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Abstract. We propose a constraint programming (CP) based branch-and-price-and-

cut framework to exactly solve bi-path MCF: a multi-commodity flow (MCF) prob-

lem with two paths for each demand. The goal is to route demands in a capacitated

network under the minimum cost. The two paths must have disjoint arcs and the

delays accumulated along the two paths must be within a small deviation of each

other. CP is used at multiple points in this framework: for solving pricing problems,

for cut generation, and for primal and branching node heuristics. These modules use a

CP solver designed for network routing problems and can be adapted to other combi-

natorial optimization problems. We also develop a novel, complete two-level branch-

ing scheme. On a set of diverse bi-path MCF instances, experimental results show

that our algorithm significantly outperforms monolithic CP and mixed integer linear

programming models and demonstrate the efficiency and flexibility brought by the

tailored integration of linear programming and CP methodologies.

Key words: constraint programming, branch-and-price-and-cut, multi-commodity

flow, network routing

1. Introduction

Telecommunication network size has significantly increased in recent years (Tang et al. 2015), with new

applications leading to the next generation of traffic routing protocols and new requirements such as small

end-to-end delay and resilience to link faults (Angilella et al. 2022). Larger networks and new requirements

raise challenges for routing optimization and there have been several attempts to develop efficient optimiza-

tion algorithms that handle all technical constraints through approaches including linear programming (LP)
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(Bhatia et al. 2015), non-linear programming (D’Ambrosio et al. 2015), meta-heuristics (Risso et al. 2018),

and machine learning (Tang et al. 2021).

In mathematical programming, several constraints appeared to be hard to model, requiring an exponential

number of constraints, big-M parameters, and intermediate variables (Fortz et al. 2017). Constraint pro-

gramming (CP), by contrast, allows greater flexibility and extensibility in the types of constraints (Laborie

et al. 2018), resulting in the development of many global constraints for complex sub-problems in industrial

contexts. However, CP performance depends substantially on local reasoning arising from inference algo-

rithms embedded in each constraint (Rossi et al. 2006). Previous studies have shown that it is possible to

benefit from a more global perspective through the combination of LP and CP: addressing optimality via LP

relaxations and ensuring feasibility via CP inference (Focacci et al. 2002, Beck and Refalo 2003, Milano

and Wallace 2010, Laborie and Rogerie 2016).

CP-based column generation (Junker et al. 1999, Rousseau et al. 2004) has been proposed as a differ-

ent approach to hybridization of CP and LP. We extend this line of work by proposing CP-based branch-

and-price-and-cut (BPC) (Desaulniers 2010) for a variant of the multi-commodity flow (MCF) problems

(Barnhart et al. 2000). CP is embedded in all the functional components of the BPC framework: column

generation, cut generation, primal heuristics, and branching node heuristics.

In bi-path MCF, multiple commodities need to be routed in a network. Each commodity requires unsplit-

table primary and secondary paths that are arc-disjoint (i.e., the two paths cannot share any arcs) and delay-

similar (i.e., the difference in delay accumulated over each arc in the two paths must be less than a threshold

value). Each commodity has a bandwidth to reflect its demand, while each arc in the network has a total

bandwidth capacity limit. The goal is to minimize the total costs of bi-path arc usage by the commodities.

This MCF variant arises mainly in the deterministic Internet Protocol (IP) network, with the main applica-

tion being 1+1 protection (Finn 2018), where the two paths are used as working and protection channels,

respectively. The bounded delay difference guarantees that the user experience during the failure of pri-

mary paths does not suffer too much. Another application is load balancing (Angilella et al. 2022), where

the delay difference is related to the buffer sizes at the end of the routes and the bounded delay difference

assures relatively small buffer sizes to reduce the fixed hardware costs. Bi-path MCF is also relevant to the

primary/secondary cache placements for in-memory data grids (Sebbah et al. 2016).

Main contributions. Our first contribution is a CP-based branch-and-price-and-cut approach for the bi-

path MCF problem. Differing from existing CP-based BPC algorithms where CP is used only for pricing

problems (Junker et al. 1999, Rousseau et al. 2004, Hashemi Doulabi et al. 2016), the proposed approach

also uses CP for primal heuristics, branching node heuristics, and cut generation. Our second and third

contributions are the complexity proof and a two-level branching scheme for the bi-path MCF problem. Our

fourth contribution is a thorough numerical evaluation on the bi-path MCF problem, showing the advantage

of the CP-based approach over compact mixed-integer linear programming (MILP) and CP models.
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Outline of the paper. Related research is reviewed in Section 2. In Section 3, the problem is defined

with proof of its complexity, followed by two MILP formulations. In Section 4, a specialized CP solver for

network routing problems is introduced, followed by an overview of the CP-based branch-and-price-and-

cut framework in Section 5. In Sections 6 and 7, the CP-based column generation and cut generation are

detailed. The CP-based primal heuristic is presented in Section 8. The CP-based branching node heuristic

and a two-level branching scheme are described in Section 9. Finally, a thorough experimental evaluation

is conducted in Section 10, followed by discussions and conclusions in Sections 11 and 12.

2. Literature Review
In this section, we summarize the bi-path MCF problem and CP-based approaches for network routing

problems, followed by the presentation of the branch-and-price-and-cut approach.

2.1. The Bi-Path Multi-Commodity Flow Problem

With the recent trend of traffic engineering methodology where routes between nodes are explicitly spec-

ified (Foteinos et al. 2014), network routing problems are frequently abstracted as multi-commodity flow

(MCF) problems (Assad 1978). In particular, MCF appears when multiple commodities (cargo, packets, or

demands) need to be routed between specific node pairs without violating the capacity constraints associated

with the arcs in the network. While the splittable MCF can be solved in polynomial time as a linear pro-

gram, the unsplittable MCF is NP-hard (Karp 1975) and is often solved as a mixed-integer linear program

with advanced techniques. MCF is a core problem in various application contexts, including communication

(Minoux 2001), transportation (Caimi et al. 2011), and energy management (Shi et al. 2016).

A few works study the multi-commodity flow problem with primary (default) and secondary (backup)

paths. Xia and Simonis (2005) studied an MCF variant with arc-disjoint primary and secondary paths, both

under capacity constraints. However, they complicated the capacity constraints with nonlinearity and did

not consider the delay (the time spent on traversing a link). Our mathematical model, by contrast, guarantees

that the two paths meet a delay difference requirement and does not need nonlinear constraints or objectives.

A recent work studies bi-path MCF in the context of a large-scale deterministic IP network (Angilella

et al. 2022). For network resilience, the work explicitly models arc-disjointness but not bounded difference

of delay. The method for solving the abstracted optimization problem is price-and-branch heuristic, i.e.,

column generation at the root node, followed by an integer program with all the generated columns to

compute a heuristic solution. In contrast, our approach is exact, with CP-based techniques to strengthen the

relaxation and accelerate the solution process.

2.2. CP-based Approaches for Network Routing

The routing problem in networks has been studied as a constraint satisfaction problem (Frei and Faltings

1999) and a constraint optimization problem, with both node-based CP models (Ros et al. 2001) and arc-

based CP models (Sakkout and Wallace 2000). A complete CP model using set variables for the paths,



Zhang et al.: Branch-Price-and-Cut for Bi-Path MCF
4 Article submitted to INFORMS Journal on Computing

continuous variables for the flows, and integer variables for the edge weights is proposed for a weight-setting

MCF variant with an interior gateway protocol optimization metric (Ajili et al. 2005).

LP relaxations have been used to augment CP in solving routing problems for the open shortest path first

routing protocol (Petterson et al. 2007). Lagrangian relaxation, with relaxed capacity or path constraints

(Ouaja and Richards 2005), and CP were integrated to route traffic demands in data networks. Similarly,

Lagrangian decomposition and CP were combined to solve the multi-cast network design problem, where

Lagrangian decomposition provides a bound and the integration allows constraint propagation of all sub-

structures at every dual iteration (Cronholm and Ajili 2004).

To solve traffic engineering problems in segment routing, a hybrid CP framework was proposed with

novel route variables that can be considered as a relaxation of usual representations (Hartert et al. 2015). The

framework allows the users to customize an efficient core system for specific routing problems. Recently,

there are also approaches for routing problems using hybrid techniques including CP (Kinable et al. 2020).

In particular, CP is used within a logic-based Benders decomposition framework (Hooker and Ottosson

2003) and the integration exhibits the best performance for the time-triggered periodic communication

problem in time-sensitive networks (Vlk et al. 2021).

2.3. Branch-and-Price-and-Cut Approaches

The branch-and-price-and-cut (BPC) algorithm was introduced in a seminal paper (Barnhart et al. 2000) to

exactly solve the unsplittable multi-commodity flow problem. In BPC, column generation provides a linear

relaxation, strengthened by cutting planes, while a branch-and-bound tree searches the integer space. The

BPC framework, and the complete branching scheme based on divergence nodes, are highly regarded exact

techniques for MCF problems (Salimifard and Bigharaz 2022). BPC is also widely used for exactly solving

vehicle routing problems (Archetti et al. 2011, Costa et al. 2019), one-dimensional bin packing problems

(Wei et al. 2020), and cutting stock problems (Alves and de Carvalho 2008).

Only a limited number of papers have proposed CP-based branch-and-price-and-cut (CPBPC) algorithms.

Most of these works use CP to solve pricing problems, i.e., generate columns. For example, this type of

column generation algorithm has been applied to an airline crew assignment problem (Junker et al. 1999),

vehicle routing problems with time windows (Rousseau et al. 2004, Lam et al. 2022), and an operating room

planning and scheduling problem (Hashemi Doulabi et al. 2016). Although under a different name, a CP-

based branch-and-price-and-check algorithm for a vehicle routing problem with location congestion follows

the same paradigm as CPBPC by using CP to check the feasibility of the location resource constraints and to

add combinatorial no-good cuts to the master problem in case of constraint violation (Lam and Hentenryck

2016).
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3. Problem Definition and Formulations
In this section, we investigate a complex MCF variant where a primary and a secondary path must be

allocated to each commodity. The two paths need to be arc-disjoint, i.e., no arc is used by both paths. Due

to the time for a demand to traverse an arc, the two paths each have a total delay. We require the difference

between the two path-delays to be no greater than a given threshold. Each commodity has a bandwidth

to reflect its resource consumption in the network, while each arc in the network has a capacity for its

bandwidth usage. The objective is to minimize the total costs of the primary paths and the secondary paths.

We call this MCF variant bi-path MCF (BP-MCF).

The BP-MCF is defined on a graph G = (V,A), where V = {v1, ..., v|V |} represents the set of vertices

and A = {a1, ..., a|A|} represents the set of arcs. For each vertex v, δout(v) and δin(v) represent the set of

outgoing and incoming arcs of v, respectively. For each arc a, we use a− and a+ to denote the origin and

destination nodes of the arc, respectively. There is a set of commodities (demands) K = {k1, ..., k|K|} that

need to be routed as elementary paths in the graph. A path is called elementary if no vertex is repeated in the

path. Each commodity k has an origin sk, a destination tk, and a bandwidth bk. Each arc a has a bandwidth

capacity ca and a delay da for any commodity whose path contains a. The delay of a path is the sum of

the delays of its arcs. The difference in the delays of the two paths for commodity k is required to be less

than or equal to ∆k. In addition, αa and βa are the arc cost coefficients for primary and secondary paths,

respectively. Namely, if the primary (secondary) path of a commodity k contains arc a, the induced cost is

αabk (βabk).

As capacities ca and bandwidths bk are often treated as integers in telecommunication applications, they

are assumed to be non-negative integers in BP-MCF. By contrast, delays da, delay difference limits ∆k, and

cost coefficients αa and βa are assumed to be non-negative continuous. An example of BP-MCF is shown

in Figure 1. The notation is summarized in Table 1.

Figure 1 An example of BP-MCF with two demands. The upper bound of delay difference is 2. The solution

shown in the example is feasible as (1) the two paths for each demand are arc-disjoint; (2) the delay

difference of the two paths for each demand is 1; and (3) the arc capacities are not exceeded.
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Table 1 Summary of symbols and definitions.

Symbol Definition Symbol Definition Symbol Definition

G= (V,A) graph (network) a− origin of a sk origin of k
V = {v} set of vertices a+ destination of a tk destination of k
A= {a} set of arcs ca ∈Z≥0 capacity of a bk ∈Z≥0 bandwidth of k
K = {k} set of demands da ∈R≥0 delay of a µk dual of (3b)
δin(v) incoming arcs of v αa ∈R≥0 primary cost of a πa dual of (3c)
δout(v) outgoing arcs of v βa ∈R≥0 secondary cost of a ηa dual of (21)
C = {C} set of covers rv route variable

∆k ∈R≥0 bound of delay difference of k
xk
a/xk

a =1 if arc a is used for the primary/secondary path of k, =0 otherwise
x̂k
a = xk

a +xk
a =1 if arc a is used for demand k, =0 otherwise

zkp,p =1 if primary and secondary paths p and p are used for k, =0 otherwise
wk

p,p total cost of primary and secondary paths p and p of demand k
Ps,t set of elementary paths from s to t
Ka set of demands using arc a
As/Ac/Ao set of set/closed/open arcs
Dk

i accumulated delay of column i for demand k
θk/lk/uk delay threshold/lower-bound/upper-bound for demand k

PROPOSITION 1. BP-MCF is NP-hard.

Proof. In fact, the BP-MCF is NP-hard with only one commodity. We prove this NP-hardness via a

reduction from the resource-constrained shortest path problem (RCSPP), which is NP-hard (Handler and

Zang 1980). Specifically, for the single commodity with a delay-difference threshold ∆, we add an addi-

tional arc from the origin to the destination of the commodity, with a capacity greater than the bandwidth of

the commodity, zero cost, and a delay of D. Then, with either the primary or the secondary path assigned

to the additional arc, the rest of the problem is to determine the other path with its delay in the range of

[D−∆,D+∆] while minimizing the cost. This problem is exactly the RCSPP. Thus, BP-MCF is NP-hard.

□

3.1. Mathematical Programming Formulations

We propose two mathematical programming formulations for BP-MCF, where the first is compact and the

second is typically solved with column generation.

3.1.1. Compact formulation. The compact mixed-integer linear programming (MILP) model with

arc variables for commodities is inspired by an existing model in the literature (Xia and Simonis 2005).

There are only binary decision variables X = {xk
a} and X = {xk

a}, where xk
a = 1 if the primary path of

commodity k uses arc a, and 0 otherwise; and xk
a = 1 if the secondary path of commodity k uses arc a, and

0 otherwise. The MILP model is as follows:

min
∑
k∈K

bk(
∑
a∈A

αax
k
a +

∑
a∈A

βax
k
a) (1a)
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∑
a∈δout(v)

xk
a−

∑
a∈δin(v)

xk
a =


−1 if v= sk,
−1 if v= tk,
−0 otherwise,

∀v ∈ V,∀k ∈K, (1b)

∑
a∈δout(v)

xk
a−

∑
a∈δin(v)

xk
a =


−1 if v= sk,
−1 if v= tk,
−0 otherwise,

∀v ∈ V,∀k ∈K, (1c)

∑
k∈K

bk(x
k
a +xk

a)≤ ca ∀a∈A, (1d)

−∆k ≤
∑
a∈A

dax
k
a−

∑
a∈A

dax
k
a ≤∆k ∀k ∈K, (1e)

xk
a +xk

a ≤ 1 ∀a∈A,∀k ∈K, (1f)

xk
a, x

k
a ∈ {0,1} ∀a∈A,∀k ∈K, (1g)

Cycle Elimination Constraints. (1h)

Term (1a) represents the total weighted cost of arc usage by the primary and secondary paths of each

commodity. Constraints (1b) and (1c) state the path flow constraints. Constraints (1d) address the arc capac-

ity for primary and secondary paths. Constraint (1e) ensures that the delay difference between the two paths

of the same commodity is under the threshold. Constraint (1f) guarantees that the two paths are arc-disjoint.

We also need to lazily add constraints to eliminate cycles that may be found. For example, for a com-

modity k, given that the delay difference of the primary and secondary paths is limited, if a low-cost but

high-delay primary path is selected, then the secondary path may include cycles in order to close the delay

gap. Such solutions to the MILP model need to be eliminated to ensure elementary paths. Thus, if there

exist cycles in the optimal solution of model (1a)-(1g), constraints (1h) are added lazily during the solving

process, i.e., via callback of commercial MILP solvers. We use depth-first search to detect cycles in the

current best solution. If a cycle in the primary path for commodity k is detected as Sk, a set of all arcs in

the cycle, the cycle elimination constraint is the following inequality:

∑
a∈Sk

xk
a ≤ |Sk| − 1. (2)

An analogous constraint is added if the cycle is in the secondary path. All such constraints (if any) are lazily

added to the compact model, which is solved again until no cycle is detected in the current best solution.

3.1.2. Bi-path formulation and column generation. We present a MILP formulation with bi-

path decision variables Z = {zkp,p}, where zkp,p = 1 if primary path p and secondary path p are used for

commodity k, and 0 otherwise. For convenience, we use PPk to represent the set of potential bi-paths for

commodity k. Any bi-path in the set satisfies the corresponding path flow, arc-disjoint, and delay-difference
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constraints. Thus, we can directly obtain the cost coefficient wk
p,p associated with a bi-path (p, p) of com-

modity k. The MILP formulation is as follows:

min
∑
k∈K

∑
(p,p)∈PPk

wk
p,pz

k
p,p (3a)∑

(p,p)∈PPk

zkp,p = 1 ∀k ∈K, (3b)∑
k∈K

bk
∑

(p,p)∈PPk|a∈p or a∈p

zkp,p ≤ ca ∀a∈A, (3c)

zkp,p ∈ {0,1} ∀k ∈K,∀(p, p)∈ PPk. (3d)

The bi-path MILP model requires an exponential number of decision variables, which is intractable when

the graph size is large. Thus, a column generation approach inspired by Barnhart et al. (1998) and Barnhart

et al. (2000) is used. In column generation, model (3a)-(3d) with a subset of bi-paths for each commodity

is referred to as the (restricted) master problem. The bi-path variables of a commodity are generated by

solving pricing problems, where arc-disjoint and delay-similar bi-paths are found. We define the dual value

of constraint (3b) as {µk} and the dual value of constraint (3c) as {πa}. By using binary decision variables

{xa} ({xa}) to express whether the primary (secondary) path uses arc a, the compact formulation of the

pricing problem for commodity k is presented as follows:

min
∑
a∈A

(αa +πa)bkxa +
∑
a∈A

(βa +πa)bkxa−µk (4a)

∑
a∈δout(v)

xa−
∑

a∈δin(v)

xa =


−1 if v= sk,
−1 if v= tk,
−0 otherwise,

∀v ∈ V, (4b)

∑
a∈δout(v)

xa−
∑

a∈δin(v)

xa =


−1 if v= sk,
−1 if v= tk,
−0 otherwise,

∀v ∈ V, (4c)

−∆k ≤
∑
a∈A

daxa−
∑
a∈A

daxa ≤∆k, (4d)

xa +xa ≤ 1 ∀a∈A, (4e)

xa, xa ∈ {0,1} ∀a∈A, (4f)

Cycle Elimination Constraints. (4g)

The pricing problem does not have the arc capacity constraints, as they are enforced in the master problem.

The explanations of the model (4a)-(4g) are omitted as they are similar to model (1a)-(1h).

PROPOSITION 2. The pricing problem of BP-MCF is NP-hard.

Proof. We have proved in Proposition 1 that the BP-MCF with only one commodity is NP-hard, which

implies that the pricing problem is also NP-hard by the same reduction from the resource-constrained short-

est path problem. □
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We can develop a variety of approaches to generate bi-paths: dynamic programming, MILP, constraint

programming (CP), and problem-specific algorithms. In this work, we use CP as it can deal with various

constraints and is efficient, especially in failure detection.

4. A CP Solver for Multi-Commodity Flow Problems
In this section, we introduce a specialized CP solver designed for MCF problems.

4.1. Route Variable

As a type of graph variable (Dooms et al. 2005, Laborie 2009), a route variable for a commodity is defined

as

rv := (s, t, b,G,A), (5)

where s and t are the origin and destination of the commodity, and b represents the bandwidth, which we

also refer to as the flow. G is the graph where the commodity flow problem is defined and A is the set of

all arcs in G. An arc a ∈ A has three possible statuses: set, closed, and open. If a is set, it is selected as

a part of the elementary path of the commodity. If a is closed, it is removed from the commodity’s graph.

If a is neither set nor closed, then it is open: it may or may not be added to the elementary path. We use

A=As ∪Ac ∪Ao to distinguish the three sets of mutual exclusive arcs for a commodity.

The domain of a route variable contains all the elementary paths from s to t in the graph defined implicitly

via arc status. The route variable manipulates the status of arcs in the graph to determine its value, i.e., the

elementary path it is assigned to. Formally we write the domain of a route variable as D(rv) = Ps,t, where

Ps,t is the set of all elementary paths from s to t. The route variable maintains a partial path originating

from the origin, which is used to prune arcs via inference. An example of the partial path and the statuses

of arcs is shown in Fig. 2. We base our implementation on ideas in the literature on route variables (Le Pape

et al. 2002, Hartert et al. 2015).

Figure 2 Three types of arcs in the specialized CP solver: {sa, ab, bj} are the set arcs that form the partial

path for commodity k1; {be, bk} are the closed arcs as there already exists one outgoing arc from

node b that is set; {jc, jm, jt} are the open arcs as no decision has been made for the next set arc

of the path.
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4.2. Constraints

Constraints in CP are implemented by filtering algorithms that preserve consistency among variable

domains (Régin 1996). Thus, CP supports high-level, independent, and composable constraints. Here we

present all the relevant CP constraints in this paper.

4.2.1. Arc-Disjoint Constraint. In the case where two paths need to be arc-disjoint, the constraint

is defined as follows:

ArcDisjoint(rv1, rv2), (6)

where rv1 = (s1, t1, b1,G,A1) and rv2 = (s2, t2, b2,G,A2) are two route variables. This constraint ensures

that if an arc is set for a variable, the same arc is closed for the other variable, i.e.,

∀a∈As
1→ a∈Ac

2 and ∀a∈As
2→ a∈Ac

1. (7)

The implementation of the ArcDisjoint constraint is as simple as (7), which is triggered by the setting

operation of an arc in a route variable.

4.2.2. Delay-Range Constraint. When arc delays are considered in MCF, the accumulated delay

along a path can be constrained by the following constraint:

DelayRange(rv, l, u), (8)

where rv= (s, t, b,G,A) is a route variable. The l (u) is the lower bound (upper bound) of the accumulated

delay along the path.

During the construction of the path, when considering an arc candidate a to set, we use shortest path

algorithms (e.g., Dijkstra (1959)) to compute the smallest path delay D
′

with the arc a set according to the

following formula:

D
′
(a) =

∑
i∈As

di + da +h(a), (9)

where ha is the smallest delay of the partial path originating from the end node of arc a. This formula is

illustrated in Fig. 3. If D
′
(a)> u, the upper bound of delay is exceeded after setting arc a, which implies

that arc a can be closed.

Figure 3 Inference of the delay in the delay-range constraint: the arc bj is the candidate under consideration,

h(jt) is the shortest delay of the partial path from j to the destination t.
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4.2.3. Delay-Difference Constraint. Constraints that place an upper limit on the delay difference

between two paths are defined as follows:

DelayDiffUB(rv1, rv2,∆), (10)

where ∆ represents the threshold of the delay difference between the two paths, i.e.,

|
∑
a∈As

1

da−
∑
a∈As

2

da| ≤∆. (11)

In general, the inference of the delay difference is weak when neither the first nor the second path is

fixed. However, with an appropriate search strategy, if one of the paths can be fixed first, then its delay D

can be obtained. With the fixed path delay and the upper limit of the delay difference, a range of the other

path delay D
′

is calculated as follows:

D−∆≤D
′
≤D+∆. (12)

The inference regarding this delay range is the same as the constraint DelayRange.

4.2.4. Arc Capacity Constraint. The arc capacity constraint of MCF is as follows:

ArcCapacity({rv1, rv2, ...rvn},{ca1 , ca2 , ..., cam}). (13)

The ArcCapacity constraint involves a set of route variables and a set of arc capacities. This global

constraint is equivalent to a group of capacity constraints for each arc, i.e.,

∑
a∈As

i ,∀i=1,...,n

bi ≤ ca, ∀a= a1, ..., am. (14)

The constraint closes any arc of a variable of a commodity that exceeds the capacity of the arc, based on

the accumulated bandwidth on an arc.

4.3. Implementation Details

Our CP solver does not represent constrained floating point variables: in fact, all constrained variables used

in the models in this paper are Boolean (i.e., 0/1) variables. However, reasoning about floating point values

is needed in some global constraints and with respect to costs as both arc delays and arc costs are assumed

to be continuous parameters. In such cases, our solver uses C++ double variables to represent bounds on

continuous values. Our implementation makes use of frequent epsilon comparisons to handle numerical

errors that could occur during the propagation.
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Figure 4 Flowchart of the CP-based branch-and-price-and-cut: blocks with bold frames are the CP modules.

5. CP-based Branch-and-Price-and-Cut
Branch-and-Price-and-Cut (BPC) is an exact framework for solving combinatorial optimization problems,

where the relaxation is solved by column generation and strengthened by cutting planes, with the help

of branching heuristics to search in the global solution space and close the gap between the primal and

dual bounds. We incorporate the specialized CP solver into four algorithmic modules in a CP-based BPC

(CPBPC) framework, as shown in Fig. 4.

The four modules are CP-based column generation (CPCG), CP-based cut generation (CPCT), CP-based

primal heuristic (CPPH), and CP-based branching node heuristic (CPBNH). Our implementation iteratively

solves CPCG and CPCT until no new cuts are generated, then it turns to CPPH with the latest CPCG

Algorithm 1: CPBPC

Input: ins - a MCF problem instance.

Output: lb/ub - global lower/upper bound; X̂∗ - the best integer solution

1 lb←−∞; ub←∞; C←∅; X̂∗←∅; T ←{n0};

2 while T ̸= ∅∧ub− lb > δ do
3 n← PopTree(T );

4 repeat
5 (lb

′
, X̂

′
)← CPCG(ins,n,C);

6 if X̂′
= ∅ or lb

′ ≥ ub then n← PopTree(T ) ;

7 else C← CPCT(ins,n, X̂
′
);

8 until C has no new cuts;

9 (ub′, X̂)← CPPH(ins,n, X̂
′
); lb← UpdateLB(lb

′
); (ub, X̂∗)← UpdateUB(ub

′
, X̂);

10 if ub− lb > δ then
11 n1, n2← CPBNH(ins,n, X̂

′
);

12 T ← CreateBranch(T,{n1, n2});

13 return lb, ub, X̂∗;
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solution. Combined with a proposed two-level branching scheme evaluated by CPBNH, the entire procedure

is summarized as Algorithm 1 in a minimization problem setting.

In the CPBPC algorithm, the initialization is conducted in line 1. T is the search tree and n0 is the root

node of the tree. Starting from line 2, a node of the search tree T is evaluated. From line 4 to line 8, the

algorithm iteratively solves CPCG and CPCT until no new cuts are generated. In line 6, the current node

is discarded if it induces an infeasible relaxation or the local lower bound is worse than the best upper

bound. The best fractional solution along with the generated columns are then passed to CPPH to find an

upper bound and an integer feasible solution in line 9. If the best upper bound is greater than the best lower

bound by a threshold δ, the convergence criteria are not satisfied and thus the CPBNH is performed to

generate two branches in line 11. The two branches are then explicitly added to the search tree T in line

12. Otherwise, if the algorithm converges, the best lower and upper bounds and the best integer feasible

solutions are returned.

We detail the CP-based column generation in Section 6, the CP-based cut generation in Section 7, the

CP-based primal heuristics in Section 8, and the CP-based branching node heuristics in Section 9.

6. CP-based Column Generation
In our column generation approach, CPCG, the CP solver introduced above is used for solving the pricing

problems. The linear relaxation of the model (3a)-(3d) with a subset of all bi-paths is referred to as the

(restricted) master problem. Specifically, constraint (3d) is replaced by the following constraint:

zkp,p ≥ 0 ∀k ∈K,∀(p, p)∈ PPk. (3d’)

In the rest of this paper, (3a)-(3d’) represents the master problem in column generation.

6.1. CP Model for Bi-Path Generation

The pricing problem that needs to be solved for each commodity k is the following constraint satisfaction

problem:

ArcDisjoint(rvk, rvk), (15a)

DelayDiffUB(rvk, rvk,∆k), (15b)∑
a∈As

k

(αa +πa)bk +
∑
a∈A

s
k

(βa +πa)bk <µk, (15c)

rvk = (sk, tk, bk,G,Ak), (15d)

rvk = (sk, tk, bk,G,Ak). (15e)

The rvk and rvk are the route variables of the primary and secondary paths of commodity k. The Ak

and AK are the arc sets for the two variables. Constraints (15a) and (15b) are the arc-disjoint and delay-

difference constraints of the two paths. Constraint (15c) reformulates the reduced cost and forces it to



Zhang et al.: Branch-Price-and-Cut for Bi-Path MCF
14 Article submitted to INFORMS Journal on Computing

be negative, i.e., solutions with non-negative reduced cost are infeasible. Different from standard pricing

problem formulations, we model ours as a constraint satisfaction problem enforcing the negative reduced

costs via a constraint.

6.2. Search Strategy for Bi-Path Generation

The proposed CP solver is compatible with any valid search strategy, with depth-first search as default. We

use a strategy that first determines an elementary path for the primary and then for the secondary route

variable, guided by the shortest path from the origin to the destination of the variables. With the primary path

fixed, the arcs used by the primary path are closed for the secondary route variable and, as the accumulated

delay of the primary path is fixed, the range of the delay of the secondary path is determined. Efficient

algorithms tailored for resource-constrained shortest path problems (e.g., “pulse” (Lozano and Medaglia

2013)) are hence used. This search strategy is particularly advantageous as the DelayDiffUB constraint

cannot make strong inferences about the delay difference of the two incomplete paths.

Similarly, with the total cost of the primary path fixed, the cost-based filtering for the secondary route

variable is stronger. If the CP solver detects a dead-end, it backtracks to another (partial) primary path.

7. CP-based Column Generation
To strengthen the linear relaxation obtained from the CP-based column generation, we propose a CP-based

cut generation method. A cutting planes (cut generation) method iteratively refines a feasible set by adding

cuts, i.e., linear inequalities, to LP and MILP problems (Dantzig et al. 1954). For MCF variants, cover cuts

are stronger than the capacity constraints and can be generated to strengthen the linear relaxation (Balas

1975).

7.1. Generating Minimal Cover Cuts

A cover is any subset of K that exceeds the arc capacity for some arc a. Given a cover C, at most |C| − 1

commodities of C can be routed via arc a. A cover cut (Balas 1975) is then introduced to strengthen the

capacity constraint as follows: ∑
k∈C

xk
a ≤ |C| − 1, (16)

where xk
a = 1 if commodity k uses arc a as a part of its path.

In BP-MCF, an arc cannot be used by both paths of the same commodity. Thus, the following inequality

using decision variables in the compact formulation is satisfied by all integer solutions:∑
k∈C

(xk
a +xk

a)≤ |C| − 1. (17)

This inequality is a cover cut for BP-MCF. Moreover, a cover C is minimal if∑
k∈C

bk > ca and
∑

k∈C−{i}

bk ≤ ca,∀i∈C. (18)
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The minimal cover inequalities dominate all others (Balas 1975).

According to the arc-disjointness, for any commodity k, xk
a + xk

a ≤ 1 always holds. When the variables

are discrete, we can use variable x̂k
a = xk

a+xk
a to replace xk

a and xk
a. We then use X̂ to represent the set of x̂k

a

with domain of {0,1}. Note that this replacement is for the convenience of presentation. In practice, the two

sets of variables are manipulated separately. Let X̂
′

(X
′

and X
′

) be the fractional solution obtained from

CPCG. The problem of finding a cover cut violated by X̂
′
, or deciding that none exists, is the separation

problem for the cover cuts: deciding if there exists a subset C ⊆K such that

(i).
∑

k∈C bk > ca,

(ii).
∑

k∈C x̂
′k
a > |C| − 1.

Condition (i) ensures that C is a cover, while condition (ii) indicates that X̂
′

violates the corresponding

cover cut.

We propose a CP-based cut generation (CPCT) method to heuristically generate cover cuts violated by

the current fractional solution. The process is conducted with an independent CP model considering capac-

ity constraints and all commodities on small graphs (one for each route variable) constructed from active

columns (obtained from column generation) to efficiently generate cuts. The detected cuts are guaranteed to

be minimal. The CPCT method detects a cover cut by seeking a set of commodities and an arc that satisfies

inequalities (i) and (ii).

7.2. Algorithm Details

CPCT is performed after each run of CP-based column generation (CPCG) to add cuts to the master problem

(3a)-(3d’) and strengthen the linear relaxation. After an iteration of CPCG, the generated columns form

partial graphs for each commodity. We create a single multi-commodity CP model with these partial graphs

and arc capacity constraints. Our intuition is that the newly generated columns are likely to be incorporated

into the next solution to the master problem. By generating cuts specifying incompatibilities between these

columns, we are tightening the subsequent master relaxation. During the solving process of the CP model,

whenever a capacity constraint is violated on an arc, condition (i) is satisfied. Then based on the fractional

variable solutions obtained from CPCG we evaluate condition (ii), which generates a cover cut if satisfied.

The CP model for cut generation is as follows:

ArcDisjoint(rvk, rvk) ∀k ∈K, (19a)

DelayDiffUB(rvk, rvk,∆k) ∀k ∈K, (19b)

ArcCapacity({rvk, rvk,∀k ∈K},{ca,∀a∈A}) (19c)

rvk = (sk, tk, bk,G,A
′

k) ∀k ∈K, (19d)

rvk = (sk, tk, bk,G,A
′

k) ∀k ∈K. (19e)
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Algorithm 2: CPCT

Input: K - the set of commodities; A - the set of arcs; X̂
′

- the fractional solution;M - the CP

model; {rvk, rvk,∀k ∈K} - the set of route variables.

Output: C - the set of covers found by CPCT.

1 K
′← SortNonIncreasing(K); C ←∅;

2 In the CP model (19a)-(19e) while stop condition not met do
3 for k ∈K ′ do
4 repeat
5 SetPrimaryThenSecondaryPath(M, rvk, rvk);

6 (a,Ka)← FindViolatedArc(M,A);

7 if Ka ̸= ∅ and EvalCondition2(X̂
′
,Ka) = True then C ←C + {Ka} ;

8 until rvk and rvk are set or stop condition are met;

9 return C ;

For commodity k, rvk and rvk are the route variables of the primary and secondary paths. The sets A
′
k and

A
′

k contain the arcs of the partial graphs formed by the generated columns for commodity k. Constraints

(19a) and (19b) are the arc-disjoint and delay-difference constraints. Constraint (19c) is the capacity con-

straint over all the route variables and arcs in the network. Note that there is no objective function in the CP

model. The goal of using this model in CPCT is to make inferences based on the constraint violation.

The search strategy of the CP model is designed to first set the primary and then the secondary paths for

a commodity. All the commodities are sorted in non-increasing order of bandwidth and their bi-paths are

set one commodity at a time in this order, with backtracking in case of constraint violation. The procedure

is presented in Algorithm 2.

In line 1 of the algorithm, the set of commodities is sorted in non-increasing order of bandwidth. Then

we start solving the CP model: for each commodity, the primary path and secondary path are determined,

with a priority on setting the primary path, as shown in line 5. If the capacity of an arc a is violated, the set

of all the commodities using arc a (i.e., Ka) is returned in line 6. The backtracking is implicitly allowed in

the while loop as shown in line 4. If condition (ii) is also satisfied according to line 7, Ka will be added to

the set of covers C . The cover cut corresponding to Ka is as follows:∑
k∈Ka

x̂k
a ≤ |Ka| − 1. (20)

In the context of CPCG, all such cover cuts in the returned C are added to the master problem (3a)-(3d’) in

the following form: ∑
k∈Ka

∑
(p,p)∈PPk|a∈p or a∈p

zkp,p ≤ |Ka| − 1. (21)



Zhang et al.: Branch-Price-and-Cut for Bi-Path MCF
Article submitted to INFORMS Journal on Computing 17

Let the corresponding dual variable in the master problem be ηa. Then the reduced cost constraint (15c) of

the CP-based pricing problem for commodity k ∈C with the new dual values becomes∑
a∈As

k

[(αa +πa)bk + ηa] +
∑
a∈A

s
k

[(βa +πa)bk + ηa]<µk. (12c’)

PROPOSITION 3. Any cover cut found by CPCT is minimal.

Proof. Since the commodities are sorted in decreasing order of their bandwidths (bk) in CPCT, when

a capacity violation of arc a is detected, the trigger is the commodity with the smallest bandwidth in the

current cover. Since the previous set of commodities using the arc does not form a valid cover, they only

occupy a total bandwidth of B ≤ ca. As the bandwidth of all the other commodities in the cover is no

smaller than the newly added commodity, removing any of them from the cover would induce a smaller

total bandwidth occupancy B′ and B′ ≤B ≤ ca. Thus, the cover cut found by CPCT is minimal. □

7.3. Extended Cover Cuts

The generated cover cuts could be extended (Wolsey and Nemhauser 1999). If C ⊆ K is a cover, the

extended cover E(C) is defined as E(C) =C ∪ {i ∈K|bi ≥ bk,∀k ∈ C}. Accordingly, an extended cover

cut associated with the capacity constraint of arc a is∑
k∈E(C)

x̂k
a ≤ |C| − 1, (22)

and the extended cover cut E(C) dominates the original cover cut C. In our framework, all the generated

cover cuts are extended (if possible) to strengthen the linear relaxation.

8. CP-based Primal Heuristic
Column generation provides a solution to the linear relaxation of BP-MCF. Within a branch-and-price-and-

cut approach, it is often useful to employ primal heuristics to find integral feasible solutions. There are

generally two options:

(a). Round the continuous solution.

(b). Solve a restricted integer optimization problem using only the generated columns.

Here we propose a CP-based approach for (b). We use CP as a primal heuristic to solve a relaxed version

of the restricted master problem where the possible network for commodity k is constructed from all the

arcs in the generated columns for commodity k.

8.1. CP Model for the Primal Heuristic

The CP model for the primal heuristic is presented as follows:

min
∑
k∈K

(
∑
a∈As

k

αabk +
∑
a∈A

s
k

βabk) (24)

(19a)− (19e).
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Figure 5 More paths than columns in the graph of a route variable.

The objective (24) minimizes the total arc cost in the two paths of each commodity. The constraints are

exactly the same as the CP model used for CP-based cut generation. Note that a feasible integral solution

does not necessarily exist when the relaxed problem is feasible, thus the CP model may prove infeasibility.

There are several advantages of using CP as a primal heuristic. First, the graph for each commodity is

much smaller than the original graph as it is constructed from the arcs of the generated columns for that

commodity, as shown in (19d) and (19e). With smaller graphs, the ArcDisjoint, DelayDiffUB, and

ArcCapacity constraints are stronger.

Second, as shown in Fig. 5, the graph of each variable may contain more paths than just the active columns

because the formulation is arc-based: arcs from different columns may be combined to form a novel path.

The arc-based CP model searches through all paths that can be constructed by arcs that participate in the

routes of the current node column generation. A similar idea is used by Alvelos and de Carvalho (2007).

Finally, cycles are eliminated with the internal inference of the CP solver.

8.2. Search Strategy for the Primal Heuristic

We use a search strategy similar to the bi-path generation of BP-MCF. Each commodity is processed in

sequence and the primary path is determined first. With a primary path fixed, the CP solver can quickly find

a valid secondary path or prove that none exists, backtracking to another primary path for the commodity.

The ArcCapacity constraint filters arcs as more and more primary and secondary paths are determined.

The order in which commodities are processed may matter to the performance of the CP solver. In our

implementation, the commodities are processed in random order. We leave the investigation of other variable

ordering heuristics to future work. Also note that since the CP solver looks for feasible solutions with small

objective values, the primary path is determined with a priority for small costs.

9. CP-based Branching Node Heuristic
The CP-based column generation, CP-based cut generation, and CP-based primal heuristic modules are

performed at every node of a search tree that is constructed with a two-level CP-based branching strategy:

the first-level branches on accumulated path delays of primary route variables and the second-level branches
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on removing arcs of primary and secondary route variables. In this section, we first introduce the two-level

branching scheme and then the CP-based branch node heuristic for node selection.

9.1. First-Level Branching Scheme

The first level strategy branches on primary delays. Consider a fractional solution where, for a commodity,

several bi-path variables take fractional values. We use their weighted average delay as the branching thresh-

old. Formally, for commodity k in a CPCG solution, nk columns take fractional values {wk
1 ,w

k
2 , ...,w

k
nk
}

where
∑nk

i=1w
k
i = 1 and 0<wk

i < 1,∀i= 1, ..., nk. Let {Dk
1 ,D

k
2 , ..,D

k
nk
} be the accumulated delays of the

nk columns. The branching threshold is obtained as

θk :=

nk∑
i=1

wk
i D

k
i . (24)

Then the two branches are
∑

a∈As
k
da ≤ θk and

∑
a∈As

k
da > θk. In our CP framework, we enforce the two

branches by adding constraints on the delay range of the primary route variable as follows:

DelayRange(rvk, lk, θk) ∨ DelayRange(rvk, θk + ϵ, uk). (25)

In the right branch, ϵ is a sufficiently small numeric value. If this commodity is branched on again in a

deeper node, the primary delay ranges are updated in the DelayRange constraint rather than adding a

new constraint. Thus, for each node in the search tree, there is at most one DelayRange constraint on the

primary route variable of a commodity. For branching node selection, we select the commodity with the

biggest delay variance among its non-zero weighted paths.

To the best of our knowledge, this is the first time that a delay-based branching scheme is proposed for

solving MCF problems though there are some conceptual similarities with branching on time windows in

vehicle routing problems (Gélinas et al. 1995). However, this delay-based branching scheme is not complete.

There are two cases where it cannot distinguish two bi-paths: (1) if more than one bi-path of a commodity

has the same primary delay, and (2) if there exists more than one secondary path with the same cost and the

same primary path. Thus, we need a second-level branching scheme to ensure completeness.

9.2. Second-Level Branching Scheme

If the first-level branching scheme cannot distinguish several bi-paths, the second-level branching scheme

branches by removing arcs via the divergence node-based branching approach (Barnhart et al. 2000). In

this approach, if a commodity takes two fractional values for its (primary or secondary) paths in the linear

relaxation, we find the divergence node: the first node where the two paths diverge. Then all the outgoing

arcs from the divergence node are divided into two sets: A1 and A2, where the two fractional arcs are not in

the same one. The two resulting branches are then removing A1 and removing A2, respectively.

A problem with the second-level branching scheme is that it may not efficiently partition the solution

space such that the optimal solution is in exactly one branch. If the divergence node of a commodity is not
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visited in the optimal solution, then that solution is in both branches and the current branching node is not

well selected. For BP-MCF, this second-level branching scheme is a suitable complement for the first-level

branching scheme, as it will always distinguish the indistinguishable cases in level 1: as long as the primary

or secondary paths of two bi-paths are different, a divergence node will exist.

9.3. CP-based Branch Evaluation

In order to improve the efficiency of the second-level branching scheme, we propose a constraint propaga-

tion method for selecting branching nodes. For the two branches of a branching node, CP propagates (i.e.,

makes valid inferences according to the arc status of route variables) on each of the two branches to remove

more arcs. A metric score, calculated after the two branches are propagated, is used to make the branching

decision.

Specifically, in a fractional solution with multiple divergence nodes in different commodity graphs, we

use the CP model (19a)-(19e) for constraint propagation. For the divergence node i, define N i
1 as the number

of open arcs in the network after propagating on the first branch and N i
2 as the number for the second branch.

The score N i for node i is

N i =N i
1 +N i

2 + |N i
1−N i

2|. (26)

We select the branching node with the smallest score. The intuition behind the selection criteria is to obtain

smaller commodity networks to detect dead-end or feasible solutions faster. The absolute value term ensures

that the two branches are not too unbalanced.

10. Experimental Evaluation
In this section, we present the numerical experiments on diverse instances of bi-path MCF generated in the

context of telecommunication applications.

10.1. Instance Generation

The majority of problem instances for experiments are generated from two well-known libraries: SNDlib,

a library for telecommunication network design (http://sndlib.zib.de); and The Internet Topol-

ogy Zoo, a collection of real networks (http://www.topology-zoo.org). The rest of the instances

are generated randomly. The three sets of instances follow a similar generation scheme. In this section,

we briefly describe the instances and refer readers to the appendix (Zhang et al. 2023a) for the detailed

generation processes.

We select 10 topologies from SNDlib, 10 topologies from The Internet Topology Zoo, and generate 9

topologies randomly. The number of nodes in randomly generated topologies varies in {20,25,30} and

the density of the graph varies in {0.3,0.4,0.5}. The edge costs for primary paths are multi-valued, while

the edge costs for secondary paths have two configurations: all-1 or all-0. With the total number of feasi-

ble demands being Kf for each instance, three configurations {Kf/1,Kf/2,Kf/3} are used in different

http://sndlib.zib.de
http://www.topology-zoo.org
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Table 2 Components of the CPBPC variants

Algorithm column
generation

cut
generation

primal
heuristic

branching
node heuristic

CPBPC-div ✓ ✓ ✓ ✓
CPBPC-div-random ✓ ✓ ✓ -

CPBPC-del&div ✓ ✓ ✓ ✓
CPBPC-del&div-noCut ✓ - ✓ ✓
CPBPC-del&div-noPH ✓ ✓ - ✓
CPBPC-del&div-noCutPH ✓ - - ✓

instances. Yen’s algorithm (Yen 1971) is used to find the top 40 delay-shortest paths. Then the delay differ-

ences between the 10th and the {20th,30th,40th} paths are used as the delay threshold.

In summary, we generate 10× 2× 3× 3 = 180 instances from SNDlib, 10× 2× 3× 3 = 180 instances

from the Internet Topology Zoo, and 3×3×2×3×3 = 162 instances randomly. All the 522 instances and

results can be found online (Zhang et al. 2023b).

10.2. Experiment Setting

We summarize the components of the evaluated CPBPC variants in Table 2. In the table, ‘del’ refers to

the delay-based branching scheme and ‘div’ refers to the divergence node-based branching scheme. The

algorithms are implemented in C++ on a machine with Intel(R) Xeon(R) CPU E5-4627 v2 of 3.30GHz with

504GB RAM, running under Linux 64-bit OS. CPLEX 12.6 IBM (2023) is used as the solver for LP and

MILP. For every single run, one thread is used with a 1000s time limit and a 5Gb memory limit. We solve

all CP models with the proprietary CP solver described above developed at Paris Research Center, Huawei

France.

For CPBPC, we maintain a branch-and-price binary search tree and search for solutions using breadth-

first search (BFS). BFS updates the global lower bound efficiently but may not be able to update the global

upper bound at an early stage.

For column generation, the pricing problem of each demand has a time limit of 100 ms, while the master

problem is run for up to 6000 ms. The CP-based cut generation is run for 100 ms. Similarly, the primal

heuristic is constrained by a time limit of 100 ms but the branching node heuristic has no time limit as it is

doing propagation only.

For comparison, a monolithic compact CP model is also solved with the specialized CP solver. The model

is represented by (24), (19a) - (19e) with the entire network for all demands instead of partial networks

constructed from active columns.

10.3. Numerical Results

The numerical results are summarized in Table 3. The ‘gap’ column is the mean optimality gap over all

the instances. All algorithms calculate both a lower bound (LB) and an upper bound (UB) so the gap
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Table 3 Results over 522 instances of the CPBPC algorithms and the compact MILP model

Algorithm gap time(s) #nodes #feas #opt #cols #cuts #PHs

CPBPC-div 7.27% 418 20 363 312 167 605 289
CPBPC-div-random 6.97% 406 39 367 313 173 652 178

CPBPC-del&div 6.77% 386 24 380 332 176 540 186
CPBPC-del&div-noCut 6.91% 404 59 379 326 169 - 365
CPBPC-del&div-noPH 8.46% 439 45 339 310 164 664 -
CPBPC-del&div-noCutPH 10.73% 485 108 302 285 150 - -

Compact MILP 30.36% 854 27470 139 101 - 458 -

Compact CP 38.99% 929 210060 55 47 - - -

is determined by the corresponding algorithm. If no feasible solution is found within the time limit, a

default upper bound found by a greedy heuristic used during instance generation is applied to calculate

the optimality gap. The ‘time(s)’ column is the mean runtime over all the instances. The ‘#nodes’ column

is the mean number of evaluated nodes over the instances that are solved to optimality by the associated

algorithm. The ‘#feas’ column is the number of instances with at least one feasible solution found while the

‘#opt’ column is the number of instances with the optimal solution found and proved. The ‘#cols’ column

is the mean number of generated columns over the instances solved to optimality. The columns labelled

‘#cuts’ and ‘#PHs’ are the mean number of generated cuts and calls to the primal heuristic, respectively.

For CPBPC variants, the generated cuts are cover cuts, while for the compact MILP model, the generated

cuts are cycle elimination constraints.

From the table, we can see that all the CPBPC variants are substantially better than the compact MILP

and CP models in both solution quality and run-time. CPBPC-div and CPBPC-div-random find almost

the same number of optimal solutions, while the mean number of evaluated nodes of CPBPC-div is just

half of the number of CPBPC-div-random, demonstrating the effectiveness of CPBNH in finding good

branching nodes. However, CPBNH can be time-consuming when there are multiple divergence nodes

for many demands, leading to a better mean optimality gap and runtime of CPBPC-div-random. For the

algorithm variants with the two-level branching scheme, CPBPC-del&div is the best. We can also see that

removing CPCT and/or CPPH leads to worse results and removing the latter results in more significant

degradation.

The detailed results of the eight algorithms for different groups of instances are summarized in Table 4.

For the instances from SNDlib, about half of the instances have feasible solutions found by CPBPC algo-

rithms and more than one-third are solved to optimality. Algorithms with two-level branching schemes do

not have obvious advantages. CPBPC-del&div and CPBPC-del&div-noCut perform the best and demon-

strate the importance of the primal heuristic in the CPBPC framework.

For Internet Topology Zoo instances, almost all instances have feasible solutions found by CPBPC algo-

rithms, and more than three-quarters of the instances are solved to optimality. For CPBPC algorithms, these
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Table 4 Results of the CPBPC algorithm and the compact MILP model for different instance groups

Instances Algorithm gap time(s) #nodes #feas #opt

SNDlib

180
instances

CPBPC-div 8.36% 672 57 82 61
CPBPC-div-random 8.00% 662 133 83 62
CPBPC-del&div 8.19% 633 64 92 69
CPBPC-del&div-noCut 7.79% 650 137 93 67
CPBPC-del&div-noPH 8.71% 668 114 75 64
CPBPC-del&div-noCutPH 9.44% 705 222 66 58
Compact MILP 19.60% 909 29464 29 20
Compact CP 27.92% 933 226274 16 14

Internet
Topology
Zoo

180
instances

CPBPC-div 1.86% 198 8 168 147
CPBPC-div-random 1.78% 192 12 169 146
CPBPC-del&div 1.18% 165 12 173 154
CPBPC-del&div-noCut 1.20% 163 32 174 156
CPBPC-del&div-noPH 2.99% 211 23 162 149
CPBPC-del&div-noCutPH 5.13% 240 70 150 142
Compact MILP 28.32% 714 26777 79 57
Compact CP 41.81% 875 191332 29 27

Random

162
instances

CPBPC-div 12.05% 381 13 113 104
CPBPC-div-random 11.60% 360 17 115 105
CPBPC-del&div 11.40% 356 16 115 109
CPBPC-del&div-noCut 12.29% 399 49 112 103
CPBPC-del&div-noPH 14.27% 438 32 102 97
CPBPC-del&div-noCutPH 18.39% 510 94 86 85
Compact MILP 45.57% 975 63372 13 6
Compact CP 48.14% 985 256504 10 6

instances are easier than the instances from SNDlib. Similarly, the compact MILP/CP approaches find fea-

sible and optimal solutions for more instances from this group than SNDlib, though they perform worse

in terms of the mean optimality gap. Algorithms with the two-level branching scheme have a significant

advantage over the algorithms with the divergence-based branching scheme only.

For randomly generated instances, all CPBPC algorithms behave similarly by providing feasible or opti-

mal solutions for more than half of the instances. These instances are harder than other instances according

to the mean optimality gap of CPBPC and compact MILP/CP approaches. The reason fewer feasible and

optimal solutions are found is that problems get harder as the number of demands, the size, and the density

of the network increase. For these instances, CPBPC-del&div achieves the best results.

Recall that we use three different configurations of the threshold for delay difference. We hence re-

organize the results of CPBPC-div, CPBPC-del&div, and the compact MILP/CP approaches according to

the three configurations in Table 5.

In the table, the relative UBs (LBs) are calculated as the mean relative value of the UB (LB) divided by

the LB value of the corresponding instance and algorithm when the delay-difference threshold is 10th to

40th as shown in (27). The wider range of the delay difference results in a less constrained problem and
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Table 5 Results with different upper bounds of delay difference

Algorithm delay-diff UB gap time(s) relative UB relative LB #feas #opt

CPBPC-div
10th - 20th 8.00% 463 1.20 1.11 114 96
10th - 30th 7.21% 428 1.10 1.03 123 102
10th - 40th 6.59% 363 1.07 1.00 126 114

CPBPC-del&div
10th - 20th 7.53% 434 1.19 1.11 121 101
10th - 30th 7.08% 391 1.10 1.03 128 111
10th - 40th 5.70% 332 1.06 1.00 131 120

compact MILP
10th - 20th 37.93% 944 1.44 1.05 18 12
10th - 30th 30.51% 872 1.33 1.02 39 24
10th - 40th 23.55% 770 1.24 1.00 64 47

compact CP
10th - 20th 47.98% 974 1.49 1.04 5 5
10th - 30th 35.91% 926 1.38 1.02 22 15
10th - 40th 33.07% 887 1.33 1.00 28 black27

Table 6 Results with different secondary costs

Algorithm secondary cost gap time(s) #feas #opt

CPBPC-div all-1 8.19% 446 180 149
all-0 6.34% 391 183 163

CPBPC-del&div all-1 7.44% 424 187 157
all-0 6.10% 347 193 175

Compact MILP all-1 25.43% 855 69 47
all-0 34.33% 825 58 42

Compact CP all-1 41.14% 928 27 21
all-0 34.71% 890 28 26

potentially smaller objective value in minimization problems. As a result, with the proposed denominator,

the relative UB (LB) is always ≥ 1.00.

relative UB10th−rth =
UB10th−rth

LB10th−40th
(27)

The results show that with the delay-difference threshold increasing, the problem becomes easier: the gap

and runtime get smaller while the number of instances with feasible or optimal solutions found increases.

In addition, the obtained objective decreases, which means better solutions are found with looser delay-

difference thresholds.

Finally, we present the results of CPBPC-div, CPBPC-del&div, and the compact MILP approach with

two types of different secondary costs, i.e., all-1 or all-0 costs in Table 6.

We can see that the two CPBPC algorithms and the compact CP approach find feasible and optimal

solutions for more instances with all-0 secondary costs, while the compact MILP approach finds feasible

and optimal solutions for fewer instances with all-0 secondary costs. All-0 costs mean that the secondary
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paths only need to satisfy the arc-disjoint and delay-difference constraints: an easier task for each pricing

problem and for the compact CP model. However, for the compact MILP approach, all-0 costs make it

harder to distinguish secondary paths with costs, which might more frequently create cycles to satisfy the

delay-difference threshold constraints.

11. Discussions
We selected branch-and-price-and-cut as the decomposition framework because of its suitability for the

MCF problem variants and its scalability for large industrial instances. In particular, column generation

leads to high-quality dual bounds and simple sub-problems. The branch-and-price-and-cut framework also

takes advantage of the versatility of CP, which stems from a core model that is applicable at different

stages in industrial settings (Kadıoğlu 2019). For comparison, logic-based Benders decomposition (LBBD)

(Hooker and Ottosson 2003) might concentrate too much computation burden on a master problem and

induce a large number of cuts. Large neighborhood search (LNS) (Ropke and Pisinger 2006) can be effec-

tive by fixing a subset of route variables and searching for better solutions over the remaining variables.

However, LNS sacrifices the exactness of the approach and our intuition is that the search space is too large

for it to be promising.

In the branch-and-price-and-cut framework, our results are obtained with a specialized CP solver, but

similar results could be expected with other CP solvers that can handle route variables. There is a certain

amount of effort needed to formulate/implement the ArcDisjoint, the DelayDiffUB, and the cycle

elimination constraints. However, the propagation algorithms of these constraints are not complicated.

As shown in the results, the four CP-based algorithmic modules all contribute to the superior perfor-

mance of the CPBPC approach. To achieve similar performance, the minimum required components are

route variables, several global constraints on route variables, and the CP-based column generation module.

However, a primal heuristic, not necessarily CP-based, also provides substantial benefits. Intuitively, col-

umn generation provides high-quality dual bounds and the primal heuristic generates good primal bounds,

speeding up the convergence of the algorithms.

12. Conclusions
In this paper, we integrated Constraint Programming (CP) and Linear Programming (LP) in a CP-based

branch-and-price-and-cut (CPBPC) approach for Multi-Commodity Flow (MCF) problems. In addition to

the column generation itself, we propose the novel use of CP for the cut generation, primal heuristics, and

branching node heuristics in the CPBPC framework. With minor modifications, the approach can be applied

to different routing problems and, with more effort, to other combinatorial optimization problems.

The proposed solution approach is applied to a bi-path multi-commodity flow (BP-MCF) optimization

problem, where a primary path delivers each demand and an arc-disjoint, delay-similar secondary path is
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reserved in case of the failure of the primary path. The goal is to route demands in a capacitated network

under the minimum cost. We proved the NP-hardness of BP-MCF and its pricing problem, provided two

mixed-integer linear programming formulations and a constraint programming formulation, and developed

a delay-based branching scheme.

We evaluated the performance of the proposed CPBPC approach, a compact MILP model, and a compact

CP model on a diverse set of BP-MCF instances. Experimental results show that the CPBPC approach is

significantly superior to the compact MILP and CP models in terms of optimality gap, runtime, size of the

search tree, and the number of instances solved. Thus, this work represents an important contribution to

exact methods for MCF and demonstrates the promising prospect of CP-LP integration.

Our proposed methodology can be viewed as a general CP-based framework, where every component

except for the master problem solver is a CP module. Each module in the framework can be useful in

general. The CP-based cut generation can be applied to other MCF variants with capacity constraints. The

idea of incorporating more paths than columns in the CP-based primal heuristic can be adapted to other

problems based on path generation. The CP-based branching node heuristic is effective when branching

can lead to domain pruning of decision variables. Lastly, the two-level branching scheme can be adapted to

other problems for which no efficient and complete branching scheme exists.

For future work, the proposed approach can be adapted to other MCF variants, and a more efficient fil-

tering algorithm of the capacity constraint can further improve the performance of the primal heuristics, cut

generation, and cut lifting components based on CP. Other ways of CP-LP integration are worth exploring.

In particular, using the fractional solutions of the embedded LP relaxation in the CP solver to guide the CP

search for MCF is an interesting future direction.
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Vlk M, Hanzálek Z, Tang S (2021) Constraint programming approaches to joint routing and scheduling in time-

sensitive networks. Computers & Industrial Engineering 157:107317.

Wei L, Luo Z, Baldacci R, Lim A (2020) A new branch-and-price-and-cut algorithm for one-dimensional bin-packing

problems. INFORMS Journal on Computing 32(2):428–443.

Wolsey LA, Nemhauser GL (1999) Integer and combinatorial optimization, volume 55 (John Wiley & Sons).

Xia Q, Simonis H (2005) Primary/secondary path generation problem: Reformulation, solutions and comparisons.

International Conference on Networking, 611–619 (Springer).

Yen JY (1971) Finding the k shortest loopless paths in a network. Management Science 17(11):712–716.

Zhang J, Magnouche Y, Bauguion P, Martin S, Beck JC (2023a) Appendix to Computing Bi-Path Multi-Commodity

Flows with Constraint Programming-based Branch-and-Price-and-Cut https://tidel.mie.utoronto.

ca/pubs/Computing_Bi-Path_MCP_with_CP-based_B&P&C(Appendix).pdf.

Zhang J, Youcef M, Bauguion P, Martin S, Beck JC (2023b) Computing Bi-Path Multi-Commodity Flows with

Constraint Programming-based Branch-and-Price-and-Cut URL http://dx.doi.org/10.1287/ijoc.

2023.0128.cd, available for download at https://github.com/INFORMSJoC/2023.0128.

https://tidel.mie.utoronto.ca/pubs/Computing_Bi-Path_MCP_with_CP-based_B&P&C(Appendix).pdf
https://tidel.mie.utoronto.ca/pubs/Computing_Bi-Path_MCP_with_CP-based_B&P&C(Appendix).pdf
http://dx.doi.org/10.1287/ijoc.2023.0128.cd
http://dx.doi.org/10.1287/ijoc.2023.0128.cd

	Introduction
	Literature Review
	The Bi-Path Multi-Commodity Flow Problem
	CP-based Approaches for Network Routing
	Branch-and-Price-and-Cut Approaches

	Problem Definition and Formulations
	Mathematical Programming Formulations
	Compact formulation.
	Bi-path formulation and column generation.


	A CP Solver for Multi-Commodity Flow Problems
	Route Variable
	Constraints
	Arc-Disjoint Constraint.
	Delay-Range Constraint.
	Delay-Difference Constraint.
	Arc Capacity Constraint.

	Implementation Details

	CP-based Branch-and-Price-and-Cut
	CP-based Column Generation
	CP Model for Bi-Path Generation
	Search Strategy for Bi-Path Generation

	CP-based Column Generation
	Generating Minimal Cover Cuts
	Algorithm Details
	Extended Cover Cuts

	CP-based Primal Heuristic
	CP Model for the Primal Heuristic
	Search Strategy for the Primal Heuristic

	CP-based Branching Node Heuristic
	First-Level Branching Scheme
	Second-Level Branching Scheme
	CP-based Branch Evaluation

	Experimental Evaluation
	Instance Generation
	Experiment Setting
	Numerical Results

	Discussions
	Conclusions

