
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016 1

Mixed-Integer and Constraint Programming
Techniques for Mobile Robot Task Planning

Kyle E. C. Booth, Tony T. Tran, Goldie Nejat, Member, IEEE, and J. Christopher Beck

Abstract—We investigate the use of optimization-based tech-
niques to model and solve two real-world single robot task
planning problems. In the first problem, a robot must plan a set
of tasks, each with different temporal constraints. In the second
problem, a socially interacting robot must plan a set of tasks
while considering the schedules of multiple human users, as well
as physical constraints including battery level. We apply existing
mixed-integer programming and constraint programming tech-
niques, yielding two exact methods for each problem. Numerical
experiments show that both approaches produce better solutions
in less time compared to techniques previously proposed for
these problems. In order to confirm their physical utility, we
implement the plans for the second problem in both simulated
and real environments on Tangy, a socially interacting robot. We
conclude that both mixed-integer programming and constraint
programming are promising general approaches to robot task
planning that should be considered when solving these problems.

Index Terms—Companion robots, coordination, planning,
scheduling.

I. INTRODUCTION

AS autonomous robots take on everyday applications, the
demand increases for efficient techniques for autonomous

decision making. Automated reasoning for the planning and
scheduling of tasks is a core component of intelligent behavior
and, as such, is fundamental to the design of autonomous
mobile robots [1]. The promise of societal and economic
benefits from robot technology will be substantially muted if
robots must be provided with an explicit plan of tasks they
need to undertake.

Task planning and scheduling for mobile robotics has been
studied in a variety of applications, including container trans-
portation [2], office assistance [3], [4], planetary rovers [5],
warehouse management [6], hospital assistance [7], and human
care [7]–[10]. In Coltin et al. [4], they study task planning for
a mobile robot that receives task requests from users via an
online web utility. Upon receiving a collection of task requests,
the robot makes inferences about the relationship between

Manuscript received: August, 31, 2015; Revised November, 26, 2015;
Accepted January, 5, 2016.

This paper was recommended for publication by Editor J. Li upon eval-
uation of the Associate Editor and Reviewers’ comments. This research has
been funded by the Natural Sciences and Engineering Council of Canada
(NSERC), Dr. Robot Inc., and the Canada Research Chairs (CRC) Program.

K.E.C. Booth, T. Tran, G. Nejat, and J.C. Beck are with the
Department of Mechanical and Industrial Engineering, University of
Toronto, Toronto, Ontario, Canada. kbooth@mie.utoronto.ca,
tran@mie.utoronto.ca, nejat@mie.utoronto.ca,
jcb@mie.utoronto.ca

Digital Object Identifier (DOI): see top of this page.

task time windows and then generates a plan using a mixed-
integer programming (MIP) solver. Mudrova and Hawes [10]
address the same single-robot task allocation (SRTA) problem
with a customized interval-algebra-based algorithm to make
implied and heuristic sequencing decisions before assigning
start-times via a MIP solver. In our previous work [11], we
used a forward-chaining temporal planner for a SRTA problem
in a multi-user environment, where the socially interactive
robot builds plans to facilitate a number of interaction activities
while considering user timetables.

In this paper, we focus on the application of existing,
general-purpose scheduling technologies from the operations
research (e.g., [12], [13]) and artificial intelligence (e.g.,
[14], [15]) literatures to robot task planning problems. Our
hypothesis is that high-performance optimization techniques
from these communities can be used to produce efficient,
complete plans in run-times that are realistic for these ap-
plications. While generic optimization technologies, notably
mixed-integer programming, have been applied to robotics
applications [4], [16], [17], they have not been exploited to
their full potential for mobile robotics applications.

We consider two SRTA problems from the literature. In the
first [4], a robot must plan a set of tasks, each with different
temporal constraints, with the goal of finding a feasible plan
that minimizes the sum of task completion times. In the
second problem [11], a socially interacting robot must plan
a set of tasks while considering multi-user timetables and
physical constraints. The problem involves reasoning about
which activities the robot should implement, as well as when
these activities should occur, while taking into account the
individual availabilities of users, robot battery level, energy
consumption, and location transition times.

We investigate the modeling and solving of robot task
planning problems with two existing optimization formalisms:
mixed-integer programming and constraint programming. Our
contributions center on the use of these optimization tech-
nologies to quickly find high-quality task plans. On the prob-
lems studied, we show our methods overall determine better
solutions in shorter run-time than the approaches presented
in previous works. For the second problem, we implement
simulated and real-environment experiments on the mobile
social robot Tangy, demonstrating that our techniques yield
implementable, high-quality task plans for mobile robots in a
human-robot interaction setting.

II. BACKGROUND
In this section we introduce mixed-integer programming

(MIP) and constraint programming (CP), illustrating that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

although these methods can often be applied to the same
problems, they represent fundamentally different methodolo-
gies for dealing with the combinatorial explosion inherent
in many scheduling problems. MIP and CP represent mature
technologies that have benefited from many years of research,
development, and application to NP-complete problems [12],
[18].

A. Mixed-Integer Programming

Mixed-integer programming (MIP) is a mathematical opti-
mization approach for problems modeled as a set of decision
variables taking on either continuous or integer values (hence
“mixed”), constrained by linear constraints and with the goal
of optimizing a linear objective function. MIP has been used
widely for optimization since the 1950s, including many
scheduling problems [12], [13], [19].

The standard solution approach for MIP is branch-and-
bound tree search [20]. The key to (often) avoiding the worst-
case exponential search is the fact that ignoring the integrality
requirement on the integer variables results in a polynomial
solvable linear programming (LP) relaxation of the MIP. The
LP is solved at each node in the branch-and-bound tree to
provide a bound on the objective function and, once a feasible
solution is found, the ability to prune sub-trees that are proved
not to contain solutions better than the current best solution.
The solution to the LP relaxation is also extensively used
heuristically to drive the order in which sub-trees are explored.

Modern-day MIP solvers combine branch-and-bound search
with techniques such as cutting planes [21] to solve large,
complex problems. Along with a description of the historical
development of MIP solving, Bixby [22] shows a machine-
independent speed-up of over 400,000 times in commercial
MIP solvers from the early 1990s to 2012.

B. Constraint Programming

Constraint programming (CP) is more general than MIP,
allowing variable types beyond integer and continuous (e.g.,
interval [23] and set variables [24]), and dropping the re-
striction of linearity in the constraints and objective function.
Problem modeling focuses on combining global constraints
[25], encapsulations of frequently recurring combinatorial sub-
structure. Developed primarily within the artificial intelligence
community, CP has also been applied to a wide range of
combinatorial optimization problems with scheduling being
one of the most successful commercial areas [18].

In contrast to MIP, CP reduces search effort through logical
inference [26]. Each constraint has an inference algorithm
that performs domain filtering: removing possible values from
the domains of its variables by proving that a value cannot
satisfy the constraint itself and, therefore, cannot participate
in a global solution. Given that variables typically participate
in multiple constraints, value removal by one constraint often
triggers subsequent removals from the domains of other vari-
ables in neighboring constraints, resulting in the propagation
of inferences through the problem representation. The overall
solution process is again a tree search but at each node, each
constraint performs inference, removing values that are no

longer locally consistent. The results of the propagation are
then used to inform heuristics which choose the order in which
the search tree is explored.

CP solvers have seen significant advances in efficiency in re-
cent decades, transitioning from logic programming into more
optimization-based paradigms and becoming an alternative to
MIP-based approaches [27].

III. ROBOT TASK PLANNING PROBLEM #1

We consider a problem in which a robot must autonomously
plan a set of tasks where each task has its own temporal
constraints. We present a formal definition of the problem,
propose two scheduling models, and compare these models
to existing solution techniques. We identify situations where
the existing techniques do not provide a plan due to their
incompleteness.

A. Problem Definition

Given a set of tasks, j ∈ J , with time windows and
sequence-dependent setup times, the goal is to find a feasible
plan, if one exists, over a planning horizon, H , such that the
sum of completion times across all tasks is minimized.

Following standard scheduling terminology, this problem
can be represented as 1|rj , dj , δjk|

∑
Cj , where 1 refers to the

single robot resource, rj is the release time of task j, dj is the
deadline time for task j, δjk is the minimum “setup” time that
must occur between pairs of tasks j, k, and

∑
Cj is the sum of

completion times objective function. The setup time between
two tasks, j preceding k, represents robot travel time and is
defined as the non-negative time that must elapse between the
end of task j and the start of task k. This relation may be
asymmetric such that δjk 6= δkj holds. We assume that setup
times follow the triangle inequality, namely δjl + δlk ≥ δjk.

A solution is a set of start times, sj , for each task j such
that the start and end time, ej , adhere to its time window (i.e.,
[sj , ej] ∈ [rj , dj]), the setup time between each task pair is
respected, and the sum of the completion times is minimized.

B. Proposed Scheduling Models

We propose two optimization models for solving this SRTA
problem using MIP and CP, respectively.

1) MIP Model: We propose a disjunctive MIP model as is
common in the literature [21]. Eqs. (1) through (6) define the
model. The objective function (1) represents the minimization

min
∑
j

Cj (1)

s.t. Cj = sj + pj , ∀j (2)
Cj + δjk ≤ sk + (H + δjk)(1− xjk), ∀j, k (3)
Ck + δkj ≤ sj + (H + δkj)(xjk), ∀j, k (4)
xjk ∈ {0, 1} ∀j, k (5)
sj ∈ [rj , dj − pj] ∀j (6)

of the sum of completion times over all tasks. Constraint
(2) defines the completion time of a task j ∈ J as the sum

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BOOTH et al.: MIXED-INTEGER AND CONSTRAINT PROGRAMMING TECHNIQUES FOR MOBILE ROBOT TASK PLANNING 3

of the start time of the task, sj , and its processing time,
pj . Constraints (3) and (4) represent disjunctive sequencing
constraints for tasks that prevent them from overlapping: xjk
is a binary decision variable that is assigned a value of 1 if
task j precedes k and 0 otherwise. When xjk = 1, the second
summand on the right hand side of (3) evaluates to 0, forcing
the start time of task k to be greater than the completion
time of j plus the setup time from j to k. Similar reasoning
applies for (4) when xjk is assigned a value of 0. Thus, these
two constraints enforce the disjunctive meaning of the xjk
variables. Eqns (5) and (6) define the continuous positive and
binary domains for sj and xjk, respectively.

2) CP Model: Expressions (7) through (10) define the
CP model. Eq. (7) is the objective function and constraint
(8) defines the completion time of each task. Constraint (9)
is the global constraint that ensures that the tasks do not
overlap. Constraint (10) defines the domain for the start
time of the tasks. The CP model is very similar to the

min
∑
j

Cj (7)

s.t. Cj = sj + pj , ∀j (8)
NoOverlap(sj , pj , δjk), ∀j, k (9)
sj ∈ [rj , dj − pj] ∀j (10)

MIP model and is implemented using interval variables [23],
decision variables whose possible values are convex intervals:
{[f, g)|f, g ∈ Z, f ≤ g}, where f and g are the start and
end values of the interval. We introduce an interval variable
for each j ∈ J , where each of these is defined by rj , dj ,
and pj . We also utilize the NoOverlap global constraint in
place of Constraints (3) and (4). This constraint performs
efficient, incomplete domain filtering of the start-time variables
by reasoning about the task time windows, processing times,
and the relationship that no pair of tasks can overlap in time,
including the setup times [15].

C. Existing Techniques

1) Dynamic User Task Scheduling: Coltin et al. [4] de-
veloped the dynamic user task scheduling (DUTS) technique
using MIP. The approach introduces constraints (3’) and (4’)
for all pairs of tasks that have overlapping time windows.

sj + pj + δjk − sk ≤ |dj − rk|(1− xjk) ∀j, k (3’)

sk + pk + δkj − sj ≤ |dk − rj |xjk ∀j, k (4’)

We label these constraints (3’) and (4’) as they appear to serve
the same disjunctive reasoning as constraints (3) and (4) in
our proposed model. The rest of the DUTS model is the same
as the model proposed above.1 As shown in the following
simple example, constraints (3’) and (4’) do not guarantee
completeness: DUTS will fail to find a feasible solution in
some situations where a feasible solution exists.

1Following [10], [28] we use dj to denote the latest end time of task j.
Similar conclusions can be easily shown if latest start time is used to define
the end of the window. We also amend the indices in the |d− r| terms in [4].

Consider an instance with two tasks, 1 and 2, with identical
setups, processing times, and release and deadline times (e.g.,
δ1,2 = δ2,1 = 1, p1 = p2 = 1, r1 = r2 = 0, and d1 = d2 =
3). Both tasks can be completed within their time windows
with either ordering. However, when task 1 is scheduled to
precede 2, the binary decision variable x1,2 = 1, causing the
constraints (3’) and (4’) to simplify to s1 ≤ s2 − 2 and s1 ≥
s2 − 1, which is infeasible. A similar infeasibility follows if
we were to assign the opposite ordering.

The modeling of disjunctive constraints in MIP usually
involves a large constant term (i.e., (H + δjk) in our model).
It may be that this pattern is what is attempted in [4],
however, an insufficiently large constant term was chosen,
cutting off some feasible solutions. Though such cases will
not occur in all problem instances, DUTS is incomplete: it
is not guaranteed to find a feasible solution, even if one exists.

2) Task Scheduling with Interval Algebra: Mudrova and
Hawes [10] address the same problem with the task scheduling
with interval algebra (TSIA) approach to heuristically order
each task pair. First, an ordering is asserted for all pairs
for which an ordering can be inferred based on reasoning
about the pair of time windows and durations [29]. Second, if
both orderings are possible, TSIA heuristically selects the one
that either i) maximizes the time available for the tasks, or
ii) locally minimizes the sum of completion times of those
two tasks, depending on the relationship between the time
windows of the two tasks. A complete pairwise ordering is,
thus, imposed. A MIP solver, is then used to assign the start
times of the tasks consistent with the ordering.

Note that as the pairwise task analysis results in a total
ordering of the tasks, a MIP model is unnecessary. If a feasible
start time assignment exists for a given total ordering, it
is sufficient to sort the tasks according to the ordering and
assign the start time of each task to the maximum of: i) its
release time, and ii) the completion time plus setup time of
the previous task in the ordering. This algorithm will minimize
sum of completion times or show that no feasible assignment
exists for a given total ordering.

However, the TSIA approach is also incomplete: it may
produce pairwise orderings with no feasible start time assign-
ment and so fail to find a feasible solution when one exists.
Consider the problem instance with three tasks with identical
processing times (e.g., p1 = p2 = p3 = 1) and setup times
(δjk = δkj = 1,∀j, k ∈ {1, 2, 3}) and with time windows
[2, 4], [0, 5], and [1, 6] for tasks 1, 2, and 3, respectively.

There exists a feasible solution: 2 → 1 → 3. However,
TSIA heuristically produces the following pairwise orderings:
{2 → 3, 2 → 1, 3 → 1} which result in an infeasible plan:
task 1 can start no earlier than time 4 but its time window
constrains it to finish by time 4.

We note that TSIA is proposed as a heuristic approach
and is not guaranteed to find a globally optimal solution. For
large problems, heuristics may be preferred because global
optimality may be unreachable in a reasonable time. Therefore,
in our simulation experiments (Section V below), we evaluate
the solution-quality vs. run-time trade-off of the different
solution approaches.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

IV. ROBOT TASK PLANNING PROBLEM #2
In this section we define the second robot task planning

problem, propose MIP and CP models, and review the previous
solution method [11].

A. Problem Definition

The objective of the Tangy robot is to plan and execute a set
of recreational activities throughout the day while considering
multiple user timetables [11]. Given a planning horizon of
8am to 7pm, a daily plan is to be generated for a single robot
consisting of the tasks the robot will facilitate (bingo games
and reminders) each with associated participants, location,
start time, processing time, and end time. Each user has a
timetable identifying the times in which he/she is available for
robot-facilitated activities including three mandatory breaks
(mealtimes) from 8am-9am, 12pm-1pm, and 5pm-6pm. There
are also two or three other one-hour unavailable intervals for
each user with varying times depending on user and problem
instance. Each user has his/her own personal room where, it
is assumed, he/she will be whenever available.

A set of required bingo games with specified participants are
defined. The robot assists players during bingo by repeating
missed numbers and reviewing player cards. The robot must
also perform reminder tasks by navigating to each participant’s
room and communicating the reminder. In addition to bingo
game and reminder tasks, the robot must execute a move task
to navigate in the facility. We assume that the travel times
between any pair of relevant points are known.

The instantaneous battery level of the robot is available
and the problem instance defines maximum and minimum
allowable battery levels. Each task type (bingo, reminder,
move) has its own rate of energy consumption. If the battery
level gets too low, the robot can perform a recharging task by
navigating to the location of the recharging station. There is
one recharging station, with a specified location. The robot
recharge tasks can be either absent or present: they are
optional tasks. We use a calculated upper bound for each
instance to determine how many optional recharge tasks to
include in the models.

Given the user timetables, bingo games, and parameter
values, the planning problem is to determine the start times
for each bingo game together with the robot tasks so that
it can feasibly conduct each bingo game with the specified
users while maintaining sufficient battery level and while also
delivering a reminder to each user before his/her bingo game.
These actions include the need for travel between locations
within the facility.

B. Proposed Scheduling Models

We model the Tangy mobile robot task planning problem
with MIP and CP technologies and solve these models to
produce feasible plans.

1) Model Parameters: The parameters used in both the MIP
and CP models are as follows:
U : Set of users,
G: Set of bingo game tasks,

M : Set of reminder tasks,
Mg: Subset of reminder tasks for each bingo game g ∈ G,
C: Set of charging tasks,
A: Set union of all tasks G ∪M ∪ C,
ȧ: An auxiliary starting task (for sequencing),
ä: An auxiliary ending task (for sequencing),
Ā: Set A including both auxiliary tasks,
Au: Subset of all tasks that involve user u,
calendaru: Individual timetable of user u,
pj : Duration of task j (not recharging tasks),
δjk: Transition time between task j and k, ∀j, k ∈ Ā,
b min, b max: Minimum and maximum battery levels,
r rate: Rate at which robot recharges,
e move, e bingo, e remind: Robot energy consumption

rate for move, bingo and reminder tasks respectively,
H: The planning horizon for the instance,
M : A large positive number used in disjunctive reasoning.
We formulate each model to minimize a generic objective,

where each task in the final plan is defined by a type, location,
start time, duration and end time.

2) MIP Model: Expressions (11) through (32) define the
MIP model. Decision variable wj has a value of 1 if task j
is scheduled, and a value of 0 otherwise. Decision variable
zjk has a value of 1 if task j occurs immediately before task
k and 0 otherwise. Decision variable yjt has a value of 1
if task j is scheduled at time t and a value of 0 otherwise.
We use yjt to relate scheduled tasks with user timetables,
calendaru. We then introduce decision variables εj and Ej

which represent the energy consumption of task j, and the
energy level of the robot after completing task j respectively.
Finally, we use decision variable Dj to represent the duration
of task j. Dj = pj for tasks with fixed duration (i.e., excepting
recharging tasks).

Expression (11) represents a generic objective function.
Constraint (12) sets the decision variable wj for all tasks,
except recharge tasks, to be equal to 1, indicating that these
tasks are required. Constraint (13) forces recharging tasks
to be used in lexicographic order, breaking some of the
symmetry in the model. Constraints (14) and (15) ensure
that the start times of the tasks adhere to the user and task
schedules where T represents all time points t in 0 ≤ t ≤ H
and Tj represents the time points during which task j can
be scheduled to start. Constraint (16) sets the duration of
fixed-length tasks (bingo games and reminders) to be equal
to their defined processing time. Constraint (17) ensures
that bingo tasks start after the corresponding reminders are
executed, and (18) enforces a sequential relationship between
a pair of tasks j, k where k immediately follows j. Constraints
(19) and (20) ensure that the sequencing variable zjk across
all pairs of tasks is constrained properly to wj . Constraint
(21) links yjt to sj . Constraint (22) constrains the energy
level of the robot at the end of task k to depend on its own
energy consumption, as well as the energy consumption (and
travel) of the task before it, j. Constraints (23) through (25)
define the energy consumption of the various tasks. Eqs. (26)
through (32) represent the domains for the decision variables
as binary, positive continuous or real numbers.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BOOTH et al.: MIXED-INTEGER AND CONSTRAINT PROGRAMMING TECHNIQUES FOR MOBILE ROBOT TASK PLANNING 5

min objective (11)
s.t. wj = 1, ∀j ∈ Ā \ C (12)

wj ≥ wk, ∀j, k ∈ C | j < k (13)∑
t∈T

yjt = wj , ∀j ∈ A (14)∑
t∈T\Tj

yjt = 0, ∀j ∈ A (15)

Dj = pj , ∀j ∈ Ā \ C (16)
sg ≥ sj , ∀g ∈ G, j ∈Mg (17)
sk ≥ sj +Dj (18)

+δjk +H(zjk − 1), ∀j, k ∈ Ā∑
j∈A∪ȧ

zjk = wk, ∀k ∈ A ∪ ä (19)∑
k∈A∪ä

zjk = wj , ∀j ∈ A ∪ ȧ (20)∑
t∈T

yjtt = sj , ∀j ∈ A (21)

Ek ≤ Ej − zjkδjke move ∀j, k ∈ Ā
−εk +M(1− zjk), (22)

εj = Dj × e bingo, ∀j ∈ G (23)
εj = Dj × e remind, ∀j ∈M (24)
εj = −Dj × r rate, ∀j ∈ C (25)
wj ,∈ {0, 1}, ∀j ∈ C (26)
zjk,∈ {0, 1}, ∀j, k ∈ Ā (27)
yjt,∈ {0, 1}, ∀j ∈ A, t ∈ T (28)
sj ∈ [0, H], ∀j ∈ Ā (29)

0 ≤ Dj ≤
b max

r rate
, ∀j ∈ C (30)

εj ∈ IR, ∀j ∈ Ā (31)
b min ≤ Ej ≤ b max ∀j ∈ Ā (32)

3) CP Model: The CP model is defined by Eqns. (33)
to (47). The parameters used are the same as for the MIP
model, presented above. The model uses optional interval
variables [23], defined similarly to those used in Problem #1:
{⊥} ∪ {[f, g)|f, g ∈ Z, f ≤ g}, with the addition of ⊥, a
special value that indicates that the variable is not present in
the solution. We introduce an optional interval variable aj for
each task j ∈ A, where each of these is defined by a start
time, end time, and processing time.

The cumulative function, e level, represents the battery
level of the robot over time. The variables εj represent the
energy consumption of task j, and θj represents the total
energy consumption of task j including robot travel to its
location. Eq. (33) represents the generic objective function for
the minimization problem. Constraint (34) is the NoOverlap
global constraint, as defined previously. In constraint (35) we
make use of the ForbidExtent global constraint to ensure

that none of the tasks for a user conflict with the timetable of
that user. ForbidExtent(aj , F) prevents an interval variable
aj from overlapping a time point t where F (t), an integer
step function, is equal to 0 [23]. In our case, individual user
calendars, calendaru, detail the t values for which F (t) = 0.

In constraint (36) we constrain the start of a bingo game to
be after the end of the reminders associated with that bingo
game. Constraint (37) sets the length of all interval variables
(not including recharging tasks) to be equal to the processing
time of the associated task. Constraint (38) sets the domain
for the length of the charging tasks to be between zero and
an upper bound defined as maximum battery capacity divided
by the recharge rate of the robot. Constraint (39) ensures that
each recharging task is used in the proper order.

Constraints (40) through (42) set the energy consumption
of task j to be proportional to its duration and consumption
parameter. We note that a recharging task has a negative energy
consumption. Expression (43) constrains θj to be equivalent to
the base energy consumption of the task, εj , plus additional en-
ergy consumption for robot travel to the location of task j from
the preceding task. To accomplish this, we use the function
preLoc(aj) that returns the location of the task directly before
aj in the solution sequence. Constraint (44) represents a step
function constraint on the robot energy level to adjust the robot
energy level as each task is completed. The StepAtStart is
a cumulative function expression, representing the individual
contribution of an interval variable to a cumulative value [23].
In our model, each time an interval variable aj is executed,
it has an instantaneous impact of energy decrease, θj , on the
cumulative value, e level, at its start time.

Expression (45) constrains the start time of all interval
tasks to be within the allotted time horizon and Expres-
sion (46) uses PresenceOf to establish recharging tasks
as optional. PresenceOf(aj) represents whether an interval
variable aj is present in the solution, and thus, whether
the constraints should apply to it [23]. If it is decided that
PresenceOf(aj) = 0, then the task is not present, and thus,
not constrained or constraining. Eq. (47) sets bounds for the
energy level to be between the maximum and minimum battery
levels.

Recall that each of these global constraints represents a
relationship amongst a set of variables and encapsulates an
inference algorithm that, during search, remove values from
the variable domains when it can be inferred that the value no
longer satisfies the global constraint.

C. Existing Techniques

In our previous work [11], we used the Planning Domain
Definition Language (PDDL), the standard problem definition
language in AI planning [30], to define the domain and prob-
lem instances. Space limitations prevent a full presentation of
the PDDL model here (see Louie et al. [11]). We used OPTIC
[31], a forward-chaining partial order temporal planner, to
generate a feasible plan. OPTIC was tested on five scenarios
that varied in the number of users and bingo activity requests.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

min objective (33)
s.t. NoOverlap(aj , δjk), ∀j, k ∈ A (34)

ForbidExtent(aj , calendaru), ∀j ∈ Au, u ∈ U
(35)

Start(ag) ≥ End(aj), ∀g ∈ G, j ∈Mg

(36)
Length(aj) = pj , ∀j ∈ A \ C (37)

0 ≤ Length(aj) ≤
b max

r rate
, ∀j ∈ C (38)

PresenceOf(aj) ≥ ∀j, k ∈ C | j < k

PresenceOf(ak), (39)
εj = Length(aj)× e bingo, ∀j ∈ G (40)
εj = Length(aj)× e remind, ∀j ∈M (41)
εj = −Length(aj)× r rate, ∀j ∈ C (42)
θj = εj + δpreLoc(aj),je move, ∀j ∈ A (43)

e level = ∀j ∈ A (44)∑
j∈A

StepAtStart(aj ,−θj),

Start(aj) ∈ [0, H], ∀j ∈ A (45)
PresenceOf(aj) ∈ {0, 1}, ∀j ∈ C (46)
b min ≤ e level ≤ b max (47)

V. IMPLEMENTATION

In this section we present simulation results for both task
planning problems. We define algorithm performance based
on computational run-time and solution quality, quantified by
the optimality gap of the produced plan. Given the need for
a robot to plan in a real environment, the time taken to solve
a problem is particularly important. It is often the case that
quickly-found, high-quality solutions are more valuable than
optimal solutions found more slowly. Therefore, one of our
primary interests is in the evaluation of the trade-off between
solution quality and algorithm run-time.

All methods are implemented in C++ on a hexacore machine
with a Xeon processor and 12GB of RAM running Linux. We
use the IBM ILOG CPLEX 12.6.2 Optimization Studio single-
threaded for all simulations. The CPLEX Optimization Studio
includes multiple solvers. In particular, our MIP models are
solved with the CPLEX MIP solver while the CP models are
solved with CPLEX CP Optimizer, a wholly different solver.

Problem #1 is simulated using a random instance genera-
tion method developed in C++, similar to that described by
Mudrova and Hawes [10]. Problem #2 is simulated using the
scenarios of Louie et al. [11]. We produce plans with our
methods and then implement them in an example retirement
home facility with ROS Visualization [32]. As a proof of
concept, we also implement the task plan resulting from
the CP model for Scenario 1 on the mobile robot Tangy,
using OpenSlam’s (openslam.org) GMapping to create our
environment map via simultaneous localization and mapping
(SLAM).

A. Robot Task Planning Problem #1 - Simulation Results

Table I shows the mean relative error (MRE) of the best
solution found by the given technique at the run-time corre-
sponding to the column. For example, the performance of CP
for P40, the set of five problem instances with 40 tasks, at
the run-time 0.01 seconds is calculated as follows:

MRE(CP,P40,0.01) =
∑
p∈F

c(CP, p, 0.01)−c∗(p)
|F| × c∗(p)

×100 (48)

where F ⊆ P40 is the set of instances in P40 with feasible
solutions at 0.01 seconds using CP, c(CP, p, 0.01) is the best
solution found by CP in problem instance p at 0.01 seconds,
and c∗(p) is the optimal solution, if known, or the best known
lower bound for instance p found by running MIP with an
18,000 second time-out. A value of ‘-’ indicates that the
technique failed to find a feasible plan for all five instances at
that run-time. MRE values with a ‘†’ are calculated from the
subset of instances for which the method found a feasible plan
at the corresponding run-time. The ‘# Inf.’ column represents
the number of instances for which no feasible plan was found
after 100 seconds of run-time for a technique. Bolded values
indicate the technique found the most feasible plans at the
corresponding run-time with ties decided by the lowest MRE.

TABLE I
PROBLEM #1 SIMULATION: MEAN RELATIVE ERROR (%) OVER TIME

Run-time (s)

Tasks Method 0.01 0.1 1 10 100 # Inf.

40 CP 0.33 0.08 0.00 0.00 0.00 0
MIP - 7.93 0.13 0.00 0.00 0
DUTS 22.43† 13.10 0.06 0.02 0.02 0
TSIA 0.98 0.98 0.98 0.98 0.98 0

80 CP 0.37 0.32 0.15 0.10 0.10 0
MIP - 9.02 1.38 0.11 0.11 0
DUTS - 10.23 4.49 0.15 0.12 0
TSIA 0.45† 0.45† 0.45† 0.45† 0.45† 2

120 CP 0.56 0.37 0.34 0.25 0.24 0
MIP - 6.60† 3.67 0.25 0.25 0
DUTS - 7.06† 4.48 0.28 0.25 0
TSIA 0.40† 0.40† 0.40† 0.40† 0.40† 4

160 CP - 0.33 0.30 0.23 0.22 0
MIP - - 4.07 1.13 0.23 0
DUTS - 4.74† 3.08 0.85 0.23 0
TSIA 0.33† 0.33† 0.33† 0.33† 0.33† 4

200 CP - 0.26 0.25 0.20 0.18 0
MIP - - 3.56 1.63 0.18 0
DUTS - 4.77 3.83 1.93 0.18 0
TSIA - - - - - 5

Overall, the results indicate that CP very quickly finds
high quality solutions without sacrificing completeness. CP
outperforms all approaches at each run-time, except P160 at
0.01 seconds where TSIA is able to find a solution for a single
instance. Due to its heuristic ordering, TSIA cannot improve
upon initial feasible solutions, nor does it find any solutions for
the largest problems and a portion of medium-sized problems.
The DUTS method, as a MIP model very similar to our own
proposed technique, is overall slightly outperformed by our
MIP model for these instances.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

BOOTH et al.: MIXED-INTEGER AND CONSTRAINT PROGRAMMING TECHNIQUES FOR MOBILE ROBOT TASK PLANNING 7

TABLE II
PROBLEM #2 SIMULATION: TIME TO FIRST FEASIBLE PLAN

Scenario Users Bingo CP MIP OPTIC

Scenario 1 4 1 < 0.01 0.01 0.54
Scenario 2 8 2 < 0.01 0.36 9.13
Scenario 3 12 3 0.04 1.30 13.09
Scenario 4 16 4 0.01 - -
Scenario 5 20 5 0.08 - -

TABLE III
PROBLEM #2 SIMULATION, CP: SENT ACTIVITY COMMAND RESULTS

Expected Activity from Robot

Commands Remind Play Bingo Recharge Total Success (%)

Remind 58 0 0 60 96.7
Play Bingo 0 15 0 15 100.0
Recharge 0 0 3 3 100.0

B. Robot Task Planning Problem #2 - Simulation Results

Following Louie et al., we evaluate the performance of our
models on our second task planning problem as a feasibility
problem (i.e., no objective function) in a realistic environment.
The problem differs from that solved by Louie et al. as
we revised the parameter values to provide better estimates
for battery capacities, consumption rates and robot location
transition times. We use run-time as our performance metric
and enforce a 10-minute time limit on all experiments.

In Table II, the CP and MIP models produce feasible plans
much faster than OPTIC. CP is able to generate feasible plans
three orders of magnitude faster than OPTIC and roughly two
orders of magnitude faster than MIP. The use of a feasibility
problem favours OPTIC over the optimization techniques
given the relative focus on optimization versus feasibility in the
respective literatures. Our experiments with various objective
functions (not shown) indicate that OPTIC cannot typically
improve its initial feasible solution while both CP and MIP
are able to find improving solutions.

Due to the extended nature of these full-day task planning
problems, we use ROS Visualizer to conduct experiments
on Scenarios 1-5 to ensure the plans being generated are
implementable based on robot and user constraints. These
experiments involve simulating the robot and the users within
an example retirement home facility layout as seen in Figure 1.
We ran the simulation on all scenarios with the plans produced
by the CP technique.

The top of Figure 1 illustrates the layout of the facility,
the users (red) and the robot (green). This image, captured
during simulation, depicts a bingo game reminder in a user’s
personal room. The lower portion of the figure represents the
robot and user timetables and identifies the plan progress as
it is executed.

Table III presents the results of our implementation of the
CP-produced plans within the simulated environment; we ex-
periment with all five scenarios. After some small adjustments
to account for user movement within the environment, we
achieved nearly a 100% success rate on the proper com-
mand/activity from the robot for reminder, bingo game and

Fig. 1. ROS task planning simulation: a) Retirement home facility layout.
b) Corresponding robot and user schedules. Blue bars represent tasks, cyan
represents a currently active task, and yellow represents a mealtime.

Fig. 2. Physical experiment, Scenario 1: a) Bingo game reminder in personal
room. b) Robot autonomously navigating out of the personal room.

recharge activities. The success rate is defined as the number
of correct activity actions implemented by the robot over the
total commands received by the robot from the planner. Two
reminder tasks failed to execute properly due to an insufficient
transition time allotted for the robot to arrive at its planned
reminder location.

As a proof of concept, we conducted a real environment
test with the social robot Tangy. We successfully implemented
Scenario 1 using a plan produced by CP. The real environment
test consisted of robot navigation, four bingo reminders and
a bingo game activity. In Figure 2 we can see the social
robot Tangy involved in a user reminder and autonomously
navigating out of their personal room. These experiments,
both simulated and real-world, are significant as they verify
the utility and feasibility of our task planning methods in
realistic environments, while considering real implementation
situations.

VI. CONCLUSION

We investigated modeling and solving two mobile robot
task planning problems with existing optimization formalisms:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

mixed-integer programming (MIP) and constraint program-
ming (CP). The first problem requires a robot to plan a set
of tasks, each with different temporal constraints. The second
problem requires a robot to plan tasks while considering
physical limitations, including battery level, as well as the
timetables of multiple human users.

We compare the performance of these scheduling techniques
to those in the literature. Constraint programming provides
the best results by a substantial margin, indicating that the
inference-based search of CP is superior to the relaxation-
based MIP techniques for the problems studied. This will not
always be the case; determining problem characteristics that
favor one approach over the other is an active pursuit in the
optimization literature (e.g., [33]). We also implemented the
plans for the second problem in simulated and real environ-
ments on the social robot Tangy.

We believe that optimization-based techniques are a promis-
ing technology for mobile robot task planning problems. The
flexibility of the “model-and-solve” paradigm eliminates the
need for algorithmic development while exploiting the ongoing
advances in these technologies. A primary direction for our
future work is to understand the scale and complexity of robot
task planning problems that these approaches can solve “off-
the-shelf”, without sophisticated techniques such as problem-
specific decompositions (e.g., [16], [34]).

VII. ACKNOWLEDGMENT

We would like to thank M. Schwenk for the design of
the simulation environment and S. Mohamed for the robot
navigation and mapping modules utilized in the experiments.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory &
practice. Elsevier, 2004.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An archi-
tecture for autonomy,” The International Journal of Robotics Research,
vol. 17, no. 4, pp. 315–337, 1998.

[3] M. Beetz and M. Bennewitz, “Planning, scheduling, and plan execution
for autonomous robot office couriers,” in Integrating Planning, Schedul-
ing and Execution in Dynamic and Uncertain Environments, volume
Workshop Notes, pp. 98–02, 1998.

[4] B. Coltin, M. M. Veloso, and R. Ventura, “Dynamic user task scheduling
for mobile robots.,” in Automated Action Planning for Autonomous
Mobile Robots, AAAI Workshops, vol. WS-11-09., AAAI, 2011.

[5] R. Castano, T. Estlin, R. C. Anderson, D. M. Gaines, A. Castano,
B. Bornstein, C. Chouinard, and M. Judd, “Oasis: Onboard autonomous
science investigation system for opportunistic rover science,” Journal of
Field Robotics, vol. 24, no. 5, pp. 379–397, 2007.

[6] B.-I. Kim, S. S. Heragu, R. J. Graves, and A. S. Onge, “A hybrid
scheduling and control system architecture for warehouse management,”
Robotics and Automation, IEEE Transactions on, vol. 19, no. 6, pp. 991–
1001, 2003.

[7] A. Cesta, G. Cortellessa, R. Rasconi, F. Pecora, M. Scopelliti, and
L. Tiberio, “Monitoring elderly people with the robocare domestic
environment: Interaction synthesis and user evaluation,” Computational
Intelligence, vol. 27, no. 1, pp. 60–82, 2011.

[8] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards
robotic assistants in nursing homes: Challenges and results,” Robotics
and Autonomous Systems, vol. 42, no. 3, pp. 271–281, 2003.

[9] A. Tapus, M. J. Mataric, and B. Scasselati, “Socially assistive robotics
[grand challenges of robotics],” Robotics & Automation Magazine, IEEE,
vol. 14, no. 1, pp. 35–42, 2007.

[10] L. Mudrova and N. Hawes, “Task scheduling for mobile robots using
interval algebra,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pp. 383–388, 2015.

[11] W.-Y. G. Louie, T. Vaquero, G. Nejat, and J. C. Beck, “An autonomous
assistive robot for planning, scheduling and facilitating multi-user ac-
tivities,” in Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pp. 5292–5298, 2014.

[12] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2012.

[13] S. Heinz, W.-Y. Ku, and J. C. Beck, “Recent improvements using
constraint integer programming for resource allocation and scheduling,”
in Proceedings of the Ninth International Conference on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR2012), pp. 12–27, 2013.

[14] J. C. Beck, A. J. Davenport, E. D. Davis, and M. S. Fox, “The
ODO project: Toward a unified basis for constraint-directed scheduling,”
Journal of Scheduling, vol. 1, no. 2, pp. 89–125, 1998.

[15] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based Scheduling.
Kluwer Academic Publishers, 2001.

[16] G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias,
“xbots: An approach to generating and executing optimal multi-robot
plans with cross-schedule dependencies,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 115–122, IEEE,
2012.

[17] N. Atay and O. B. Bayazit, “Emergent task allocation for mobile
robots.,” in Robotics: Science and Systems, Citeseer, 2007.

[18] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling:
applying constraint programming to scheduling problems, vol. 39.
Springer Science & Business Media, 2012.

[19] W.-Y. Ku and J. C. Beck, “Revisiting off-the-shelf mixed integer
programming and constraint programming models for job shop schedul-
ing,” tech. rep., Department of Mechanical & Industrial Engineering,
University of Toronto, 2014. MIE-OR-TR2014-01.

[20] A. H. Land and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica: Journal of the Econometric
Society, pp. 497–520, 1960.

[21] J. Błażewicz, W. Domschke, and E. Pesch, “The job shop scheduling
problem: Conventional and new solution techniques,” European journal
of operational research, vol. 93, no. 1, pp. 1–33, 1996.

[22] R. E. Bixby, “A brief history of linear and mixed-integer programming
computation,” Documenta Mathematica, Extra Volume: Optimization
Stories, pp. 107–121, 2012.

[23] P. Laborie, “IBM ILOG CP Optimizer for detailed scheduling illustrated
on three problems,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pp. 148–162,
Springer, 2009.

[24] C. Gervet, “Constraints over structured domains,” in The Handbook of
Constraint Programming (F. Rossi, P. Van Beek, and T. Walsh, eds.),
pp. 605–638, Elsevier, 2006.

[25] W.-J. van Hoeve and I. Katriel, “Global constraints,” in Handbook of
Constraint Programming (F. Rossi, P. van Beek, and T. Walsh, eds.),
ch. 6, pp. 169–208, Elsevier, 2006.

[26] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,”
The journal of logic programming, vol. 19, pp. 503–581, 1994.

[27] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint program-
ming. Elsevier, 2006.

[28] B. Coltin and M. Veloso, “Towards replanning for mobile service robots
with shared information,” in Proceedings of ARMS Workshop, AAMAS,
vol. 11, 2013.

[29] J. Erschler, F. Roubellat, and J. P. Vernhes, “Finding some essential
characteristics of the feasible solutions for a scheduling problem,”
Operations Research, vol. 24, pp. 772–782, 1976.

[30] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson,
M. Friedman, C. Kwok, K. Golden, S. Penberthy, D. E. Smith, et al.,
“PDDL-the planning domain definition language,” 1998.

[31] J. Benton, A. J. Coles, and A. Coles, “Temporal planning with prefer-
ences and time-dependent continuous costs.,” in ICAPS, vol. 77, p. 78,
2012.

[32] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5, 2009.

[33] S. Heinz and J. C. Beck, “Reconsidering mixed integer programming
and MIP-based hybrids for scheduling,” in Proceedings of the Ninth
International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR2012), pp. 211–227, 2012.

[34] T. T. Tran, A. Araujo, and J. C. Beck, “Decomposition methods for the
parallel machine scheduling problem with setups,” INFORMS Journal
on Computing, 2015. in press.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LRA.2016.2522096

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

