
Scheduling with uncertain durations: generatingβ-robust schedules using
constraint programming

Christine Wei Wu and Kenneth N. Brown
Cork Constraint Computation Center,

Department of Computer Science,
University College Cork, Ireland

{cww1, k.brown }@cs.ucc.ie

J. Christopher Beck
Toronto Intelligent Decision Engineering

Laboratory, Dept. of Mechanical and
Industrial Engineering,University of Toronto,

Canada.jcb@mie.utoronto.ca

Abstract

Many real-world scheduling problems are subject to change,
and scheduling solutions should be robust to those changes.
We consider a single-machine scheduling problem where
the processing time of each activity is characterized by a
normally-distributed random variable, and we attempt to min-
imize flowtime. We develop an initial constraint model for
generating theβ-robust schedule - the schedule that has high-
est probability of producing a flowtime less than a stated
bound. Experiments with this initial model show that a
constraint-based approach is feasible, but that better propa-
gation methods will be required.

Introduction
Most scheduling research considers problems that are static
and certain – all the activities and their durations are known
in advance and do not change as the solution is being exe-
cuted. However, many real-world scheduling problems are
subject to change: new jobs arrive, resources fail, or tasks
take longer than expected. If these changes are significant,
then optimal solutions to the original problem may turn out
to be poor in practice. For this reason, it may be better
to generate solutions that are robust to the likely changes.
A β-robustschedule (Daniels & Carrillo 1997) is one that
has maximum probability of achieving a given performance
level (e.g. total flowtime less than a threshold). Alterna-
tively, we may want to find the best performance that a solu-
tion will deliver with a given confidence level.

Constraint-based methods have proven to be very effec-
tive in a wide range of industrial scheduling problems. The
advantage comes from the flexibility of the modeling lan-
guage, and the ability of the solvers to deliver effective per-
formance despite the presence of a wide range of different
constraints and objectives. Again, though, most constraint
based research assumes static and certain problems. In this
paper, we consider how to modelβ-robustness in a con-
straint modelling language, and we show how to search for
β-robust schedules.

In particular, we consider single machine problems,
where the processing time of each task is uncertain, but
can be characterized by a normally-distributed random vari-
able. We consider flowtime (the amount of time the tasks
remain in the system) as the main criterion. The simplest

approach would focus on optimizing the expected total flow-
time. However, this ignores the variance in the task dura-
tions, which may be significant. For any given schedule,
we will measure the probability of the total flowtime being
less than a target level. We will then generate (i) a schedule
which maximizes the probability, or (ii) a schedule which
optimizes the target level that can be achieved with a given
probability.

The paper is structured as follows: first, we briefly review
techniques for scheduling under uncertainty; we then con-
sider flowtime as a performance measure for schedules with
uncertain task durations; we give a formal definition ofβ-
robustness; we present our initial constraint models for the
β-robust scheduling problem; and finally we report on some
experiments with the model.

Background

A number of approaches have been proposed to handle un-
certain scheduling problems. Redundancy-based Schedul-
ing generates schedules with temporal slack so that unex-
pected events during execution can be handled by using
that reserved slack (Davenport, Gefflot, & Beck 2001; Gao
1995). Contingent scheduling anticipates likely disruptive
events and generates multiple schedules which optimally
respond to the anticipated events (Drummond, Bresina,
& Swanson 1994; Fowler & Brown 2003). Probabilis-
tic scheduling uses probabilities over possible events, and
searches for schedules which optimize the expected value
of some performance measure (Daniels & Carrillo 1997;
Walsh 2002; Beck & Wilson 2004; 2005). A number of ap-
proaches use sampling and scenarios, in order to produce
robust decisions (Bent & Hentenryck 2004; Beck & Wilson
2004).

In particular, Daniels and Carrillo (Daniels & Carrillo
1997) introduced the concept of theβ-robust schedule for a
single machine scheduling problem with processing time un-
certainty. They solved the problem by a branch-and-bound
method with dominance rules, and heuristics for branch se-
lection. The total flowtime was used to measure the per-
formance of solutions, which will be explained in the next
section.

The flowtime of a schedule
In a single machine scheduling problem, in which each job
consists of a single task, a machine can only process one
job at a time, and a job cannot be interrupted once started, a
solution is a sequence of the jobs, and we assume the jobs are
executed in sequence with no delay between them. Suppose
we have a sequenceJ1, J2, . . . Jn. Each jobJi has an arrival
time Ai (its earliest possible start time), a start timeSTi, a
durationdi, and an end timeEi. We assume that each job is
available for processing at time 0 (i.e.Ai = 0).

We note the following simple relations:Ei = STi + di,
ST1 = 0, STi = Ei−1, and henceEi =

∑i
j=1 dj .

Theflowtimeis the total time the jobs are in the system:

TFT =
n∑

i=1

(Ei −Ai)

Because we assumeAi = 0, we can rewrite the equation
for total flowtime as follows:

TFT =
n∑

i=1

Ei (1)

=
n∑

i=1

i∑

j=1

dj (2)

=
n∑

i=1

(n + 1− i) ∗ di (3)

We now assume that each jobJi’s duration is an indepen-
dent normally distributed random variabledi ∼ N(µi, σ

2
i).

We assume that the jobs will still be executed in the given
sequence, regardless of the actual values of the durations.

We note that for any two independent random variables
X ∼ N(µx, σ2

x) andY ∼ N(µy, σ2
y), and two constants

a and b, the sumaX + bY is also a normally distributed
random variable, such thataX+bY ∼ N(aµx+bµy, a2σ2

x+
b2σ2

y).
Since the activity durations are independent normally dis-

tributed random variables, and flowtime is a linear combina-
tion of durations, then for any particular sequence of jobs,
the flowtime is also a normal random variable. From (3):

TFT ∼ N(
n∑

i=1

(n− i + 1)µi,

n∑

i=1

(n− i + 1)2σ2
i)

β-robust schedules
For scheduling problems with uncertainty, we must decide
the criteria by which the scheduling solutions will be judged.
The simplest criterion is the expected flowtime (or the aver-
age actual flowtime over a number of runs). In this case,
the scheduler only needs to consider the expected parame-
ters of the individual jobs. However, in real settings, some
form of service level may be more important – what level
of confidence can a customer or manager have in predicted
performance levels? Rather than gambling on the expected
performance, it may be more useful to give a lower limit on

the performance, and to state the confidence in being able to
achieve that level. In this case, it is not enough to know the
expected values of the job parameters – the scheduler must
also reason about the variance of those parameters in order
to determine the variance of the schedule as a whole.

For example, consider the simple problem consisting
of three jobs{x, y, z}, with uncertain durations{dx ∼
N(9, 2), dy ∼N(5, 1), dz ∼N(8, 7)}. The sequencese =
〈y, z, x〉 has a flowtime which is distributed asN(40, 39).
40 is, in fact, the smallest expected flowtime possible for
this problem. An alternative sequence,sβ = 〈y, x, z〉, has
flowtime∼ N(41, 24), and thus has a higher expected flow-
time. However, suppose we now introduce a desired maxi-
mum flowtime of (for example)51: the scheduler will incur
a penalty if the actual schedule has a flow time greater than
51. Sequencese has a probability of0.04 of producing a
flowtime greater than51, while sβ has a probability of just
0.02 of delivering a flowtime greater than51, and thussβ

is likely to be less expensive.sβ is theβ-robust(Daniels &
Carrillo 1997) schedule for the maximum flowtime of51 -
that is, it has the highest probability of delivering a flowtime
no greater than51. In addition, for the confidence level of
0.98, sβ also delivers the minimal flowtime limit (51).

Definition 1. For the single machine scheduling problem
with n jobs, with normally-distributed uncertain durations,
and with a flowtime limitS, theβ-robust scheduling problem
is to find the sequence,s, which maximizes the probability
of the flowtime being less thanS. That is, find thes that
maximizesProb(flowtime(s) ≤ S) (Daniels & Carrillo
1997).

First, we show how to computeProb(flowtime ≤ S)
for an arbitrary sequence of then jobs. Since the ran-
dom variables in the problem are normally distributed, we
can use the formula below to compute the probability of
flowtime ≤ S, whereµ is the mean flowtime of the se-
quence, andσ2 is its variance:

φ(x ≤ X) =
1

σ
√

2π

∫ X

−∝
e
−(x−µ)2

2σ2 dx

An arbitrary normal distribution can be converted to a stan-
dard normal distribution by changing variables toz = (x−
µ)/σ, so the normal distribution function becomes:

φ(x ≤ X) =
1√
2π

∫ z

−∝
e
−t2
2 dt

=
1√
2π

∫ 0

−∝
e
−t2
2 dt + φ(z)

=
1
2

+ φ(z)

where

φ(z) =
1√
2π

∫ z

0

e
−t2
2 dt.

Hence, the probability offlowtime ≤ S can be computed
by

Prob(flowtime ≤ S) =
1
2

+ φ(z) (4)

whereS ≥ 0 and

z =
S −mean(flowtime)√

var(flowtime)
. (5)

For each possible schedule, we can compute the mean and
variance of the flowtime bymean(flowtime) =

∑n
i=1(n−

i + 1)µi andvar(flowtime) =
∑n

i=1(n− i + 1)2σ2
i as in

equation (3). Then,φ(z) can be obtained by checkingz in
the standard normal distribution table (Z-table).

Alternatively, there is a simple approximation ofφ(z)
which is good to two decimal places (Weisstein 2006), given
by

φ(z) ≈ ϕ(z)

{ 0.1z(4.4− z) (0 ≤ z ≤ 2.2)
0.49 (2.2 < z < 2.6)
0.50 (z ≥ 2.6)

(6)

Theorem 1. ϕ(z) increases on[0,+∞). For proof, see ap-
pendix.

The β-robust schedule is one of those alternative se-
quences of the jobs, such that it has the maximum probabil-
ity of flowtime ≤ S. To find aβ-robust schedule, we need
to have an objective function to maximize the probability.
We use the approximation ofφ(z) to compute the probabil-
ity, because it simplifies the calculation. Ifφ(z) is increasing
on [0, +∞), maximizing the probability offlowtime ≤ S
is the same as maximizingz.

objective = max(probability (flowtime ≤ S))

= max(
1
2

+ φ(z))

=
1
2

+ max(φ(z))

≈ 1
2

+ max(ϕ(z))

=
1
2

+ ϕ(max(z)).

With above analysis and calculations, we are ready to in-
troduce our constraint models for theβ-robust scheduling
problem.

Constraint models
We first consider the originalβ-robust scheduling problem
described in (Daniels & Carrillo 1997) as a CSP, and then
we propose a variable ordering heuristic.

The Constraint Model is shown in Figure 1. We as-
sume a set{J1, J2, . . . Jn} of jobs, each with a normally-
distributed random variable durationDi ∼ N(µi, σ

2
i). Dif-

fering from the previous sections, we now do not assume
that the jobs are scheduled in the given sequence. With each
job Ji, we associate a position variable,Posi, with domain
{1, 2, . . . , n}. The position variablePosi represents the po-
sition of Ji in the sequence: for instance,Pos2 = 3 states
that J2 is scheduled to be the third job to start on the ma-
chine. Besides position variables, we also introduce ad-
ditional variables for computing flowtime mean and vari-
ance and then the probability. For any jobi, meanFTi is
the mean flowtime from the first job up toJi. The value

Figure 1: the Constraint Model.
Variables:

Job positions:Pos1, ..., Posn

Job mean flowtimes:meanFT1, ..., meanFTn

Job mean flowtime contributions:
meanFTContrib1, ...,meanFTContribn

Job variance flowtime contributions:
varFTContrib1, ..., varFTContribn

Constraints:

allDifferent (Job positions)

let meanFT0 = 0,
Posj > Posi ⇒ meanFTi ≤ meanFTj − µj

Posj = Posi + 1 ⇒ meanFTj = meanFTi + µj

meanFTContribi = (n− Posi + 1)µi

varFTContribi = (n− Posi + 1)2σ2
j

mean(flowtime) =
∑n

i=1 meanFTi

mean(flowtime) =
∑n

i=1 meanFTContribi

var(flowtime) =
∑n

i=1 varFTContribi

Dominance constraints:
for 0 < i, j ≤ n, if Posi < Posj

µi > µj ⇒ σ2
i < σ2

j

σ2
i > σ2

j ⇒ µi < µj .

objective = max(z) = max(S−mean(flowtime)√
var(flowtime)

)

of meanFTi is an integer in the interval[µi, totalMean],
wheretotalMean =

∑n
i=1 µi. The formula (3) indicates

that flow time can be also viewed as the sum of the contribu-
tions from all jobs. We define flowtime contribution ofJi as
FTContribi = (n−Posi +1)Di. meanFTContribi and
varFTContribi are the mean and variance of the flowtime
contributions fromJi. The former has an integer value in
[µi, nµi], and the latter has a value in[σ2

i , n2σ2
i]. The goal

is to sequence those jobs, i.e. assign a distinct value to each
Posi, such that the likelihood of the sequence (schedule)
to achieve a fixed system performance levelS is optimized,
i.e. Max(Probability(X ≤ S)), whereX is flowtime.
Alternatively, we can look for a schedule with the optimal
system performanceS for a fixed probability, i.e.Min(S)
such thatProbability(X ≤ S) ≥ C, whereC is the fixed
probability.

We show how to achieve the first goal, i.e. optimizing
the probability for a fixed performance. Firstly, we have a
permutation constraint that ensures each job takes a differ-
ent position in the sequence. This can be implemented as a
global all-different constraint on all thePosi. Also, we add
further constraints during search: If jobi is located before
job j in the sequence (i.e.Posi < Posj), we have

STi + Di ≤ STj ,

whereSTi andSTj are start times ofi andj respectively,

and so
FTi ≤ FTj −Dj

whereFTi is the flowtime from the first job up to jobi.
SinceDi ∼ N(µi, σ

2
i) andDj ∼ N(µj , σ

2
j) are indepen-

dent random variables, we get

meanFTi ≤ meanFTj − µj .

Also if we consider the flowtime as a sum of contributions
from each job, from formula (3), we have

mean(flowtime) =
n∑

i=1

meanFTContribi

=
n∑

i=1

(n− Posi + 1)µi,

var(flowtime) =
n∑

i=1

varFTContribi

=
n∑

i=1

(n− Posi + 1)2σ2
i .

Note that for each job, the flowtime from the first up to
the job, FTi, is different from its flowtime contribution
FTContribi. For example, letmeanFT0 = 0, for 0 <
i, j ≤ n,

Posj = Posi + 1 ⇒ meanFTj = meanFTi + µj ,

and for0 < i ≤ n,

meanFTContribi = (n− Posi + 1)µi.

However, the sum ofmeanFTi is still equal to the
mean of total flowtime, i.e. mean(flowtime) =∑n

i=1 meanFTi =
∑n

i=1 meanFTContribi. With those
additional variables, we can use formula (4), (5) and (6) to
compute the probability of a schedule’s actual flowtime be-
ing less thanS.

We are also able to impose some dominance constraints
as in figure 1, using the properties of theβ-robust schedule.

Theorem 2. In a β-robust schedule, if jobi with Di ∼
N(µi, σ

2
i) precedes jobj with Dj ∼ N(µj , σ

2
j) , then ei-

ther the mean duration of jobi, µi, is no greater than the
mean duration of jobj, µj , or the duration variance of job
i, σ2

i , is no greater than the duration variance of jobj, σ2
j ,

that isµi ≤ µj or σ2
i ≤ σ2

j . (see Appendix for the proof)

With this property, we post further constraints during
search: if jobi starts before jobj (i.e. Posi < Posj), then

µi > µj ⇒ σ2
i < σ2

j , σ2
i > σ2

j ⇒ µi < µj .

So far, we have presented our constraint model to achieve
the first objective. Our second objective is to minimize sys-
tem performanceS such that there exists a schedule that can
achieveS with a fixed probability. That isMin(S) such
thatProbability(X ≤ S) ≥ C, whereC is the fixed prob-
ability. Using the same constraint model, we can getz value
from formula (4) and (6)

z = ϕ−1(C − 1
2
).

Then, from formula (5), we have a new objective function

min(S) = min(z∗
√

var(flowtime)+mean(flowtime)).

Besides those constraints we discussed above, we also
implement a variable ordering heuristic to guide search.
From formula (5), we can see that theβ-robust schedule
has the optimized combination ofmean(flowtime) and
var(flowtime). In order to find theβ-robust schedule more
quickly, we prefer to first schedule a jobi, which has shorter
mean processing timeµi and smaller varianceσ2

i . We use
a family of variable ordering heuristics, ordering the jobs
by increasingµi + q ∗ σ2

i , selecting a value forq based on
the problem characteristics. For the first objective (maxi-
mizing the probability), we start by finding the SEPT (short-
est expected processing time) schedule; we then compute
the probabilityP of it having a flowtime less thanS; and
from P we select a value forq from a lookup table based
on previous experiments with other problems. For the sec-
ond objective (minimizing the flowtime target achievable by
a given probability), we baseq on the probability. In both
cases, for higher probabilities, we expect the variance to be
more significant, and so we choose higher values ofq which
give increasing weight to the duration variance in the vari-
able ordering. Example values for q are 0.3,0.6, and 1.0 for
probabilities of 0.85, 0.95 and 0.99. Note that this variable
ordering heuristic does not improve the total solving speed
(i.e. the time of finding the schedule and proving it is the
optimal), but does shorten the time to find the optimal solu-
tion.

Discussion and Experimental results
We implemented theβ-robust scheduling problem as a
constraint satisfaction problem using ILOG Scheduler and
Solver 6.0. Our first aim is to verify our initial constraint
model, and so we expect to see the same pattern of results as
obtained by (Daniels & Carrillo 1997). Secondly, we want
to determine whether or not a constraint model is feasible
for such problems, and so we hope to see runtimes of a sim-
ilar order of magnitude. If we succeed in both aims, we will
then investigate more sophisticated constraint models.

We consider problems with either 10 or 15 jobs, using
the same experimental setup as (Daniels & Carrillo 1997).
The mean processing time for each jobi is randomly drawn
from a uniform distribution of integers on the intervalµi ∈
[10, 50δ1]; the processing time variance of jobi is then ran-
domly drawn from a integer intervalσ2

i ∈ [0, 1
9µ2

i δ2]. The
parameterδ1 and δ2 control the variability in the average
processing times in the test problems, which can both take
any value of 0.4, 0.7 or 1.0. We are interested in schedules
that yield acceptable performance with probability approxi-
mately 0.85, 0.95 or 0.99. Ten instances are generated ran-
domly for each combination of number of jobs,δ1, δ2, and
probability level, resulting in a total 540 test problems.

Table 1 contains the results for our constraint methods and
the corresponding figures taking directly from Daniels and
Carrillo (Daniels & Carrillo 1997). The CPU is the com-
putation time for finding and proving theβ-robust sched-
ule. Since Daniels and Carrillo performed the experiment

Table 1: Computational performance ofβ-robust solution
procedure.

Constraint model Branch-and-bound
total prob. CPU Avg. Max. CPU Avg. Max.

abv. abv. abv. abv.
jobs level (sec.) SEPT SEPT (sec.) SEPT SEPT

(%) (%) (%) (%)
10 0.85 0.1 0.1 0.4 0.2 0.1 0.8

0.95 0.1 0.3 1.7 0.2 0.3 1.9
0.99 0.1 0.5 1.9 0.3 0.6 2.5

15 0.85 6.6 0.1 0.3 1.0 0.1 0.5
0.95 5.3 0.2 0.7 1.7 0.2 1.0
0.99 14.3 0.3 1.5 2.1 0.4 1.9

Table 2: The comparison of finding the optimal result and
proving that is optimal.

Time(s) Time(%)
total jobs prob. level search prove search prove

15 0.85 0.26 6.94 5.10 94.90
0.95 0.18 6.62 5.38 94.62
0.99 0.93 12.61 11.84 88.16

on a 486 personal computer, our CPU time is not directly
comparable with theirs but should give us an indication of
whether or not a constraint-based approach is feasible. Ta-
ble 1 also shows the differences (in average and in maximum
deviation) between the mean processing time of theβ-robust
schedule and the shortest expected processing time (SEPT).

The results in table 1 show that we do have a similar pat-
tern in term of the mean flowtime of theβ-robust schedule
compared to the SEPT schedule. In addition, our CPU time
is comparable for the smaller problems, but is poorer for the
larger problems. This indicates that a constraint-based ap-
proach may be feasible, but that a more sophisticated model
with better propagation will be required. We set up a further
experiment to determine the effort require to prove that the
solution is optimal. For each probability level, we experi-
mented with 90 problems generated the same way as table
1. We also used the variable ordering heuristic as described
in constraint models section. The time of finding the optimal
solution and the time to prove it is optimal were recorded in
each case. Table 2 shows that it takes little time to find the
best solution but usually a long time to prove if it is theβ-
robust schedule. We believe that a problem is hard for our
model if it has many jobs with similar duration mean and
variance. The program is able to do little propagation, and
thus spends a lot of time trying different permutations of the
jobs for no benefit.

With the general model, we can also give the minimum
system performanceS for a problem, so that the jobs in the
problem can be scheduled to achieve the minimizedS with

Table 3: Computational performance of finding the mini-
mum system performance of required probability level (15
jobs).

Constraint model
number probability CPU Avg. abv. Max. abv.
of jobs level (sec.) SEPT(%) SEPT(%)

15 0.85 3.01 0.04 0.24
0.95 4.39 0.16 0.87
0.99 7.51 0.28 1.11

a desired probability level. Table 3 shows the time to find
the minimumS for 15 jobs problems and the corresponding
mean flowtime over the SEPT.

Daniels and Carrillo compared the mean flowtime of the
β-robust schedule and the optimal expected flowtime. That
indicates how much worse theβ-robust schedule is com-
pared to the SEPT schedule. It seems more reasonable to
compare the probabilities of achieving the system perfor-
mance of theβ-robust schedule with the SEPT schedule.
That is

[probability(flowtimeβ ≤ S)
− probability(flowtimeSEPT ≤ S)]
÷ probability(flowtimeSEPT ≤ S)

which indicates the benefit of using theβ-robust schedule.
In fact, when some jobs have the same mean, there are mul-
tiple possible schedules with shortest expected processing
time, but each will have different robustness levels. Daniels
and Carrillo did not report the detail of how they generated
the SEPT schedule. In our experiments, we used the existing
variable ordering, breaking ties lexicographically.

Future work
We are currently working on thedual model of the original
(primal) model, and a third model which channels between
the other two (Hnich, Smith, & Walsh 2004). We believe us-
ing the combined model will help us to improve the solving
speed. We also plan to investigate better bounds for prun-
ing branches at the top of the search tree, better heuristics
to guide the search, and the construction of a global con-
straint for achievingβ-robustness. We are also conduct-
ing an investigation into the characteristics of the problems
which make some of them much harder to solve than others.
Finally, we plan to extend this work to consider problems
with multiple machines and with non-zero arrival times, for
which the probability calculations reported here will not ap-
ply.

Conclusion
In this paper, we presented a general constraint model for the
β-robust scheduling problem, which allows us to produce
schedules which are robust to uncertainty in the durations of
tasks. With flowtime as the performance measure, we can
optimize the probability and find a most promising schedule

to satisfy the system performance requirement; or we can
optimize the performance level for a fixed probability. Our
initial model demonstrates that a constraint-based approach
is feasible for this problem, but that more more sophisticated
models are required for good performance.

Appendix
Theorem 1. ϕ(z) increases on[0,+∞).

Proof. For all b > a > 2.2, it is trivial to seeϕ(b) ≥ ϕ(a).
For all0 ≤ a < b ≤ 2.2,

ϕ(b)− ϕ(a) = 0.1 b(4.4− b)− 0.1 a(4.4− a)
= 0.1(4.4b− b2 − 4.4a + a2)
= 0.1[4.4(b− a) + (a + b)(a− b)]
= 0.1(b− a)(4.4− a− b).

Sinceb > a,
⇒ (b− a) > 0

and0 ≤ a, b ≤ 2.2

⇒ 0 ≤ a + b ≤ 4.4

⇒ 4.4− a− b ≥ 0.

Hence,
ϕ(b)− ϕ(a) ≥ 0

for all 0 ≤ a < b ≤ 2.2, i.e. ϕ(z) increases on[0,+∞).

Theorem 2. In a β-robust schedule, if jobi with Di ∼
N(µi, σ

2
i) precedes jobj with Dj ∼ N(µj , σ

2
j) , then ei-

ther the mean duration of jobi, µi, is no greater than the
mean duration of jobj, µj , or the duration variance of job
i, σ2

i , is no greater than the duration variance of jobj, σ2
j ,

that isµi ≤ µj or σ2
i ≤ σ2

j .

Proof. (by contradiction)
AssumeX is aβ-robust schedule ofn jobs, and there exist
two jobsi andj in X such thati precedesj, µi > µj and
σ2

i > σ2
j .

Supposei’s position in X is a (1 ≤ a ≤ n) and j’s
position isb (1 ≤ b ≤ n).
Sincei precedesj, we have:

1 ≤ a < b ≤ n.

Also, the expected flowtime contribution fromi,
meanFTContribi, is (n − a + 1)µi and the expected
flowtime contribution from j, meanFTContribj , is
(n − b + 1)µj . Now, we consider only swapi and j but
keep other jobs’ positions unchanged inX to get schedule
X ′. In X ′, i’s position isb andj’s position isa. Then,

meanFTContrib′i = (n− b + 1)µi

and
meanFTContrib′j = (n− a + 1)µj .

The difference betweenX andX ′ in term of the expected
total flowtime is:

mean(flowtime)−mean(flowtime)′

= meanFTContribi + meanFTContribj

+meanFTContribrest − (meanFTContrib′i
+meanFTContrib′j + meanFTContribrest)

= meanFTContribi + meanFTContribj

−meanFTContrib′i −meanFTContrib′j
= (n− a + 1)µi + (n− b + 1)µj

−(n− b + 1)µi − (n− a + 1)µj

= (n− a + 1)(µi − µj) + (n− b + 1)(µj − µi)
= (b− a)(µi − µj)

wheremeanFTContribrest is the expected flowtime con-
tributions from the jobs other thani andj, which is the same
in bothX andX ′.
Because in assumptionµi > µj andb > a, (b − a)(µi −
µj) > 0, that is:

mean(flowtime) > mean(flowtime)′.

Similarly, in scheduleX, the variance of flowtime con-
tribution from i, varFTContribi is (n − a + 1)2σ2

i ; the
variance of flowtime contribution fromj, varFTContribj ,
is (n− b + 1)2σ2

j .
For scheduleX ′, varFTContrib′i = (n − b + 1)2σ2

i and
varFTContrib′j = (n− a + 1)2σ2

j . Then,

var(flowtime)− var(flowtime)′

= varFTContribi + varFTContribj

−varFTContrib′i − varFTContrib′j
= (n− a + 1)2σ2

i + (n− b + 1)2σ2
j

−(n− b + 1)2σ2
i − (n− a + 1)2σ2

j

= (2n + 2− a− b)(b− a)(σ2
i − σ2

j)

Sinceσ2
i > σ2

j , b > a and2 ≤ a + b ≤ 2n, we get:

var(flowtime) > var(flowtime)′.

Hence thez value ofX is

z =
S −mean(flowtime)√

var(flowtime)

and forX ′ that is

z′ =
S −mean(flowtime)′√

var(flowtime)′
.

Clearly, z < z′, which means scheduleX ′ has a higher
probability to achieve the fixed system performanceS than
scheduleX. That contradicts toX is a β-robust schedule
for then jobs.
Therefore the statement has been proved.

References
Beck, J. C., and Wilson, N. 2004. Job shop scheduling
with probabilistic durations.Proceedings of the Sixteenth
European Conference on Artificial Intelligence652–656.
Beck, J. C., and Wilson, N. 2005. Proactive algorithms
for scheduling with probabilistic durations.Proceedings of
the Nineteenth International Joint Conference on Artificial
Intelligence1201–1206.
Bent, R., and Hentenryck, P. V. 2004. Online stochastic
and robust optimization.Ninth Asian Computing Science
Conference286–300.
Daniels, R. L., and Carrillo, J. E. 1997. Beta-robust
scheduling for single-machine systems with uncertain pro-
cessing times.IIE Transactions29:977–985.
Davenport, A. J.; Gefflot, C.; and Beck, J. C. 2001. Slack-
based techniques for robust schedules.Proceedings of the
Sixth European Conference on Planning7–18.
Drummond, M.; Bresina, J. L.; and Swanson, K. 1994.
Just-in-case scheduling.Proceedings of the 12thNational
Conference on Artificial Intelligence (AAAI)1098–1104.
Fowler, D. W., and Brown, K. N. 2003. Branching con-
straint satisfaction problems and markov decision problems
compared.Annals of Operations Research118:85–100.
Gao, H. 1995. Building robust schedules using temporal
protectionan empirical study of constraint-based schedul-
ing under machine failure uncertainty.Masters thesis, De-
partment of Industrial Engineering, University of Toronto,
Toronto, Canada.
Hnich, B.; Smith, B.; and Walsh, T. 2004. Dual modelling
of permutation and injection problems.Journal of Artificial
Intelligence Research21:357–391.
Walsh, T. 2002. Stochastic constraint programming.Pro-
ceedings of 15th European Conference on Artificial Intelli-
gence111–115.
Weisstein, E. W. 2006. Normal distribution function.
Mathworld, Wolfram Research, Inc.http:// mathworld.
wolfram. com/ Normal Distribution Function. html.

