
Appendix for Domain-Independent Dynamic Programming:
Generic State Space Search for Combinatorial Optimization*

Ryo Kuroiwa, J. Christopher Beck
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

ryo.kuroiwa@mail.utoronto.ca, jcb@mie.utoronto.ca

CP Models
We present the new CP models used in the experimental
evaluation.

TSPTW
We adapt a CP model for a single machine scheduling prob-
lem with time windows (Booth et al. 2016) to TSPTW. Let
xi be an interval variable in a range [ai, bi] with the length
of 0, representing visiting customer i.

min
∑
i∈N

ci,Next(xi)

s.t. NoOverlap([x0, ..., xn−1], {cij | i, j ∈ N})
First(x0)

xi : intervalVar(0, [ai, bi]) ∀i ∈ N.

The first constraint ensures that interval variables are or-
dered in a sequence, and for two consecutive variables xi

and xj , the start of xj must be at least cij greater than the
end of xi. In the objective, Next(xi) is the interval vari-
able next to xi in the sequence. For the last variable, we
let Next(xi) = x0. The second constraint ensures that the
depot is visited first.

SALBP-1
For SALBP-1, we implement the CP model proposed by
Bukchin and Raviv (2018) with the addition of the Pack
global constraint (Shaw 2004). For an upper bound on the
number of stations, instead of using a heuristic to compute
it, we use m̄ = min{n, 2⌈

∑
i∈N ti/c⌉} following the MIP

model (Ritt and Costa 2018). Let M = {0, ..., m̄ − 1} be
the set of stations. Let m be a decision variable representing
the number of stations, xi be a decision variable represent-
ing the index of the station of task i, and yj be the sum of
the processing times of tasks scheduled in station j. The set
of all direct and indirect predecessors of task i is

P̃i = {j ∈ N | j ∈ Pi ∨ ∃k ∈ P̃j , j ∈ P̃k}.
The set of all direct and indirect successors of task i is

S̃i = {j ∈ N | i ∈ Pj ∨ ∃k ∈ S̃i, j ∈ S̃k}.
*This document is an appendix for a paper published at the 33rd

International Conference on Automated Planning and Scheduling
(ICAPS 2023) (Kuroiwa and Beck 2023)

Thus,

ei =

⌈
ti +

∑
k∈P̃i

tk

c

⌉
is a lower bound on the number of stations required to sched-
ule task i,

li =

⌊
ti − 1 +

∑
k∈S̃i

tk

c

⌋
is a lower bound on the number of stations between the sta-
tion of task i and the last station, and

dij =

⌊
ti + tj − 1 +

∑
k∈S̃i∩P̃j

tk

c

⌋

is a lower bound on the number of stations between the sta-
tions of tasks i and j.

min m

s.t. Pack({yj | j ∈ M}, {xi | i ∈ N}, {ti | i ∈ N})
0 ≤ yj ≤ c ∀j ∈ M

ei − 1 ≤ xi ≤ m− 1− li ∀i ∈ N

xi + dij ≤ xj ∀j ∈ N, ∀i ∈ P̃j ,

̸ ∃k ∈ S̃i ∩ P̃j : dij ≤ dik + dkj

m ∈ Z
yj ∈ Z ∀j ∈ M

xi ∈ Z ∀i ∈ N.

The first constraint ensures xi ∈ M and
∑

i∈N :xi=j ti = yj .
The second constraint ensures that the sum of the processing
times does not exceed the cycle time. The third constraint
states the lower and upper bounds on the index of the sta-
tion of i. The fourth constraint is an enhanced version of the
precedence constraint using dij .

Bin Packing

For the CP model for bin packing, we also use Pack. In addi-
tion, we ensure that item i is packed in the i-th or an earlier

bin.

minmax
i∈N

xi + 1

s.t. Pack({yj | j ∈ M}, {xi | i ∈ N}, {ti | i ∈ N})
0 ≤ yj ≤ c ∀j ∈ M

0 ≤ xi ≤ i ∀i ∈ N

yj ∈ Z ∀j ∈ M

xi ∈ Z ∀i ∈ N.

We compute the upper bound m̄ using the first-fit decreasing
heuristic.

DP Models
We prove the properties of the DP models assumed in the
paper and provide the DyPDL representations of the models.

Lower Bounds for SALBP-1 and Bin Packing
We show that the lower bounds used in the DP models for
SALBP-1 and bin packing are valid. These lower bounds,
LB1, LB2, and LB3 were originally proposed by Scholl and
Klein (1997). The first lower bound, LB1, is originally de-
fined as

⌈∑
i∈N ti/c

⌉
. This bound relaxes the problem by

allowing to split a task across multiple stations. In a state
⟨U, r⟩ (⟨U, r, k⟩ for bin packing), we only need to schedule
tasks in U , and we can schedule tasks in the current sta-
tion, which has the remaining time of r. Therefore, we use
⌈(
∑

i∈U ti − r)/c⌉ as a lower bound.
The second lower bound, LB2, is originally defined as∑
i∈N w2

i + ⌈
∑

i∈N w′2
i ⌉, where w2

i = 1 if ti > c/2 and
w′2

i = 1/2 if ti = c/2. This bound only considers tasks i
with ti ≥ 2/c. The first term, the number of tasks i with
ti > 2/c, is a lower bound because other tasks cannot be
scheduled in the same station as i. For the remaining tasks,
which have ti = 2/c, two tasks can be scheduled in the same
station, which results in the second term. In our model, in a
state ⟨U, r⟩, we use the bound

∑
i∈U w2

i + ⌈
∑

i∈U w′2
i ⌉ if

r < c/2 because we cannot schedule any tasks with ti ≥ 2/c
in the current station. If r ≥ c/2, since we may use the cur-
rent station, we subtract 1 from the bound.

The second lower bound, LB3, is based on a similar idea
to LB2. It is originally defined as ⌈

∑
i∈N w′3

i ⌉ and only con-
siders tasks i with ti ≥ 3/c. Therefore, we use the bound
⌈
∑

i∈U w3
i ⌉ if r < c/3 and subtract 1 from it otherwise.

Cost-Algebra for MOSP and Graph-Clear
We show that the cost expressions in the DP models for
MOSP and graph-clear satisfy the property of cost-algebra.
In these models, the cost expressions are in the form of
max{eτ (S), V (S[[τ]])} instead of eτ (S) + V (S[[τ]]).

A cost-algebra (Edelkamp, Jabbar, and Lafuente 2005) is
defined as a 6-tuple ⟨A,⊔,×,⪯,0,1⟩ where A is a set, × :
A × A → A is a binary operator, ⪯ ∈ A × A is a binary
relation, 0,1 ∈ A, and ⊔ : 2A → A is an operator to select
one element from a subset of A. It must satisfy the following
conditions.

1. ∀a, b ∈ A, a× b ∈ A

2. ∀a, b, c ∈ A, a× (b× c) = (a× b)× c

3. ∀a ∈ A, a× 1 = 1× a = a

4. ∀a ∈ A, a ⪯ a

5. ∀a, b ∈ A, a ⪯ b ∧ b ⪯ a ⇒ a = b

6. ∀a, b, c ∈ A, a ⪯ b ∧ b ⪯ c ⇒ a ⪯ c

7. ∀a, b ∈ A, a ⪯ b ∨ b ⪯ a

8. ∀B ⊆ A,∀b ∈ B,⊔B ⪯ b

9. ∀a ∈ A, a ⪯ 0 and 1 ⪯ a

10. ∀a, b, c ∈ A, a ⪯ b ⇒ a× c ⪯ b× c and c× a ⪯ c× b

Conditions 1-3 ensure that ⟨A,×,1⟩ is a monoid. Conditions
4-7 ensure that ⪯ is a total order. Condition 10 is called iso-
tonicity.

Edelkamp, Jabbar, and Lafuente (2005) proved that ⟨R+∪
{+∞},min,+,≤,+∞, 0⟩, which corresponds to the short-
est path problem, satisfies the conditions. We show that
a tuple ⟨R+ ∪ {+∞},min,max,≤,+∞, 0⟩ satisfies the
conditions, which corresponds to the cost expresssions
in the DP models for MOSP and graph-clear. The tuple
⟨R+ ∪ {+∞},max, 0⟩ is a monoid since max{a, b} ∈
R, max{a,max{b, c}} = max{max{a, b}, c}, and
max{a, 0} = max{0, a} = a. Conditions 4-9 hold since
⟨R+ ∪ {+∞},min,+,≤,+∞, 0⟩ is a cost-algebra. For the
isotonicity, max{a, c} ≤ max{b, c} and max{c, a} ≤
max{c, b} for a ≤ b.

DyPDL Representations
We present DyPDL representations and YAML-DyPDL do-
main files of the DP models for CVRP in Table 1 and List-
ing 1, for SALBP-1 in Table 2 and Listing 2, for bin packing
in Table 3 and Listing 3, for MOSP in Table 4 and Listing 4,
and for graph-clear in Table 5 and Listing 5.

In SALBP-1, open-station is a forced transition in
the YAML-DyPDL domain file. While it is not necessar-
ily in theory because the other transitions are not applicable
when open-station is applicable, it can be beneficial
since a solver does not need to evaluate the preconditions of
the other transitions.

V Type Objects Preference
U set customers N
i element customers N
l numeric less
k numeric less
K Type Indices
q numeric
m numeric
dj numeric j ∈ N
cjp numeric j, p ∈ N
c′jp numeric j, p ∈ N

S0 ⟨U = N \ {0}, i = 0, l = 0, k = 1⟩
B {{U = ∅, i = 0}}
C ∅
h 0

T eff cost pre

visit j
U ← U \ {j} cij + V (S[[τ]]) j ∈ U
i← j l + dj ≤ q
l← l + dj

visit j via the depot

U ← U \ {j} c′ij + V (S[[τ]]) j ∈ U
i← j k < m
l← dj
k ← k + 1

return i← 0 ci0 + V (S[[τ]]) U = ∅
i ̸= 0

Table 1: DyPDL representation of the DP model for CVRP.
No forced transition exists in this model.

V Type Objects Preference
U set tasks N
r numeric more
K Type Objects Indices
c numeric
ti numeric i ∈ N
Pi set tasks N i ∈ N
w2

i numeric i ∈ N
w′2

i numeric i ∈ N
w3

i numeric i ∈ N

S0 ⟨U = N, r = 0⟩
B {{U = ∅}}
C ∅

h max

⌈(
∑

i∈U ti − r)/c⌉∑
u∈U w2

i + ⌈
∑

i∈U w′2
i ⌉ − l2

⌈
∑

i∈U w3
i ⌉ − l3

T eff cost pre

assign i
U ← U \ {i} V (S[[τ]]) i ∈ U
r ← r − ti Pi ∩ U = ∅

r ≥ ti
open a station r ← c 1 + V (S[[τ]]) U ′ = ∅

Table 2: DyPDL representation of the DP model for SALBP-
1, where U ′ = {i ∈ U | Pi ∩ U = ∅ ∧ r ≥ ti}, l2 = 1 if
r ≥ c/2 and l2 = 0 otherwise, and l3 = 1 if r ≥ c/3 and
l3 = 0 otherwise.

V Type Objects Preference
U set items N
r numeric more
k element items N less
K Type Indices
c numeric
ti numeric i ∈ N
w2

i numeric i ∈ N
w′2

i numeric i ∈ N
w3

i numeric i ∈ N

S0 ⟨U = N, r = 0, k = 0⟩
B {{U = ∅}}
C ∅

h max

⌈(
∑

i∈U ti − r)/c⌉∑
u∈U w2

i + ⌈
∑

i∈U w′2
i ⌉ − l2

⌈
∑

i∈U w3
i ⌉ − l3

T eff cost pre forced

pack i
U ← U \ {i} V (S[[τ]]) i ∈ U ⊥
r ← r − ti r ≥ ti

i+ 1 ≥ k

open with i
U ← U \ {i} 1 + V (S[[τ]]) U1 = ∅ ⊤
r ← c− ti i ∈ U
k ← k + 1 i ≥ k

Table 3: DyPDL representation of the DP model for bin
packing, where U1 = {i ∈ U | r ≥ ti ∧ i + 1 ≥ k},
l2 = 1 if r ≥ c/2 and l2 = 0 otherwise, and l3 = 1 if
r ≥ c/3 and l3 = 0 otherwise.

V Type Objects
R set customers C
O set customers C
K Type Objects Indices
Nc set customers C c ∈ C

S0 ⟨R = C,O = ∅⟩
B {{R = ∅}}
C ∅
h 0

T eff cost pre

close c
R← R \ {c} max

{
V (S[[τ]])
|(O ∩R) ∪ (Nc \O)| c ∈ R

O ← O ∪Nc

Table 4: DyPDL representation of the DP model for MOSP.
No forced transition exists in this model.

V Type Objects
C set nodes N
K Type Objects Indices
N set nodes N
ac numeric c ∈ N
bij numeric i, j ∈ N

S0 ⟨C = ∅⟩
B {{C = N}}
C ∅
h 0

T eff cost pre
sweep c C ← C ∪ {c} max{V (S[[τ]]), e(c, S)} c /∈ C

Table 5: DyPDL representation of the DP model for
graph-clear, where e(c, S) = ac +

∑
i∈N bci +∑

i∈C

∑
j∈C\{c} bij . No forced transition exists in this

model.

Listing 1: YAML-DyPDL domain file for CVRP.
1 objects:
2 - customer
3 state_variables:
4 - name: U
5 type: set
6 object: customer
7 - name: i
8 type: element
9 object: customer

10 - name: l
11 type: integer
12 preference: less
13 - name: k
14 type: integer
15 preference: less
16 tables:
17 - name: q
18 type: integer
19 - name: m
20 type: integer
21 - name: d
22 type: integer
23 args: [customer]
24 - name: c
25 type: integer
26 args: [customer, customer]
27 default: 0
28 - name: c-via-depot
29 type: integer
30 args: [customer, customer]
31 base_cases:
32 - [(is_empty U), (= i 0)]
33 reduce: min
34 cost_type: integer
35 transitions:
36 - name: visit
37 parameters: [{ name: j, object: U }]
38 preconditions: [(<= (+ l (d j)) q)]
39 effect:
40 U: (remove j U)
41 i: j
42 l: (+ l (d j))
43 cost: (+ cost (c i j))
44 - name: visit-via-depot
45 parameters: [{ name: j, object: U }]
46 preconditions: [(< k m)]
47 effect:
48 U: (remove j U)
49 i: j
50 l: (d j)
51 k: (+ k 1)
52 cost: (+ cost (+ c-via-depot i j))
53 - name: return
54 preconditions:
55 - (is_empty U)
56 - (!= i 0)
57 effect:
58 i: 0
59 cost: (+ cost (c i 0))
60 dual_bounds:
61 - 0

Listing 2: YAML-DyPDL domain file for SALBP-1.
1 objects:
2 - task
3 state_variables:
4 - name: U
5 type: set
6 object: task
7 - name: r
8 type: integer
9 preference: greater

10 tables:
11 - { name: c, type: integer }
12 - name: t
13 type: integer
14 args: [task]
15 - name: P
16 type: set
17 object: task
18 args: [task]
19 - name: w2_1
20 type: integer
21 args: [task]
22 - name: w2_2
23 type: continuous
24 args: [task]
25 - name: w3
26 type: continuous
27 args: [task]
28 base_cases:
29 - - (is_empty U)
30 reduce: min
31 cost_type: integer
32 transitions:
33 - name: assign
34 parameters: [{ name: i, object: U }]
35 preconditions:
36 - (is_empty
37 (intersection U (P i)))
38 - (<= (t i) r)
39 effect:
40 U: (remove i U)
41 r: (- r (t i))
42 cost: cost
43 - name: open-station
44 forced: true
45 preconditions:
46 - forall: [{ name: i, object: U }]
47 condition: >
48 (or
49 (> (t i) r)
50 (> |(intersection U (P i))|
51 0))
52 effect:
53 r: c
54 cost: (+ cost 1)
55 dual_bounds:
56 - (ceil (/ (- (sum t U) r) c))
57 - (- (+ (sum w2_1 U)
58 (ceil (sum w2_2 U)))
59 (if (>= r (/ c 2.0)) 1 0))
60 - (- (ceil (sum w3 U))
61 (if (>= r (/ c 3.0)) 1 0))

Listing 3: YAML-DyPDL domain file for bin packing.
1 objects:
2 - item
3 state_variables:
4 - name: U
5 type: set
6 object: item
7 - name: r
8 type: integer
9 preference: greater

10 - name: k
11 type: element
12 object: item
13 preference: less
14 tables:
15 - name: c
16 type: integer
17 - name: t
18 type: integer
19 args: [item]
20 - name: w2_1
21 type: integer
22 args: [item]
23 - name: w2_2
24 type: continuous
25 args: [item]
26 - name: w3
27 type: continuous
28 args: [item]
29 base_cases:
30 - - (is_empty U)
31 reduce: min
32 cost_type: integer
33 transitions:
34 - name: pack
35 parameters: [{name: i, object: U}]
36 preconditions:
37 - (<= (t i) r)
38 - (>= (+ i 1) k)
39 effect:
40 U: (remove i U)
41 r: (- r (t i))
42 cost: cost
43 - name: open-with
44 forced: true
45 parameters: [{name: i, object: U}]
46 preconditions:
47 - (>= i k)
48 - forall: [{name: j, object: U}]
49 condition: (> (t j) r)
50 effect:
51 U: (remove i U)
52 r: (- c (t i))
53 k: (+ 1 k)
54 cost: (+ cost 1)
55 dual_bounds:
56 - (ceil (/ (- (sum t U) r) c))
57 - (- (+ (sum w2_1 U)
58 (ceil (sum w2_2 U))
59 (if (>= r (/ c 2.0)) 1 0))
60 - (- (ceil (sum w3 U))
61 (if (>= r (/ c 3.0)) 1 0))

Listing 4: YAML-DyPDL domain file for MOSP.
1 objects:
2 - customer
3 state_variables:
4 - name: R
5 type: set
6 object: customer
7 - name: O
8 type: set
9 object: customer

10 tables:
11 - name: "N"
12 type: set
13 object: customer
14 args:
15 - customer
16 base_cases:
17 - - (is_empty R)
18 reduce: min
19 cost_type: integer
20 transitions:
21 - name: close
22 parameters:
23 - name: c
24 object: R
25 effect:
26 R: (remove c R)
27 O: (union O (N c))
28 cost: >
29 (max cost
30 |(union (intersection O R)
31 (difference (N c) O))|)
32 dual_bounds:
33 - 0

Listing 5: YAML-DyPDL domain file for graph-clear.
1 objects:
2 - node
3 state_variables:
4 - name: C
5 type: set
6 object: node
7 tables:
8 - name: "N"
9 type: set

10 object: node
11 - name: a
12 type: integer
13 args:
14 - node
15 - name: b
16 type: integer
17 args:
18 - node
19 - node
20 default: 0
21 base_cases:
22 - - (is_subset N C)
23 reduce: min
24 cost_type: integer
25 transitions:
26 - name: sweep
27 parameters:
28 - name: c
29 object: node
30 preconditions:
31 - (not (is_in c C))
32 effect:
33 C: (add c C)
34 cost: >
35 (max cost
36 (+ (a c)
37 (+ (sum b c N)
38 (sum b C (remove c ˜C)))))
39 dual_bounds:
40 - 0

Experimental Results
In addition to the number of instances solved to optimality,
we also evaluate the computational time to find an optimal
solution. We take the average time over instances solved by
all methods. Furthermore, we evaluate the best lower bound
found by the algorithm. In CAASDy, the minimum f -value
of states in the open list is a lower bound on the optimal so-
lution. For each instance, we compute the ratio of the lower
bound found by a method to the best lower bound found by
all the methods. Concretely, if there are methods 1..., n, and
method i finds a lower bound Li, then, the lower bound ratio
is defined as Li

maxj=1,...,n Lj
. Thus, higher is better and 1.0 is

the maximum.
For TSPTW, we also evaluate the decision diagram-based

solver, ddo (Gillard, Schaus, and Coppé 2020) since it was
previously used in TSPTW. We use the ‘barrier‘ solver of
ddo1 (Coppé, Gillard, and Schaus 2022). Since the original
version is used to solve problems to minimize the makespan
objective, we modified the code so that it minimizes the total
travel time.

References
Booth, K. E.; Tran, T. T.; Nejat, G.; and Beck, J. C. 2016.
Mixed-Integer and Constraint Programming Techniques for
Mobile Robot Task Planning. IEEE Robot. and Autom. Lett.,
1(1): 500–507.
Bukchin, Y.; and Raviv, T. 2018. Constraint Programming
for Solving Various Assembly Line Balancing Problems.
Omega, 78: 57–68.
Coppé, V.; Gillard, X.; and Schaus, P. 2022. Branch-and-
Bound with Barrier: Dominance and Suboptimality Detec-
tion for DD-Based Branch-and-Bound. arXiv:2211.13118.
Edelkamp, S.; Jabbar, S.; and Lafuente, A. L. 2005. Cost-
Algebraic Heuristic Search. In Proc. AAAI, 1362–1367.
Gillard, X.; Schaus, P.; and Coppé, V. 2020. Ddo, a Generic
and Efficient Framework for MDD-Based Optimization. In
Proc. IJCAI, 5243–5245.
Kuroiwa, R.; and Beck, J. C. 2023. Domain-Independent
Dynamic Programming: Generic State Space Search for
Combinatorial Optimization. In Proc. ICAPS.
Ritt, M.; and Costa, A. M. 2018. Improved Integer Program-
ming Models for Simple Assembly Line Balancing and Re-
lated Problems. Int. Trans. Oper. Res., 25(4): 1345–1359.
Scholl, A.; and Klein, R. 1997. SALOME: A Bidirectional
Branch-and-Bound Procedure for Assembly Line Balanc-
ing. INFORMS J. Comput., 9(4): 319–335.
Shaw, P. 2004. A Constraint for Bin Packing. In Proc. CP,
648–662.

1https://github.com/vcoppe/ddo-barrier

MIP CP Ddo DP
TSPTW # time LB # time LB # time LB # time LB
Dumas (135) 121 0.39 0.97 36 52.61 0.43 114 0.11 0.86 135 0.04 1.00
GDE (130) 71 1.38 0.71 4 289.20 0.16 35 1.53 0.73 77 0.07 0.71
OT (25) 0 - 0.00 0 - 0.66 0 - 0.32 0 - 0.67
AFG (50) 33 546.92 0.80 7 16.02 0.40 30 0.30 0.81 45 0.04 0.95
Total (340) 225 61.20 0.77 47 69.58 0.34 179 0.26 0.77 257 0.04 0.86
CVRP # time LB # time LB # time LB # time LB
A, B, E, F, P (90) 26 - 0.94 0 - 0.05 - - - 4 - 0.22
SALBP-1 # time LB # time LB # time LB # time LB
Small (525) 525 0.25 1.00 525 0.19 1.00 - - - 525 0.04 1.00
Medium (525) 518 35.28 1.00 501 15.30 1.00 - - - 509 2.38 0.99
Large (525) 317 103.44 0.75 404 3.37 0.99 - - - 414 1.20 0.88
Very large (525) 0 - 0.00 155 - 0.97 - - - 204 - 0.54
Total (2100) 1360 37.31 0.69 1585 6.47 0.99 - - - 1652 1.17 0.85
Bin Packing # time LB # time LB # time LB # time LB
Falkenauer U (80) 25 64.49 0.94 36 2.29 1.00 - - - 33 1.61 0.47
Falkenauer T (80) 37 147.01 1.00 56 8.16 1.00 - - - 27 7.19 0.40
Scholl 1 (720) 605 16.88 0.95 533 19.13 1.00 - - - 517 15.70 0.85
Scholl 2 (480) 354 34.11 0.97 445 0.37 1.00 - - - 335 3.12 0.73
Scholl 3 (10) 0 - 1.00 1 - 1.00 - - - 0 - 0.09
Falkenauer U 25 64.49 0.94 36 2.29 1.00 - - - 33 1.61 0.47
Wäscher (17) 2 788.96 1.00 10 3.22 1.00 - - - 10 1.29 0.62
Schwerin 1 (100) 80 - 1.00 96 - 1.00 - - - 0 - 0.06
Schwerin 2 (100) 54 - 1.00 61 - 1.00 - - - 0 - 0.09
Hard 28 (28) 0 - 1.00 0 - 1.00 - - - 0 - 0.32
Total (1615) 1157 30.89 0.97 1238 11.09 1.00 - - - 922 10.19 0.66
MOSP # time LB # time LB # time LB # time LB
Constraint Modelling Challenge (46) 41 10.32 0.94 44 4.53 0.96 - - - 44 0.06 1.00
SCOOP Project (24) 8 144.30 0.64 23 0.50 0.99 - - - 16 0.04 0.95
Faggioli and Bentivoglio (300) 130 88.66 0.75 300 1.77 1.00 - - - 298 0.04 1.00
Chu and Stuckey (200) 44 98.50 0.47 70 58.10 0.49 - - - 125 0.07 1.00
Total (570) 223 76.94 0.66 437 10.57 0.82 - - - 483 0.05 1.00
Graph-Clear # time LB # time LB # time LB # time LB
Planar (60) 16 447.49 0.98 1 297.12 0.82 - - - 20 0.18 1.00
Random (75) 8 65.35 0.85 3 9.44 0.52 - - - 25 0.41 1.00
Total (135) 24 160.89 0.91 4 81.36 0.65 - - - 45 0.36 1.00
Average ratio 0.48 0.41 - 0.59

Table 6: Number of instances solved to optimality (‘#’), the time to solve averaged over instances solved by all the methods
(‘time’), and the average lower bound ratio to the best lower bound found by all the methods (‘LB’). ‘Average ratio’ is the ratio
of optimally solved instances in each problem class averaged over all problem classes.

