced transitions τ , we assume
that the first defined one is used. Effects, the cost expression,
and preconditions are described by set, element, numeric, or
boolean expressions, predefined mathematical operations on
variables and constants. For example, v + k with a numeric
variable v and a constant k is a numeric expression, and U \
{j}with a set variable U and a constant j is a set expression.

Base cases in B and state constraints in C are conditions.
When a base case is satisfied by a state, the state is called a
base state. The dual bound h : D → R ∪ {∞} maps a state
S to a real value h(S). Base cases, state constraints, and the
dual bound are also described by expressions.

While DyPDL can be used for maximization, we focus
on minimization in this paper. The optimal cost of a DyPDL
model is computed by the following recursive equations.

compute V (S0) (1)
V (S) =∞ if S ̸|= C (2)
V (S) = 0 if ∃B ∈ B, S |= B (3)
V (S) = min

τ∈T (S)
costt(V (S[[τ ]]), S) (4)

V (S) ≤ V (S′) if S′ ⪯ S (5)
V (S) ≥ h(S). (6)

When multiple conditions are satisfied by S, the first
defined one is active. In Equation (4), we assume that
minτ∈T (S) costτ (V (S[[τ ]]), S) =∞ if T (S) = ∅.

Given a sequence of transitions x = ⟨x1, ..., xm⟩, let
⟨S0, ..., Sm⟩ be a sequence of states with Si = Si−1[[xi]].
Let Ci(x) = costxi+1

(Ci+1(x), S
i) for i = 0, ...,m − 1

with Cm(x) = 0. If V (S0) < ∞, then V (S0) is the min-
imum C0(x) satisfying the following conditions: Sm is a

base state; Si satisfies the state constraints for i = 0, ...,m;
xi+1 ∈ T (Si) for i = 0, ...,m − 1. Therefore, if x satis-
fies the above conditions, we call x a solution of the DyPDL
model. If C0(x) = V (S0), we call x an optimal solution.

Cost-Algebraic Heuristic Search Solver for DyPDL
A solution of a DyPDL model can be considered a path
in a state space, a directed graph ⟨V,E⟩, where V =
{S ∈ D | S |= C} and E = {(S, S′) ∈ V × V |
∃τ ∈ T (S), S′ = S[[τ ]]}. When the cost expressions sat-
isfy cost-algebra (Edelkamp, Jabbar, and Lafuente 2005),
the optimal solution can be computed by a cost-algebraic
search algorithm (Kuroiwa and Beck 2023b). For minimiza-
tion of a non-negative real value, a cost-algebra requires
that each transition τ has a cost expression in the form of
costτ (r, S) = wτ (S) × r where wτ (S) ∈ R+

0 ∪ {∞} is
a numeric expression depending on τ and × is an isotonic
binary operator such that ⟨R+

0 ∪ {∞},×, 0⟩ is a monoid.
For example, binary operators + and max satisfy the condi-
tions. The cost of a solution x corresponds to the path cost
in a weighted graph with weight wτ (S) for (S, S[[τ ]]) ∈ E,
i.e.,×m

i=1 wxi
(Si−1). Based on this observation, Kuroiwa

and Beck (2023b) proposed CAASDy, an exact solver using
the cost-algebraic version of A* (Hart, Nilsson, and Raphael
1968; Edelkamp, Jabbar, and Lafuente 2005). A* uses an ad-
missible heuristic function, which underestimates the short-
est path cost from a node. In CAASDy, the dual bound h
defined in a DyPDL model is used as a heuristic function.

Anytime Heuristic Search Algorithms
Since CAASDy uses A*, the first solution found is optimal.
However, a user may prefer an anytime algorithm, which
continuously improves the solution quality over time and
eventually proves optimality. In this section, we introduce
six anytime heuristic search algorithms previously used for
combinatorial optimization in problem-specific settings.

Generic pseudo-code of a heuristic search algorithm is
shown in Algorithm 1. In this algorithm, a set of generated
states G and an open list O are maintained; both initially
contain S0. For each state S, the g-value g(S) is the path
cost from S0 to S, the h-value h(S) is a lower bound of
V (S), the f -value f(S) is a lower bound of the cost of a
path from S0 to a base state via S, and x(S) is the path from
S0 to S. In addition, the best found solution x and its cost
f are maintained. At each step, a search algorithm removes
a state S from O according to some criterion in lines 5 and
6. If S is a base state, then the path from S0 to S is a solu-
tion, and the best solution is updated if g(S) < f . Since the
f -values are lower bounds of the optimal cost, states having
higher f -values than the new solution cost are removed from
O. Otherwise, in lines 12-20, successor states are generated
by applicable transitions and inserted into O if their f -values
are less than f . This procedure is called the expansion of S,
and we say that the algorithm expands S. In line 17, the path
to a successor state S[[τ ]] is computed by extending the path
to S with τ . When O becomes empty, x is returned. The
problem is infeasible if x is NULL.

If a state S having the minimum f -value in O is selected



Algorithm 1: Cost-Algebraic Heuristic Search for DyPDL.
1: O,G← {S0}.
2: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩.
3: f ←∞, x← NULL.
4: while O ̸= ∅ do
5: Let S ∈ O.
6: O ← O \ {S}.
7: if ∃B ∈ B, S |= B then
8: if g(S) < f then
9: f ← g(S), x← x(S).

10: O ← {S′ ∈ O | f(S′) < f}.
11: else
12: for all τ ∈ T (S) : S[[τ ]] |= C do
13: gτ ← g(S)× wτ (S).
14: if ̸ ∃S′ ∈ G,S[[τ ]] ⪯ S′ ∧ gτ ≥ g(S′) then
15: g(S[[τ ]])← gτ .
16: f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
17: x(S[[τ ]])← ⟨x(S); τ⟩.
18: if f(S[[τ ]]) < f then
19: G← G ∪ {S[[τ ]]}.
20: O ← O ∪ {S[[τ ]]}.
21: return x.

in line 5, it results in cost-algebraic A*. When multiple states
have the same f -value in O, the selection depends on the
tie-breaking strategy. In CAASDy, the state minimizing the
h-value is selected, and if multiple states minimize the f -
value and the h-value, the tie is broken according to a data
structure or an algorithm used in the implementation (binary
heap for CAASDy). In the following anytime algorithms,
when states are ordered by the f -values, we use the same
tie-breaking strategy.

Depth-First Branch-and-Bound
Depth-first branch-and-bound (DFBnB) performs depth-first
search. In line 5, the state maximizing the number of edges
in a path from S0 is selected. When multiple states have the
maximum depth, the state having the minimum f -value is
selected. Practically, a stack is used to implement O, and
successor states are pushed onto the stack in the descending
order of the f -values. For example, for combinatorial opti-
mization, DFBnB has been applied to sequential order prob-
lems (SOP) (Libralesso et al. 2020), traveling salesperson
problems (TSP), and single machine scheduling (Vadlamudi
et al. 2012; Vadlamudi, Aine, and Chakrabarti 2016).

Cyclic-Best First Search
Cyclic-best first search (CBFS) (Kao, Sewell, and Jacobson
2009) maintains a priority queue Oi ⊆ O for each depth
i. At the beginning, O0 = {S0} and Oi = ∅ for i > 0.
Starting with i = 0, if Oi ̸= ∅, CBFS selects a state hav-
ing the best priority from Oi in line 5 and inserts succes-
sor states into Oi+1 in line 20. Then CBFS increases i by
1 or sets i to 0 if it is the maximum depth. The maximum
depth is usually known in a problem-specific setting, but we
do not use a fixed parameter in our setting. Instead, we set

i to 0 when a new best solution is found after line 10 or
Oj = ∅ for all j ≥ i. While different priorities are used in
problem specific settings such as single machine scheduling
(Kao, Sewell, and Jacobson 2009) and simple assembly line
balancing problems (Sewell and Jacobson 2012; Morrison,
Sewell, and Jacobson 2014), our implementation selects the
state minimizing the f -value. We implement each priority
queue using a binary heap.

Anytime Column Search
Anytime column search (ACS) (Vadlamudi et al. 2012) can
be considered a generalized version of CBFS, expanding b
states at each depth. While CBFS increases the depth i after
each expansion, ACS increases i by 1 after expanding the
best b states from the priority queue Oi or when Oi becomes
empty, where b is a parameter.

Anytime column progressive search (ACPS) (Vadlamudi
et al. 2012) is a non-parametric version of ACS, which starts
from b = 1 and increases b by 1 when it reaches the max-
imum depth. Similarly to CBFS, we set i to 0 when a new
best solution is found or Oj = ∅ for all j ≥ i. Our im-
plementation of ACPS expands the b states minimizing the
f -values and uses a binary heap for each priority queue. For
combinatorial optimization, ACS and ACPS were evaluated
on TSP (Vadlamudi et al. 2012).

Anytime Pack Search
Anytime pack search (APS) (Vadlamudi, Aine, and
Chakrabarti 2016) maintains the set of the best b states
Ob ⊆ O, initialized with {S0}, the set of the best succes-
sor states Oc, and a suspend list Os ⊆ O. APS removes
states from Ob in line 6 and inserts the best b successor states
according to the priority into Oc and other successor states
into Os. When there are fewer than b successor states, all of
them are inserted into Oc. After expanding states in Ob, APS
swaps Ob and Oc and continues the procedure. If Ob and Oc

are empty, the best b states are moved from Os to Ob.
Anytime pack progressive search (APPS) (Vadlamudi,

Aine, and Chakrabarti 2016) starts from b = 1 and increases
b by δ if b < b when the best b states are moved from
Os to Ob, where δ and b are parameters. Our implementa-
tion inserts the b states minimizing the f -values into Oc and
uses binary heaps for Ob, Oc, and Os. We use δ = 1 and
b = ∞ following the configuration in TSP and single ma-
chine scheduling (Vadlamudi, Aine, and Chakrabarti 2016).

Discrepancy-Based Search
Discrepancy-based search (Harvey and Ginsberg 1995) con-
siders the discrepancy of a state, the number of deviations
from the heuristically best path to the state. The target state
has a discrepancy of 0. When a state S has a discrepancy of
d, its successor states are assigned priorities, and the state
with the best priority has the discrepancy of d. Other suc-
cessor states have the discrepancy of d+ 1.

Discrepancy-bounded depth-first search (DBDFS) (Beck
and Perron 2000) performs depth-first search that only ex-
pands states having the discrepancy between (i − 1)k and
ik − 1 inclusive, where i starts from 1 and increases by 1



when all states within the range are expanded, and k is a pa-
rameter. Our implementation uses the f -value as the priority,
where smaller f -values are preferred. Two stacks O0 ⊆ O
and O1 ⊆ O are maintained, O0 = {S0} and O1 = ∅ at the
beginning, and a state is popped from O0 in line 6. Successor
states with the discrepancy between (i− 1)k and ik − 1 are
pushed into O0, and other states are pushed into O1. Here,
the successor states are pushed onto the stacks in the de-
scending order of the f -values. When O0 becomes empty,
it is swapped with O1, and i is increased by 1. In this im-
plementation, the discrepancy of states in O1 is ik because
the discrepancy is increased by at most 1 at a successor
state. Therefore, after swapping O0 with O1, the discrep-
ancy of states in O0 falls between the new bounds, ik and
(i+1)k−1. We use k = 1 for our experiments. Discrepancy-
based search was originally proposed as tree search (Harvey
and Ginsberg 1995; Beck and Perron 2000) and later applied
to state space search for SOP (Libralesso et al. 2020).

Complete Anytime Beam Search
Beam search maintains only the best b states at each depth
and terminates at the depth where a solution is found. While
beam search itself is not anytime and has no guarantee of
optimality, complete anytime beam search (CABS) (Zhang
1998) is an anytime algorithm based on beam search. CABS
sequentially performs beam search with increasing b until a
stopping condition is satisfied. Following the configuration
used in SOP (Libralesso et al. 2020) and the flowshop per-
mutation (Libralesso et al. 2022), we double b at each itera-
tion. CABS proves optimality when it searches all states S
with f(S) < f and finds no better solution. As CABS does
not fit into Algorithm 1, we show its pseudo-code in Algo-
rithm 2. At each depth, CABS keeps successor states in G
and moves the b best states to O. Our implementation keeps
b states minimizing the f -values in a binary heap.

Other than CABS, beam search can be combined with A*
to yield another anytime heuristic search algorithm, which
was used for a job sequencing problem (Horn, Raidl, and
Blum 2019).

Empirical Evaluation
We experimentally compare the six anytime heuristic search
algorithms using combinatorial optimization problems. In
addition, we evaluate CAASDy and MIP and CP models.

Benchmark Problems and Models
For benchmark problems, Kuroiwa and Beck (2023b) used
six combinatorial optimization problems: traveling salesper-
son problems with time windows (TSPTW), capacitated ve-
hicle routing problems (CVRP), simple assembly line bal-
ancing problems (SALBP-1), bin packing, the minimiza-
tion of open stacks problem (MOSP) (Yuen and Richard-
son 1995), and graph-clear (Kolling and Carpin 2007). We
use the same DP models for SALBP-1, bin packing, MOSP,
and graph-clear. For TSPTW and CVRP, we present new DP
models in the appendix (Kuroiwa and Beck 2023a). While
the previous work used the trivial dual bounds of zero, we

Algorithm 2: Complete Anytime Beam Search for DyPDL.
1: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩.
2: f ←∞, x← NULL.
3: b← 1.
4: complete← ⊥, new solution← ⊥.
5: while ¬complete ∨ new solution do
6: complete← ⊤, new solution← ⊥.
7: O ← {S0}.
8: while ¬new solution ∧O ̸= ∅ do
9: G← ∅.

10: for all S ∈ O do
11: if ∃B ∈ B, S |= B then
12: if g(S) < f then
13: f ← g(S), x← x(S).
14: new solution← ⊤.
15: else
16: for all τ ∈ T (S) : S[[τ ]] |= C do
17: gτ ← g(S)× wτ (S).
18: if ̸ ∃S′ ∈ G,S[[τ ]] ⪯ S′∧gτ ≥ g(S′) then
19: g(S[[τ ]])← gτ .
20: f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
21: x(S[[τ ]])← ⟨x(S); τ⟩.
22: if f(S[[τ ]]) < f then
23: G← G ∪ {S[[τ ]]}.
24: if |G| ≤ b then
25: O ← G.
26: else
27: O ← the best b states in G.
28: complete← ⊥
29: b← 2b.
30: return x.

replace them with more sophisticated dual bounds. In addi-
tion, we add a state constraint based on the capacity in the
DP model for CVRP. The MIP and CP models are the same
as Kuroiwa and Beck (2023b) for all problems except for
graph-clear, where we use CPS (Morin et al. 2018) as the
CP model because it tends to find better solutions in less
time. We also use the same instances while adding larger in-
stance sets for CVRP: set M (Christofides, Mingozzi, and
Toth 1979), set X (Uchoa et al. 2017), and DIMACS (DI-
MACS 2021).

In addition, we use three more problems: one-to-one
multi-commodity pick and delivery traveling salesperson
problems, talent scheduling, and single machine scheduling
to minimize the total weighted tardiness.

Multi-Commodity Pick and Delivery TSP A one-to-
one multi-commodity pick and delivery traveling salesper-
son problem (m-PDTSP) (Hernández-Pérez and Salazar-
González 2009) is to pick and deliver commodities using
a single vehicle. In this problem, customers N = {0, ..., n+
1}, edges A ⊆ N×N , and commodities M = {0, ...,m−1}
are given. The vehicle can visit customer j directly from cus-
tomer i with the travel time cij if (i, j) ∈ A. Each commod-
ity k ∈ M is picked up at customer pk ∈ N and delivered
to customer dk ∈ N . The load increases (decreases) by wk



at pk (dk) and must not exceed the capacity q. The vehicle
starts from 0 ∈ N , visits each customer once, and stops at
n+1 ∈ N . The objective is to minimize the total travel time.

We propose a DP model based on the 1-PDTSP reduc-
tion (Gouveia and Ruthmair 2015). In a state, a set vari-
able U represents the set of unvisited customers, an element
variable i represents the current location, and a numeric re-
source variable l represents the current load. A numeric con-
stant δj =

∑
k∈M :pk=j wk −

∑
k∈M :dk=j wk represents

the net change of the load at customer j. A set constant
Pj = {pk | k ∈ M : dk = j} represents the customers
that must be visited before j. The following set expression
gives the set of customers that can be visited next.

R(U, i, l) = {j ∈ U | (i, j) ∈ A∧ l+δj ≤ q∧Pj∩U = ∅}.

We also use a lower bound adapted from SOP (Libralesso
et al. 2020). A numeric constant cin

j = mink∈N :(k,j)∈A ckj
is the minimum travel time to customer j, and cout

j =
mink∈N :(j,k)∈A cjk is the minimum travel time from j. We
use cin

0 = cout
n+1 = 0. Since all customers in U must be ar-

rived at and departed from, the sum of cin
j or cout

j over j ∈ U
gives a lower bound. We have the following DP model.

compute V (N \ {0, n+ 1}, 0, 0)
V (∅, i, l) = ci,n+1

V (U, i, l) = min
j∈R(U,i,l)

cij + V (U \ {j}, j, l + δj)

V (U, i, l) ≤ V (U, i, l′) if l ≤ l′

V (U, i, l) ≥ max

 ∑
j∈(U∪{n+1})\{i}

cin
j ,

∑
j∈U∪{i}

cout
j

 .

The second line is implemented by a transition to visit n+1
with a precondition U = ∅ and a base case U = ∅∧i = n+1.

For MIP, we use the MCF2C+IP formulation (Letchford
and Salazar-González 2016). We use the CP model pro-
posed by Castro, Cire, and Beck (2020) with an improved
implementation as described in the appendix. In all mod-
els, unnecessary edges are removed from A by a prepro-
cessing method (Letchford and Salazar-González 2016). For
benchmarks, we use class1, class2, and class3 instances
(Hernández-Pérez and Salazar-González 2009).

Talent Scheduling The talent scheduling problem is to
find a sequence of scenes to shoot to minimize the total cost
of a film. In this problem, a set of actors A and a set of scenes
N are given. In a scene s ∈ N , a set of actors As ⊆ A plays
for ds days. An actor a incurs the cost cs for each day they
are on location. If an actor plays on days i and j, they are on
location on days i, i+1, ..., j even if they do not play on day
i+ 1 to j − 1. The objective is to find a sequence of scenes
such that the total cost is minimized.

We use the DP model proposed by Garcia de la Banda
and Stuckey (2007). Let Q be a set variable representing a
set of unscheduled scenes. In DyPDL, As is a set constant,
and ds and cs are numeric constants. At each step, a scene
s to shoot is selected from Q. A set expression L(s,Q) =
As ∪ (

⋃
s′∈Q\{s} As′ ∩

⋃
s′∈N\(Q∪{s}) As′) represents the

set of actors on location when s is shot. We need to pay the
cost ds

∑
a∈L(s,Q) ca to shoot s.

A set expression L(Q) =
⋃

s∈Q As ∩
⋃

s∈N\Q As is the
set of actors on location after shooting N \Q. If As = L(Q),
then s should be immediately shot because all actors are al-
ready on location: a forced transition.

If there exist two scenes s1 and s2 in Q such that As1 ⊆
As2 and As2 ⊆

⋃
s∈N\Q As∪As1 , it is known that schedul-

ing s2 before s1 is always better, denoted by s2 ⪯ s1. If all
As are different, this relationship is a partial order: it is re-
flective because As1 ⊆ As1 and As1 ⊆

⋃
s∈N\Q As ∪ As1 ;

it is antisymmetric because if s1 ⪯ s2 and s2 ⪯ s1, then
As1 ⊆ As2 and As2 ⊆ As1 , which imply s1 = s2; it is tran-
sitive because if s2 ⪯ s1 and s3 ⪯ s2, then As1 ⊆ As2 ⊆
As3 and As3 ⊆

⋃
s∈N\Q As ∪ As2 ⊆

⋃
s∈N\Q As ∪ As1 ,

which imply s3 ⪯ s1. Since two scenes with the same set
of actors are merged into a single scene in preprocessing
without losing optimality, the following expression gives a
non-empty set of candidate scenes to shoot next.

R(Q) = {s1 ∈ Q |̸ ∃s2 ∈ Q \ {s1}, s2 ⪯ s1}.
The cost per day to shoot s is lower bounded by bs =∑
a∈As

ca because actors playing in s must be on location.
Overall, we have the following DP model.

compute V (N)

V (∅) = 0

V (Q) = ds
∑

a∈L(s,Q)

ca + V (Q \ {s})

if ∃s ∈ Q,As = L(Q)

V (Q) = min
s∈R(Q)

ds
∑

a∈L(s,Q)

ca + V (Q \ {s}) otherwise

V (Q) ≥
∑
s∈Q

dsbs.

We use a MIP model described in Qin et al. (2016). For
CP, we extend the model used in Chu and Stuckey (2015)
with the AllDifferent global constraint, which is redundant
but slightly improves the performance in practice, as de-
scribed in the appendix. In all models, a problem is sim-
plified by preprocessing as described in Garcia de la Banda
and Stuckey (2007). For a benchmark set, while Garcia de la
Banda and Stuckey (2007) generated 100 random instances
for each of 200 configurations, we use the first 5 instances
for each configuration, resulting in 1000 instances in total.

Single Machine Total Weighted Tardiness In single ma-
chine scheduling to minimize the total weighted tardiness
(1||

∑
wiTi), a set of jobs N is given, and each job i ∈

N has the processing time pi, the deadline di, and the
weight wi. The objective is to schedule all jobs on a ma-
chine while minimizing the sum of the weighted tardiness,∑

i∈N wi max{0, Ci−di} where Ci is the completion time.
We use the DP model described in Abdul-Razaq, Potts,

and Wassenhove (1990), where one job is scheduled at each
step. Let U be a set variable representing the set of unsched-
uled jobs. In DyPDL, pi, di, and wi are numeric constants. A



numeric expression T (i, U) = max{0, pi +
∑

j∈N\U pj −
di} represents the tardiness of i when it is scheduled after
N \U . We introduce a set constant Pi, representing the set of
jobs scheduled before i. While it is not defined in the prob-
lem, Pi can be extracted in preprocessing using precedence
theorems without losing optimality (Emmons 1969).

compute V (N)

V (U) =

{
0 if U = ∅

min
i∈U :Pi∩U=∅

wiT (i, U) + V (U \ i) if U ̸= ∅.

For MIP, we use the formulation with assignment and
positional date variables (F4) (Keha, Khowala, and Fowler
2009). For CP, we formulate a model using interval variables
and precedence constraints, as described in the appendix. We
extract precedence relations between jobs using the method
proposed by Kanet (2007) and incorporate them in the DP
and CP models but not in the MIP model as its performance
is not improved. For a benchmark set, we use instances in
OR-Library (Beasley 1990) with 40, 50, and 100 jobs.

Evaluation Measures
Coverage The performance of an exact method is evalu-
ated by the number of instances where an optimal solution
is found and its optimality is proved within time and mem-
ory limits. We also include the number of instances where
its infeasibility is proved. We call this metric coverage.

Primal Integral To evaluate the performance of anytime
solvers, we use the primal integral (Berthold 2013), which
considers the balance between the solution quality and com-
putational time. For an optimization problem, let xt be a so-
lution found by an algorithm at time t, x∗ be an optimal (or
best-known) solution, and f be a function mapping a solu-
tion to its cost. The primal gap function p is

p(t) =


1 if no xt or f(xt)f(x∗) < 0

0 if f(xt) = f(x∗) = 0
|f(x∗)−f(xt)|

max{|f(x∗)|,|f(xt)|} otherwise.

It takes a value in [0, 1], and lower is better. We use p(T ), the
primal gap at the time limit T , to measure the final solution
quality. Let ti ∈ [0, T ] for i = 1, ..., l − 1 be a time point
when a new better solution is found by an algorithm, t0 = 0,
and tl = T . The primal integral is defined as

P (T ) =

l∑
i=1

p(ti−1) · (ti − ti−1).

It takes a value in [0, T ], and lower is better. P (T ) decreases
if the same solution cost is achieved faster or a better so-
lution is found with the same computational time. When an
instance is proved to be infeasible at time t, we use p(t) = 0,
corresponding to the time to prove infeasibility.

Experimental Results
We implement the anytime algorithms using Rust 1.59.0.1
We use Python 3.10.2 scripts to convert a problem instance

1https://github.com/domain-independent-dp/didp-rs

to a YAML file of a DP model. We implement MIP models
with Gurobi 9.5.0 and CP models with CP Optimizer from
CPLEX Optimization Studio 22.1.0 using Python 3.10.2. All
experiments are performed on an Intel Xeon Gold 6418 pro-
cessor with a single thread, an 8 GB memory limit, and a
30-minute time limit using GNU Parallel (Tange 2011).

We show the total coverage on each problem class in Ta-
ble 1. The instance set-wise coverage is shown in the ap-
pendix. CABS solves the largest number of instances on
average and in six out of nine problem classes. Heuristic
search algorithms almost always outperform MIP and CP
on TSPTW, SALBP-1, MOSP, graph-clear, talent schedul-
ing, and 1||

∑
wiTi. Among the heuristic search algorithms,

CABS is the best in all problem classes except for bin pack-
ing (see the appendix). The other anytime heuristic search
algorithms have lower coverage than CAASDy in SALBP-
1, talent scheduling, and 1||

∑
wiTi. In m-PDTSP, CABS

is the best among all the methods in the class1 instances
while CP is the best in class3. For open instances in class1,
all the heuristic search algorithms prove the infeasibility
of p43.3Q10max5 and p43.3Q4max1 and find optimal so-
lutions for p43.3Q15max5 and p43.3Q6max1, and CABS
finds an optimal solution for p43.3Q7max1 additionally. The
CP model finds optimal solutions for p43.3Q20max5 and
p43.3Q8max1.

Figure 1 presents the ratio of the coverage over the num-
ber of instances against time and the ratio of instances
against the primal gap at the time limit. Each line shows the
cumulative ratio of instances for one method, so higher and
more left is better. To compute the primal gap, for the best-
known cost f(x∗), we use the best solution cost found by
methods evaluated in our experiment and the best solution
cost reported by previous work, which is available online for
TSPTW, CVRP, and 1||

∑
wiTi. Figure 1(a) shows the aver-

age of the ratios over all problem classes. While the results
for TSPTW, SALBP-1, MOSP, and graph-clear are similar
to Figure 1(a), other problems have different tendencies. We
show the plots for CVRP, m-PDTSP, whose result is simi-
lar to bin packing, and 1||

∑
wiTi, whose result is similar

to talent scheduling. The plots for the remaining problems
are included in the appendix. CBFS, ACPS, and APPS have
similar performance, outperforming CAASDy, DFBnB, and
DBDFS. While CAASDy, CBFS, ACPS, and APPS have
higher coverage at first, CABS eventually outperforms them
because it spends more time proving optimality but con-
sumes less memory. While the others generate a state only
once, CABS generates the same state in multiple iterations.
However, CABS only stores states at a particular depth while
the others store all generated states. In addition, once a solu-
tion with the cost f̂ is found, CABS avoids generating states
having higher f -values in subsequent iterations. The other
anytime heuristic search algorithms also benefit from this
pruning, which results in higher coverage than CAASDy in
some problem classes, but they still store already generated
states S with f(S) ≥ f̂ . Indeed, while CABS rarely runs out
of memory, the other heuristic search algorithms often reach
the memory limit before the time limit (see Table 5 in the
appendix).



MIP CP CAASDy DFBnB CBFS ACPS APPS DBDFS CABS
TSPTW (340) 227 47 257 239 257 257 257 256 259
CVRP (207) 26 0 5 5 5 5 5 5 6
m-PDTSP (1178) 945 1049 947 952 967 967 967 967 1035
SALBP-1 (2100) 1357 1584 1653 1618 1466 1609 1625 1393 1801
Bin Packing (1615) 1157 1234 922 517 1109 1138 1032 424 1163
MOSP (570) 224 437 483 524 523 524 523 522 527
Graph-Clear (135) 24 1 76 99 100 100 99 82 103
Talent Scheduling (1000) 0 0 207 189 206 206 193 199 237
1||

∑
wiTi (375) 109 150 270 233 267 268 261 263 284

Average ratio 0.424 0.416 0.587 0.565 0.628 0.628 0.617 0.549 0.659

Table 1: Coverage. ‘Average ratio’ is the ratio of the coverage to the number of instances averaged over all problem classes.
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Figure 1: The ratio of the coverage over the number of instances against time (left) and the ratio of instances against the primal
gap at the time limit (right). Higher and left is better. The figure is best viewed in color.

CABS has a smaller primal gap at the time limit than
the other methods on average. CBFS, ACPS, and CABS
improve the solution cost for rbg193.2 in the AFG set of

TSPTW from 12142 to 12139. In CVRP, MIP performs the
best in small instances such as set A and set B but it fails
to find a feasible solution for almost all instances of DI-
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Figure 2: The ratio of instances against the primal integral. Higher and left is better. The figure is best viewed in color.

MACS, set M, and set X. As a result, heuristic search algo-
rithms have more instances with a gap smaller than 0.1. In
1||

∑
wiTi and talent scheduling, although heuristic search

algorithms have higher coverage, CP is the best in the pri-
mal gap. In contrast, CABS has a smaller primal gap in m-
PDTSP while CP has higher coverage. In bin packing, CP
is the best in coverage and close to CABS in the primal gap
(see the appendix).

We also show the ratio of instances against the primal in-
tegral in Figure 2. The tendency is similar to that of the pri-
mal gap. While CABS outperforms the others on average,
CP is the best in 1||

∑
wiTi and talent scheduling. In CVRP,

MIP has more instances when the primal gap is around 50
while CABS has more instances in other regions.

Overall, CABS is the best anytime solver for DIDP on
average in all the measures, showing a significant improve-
ment over CAASDy. CBFS, ACPS, and APPS also outper-
form CAASDy in the primal gap and the primal integral
since CAASDy does not provide a solution when optimal-

ity is not proved. However, CAASDy has higher coverage
than CBFS, ACPS, and APPS on multiple problems.

Conclusion
We proposed solvers for domain-independent dynamic pro-
gramming using anytime heuristic search. Our solvers, es-
pecially complete anytime beam search (CABS), show good
performance on multiple combinatorial optimization prob-
lems in terms of proving optimality, solution quality, and
primal integral, outperforming mixed-integer programming
(MIP), constraint programming (CP), and A*. However, in
talent scheduling and single machine scheduling, although
CABS solves more instances to optimality, CP is better in
solution quality and primal integral. While we focused on
anytime heuristic search algorithms that eventually find an
optimal solution, developing a heuristic solver or a primal
heuristic, which may not have an optimality guarantee but
finds a good solution quickly, and combining it with another
solver to prove optimality, is part of our future work.
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