
Heavy-Tails and Randomized Restarting Beam
Search in Goal-Oriented Neural Sequence

Decoding

Eldan Cohen and J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Canada
{ecohen, jcb}@mie.utoronto.ca

Abstract. Recent work has demonstrated that neural sequence models
can successfully solve combinatorial search problems such as program
synthesis and routing problems. In these scenarios, the beam search al-
gorithm is typically used to produce a set of high-likelihood candidate
sequences that are evaluated to determine if they satisfy the goal crite-
ria. If none of the candidates satisfy the criteria, the beam search can
be restarted with a larger beam size until a satisfying solution is found.
Inspired by works in combinatorial and heuristic search, we investigate
whether heavy-tailed behavior can be observed in the search effort dis-
tribution of complete beam search in goal-oriented neural sequence de-
coding. We analyze four goal-oriented decoding tasks and find that the
search effort of beam search exhibits fat- and heavy-tailed behavior. Fol-
lowing previous work on heavy-tailed behavior in search, we propose
a randomized restarting variant of beam search. We conduct extensive
empirical evaluation, comparing different randomization techniques and
restart strategies, and show that the randomized restarting variant solves
some of the hardest instances faster and outperforms the baseline.

Keywords: Beam Search · Neural Sequence Models · Randomized Restarts.

1 Introduction

Neural sequence models are commonly used in the modeling of sequential data
and are the state-of-the-art approach for tasks such as machine translation [10],
text summarization [6], and image captioning [37]. Beam search is the most com-
monly used algorithm for decoding neural sequence models by (approximately)
finding the most likely output sequence conditioned on the input. To do so, beam
search generates sequences token-by-token, extending a fixed number of active
candidate sequences (beam size) at each step.

Recently, neural sequence models have been successfully applied to different
combinatorial search problems such as program synthesis and routing problems.
Unlike machine translation and image captioning, such problems often have a
goal criteria that can be used to evaluate candidate solutions and require solu-
tions that satisfy the goal criteria. For example, in resource-constrained combi-
natorial routing problems, we may wish to find a tour that satisfies some resource



2 E. Cohen and J. C. Beck

constraint (e.g., limited fuel or budget). In such scenarios, beam search is used
to produce a set of promising (high-likelihood) candidate sequences that are
evaluated to determine if they satisfy the goal criteria. If none of them satisfy
the criteria, the beam search can be restarted with a larger beam size until a
satisfying solution is found.

Previous work on heuristic and combinatorial search algorithms found they
tend to exhibit a fat- and heavy-tailed behavior that can be exploited to boost
their performance by incorporating randomized restarts in the search (e.g., [12,
8]). In this work, we investigate whether a heavy-tailed behavior can also be
observed for goal-oriented beam search. We consider four goal-oriented neural
sequence decoding tasks, each with a goal criteria that enforces bounded subopti-
mality with respect to a chosen evaluation metric. We focus on complete anytime
beam search (CAB), a complete variant of beam search commonly used in goal-
oriented neural sequence decoding, and perform an extensive empirical study of
the heavy-tailed behavior and the impact of randomized restarts. Specifically,
we make the following contributions:

1. We show that for goal-oriented neural sequence problems, complete anytime
beam search exhibits a fat- or heavy-tailed behavior on ensembles of relaxed
problems, similar to the behavior observed for CSPs and SAT.

2. We consider a randomized variant of beam search that is based on noise injec-
tion to the inputs of the neural network and show that randomized complete
anytime beam search exhibits fat- or heavy-tailed behavior on ensembles of
multiple runs on a single instance.

3. Inspired by previous work on heavy-tailed behavior in combinatorial and
heuristic search problems, we introduce a randomized restarting variant of
complete anytime beam search and show that it outperforms the baseline by
solving some of the hardest problems faster.

4. We conduct extensive empirical evaluation and analyze the impact of differ-
ent parameters including the constrainedness of the goal criteria, the restart
policy, and the type of randomization.

2 Background

2.1 Beam Search for Goal-Oriented Neural Sequence Decoding

A neural sequence model learns a probability distribution over sequences by be-
ing trained to predict the probability of the next token in a sequence, p(ytjx; y1:t�1),
conditioned on the input x and the partial sequence y1:t�1 [5]. The total proba-
bility of a (partial) sequence y1:t follows from the chain rule of probability:

p(y1:tjx) = p(ytjx; y1:t�1) � p(y1:t�1) =

tY
t0=1

p(yt0 jx; y1:t0�1): (1)

It is common to model p(ytjx; y1:t�1) using a Recurrent Neural Network [16],
where the input x and the partial sequence y1:t�1 we condition on are expressed



Randomized Restarting Beam Search in Neural Sequence Decoding 3

by a fixed length representation ht. This representation is updated each step us-
ing a non-linear function f : ht = f(ht�1; yt�1) with h0 being a representation of
the input x and y0 being a special token that represents the start of the sequence.
The conditional probability over the next token yt can then be computed using
the softmax function,

p(yt = vijx; y1:t�1) =
exp(wiht)PjVj
j=1 exp(wjht)

;

where V = fv1; v2; :::g is the set of all possible tokens and wi are model weights.

Beam search is a limited-width breadth-first search. In the context of se-
quence models, it is often used as an approximation to finding the (single) se-
quence y that maximizes Eq. (1), or as a way to obtain a set of high-probability
sequences from the model. At the first step, t = 0, we only have one (empty)
sequence. At each of the following steps, t � 1, we consider all one-token ex-
tensions of the beam sequences from step t � 1 and retain (at most) B partial
sequences with the highest probability. In the last step, we return the B highest
probability complete sequences, which we assume to be of equal length (as they
can be padded). B is called the beam width (or, alternatively, beam size) and
the probabilities of (partial) sequences are estimated by the neural network.

In goal-oriented neural sequence decoding, we are not looking for the most-
likely sequence according to the learned model. Instead, we are looking for a
solution that satisfies the goal criteria. In such scenarios, we use beam search to
generate a set of B high-quality candidates that are then evaluated to determine
if they satisfy the goal criteria. Once a candidate satisfies the goal criteria, it is
returned as the solution of the beam search.

Previous work on goal-oriented neural sequence decoding considered a variant
of the complete anytime beam search (CAB) [42] in which failing to find a
satisfying solution results in doubling the beam width and re-running the beam
search [43, 2, 25]. As the beam width increases, a larger portion of the hypotheses
space is explored and the search is guaranteed to find a solution, if one exists.
Algorithm 1 shows pseudo-code for this variant of complete anytime beam search.

Algorithm 1 Complete Anytime Beam Search

function CAB(goalCriteria)
beamW idth← 1
while not solved do

candidates← BeamSearch(beamW idth)
for cand ∈ candidates do

if Satisfy(cand; goalCriteria) then
return cand

beamW idth← 2 · beamW idth



4 E. Cohen and J. C. Beck

2.2 Heavy-tailed Behavior and Randomization in Heuristic and
Combinatorial Search Algorithms

Analyzing the empirical distribution of search effort over an ensemble of prob-
lems, rather than just the mean or median, can often help design better search
algorithms. Previous work has found fat- or heavy-tailed behavior in the distri-
bution of search effort for different search algorithms on NP-complete problems,
e.g., the number of backtracks in CSPs, on ensembles of random problems [13,
12, 7]. This behavior tends to appear in ensembles of relaxed problems, i.e., prob-
lems with high density of solutions. In these ensembles, the median search effort
is low, however the hardest instances can require orders-of-magnitude higher
effort. Interestingly, Gomes et al. [12] also found heavy-tailed behavior in the
search effort distribution of a randomized search procedure on a single instance,
suggesting that some of the hardest problems can be solved easily by minor
changes in the search procedure. This result has motivated significant work on
reducing heavy-tailed behavior using randomized restarts, portfolios, etc. [11].

Fat- and heavy-tailed distributions have a long tail containing a considerable
concentration of mass. Formally, a random variable X is considered heavy-tailed
if it has a Pareto-like decay of its tail above some threshold xl, i.e., there exists
some xl>0, c>0, �>0 such that P [X > x] = cx�� for x > xl [32]. An approx-
imately linear behavior over several orders of magnitude in the log-log plot of
1� CDF (x) (i.e., the survival function) is a clear sign of heavy-tailed behavior
with the slope providing an estimate of the stability index � [14].

10−2 10−1 100 101 102 103 104 105 106

x

10−3

10−2

10−1

100

1-
CD

F 
(S

ur
vi

va
l)

Sym. Walk
N(2,1)
N(2,100000)

Fig. 1: Heavy and non-heavy tailed behavior [14].

To demonstrate heavy-tailed behavior, we present an example from Gomes
et al. [14]. Figure 1 shows the log-log plot of 1 � CDF (x) for two normally
distributed random variables with a mean of 2 and different standard deviation.
It also shows a random variable that represents the number of steps it takes for a
symmetric random walk on a line to get back to the starting point. The normal
distributions exhibit a fast-decay behavior, while the random walk exhibits a
clear heavy-tailed behavior indicated by the approximately linear behavior on
the log-log plot.



Randomized Restarting Beam Search in Neural Sequence Decoding 5

3 Goal-Oriented Benchmark Problems

In our analysis, we use a set of four goal-oriented benchmark problems. Following
is a description of each problem and its goal criteria.

3.1 Combinatorial Routing Problems

Several recent works have demonstrated the potential of using deep learning to
solve combinatorial optimzation problems [23, 22, 9, 30]. A recent work [23] pro-
posed an architecture based on attention layers and trained using REINFORCE
[41] to generate solutions for combinatorial routing problems that minimize the
solution cost. The authors use this architecture to generate solutions to the Trav-
elling Salesman Problem (TSP), two variants of the Vehicle Routing Problem
(VRP), the Orienteering Problem (OP), and the Prize Collecting TSP (PCTSP)
and show it outperforms a wide range of baselines. Decoding can be done using
sampling or beam search, and the best solution among the generated candidates
is returned. To eliminate infeasible solutions, e.g., revisiting the same node in
TSP, the authors use masking (setting the log-probabilities of infeasible solu-
tions to �1). In our work, we use Kool et al.’s [23] architecture1 and problem
instances and run experiments on two combinatorial routing problems:

{ The Travelling Salesman Problem (TSP) consists of constructing a tour that
starts at the depot, visits all nodes exactly once, and returns to the depot.

{ The Capacitated Vehicle Routing Problem (CVRP) consists of constructing
multiple routes, each starting and ending at the depot, such that the total
demand of the nodes in each route does not exceed the vehicle capacity.

The cost of solution in both problems is the sum of pairwise Euclidean distances
of consecutive nodes in the solution path (including the depot).

Goal Criteria. As the current model is trained to minimize the solution
cost, we consider the goal-oriented problem of finding a solution with a bounded
optimality gap. Assuming a minimization problem with cost function C, our

goal criteria for a candidate solution x is C(x)�C(x�)
C(x�) � ", where x� is an optimal

solution and " controls the constrainedness of problems (increasing " leads to
a higher expected number of feasible solutions).2 Following Kool et al. [23], we
compute optimal solutions for TSP using Concorde [1] and approximate optimal
solutions for CVRP using KLH3 [17] (Kool et al. [23] note CVRP problems with
more than 20 location were intractable for an exact solver).

1 Obtained from github.com/wouterkool/attention-learn-to-route.
2 This notion of constrainedness matches the notion of resource-constrainedness pre-

viously used to study planning in resource-constrained environments [29].



6 E. Cohen and J. C. Beck

3.2 Visual Program Synthesis

Several recent works have considered the problem of synthesizing programs for
images using deep neural networks [33, 36, 27]. These networks take an image as
input and output a program that generates the image. The quality of a candidate
program can be evaluated using a metric of projection loss, typically a distance
measure between the generated image and the input. In our experiments, we use
CSGNet3 [33], a neural architecture that takes in a 2D or 3D shape image and
outputs a program to generate the shape using instructions based on constructive
solid geometry (CSG). CSGNet is trained using a combination of supervised
learning and reinforcement learning (using REINFORCE [41]) to minimize the
visual distance between the generated solutions and the input images.

Goal Criteria. Our goal criteria is based on Chamfer Distance (CD), a mea-
sure of visual similarity between two shapes that is used by Sharma et al. [33]
to evaluate CSGNet. Let CD(a; b) denote the (non-negative) Chamfer distance
between shape a and shape b. We define our goal criteria for a candidate solution
x to be CD(x; i) � 
 where i is the input shape and the parameter 
 controls
the constrainedness of problems.

3.3 Conditional Molecular Design

A recent line of work focuses on generating molecules with specific properties [20,
19, 18], such as the molecular weight, the Wildman-Crippen partition coefficient
[40], and a quantitative estimation of drug-likeness (QED) [3]. Kang and Cho
[20] proposed a semi-supervised variational autoencoder that is trained on a set
of existing molecules from the ZINC dataset [35] with only a partial annotation
(i.e., only a fraction of the molecules are labelled with the property values).4

The model represents a generative process in which the input molecule x
is generated from the distribution p(xjz; y) that is conditioned on the molecule
properties y and a latent variable z. The molecules are represented using SMILES
strings [39] and are generated character-by-character. For the conditional gen-
eration of molecules with a specific property, we sample z from its prior and y
from its prior conditioned on the specific property. A molecule representation x̂
is obtained from y and z using the decoder’s conditional probability p(xjy; z),

x̂ = arg max p(xjy; z); (2)

where Eq. (2) is approximated by a beam search.

Goal Criteria. We focus on the QED property [3], a measure of drug-likeness
in the range [0; 1] that is based on desirability functions for several molecu-
lar properties. We compute QED using RDKit [26] and evaluate the generated

3 Obtained from github.com/Hippogriff/CSGNet.
4 Obtained from github.com/nyu-dl/conditional-molecular-design-ssvae.



Randomized Restarting Beam Search in Neural Sequence Decoding 7

0.00 0.02 0.04 0.06 0.08 0.10
Optimality Gap

0

20

40

60

80
Co

un
ts

(a) Histogram of solution quality.

0 20 21 22 23 24 25 26 27 28 29
210

211
212

213
214

215

Final Beam Width

500

100

10

1

Un
so

lv
ed

 P
ro

bl
em

s

ε = 0.04
ε = 0.05
ε = 0.06

(b) Distribution of beam widths.

Fig. 2: TSP (100 nodes): Results for 500 random instances.

molecules based on the absolute difference between their QED and the desired
QED. Formally, we define our goal criteria for a candidate solution x to be
jQED(x) � qj � � where q is the desired value of QED and the parameter �
represents a bound on the deviation from the desired QED value and controls
the constrainedness of the criteria.

4 Fat- and Heavy-tailed Behavior in Goal-Oriented
Neural Sequence Decoding

In this section we demonstrate the existence of heavy-tailed behavior in goal-
oriented neural sequence decoding. Due to space, we only present results for
one benchmark problem, the Travelling Salesman Problem (TSP), however in
Appendix A, we present similar results for the other three benchmarks.5

We consider a collection of 500 randomly generated TSP problem instances
with 100 nodes solved using beam search with a beam width of 10. Figure 2a

shows the distribution of solution quality presented as optimality gap (C(x)�C(x�)
C(x�) )

to match our goal criteria. The center of the distribution is around 0:03 with
the mean (marked in a dashed line) at approximately 0:034. However, there is a
small number of problems for which the optimality gap can be much higher (up
to approximately 0:1).

Next, we consider the case of solving the goal-oriented problem where solu-
tions must satisfy a bound on the optimality gap denoted as " (as discussed in
Section 3.1). We use complete anytime beam search (Algorithm 1) to solve the
problems with the given bound as goal criteria. We start with a beam width of
1, and double the beam width in each iteration if no solution that satisfies the
goal criteria is found. We record the beam width for which a satisfying solution
was found representing the required search effort.

Figure 2b shows the search effort distribution for three different goal criteria
" = 0:04, " = 0:05, " = 0:06. The y-axis represents the number of unsolved

5 All appendices appear in tidel.mie.utoronto.ca/pubs/rr-beam-appendix.pdf.


