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Abstract

In recent years, wind farm optimization has received much attention in the

literature. The aim of wind farm design is to maximize energy production

while minimizing costs. The wind farm layout optimization (WFLO) problem

on uniform terrains has been tackled by a number of approaches; however,

optimizing wind farm layouts on complex terrains is challenging due to the

lack of accurate, computationally tractable wake models to evaluate wind farm

layouts. This paper proposes an algorithm that couples computational fluid

dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts on

complex terrains. CFD simulations are used to iteratively improve the accuracy

of wake deficit predictions while MIP is used for the optimization process. The

ability of MIP solvers to find optimal solutions is critical for capturing the effects

of improved wake deficit predictions on the quality of wind farm layout solutions.

The proposed algorithm was applied on a wind farm domain in Carleton-sur-

Mer, Quebec, Canada. Results show that the proposed algorithm is capable of

producing excellent layouts in complex terrains.
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1. Introduction1

The main objective of a wind farm is to maximize energy production while2

minimizing costs. The power production of a wind farm is dependent on the3

incoming wind speeds, which are themselves dependent on terrain topography,4

atmospheric conditions, and upstream turbine wakes. In particular, production5

loss due to the wake interference of upstream turbines, called wake losses (Fig.6

1), can reduce the annual energy of a wind farm by as much as 10% to 20% [1].7

In the wind farm layout optimization (WFLO) problem, therefore, minimizing8

wake losses is crucial.9

Most studies have focused on optimizing layouts on flat and uniform to-10

pography [2, 3, 4, 5, 6, 7]. However, wind speeds over complex terrains are11

very different than they are over flat terrains, since complex flow structures12

can form as wind flows over various land features. Consequently, turbine power13

production is strongly influenced by local topography. Furthermore, the lack14

of analytical, closed-form mathematical models for wakes over complex terrains15

makes it difficult to evaluate and optimize wind farm layouts. As a result, Feng16

and Shen [8] modified an adapted Jensen wake model to estimate the wake ef-17

fects of a wind farm on a two-dimensional Gaussian hill. Taking a different18

approach, the virtual particle model developed by Song et al. [9] modeled the19

turbine wake as concentration of non-reactive particles undergoing a convection-20

diffusion process in a relatively low-cost model that describes the wake more21

accurately than a modified flat terrain wake model. Despite these efforts, re-22

ducing the computational cost of wake evaluations while maintaining accuracy23

during the optimization process remains a challenge. Hence, subsequent work24

[10, 11, 12] has focused on better integration of wake modeling and optimization25

algorithms.26

Computational fluid dynamics (CFD) models (e.g. actuator disk and actu-27

ator line) have been developed to simulate complex wake phenomena and their28

interactions with terrains [13, 14, 15, 16, 17, 18, 19]. However, these simulations29

are expensive and must be used sparingly during the optimization process.30
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Figure 1: Turbine wake created by west wind. The wake from turbine at location i propagates

downstream, affecting location j.

Deterministic optimization approaches such as mixed-integer programming31

(MIP) [2, 3, 20, 21, 22] have been shown to be promising in solving WFLO32

problems. These models can provide global solutions and optimality bounds33

for relatively small problems. In a MIP model, the wind farm is divided into34

discrete number of turbine locations and the wake interactions are calculated35

in advance for algorithms such as branch and bound [3, 20, 23, 24, 25], to be36

applied to solve the WFLO problem.37

The objective of this paper is to introduce an algorithm capable of integrating38

CFD simulation data to intelligently optimize wind farm layouts located on39

complex terrains. In the proposed algorithm, CFD simulations are used as40

input for MIP to improve the accuracy of the wake effects. Conversely, MIP41

provides information on the promising turbine locations where CFD simulations42

should be conducted. This two-way coupling between MIP and CFD reduces43

the number of CFD simulations significantly, and in turn the computational44

cost. This algorithm is applied on a terrain found in Carleton-sur-Mer, Quebec,45

Canada. Results show that the algorithm is capable of optimizing layouts of46

wind farms on complex terrains by integrating CFD simulation data into the47

optimization process.48
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2. Previous Work49

2.1. Optimization Models50

A number of approaches to tackle the WFLO have been developed in the51

literature. The WFLO problem can be modeled by two approaches, discrete52

and continuous. In discrete models [4, 5, 26], the wind farm domain is di-53

vided into a number of possible turbine locations, while for continuous models54

[27, 28, 29, 30, 31, 32, 33], the turbine location is represented by two-dimensional55

continuous coordinates. Continuous models are typically solved using evolution-56

ary metaheuristic algorithms [31, 34, 35, 36, 37, 32, 38, 39, 40] and nonlinear57

optimization methods [41, 42]. A discrete model can be solved by using mathe-58

matical programming approaches, which have the significant advantage of pro-59

viding optimality bounds [3, 20, 24, 25, 6].60

2.2. CFD Models61

Computational fluid dynamics models have been applied to simulate wind62

turbine wakes, using Reynolds-averaged Navier-Stokes (RANS) [13, 14] and63

Large Eddy Simulation (LES) [15, 43, 44, 45, 46] turbulence models to sim-64

ulate the turbulent wake phenomena. In addition to turbulence modeling, there65

are two main approaches to model rotor geometry: actuator disk/line and di-66

rect blade modeling. In an actuator disk [13, 14, 16, 47, 48, 49] or actuator line67

[50, 51, 52] approach, the turbine is modeled by imposing aerodynamic forces68

through a disk representing the rotor or lines representing the turbine blades,69

respectively. In a direct blade modeling approach [44, 53, 54], the turbine ge-70

ometries are inserted into the computational domain, allowing a more accurate71

representation of the aerodynamic effects than the actuator disk/line approach72

at the expense of higher computational cost. The actuator disk approach is less73

computationally expensive and less accurate. Despite the introduction of these74

models in turbine wake modeling, it remains difficult to apply these models in75

optimization algorithms to solve the WFLO problem due to the computational76

expense of CFD models.77
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3. Proposed WFLO Optimization Algorithm78

While optimization and wake modeling have been applied individually to79

WFLO, there is a significant challenge in combining them. An optimization80

algorithm typically must evaluate a very large number of solutions and partial81

solutions. However, a single CFD simulation is so computationally expensive82

that very few can be conducted in a reasonable run-time. In our approach,83

the optimization model is first used with less accurate, less expensive data to84

identify promising turbine locations. The wake effects of turbines placed at85

those locations are updated using CFD simulations. The CFD data is then86

used iteratively by the optimization model to identify newly promising locations.87

Figure 2 shows a schematic of our approach.88

The principal idea behind the proposed algorithm is that on a complex ter-89

rain, the wind energy potential of a location is influenced by the local terrain to-90

pography, thus different turbine locations will have different “turbine placement91

potentials”. The proposed algorithm utilizes a MIP model to search through92

promising locations through a combination of estimated wake effects and CFD93

simulation data.94

Looking at the flowchart of the proposed algorithm in Fig. 2, firstly, a95

flow field over the complex terrain without turbines is generated using CFD.96

The initial wake effects can be calculated by superimposing a flat terrain wake97

onto the complex terrain as described in Section 3.2. This initial problem is98

then solved to determine where the turbines should be placed. However, due99

to inaccuracies in the initial wake estimate, placing turbines at these locations100

may not produce the optimal layout. Hence CFD simulations are conducted101

at these locations to improve the accuracy of the initial estimated wake effects.102

This process is repeated until no new improving turbines locations are found.103

In other words, the wake effects described in the optimization model becomes104

more accurate with each iteration. Hence, the optimal solution of the current105

iteration is more accurate than those found in previous iterations. If the problem106

cannot be solved to optimality due to run-time limits, then it becomes necessary107
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Figure 2: Flowchart of the optimization algorithm process

to compare the near-optimal solutions from previous iterations. Conceivably,108

other optimization methods such as metaheuristics are also compatible with this109

algorithm; however, without proof of optimality, the termination criteria for the110

optimization problem would need to be defined appropriately.111

3.1. MIP Optimization Model112

A number of mixed-integer programming formulations have been developed113

to tackle the WFLO problem [3, 20, 21, 22]. A MIP model consists of an114

objective function, a set of constraints, and a mix of integer and continuous115

variables. To describe the WFLO problem, the wind farm is discretized into116

possible turbine locations with corresponding binary decision variables denote117
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if a turbine is located at each location or not. The formulation used in this work,118

identical to that of the work of Kuo et al. [21, 22], has an objective function119

of maximizing the sum of the kinetic energy experienced by each turbine, as120

follows. Let the wind farm domain be divided into a total of N cells, let K be121

the number of turbines to be placed (considered a constant in the formulation),122

and let xi be a binary variable denoting whether a turbine is placed in the i-th123

cell. The optimization problem is124

max

N∑
i=1

∑
s∈S

psxi

[
U2
0,s,i −

∑
j∈J

(U2
0,s,j − u2s,ij)xj

]
(1a)

s.t

N∑
i=1

xi = K (1b)

dijxi + djixj ≤ 1 ∀i, j (1c)

xi ∈ {0, 1} ∀i = 1, ..., N (1d)

where the binary terms dij and dji indicate the violation of the distance con-125

straint between i-th and j-th cells, which need to be calculated in advance.126

Namely, dij = dji = 1 if the distance constraint is violated when turbines are127

placed both in the i-th and j-th locations, and dij = dji = 0 otherwise. In128

Eq.(1a), ps is the probability of wind state s, and S is the total number of129

wind states, where a wind state is defined as a (wind speed, wind direction)130

pair. Most importantly, U2
0,s,j − u2s,ij denotes the kinetic energy deficit at cell j131

caused by a turbine at cell i, which is dependent on the wind state, s. Figure 1132

shows a wake from turbine located in cell i, propagating downstream to affect133

cell j.134

In this formulation, all the single wake effects caused by a turbine must be135

calculated in advance for all possible locations. That is, when a turbine is placed136

in cell i, its single wake effects on all remaining cells must be known for all pos-137

sible turbine locations and wind states. Hence, the number of potential turbine138

locations (i.e., the number of cells) multiplied by the number of wind states139

determines the number of wake calculations required (i.e., N |S|) to define the140
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MIP formulation. In the proposed algorithm, the promising turbine locations141

are identified from the optimal MIP layout solutions using less accurate data142

and CFD simulations are only conducted at these locations. In this way, we143

seek to achieve the same wake accuracy as running N |S| CFD simulations with144

a fraction of the computational cost.145

When multiple turbines wakes are present, their combined effect on wind146

speed recovery is approximated by using an energy balance approach by Kuo147

et al. [22]. This form is suitable for MIP formulation due to its linearity and148

sound physical basis. Energy balance is done along a streamtube from the free149

stream mixing into the wake, assuming the wake losses are additive for overlap-150

ping wakes. The MIP model can be solved using mathematical programming151

approaches to compute the optimal turbine layout for each set of inputs.152

3.2. Wake Modeling153

In order to identify a promising turbine placement to evaluate with a CFD154

simulation, we must first solve the MIP model with approximate wake effects.155

These wake effects are calculated using an approximate wake model by super-156

imposing CFD simulation data of a flat terrain wake onto the complex terrain,157

using Eq.(2) and Eq.(3). The assumptions made here are that the wake prop-158

agates downstream along the terrain surface at hub height and that the wake159

will experience a speed-up factor due to terrain effects, i.e.160

uct,s,j = Ss,juft,s,j , (2)

uwct,s,ij = Ss,ju
w
ft,s,ij , (3)

where uct,s,j and uft,s,j are the free stream wind speeds on complex and flat161

terrains in cell j in wind state s, and uwct,s,ij and uwft,s,ij describe the wind162

speeds in the wake on complex and flat terrains in cell j due to a turbine in163

cell i, respectively. In other words, Ss,j , the speed-up factor due to terrain164

effects experienced in cell j (in comparison with flat terrain flow field) in wind165
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state s, is calculated without the presence of turbines, and then used to “carry”166

the wakes downstream, similar to the implementation used by Feng and Shen167

[8] and in several commercial software packages [8]. In this work, whenever168

CFD simulation data is available, the speed-up factor Ss,j is corrected using169

simulation results. It should be noted that while superimposing wakes onto170

terrains is not an accurate representation of the actual wake effects, this work171

also addresses the effects of accuracy of initial wake approximation on solution172

quality and computational cost (see following section).173

When promising turbine locations are available, CFD simulations are con-174

ducted to simulate wake effects of turbines at those locations. The actuator disk175

model and the extended k − ε turbulence model by El Kasmi and Masson [55]176

are used in this study. Specifically, an actuator disk is inserted into the com-177

putational domain and the turbulent dissipation zones are prescribed upstream178

and downstream of the disk, shown in Fig. 3. Appropriate boundary conditions179

(e.g. inlet, outlet, surface roughness) must be prescribed to accurately simulate180

the atmospheric boundary layer.181

Figure 3: Actuator disk model by El Kasmi and Masson [55].

To summarize how MIP and CFD are combined, the proposed algorithm is182
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as follows:183

(1) Generate flow field over the complex terrain without turbines using CFD.184

(2) Construct the initial wake effects using the approximated method described185

in wake modelling section.186

(3) Solve the optimization problem to identify the most promising locations.187

(4) Run single turbine CFD simulations at locations found in the previous step.188

(5) Update the wake effects from CFD results (us,ij term) in optimization189

(Eq.(1a)).190

(6) Repeat steps (3–5) until the solution converges.191

192

3.3. Impact of the Initial Wake Approximation193

In this algorithm, the final layout is dependent on the initial wake approx-194

imation. The assumption that wakes propagate in a straight line at the hub195

height may not hold for complex terrains, thus resulting in a vast overestimate196

of the velocity deficit in certain cells and an underestimate in others. If the197

velocity deficit is overestimated in some cells in the initial approximation, those198

cells might never be considered in future layout solutions. Thus a relaxation199

parameter, C, is introduced to reduce the velocity deficit in the initial wake200

approximation. Specifically, the velocity deficit is multiplied by the relaxation201

parameter, C, to force an underestimate of the velocity deficit and mitigate the202

effect of poor approximations of wake behavior on complex terrains.203

When the wake effects are underestimated, more turbine locations or cells204

will be explored so more CFD simulations are required. Hence, the relaxation205

parameter C controls how aggressively the optimization space is explored, bal-206

ancing the need for better accuracy in wake modeling with the total compu-207

tational cost of the optimization. Specifically, the us,ij term from Eq.(1a) is208

re-written as U0,s,j − CDs,ij , where Ds,ij is the velocity deficit at cell j caused209

by turbine at cell i in wind state s. The U0,s,j −CDs,ij term is only used when210

CFD data is not available (these cells are defined as set N2). If CFD data is211

available (defined as set N1), then the simulation data is used directly for us,ij212
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and the relaxation parameter is not used. The new MIP formulation is written213

as,214

max
∑
i∈N1

∑
s∈S

psxi

[
U2
0,s,i −

∑
j∈J

(U2
0,s,j − u2s,ij)xj

]
(4a)

+
∑
i∈N2

∑
s∈S

psxi

[
U2
0,s,i −

∑
j∈J

(2U0,s,j − CDs,ij)CDs,ijxj

]
(4b)

s.t

N∑
i=1

xi = K (4c)

dijxi + djixj ≤ 1 ∀i, j (4d)

xi ∈ {0, 1} ∀i = 1, ..., N. (4e)

4. Case Study: The Carleton-sur-Mer Wind Farm215

The proposed algorithm is tested on a 2.8 km x 2.8 km wind farm domain in216

Carleton-sur-Mer, Quebec, Canada. The topography was extracted from Google217

MapsTM (https://goo.gl/maps/XTpxd), with a roughness length assumed to be218

0.1 m. The terrain elevation in meters above sea level is shown in Fig. 4. The219

optimization domain is discretized into a uniform grid of 20 x 20 cells, separated220

at cell center by a distance of 140 m. A wind farm layout of 20 turbines is221

optimized for this terrain. The specifications of the turbines are selected to be222

similar to those in the Carleton Wind Farm, namely, a constant thrust coefficient223

of 0.8, hub height of 77 m, a rotor diameter of 80 m, and a rated power 1.5 MW.224

[56]. The proximity constraint between turbines is set as 5 turbine diameters225

apart.226

For this wind farm domain, information regarding the wind speed and di-227

rections are available from the Canadian Wind Energy Atlas [57]. A power law228

velocity profile is used to describe the wind speed at varying heights229

u(y) = 6
(y − 139

50

)0.16
, (5)
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Figure 4: 2.8 km x 2.8 km wind farm domain in Carleton-sur-Mer

where y is the height above sea level. This velocity profile is used to define inlet230

boundary conditions for CFD simulations. The wind rose used for this domain231

is shown in Fig. 5, noting that the dominant wind direction is from the west.232

The turbulent kinetic energy and dissipation rate at the inlet are prescribed233

as k = (u∗)2

Cµ
and ε(y) = (u∗)3

κ(y−139) , where Cµ = 0.033 and κ = 0.4. With the234

assumptions for ground roughness and the height (1000 m) of the boundary235

layer, the friction velocity u∗ = 0.4m/s. The velocity and turbulence quantities236

are fixed at the top boundary, as other types of boundary conditions such as237

symmetry or slip wall could cause undesirable streamwise gradients [16, 58]. In238

case the wind is not aligned with the x-direction, the velocity inlet takes the239

form of ux(y) = 6
(
y−139

50

)0.16
cos(θ) and uz(y) = 6

(
y−139

50

)0.16
sin(θ), where θ240

is the wind direction relative to the x-axis [59]. The ground is taken as wall241

boundary and the outlet face is considered as pressured outlet boundary.242
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Figure 5: Wind rose for Carleton-sur-Mer. [57]

4.1. Initial Results243

To summarize the WFLO problem, 20 turbines are placed in a domain (Fig.244

4) that is discretized into uniformly sized 20 x 20 cells. Based on the wind rose,245

Fig. 5, there are 12 wind directions with a power law wind velocity profile as246

given in Eq.(5). The proximity constraint between turbines was set to be 5247

diameters distance apart. In the initial test, the relaxation parameter has been248

set to C = 1.249

The MIP model can be solved under 30 seconds using Gurobi 5.6, so that250

the bulk of the computational expense is dedicated to CFD simulations. For251

each cell, a CFD simulation needs to be conducted for every wind direction, or252

in this case, 12 CFD simulations per cell. With 400 possible locations, and 12253

wind directions, the maximum number of single turbine CFD simulations is 400254

x 12 = 4800.255

Each CFD simulation is performed for a domain of 2.8 km x 2.8 km in256

length and width, with a height up to 1000 m above sea level, shown in Fig. 6a.257
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Initially, the CFD simulations are conducted without the presence of turbines258

for all 12 wind directions, with the domain discretized into 1.2 million cells in259

the domain. When a turbine is placed in the domain, the number of cells is260

increased to 1.6 million cells to better capture the wake effects downstream of261

the turbine, shown in Fig. 6b.262

(a) CFD domain with one turbine (b) Mesh of the CFD domain.

Figure 6: Wind farm domain for CFD simulations

In the first iteration, the flow field in the absence of turbines is obtained from263

CFD simulations. The turbine wake from flat terrain is modified using Eq.(3)264

to approximate the wake effects without conducting any CFD wake simulations.265

The layout found in this first iteration is shown in Fig. 7a.266

In the second iteration, the wakes for wind turbines placed at these 20 lo-267

cations are simulated using CFD and the initial wake effects are updated. The268

new layout that was found is shown in Fig. 7b. In this new layout, three tur-269

bines are relocated compared to the first iteration. The turbine wakes from270

these three locations (indicated by circles) are simulated and updated. In the271

third and final iteration, the layout found in Fig. 7c is identical to that of the272

second layout, indicating that the algorithm has converged.273

Note that in the final layout, some turbines are aligned in the prevailing wind274

direction (west). However, it is important to keep in mind that there are two275

main factors in optimizing wind farm layouts on complex terrains, wake effects276

and wind energy potential. As wind speeds are not uniform over a complex277

terrain domain, it is possible to find a layout in which the algorithm prefers to278

place a turbine at a location with high energy potential such that it offsets the279
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wake losses.280

(a) First iteration (b) Second iteration

(c) Third iteration

Figure 7: Optimal layout found at the end of each iteration. The circles mark the turbines

that were relocated in that iteration. Note that after only 3 iterations, the algorithm did

not identify additional turbine locations that would lead to improvements in the optimization

objective.

4.2. Manipulating the Relaxation Parameter281

A parametric study on the relaxation parameter, C, was conducted, consid-282

ering the values C = {1, 0.7, 0.4, 0.2, 0}, to study the effects of the initial wake283

approximation on the solution quality and computational cost. In a WFLO284

problem for complex terrains, the solution upper bound in terms of energy pro-285

duction is one where the turbines are placed at locations where the wind speeds286

are the highest, ignoring the wake effects. This upper bound for this test case287
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is found to be 2177.48. Normalizing all the objective values found in this study288

with this upper bound provides a relative comparison of the solutions found289

using different values of C. This normalized value is defined as the layout ef-290

ficiency. The influence of the values of C on the progression on the objective291

value is shown in Fig. 8.292

The solutions found for different values of C are shown in Figs. 9–12. The293

influence of C on the number of iterations, number of CFD simulations, final294

objective value, layout efficiency, and run-time is shown in Table 1. It can be295

seen that as C decreases in value, better layouts are produced. It is notable296

that for the cases where C ≥ 0.2, only three iterations and a small fraction297

of the total number of CFD simulations are needed for convergence. For the298

case of C = 0, eight iterations are required for convergence and more CFD299

simulations are needed (compared with higher values of C) as the algorithm300

searched through 52 turbine locations in the domain. In other words, when the301

wake deficits are not accounted for, the algorithm will “blindly” search through302

the most promising cells in terms of wind resource until the optimal solution is303

found. This behavior can be seen in Fig. 12, where large number of turbines304

are relocated to neighbouring locations from one iteration to the next, until all305

the promising cells are exhausted. While computational cost is not a major306

concern when the size of the problem is relatively small, and can be solved307

to optimality relatively quickly, this can be a significant downside when the308

problem increases in size, e.g. larger number of possible turbine locations and309

more complex wind regimes. For the test cases where C ≥ 0.2, the total run-310

time is approximately 300 hours on a Dell Precision T1700 PC, but the run-time311

more than doubled when C = 0, demonstrating the importance of the relaxation312

parameter in controlling the computational cost. It is important to note that313

the solution found in the C = 0 case is the globally optimal solution. That314

is, if CFD simulation data is available for all cell locations (N |S| = 4800 CFD315

simulations, approximately 5300 hours), the optimal solution would be identical316

to that of C = 0, unless the presence of turbine wakes can locally improve the317

energy potentials of some locations.318
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For all the different values of C tested, the final layout solutions are within319

2% of the upper bound. The difference in performance between the best (C = 0)320

and worst (C = 1) solutions is less than 1.5%, demonstrating the algorithm’s321

capability to find good solutions even with poor initial estimation of wake effects.322

Figures 13 and 14 show the effects of the relaxation parameter on computational323

cost and layout efficiency. In terms of solution quality, underestimating the wake324

deficit (e.g. C = 0.2) is desirable as the path of wake propagation is difficult to325

predict prior to CFD simulations. When higher values of C are used, velocity326

deficits experienced by downstream turbines may be overestimated in some cells.327

The consequence is that certain promising locations may be ignored during the328

search. However, when wake deficits are underestimated with lower values of329

C, the computational cost increases. In this particular problem, a low C value330

of 0.2 did not dramatically increase the computational cost relative to larger331

values, but did improve solution quality significantly. Note that this algorithm332

is not a globally seeking algorithm, hence the final solution is dependent on333

the initial layout. Based on the finding, the relaxation factor has the effect of334

forcing the algorithm to converge into locally optimal solutions.335

Choosing the “right” C to produce good layout will depend on the terrain336

topography. If the terrain is too rugged and the flow experiences rapid changes337

where the streamlines can deviate significantly from the terrain profile, a smaller338

C would be ideal in finding good layouts. As the local changes in the topography339

is less pronounced, a larger value of C would be preferred. An intuitive and340

adaptive scheme of varying values of C for every iteration can be developed,341

borrowing the idea from simulated annealing [60], e.g. starting with initial low342

C and adjusts as the algorithm progresses. In addition, better prediction of the343

initial wake effect is needed for improving solution quality and computational344

cost. These two areas of improvement will be the focus in future studies.345

17



Table 1: Influence of relaxation parameter on solution quality and computational cost

C
# of

Iterations

# of CFD

Evaluations

Final

Objective

Value

Layout

Efficiency

(%)

Run-time

(hr)

1 3 23 x 12 = 276 2133.25 97.97 303.63

0.7 3 22 x 12 = 264 2146.66 98.58 290.43

0.4 3 21 x 12 = 252 2150.83 98.78 277.23

0.2 3 24 x 12 = 288 2165.16 99.43 316.83

0 8 52 x 12 = 624 2165.80 99.46 686.47

Figure 8: The progression of solutions with varying relaxation values.
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(a) First iteration (b) Second iteration

(c) Third iteration

Figure 9: Optimal layout found at the end of each iteration with relaxation parameter, C, set

to 0.7. The circles mark the turbines that were relocated in that iteration. Note that after

only 3 iterations, the algorithm did not identify additional turbine locations that would lead

to improvements in the optimization objective.
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(a) First iteration (b) Second iteration

(c) Third iteration

Figure 10: Optimal layout found at the end of each iteration with relaxation parameter, C,

set to 0.4. The circles mark the turbines that were relocated in that iteration. Note that after

only 3 iterations, the algorithm did not identify additional turbine locations that would lead

to improvements in the optimization objective.
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(a) First iteration (b) Second iteration

(c) Third iteration

Figure 11: Optimal layout found at the end of each iteration with relaxation parameter, C,

set to 0.2. The circles mark the turbines that were relocated in that iteration. Note that after

only 3 iterations, the algorithm did not identify additional turbine locations that would lead

to improvements in the optimization objective.
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(a) First iteration (b) Second iteration

(c) Third iteration (d) Fourth iteration

(e) Fifth iteration (f) Sixth iteration
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(g) Seventh iteration (h) Eighth iteration

Figure 12: Optimal layout found at the end of each iteration with relaxation parameter, C,

set to 0. The circles mark the turbines that were relocated in that iteration. Note that after

8 iterations, the algorithm did not identify additional turbine locations that would lead to

improvements in the optimization objective.

5. Concluding Remarks346

In this work, an algorithm that optimizes wind farm layouts on complex347

terrains was introduced. This algorithm combines CFD simulations with math-348

ematical programming methods for layout optimization. To the best of the349

authors’ knowledge, this is the first WFLO study that makes use of mathemat-350

ical programming methods with CFD wake simulations. The proposed iterative351

approach identifies promising turbine locations to minimize the number of CFD352

simulations required in optimization while finding good layouts, even when the353

optimization relies on inaccurate wake models during the first iterations. The354

proposed approach starts with an approximate wake model that superimposes355

a flat terrain wake model on the topography, and this model is adaptively re-356

fined based on CFD simulations that are conducted only at promising turbine357

locations. This paper presents a better and more efficient optimization of wind358

turbine layouts on complex terrain, because of better modeling accuracy and359

the theoretical convergence bounds of MIP models.360

In order to study the effects of initial wake approximation on solution quality361

23



Figure 13: Effects of relaxation parameter on computational cost (fraction of maximum num-

ber of CFD evaluations).
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Figure 14: Effects of relaxation parameter on layout efficiency.
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and computational cost, we introduced a relaxation parameter to control how362

the optimization space is explored. It was found that regardless of the parameter363

value, the difference in performance for best and worst layouts found is less than364

1.5%, indicating that the algorithm is capable of finding good layouts even under365

poor initial wake approximations. Finding a suitable value for the relaxation366

parameter will depend on the balance between computational cost and solution367

quality as low values of the relaxation parameter may improve solution quality368

at the expense of computational cost while the the reverse may hold true for369

high values.370

Further work in developing the proposed novel approach for WFLO com-371

bining CFD simulations of wake behavior with mathematical programming is372

needed to study the scalability of the algorithm to larger problem instances, i.e.,373

to wind farms with more potential turbine locations. The implications of this374

work are that CFD can be a valuable tool in WFLO problems and that good375

potential turbine locations can be identified in advance to significantly reduce376

the number of expensive simulations.377
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