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and performs search in the induced search space to find a better solution. While LNS shows strong11
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programming. We empirically show that LNBS finds better quality solutions than a state-of-the-art17

DIDP solver in five out of nine benchmark problem types with a total of 8570 problem instances. In18

particular, LNBS shows a significant improvement over the existing state-of-the-art DIDP solver in19

routing and scheduling problems.20

2012 ACM Subject Classification Computing methodologies → Discrete space search21

Keywords and phrases Large Neighborhood Search, Dynamic Programming, State Space Search,22

Combinatorial Optimization23

Digital Object Identifier 10.4230/LIPIcs.CP.2023.724

Supplementary Material Software (Source Code): https://github.com/domain-independent-dp/25

didp-rs/releases/tag/lnbs-cp2326

Funding This research is supported by the Natural Sciences and Engineering Research Council of27

Canada.28

1 Introduction29

In constraint programming (CP), large neighborhood search (LNS) [34] achieves strong per-30

formance in solving combinatorial optimization problems such as routing [24] and scheduling31

problems [27]. LNS is an algorithmic framework that removes a part of a solution and then32

performs search in the induced partial search space (neighborhood) to find a better solution.33

Typically, LNS uses tree search to find a better solution in a partial search space, where each34

search node represents a partial assignment of decision variables, and a solution of a problem35

corresponds to a leaf node, where all variables are assigned values.36

Dynamic programming (DP) is a powerful method for multiple combinatorial optimization37

problems [14, 15], and the hybridization of CP, decision diagrams, and DP is a topic of active38

research [1, 22, 23, 5, 28, 19, 17]. Recently, domain-independent dynamic programming39

(DIDP), a model-based paradigm for combinatorial optimization based on DP, has been40

proposed [25]. In DIDP, a model of a problem is represented by a state transition system. A41

solution corresponds to a path in a state space graph, where each vertex represents a state42

and each edge represents a transition between two states. The current state-of-the-art DIDP43
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7:2 Large Neighborhood Beam Search for Domain-Independent Dynamic Programming

solver is complete anytime beam search (CABS) [26], which is based on beam search, an44

algorithm searches for a path in a state space graph by maintaining a fixed number of states45

at a time.46

In this paper, we propose large neighborhood beam search (LNBS), a combination of47

LNS and beam search in a state space graph. LNBS tries to improve a solution path by48

removing a partial path between two states and then performing beam search to find a49

better partial path. While LNBS has the freedom to select a neighborhood (i.e., a partial50

path to remove), we propose a strategy that dynamically adjusts the size of a neighborhood51

based on a multi-armed bandit problem. With our strategy, LNBS is complete, i.e., it finds52

and proves an optimal solution given enough time, but, of course, it is aimed at problems53

where its solution quality is more important than proved optimality. We implement LNBS54

for DIDP and empirically evaluate its performance. The experimental results show that55

LNBS outperforms CABS in five out of nine benchmark problem types in terms of solution56

quality. In addition, LNBS performs better than a commercial CP solver, which uses LNS57

[27], in seven problems while CABS is better than CP in six problems. Since LNBS performs58

particularly well in routing and scheduling problems, we also investigate the reason for this59

performance and gain insight from empirical analysis.60

2 Background61

We first introduce domain-independent dynamic programming and complete anytime beam62

search. Then, we present large neighborhood search (LNS). We also describe LNS with63

decision diagrams [18], a recently proposed method for combinatorial optimization that can64

be considered a combination of LNS and state space search.65

2.1 Domain-Independent Dynamic Programming66

A combinatorial optimization problem is to find a set of discrete decisions, e.g., a permutation,67

to minimize or maximize an objective function. In dynamic programming (DP), a problem is68

recursively formulated by decomposing it into subproblems, represented by states, and the69

optimal objective value of each subproblem is represented by the value function, which maps70

a state to a real number.71

Domain-independent dynamic programming (DIDP) is a model-based paradigm for72

combinatorial optimization based on DP [25]. In DIDP, a DP formulation of a combinatorial73

optimization problem is defined by a state-transition system in Dynamic Programming74

Description Language (DyPDL). A DyPDL model is a seven-tuple ⟨V, S0,K, T ,B, C, h⟩75

consisting of state variables V, the target state S0, constants K, transitions T , base cases B,76

state constraints C, and the dual bound h.77

A state variable v ∈ V has a type of set, element, or numeric. Each set and element78

variable vi is associated with a set of objects Ni = {0, ..., ni − 1}. The domain of a set79

variable vi is 2Ni , and the domain of an element variable vi is Ni. A numeric variable takes80

a real value. A constant in K is a value independent of the state variables.81

A state is a complete value assignment to the state variables, and the target state S0
82

is a state. We denote the value of a state variable vi in a state S by S[vi]. The value of a83

state S is represented by the value function V (S), and the objective of a DyPDL model is84

to compute the value of the target state, V (S0). We can define dominance between states85

based on state variables. If a state S dominates another state S′, denoted by S′ ⪯ S, then86

V (S) is equal or better (less/greater for minimization/maximization) than V (S′). For the87

details of dominance in DyPDL, please refer to previous work [25].88
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A transition τ ∈ T is a four-tuple ⟨effτ , costτ , preτ , forcedτ ⟩ defining how a state S is89

transformed to a successor state (a subproblem) S[[τ ]], and how V (S) is computed based90

on the value of V (S[[τ ]]). The set of effects effτ = {(vi, evi
) | vi ∈ V} defines how each91

state variable vi is updated by an expression evi . The expression evi consists of predefined92

operations on state variables and constants and returns S[[τ ]][vi] given S. For example, for a93

set variable U , U \ {i} is an expression representing removing an element i from U , which94

can be used as eU and results in S[[τ ]][U ] = S[U ] \ {i}. The cost expression costτ is an95

expression that takes V (S[[τ ]]) in addition to S and returns a real number costτ (V (S[[τ ]]), S).96

The preconditions preτ are conditions on the state variables, i.e., expressions returning a97

binary value ⊤ or ⊥. The preconditions define when the transition is applicable. For example,98

if preτ = {i ∈ U}, then τ is applicable in S iff i ∈ S[U ]. The flag forcedτ is a boolean value99

indicating whether the transition is a forced transition. Let T (S) be the set of applicable100

transitions in state S. If forced transitions are applicable, the first defined one τ is selected,101

and all other forced and non-forced transitions are ignored, i.e., T (S) = {τ}. The value of102

V (S) is computed by taking the best costτ (V (S[[τ ]]), S) over all τ ∈ T (S).103

Base cases B are sets of conditions. For any B ∈ B, if a state S satisfies all conditions104

in B, denoted by S |= B, then it is called a base state, and V (S) is defined non-recursively105

by an expression eB(S). State constraints C are conditions that must be satisfied by all106

states. If one of the state constraints c ∈ C is violated, denoted by S ̸|= C, then V (S) =∞107

(V (S) = −∞) for minimization (maximization). The dual bound h(S) is a lower (upper)108

bound on V (S) for minimization (maximization).109

Overall, if the problem is minimization, the DP formulation is defined as follows.110

compute V (S0) (1)111

s.t. V (S) =


minτ∈T (S) costτ (V (S[[τ ]]), S) if S |= C ∧ ∀B ∈ B, S ̸|= B

eB(S) if S |= C ∧ ∃B ∈ B, S |= B

∞ if S ̸|= C
(2)112

V (S) ≤ V (S′) if S′ ⪯ S (3)113

V (S) ≥ h(S). (4)114
115

The first line states that the optimal objective value is V (S0). Equation (2) recursively116

defines the value function V . Inequalities (3) and (4) are bounds on the value function. For117

maximization, we replace min with max in the first line of Equation (2) and swap ≤ and ≥118

in Inequalities (3) and (4). A solution for the DP formulation is a sequence of transitions119

that transforms the target state S0 into a base state. Concretely, for a sequence of transitions120

x = ⟨x1, ..., xn⟩, let Si+1 = Si[[xi+1]] for i = 0, ..., n− 1. Then, x is a solution if xi+1 ∈ T (Si),121

Si |= C, and ∀B ∈ B, Si ̸|= B for i = 0, ..., n− 1, Sn |= C, and ∃B ∈ B, Sn |= B. The solution122

is an optimal solution if costτi
(V (Si+1), Si) = V (Si) for i = 0, ..., n− 1 in addition.123

2.2 Complete Anytime Beam Search for DIDP124

Previous research has shown that a subset of DyPDL models can be solved by cost-algebraic125

heuristic search [11], a generalized version of the shortest path algorithm [25]. Multiple DIDP126

solvers using cost-algebraic heuristic search algorithms have been proposed [25, 26]. These127

solvers perform state space search, which finds a path from the target state to a base state in128

a state space graph, a directed graph where each vertex is a state. In the state space graph,129

an edge from state S to S[[τ ]] exists if τ ∈ T (S). Following the previous work, we assume130

that costτ (V (S[[τ ]]), S) is expressed as wτ (S)× V (S[[τ ]]) where wτ is an expression returning131

CP 2023
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Algorithm 1 Beam Search for DyPDL.

1: function BeamSearch(f , b)
2: g(S0)← 0, f(S0)← h(S0), x(S0)← ⟨⟩.
3: O ← {S0}, x← NULL, complete← ⊤.
4: while O ̸= ∅ and x = NULL do
5: G← ∅. ▷ A set of states in the next layer.
6: for all S ∈ O do
7: if ∃B ∈ B such that S |= B then ▷ A base state.
8: if g(S)× eB(S) < f then ▷ A better solution.
9: f ← g(S)× eB(S), x← x(S).

10: else
11: for all τ ∈ T (S) : S[[τ ]] |= C do
12: if ∄S′ ∈ G such that S[[τ ]] ⪯ S′ and g(S)× wτ (S) ≥ g(S′) then
13: x(S[[τ ]])← ⟨x(S); τ⟩.
14: g(S[[τ ]])← g(S)× wτ (S), f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
15: if ∃S′ ∈ G such that S′ ⪯ S[[τ ]] and g(S[[τ ]]) ≤ g(S′) then
16: G← G \ {S′}. ▷ Remove a dominated state.
17: if f(S[[τ ]]) < f then ▷ Pruning by the primal bound.
18: G← G ∪ {S[[τ ]]}.
19: O ← {S ∈ G | f(S) < f}.
20: if |O| > b then
21: O ← the best b states in G minimizing f .
22: complete← ⊥.
23: if O ̸= ∅ then
24: complete← ⊥.
25: return x, complete.

a real value and × is a binary operator satisfying a cost-algebra. In particular, we focus on132

nonnegative wτ and binary operators + or max, i.e., costτ (V (S[[τ ]]), S) = wτ (S) + V (S[[τ ]])133

or costτ (V (S[[τ ]]), S) = max{wτ (S), V (S[[τ ]])}. The weight of the edge (S, S[[τ ]]) is defined134

as wτ (S), and the cost of a path from the target state S0, which corresponds to a sequence135

of the transitions x = ⟨x1, ..., xn⟩, is costx(S0) =×n−1
i=0 wxi+1(Si) where Si+1 = Si[[xi+1]]136

for i = 0, ..., n − 1. As each edge weight is nonnegative, the cost of a path is nonnegative137

and non-decreasing in length. In this paper, we focus on minimization while DyPDL and138

cost-algebraic heuristic search can handle both minimization and maximization.139

The state-of-the-art cost-algebraic heuristic search solver is complete anytime beam search140

(CABS) [36, 26]. CABS performs beam search, which searches at most b states in the open141

list O at each layer of the state space graph. We show the pseudo-code of beam search in142

Algorithm 1. In addition to a DyPDL model and b, beam search takes the primal bound143

f as an input, which is the best-known objective value and could be infinity. With each144

state S, the best path x(S) from S0 and its cost g(S) = costx(S)(S0) (the g-value) are145

maintained in lines 13 and 14. Starting from O = {S0}, beam search processes a state S in146

O. If S is a base state, and the best path to S has a better cost than f in line 8, then f147

and the solution x are updated. Otherwise, S[[τ ]] is added to the candidate set G for each148

transition τ ∈ T (S), which is called the expansion of S, and we say that S is expanded149

(lines 11– 18). When expanding S ∈ O, if there exists a state S′ ∈ G that dominates S[[τ ]]150

and g(S′) ≤ g(S)× wτ (S), then S[[τ ]] is not added to G. In addition to g(S[[τ ]]), the priority151
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f(S[[τ ]]) = g(S[[τ ]])× h(S[[τ ]]) (the f -value) is computed in line 14, which is a lower bound on152

the optimal path cost from S0 to a base state via S[[τ ]]. If f(S[[τ ]]) ≥ f , the corresponding153

path does not lead to an improved solution, so S[[τ ]] is not added to G in line 18. After154

expanding all states, O is updated to the best b states in G according to f in lines 20-21.155

This procedure is repeated until a solution whose cost is better than the given primal bound156

is found, or no successor states are generated. The variable complete maintains whether the157

search is complete. If states in G are pruned due to the beam width b (line 22), or O is not158

empty when a solution is found (line 24), there may exist a better solution, so the search is159

not complete. If complete = ⊤, then x is the optimal solution if it is not NULL, or the model160

is infeasible if x = NULL. CABS performs a sequence of beam search with exponentially161

increasing beam width b = 1, 2, 4, ... using the best objective value found so far as the primal162

bound f until the optimality of the best solution or the infeasibility is proved.163

2.3 Large Neighborhood Search164

Large neighborhood search (LNS) iteratively removes a part of a solution and solves the165

resulting subproblem (neighborhood) [34]. A solution for a CP problem is represented as a166

complete value assignment to decision variables. Given a solution, LNS removes a subset of167

the value assignments and solves the subproblem where the remaining variables are fixed to168

the values assigned in the original solution. Typically, a tree search algorithm is used. In169

a tree search algorithm, a search node is a partial value assignment to decision variables,170

successor nodes are generated by assigning a value to an unassigned variable, and a solution171

corresponds to a leaf node, where all variables are assigned values.172

2.3.1 Large Neighborhood Search with Decision Diagrams173

For combinatorial optimization, recent work proposed LNS with decision diagrams (DD-LNS)174

[18]. Although DD-LNS was not explicitly framed as state space search, we interpret it as a175

state space search algorithm. While DD-LNS is independent of DIDP, it also uses the DP176

formulation of a problem as input while assuming that the solution has n transitions. Given177

a sequence of transitions ⟨x1, ..., xn⟩, DD-LNS keeps the first d transitions, ⟨x1, ..., xd⟩, and178

searches for the remaining n− d transitions. To find such a sequence, DD-LNS constructs179

a decision diagram (DD), a directed graph where nodes are partitioned into layers. In the180

constructed DD, each vertex corresponds to a state, and each edge corresponds to a transition,181

so it is a state space graph. The first layer in the DD contains only the node corresponding to182

Sd, where Si = Si−1[[xi]] for i = 1, ..., d. DD-LNS iteratively constructs a layer by applying183

transitions to the states in the current layer until reaching layer n− d + 1.184

Because constructing an exact DD is intractable, DD-LNS constructs a restricted DD,185

which keeps a subset of states in the exact DD. In each layer, states satisfying certain186

conditions are kept, some of which are selected randomly. Let the number of such states be187

K. If K is smaller than a parameter W , from the remaining states, DD-LNS also keeps the188

best W −K states that minimize a priority function, the rough lower bound (RLB). The189

RLB of a state is a lower bound on the cost of a solution path via that state, which is the190

same as the f -value. If the RLB of a state is larger than the best solution cost, the state is191

removed from the DD as it does not lead to a better solution. Therefore, the procedure of192

constructing a restricted DD can be considered beam search with randomization. Indeed,193

the authors acknowledged that DD-LNS is a hybridization of LNS and beam search [18].194

DD-LNS decreases d by 1 if a better solution is not found with d, starting from d = n−2 and195

restarting from d = n− 2 if d = 0. When d = 0 and the restricted DD keeps all states except196

CP 2023
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{1, 2, 3, 4}, 0

{2, 3, 4}, 1

{3, 4}, 2 {2, 4}, 3 {2, 3}, 4

{4}, 3 {3}, 4 {4}, 2 {2}, 4 {3}, 2 {2}, 3

∅, 4 ∅, 3 ∅, 2

1

2 3 4

3 4 2 4 2 3

4 4 3 3 2 2

Figure 1 Partial state space graph induced by the prefix ⟨1⟩ and the suffix ⟨4⟩ (highlighted in
red) in Example 1. The current partial path is highlighted in blue and an alternative partial path is
highlighted in green. Dashed transitions conflict with the suffix (explained in Section 3.2).

for those removed based on RLB, then it is the exact DD, so DD-LNS proves the optimality197

of the solution. Since DD-LNS can be interpreted as a state space search algorithm and198

is designed for combinatorial optimization, we implement it for DIDP and experimentally199

compare it with our method.200

3 Large Neighborhood Beam Search201

We start with a simple idea of LNS for state space search: given a solution path, x =202

⟨x1, ..., xn⟩ which connects states ⟨S0, ..., Sn⟩, we remove a partial path ⟨xi, ..., xi+d−1⟩203

and search for a better partial path from Si−1 to Si+d−1. If we find a better solution204

⟨x1, ..., xi−1, x′
i, ..., x′

i+d′−1, xi+d..., xn⟩, we repeat this procedure with the new solution. While205

the overview of the algorithm is simple, there are design choices on how to select a partial206

path to remove and how to search for a better partial path. The novelty of our method207

compared to existing methods arises from such choices in addition to the fact that it is used208

for DIDP. First, we describe the modifications of beam search for DyPDL to search for a209

partial path from Si−1 to Si+d−1. Then, we propose strategies to select a partial path to210

remove.211

3.1 Beam Search for DyPDL in a Partial State Space Graph212

We want to find a path from Si−1 to Si+d−1 instead of from S0 to a base state. We could213

modify line 8 in Algorithm 1 so that it checks if S = Si+d−1 instead of ∃B ∈ B, S |= B.214

However, in DyPDL, it may not be desirable as shown in the following example.215

▶ Example 1. Consider the following DP formulation, where U ⊆ {0, 1, 2, 3, 4} is a set216

variable, k ∈ {0, 1, 2, 3, 4} is an element variable, and clj for l, j ∈ {0, 1, 2, 3, 4} is a constant.217

compute V ({1, 2, 3, 4}, 0)218

V (U, k) =
{

minj∈U ckj + V (U \ {j}, j) if U ̸= ∅
0 if U = ∅.

219

220

Each transition in the DyPDL model has precondition j ∈ U and effect (U, U \ {j}) for221

some j, and so we denote each transition by j. Each solution corresponds to a permutation222

of the transitions 1, 2, 3, 4. A solution ⟨1, 2, 3, 4⟩ connects a sequence of states ⟨({1, 2, 3, 4}, 0),223

({2, 3, 4}, 1), ({3, 4}, 2), ({4}, 3), (∅, 4)⟩. Consider removing ⟨2, 3⟩ from the solution. We224

visualize the partial state space graph in Figure 1. An algorithm tries to find a path from225
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Algorithm 2 Beam Search in a partial state space graph.

1: function BeamSearchForPartialPath(f , b, prefix, suffix)
2: Ŝ ← S0[[prefix]], g(Ŝ)← costprefix(S0), f(Ŝ)← g(Ŝ)× h(Ŝ), x(Ŝ)← prefix.
3: O ← {Ŝ}, x← NULL, complete← ⊤.
4: while O ̸= ∅ and x = NULL do
5: G← ∅. ▷ A set of states in the next layer.
6: for all S ∈ O do
7: S′ ← S, success← ⊥.
8: if ∃B ∈ B and S′ |= B then
9: success← ⊤. ▷ A base state, success.

10: else
11: for τ ← suffix1, ..., suffixn−i−d+1 do ▷ Rollout of the suffix.
12: if S′ ̸|= preτ then
13: break. ▷ Preconditions are not satisfied, fail.
14: S′ ← S′[[τ ]], g(S′)← g(S′)× wτ (S′), x(S′)← ⟨x(S′); τ⟩.
15: if S′ ̸|= C then
16: break. ▷ State constraints are not satisfied, fail.
17: if ∃B ∈ B such that S′ |= B then
18: success← ⊤. ▷ A base state, success.
19: break.
20: if success then
21: if g(S′)× eB(S′) < f then ▷ A better solution.
22: f ← g(S′)× eB(S′), x← x(S′).
23: else
24: for all τ ∈ T (S) : S[[τ ]] |= C do
25: if ∄S′ ∈ G such that S[[τ ]] ⪯ S′ and g(S)× wτ (S) ≥ g(S′) then
26: x(S[[τ ]])← ⟨x(S); τ⟩.
27: g(S[[τ ]])← g(S)× wτ (S), f(S[[τ ]])← g(S[[τ ]])× h(S[[τ ]]).
28: if ∃S′ ∈ G, S′ ⪯ S[[τ ]] ∧ g(S[[τ ]]) ≤ g(S′) then
29: G← G \ {S′}. ▷ Remove a dominated state.
30: if f(S[[τ ]]) < f then ▷ Pruning by the primal bound.
31: G← G ∪ {S[[τ ]]}.
32: O ← {S ∈ G | f(S) < f}.
33: if |G| > b then
34: O ← the best b states in G minimizing f .
35: complete← ⊥.
36: if O ̸= ∅ then
37: complete← ⊥.
38: return x, complete.

({2, 3, 4}, 1) to ({4}, 3). The original one, ⟨2, 3⟩, is only the path. However, a partial path226

⟨3, 2⟩ from ({2, 3, 4}, 1) to ({4}, 2) also results in a valid solution ⟨1, 3, 2, 4⟩.227

Considering the above example, instead of focusing on a partial path to a state, we focus on228

a partial path to a suffix of the solution path. Given a solution path ⟨x1, ..., xn⟩, if we remove a229

partial path ⟨xi, ..., xi+d−1⟩, then ⟨xi, ..., xi−1⟩ is the prefix, and ⟨xi+d, ..., xn⟩ is the suffix. For230

a partial path ⟨x′
i, ..., x′

i+d′−1⟩, we want to check if ⟨x1, ..., xi−1, x′
i, ..., x′

i+d′−1, xi+d, ..., xn⟩ is231

CP 2023
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Algorithm 3 Large Neighborhood Beam Search (LNBS).
Input: initial feasible solution x.
Output: solution x and if the optimality or infeasibility is proved.

1: while the time limit is not reached do
2: n← |x|, f ← costx(S0).
3: Select d such that 2 ≤ d ≤ n.
4: Select i such that 1 ≤ i ≤ n− d + 1.
5: Select beam width b.
6: prefix ← ⟨x1, ..., xi−1⟩, suffix ← ⟨xi+d, ..., xn⟩.
7: x, complete← BeamSearchForPartialPath(f , b, prefix, suffix)
8: if x ̸= NULL then
9: x← x.

10: if i = 0 ∧ d = n ∧ complete then
11: return x, ⊤.
12: return x, ⊥.

a valid solution. Therefore, for a state S found by a search algorithm, we perform a rollout232

of the suffix from S and check if each of resulting states satisfies the state constraints and a233

base case. We show the modified version of beam search in Algorithm 2. This algorithm234

takes a prefix prefix and a suffix suffix as input. In line 2, we denote the state resulting from235

applying the prefix to the target state by Ŝ = S0[[prefix]] and initialize the open list O with236

Ŝ in line 3. In lines 8–22, the algorithm performs a rollout of the suffix from S and checks if237

it results in a better solution. Other parts are the same as Algorithm 1.238

We use this modified version of beam search in large neighborhood beam search (LNBS)239

as shown in Algorithm 3. In line 2, |x| denotes the length of the current solution x. In240

lines 3–5, LNBS selects parameters d, i, and b. In line 7, LNBS performs beam search in the241

neighborhood. If an improving solution is found, LNBS updates the current solution x in242

line 9. If the searched neighborhood is the original search space, i.e., i = 1 and d = n, and243

beam search proves the optimality or infeasibility, LNBS terminates in line 11. Therefore, if244

it is guaranteed to select i = 1 and d = n with sufficiently large b given enough time, LNBS245

is guaranteed to find the optimal solution or prove the infeasibility, i.e., it is complete. CABS246

can be considered a configuration of LNBS, where i = 1, d = n, and b increases exponentially.247

DD-LNS can also be considered a configuration of LNBS, where i ranges from n− 2 to 1,248

d is n− i + 1, and b is fixed to W while beam search is extended with the randomization249

mechanism. We will describe the strategies that we use to select d, i, and b below.250

3.2 Removing Conflicting Transitions251

In Example 1, consider finding a partial path from a prefix ⟨1⟩, which results in state252

Ŝ = ({2, 3, 4}, 1), to a suffix ⟨4⟩ using beam search. In Ŝ, three transitions 2, 3, and 4 are253

applicable. However, applying transition 4 does not lead to a feasible solution because it254

is already used in the suffix and cannot be applied twice: it requires 4 ∈ U and removes 4255

from U , but no other transition adds 4 to U , so applying 4 makes the suffix inapplicable.256

Generalizing this example, if we know that a transition τ makes a transition τ ′ in the suffix257

inapplicable, then we can ignore τ when searching for a partial path. In particular, we focus258

on the effects of τ that add/remove an element to/from a set variable and the preconditions259

of τ ′ that require the element to be/not to be in that set variable.260
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▶ Proposition 2. Suppose that a DyPDL model ⟨V, S0,K, T ,B, C, h⟩ has a set variable U ∈ V261

whose domain is 2N , where N is a set of objects. There does not exist a solution ⟨x1, ..., xn⟩262

such that any pair of τ = xi and τ ′ = xj for 1 ≤ i < j ≤ n satisfy either of the following263

conditions:264

1. There exists k ∈ N such that (U, U\{k}) ∈ effτ , (k ∈ U) ∈ preτ ′ , and each τ ′′ ∈ T \{xi, xj}265

does not change U or (U, U \ {l}) ∈ effτ ′′ for some l ∈ N .266

2. There exists k ∈ N such that (U, U ∪ {k}) ∈ effτ , (k ̸∈ U) ∈ preτ ′ , and each τ ′′ ∈267

T \ {xi, xj} does not change U or (U, U ∪ {l}) ∈ effτ ′′ for some l ∈ N .268

Proof. For the first case, xi removes k from U , and no other transition adds k to U . Since269

xj requires k to be in U , once we apply xi, we cannot apply xj later. The other case is270

proved similarly. ◀271

Before starting beam search in a neighborhood, we remove a transition τ from the model272

if there exists a transition τ ′ in the suffix such that τ and τ ′ satisfy one of the conditions in273

Proposition 2. Detecting such a pair of transitions is done once at the beginning by checking274

the expression trees representing the preconditions and effects of transitions.275

3.3 Bandit-Based Depth Selection276

Selecting the depth of a neighborhood, d, in line 3 of Algorithm 3 is non-trivial. If d277

is too small, it is unlikely that an improving solution exists. However, if d is too large,278

each neighborhood search takes a long time. We want to select d such that the total cost279

improvement is maximized within the time limit.280

We formulate the depth selection as the budgeted multi-armed bandit problem with281

continuous random costs [35]. We have the set of depths D ⊆ {2, ..., n}. If we select a depth282

d ∈ D and perform search in line 7 of Algorithm 3, we obtain a new solution x by spending283

search time t. As t is assumed to take a value in [0, 1] in the budgeted multi-armed bandit284

problem, we divide the actual time by the time limit T . If the cost costx(S0) is smaller than285

the current best solution cost f , the reward is r = (f − costx(S0))/f . If no better solution is286

found, the reward is r = 0. We call this process a round, and we repeat rounds until reaching287

the time limit T . We do not know the reward r and time t before finishing a round, so we288

use random variables rdk and tdk representing the reward and time if depth d is used at289

round k. Let a be a strategy that selects a depth ak in the round k. The number of rounds290

performed by a by the time limit, KaT , is also a random variable. The objective is to find a291

strategy a that maximizes the total expected reward E[
∑KaT

k=1 rakk].292

We use Budgeted-UCB [35]. At each round, if some depths in D have not been selected293

before, Budgeted-UCB selects one of them. Otherwise, let mdk be the number of rounds294

where the depth d is selected up to round k − 1, and let r̄dk and t̄dk be the average reward295

and search time for d up to round k− 1. Budgeted-UCB selects the depth d that maximizes296

r̄dk

t̄dk
+ ϵdk

t̄dk
+ ϵdk

t̄dk

min{r̄dk + ϵdk, 1}
max{t̄dk − ϵdk, λ}

(5)297

where ϵdk =
√

2 log (k−1)
mdk

and λ is a positive lower bound of the search time of each round.298

In practice, we initialize D = {2, 4, 8, ..., 2l, n}, where n is the length of the initial feasible299

solution and l is the maximum integer such that 2l < n. If we get a solution whose length300

n′ is different from n at round k, we replace n with n′ in D using mn′,k+1 = mn,k+1,301

r̄n′,k+1 = r̄n,k+1, and t̄n′,k+1 = t̄n,k+1 and ignore depths greater than n′ in D. If multiple302

depths have not been selected before or have the same value, we select the minimum depth303

CP 2023
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among them. For λ, we use the time of the first round divided by 10 while there is no304

guarantee that it is a lower bound. Thus, the theoretical analysis of Budgeted-UCB studied305

in the original paper [35] does not necessarily apply to our setting. In addition, while Xie et306

al. [35] assumed that the pairs {(rdk, tdk)}∞
k=1 are i.i.d., we do not have such a guarantee.307

3.4 Start Selection308

Once LNBS determines the depth d to use, it selects a starting point i, which induces the309

prefix and the suffix, in line 4 of Algorithm 3. We select i considering the cost change in a310

neighborhood. Concretely, the cost change by partial path ⟨xi, ..., xi+d−1⟩ is defined as311

δdi = cost⟨x1,...,xi+d−1⟩(S0)− cost⟨x1,...,xi−1⟩(S0). (6)312

Since the path cost is non-decreasing, δdi ≥ 0. We ignore i with δdi = 01 and select one313

uniformly at random from the remaining options.314

Our second approach is to select i based on the probability biased by δdi. As we explain315

in the next subsection, for each d and i, the beam width b is maintained. Since smaller bdi316

leads to a shorter search time, we discount the probability of selecting i by bdi. Concretely,317

given the depth d, we can select the starting point i with the probability318

pdi = δdi/bdi∑n−d+1
j=1 δdj/bdj

. (7)319

3.5 Beam Width Selection320

Given the depth d and the starting point i, LNBS selects a beam width b in line 5 of321

Algorithm 3. Here, we use a similar strategy to CABS: for each d and i, we initialize the322

beam width bdi to be 1 and update it to 2bdi after each round with d and i. If we find323

an improved solution in line 7, we reset bd′i′ = 1 only for d′ and i′ such that i′ > i or324

i′ + d′ < i + d; if i′ ≤ i and i′ + d′ ≥ i + d, the prefix and the suffix for the neighborhood325

induced by i′ and d′ do not change, and we know that a better partial path was not found326

with beam widths smaller than bd′i′ .2 If the neighborhood is exhausted, i.e., complete = ⊤327

in line 7, we ignore the combination of d and i in lines 3 and 4 until a new solution is found328

and bid is reset to 1. Since the number of neighborhoods is finite, LNBS eventually exhausts329

all the neighborhoods and finds the optimal solution, which guarantees completeness.330

4 Experimental Evaluation331

We compare LNBS with CABS, DD-LNS, CP, and mixed-integer programming (MIP).332

4.1 Experimental Settings333

As benchmarks, we use the same problems and instances used by previous work [26]: the334

traveling salesperson problem with time windows (TSPTW), the capacitated vehicle routing335

problem (CVRP), the multi-commodity pickup and delivery traveling salesperson problem336

1 Theoretically, a better solution may be found with such i if the suffix is not empty because a partial
path may change the state from which the suffix is applied, which may change the cost of the suffix.

2 Theoretically, a better solution may be found with beam width smaller than bd′i′ if the updated primal
bound changes the search behavior.
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(m-PDTSP), the single machine total weighted tardiness problem (1||
∑

siTi), the talent337

scheduling problem (Talent), the simple assembly line balancing problem to minimize the338

number of stations (SALBP-1), the bin packing problem (BPP), and the graph-clear problem339

(GCP). We use the same DP, CP, and MIP models as the previous work [26].3340

LNBS, CABS, and DD-LNS are implemented in didp-rs v0.3.24 using Rust 1.65.0. In341

LNBS and DD-LNS, CABS is run first to find a feasible solution, and then LNBS and DD-342

LNS are run to improve the solution. For DD-LNS, we use W = 1000 and p = 0.1 following343

the original paper [18]. As we described above, LNBS removes conflicting transitions from a344

suffix, selects the depth using Budgeted-UCB, and geometrically increases the beam width for345

each neighborhood. To select the starting point of a partial path, we consider two approaches,346

uniform and biased sampling. While biased sampling achieves better solution quality in347

CVRP and m-PDTSP, uniform sampling is better in TSPTW, 1||
∑

wiTi, SALBP-1, MOSP,348

and GCP (see Appendix A). In what follows, we only show results from uniform sampling.349

In Appendix A, we also evaluate the importance of removing conflicting transitions and350

Budgeted-UCB. We confirm that these mechanisms significantly improve the solution quality.351

A more comprehensive ablation study is left for future work.352

We implemented the DP models using didppy, a Python interface for didp-rs. We use353

IBM ILOG CP Optimizer 22.1.0 for the CP models and Gurobi Optimizer 9.5.0 for the354

MIP models. CP Optimizer is known to use LNS [27]. The DP, CP, and MIP models are355

implemented in Python 3.10.2. All experiments are run on an Intel Xeon Gold 6148 processor356

with a single thread, an 8 GB memory limit, and a time limit of 1800 seconds. For LNBS357

and DD-LNS, we take the median of 5 runs.358

Following the previous work [26], we use the primal gap and the primal integral to measure359

the performance [7]. If an algorithm finds a solution xt with the cost f(xt) at time t, and360

the optimal or best-known solution cost is f∗, the primal gap at t for the algorithm is361

p(t) =


1 if f(xt) · f∗ < 0
0 if f(xt) = f∗ = 0

|f(xt)−f∗|
max{|f(xt)|,|f∗|} otherwise.

(8)362

If the algorithm does not find a solution at time t, then p(t) = 1. Let t1, ..., tl−1 be time363

points where a better solution is found, t0 = 0, and tl = T where T is the time limit. Then,364

the primal integral, P (T ) is defined as365

P (T ) =
l∑

i=1
p(ti−1) · (ti − ti−1). (9)366

We use the primal gap at the time limit, p(T ), and the primal integral, P (T ), as the measures.367

4.2 Experimental Results368

We show the number of instances where the optimality of a solution is proved, the average369

primal gap at the time limit, and the average primal integral for each problem in Table 1.370

We omit MIP in Table 1 because it is outperformed by CP in the primal gap and the primal371

integral for all problem types (see Appendix A). In the number of optimally solved instances,372

MIP is the best in CVRP (with 26 problems solved). As reported by previous work [26],373

3 https://github.com/Kurorororo/didp-models
4 https://didp.ai
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CP CABS DD-LNS LNBS
# gap p.i. # gap p.i. # gap p.i. # gap p.i.

TSPTW (340) 47 0.0259 49.0 257 0.0033 9.0 109 0.0100 23.7 241 0.0016 5.7
CVRP (207) 0 0.3174 601.1 6 0.1772 339.5 0 0.2504 461.6 6 0.1640 316.8
m-PDTSP (1178) 1049 0.0122 25.5 1030 0.0023 5.1 459 0.0102 21.7 1029 0.0022 5.0
1||

∑
wiTi (375) 150 0.0009 3.5 286 0.0346 74.4 100 0.0409 83.5 275 0.0051 13.0

Talent (1000) 0 0.0081 29.3 232 0.0173 38.2 0 0.0602 114.6 232 0.0041 11.1
SALBP-1 (2100) 1584 0.0046 28.4 1799 0.0003 2.2 1507 0.0067 13.5 1682 0.0022 7.3
BPP (1615) 1234 0.0014 7.7 1159 0.0017 6.1 775 0.0190 35.4 1139 0.0021 8.1
MOSP (570) 437 0.0044 13.0 526 0.0000 0.4 353 0.0203 37.5 523 0.0002 0.7
GCP (135) 1 0.0151 44.3 103 0.0000 0.6 3 0.0009 2.7 102 0.0001 0.6
Larger Instances
m-PDTSP (240) 77 0.1491 285.9 101 0.0694 153.2 79 0.1345 265.7 98 0.0652 146.6
MOSP (760) 0 0.0676 150.6 150 0.0002 4.4 0 0.0402 72.7 148 0.0025 10.4
GCP (50) 0 0.5289 1268.3 0 0.0013 10.8 0 0.0764 137.8 0 0.0038 19.5

Table 1 Summary of the experimental result. ‘#’ is the number of optimally solved instances,
‘gap’ is the average primal gap at the time limit, and ‘p.i.’ is the average primal integral.

MIP is good at finding an optimal solution for small instances, while it fails to find a feasible374

solution for larger instances, which results in poor performance in the primal gap and the375

primal integral on average. In other problems, LNBS solves more instances optimally than376

MIP except for BPP, where LNBS solves 1139 and MIP solves 1157.377

Compared to CABS, LNBS achieves the better primal gap and the primal integral in378

TSPTW, CVRP, m-PDTSP, 1||
∑

wiTi, and Talent. We show the distribution of the primal379

gap in TSPTW, CVRP, 1||
∑

wiTi, and Talent in Figure 2. The primal integral has a similar380

trend to the primal gap in these problems (see Appendix A). In contrast, CABS is better381

than LNBS in SALBP-1, BPP, MOSP, and GCP. These results are consistent with the382

observation that LNS is effective for routing and scheduling problems in CP [24, 27]. In the383

routing problems (TSPTW, CVRP, and m-PDTSP), CABS is already better than CP, and384

LNBS is even better than CABS. In 1||
∑

wiTi, while LNBS shows a significant improvement385

from CABS (0.0051 from 0.0346) outperforming MIP (0.0188), CP is still the best. However,386

in Talent, LNBS outperforms CP while CABS does not. Overall, LNBS is better than CP in387

seven problems while CABS is better than CP in six problems.388

In TSPTW, the difference in the primal gap between LNBS and CABS (0.0016 and389

0.0033) seems small, but it is because they achieve almost the same primal gap in many390

instances: they optimally solve all 135 instances in the Dumas set [10] and achieve almost the391

same average primal gap in the AFG set [2], which has 50 instances, and GendreauDumas392

Extended set [16], which has 130 instances. However, in the OhlmannThomas set [31], which393

has 25 instances, no instance is optimally solved, and LNBS shows a significant improvement394

in the primal gap (0.0184 from 0.0395).395

In the number of optimally solved instances, CABS is equal to or better than LNBS in all396

problems. While CABS always searches the entire state space graph, LNBS searches multiple397

neighborhoods, and the entire state space graph is just one of them. Nevertheless, LNBS398

proves the optimality of more than 93% of instances that are optimally solved by CABS.399

DD-LNS performs worse than CABS and LNBS in all the problems. Previous work has400

reported that DD-LNS is effective for TSPTW [18]. Note however that the DD-LNS and401

LNBS results in Table 1 are not the results reported by Gillard and Schaus. To validate that402

our implementation and experimental settings do not handicap DD-LNS, we compare the403

results of DD-LNS with those of the original paper in TSPTW.5 Our DD-LNS implementation404

5 https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_

https://github.com/xgillard/ijcai_22_DDLNS/blob/main/results/tsptw/ddlns/results_w1000_t600.txt
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(b) CVRP.
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(d) Talent.
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(e) Large instances in m-PDTSP.
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(f) Large instances in MOSP.

Figure 2 Distribution of the primal gap at the time limit. Higher and left is better.

finds a better solution than the original in all instances with the time limit of 600 seconds.405

This difference is likely due to the difference between the DP models used by us (from406

Kuroiwa and Beck [26]) and Gillard and Schaus. In TSPTW, a solution is a tour that starts407

from a depot, visits each customer j within the time window [aj , bj ], and returns to the408

depot, and an optimal solution minimizes the total travel time. In both DP models, state409

variables are the set of unvisited customers U , the current customer i, and the current time410

t, and each transition corresponds to visiting a customer or the depot. Each DP model has a411

dual bound (called RLB by Gillard and Schaus), a lower bound on the optimal solution cost.412

While Gillard and Schaus use a dual bound based on a minimum spanning tree, Kuroiwa and413

Beck use a simpler one based on the minimum travel time between customers. In addition,414

Kuroiwa and Beck use information that was not considered by Gillard and Schaus. First,415

they use dominance between states based on the current time: a state S dominates another416

state S′ if S[U ] = S′[U ], S[i] = S′[i], and S[t] ≤ S′[t]. Furthermore, since the time to visit417

customer j is underestimated by t + c∗
ij , where c∗

ij is the shortest travel time from i to j, they418

t600.txt
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define state constraints ∀j ∈ U, t + c∗
ij ≤ bj . The dominance and the state constraints are419

useful to prune states, which potentially explains the performance gap. Another difference420

is whether considering the time window constraints at the depot or not. In the benchmark421

instances used above6 (and in Kuroiwa and Beck [26]), a time window [a0, b0] is defined for422

the depot. Gillard and Schaus explicitly model a required return to the depot within [a0, b0]423

while Kuroiwa and Beck do not. However, in the benchmark instances, b0 ≥ bj + cj0 holds424

for all customers j, where cj0 is the travel time from j to the depot. Thus, if all customers425

are visited within the time windows, the depot can be reached within the time window, and426

explicit modeling of the depot return window is unnecessary.427

4.3 Larger Instances428

LNBS performs better than CABS in m-PDTSP and worse in MOSP and GCP, but the429

difference in the average primal gap is small. To evaluate the difference more clearly, we use430

larger instances for these problems.431

In m-PDTSP, a vehicle visits all nodes in a graph, picks up some commodities at some432

nodes, and delivers them to others. Each commodity has a weight and the total weight of433

commodities that a vehicle can carry is limited by the capacity. In the benchmark set for434

m-PDTSP, three types of instances are used: Class 1, Class 2, and Class 3 [21], and Class 1435

instances are generated from instances of the sequential ordering problem (SOP) [3]. We436

generate larger Class 1 instances by using 30 SOP instances in TSPLIB7 that were not used437

by the previous work. The original instances have at most 47 nodes, and the new instances438

have 42 to 378 nodes. We use the same methods as the previous work [21] with the maximum439

weight q ∈ {1, 5} and the capacity Q ∈ {5q, 10q, 20q, 100q}, resulting in 240 instance in total.440

In MOSP, an instance is represented by a matrix, and the original set uses at most441

125× 125 matrices. We add instances using 150× 150 to 1000× 1000 matrices [8, 12].442

In GCP, an instance is represented by a graph. The original instance set uses random and443

random planar graphs with 20, 30, and 40 nodes. We generate 50 instances using random444

graphs with 100 and 200 nodes following the method used by previous work [29].445

As shown in Table 1, LNBS clearly outperforms CABS in m-PDTSP in the primal gap and446

the primal integral, but CABS is better in MOSP and GCP. We also show the distribution447

of the primal gap in m-PDTSP and MOSP in Figure 2. The primal integral has a similar448

tendency to the primal gap, and the result for GCP is qualitatively similar to that of MOSP.449

4.4 Analysis of Problem Characteristics450

In routing problems, a solution is a route visiting all nodes in a graph, and its cost is the451

length of the route. In the DP models for these problems, each transition corresponds to452

visiting one node, and the cost of a partial path increases when a transition is applied. We453

expect that different partial solutions tend to have different costs, and it is relatively easy to454

find a better partial path; because the path costs are diverse, unless the current partial path455

is optimal, better partial paths are included in a partial state space graph with high density.456

In such a case, beam search is likely to find a better partial path although it searches in a457

fraction of the partial state space graph restricted by the beam width.458

In contrast, in SALBP-1 and BPP, the problem is to pack weighted items into capacitated459

bins while minimizing the number of bins. In the DP models, each transition packs one item460

6 https://lopez-ibanez.eu/tsptw-instances
7 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/

https://lopez-ibanez.eu/tsptw-instances
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/
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(b) Problem types where CABS has lower mean gap: SALBP-1, BPP, MOSP, and GCP.

Figure 3 Entropy of the cost distribution over partial paths vs. the solution length in each
problem instance. ‘LNBS better’ means LNBS finds a better solution, ‘TIE’ means that LNBS and
CABS achieve the same solution cost, and ‘CABS better’ means that CABS finds a better solution.

into a bin, and the cost increases only when a new bin is opened. In the DP models for461

MOSP and GCP, the cost is computed by taking the maximum weights of edges in a path,462

and it does not increase unless a new edge has a higher weight than the current maximum.463

Therefore, we expect that many partial paths tend to have the same cost in these problems,464

making it difficult to improve a solution by searching only a partial state space graph.465

Based on these observations, we hypothesize that LNBS tends to perform better than466

CABS when path costs in a partial state space graph are diverse. To test this hypothesis, we467

evaluate the diversity of costs in a partial state space graph using entropy in information theory.468

Given a solution for a DyPDL model x = ⟨x1, ..., xn⟩, let Ydi(x) be the set of solution paths469

whose prefix is ⟨x1, ..., xi−1⟩ and the suffix is ⟨xi+d, ..., xn⟩. Let C = {costy(S0) | y ∈ Ydi(x)}470

be the set of the path costs. Then, the entropy of the path costs is defined as follows:471

H(Ydi(x)) = −
∑
c∈C

|{y ∈ Ydi(x) | costy(S0) = c}|
|Ydi(x)| log2

|{y ∈ Ydi(x) | costy(S0) = c}|
|Ydi(x)| . (10)472

As this value gets larger, the cost distribution becomes more diverse, and we expect that473

LNBS will perform better than CABS. However, even if the entropy is large, if the problem474

itself is easy, both CABS and LNBS will find optimal or near-optimal solutions. To consider475

such cases, we also evaluate the length of the initial solution found by CABS.476

We evaluate entropy and the length of the initial solution found for each problem instance477

CP 2023
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used in Section 4.2. We first run CABS until it finds a feasible solution and record the length478

of the solution. Then, we remove the first eight transitions from the solution and enumerate479

all feasible prefixes of the solution, i.e., we use d = 8 and i = 1. In Figure 3, we show a scatter480

plot of entropy and the solution length divided into two plots to emphasize the differences481

between the problem types where LNBS has a lower primal gap on average (Figure 3a) and482

those where CABS is better (Figure 3b). With low entropy, CABS dominates. For higher483

entropy, the solution length begins to play a factor: for short solutions, CABS and LNBS484

perform equally but for longer solutions, LNBS tends to perform better. Indeed, for the485

problems where CABS performs better on average (Figure 3b), the entropy is quite low (less486

than 3.5). This result suggests that the entropy of the cost distribution over partial paths487

is related to the performance of LNBS. Since this analysis is based on path costs, it is not488

directly applicable to LNS with tree search, where a solution corresponds to a leaf node.489

However, if we consider the factors of neighborhood size and cost distribution over leaf nodes,490

we may be able to apply this analysis to LNS for CP and MIP.491

5 Related Work492

As we discussed, LNBS can be considered a generalization of DD-LNS [18], which combines493

DDs and LNS. DP is closely related to DDs [23], and DDs have been actively used for494

combinatorial optimization [9]. For example, DDs are used to obtain bounds on the optimal495

objective value [4, 33], and heuristics based on DDs have been proposed [6]. Moreover, ddo, a496

general-purpose DD solver for combinatorial optimization has been developed [5, 19]. In CP,497

DDs are used for constraint propagation [1, 22]. Recently, HADDOCK, a modeling language498

of a DD based on a state transition system, was proposed for CP [17].499

In state space search, there exist several methods that improve a solution path by searching500

in a partial state space graph, but they were not framed as LNS. In classical planning, plan501

neighborhood graph search (PNGS) first constructs a partial state space graph by performing502

local search from each state in a solution path and then finds the shortest path in the graph503

[30]. In sliding tile puzzles, iterative tunneling search with A* (ITSA*) iteratively expands a504

partial state space graph, which includes states close to a given path, and finds the shortest505

path in that graph [13]. Unlike the above two algorithms, Joint and local path A* (LPA*)506

[32] try to find a better partial path between two states in a given path using A* [20]. While507

Joint and LPA* fix the length of a partial path to remove and deterministically select a508

neighborhood, LNBS dynamically adjusts them and uses beam search instead of A*.509

6 Conclusion510

We proposed large neighborhood beam search (LNBS), a state space search algorithm based511

on large neighborhood search (LNS) and beam search for domain-independent dynamic512

programming (DIDP). Our configuration of LNBS exploits the multi-armed bandit problem513

and random sampling to select a neighborhood. We proved that LNBS is complete. LNBS514

finds better quality solutions on average than the state-of-the-art DIDP solver, complete515

anytime beam search (CABS), in five out of the nine benchmark problems. In particular,516

LNBS performs well in routing and scheduling problems, and our analysis suggests that this517

performance is related to the diversity of the cost distribution over partial paths. A deeper518

investigation of the characteristics of the problems that make LNS effective in state space519

search and tree search is an interesting direction for future work. Based on such analysis,520

developing better configurations for LNBS may also be possible.521



R. Kuroiwa and J. C. Beck 7:17

References522

1 H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store based on523

multivalued decision diagrams. In Principles and Practice of Constraint Programming – CP524

2007, pages 118–132, 2007. doi:10.1007/978-3-540-74970-7_11.525

2 Norbert Ascheuer. Hamiltonian path problems in the on-line optimization of flexible manufac-526

turing systems. PhD thesis, Technische Universität Berlin, 1995.527

3 Norbert Ascheuer, Michael Jünger, and Gerhard Reinelt. A branch & cut algorithm for528

the asymmetric traveling salesman problem with precedence constraint. Computational529

Optimization and Applications, 17:25–42, 2000. doi:10.1023/A:1008779125567.530

4 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N. Hooker. Optimization531

bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2):253–268,532

2014. doi:10.1287/ijoc.2013.0561.533

5 David Bergman, Andre A. Cire, Willem Jan Van Hoeve, and J. N. Hooker. Discrete optimization534

with decision diagrams. INFORMS Journal on Computing, 28(1):47–66, 12 2016. doi:535

10.1287/ijoc.2015.0648.536

6 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and Tallys Yunes. Bdd-based537

heuristics for binary optimization. Journal of Heuristics, 20(2):211–234, 2014. doi:10.1007/538

s10732-014-9238-1.539

7 Timo Berthold. Measuring the impact of primal heuristics. Operations Research Letters,540

41:611–614, 2013. doi:10.1016/j.orl.2013.08.007.541

8 Marco Antonio Moreira De Carvalho and Nei Yoshihiro Soma. A breadth-first search applied to542

the minimization of the open stacks. Journal of the Operational Research Society, 66:936–946,543

6 2015. doi:10.1057/jors.2014.60.544

9 Margarita P. Castro, Andre A. Cire, and J. Christopher Beck. Decision diagrams for discrete545

optimization: A survey of recent advances. INFORMS Journal on Computing, 34(4):2271–2295,546

2022. doi:10.1287/ijoc.2022.1170.547

10 Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal algorithm548

for the traveling salesman problem with time windows. Operations Research, 43(2):367–371,549

1995. doi:10.1287/opre.43.2.367.550

11 Stefan Edelkamp, Shahid Jabbar, and Alberto Lluch Lafuente. Cost-algebraic heuristic551

search. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI), pages552

1362–1367, 2005.553

12 Rafael de Magalhães Dias Frinhani, Marco Antonio Moreira de Carvalho, and Nei Yoshihiro554

Soma. A pagerank-based heuristic for the minimization of open stacks problem. PLoS ONE,555

13(8):1–24, 2018. doi:10.1371/journal.pone.0203076.556

13 David A Furcy. ITSA*: Iterative tunneling search with A*. In Proceedings of AAAI Workshop557

on Heuristic Search, Memory-Based Heuristics and Their Applications, pages 21–26, 2006.558

14 Maria Garcia de la Banda and Peter J. Stuckey. Dynamic programming to minimize the559

maximum number of open stacks. INFORMS Journal on Computing, 19(4):607–617, 2007.560

doi:10.1287/ijoc.1060.0205.561

15 Maria Garcia de la Banda, Peter J. Stuckey, and Geoffrey Chu. Solving talent scheduling562

with dynamic programming. INFORMS Journal on Computing, 23(1):120–137, 2011. doi:563

10.1287/ijoc.1090.0378.564

16 Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion565

heuristic for the traveling salesman problem with time windows. Operations Research, 46(3):330–566

346, 1998. doi:10.1287/opre.46.3.330.567

17 Rebecca Gentzel, Laurent Michel, and W.-J. van Hoeve. HADDOCK: A language and architec-568

ture for decision diagram compilation. In Helmut Simonis, editor, Principles and Practice of569

Constraint Programming – CP 2020, pages 531–547, 2020. doi:10.1007/978-3-030-58475-7_570

31.571

CP 2023

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1023/A:1008779125567
https://doi.org/10.1287/ijoc.2013.0561
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1287/ijoc.2015.0648
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1007/s10732-014-9238-1
https://doi.org/10.1016/j.orl.2013.08.007
https://doi.org/10.1057/jors.2014.60
https://doi.org/10.1287/ijoc.2022.1170
https://doi.org/10.1287/opre.43.2.367
https://doi.org/10.1371/journal.pone.0203076
https://doi.org/10.1287/ijoc.1060.0205
https://doi.org/10.1287/ijoc.1090.0378
https://doi.org/10.1287/ijoc.1090.0378
https://doi.org/10.1287/ijoc.1090.0378
https://doi.org/10.1287/opre.46.3.330
https://doi.org/10.1007/978-3-030-58475-7_31
https://doi.org/10.1007/978-3-030-58475-7_31
https://doi.org/10.1007/978-3-030-58475-7_31


7:18 Large Neighborhood Beam Search for Domain-Independent Dynamic Programming

18 Xavier Gillard and Pierre Schaus. Large neighborhood search with decision diagrams. In572

Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI-22,573

pages 4754–4760, 2022. doi:10.24963/ijcai.2022/659.574

19 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient framework575

for mdd-based optimization. In Proceedings of the 29th International Joint Conference on576

Artificial Intelligence, IJCAI-20, pages 5243–5245, 2020. doi:10.24963/ijcai.2020/757.577

20 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic578

determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,579

4(2):100–107, 1968. doi:10.1109/TSSC.1968.300136.580

21 Hipólito Hernández-Pérez and Juan José Salazar-González. The multi-commodity one-to-one581

pickup-and-delivery traveling salesman problem. European Journal of Operational Research,582

196:987–995, 8 2009. doi:10.1016/j.ejor.2008.05.009.583

22 Samid Hoda, Willem-Jan van Hoeve, and J. N. Hooker. A systematic approach to MDD-based584

constraint programming. In Principles and Practice of Constraint Programming – CP 2010,585

pages 266–280, 2010.586

23 John N. Hooker. Decision diagrams and dynamic programming. In Carla Gomes and Meinolf587

Sellmann, editors, Integration of AI and OR Techniques in Constraint Programming for588

Combinatorial Optimization Problems, pages 94–110, 2013.589

24 Siddhartha Jain and Pascal Van Hentenryck. Large neighborhood search for dial-a-ride590

problems. In Principles and Practice of Constraint Programming – CP 2011, pages 400–413,591

2011.592

25 Ryo Kuroiwa and J. Christopher Beck. Domain-independent dynamic programming: Generic593

state space search for combinatorial optimization. In Proceedings of the 33rd International594

Conference on Automated Planning and Scheduling (ICAPS), 2023. doi:10.1609/icaps.595

v33i1.27200.596

26 Ryo Kuroiwa and J. Christopher Beck. Solving domain-independent dynamic programming597

problems with anytime heuristic search. In Proceedings of the 33rd International Conference598

on Automated Planning and Scheduling (ICAPS), 2023. doi:10.1609/icaps.v33i1.27201.599

27 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer for600

scheduling. Constraints, 23(2):210–250, 2018. doi:10.1007/s10601-018-9281-x.601

28 Shu Lin, Na Meng, and Wenxin Li. Optimizing constraint solving via dynamic programming.602

In Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI-19,603

pages 1146–1154, 7 2019. doi:10.24963/ijcai.2019/160.604

29 Michael Morin, Margarita P. Castro, Kyle E.C. Booth, Tony T. Tran, Chang Liu, and605

J. Christopher Beck. Intruder alert! Optimization models for solving the mobile robot606

graph-clear problem. Constraints, 23(3):335–354, 2018. doi:10.1007/s10601-018-9288-3.607

30 Hootan Nakhost and Martin Müller. Action elimination and plan neighborhood graph608

search: Two algorithms for plan improvement. In Proceedings of the 20th International609

Conference on Automated Planning and Scheduling (ICAPS), pages 121–128, 2010. doi:610

10.1609/icaps.v20i1.13402.611

31 Jeffrey W. Ohlmann and Barrett W. Thomas. A compressed-annealing heuristic for the612

traveling salesman problem with time windows. INFORMS Journal on Computing, 19(1):80–613

90, 2007. doi:10.1287/ijoc.1050.0145.614

32 Daniel Ratner and Ira Pohl. Joint and LPA*: Combination of approximation and search. In615

Proceedings of the fifith National Conference on Artificial Intelligence (AAAI)., pages 173–177,616

1986. doi:10.5555/2887770.2887798.617

33 Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Peel-And-Bound: Generating618

Stronger Relaxed Bounds with Multivalued Decision Diagrams. In Principles and Practice of619

Constraint Programming – CP 2022, pages 35:1–35:20, 2022. doi:10.4230/LIPIcs.CP.2022.620

35.621

https://doi.org/10.24963/ijcai.2022/659
https://doi.org/10.24963/ijcai.2020/757
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.ejor.2008.05.009
https://doi.org/10.1609/icaps.v33i1.27200
https://doi.org/10.1609/icaps.v33i1.27200
https://doi.org/10.1609/icaps.v33i1.27200
https://doi.org/10.1609/icaps.v33i1.27201
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.24963/ijcai.2019/160
https://doi.org/10.1007/s10601-018-9288-3
https://doi.org/10.1609/icaps.v20i1.13402
https://doi.org/10.1609/icaps.v20i1.13402
https://doi.org/10.1609/icaps.v20i1.13402
https://doi.org/10.1287/ijoc.1050.0145
https://doi.org/10.5555/2887770.2887798
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://doi.org/10.4230/LIPIcs.CP.2022.35


R. Kuroiwa and J. C. Beck 7:19

34 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing622

problems. In Principles and Practice of Constraint Programming – CP98, volume 1520, pages623

417–431, 1998. doi:10.1007/3-540-49481-2_30.624

35 Yingce Xia, Xu-Dong Zhang, Nenghai Yu, Geoffrey Holmes, and Yan Liu. Budgeted bandit625

problems with continuous random costs. In Proceedings of the Seventh Asian Conference on626

Machine Learning, pages 317–332, 2015.627

36 Weixiong Zhang. Complete anytime beam search. In Proceedings of the Fifteenth Nation-628

al/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence629

(AAAI-98/IAAI-98), pages 425–430, 1998.630

A Additional Experimental Results631

CP MIP LNBS LNBS/bias
# gap p.i. # gap. p.i. # gap. p.i. # gap. p.i.

TSPTW (340) 46 0.0275 52.3 227 0.2268 484.1 241 0.0016 5.7 242 0.0019 6.2
CVRP (207) 0 0.3174 601.1 26 0.5845 1157.4 6 0.1640 316.8 6 0.1633 314.8
m-PDTSP (1178) 1050 0.0121 25.4 945 0.0858 180.0 1029 0.0022 5.0 1029 0.0021 4.7
1||

∑
wiTi (375) 150 0.0003 2.4 109 0.0188 75.6 275 0.0051 13.0 275 0.0056 14.5

Talent (1000) 7 0.0072 27.6 0 0.0573 152.6 232 0.0041 11.1 231 0.0042 11.1
SALBP-1 (2100) 1584 0.0046 28.4 1357 0.3447 634.6 1682 0.0022 7.3 1675 0.0022 7.5
BPP (1615) 1234 0.0014 7.7 1157 0.0385 85.9 1139 0.0021 8.1 1129 0.0021 9.0
MOSP (570) 437 0.0044 13.0 224 0.0394 100.4 523 0.0002 0.7 523 0.0002 0.7
GCP (135) 1 0.0151 44.3 23 0.1102 311.9 102 0.0001 0.6 102 0.0001 0.7
Larger Instances
m-PDTSP (240) 77 0.1481 284.1 47 0.5811 1096.8 98 0.0652 146.6 97 0.0647 147.0
MOSP (760) 0 0.0675 150.4 0 0.8806 1599.4 148 0.0025 10.4 148 0.0027 10.7
GCP (50) 0 0.5287 1268.1 0 0.5306 977.8 0 0.0038 19.5 0 0.0061 21.2

Table 2 Comparison of CP, MIP, and two configurations of LNBS. ‘#’ is the number of optimally
solved instances, ‘gap’ is the average primal gap at the time limit, and ‘p.i.’ is the average primal
integral.

LNBS No removing conflicts No Budgeted-UCB
# gap. p.i. # gap. p.i. # gap. p.i.

TSPTW (340) 241 0.0016 5.7 234 0.0035 10.6 256 0.0034 9.4
CVRP (207) 6 0.1640 316.8 5 0.1682 322.5 6 0.1767 338.7
1||

∑
wiTi (375) 275 0.0051 13.0 268 0.0224 56.0 287 0.0340 74.1

Table 3 Comparison of LNBS variants. ‘No removing conflicts’ does not remove conflicting
transitions in the suffix. ‘No Budgeted-UCB’ selects the depth uniformly at random instead of using
Budgeted-UCB. ‘#’ is the number of optimally solved instances, ‘gap’ is the average primal gap at
the time limit, and ‘p.i.’ is the average primal integral.

We show the result of MIP in Table 2. MIP solves more instances than CP in TSPTW,632

CVRP, and GCP, but CP is better in the primal gap and the primal integral.633

In addition, we compare two configurations of LNBS in Table 2. One selects the starting634

point of a partial path uniformly at random (LNBS), and another selects it according to the635

probability distribution biased by partial path costs in Equation (7) (LNBS/bias). LNBS/bias636

solves one more instance in TSPTW and outperforms LNBS in CVRP and m-PDTSP in the637

primal gap.638

We evaluate the importance of other components of LNBS using a subset of the problems:639

TSPTW, CVRP, and 1||
∑

wiTi. In Table 3, we compare two variants of LNBS, where640

conflicting transitions in a suffix are not removed (‘No removing conflicts’), and the depth641

is selected uniformly at random instead of Budgeted-UCB (‘No Budgeted-UCB’). The two642
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(b) SALBP-1.

0.00 0.05 0.10 0.15 0.20
Primal gap

0.7

0.8

0.9

1.0

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS

(c) BPP.
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(d) MOSP.
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(e) GCP.
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(f) Large instances in GCP.

Figure 4 Distribution of the primal gap at the time limit. Higher and left is better.

variants perform worse in terms of the primal gap and the primal integral. While ‘No643

Budgeted-UCB’ solves more instances to optimality, it is because the largest depth, which644

makes LNBS the same as CABS, is more likely to be selected by uniform sampling. Indeed,645

the primal gap and the primal integral of ‘No Budgeted-UCB’ are close to those of CABS.646

In Figure 4, we present the distribution of the primal gap over instances in m-PDTSP,647

SALBP-1, BPP, MOSP, Graph-Clear, and large instances in GCP. LNBS is slightly better in648

m-PDTSP, and CABS is better in SALBP-1, BPP, and large instances in GCP. Figures 5649

and 6 show the distribution of the primal integral. The tendency is similar to that of the650

primal gap.651
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(b) CVRP.
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(c) m-PDTSP.
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(d) Large instances in m-PDTSP.
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(f) Talent.

Figure 5 Distribution of the primal integral at the time limit in the problems where LNBS is
better. Higher and left is better.
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(a) SALBP-1.

0 100 200 300 400
Primal integral

0.7

0.8

0.9

1.0

Ra
tio

 o
f i

ns
ta

nc
es

MIP CP CABS DD-LNS LNBS

(b) BPP.
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(c) MOSP.
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(d) Large instances in MOSP.
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(e) GCP.
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(f) Large instances in GCP.

Figure 6 Distribution of the primal integral at the time limit in the problems where CABS is
better. Higher and left is better.
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