Appendix for Domain-Independent Dynamic Programming: Generic State Space Search for Combinatorial Optimization*

Ryo Kuroiwa, J. Christopher Beck

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8 ryo.kuroiwa@mail.utoronto.ca, jcb@mie.utoronto.ca

CP Models

We present the new CP models used in the experimental evaluation.

TSPTW

We adapt a CP model for a single machine scheduling problem with time windows (Booth et al. 2016) to TSPTW. Let x_i be an interval variable in a range $[a_i, b_i]$ with the length of 0, representing visiting customer *i*.

$$\begin{split} \min \sum_{i \in N} c_{i,\mathsf{Next}(x_i)} \\ \text{s.t. NoOverlap}([x_0, ..., x_{n-1}], \{c_{ij} \mid i, j \in N\}) \\ & \mathsf{First}(x_0) \\ & x_i : \mathsf{intervalVar}(0, [a_i, b_i]) \qquad \forall i \in N \end{split}$$

The first constraint ensures that interval variables are ordered in a sequence, and for two consecutive variables x_i and x_j , the start of x_j must be at least c_{ij} greater than the end of x_i . In the objective, $Next(x_i)$ is the interval variable next to x_i in the sequence. For the last variable, we let $Next(x_i) = x_0$. The second constraint ensures that the depot is visited first.

SALBP-1

For SALBP-1, we implement the CP model proposed by Bukchin and Raviv (2018) with the addition of the Pack global constraint (Shaw 2004). For an upper bound on the number of stations, instead of using a heuristic to compute it, we use $\bar{m} = \min\{n, 2[\sum_{i \in N} t_i/c]\}$ following the MIP model (Ritt and Costa 2018). Let $M = \{0, ..., \bar{m} - 1\}$ be the set of stations. Let m be a decision variable representing the number of stations, x_i be a decision variable representing the index of the station of task i, and y_j be the sum of the processing times of tasks scheduled in station j. The set of all direct and indirect predecessors of task i is

$$\tilde{P}_i = \{ j \in N \mid j \in P_i \lor \exists k \in \tilde{P}_j, j \in \tilde{P}_k \}.$$

The set of all direct and indirect successors of task i is

$$\hat{S}_i = \{ j \in N \mid i \in P_j \lor \exists k \in \hat{S}_i, j \in \hat{S}_k \}.$$

Thus,

$$e_i = \left\lceil \frac{t_i + \sum_{k \in \tilde{P}_i} t_k}{c} \right\rceil$$

is a lower bound on the number of stations required to schedule task i,

$$l_i = \left\lfloor \frac{t_i - 1 + \sum_{k \in \tilde{S}_i} t_k}{c} \right\rfloor$$

is a lower bound on the number of stations between the station of task i and the last station, and

$$d_{ij} = \left\lfloor \frac{t_i + t_j - 1 + \sum_{k \in \tilde{S}_i \cap \tilde{P}_j} t_k}{c} \right\rfloor$$

is a lower bound on the number of stations between the stations of tasks i and j.

min m

The first constraint ensures $x_i \in M$ and $\sum_{i \in N: x_i=j} t_i = y_j$. The second constraint ensures that the sum of the processing times does not exceed the cycle time. The third constraint states the lower and upper bounds on the index of the station of *i*. The fourth constraint is an enhanced version of the precedence constraint using d_{ij} .

Bin Packing

For the CP model for bin packing, we also use Pack. In addition, we ensure that item i is packed in the i-th or an earlier

^{*}This document is an appendix for a paper published at the 33rd International Conference on Automated Planning and Scheduling (ICAPS 2023) (Kuroiwa and Beck 2023)

bin.

$$\begin{split} \min\max_{i\in N} x_i + 1 \\ \text{s.t. } \mathsf{Pack}(\{y_j \mid j\in M\}, \{x_i \mid i\in N\}, \{t_i \mid i\in N\}) \\ 0 \leq y_j \leq c & \forall j\in M \\ 0 \leq x_i \leq i & \forall i\in N \\ y_j \in \mathbb{Z} & \forall j\in M \\ x_i \in \mathbb{Z} & \forall i\in N. \end{split}$$

We compute the upper bound \bar{m} using the first-fit decreasing heuristic.

DP Models

We prove the properties of the DP models assumed in the paper and provide the DyPDL representations of the models.

Lower Bounds for SALBP-1 and Bin Packing

We show that the lower bounds used in the DP models for SALBP-1 and bin packing are valid. These lower bounds, LB1, LB2, and LB3 were originally proposed by Scholl and Klein (1997). The first lower bound, LB1, is originally defined as $\left[\sum_{i \in N} t_i/c\right]$. This bound relaxes the problem by allowing to split a task across multiple stations. In a state $\langle U, r \rangle$ ($\langle U, r, k \rangle$ for bin packing), we only need to schedule tasks in U, and we can schedule tasks in the current station, which has the remaining time of r. Therefore, we use $\left[\left(\sum_{i \in U} t_i - r\right)/c\right]$ as a lower bound.

The second lower bound, LB2, is originally defined as $\sum_{i \in N} w_i^2 + \left[\sum_{i \in N} w_i'^2\right]$, where $w_i^2 = 1$ if $t_i > c/2$ and $w_i'^2 = 1/2$ if $t_i = c/2$. This bound only considers tasks i with $t_i \geq 2/c$. The first term, the number of tasks i with $t_i > 2/c$, is a lower bound because other tasks cannot be scheduled in the same station as i. For the remaining tasks, which have $t_i = 2/c$, two tasks can be scheduled in the same station, which results in the second term. In our model, in a state $\langle U, r \rangle$, we use the bound $\sum_{i \in U} w_i^2 + \left[\sum_{i \in U} w_i'^2\right]$ if r < c/2 because we cannot schedule any tasks with $t_i \geq 2/c$ in the current station. If $r \geq c/2$, since we may use the current station, we subtract 1 from the bound.

The second lower bound, LB3, is based on a similar idea to LB2. It is originally defined as $\lceil \sum_{i \in N} w_i^{\prime 3} \rceil$ and only considers tasks i with $t_i \geq 3/c$. Therefore, we use the bound $\lceil \sum_{i \in U} w_i^3 \rceil$ if r < c/3 and subtract 1 from it otherwise.

Cost-Algebra for MOSP and Graph-Clear

We show that the cost expressions in the DP models for MOSP and graph-clear satisfy the property of cost-algebra. In these models, the cost expressions are in the form of $\max\{e_{\tau}(S), V(S[\tau])\}$ instead of $e_{\tau}(S) + V(S[\tau])$.

A cost-algebra (Edelkamp, Jabbar, and Lafuente 2005) is defined as a 6-tuple $\langle A, \sqcup, \times, \preceq, \mathbf{0}, \mathbf{1} \rangle$ where A is a set, $\times : A \times A \to A$ is a binary operator, $\preceq \in A \times A$ is a binary relation, $\mathbf{0}, \mathbf{1} \in A$, and $\sqcup : 2^A \to A$ is an operator to select one element from a subset of A. It must satisfy the following conditions.

1. $\forall a, b \in A, a \times b \in A$

2. $\forall a, b, c \in A, a \times (b \times c) = (a \times b) \times c$ 3. $\forall a \in A, a \times \mathbf{1} = \mathbf{1} \times a = a$ 4. $\forall a \in A, a \preceq a$ 5. $\forall a, b \in A, a \preceq b \wedge b \preceq a \Rightarrow a = b$ 6. $\forall a, b, c \in A, a \preceq b \wedge b \preceq c \Rightarrow a \preceq c$ 7. $\forall a, b \in A, a \preceq b \vee b \preceq a$ 8. $\forall B \subseteq A, \forall b \in B, \sqcup B \preceq b$ 9. $\forall a \in A, a \preceq \mathbf{0} \text{ and } \mathbf{1} \preceq a$ 10. $\forall a, b, c \in A, a \preceq b \Rightarrow a \times c \preceq b \times c \text{ and } c \times a \preceq c \times b$

Conditions 1-3 ensure that $\langle A, \times, \mathbf{1} \rangle$ is a monoid. Conditions 4-7 ensure that \leq is a total order. Condition 10 is called isotonicity.

Edelkamp, Jabbar, and Lafuente (2005) proved that $\langle \mathbb{R}^+ \cup \{+\infty\}, \min, +, \leq, +\infty, 0 \rangle$, which corresponds to the shortest path problem, satisfies the conditions. We show that a tuple $\langle \mathbb{R}^+ \cup \{+\infty\}, \min, \max, \leq, +\infty, 0 \rangle$ satisfies the conditions, which corresponds to the cost expressions in the DP models for MOSP and graph-clear. The tuple $\langle \mathbb{R}^+ \cup \{+\infty\}, \max, 0 \rangle$ is a monoid since $\max\{a, b\} \in \mathbb{R}$, $\max\{a, \max\{b, c\}\} = \max\{\max\{a, b\}, c\}$, and $\max\{a, 0\} = \max\{0, a\} = a$. Conditions 4-9 hold since $\langle \mathbb{R}^+ \cup \{+\infty\}, \min, +, \leq, +\infty, 0 \rangle$ is a cost-algebra. For the isotonicity, $\max\{a, c\} \leq \max\{b, c\}$ and $\max\{c, a\} \leq \max\{c, b\}$ for $a \leq b$.

DyPDL Representations

We present DyPDL representations and YAML-DyPDL domain files of the DP models for CVRP in Table 1 and Listing 1, for SALBP-1 in Table 2 and Listing 2, for bin packing in Table 3 and Listing 3, for MOSP in Table 4 and Listing 4, and for graph-clear in Table 5 and Listing 5.

In SALBP-1, open-station is a forced transition in the YAML-DyPDL domain file. While it is not necessarily in theory because the other transitions are not applicable when open-station is applicable, it can be beneficial since a solver does not need to evaluate the preconditions of the other transitions.

\mathcal{V}	Туре	Objects	Preference
U	set	customers N	
i	element	customers N	
l	numeric		less
k	numeric		less
\mathcal{K}	Туре	Indices	
q	numeric		
m	numeric		
d_j	numeric	$j \in N$	
c_{jp}	numeric	$j, p \in N$	
c'_{jp}	numeric	$j, p \in N$	
S^0	$\langle U = N \setminus \{0\}$	i, i = 0, l = 0, k	$=1\rangle$
B	$\{U = \emptyset, i = 0\}$	0}}	,
\mathcal{C}	Ø		
h	0		
$\overline{\mathcal{T}}$	eff	cost	pre
	$U \leftarrow U \setminus \{j\}$	$c_{ij} + V(S[\tau])$	$j \in U$
visit j	$i \leftarrow j$		$l + d_j \le q$
	$l \leftarrow l + d_j$		
	$U \leftarrow U \setminus \{j\}$	$c'_{ij} + V(S\llbracket\tau\rrbracket)$	$j \in U$
visit <i>i</i> via the denot	$i \leftarrow j$		k < m
visit j via the depot	$l \leftarrow d_j$		
	$k \leftarrow k+1$		
return	$i \leftarrow 0$	$c_{i0} + V(S\llbracket\tau\rrbracket)$	$U = \emptyset$
Ictuili			$i \neq 0$

Table 1: DyPDL representation of the DP model for CVRP. No forced transition exists in this model.

\mathcal{V}	Туре	Objects	Preference				
U	set	tasks N					
r	numeric		more				
\mathcal{K}	Туре	Objects	Indices				
с	numeric						
t_i	numeric		$i \in N$				
P_i	set	tasks N	$i \in N$				
w_i^2	numeric		$i \in N$				
$w_i^{\prime 2}$	numeric		$i \in N$				
w_i^3	numeric		$i \in N$				
S^0	$\langle U = N, r = 0$)>					
\mathcal{B}	$\{\{U = \emptyset\}\}$						
\mathcal{C}	Ø						
h	$\max \left\{ \begin{array}{l} [(\sum_{i \in U} t_i - r)/c] \\ \sum_{u \in U} w_i^2 + [\sum_{i \in U} w_i'^2] - l^2 \\ [\sum_{i \in U} w_i^3] - l^3 \end{array} \right.$						
\mathcal{T}	eff	cost	pre				
	$U \leftarrow U \setminus \{i\}$	$V(S[[\tau]])$	$i \in U$				
assign <i>i</i>	$r \leftarrow r - t_i$		$P_i \cap U = \emptyset$				
			$r \ge t_i$				
open a station	$r \leftarrow c$	$1 + V(S[\tau])$	$U' = \emptyset$				

Table 2: DyPDL representation of the DP model for SALBP-1, where $U' = \{i \in U \mid P_i \cap U = \emptyset \land r \ge t_i\}, l^2 = 1$ if $r \ge c/2$ and $l^2 = 0$ otherwise, and $l^3 = 1$ if $r \ge c/3$ and $l^3 = 0$ otherwise.

\mathcal{V}	Туре	Objects	Preference	
U	set	items N		
r	numeric		more	
k	element	items N	less	
\mathcal{K}	Туре	Indices		
c	numeric			
t_i	numeric	$i \in N$		
w_i^2	numeric	$i \in N$		
$w_i^{\prime 2}$	numeric	$i \in N$		
w_i^3	numeric	$i \in N$		
S^0	$\langle U = N, r = 0$	$0, k = 0 \rangle$		
${\mathcal B}$	$\{\{U = \emptyset\}\}$, ,		
\mathcal{C}	Ø			
h	$\max \begin{cases} \left[(\sum_{i \in \mathcal{U} \atop \sum_{i \in \mathcal{U}}} \right] \\ \left[\sum_{i \in \mathcal{U}} \right] \\ \left[\sum_{i $	${{\mathbb E}_U t_i - r)/c ceil_U w_i^2 + \lceil \sum_{i \in U} w_i^3 ceil - l^3}$	$w_i^{\prime 2} \rceil - l^2$	
\mathcal{T}	eff	cost	pre	forced
pack <i>i</i>	$\begin{array}{c} U \leftarrow U \setminus \{i\} \\ r \leftarrow r - t_i \end{array}$	$V(S[\![\tau]\!])$	$i \in U$ $r \ge t_i$ $i+1 \ge k$	\perp
	$U \leftarrow U \setminus \{i\}$	$1 + V(S[\![\tau]\!])$	$U^1 = \emptyset$	Т
open with i	$r \leftarrow c - t_i$	2/	$i \in U$	
	$k \leftarrow k+1$		$i \ge k$	

Table 3: DyPDL representation of the DP model for bin packing, where $U^1 = \{i \in U \mid r \ge t_i \land i + 1 \ge k\}$, $l^2 = 1$ if $r \ge c/2$ and $l^2 = 0$ otherwise, and $l^3 = 1$ if $r \ge c/3$ and $l^3 = 0$ otherwise.

\mathcal{V}	Туре	Objects	
R	set	customers C	
0	set	customers C	
\mathcal{K}	Туре	Objects	Indices
N_c	set	customers C	$c \in C$
S^0	$\langle R = C, O =$	$ \emptyset\rangle$	
${\mathcal B}$	$\{\{R = \emptyset\}\}$		
\mathcal{C}	Ø		
h	0		
\mathcal{T}	eff	cost	pre
close c	$R \leftarrow R \setminus \{c\}$	$\max \begin{cases} V(S[[\tau]]) \\ (O \cap R) \cup (N_c \setminus O) \end{cases}$	$c \in R$
	$O \leftarrow O \cup N_c$		

Table 4: DyPDL representation of the DP model for MOSP. No forced transition exists in this model.

\mathcal{V}	Туре	Objects	
C	set	nodes N	
\mathcal{K}	Туре	Objects	Indices
N	set	nodes N	
a_c	numeric		$c \in N$
b_{ij}	numeric		$i,j \in N$
S^0	$\langle C = \emptyset \rangle$		
${\mathcal B}$	$\{\{C = N\}\}$		
\mathcal{C}	Ø		
h	0		
\mathcal{T}	eff	cost	pre
sweep c	$C \leftarrow C \cup \{c\}$	$\max\{V(S\llbracket\tau\rrbracket), e(c,S)\}$	$c \notin C$

Table 5: DyPDL representation of the DP model for graph-clear, where $e(c, S) = a_c + \sum_{i \in N} b_{ci} + \sum_{i \in C} \sum_{j \in \overline{C} \setminus \{c\}} b_{ij}$. No forced transition exists in this model.

```
Listing 1: YAML-DyPDL domain file for CVRP.
1
   objects:
2
    - customer
3 state_variables:
4
     - name: U
5
       type: set
6
       object: customer
7
     - name: i
8
       type: element
9
       object: customer
10
     - name: 1
11
       type: integer
12
       preference: less
13
     - name: k
14
       type: integer
15
       preference: less
16 tables:
17
     - name: q
18
       type: integer
     - name: m
19
       type: integer
20
21
     - name: d
22
       type: integer
23
       args: [customer]
24
     - name: c
25
      type: integer
26
       args: [customer, customer]
27
       default: 0
28
     - name: c-via-depot
29
       type: integer
30
       args: [customer, customer]
31 base_cases:
32
    - [(is_empty U), (= i 0)]
33 reduce: min
34 cost_type: integer
35 transitions:
36
     - name: visit
37
       parameters: [{ name: j, object: U }]
38
       preconditions: [(<= (+ l (d j)) q)]
39
       effect:
40
         U: (remove j U)
41
          i: j
42
         l: (+ l (d j))
43
       cost: (+ cost (c i j))
44
     - name: visit-via-depot
45
       parameters: [{ name: j, object: U }]
46
       preconditions: [(< k m)]</pre>
47
       effect:
48
         U: (remove j U)
49
         i: j
50
         l: (d j)
51
         k: (+ k 1)
52
       cost: (+ cost (+ c-via-depot i j))
53
     - name: return
54
       preconditions:
         - (is_empty U)
55
56
         - (!= i 0)
57
       effect:
58
         i: 0
59
       cost: (+ cost (c i 0))
60
  dual_bounds:
61
     - 0
```

<pre>1 objects: 2 - task 3 state_variables: 4 - name: U 5 type: set 6 object: task 7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>2 - task 3 state_variables: 4 - name: U 5 type: set 6 object: task 7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>3 state_variables: 4 - name: U 5 type: set 6 object: task 7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>4 - name: U 5 type: set 6 object: task 7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>5 type: set 6 object: task 7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>6 object: task 7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>7 - name: r 8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>8 type: integer 9 preference: greater 10 tables:</pre>	
<pre>9 preference: greater 10 tables:</pre>	
10 tables:	
<pre>11 - { name: c, type: integer }</pre>	
12 - name: t	
13 type: integer	
14 args: [task]	
15 - name: P	
16 type: set	
17 object: task	
<pre>18 args: [task]</pre>	
19 - name: w2_1	
20 type: integer	
21 args: [task]	
22 - name: w2_2	
23 type: continuous	
24 args: [task]	
25 – name: w3	
26 type: continuous	
27 args: [task]	
28 base_cases:	
29 (is_empty U)	
30 reduce: min	
31 cost_type: integer	
32 transitions:	
33 - name: assign	
34 parameters: [{ name: 1, object	: : U }]
35 preconditions:	
$\frac{100}{27} = (15 \text{empty})$	
$\frac{37}{(11100100(P I))}$	
$\frac{30}{20} = (\langle -((l \perp)) \perp \rangle)$	
40 II. (romouto i II)	
$\frac{40}{11} \qquad r: (-r (t i))$	
$\begin{array}{c} 42 \\ 42 \\ \end{array} \qquad \begin{array}{c} cost \\ cost \\ \end{array} \qquad \begin{array}{c} cost \\ cost \\ \end{array}$	
43 - name: open-station	
44 forced: true	
45 preconditions:	
46 - forall: [{ name: i, object	: U }]
47 condition: >	,1
48 (or	
49 (> (t i) r)	
50 (> (intersection U (F	? i))
51 0))	
52 effect:	
53 r: c	
54 cost: (+ cost 1)	
55 dual_bounds:	
56 - (ceil (/ (- (sum t U) r) c))	
57 - (- (+ (sum w2_1 U)	
58 (ceil (sum w2_2 U)))	
59 (if (>= r (/ c 2.0)) 1 0))	
60 - (- (ceil (sum w3 U))	
61 (if (>= r (/ c 3.0)) 1 0))	

```
Listing 3: YAML-DyPDL domain file for bin packing.
1
   objects:
2
    – item
3
   state_variables:
4
     - name: U
5
       type: set
       object: item
6
7
     - name: r
8
       type: integer
9
      preference: greater
10
     - name: k
11
       type: element
12
       object: item
13
       preference: less
14
   tables:
15
     - name: c
       type: integer
16
17
     - name: t
18
       type: integer
19
       args: [item]
     - name: w2_1
20
21
       type: integer
22
       args: [item]
23
     - name: w2_2
24
       type: continuous
25
       args: [item]
26
     - name: w3
27
       type: continuous
28
       args: [item]
29
  base_cases:
30
   - - (is_empty U)
31 reduce: min
32 cost_type: integer
33 transitions:
34
     - name: pack
35
       parameters: [{name: i, object: U}]
36
       preconditions:
37
         - (<= (t i) r)
38
         - (>= (+ i 1) k)
39
       effect:
40
         U: (remove i U)
41
         r: (- r (t i))
42
       cost: cost
43
     - name: open-with
44
       forced: true
45
       parameters: [{name: i, object: U}]
46
       preconditions:
47
         - (>= i k)
48
          - forall: [{name: j, object: U}]
49
            condition: (> (t j) r)
50
       effect:
51
          U: (remove i U)
52
          r: (- c (t i))
53
         k: (+ 1 k)
54
       cost: (+ cost 1)
55
   dual_bounds:
56
     - (ceil (/ (- (sum t U) r) c))
57
     - (- (+ (sum w2_1 U)
58
              (ceil (sum w2_2 U))
59
           (if (>= r (/ c 2.0)) 1 0))
60
     - (- (ceil (sum w3 U))
61
           (if (>= r (/ c 3.0)) 1 0))
```

List	ing 4: YAML-DyPDL domain file for MOSP.
1	objects:
2	- customer
3	state_variables:
4	- name: R
5	type: set
6	object: customer
7	- name: O
8	type: set
9	object: customer
10	tables:
11	- name: "N"
12	type: set
13	object: customer
14	args:
15	- customer
10	Dase_cases:
17	(IS_empty K)
10	cost type: integer
20	transitions.
21	- name: close
22	parameters:
23	- name: c
24	object: R
25	effect:
26	R: (remove c R)
27	O: (union O (N c))
28	cost: >
29	(max cost
30	(union (intersection O R)
31	(difference (N c) O)))
32	dual_bounds:
33	- 0

Listing 5: YAML-DyPDL domain file for graph-clear.

```
1
   objects:
2
    – node
3
   state_variables:
4
     - name: C
5
       type: set
6
       object: node
7
   tables:
8
     - name: "N"
9
       type: set
10
       object: node
     - name: a
11
12
       type: integer
13
       args:
14
         – node
15
     - name: b
16
       type: integer
17
        args:
         - node
- node
18
19
20
       default: 0
21 base_cases:
22
     - - (is_subset N C)
23 reduce: min
24 cost_type: integer
25 transitions:
26
      - name: sweep
27
       parameters:
28
         - name: c
29
           object: node
30
        preconditions:
31
         - (not (is_in c C))
32
        effect:
33
         C: (add c C)
34
        cost: >
35
          (max cost
36
               (+ (a c)
37
                   (+ (sum b c N)
38
                   (sum b C (remove c ~C)))))
39
   dual_bounds:
40
     - 0
```

Experimental Results

In addition to the number of instances solved to optimality, we also evaluate the computational time to find an optimal solution. We take the average time over instances solved by all methods. Furthermore, we evaluate the best lower bound found by the algorithm. In CAASDy, the minimum *f*-value of states in the open list is a lower bound on the optimal solution. For each instance, we compute the ratio of the lower bound found by a method to the best lower bound found by all the methods. Concretely, if there are methods 1..., *n*, and method *i* finds a lower bound *L_i*, then, the lower bound ratio is defined as $\frac{L_i}{\max_{j=1,...,n} L_j}$. Thus, higher is better and 1.0 is the maximum.

For TSPTW, we also evaluate the decision diagram-based solver, ddo (Gillard, Schaus, and Coppé 2020) since it was previously used in TSPTW. We use the 'barrier' solver of ddo¹ (Coppé, Gillard, and Schaus 2022). Since the original version is used to solve problems to minimize the makespan objective, we modified the code so that it minimizes the total travel time.

References

Booth, K. E.; Tran, T. T.; Nejat, G.; and Beck, J. C. 2016. Mixed-Integer and Constraint Programming Techniques for Mobile Robot Task Planning. *IEEE Robot. and Autom. Lett.*, 1(1): 500–507.

Bukchin, Y.; and Raviv, T. 2018. Constraint Programming for Solving Various Assembly Line Balancing Problems. *Omega*, 78: 57–68.

Coppé, V.; Gillard, X.; and Schaus, P. 2022. Branch-and-Bound with Barrier: Dominance and Suboptimality Detection for DD-Based Branch-and-Bound. arXiv:2211.13118.

Edelkamp, S.; Jabbar, S.; and Lafuente, A. L. 2005. Cost-Algebraic Heuristic Search. In *Proc. AAAI*, 1362–1367.

Gillard, X.; Schaus, P.; and Coppé, V. 2020. Ddo, a Generic and Efficient Framework for MDD-Based Optimization. In *Proc. IJCAI*, 5243–5245.

Kuroiwa, R.; and Beck, J. C. 2023. Domain-Independent Dynamic Programming: Generic State Space Search for Combinatorial Optimization. In *Proc. ICAPS*.

Ritt, M.; and Costa, A. M. 2018. Improved Integer Programming Models for Simple Assembly Line Balancing and Related Problems. *Int. Trans. Oper. Res.*, 25(4): 1345–1359.

Scholl, A.; and Klein, R. 1997. SALOME: A Bidirectional Branch-and-Bound Procedure for Assembly Line Balancing. *INFORMS J. Comput.*, 9(4): 319–335.

Shaw, P. 2004. A Constraint for Bin Packing. In *Proc. CP*, 648–662.

¹https://github.com/vcoppe/ddo-barrier

		MIP			CP			Ddo			DP	
TSPTW	#	time	LB	#	time	LB	#	time	LB	#	time	LB
Dumas (135)	121	0.39	0.97	36	52.61	0.43	114	0.11	0.86	135	0.04	1.00
GDE (130)	71	1.38	0.71	4	289.20	0.16	35	1.53	0.73	77	0.07	0.71
OT (25)	0	-	0.00	0	-	0.66	0	-	0.32	0	-	0.67
AFG (50)	33	546.92	0.80	7	16.02	0.40	30	0.30	0.81	45	0.04	0.95
Total (340)	225	61.20	0.77	47	69.58	0.34	179	0.26	0.77	257	0.04	0.86
CVRP	#	time	LB	#	time	LB	#	time	LB	#	time	LB
A, B, E, F, P (90)	26	-	0.94	0	-	0.05	-	-	-	4	-	0.22
SALBP-1	#	time	LB	#	time	LB	#	time	LB	#	time	LB
Small (525)	525	0.25	1.00	525	0.19	1.00	-	-	-	525	0.04	1.00
Medium (525)	518	35.28	1.00	501	15.30	1.00	-	-	-	509	2.38	0.99
Large (525)	317	103.44	0.75	404	3.37	0.99	-	-	-	414	1.20	0.88
Very large (525)	0	-	0.00	155	-	0.97	-	-	-	204	-	0.54
Total (2100)	1360	37.31	0.69	1585	6.47	0.99	-	-	-	1652	1.17	0.85
Bin Packing	#	time	LB	#	time	LB	#	time	LB	#	time	LB
Falkenauer U (80)	25	64.49	0.94	36	2.29	1.00	-	-	-	33	1.61	0.47
Falkenauer T (80)	37	147.01	1.00	56	8.16	1.00	-	-	-	27	7.19	0.40
Scholl 1 (720)	605	16.88	0.95	533	19.13	1.00	-	-	-	517	15.70	0.85
Scholl 2 (480)	354	34.11	0.97	445	0.37	1.00	-	-	-	335	3.12	0.73
Scholl 3 (10)	0	-	1.00	1	-	1.00	-	-	-	0	-	0.09
Falkenauer U	25	64.49	0.94	36	2.29	1.00	-	-	-	33	1.61	0.47
Wäscher (17)	2	788.96	1.00	10	3.22	1.00	-	-	-	10	1.29	0.62
Schwerin 1 (100)	80	-	1.00	96	-	1.00	-	-	-	0	-	0.06
Schwerin 2 (100)	54	-	1.00	61	-	1.00	-	-	-	0	-	0.09
Hard 28 (28)	0	-	1.00	0	-	1.00	-	-	-	0	-	0.32
Total (1615)	1157	30.89	0.97	1238	11.09	1.00	-	-	-	922	10.19	0.66
MOSP	#	time	LB	#	time	LB	#	time	LB	#	time	LB
Constraint Modelling Challenge (46)	41	10.32	0.94	44	4.53	0.96	-	-	-	44	0.06	1.00
SCOOP Project (24)	8	144.30	0.64	23	0.50	0.99	-	-	-	16	0.04	0.95
Faggioli and Bentivoglio (300)	130	88.66	0.75	300	1.77	1.00	-	-	-	298	0.04	1.00
Chu and Stuckey (200)	44	98.50	0.47	70	58.10	0.49	-	-	-	125	0.07	1.00
Total (570)	223	76.94	0.66	437	10.57	0.82	-	-	-	483	0.05	1.00
Graph-Clear	#	time	LB	#	time	LB	#	time	LB	#	time	LB
Planar (60)	16	447.49	0.98	1	297.12	0.82	-	-	-	20	0.18	1.00
Random (75)	8	65.35	0.85	3	9.44	0.52	-	-	-	25	0.41	1.00
Total (135)	24	160.89	0.91	4	81.36	0.65	-	-	-	45	0.36	1.00
Average ratio	0.48			0.41			-			0.59		

Table 6: Number of instances solved to optimality ('#'), the time to solve averaged over instances solved by all the methods ('time'), and the average lower bound ratio to the best lower bound found by all the methods ('LB'). 'Average ratio' is the ratio of optimally solved instances in each problem class averaged over all problem classes.