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Abstract

We present a general multi-robot task planning and execution (MRTPE) architecture for a
team of heterogeneous mobile robots that interact with multiple human users. The designed
architecture is implemented within an environment where such robots provide daily assistance
to residents in a retirement home setting. The robots are able to allocate and schedule activities
throughout the day and find the appropriate residents with whom to engage in the assistive
activities. At the beginning of the day, the robot person search (RPS) system autonomously
searches for, and finds, multiple human users in an environment within a required time interval.
Upon finding users, the robot queries each user for his/her availability and interest in various
activities. We then use constraint programming (CP) within a multi-robot task allocation and
scheduling (MRTA) system to plan and schedule the robot team to facilitate individual and
group activities, ensuring consistency with user-expressed availability and activity preferences.
We test the components of the architecture on a physical multi-robot system to verify the
utility of the design. Experiments indicate the design can effectively plan and execute assistive
activities for multiple users.

Keywords: Robotics, scheduling, constraint satisfaction, multiagent systems, user/machine
systems

1 Introduction

In response to a rapidly aging global population, the design of socially assistive robotic systems
for healthcare, specifically for eldercare, has been an active area of research for the past decade
[2]. These systems have been developed to assist and support elderly individuals with physical and
cognitive impairments, as well as aid in the day-to-day management of the healthcare environment
in order to alleviate the workload pressures of an already strained elderly care labour force.

Our research focuses on the development and deployment of a general multi-robot system (MRS)
architecture for a team of mobile robots that interact with human users. Within this work, the de-
signed multi-robot task planning and execution (MRTPE) architecture is implemented to plan and

∗This research represents an extension of the work presented in Vaquero et al. [1] at the AAAI Workshop on
Artificial Intelligence Applied to Assistive Technologies and Smart Environments.
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facilitate assistive activities for multiple human users within a retirement home environment. At
the beginning of the day, the team of robots must autonomously search for and find users in the en-
vironment, eliciting their availability and preferences for activities using the developed robot person
search (RPS) system. The MRS then uses the multi-robot task allocation and scheduling (MRTA)
system we have developed to allocate and schedule these assistive activities over the remainder
of the day. In addition to the integration of the novel components we propose herein, our archi-
tecture utilizes existing technology to achieve core autonomous robot functions (e.g. navigation,
localization, and mapping).

Previous work on this application [1, 3, 4] focused primarily on implementing and testing single-
robot architectural components in isolation within simulated environments; contributions for MRTA
did not address finding users in uncertain environments, nor were the approaches implemented
within a physically deployed MRS. The architecture presented in this paper utilizes an RPS pro-
cedure to find users within the environment, expanding on the single robot work in Mohamed and
Nejat [3] by modeling the search as a travelling thief problem solved with dynamic programming
to generate promising user search plans. While previous approaches to MRTA problems have pri-
marily used decentralized auction-based techniques [5] or centralized mixed-integer programming
[6], we make novel use of constraint programming (CP) within our centralized MRTPE architecture
to produce high-quality, and often optimal, activity schedules. The MRTA component of the pro-
posed architecture extends the work in Booth et al. [4] and integrates it with the RPS of Mohamed
and Nejat [3]. We test the architecture on a physical MRS and present experimental results on
a number of retirement home scenarios with heterogeneous robots, concluding that the system is
able to plan and execute assistive activities for multiple users within a multi-region environment.
As a result of our experiments, we believe the MRTPE architecture represents a promising general
framework for alternate applications that involve mobile robots interacting with human users.

2 Problem Definition

Our problem concerns a team of mobile robots that must perform various human-robot interactions
(HRI), in the form of assistive activities, with elderly users in a retirement home. The activities
must be allocated and scheduled over a single 12-hour day (7:00 AM to 7:00 PM). The MRS must
autonomously plan and facilitate these activities while adhering to problem-specific constraints,
including user availability and location, robot energy consumption, activity precedence, and robot-
user activity synchronization. Prior to the scheduling of activities, the users must be queried
regarding their individual availability and locations for the day, as well as their preferences for
participation in various activities (binary ‘yes’ or ‘no’ response). Once this information is attained,
the MRS creates the activity allocation and robot schedule for the day before executing the plan.

2.1 Users

We consider n human users, U := {u1, u2, ..., un}, residing in the retirement home. These users
share the environment and participate in a number of activities throughout the course of the day.
Each user has a unique calendar of α time intervals where they are not available for interaction,
where the total set of such calendars is defined by the set Σ := {σ1, σ2, ..., σn}, where each σi :=
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(a) Heterogeneous MRS. (b) Environment map. (c) MRS environment navigation.

(d) Facilitating a
telepresence.

(e) Facilitating a group
Bingo game.

(f) Bingo game
reminder.

(g) Robot recharge
activity.

Figure 1: Problem Definition - Assistive robot fleet, test environment, and activities.

{[sσi1 , e
σi
1 ], [sσi2 , e

σi
2 ], ..., [sσiα , e

σi
α ]} for user ui ∈ U identifies their specific busy intervals. These busy

intervals include breakfast (8:00 to 9:00 AM), lunch (12:00 to 1:00 PM), and dinner (5:00 to 6:00
PM), as well as a number of other intervals unknown a priori to be acquired at the start of the day.
We estimate the movement speed of each user ui ∈ U as vui in metres/minute, which is utilized to
approximate user travel time within the environment.

2.2 Robots

We consider m heterogeneous mobile robots, R := {r1, r2, ..., rm}, as shown in Figure 1a. These
robots are responsible for executing the person search as well as autonomously allocating, schedul-
ing, and facilitating the HRI activities. Each robot, rk ∈ R, navigates the environment at a speed
of vrk. Robots start and end each day at the robot depot, a location that houses the recharging
station. Energy levels for the battery of each robot, rk ∈ R, must remain between βmink and βmaxk

and energy is consumed at robot and activity-specific rates.

2.3 Environment

The environment is divided into a number of regions that represent rooms within the facility.
A sample test environment we utilize for experimentation, both map and real-world image, is
illustrated in Figure 1b and Figure 1c. The set of locations, L, consists of the robot depot, games
room, meals room, leisure rooms, and a personal room for each user, respectively. Distances between
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any two rooms, a and b, are defined based on the shortest path as δ(a,b) in metres. Travel times

between locations are then represented in minutes for each user ui ∈ U as ∆u
i := { δ(a,b)vui

: (a, b) ∈
L× L}, and for each robot rk ∈ R as ∆r

k := { δ(a,b)vrk
: (a, b) ∈ L× L}.

2.4 Activities

An activity is either i) a direct assistive interaction with a user(s), or ii) an instance of robot
recharging. They are categorized as: telepresence sessions (Figure 1d), bingo games (Figure 1e),
bingo game reminders (Figure 1f), robot recharges (Figure 1g), and information gathering sessions.
Telepresence sessions allow users to have face-to-face video calls with friends or relatives from their
personal room. There is one mandatory telepresence for each user, P := {p1, p2, ..., pn}, each with
a length of 30 minutes. Bingo game activities are group HRIs where users participate in a game
of robot-facilitated bingo. Bingo games, G := {g1, g2, ..., gUB1}, are optional activities, 60 minutes
in length, and occur in the games room. The MRTA system must determine which bingo games
are played, which users participate in each game, and when the games will occur. A bingo game
reminder is a single user HRI where the robot reminds the user of their participation in an up-
coming bingo game. The set of bingo reminder activities is then defined by M :=

⋃n
i=1Mi, where

Mi := {mi1,mi2, ...,miUB1}. A reminder is required for each of the users who have been assigned
to play a bingo game. Each reminder activity is two minutes in duration and must occur prior to
its associated bingo game. The set of robot recharge activities is defined by C :=

⋃m
k=1Ck, where

Ck := {ck1, ck2, ..., ckUB2}. The upper bounds, UB1 and UB2, associated with the activities are
required by our scheduling approach to define the fixed set of activities that may be scheduled [4].
Information gathering sessions are HRIs that occur at the beginning of each day, and are used to
query users regarding their availability, locations throughout the day, and activity preferences.

3 Multi-Robot Task Planning and Execution Architecture

The proposed MRTPE architecture represents a multi-robot extension of the single-robot system in
Louie et al. [7]. In addition to the integration of multiple robot controllers through a master/slave
configuration, the proposed system uses constraint programming (CP) instead of temporal plan-
ning for MRTA, and integrates RPS, which was not done previously. The centralized design is
appropriate for the scale of problems being solved, where CP is able to produce high-quality, often
optimal, activity schedules. The design allows the MRS to find users, schedule tasks, and execute
assistive activities throughout the day. We design and implement the architecture within the open
source Robot Operating System (ROS) (www.ros.org) framework.

3.1 Architecture Design

As illustrated in Figure 2, the architecture consists of two levels: i) the Centralized Server, and
ii) the Robot Controllers. The former consists of the following modules: MRTA, Global RPS,
Execution and Monitoring (E&M), System World State, and System World Database. The System
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World State module contains information regarding robot states (e.g., battery levels, poses) and
environment states (e.g., region accessibility), while the System World Database module contains
information regarding static parameters (e.g., the map). The Individual Robot Controllers include
the following modules: Activity Manager, Robot World State, Robot World Database, Activity
modules (e.g., Information Gathering, Bingo, etc.), Local RPS, Low-level Controllers, Actuators,
and Sensors. The Activity Manager forwards commands from the E&M module to onboard Ac-
tivity modules; an Activity module uses onboard sensory information to determine which robot
behaviours are required to be executed via the Low-level Controllers and Actuators. The Robot
World State and Database modules contain the same information as their Centralized Server equiv-
alents, however, exclusively for their corresponding robot. At the start of each day, the System
World Database updates the Robot World Database with any information required to detect and
identify users.
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Figure 2: Proposed multi-robot task planning and execution (MRTPE) architecture.

3.2 Retirement Home Implementation

The Global RPS, within the Centralized Server, creates a plan for finding and gathering informa-
tion from all retirement home residents between 7:00 AM and 8:00 AM, prior to breakfast, which is
then sent to the E&M Module and executed by a robot. At 8:00 AM, the MRTA Module uses the
gathered information to create an activity schedule for the remainder of the day (8:00 AM to 7:00
PM), which is also sent to the E&M module. Whenever a start time is reached for a planned task,
the E&M module sends the request to the corresponding robot’s Activity Manager. The Activity
Manager then sends the activity request to the appropriate Activity Module. For example, during
the information gathering period, a request is sent to the Information Gathering module for each re-
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gion specified in the global plan. The Information Gathering Module requests the robot to navigate
to the specified region and then upon arrival, requests the Local RPS to find target users within
this region. The Local RPS reports any users it finds to the Information Gathering Module, which
then requests schedule and activity preferences for the day from these users. This information is
then sent to the Robot World Database Module and then the System World Database Module.

3.3 Robot Person Search

The RPS system is adapted from Mohamed and Nejat [3] and directly integrated into our architec-
ture. Its unique use within our architecture allows a robot to directly obtain activity preferences
and availability from the users through HRI interactions. The RPS system allows a robot to au-
tonomously search for and find users who reside within the retirement home. The RPS is comprised
of two modules: i) the Global RPS, and ii) the Local RPS. The Global RPS is utilized to determine
a plan of regions (i.e., rooms) to be searched at a high-level, while the Local RPS conducts the
search within each region.

3.3.1 Global Robot Person Search

This module generates a global plan that maximizes the number of users found given the retirement
home regions, L, and the search query : a list of target users and a specified time frame. The search
query for our problem is to find all of the retirement home residents during the time period 7:00 AM
to 8:00 AM. The global plan consists of: i) a subset of regions to search with their corresponding
search times, and ii) the order in which to search this subset. To determine the global plan, a
Travelling Thief Problem (TTP) is solved using a dynamic programming algorithm as detailed
in Mohamed and Nejat [3]. The algorithm is given a probabilistic location model, generated for
each user by using activity patterns (stored in the World Database), a set of time-indexed tuples
defined by {user, region, activity, time interval} that are acquired a priori through an observation
stage. The generated global plan is sent to the E&M module for execution by the robot team.
The execution results in a series of information gathering tasks being sent to the Robot Controller,
which in turn results in the Local RPS Module implementing a search to find users within a region.

3.3.2 Local Robot Person Search

This module receives a request from the Activity Module when the robot arrives at the specified
region. The region is divided into cells corresponding to the sensor range of the robot’s onboard 3D
camera. The robot then constructs a tour of the cells, determining within each cell if it contains
any target user(s). A silhouette detection algorithm is used to compare contours in a depth image
(obtained from the 3D camera) to a reference silhouette of a person (stored in the Robot World
Database). Once a person is detected, the 3D point cloud of the environment, generated by the
3D camera, is used to acquire the location of the person. RGB images obtained from the robot’s
onboard RGB camera are then used with the local binary patterns face detection algorithm from
OpenCV (www.opencv.org) to determine the orientation of the person with respect to the robot.
Finally, the robot navigates in order to face the person for interaction, and determines his/her
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identity by applying the OpenCV local binary patterns histogram recognizer to identify the user’s
facial features and compares them with the unique facial features stored for each user in the Robot
World Database.

3.4 Multi-Robot Task Allocation and Scheduling

With user availabilities, locations, and preferences provided by the RPS, we model and solve a
multi-robot task allocation and scheduling (MRTA) problem [8] using the MRTA module in our
architecture. In this section, we summarize the decision variables, objective function, and core
constraints utilized in our model.

3.4.1 Constraint Programming

We model the problem as a constraint optimization problem (COP) defined by the tuple 〈X,D,C, F 〉,
where X is a set of decision variables, D are their associated domains (possible values in a solution),
C is a set of hard constraints, and F is the problem-specific objective function. We solve the COP
with constraint programming (CP), a model-and-solve paradigm similar to integer programming
(IP). CP is utilized for our architecture as it was shown within Booth et al. [4] to significantly
outperform an IP technique for a similar problem.

CP is more general than IP, relaxing restrictions of linearity and expressing richer variable
types (e.g. interval [9] and set variables [10]) as well as constraints, termed global constraints [11],
designed to capture frequently recurring combinatorial substructure. The combinatorial explosion
of problems that CP is commonly used to solve is addressed through a branch-and-bound search
algorithm that makes use of logical inference to reduce search effort. CP has been successfully
applied to a wide range of combinatorial optimization problems, notably scheduling [12], where it
often significantly outperforms IP-based approaches.

3.4.2 Problem Modelling

Within the CP formalism we use interval decision variables [9] to model robot and user tasks. The
domain of possible values for an interval variable, var ∈ X, is defined by Dvar := {⊥}∪{[s, e)|s, e ∈
Z, s ≤ e}. That is, var takes on a value that is a convex interval with integer end points [s, e), or ⊥
indicating the variable is not present in the solution. The latter assignment is represented by the
expression Presence(var) evaluating to 1 if var ∈ X is present in the solution, and 0 otherwise.
Start(var), End(var), and Length(var) return the integer start time, end time, and length of the
interval variable var. In addition to interval variables, we also use cumulative function expressions;
variables that model cumulative resources through the impact of interval variables.

Decision Variables As in Booth et al. [4] we define the decision variables for our CP formulation
as follows:

xij := (interval variable) present, with a start time value, if user ui ∈ U participates in activity
j and absent, with a value of ⊥, otherwise.
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ykj := (interval variable) present, with a start time value, if robot rk ∈ R facilitates activity j
and absent, with a value of ⊥, otherwise.

Ek := (cumulative function expression) representing the energy level of robot rk throughout the
schedule.

Objective Function The objective function, (1), is to maximize bingo game user participation in
order to boost the cognitive and social stimulation of users, while prioritizing schedules with fewer
robot recharges.

arg max
{x,y}

∑
ui∈U

∑
j∈G

Presence(xij)− 0.01 ·
∑

rk∈R

∑
j∈Ck

Presence(ykj) (1)

Problem Constraints The first set of problem constraints, Constraints (2) and (3), ensure
that scheduled activities do not interfere temporally on robot and user schedules. To do this, we
introduce sets containing all activities potentially involving users and robots (including dummy
start, u̇, ṙ, and end, ü, r̈, activities for sequencing), respectively, as T ui := {σi ∪ pi ∪ G ∪Mi} and
T rk := {P ∪G ∪M∪ Ck}.

NoOverlap([xiu̇, xi1, xi2, ..., xi|Tu
i |, xiü],∆u

i ), ∀ui ∈ U (2)

NoOverlap([ykṙ, yk1, yk2, ..., yk|T r
k |, ykr̈],∆

r
k), ∀rk ∈ R (3)

The NoOverlap constraint performs inference on interval variables, ensuring they do not interfere
temporally if they are present. The next set of constraints ensures that required telepresence activ-
ities are facilitated (Constraint (4)), player bingo participation is contingent on robot facilitation
(Constraint (5)), and that the end of a bingo reminder must occur before the start of the associated
bingo game (Constraint (6)).

Presence(xipi) =
∑

rk∈R
Presence(ykpi) = 1, ∀ui ∈ U (4)

Presence(xij) ≤
∑

rk∈R
Presence(ykj) ≤ 1, ∀ui ∈ U ; j ∈ G (5)

End(ximij ) ≤ Start(xij), ∀ui ∈ U ; j ∈ G (6)

Constraint (7) ensures that if a user participates in a bingo game, the corresponding reminder
is facilitated. Through Constraint (8) the formulation ensures activities common to both user
and robot schedules are synchronized through the use of the StartAtStart constraint, which
synchronizes the start times of the interval variables within its scope.

∑
rk∈R

Presence(ykmij
) = Presence(xij), ∀ui ∈ U ; j ∈ G (7)

StartAtStart(xij , ykj), ∀ui ∈ U ; rk ∈ R; j ∈ T ui ∩ T rk (8)

To represent the energy-related components of the problem, Constraints (9) through (11) model the
battery level of each robot, accounting for variable-length robot recharge tasks, as well as unique
robot-specific consumption rates for task j, ξjk, and robot navigation, ξ∆

k for each robot rk ∈ R.
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StepAtStart, a cumulative function expression, is used to model the instantaneous impact of an
interval variable on robot energy level. prej returns the task prior to j in a robot’s schedule, and
loc(j) represents the location of task j.

Ek =
∑

j∈T r
k∪{r̈}

StepAtStart
(
j,−(Length(ykj) · ξjk + ∆r

(loc(prej),loc(j)) · ξ∆
k )
)
, ∀rk ∈ R (9)

0 ≤ Length(ykj) ≤ βmax
k −βmin

k

(−1)·ξjk
, ∀rk ∈ R; j ∈ Ck (10)

βmink ≤ Ek ≤ βmaxk , ∀rk ∈ R (11)

The modelled problem is solved using a branch-and-infer CP search, resulting in a daily schedule
for users and robots identifying which activities are allocated to whom and when. Strengthening
techniques to improve scheduling performance are also utilized, as detailed in Booth et al. [4].

4 Experiments

To validate the utility of the architecture within a physical MRS, we assess three real-world sce-
narios. The experiments are conducted on a multi-room floor of an engineering building at the
university with multiple students representing retirement home users. The details of these scenar-
ios are presented in Table 1, and a sample discretization of a subset of the facility regions (a total of
twelve personal and general purpose rooms, with some overlapping regions) is presented in Figure
3. For example, Scenario 2 involves seven human users and three assistive mobile robots within
an environment containing twelve total locations (personal rooms and general regions). For this
particular scenario, two bingo games and two recharge tasks are supplied as UB1 and UB2 to the
CP formulation, respectively.

We investigate the performance of the implemented architecture using computational runtime
and success rates for system execution (e.g., navigation command success rate). We design our
experimentation to verify the architecture through the integration of various modules. First, we
validate the ability of the Global RPS module, integrated with the Local RPS module, to find and
identify available users within the environment. These results are presented in Table 2. Second,
we validate the capability of the MRTA module, integrated with the Local RPS module, to create
consistent, high-quality activity schedules, find users, and initiate the associated activities. These
results are presented in Table 3.

The first part of the experiments consider the period of time from 7AM – 8AM where the Global
RPS finds users and elicits their availability. Referring to Table 2, we can see that the runtime
of the Global RPS planner is consistent across all scenario sizes and takes a negligible amount of
time. Plan execution, however, takes significant duration and increases as the size of the scenario
grows larger: Global RPS for the largest instance considered took just under 36 minutes, which
is within the one hour window allotted. The success rates for navigation, head scanning (the
process of searching a specific region cell), and silhouette detection during execution range from
84.6–100% across the scenarios. The relatively inferior performance in Scenario 1 was caused by a
poorly scanned area of the facility map that resulted in the need for external assistance. This was
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Table 1: Real-world test scenario parameters.

Parameter Scenario 1 Scenario 2 Scenario 3

Users (|U |) 3 7 10

Robots (|R|) 2 3 3

Total Regions (|L|) 8 12 15

Available Bingo (UB1) 1 2 2

Available Recharge (UB2) 1 2 3 Figure 3: Discretization
of regions within facility.

remedied in future scenarios by re-scanning the facility. User identification has the lowest success
rate of all; users standing too close to walls/corners of regions were not consistently identified
properly. This is an area we plan to improve upon in future work.

Table 2: Global and Local RPS experimental results.

Performance Metric Scenario 1 Scenario 2 Scenario 3

Planner Runtime (s) 0.43 0.45 0.43

Plan Execution (min and s) 17:35 24:21 35:42

Region Cells Searched 13 28 42

External Assists Required 2 2 1

Navigation (%) 84.6 (11/13) 92.9 (26/28) 97.6 (41/42)

Head Scan (%) 84.6 (11/13) 100.0 (28/28) 97.6 (41/42)

Silhouette Detection (%) 84.6 (11/13) 92.9 (26/28) 97.6 (41/42)

User Identification (%) 66.7 (2/3) 62.5 (5/8) 54.5 (6/11)

The second component of experimentation centres on the creation of consistent activity sched-
ules with the MRTA module, and their successful initiation with users found within the facility,
as illustrated in Table 3. To aid experimentation, elapsed time between scheduled activities is
artificially sped up. It is clear that as the scenario gets larger (and the number of activities in-
creases), CP requires additional time to find and prove the optimality of a plan, with runtimes (and
branching) increasing by roughly an order of magnitude from one scenario to the next. Once a
schedule has been produced, tasks are communicated to the remainder of the architecture as their
start times occur, leading to another instance of Local RPS within the user’s region. Navigation,
silhouette detection, and user identification bear very similar success rates to those within Table
2. Task communication and initiation maintain strong success rates due to their relatively simple
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Table 3: MRTA system and Local RPS experimental results.

Performance Metric Scenario 1 Scenario 2 Scenario 3

Activities (Bingo; Recharge) 7 (1; 0) 23 (2; 1) 31 (2; 1)

Scheduler Runtime (s) 0.01 0.82 7.66

Search Tree Branches 10 19,168 220,998

Feasible Solutions Found 1 13 18

Solution Status Optimal Optimal Optimal

Task Communication (%) 100.0 (7/7) 100.0 (23/23) 100.0 (31/31)

Navigation (%) 100.0 (7/7) 95.6 (22/23) 90.3 (28/31)

Silhouette Detection (%) 85.7 (6/7) 95.0 (19/20) 96.4 (27/28)

User Identification (%) 57.1 (4/7) 60.0 (12/20) 60.7 (17/28)

Task Initiation (%) 100.0 (7/7) 100.0 (23/23) 100.0 (31/31)

implementation. Overall, the performance statistics presented within Table 2 and Table 3 support
the ability of the architecture to find users and plan various activities within the multi-region en-
vironment.

5 Conclusion & Future Work

We present a general multi-robot task planning and execution architecture for a team of mobile
robots interacting with multiple human users. We implement the architecture in a retirement home
application where the robots provide assistance to a group of residents. A robot person search
system is used to autonomously search for and find multiple users in order to obtain information
regarding their availability and activity preferences. We use this information to model and solve
the resultant task planning problem using constraint programming. We present a number of test
scenarios using a team of heterogeneous robots and multiple users, highlighting the ability of the
architecture to effectively plan various activities. As part of future work for this ongoing project,
we intend to explore techniques for plan repair and re-planning in efforts to address scenarios with
greater levels of embedded uncertainty.
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[8] Brian P Gerkey and Maja J Matarić. A formal analysis and taxonomy of task allocation in
multi-robot systems. The International Journal of Robotics Research, 23(9):939–954, 2004.

[9] Philippe Laborie. Ibm ilog cp optimizer for detailed scheduling illustrated on three prob-
lems. In International Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 148–162. Springer, 2009.

[10] Carmen Gervet. Constraints over structured domains. Foundations of Artificial Intelligence,
2:605–638, 2006.

[11] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

12

This is the author’s version of an article that has been published in IEEE Intelligent Systems, Volume: 32 Issue: 6.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/MIS.2017.4531227

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE
by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/MIS.2017.4531227
mailto:pubs-permissions@ieee.org


[12] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling: applying
constraint programming to scheduling problems, volume 39. Springer Science & Business Media,
2012.

Kyle E. C. Booth is a Ph.D. candidate in the Department of Mechanical & Industrial Engineering
at the University of Toronto. He is a member of the Toronto Intelligent Decision Engineering Lab-
oratory (TIDEL) and the Autonomous Systems and Biomechatronics Laboratory (ASBLab). His
research interests include multi-robot coordination, constraint satisfaction, and automated schedul-
ing. He received his B.A.Sc. in Mechanical Engineering at the University of Toronto.

Sharaf C. Mohamed is a Ph.D. student in the Department of Mechanical & Industrial Engi-
neering at the University of Toronto. He is a member of ASBLab. His research interests include
multi-robot coordination, human-robot interaction, embedded systems, and autonomous robotics.
He received his B.A.Sc. in Electrical and Computer Engineering at the University of Toronto.

Sanjif Rajaratnam is an M.A.Sc. student in the Department of Mechanical & Industrial En-
gineering at the University of Toronto. He is a member of ASBLab. His research interests are
robotics and autonomous systems. He received his B.A.Sc. in Mechanical Engineering from the
University of Waterloo.

Goldie Nejat (S’03-M’06) is an Associate Professor in the Department of Mechanical & Industrial
Engineering at the University of Toronto, and the Founder and Director ASBLab. She is also an
Adjunct Scientist at the Toronto Rehabilitation Institute. Her research interests include intelligent
assistive/service robots, human-robot interactions, and semi-autonomous/autonomous control. She
received her B.A.Sc. and Ph.D. degrees in Mechanical Engineering at the University of Toronto.

J. Christopher Beck is a Professor in the Department of Mechanical & Industrial Engineering
at the University of Toronto, and the Founder and Director of TIDEL. His research interests
include scheduling and planning, constraint programming, mathematical programming, operations
research and artificial intelligence. He received his Ph.D. from the Department of Computer Science,
University of Toronto in 1999 in constraint-directed scheduling.

13

This is the author’s version of an article that has been published in IEEE Intelligent Systems, Volume: 32 Issue: 6.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/MIS.2017.4531227

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE
by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/MIS.2017.4531227
mailto:pubs-permissions@ieee.org

