
Supplement for LM-Cut Heuristics for Optimal Linear Numeric Planning

Ryo Kuroiwa1, Alexander Shleyfman2, J. Christopher Beck1

1Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8
2Technion, Haifa, Israel

ryo.kuroiwa@mail.utoronto.ca, shleyfman.alexander@gmail.com, jcb@mie.utoronto.ca

LM-Cut Admissibility: Proofs
Theorem 1. Let ΠOVC be the OVC of a solvable LT with a
non-zero optimal cost. Let L be a directed cut in a JG of
the first-order delete-relaxation Π1

OVC, where the set of ac-
tions in the cut is given by lbl(L) = {a | (n1, n2; a) ∈ L}.
For action a, let the minimum of multiplicators in the cut be
mL
a = min(nψ,nψ′ ;a)∈Lma(s, ψ′) and cost1 is defined as

cost1(a) =

{
W(L)
mLa

if a ∈ lbl(L)

0 otherwise.

Let Π1
OVC,1 be a copy of Π1

OVC except that action a has cost
cost1(a). Then, the weight of the cut W(L) = mine∈LW(e)
is admissible for Π1

OVC,1.

Proof. The proof basically follows Thm. 1 by Kuroiwa
et al. (2021), who proved the original result of the admis-
sibility of LM-cut for RTs.

First, we show that at least one fact in ∂in(L) = {ψ′ |
(nψ, nψ′ ; a) ∈ L} is achieved by any plan, i.e., ∂in(L) is
a disjunctive fact landmark. Let π be an s-plan and π′ be a
subsequence of π constructed by the following backtracking
process. Pick some g ⊆ G such that s 6|= g, and let a be
the first action that achieves g. The fact pcf(s, a) is either
a precondition of a or uξ > 0 with (v += ξ) ∈ num(a).
In either case, pcf(s, a) is either satisfied by s, or must be
achieved by π. We substitute g with pcf(s, a), and add to
π′ the first action in π that achieves pcf(s, a). Repeat the
process until s |= pcf(s, a). By construction of the JG, π′
corresponds to a path from n∅ to ng , and π ∩ L 6= ∅.

We aim to show that

W(L) ≤ cost1(π).

Since ∂ in(L) is a disjunctive fact landmark, any plan
achieves at least one fact in ∂ in(L). Let ψ0 be the first
fact in ∂ in(L) achieved by an optimal plan π. Denote by
lbl(Lψ0

) := {a | (nψ, nψ0
; a) ∈ L}. Say s 6|= ψ0. We have

two cases: ψ0 is either a propositional fact, or a numeric one.
In the first case, let us assume that ψ0 ∈ F . Then, there is an
action a′ ∈ lbl(Lψ0) that achieves ψ0 in a plan π. Hence,

W(L) = mL
a′ · cost1(a′) ≤ ma′(s, ψ0) · cost1(a′)

= cost1(a′) ≤ cost1(π),

since ma′(s, ψ0) = 1, where ψ0 ∈ F . In the second case,
assume that ψ0 : u ≥ w0 is a condition on a numeric vari-
able u. Since s 6|= ψ0 we have that s[u] < w0. Let π[u] be
the resulting value of u after a sequence of actions π that
achieves ψ0 was applied to s.

If π[u] = ∞, then some action a′ ∈ Lψ0 with a con-
ditional effect e such that a′,e,∞ ∈ A1

cond ∩ lbl(Lψ0) was
applied to u along the application of π, and since cost(a′) =
cost(a′,e,∞) and ma′,e,∞(s, ψ0) = 1, as in the propositional
case,

W(L) = mL
a′ · cost1(a′) ≤ cost1(a′) ≤ cost1(π).

Otherwise, assume w0 ≤ π[u] < ∞. This means that all
actions that were applied to u within π lie inside the set
A1

core ∩ lbl(Lψ0). Let Xa be the number of times action a
appears in π, and let u += ca ∈ num1(a) be the effect of
the action a on the variable u. Since, w0 ≤ π[u] we have
that

w0 − s[u] ≤ π[u]− s[u] =
∑

a∈π∩lbl(Lψ0
)

Xaca.

The overall cost of these actions in the plan is given by∑
a∈π∩lbl(Lψ0

)

Xacost1(a) ≤
∑
a∈π

Xacost1(a) = cost1(π).

From all actions in lbl(Lψ0) let us pick the one with the
smallest ratio of cost1(a)

ca
. We denote the action that achieves

this minimum by a0. Using a0, we bound the weight of the
cut L as follows

W(L) = mL
a0
· cost1(a0) ≤ ma0

(s, ψ0) · cost1(a0)

=
(w0 − s[u])

ca0

cost1(a0) ≤ cost1(a0)

ca0

(π[u]− s[u])

=
cost1(a0)

ca0

∑
a∈π∩lbl(Lψ0

)

Xaca

≤
∑

a∈π∩lbl(Lψ0
)

Xaca
cost1(a)

ca
≤

∑
a∈π

Xacost1(a)

= cost1(π).



Lemma 1. Let Π2
OVC be the second-order relaxation of an

LT, with the set of actions A2. Suppose that the numeric
condition v ≥ w0 is achieved by sequence of actions π from
state s, and v is changed by only simple effects and SOSE.
By Xa we denote the number of times action a appears in π.
Then,

w0 ≤ s[v] +
∑

a∈π:v+=cav
∈num1(a)

cavXa+

∑
a∈π:v+=u
∈num2(a)

Xa

s[u] +
∑

â∈π:u+=câu
∈num1(â)

câuXâ

 .

(1)

Proof. Let us first look at the intuition for this bound. By
definition of SOSE, an action a has a SOSE on v if

1. in the effect v += u+c ∈ num(a), u is a simple variable,
2. all actions that change u do not change v.

All actions that affect v not via SOSE, affect it either via
a finite simple effect, or an infinite one. For all actions that
affect v via SOSE, we define the set of corresponding simple
variables
N v

1 = {u ∈ N 2
1 | ∃a ∈ A2 : v += u ∈ num2(a)},

where A2 are actions, and N 2
1 are simple numeric variables

in Π2
OVC. By bullet 2, the actions in π can affect either v, or

the simple variables in N v
1 , but not both.

Our aim is to show that the bound is achieved when we
first apply the actions with simple effects, and only after-
wards apply the action with SOSE. We obtain this bound
by removing the preconditions on all actions, and reordering
the actions that affect the variables v and N v

1 to maximize
the final value of v.

We prove the claim by induction. Let a1, a2 ∈ π, and let
s′ be some state. We start with the cases where the variables
involved are invariant under the order of application of the
actions a1 and a2, i.e., we say that these actions are commu-
tative with respect to {v} ∪N v

1 if for each such variable x it
holds that

s′[[a1]][[a2]][x] = s′[[a2]][[a1]][x].

Applying these actions requires their preconditions to hold
in s′ and in both resulting states. However, since we are in-
terested in the upper bound, we may ignore the precondi-
tions of the actions altogether.

1. Let a1 and a2 be the actions that affect the simple vari-
ables inN v

1 . By definition of SOSE, both action does not
affect v, thus

s′[[a1]][[a2]][v] = s′[[a1]][v] = s′[[a2]][v] = s′[v].

For each u ∈ N v
1 it holds that u += cu1 ∈ num1(a1)

and u += cu2 ∈ num1(a2) where c1, c2 ≥ 0. We do not
actually keep the cu1 = 0 or cu2 = 0 effects, but we use
this representation since it is more convenient writing the
cases down. Thus, since the preconditions are ignored for
each u ∈ N v

1 we have
s′[[a1]][[a2]][u] = s′[u] + cu1 + cu2 = s′[[a2]][[a1]][u].

2. Let a1 and a2 be the actions have a SOSE on v. Com-
bining the SOSE with constant effect we can write v +=
u1 + c1 ∈ num(a1) and v += u2 + c2 ∈ num(a2). By
definition, a1 and a2 does not affect the variables in N v

1 .
Thus, once again the order of application does not matter
since addition is commutative, hence

s′[[a1]][[a2]][v] = s′[[a2]][[a1]][v] =

s′[v] + s[u1] + s′[u2] + c1 + c2.

3. Let a1 have the effect on v of the form v += u1 + c1 ∈
num(a1), and a2 to have simple effects on u2 ∈ N v

1 \
{u1}. By definition of SOSE a1 and a2 must be commu-
tative over {v}∪N v

1 , since they affect different variables
in {v} ∪ N v

1 .

To finish the proof, we need to show that in terms of the
bound, it is advantageous applying first all actions with sim-
ple effects and only afterward apply the actions with SOSE.

Let a1 have an effect v += u + c1 ∈ num(a1), a2 have
a simple effect u += c2 ∈ num1(a2), and X1 and X2 be
the number of times these actions appear in the sequence
of actions π. Note that first applying a2 X2 times and then
applying a1 X1 times constitutes a lower bound on the ap-
plication of the same number of actions in any other order,
with respect to the value of v. Let X̂1 + X̃1 = X1 and
X̂2 + X̃2 = X2, where the tilde actions applied prior to the
hat actions in the following order: a2 is applied X̃2 times,
then a1 is applied X̃1, then a2 is applied X̂2 times, then a1
is applied X̂1. Thus, the value of v after the application of
these actions is

s′[v] + X̃1((s′[u] + X̃2c2) + c1)+

X̂1((s′[u] + (X̃2 + X̂2)c2) + c1) =

s′[v] +X1((s′[u] +X2c2) + c1)− X̃1X̂2c2 ≤
s′[v] +X1((s′[u] +X2c2) + c1),

since X̃1, X̂2, c2 ≥ 0. By induction we can reorder the ap-
plication of action such that we first apply the actions that
have constant effects onN v

1 and then apply all the SOSE ef-
fects on v, which results in the bound presented in the body
of the lemma.

Theorem 2. Let Π2
OVC be the second-order relaxation of an

LT, with the set of actions A2. Suppose that numeric condi-
tion v ≥ w0 is achieved from state s, and v is changed by
only simple effects and SOSE. The cost to achieve v ≥ w0 is
bounded from below by inf M1 ∪M2 ∪M3, where

M1 = {w0 − s[v]

c
cost(a) | v += c ∈ num1(a), a ∈ A2},

M2 = {w0 − s[v]

c+ s[u]
cost(a) |

v += u+ c ∈ num(a), s[u] > 0, a ∈ A2},
M3 = {mu

âu,a(s, v ≥ w0)cost(âu)+

mv
âu,a(s, v ≥ w0)cost(a) |

v += u ∈ num2(a), u += c ∈ num1(âu),

mu
âu,a(s, v ≥ w0) > 0, a ∈ A2}.



Proof. Let π be the sequence of actions to achieve v ≥ w0

from s using only simple effects and SOSE. To obtain the
required lower bound we use Lemma 1 to formulate the fol-
lowing optimization problem:

min
Xa≥0:a∈A2

f =
∑
a∈A2

Xacost(a),

under the exact constraint
w0 = s[v] +

∑
a∈π:v+=cav
∈num1(a)

cavXa+ (♠)

∑
a∈π:v+=u
∈num2(a)

Xa

s[u] +
∑

â∈π:u+=câu
∈num1(â)

câuXâ

 .

Note that this is the only constraint not of the form Xa ≥ 0.
Since we are solving an LP relaxation of the problem, we
can set the constraint ♠ to be exact. Let us also note that
since cost(a) ≥ 0 for each a. We can set Xa = 0 for each a
that does not appear in ♠.

To solve this optimization problem analytically we use the
method of Lagrange multipliers. Unfortunately, the direct
application of this method would require us to go through
a huge number of cases, thus, to ease the proof we divide
the original optimization problem into two sub problems.
First, using Lagrange multipliers, we evaluate the minimal
cost of obtaining some value Cu for each simple variable
u ∈ N v

1 . Then, show that at most one SOSE action is enough
to achieve a given numeric fact at the minimum cost. For
each action with a SOSE v += u, we compute the mini-
mal cost of achieving v ≥ w0 given a value Cu ≥ s[u].
Then, combining these two observations, we plug Cu as a
substitute variable, and once again use Lagrange multipliers
to compute the cost of reaching v ≥ w0. Among all possible
combinations to achieve v ≥ w0 using one simple effect,
one SOSE effect using s[u], and a combination of one sim-
ple effect that affects u and one SOSE effect v += u, we
pick the one with the minimum cost.

We start with computing the cost of Cu. Let u be a simple
variable in N v

1 , and let Au1 be the set of all delete-relaxed
actions that affect u in a non-trivial fashion. Then, the mini-
mal cost to obtain Cu > s[u] is the solution to the following
optimization problem

min
Xā≥0

gu =
∑
â∈Au1

Xâcost(â)

s[u]− Cu +
∑
a∈Au1

câuXâ = 0.

If there is â ∈ Au1 such that cost(â) = 0, then the cost
to achieve any Cu ≥ s[u] is zero. Otherwise, assume that
cost(â) > 0 for each â ∈ Au1 . Note that gu is a linear func-
tion with non-negative coefficients and non-negative vari-
ables, and linear constraints. This means that the function
will indeed reach its minima. Using the Lagrange multiplier
λu we obtain the function

Lu =
∑
â∈Au1

Xâcost(â)− λu(s[u]− Cu +
∑
a∈Au1

câuXâ).

Using partial derivatives over Xâ for each â ∈ Au1 we have

∂Lu
∂Xâ

= cost(â)− λucâu = 0 =⇒ λu =
cost(â)

câu
.

Note that the only variable involved in these |Au1 | equations
is λu. Thus, the only case when the function can obtain its
minimum within the interior of its domain (for each â it
holds that Xâ > 0) is the case when cost(â1)

c
â1
u

= cost(â2)

c
â2
u

= r

for any two â1, â2 ∈ Au1 . Hence, we have that gu is a con-
stant function. To see this, apply this constant to the con-
straint on the optimization problem

0 = s[u]− Cu +
∑
a∈Au1

câuXâ = s[u]− Cu+

1

r

∑
a∈Au1

câu
cost(â)

câu
Xâ = s[u]− Cu +

gu
r
.

Thus, the solution for the minimal problem is obtained on
the border. Another way to look at it, is to use the theorem
that any linear optimization function over a polygon, if it ob-
tains its minimum, it obtains it on the vertices of this poly-
gon. In the case when cost(â1)

c
â1
u

6= cost(â2)

c
â2
u

for some actions
â1, â2 ∈ Au1 , the minimum can not be obtained in the in-
terior of the polytop, and hence, lies on the border. Thus,
WLOG, assume that Xâ = 0 for all â except one that min-
imizes the cost to additive constant ratio above. Plugging
these into the original condition we have

s[u]− Cu + câuXâ = 0 =⇒

min
Xā≥0:a∈Au1

gu =
Cu − s[u]

câu
cost(â).

Thus, to obtain the minimum it is enough to us pick âu with
the minimal λu = cost(âu)

câuu
. Thus, we know the cost to obtain

Cu at the minimal cost. To remove the stacking up indices
we denote effect of the minimum achieving action by u +=
cu ∈ num1(âu)

Since all actions in π have either simple effects or SOSE
on v, let us denote the set of actions having simple effects
by Aπ1 and the set of actions having SOSE by Aπ2 , respec-
tively. Let s′ be some state. Let us approximate from below
the cost of getting from s′[v] to the required v ≥ w0 using
only effects on v. Assume that s′[v] < w0. Using Lemma 1,
and omitting the actions that does not affect v we have the
condition

w0 = s′[v] +
∑

a∈Aπ1 :v+=cav
∈num1(a)

cavXa +
∑

a∈Aπ2 :v+=u
∈num2(a)

Xas
′[u].

with the optimization function

min
Xa≥0

gv =
∑

a∈Aπ1∪Aπ2

Xacost(a).

Here all action have either simple effects or SOSE on v, thus
we write these effects directly since the order of effect is
evident from the formula.



1. v += c ∈ num(a) or v += u+ c ∈ num(a) and s′[u] ≤
0. In this case the bound on the cost of reaching v ≥ w0

using a is
w0 − s′[v]

c
cost(a).

2. In the case when v += u + c ∈ num(a) and s′[u] > 0,
the bound is

w0 − s′[v]

c+ s′[u]
cost(a).

The key observation here, as in the case with Cu, is that no
more than one action is enough to express the lower bound
on the cost of reaching v ≥ w0 from s′. We use this observa-
tion to obtain the bound. For each state s′ the bound depends
at most on one simple variable u. Moreover, by definition of
SOSE the actions in Au1 do not affect v, thus after apply-
ing these actions to reach s′ from s the value of v will not
change, i.e., s[v] = s′[v]. Thus, to obtain a lower bound on
reaching v ≥ w0 we estimate the sum of bounds of reaching
s′[u] from s[u] and reaching v ≥ w0 from s[v]. Note that we
have already estimated the case when s′[u] = s[u] in bul-
lets 1. and 2. Thus, the last case we need to cover is when
v += u+ c ∈ num(a), s′[u] > s[u] and c ≥ 0.

Let us denote the value of u in the state s′ by Cu, i.e.,
Cu := s′[u]. We use the previous bound on Cu, to formulate
the following minimization problem

min
Xa≥0,Cu≥s[u]

Xacost(a) +
Cu − s[u]

cu
cost(âu),

s.t. w0 − s[v] = Xa(c+ Cu).

Assuming that cost(a), cost(âu) > 0, we apply the La-
grange method to solve this problem, and get the following
function and its derivatives

L(Xa, Cu, λ) = Xacost(a) +
Cu − s[u]

cu
cost(âu)−

λ(s[v]− w0 +Xa(c+ Cu)),

∂Lv
∂Xa

= cost(a)− λ(c+ Cu) = 0,

∂Lv
∂Cu

=
cost(âu)

cu
− λXa = 0,

∂Lv
∂λ

= s[v]− w0 +Xa(c+ Cu) = 0.

Mushing the formulas and their derivatives at zero we get

cost(âu)(c+ Cu)

cucost(a)
= Xa =

w0 − s[v]

c+ Cu
,

Solving the quadratic equation and taking the positive solu-
tion we get

Cu =

√
(w0 − s[v])cucost(a)

cost(âu)
− c,

Xa =

√
(w0 − s[v])cost(âu)

cucost(a)
.

Here we set mu
âu,a

(s, v ≥ w0) = Cu−s[u]
cu

and mv
âu,a

(s, v ≥
w0) = Xa. We only consider the case with Cu > s[u], i.e.,
mu
âu,a

(s, v ≥ w0) > 0. The cases where Cu = s[u] or
Cu < 0 are considered in bullets 1. and 2., and represented
in the sets M1 and M2.

In the case of zero-cost actions we have the following
bounds. Let a be an action with cost(a) = 0. If a has a sim-
ple effect v += c with c > 0, or a has an effect v += s[u]
with s[u] > 0, the cost to achieve v ≥ w0 is zero. Other-
wise, assume s[u] < 0 and c = 0. In this case, for action a
to have a positive effect on v we need to increase the value
of u to be greater than zero, i.e., we need Cu > 0. But, since
any arbitrary value of u greater than zero will do, the bound
is set to the cost of reaching Cu = 0. By construction, to
be applied action a already requires the precondition u ≥ 0,
thus when s[u] < 0, c = 0, and cost(a) = 0 we have that

mu
âu,a(s, v ≥ w0) = −s[u]

cu
.

In the case when u ∈ N v
1 and cost(âu) = 0, the bound

on achieving v ≥ w0 is zero, since using âu one can obtain
an arbitrary large Cu.

Thus, minimum over all three cases grants us the lower
bound on the cost of reaching v ≥ w0 from the state s. Note
that in the case when Cu is applied to v the action a has
to be applied at least once, thus we assume that in the case
when cost(âu) = 0 we have that mv

âu,a
(s, v ≥ w0) = 1.

Similarly, If s[u] = 0 and cost(a) = 0, we use mu
âu,a

(s, v ≥
w0) = 1 since we need to apply âu at least once.

Theorem 3. Let ΠOVC be the OVC of a solvable LT with a
non-zero optimal cost. Let L be a directed cut in a JG of
the second-order delete-relaxation Π2

OVC. For action a in L,
let the minimum weight of edges including a be WL(a) =
mine∈L:∃a∈lbl(e) W(e) and cost1 be defined as

cost1(a) =

{
W(L)
WL(a)

cost(a) if a ∈ lbl(L)

0 otherwise.

Let Π2
OVC,1 be a copy of Π2

OVC except that action a has cost
cost1(a). The weight of the cut W(L) = mine∈LW(e) is
admissible for Π2

OVC,1.

Proof. Following Theorem 1, we show that ∂ in(L) is the dis-
junctive fact landmark.

We show that the in a plan π there is a subsequence π′
that corresponds a JG path from n∅ to ng label-wise. Let
a be the first action that achieves g ∈ G with s 6|= g in
plan π. If g is a proposition or a achieves g by a non-SOSE,
similarly to Theorem 1, we substitute g with pcf(s, a) and
a with the first action that achieves pcf(s, a) and continue
the process. Otherwise, let g be a numeric condition v ≥
w. Suppose that a achieves g by effect v += u + c where
v += u is a SOSE and c ≥ 0. If c > 0 or s[u] > 0, an
edge (pcf(s, a), g; a) exists in a JG, so we substitute g with
pcf(s, a) and a with the first action that achieves pcf(s, a)
to continue the process. Otherwise, c = 0 and s[u] ≤ 0,
so π achieves s[u] > 0 by some action a′ with an effect



u += c′ such that c′ > 0. Fact pcf(s, a′, a), which is a
precondition of a′ or a, must be achieved by π. If s[u] = 0
and cost(a) = 0, mu

a′,a(s, v ≥ w) = 1 > 0. Otherwise,
since s[v] < w and cost(a) > 0 or c+ s[u] < 0,

mu
a′,a(s, v ≥ w) = 2

√
(w − s[v])cost(a)

c′cost(a′)
− c+ s[u]

c′
> 0.

Therefore, an edge (pcf(s, a′, a), g; 〈a′, a〉) exists in a JG.
We substitute g with pcf(s, a′, a) and a with the first ac-
tion that achieves pcf(s, a′, a). Repeating the process, π′ is
a path from n∅ to ng , and π′ ∩ L 6= ∅.

Since ∂ in(L) is a disjunctive fact landmark, let ψ0 be the
first fact achieved by optimal plan π. If ψ0 is achieved by
a non-SOSE, the proof is the same as Theorem 1. Suppose
that ψ0 : v ≥ w0 is achieved by a SOSE v += ξ of ac-
tion a. By Theorem 2, the cost to achieve ψ0 in Π2

OVC,1 is
lower bounded by inf M1 ∪ M2 ∪ M3, where cost is re-
placed with cost1. Let M ′1, M ′2, and M ′3 be M1, M2, and
M3 computed by considering only actions included in L.
The infimum inf M ′1 ∪M ′2 ∪M ′3 is also a lower bound on
the cost to achieve ψ0 since ψ0 is the first fact achieved in
∂ in(L). Since

min
(nψ,nψ′ ;a)∈L

ma(s, ψ′) · cost1(a) ≤ inf M ′1 ∪M ′2

and

min
(nψ,nψ′ ;〈âu,a〉)∈L

{
mu
âu,a(s, ψ′) · cost1(âu)

+mv
âu,a(s, ψ) · cost1(a)

}
≤ inf M ′3,

min


min

(nψ,nψ′ ;a)∈L
ma(s, ψ′) · cost1(a),

min
(nψ,nψ′ ;〈âu,a〉)∈L

{
mu
âu,a(s, ψ′) · cost1(âu)

+mv
âu,a(s, ψ) · cost1(a)

}


is a lower bound on the optimal cost.
Finally, we show that the weight of any edge in L with

the modified cost is greater than or equal to the weight of
the cut W(L). We have two cases over the edges in L: either
(nψ, nψ′ ; 〈a〉) ∈ L or (nψ, nψ′ ; 〈âu, a〉) ∈ L.

By definition, for an edge e = (nψ, nψ′ ; 〈a〉) ∈ L it holds
that WL(a) ≤W(e). Thus,

ma(s, ψ′) · cost1(a) = ma(s, ψ′) · cost(a)
W(L)

WL(a)

= W(L)
W(e)

WL(a)
≥W(L).

For an edge e = (nψ, nψ′ ; 〈âu, a〉) ∈ L, since WL(âu) ≤
W(e) and WL(a) ≤W(e),

mu
âu,a(s, ψ′)cost1(âu) + mv

âu,a(s, ψ′)cost1(a) ≥

W(L)
mu
âu,a

(s, ψ′)cost(âu) + mv
âu,a

(s, ψ′)cost(a)

max{WL(âu),WL(a)}
≥

W(L)
W(e)

max{WL(âu),WL(a)}
≥W(L).

Details for the Experimental Evaluation
For hLM-cut

1 and hLM-cut
2 , we use redundant constraints in

the same way as Scala et al. (2016): in the original task,
for each action a, for each pair of numeric preconditions
ψ,ψ′ ∈ pren(a), we add redundant numeric condition
ψ + ψ′ :

∑
v∈N (wψv + wψ

′

v )v D wψ0 + wψ
′

0 to pren(a)
where D is > if both of ψ and ψ′ are strict inequalities and
D is ≥ otherwise. We also add such redundant conditions
to the goal conditions. Furthermore, in the relaxed task, for
each conditional effect e of action a with effect condition
cond(e) = 〈∅, {uξ > 0}〉, for each uψ D wψ0 ∈ pre(a),
we introduce auxiliary variable uξ,ψ and add redundant
constraint uξ,ψ > wψ0 to cond(e), which corresponds to
uξ + uψ > wψ0 . Effects on uξ,ψ are defined in the same
way as other auxiliary variables introduced by OVC.

We found that A* with hirmax returns sub-optimal plans
for two instances of LINEAR-CAR-POLY in the experiments
and suspect that there are bugs in the implementation of
hirmax by the original authors (Aldinger and Nebel 2017).

LIN-CAR Domains
Percassi, Scala, and Vallati (2021) proposed methods to
translate PDDL+ (Fox and Long 2006) domains to PDDL
2.1 (Fox and Long 2003) domains by discretising them in
the time. From the domains used in their work, we take LIN-
CAR-POLY and LIN-CAR-EXP, which are translated from
PDDL+ domain LIN-CAR (Fox and Long 2006) with the
discretised-time interval of 1 by two different translation al-
gorithms POLY and EXP, respectively. The other PDDL+
domains do not fit into our problem definition and cannot be
handled by the LM-cut.

In LIN-CAR, there are three numeric variables a (accel-
eration), v (velocity), and d (distance), and the goal is to
achieve d = d̂ along with v = 0 and a = 0 where
d̂ is specified by an instance. In addition, |a| ≤ â and
|v| ≤ v̂ must be satisfied at any point of the plan execu-
tion where â and v̂ are positive. Since the existing 10 in-
stances are solved by all methods, we generate 24 new in-
stances with parameters d̂ ∈ {1000, 2000}, v̂ = 100, and
â ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30} and use the translated
versions of them.

References
Aldinger, J.; and Nebel, B. 2017. Interval Based Relaxation
Heuristics for Numeric Planning with Action Costs. In KI
2017: Advances in Artificial Intelligence, 15–28.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res., 20: 61–124.
Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. Artif. Intell. Res., 27:
235–297.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2021. LM-cut and Operator Counting
Heuristics for Optimal Numeric Planning with Simple Con-
ditions. In Proc. ICAPS, 210–218.



Percassi, F.; Scala, E.; and Vallati, M. 2021. Translations
from Discretised PDDL+ to Numeric Planning. In Proc.
ICAPS, 252–261.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Proc. ECAI, 655–663.


