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Abstract 
Automated planning and scheduling (P&S) technology has 
been increasingly investigated and applied to various 
robotics applications. We introduce a challenging P&S 
problem in which multiple social robots must autonomously 
organize and facilitate human-robot interactions for one-on-
one telepresence sessions and multi-user Bingo games. 
These activities need to take place throughout the day based 
on the individual availabilities of the residents living in a 
retirement home. We utilize a domain-independent P&S 
approach for this problem, studying different variations of a 
PDDL model and the performance of state-of-the-art 
temporal planners in five different scenarios. We 
demonstrate the modeling challenges and technological gap 
in domain-independent P&S technology for such real-world 
robot problems. In particular, modeling a combination of 
metric quantities, resources, temporal availability of 
residents and time constraints on cascading actions is non-
trivial. Moreover, we show that the available temporal 
planners perform poorly on the problem and struggle with 
the optimization aspects of such real-world scenarios. 

Introduction 
Due to the rapid aging of the world’s population and the 
shortage in healthcare professionals, robotic technologies 
are being increasingly developed to engage the elderly in 
cognitively and socially stimulating activities in eldercare 
environments (Pineau et al. 2003; Kidd, Taggart, and 
Turkle 2006;  Fasola and Mataric 2012; McColl, Louie, 
and Nejat 2013). While some of this work has incorporated 
automated planning and scheduling (P&S) (Pineau et al. 
2003; Pollack 2005; Cesta et al. 2011), the majority of the 
existing research in robotics and P&S in eldercare 
environments has focused on the human-robot interaction 
(HRI) activities of a single robot in one-on-one activities 
with a single user. Only a handful of works have 
considered robots interacting with multiple people at the 
same time, e.g., (Montemerlo et al. 2002).  However, these 
robots have not actively distinguished between users to 
provide personalized interactions during multi-user 

activities. Given the variety of users’ abilities and 
availabilities, multi-user assistance activities require robots 
to plan, schedule, and customize their HRI interactions to 
the needs, time constraints, availability and preferences of 
each individual during the day. An environment with 
multiple users, multiple robots, and single- and multi-
person HRI activities has not been addressed in the P&S 
literature. 
 In this paper, we introduce such an environment and the 
associated P&S problem. A set of robots has to search for 
and interact with multiple residents living in a retirement 
home to perform a set of telepresence sessions (single-
person activity), Bingo games (multi-person activity), and 
reminder deliveries. In addition, such activities deplete a 
robot’s batteries and so a recharging activity may also be 
necessary. 
 The proposed problem provides a complex combination 
of reasoning about actions, resources (e.g., the robots), 
time windows (e.g., user availability), temporal constraints 
(e.g., activity deadlines), metric quantities (e.g., battery 
level), and optimization (e.g., maximizing the number of 
residents taking part in a Bingo game). Since the 1980s 
there has been a recurring discussion in the literature 
regarding the challenges of combining these elements, 
which have often been investigated independently (Fox 
1999; Smith, Frank, and Jonsson 2000). However, 
developing solvers for P&S applications that include these 
features is still an open challenge. 
 The novelty of this work lies in: 1) presenting a new 
P&S problem for assistive robotics in retirement homes 
that considers multiple robots, users and user schedules, as 
well as single-user and multi-user HRI activities, and 2) an 
investigation of the state-of-the-art domain-independent 
temporal planners to solve the proposed problem. 



Background 
Our long-term project is the deployment of intelligent 
human-like mobile robots in retirement homes to engage 
residents daily in stimulating recreational activities  (Louie, 
Han, and Nejat 2013; Louie et al. 2014). We use the 
robotic platform H20 from Dr Robot (Dr Robot 2014) and 
have designed the robot to: 1) navigate using a laser range 
finder and 3D depth sensors, 2) detect users with 2D 
cameras, and 3) interact with users through speech, 
gestures, and a touch screen. While the implementation of 
the robot behaviors addresses real robotics challenges (e.g., 
sensing, HRI, person recognition), herein we focus on the 
planning and scheduling of the daily activities of the social 
robots. Details of robot implementation can be found in 
(Louie et al. 2014). 
 We focus on two representative activities: telepresence 
and Bingo. In the former, the robot autonomously 
navigates to the user in his/her private room, prompts the 
user for the video call, starts the call and tracks the user 
during the session. For the Bingo game, the robot 
autonomously finds and reminds participants about the 
game prior to its start and then navigates to a specified 
location to conduct the game. During Bingo, the robot acts 
as the game facilitator, calling out numbers, verifying 
Bingo cards, prompting players to mark missed numbers 
and celebrating with winners. Currently, a centralized 
server is being designed to plan, schedule and monitor the 
daily activities of the robots. Specific behaviors are 
planned and performed locally by each individual robot 
platform.  
 The integration of planning and scheduling techniques 
has been investigated over the past several years in such 
robotic applications as container transportation robots 
(Alami et al. 1998), office assistant robots (Beetz and 
Bennewitz 1998), planetary rovers (Estlin et al. 2007), 
hospital assistant robots (Pecora and Cesta 2002),  and 
eldercare robots (Pineau et al. 2003; Cesta et al. 2011). In 
these applications, single robot approaches are more 
commonly studied.  With respect to HRI activities, existing 
work has mainly focused on automated reasoning about the 
schedule of a single user. For example, the Pearl robot 
(Pineau et al. 2003) uses the Autominder system (Pollack 
2005) to reason about an elderly person’s current and 
planned activities to determine if and when reminders 
should be provided. The Autominder system has not been 
extended to consider multiple users. The Cobot robots 
(Coltin, Veloso, and Ventura 2011) plan and schedule HRI 
activities, including semi-autonomous telepresence, and 
office tasks based on requests from several users. 
However, the planning and scheduling are managed 
independently and the user schedules are not considered as 
constraints for the robots’ activities. Although multiple 
user schedules have been considered in other non-robotic 

scheduling and optimization applications (e.g., building 
energy conservation (Kwak et al. 2012)), in this work we 
focus on problems in which an integration of both planning 
and scheduling is required to reason about the schedules of 
multiple users, limited resources and metric quantities, and 
both single- and multi-user HRI activities. 

The Problem 
We define the main elements of the proposed problem: the 
environment in which the residents (users) and robots 
interact, the constraints, the goal and preferences. The 
constraints for the telepresence and Bingo activities were 
obtained from meetings with directors, healthcare 
professionals and residents from Toronto area retirement 
homes. 
The Retirement Home Environment  
We consider a floor in a retirement home. The environment 
consists of rooms, corridors and hallways that are 
discretized as a set of locations, L (l1 … ln), within which 
the users and robots will interact. The set of locations and 
the distance between any two locations (di,j) are known a 
priori. 
Users 
The users are the residents of the retirement home. We 
consider a set of users, U (u1 … un), for which each user uk 
has his/her own profile. The profile consists of the user’s 
private room location; a minimum, att_minuk, and 
maximum, att_maxuk, number of Bingo games to play in a 
day; and his/her own distinct schedule for the day, 
representing the user availability (in time and space) for 
interaction with a robot. 
 A day for users starts at 7am and ends at 7pm. Within 
this time frame, users in different locations can be either 
available or unavailable for interaction with a robot. All 
users are considered unavailable during breakfast (8am-
9am), lunch (12pm-1pm), and dinner (5pm-6pm) and can 
have other unavailabilities already scheduled. 
The Assistive Robots  
We consider a set of assistive robots, R (r1 … rn), in which 
each robot rl is able to execute the following activities: 1) 
move from one discrete location to another at a constant 
speed vrl, 2) perform a telepresence session with a user, 3) 
perform a Bingo session with a group of users, 4) provide a 
reminder to each user prior to a Bingo game, and 5) 
recharge its battery at a charging station. Since battery 
consumption depends on the activity, whenever the robot, 
rl, executes an activity, its battery level, blrl, must remain 
within bounds (i.e., bl_minrl <= blrl <= bl_maxrl). A 
constant rate cr_moverl is used to specify the power 
consumed for the moving activity (e.g., V/m). Each HRI 
activity has a different constant consumption rate (e.g., 
V/min): cr_teleprl, cr_remindrl and cr_bingorl for the 



corresponding activities. Battery power is regained through 
a charging station. A constant recharging rate rrrl (e.g., 
V/min) is used to estimate the duration of a recharging 
process of a robot rl. The battery of the robot can be 
recharged up to bl_maxrl. 
Charging Stations 
A set of charging stations, CS (cs1 … csn), exists for 
recharging. Each station is at a fixed location and can 
accommodate at most one robot at a time. 
Telepresence Sessions  
A set of telepresence sessions, S (s1 … sn), must be 
scheduled during the day. Each session sy is characterized 
by: 1) the user uk; 2) the duration, dursy, (e,g, 30 min); and 
3) the time window(s) it can occur in. The session should 
always take place in the user’s room (luk). 
Bingo Games  
A set of Bingo games, G (g1 … gn), should be scheduled 
during the day, if possible. For each game gz, the robots 
will assign, find, and remind participants prior to the game 
and, then, play Bingo at a specific location, the games 
room (lgame), at the scheduled time. Only one game can 
occur at any given time. Only one robot can conduct the 
game, but the robots can collaborate to deliver the 
reminders. Each game gz is characterized by: 1) the 
duration of the game, durgz, (e.g., 60 min) and of the 
reminder, dur_remindgz; 2) the minimum and maximum 
number of participants, p_mingz and p_maxgz; and 3) the 
time window(s) in which it can occur. 
 The group of participating users of a game gz is not 
known a priori nor is the time of each game. Users are 
assigned to each game based on their schedules and 
attendance preferences and games are scheduled to fit the 
users’ availabilities. Reminders must be delivered to all 
assigned users between 15-120 minutes before the game 
starts. It is assumed that the users will go to the games 
room at the time specified.  
Robot Activities  
We describe below the conditions and constraints of the 
available robot activities.  
Navigate to a target location: the robot has to have enough 
battery power to reach the target location lj from its current 
location li. The power consumption and the duration of the 
moving activity are di,j×cr_moverl  and di,j / vrl, respectively. 
Recharge battery: the robot has to be in a location with an 
idle charging station and the battery level has to be less 
than the battery capacity, blrl < bl_maxrl. The duration of 
the activity is (bl_maxrl − blrl)/rrrl. 
Perform Telepresence Session: the robot has to be in the 
private room of the specified user, who must be available 
during the entire duration (dursy) of the activity. The power 
consumption of the activity is dursy×cr_teleprl . 
Play Bingo Game: the robot has to be in the games room, 
no other game can be ongoing, and all users must be 

available during the entire duration (durgz) of the game. All 
assigned users must have been reminded 15-120 minutes 
before the game starts. The power consumption of the 
Bingo activity is durgz×cr_bingorl. 
Remind User: the robot has to be at the same location as 
the user, who cannot be interacting with another robot and 
must be available during the entire duration (dur_remindgz) 
of the activity. The power consumption of the reminder 
activity is dur_remindgz×cr_remindrl.  
 In all the activities (except recharging), the robot has to 
have enough power to reach a location that has a charging 
station after the activity is completed. 
Input, Goal, and Preferences  
The input of the problem is the sets of locations L, users U 
(including their corresponding profiles), charging stations 
CS, available robots R (with their initial location and 
corresponding velocity, battery levels and limits, and 
consumption rates), and the requested telepresence sessions 
S and Bingo games G with their corresponding properties. 
The goal is to have a plan of robot activities in which: 1) 
all the requested telepresence sessions are scheduled, and 
2) the requested Bingo games and reminders are scheduled, 
if possible, given that user attendance preferences have to 
be satisfied. All robots must be at a recharging location at 
the end of the day. As a multi-objective optimization 
problem, we want to: 1) perform as many Bingo games as 
possible, 2) have as many users playing Bingo as possible, 
3) provide reminders as close as possible to the game 
times, and 4) expend as little battery power as possible. 

An Automated P&S Approach 
We address the proposed problem using a P&S approach. 
Herein, we use the itSIMPLE Knowledge Engineering 
(KE) (Vaquero et al. 2009; 2013) tool that follows an 
object-oriented modeling approach using the Unified 
Modeling Language (UML) (OMG 2005) and generates a 
PDDL model of the target problem.  
Domain Modeling  
A visualization of the modeled object types (classes), 
fluents and operators is provided in the UML class diagram 
in Figure 1. The most important classes are: Location, 
GamesRoom, ChargingStation, Robot, User, 
TelepresenceSession, BingoGame and Global. The 
Location and GamesRoom (a specialization of Location) 
represent the topology of the retirement home. The 
distance between locations, and the distance between each 
available charging station and these locations are 
represented in the class Global. A games room is said to be 
free when no game is taking place at the location. A 
ChargingStation is said to be idle when no robot is docked 
for charging. Moreover, Robots and Users can only be at 
one location at a time. 



  
Figure 1. The UML Class diagram of the proposed problem model.  

The class User has a set of properties to represent the 
user’s profile. The predicate room specifies the user’s 
private room while the predicate available is used to 
represent the availability of the user during the day. This 
availability is translated into PDDL in the form of timed 
initial literals (TILs) (Edelkamp and Hoffman, 2004) by 
assigning the available predicate to true or false in specific 
time intervals. We also represent the known locations of 
the user during the day with TILs. We represent the user 
preference on attending games (att_min, att_max), the 
variable for the number of games attended (att_num), and 
the predicate not_assigned_game to list all the games to 
which a user has not yet been assigned. When a user is 
interacting with a robot, the predicate not_interacting is set 
to false to prevent other robots from interacting.  
 The classes TelepresenceSession and BingoGame 
represent the HRI activities. Both have the properties: dur 
to represent duration; not_done and done to represent if the 
activity has been performed; and must_be_done, TILs to 
represent the time windows in which the activity can be 
performed. In addition to the properties of the sessions and 
games introduced in the problem description, we have 
added the properties p_num and p_cur to control the 
number of users reminded by the robots and the number of 
users playing the game, as well as delivery_time to control 
the time each user is reminded about the game. The 
difference between the reminder delivery time and the start 
of the game must be within 15-120 minutes.  
 Modeling the reminder delivery constraint is not 
possible without using features that have not been 
officially incorporated into PDDL. The planner would have 

to explicitly reason about continuous time during the 
planning process itself to determine that two actions 
(reminder and playbingo) are a certain time apart. This can 
be done by using PDDL+ which includes processes (Fox 
and Long 2006). Herein, a process (called clock_ticker in 
the class Global) models an exogenous activity that is 
triggered for as long as a condition holds (in this case 
can_start_clock), regardless of the action selection process. 
This mechanism allows us to increment the variable 
current_time in every step of the search, simulating the 
passage of time. If current_time is used in an action’s 
precondition it will hold the exact start time of the action. 
We use this variable to record the time each user is 
reminded (delivery_time) and also to check if the start time 
of a game is within the time constraints of the reminders. 
 The class Global also holds global variables including 
the maximum and minimum time for delivering reminders 
prior to the games, the total time generated by adding all 
the lengths of the time intervals between the reminders and 
the game (total_delivery_time), the total amount of battery 
power consumed by all robots (total_battery_usage), the 
total number of games not played (game_skipped), and the 
number of target users (total_number_users). These 
variables are used to specify the cost function and are 
manipulated in the specification of the robot actions. 
 The class Robot has all the properties described in the 
problem description (e.g., velocity, battery level, etc). In 
addition, we have the predicates ready, act_done, and 
playing. A robot is ready when it is not engaged in any 
activity and it is playing when it is performing a Bingo 
activity. The predicate act_done prevents a robot from 



going to a location and performing no action: a robot can 
only move to another location if it has completed an 
activity in its current location. As shown in Figure 1, a 
robot has the following operators: move to a target 
location; recharge its battery; remind users; 
do_telepresence with a user; play_bingo and interact with 
a player during the game; and skip_bingo which removes 
the game from the request list.  
 In the reminder operator, the user is set as a participant 
of the game. In order to play a game after the reminders, a 
robot has to first start the play_bingo action, then it has to 
perform, in parallel (a required concurrency), the action 
interact with each participant. The play_bingo action can 
only finish when the robot has performed the interact 
action with all assigned players.  
 In the goal state all sessions and games must be done 
(Bingo games can be either performed or skipped) and the 
user preferences on game attendance must be satisfied. We 
aim to minimize the following weighted cost function f: 
f = 500×(games_skipped) + 1000×(total_number_users – 
games_attendees) + total_battery_usage + total_delivery_time 

(1) 

where the weights are used to express preference on 
optimizing the number of games and players. Due to space 
limitations, we present the PDDL code for the proposed 
model at: 
https://docs.google.com/file/d/0B3t9fqfsJqrlTGpndVNxM
EdSSlU/edit?pli=1. 

Model Variations  
The resulting PDDL model includes features that are 
challenging for most existing planners: metric quantities, 
optimization, temporal actions, timed initial literals, 
concurrent actions, and processes. In particular, few 
planners can properly handle the required concurrency (R) 
and processes (P). Therefore, we decided to define model 
variations to investigate the performance of existing 
temporal planners. Model RP is our full model as described 
above. Model RN does not consider the reminder time 
constraint and therefore, does not use processes. Model NP 
is our full model without the required concurrency in the 
Bingo activity. We replace both operators play_bingo and 
interact with operators play_bingo3 and play_bingo4, each 
representing a game activity with a specific number of 
participants. Representing an operator for each possible 
number of participants, in this case from 3 to 10, is 
impractical due to the large number of parameters and, 
consequently, an exponentially increasing number of 
action instantiations during the planning procedure. 
Therefore, the maximum number of Bingo game 
participants is 4 when using the operators play_bingo3 and 
play_bingo4. Model NN is the full model with both 
required concurrency and processes removed. 

Experiments 
We chose five planners to investigate: COLIN (Coles et al. 
2012), LPG-td (Gerevini, Saetti, and Serina 2004), OPTIC 
(Benton, Coles, and Coles 2012), POPF (Coles et al. 2010) 
and SGPlan (Hsu and Wah 2008). All these planners can 
potentially handle metric quantities, optimization, temporal 
actions, and timed initial literals. However, only OPTIC, 
COLIN and POPF handle the required concurrency and 
processes. 
 We consider a realistic retirement home environment in 
which residents have several activities in different 
locations (e.g., TV room, private room, garden, dining hall) 
during a day. We assume that each user has a number of 1-
hour activities (e.g., physiotherapy, doctor’s appointment, 
family visit, nap), in addition to the meal times, during 
which the robots cannot disturb him/her (herein called non-
interruptible activities). Other activities (e.g., walk in the 
garden, reading in a common area) allow robot interactions 
(interruptible activities); at least one interruptible activity 
is assumed for each user. We analyze the selected planners 
for five full-day scenarios in this environment (7am-7pm) 
– see Table 1. For each full-day scenario, we analyze 
different numbers of non-interruptible activities for the 
users. We investigate non-interruptible activity density, 
defined as Density k, (k = 0,1,2,3,4), where k is the number 
of non-interruptible activities, in addition to the meals, that 
each user has per day. The different densities in particular 
are aimed to study the impact of the user availability 
constraints on the performance for the selected planners. 
 

Table 1. The number of objects in the five scenarios. 
Scenario Users Robots Telepresence Bingo 

1 5 2 2 1 
2 10 2 4 3 
3 15 3 6 5 
4 20 3 8 6 
5 25 4 10 8 

  

 In all scenarios, the telepresence sessions and Bingo 
games are 30 and 60 minutes long, respectively with time 
windows from 7am-7pm.  Reminders are 2 minutes long. 
Each game has a minimum of three participants and a 
maximum of ten participants (in models NP and NN the 
maximum is four as previously noted). Every user is 
willing to attend at most one Bingo game during the day 
(i.e., att_min = 0, att_max = 1). Each scenario was 
designed so that it is feasible to schedule at least one game 
with five participants. All robots have the following 
property values, estimated based on the H20 robot 
platform: bl_min = 0, bl = bl_max = 20, v = 20m/min, rr = 
0.5, cr_move = 0.04 and cr_telep = cr_remind = cr_bingo 
= 0.1. 
 We run the planners for each model variation with each 
of the five scenarios and each density on a 64-bit Ubuntu 
Linux machine with 32 GB of memory. A 1-hour timeout 



was used for each planner in each scenario. We measure 
the solvability of the planners, the runtime, the number of 
states evaluated, and the number of users attending a game. 
Table 2 shows the number of scenarios (out of 5) for which 
each planner was able to generate at least one solution. 
 

Table 2. Number of scenarios solved by each planner. The 
‘-’ indicates that the planner could not represent the model, 
while the ‘(inv)’ indicates that the planner generates invalid 
solutions for some scenarios. Such solutions are not 
included in the number of scenarios solved. 

Planners 
Models 

RP RN NP NN 
Density 0 

COLIN 0(inv) 0(inv) 0(inv) 0(inv) 
LPG-td - - - 0 
OPTIC 5 5 2 2 
POPF 0 1(inv) 0 1(inv) 
SGPlan - - - 0 

Density 1 
COLIN 3 3 2 2 
LPG-td - - - 0 
OPTIC 5 5 2 2 
POPF 0 5 0 2 
SGPlan - - - 0 

Density 2 
COLIN 4 4 2 2 
LPG-td - - - 0 
OPTIC 5 5 2 2 
POPF 0 5 0 2 
SGPlan - - - 0 

Density 3 
COLIN 4 4 2 2 
LPG-td - - - 0 
OPTIC 5 5 2 2 
POPF 0 5 0 2 
SGPlan - - - 0 

Density 4 
COLIN 4 4 2 2 
LPG-td - - - 0 
OPTIC 5 5 2 2 
POPF 0 5 0 2 
SGPlan - - - 0 

 

 As shown in Table 2, the majority of scenarios were 
solved by some of the planners with models RP and RN 
while few scenarios were solved with models NP and NN. 
The OPTIC planner was the only P&S system able to solve 
scenarios with all models and in all investigated densities. 
Across all investigated models and densities, the solutions 
generated by the planners for a given scenario varied with 
respect to the number of robots used, total battery usage, 
and makespan. For example, COLIN generated plans with 
only one robot more often than POPF and OPTIC did for 
Scenarios 1 and 2. Having less robots resulted in a lower 
cost, however, using multiple robots had lower makespan. 
The number of Bingo games scheduled also varied. The 
majority of the solutions did not schedule a game at all and 
had the following common structure for the plan: skip the 
Bingo games and schedule the assigned robots to 
implement the requested telepresence sessions, while 

recharging the robots when necessary; and at the end of the 
day, the robots assigned in the plan return to the charging 
station. The solutions with scheduled Bingo games had a 
similar structure as those with no games, however in these 
cases the robots assigned in the plan also scheduled 
reminders to users prior to the start of a Bingo game as 
well as the game playing session. 
 LPG-td and SGPlan were not able to solve any of the 
problem instances with model NN, the only model that 
these planners could represent. We suspect that this is due 
to the large number of TILs used to represent the user 
schedules. The COLIN planner was able to generate 
solutions for the four proposed models and POPF was able 
to generate solutions only for models RN and NN. 
However, none of the solutions from COLIN and POPF for 
the five scenarios had any Bingo games: all the games 
were skipped. Furthermore, these two planners generated 
invalid solutions in problem instances with Density 0, for 
example, scheduling telepresence activities during the 
breakfast period. Interestingly, neither planner generated 
invalid solutions at higher densities. This issue occurs 
when there is no non-interruptible activity in beginning of 
the day (7am), i.e. all users start with the variable available 
set to true in the initial state and this variable does not 
change until the beginning of breakfast, when it is set to 
false. In the problem instances with density greater than 
zero, some users have non-interruptible activities starting 
at 7am, so their corresponding variable available is false in 
the initial state. In such cases no invalid solutions were 
generated. With COLIN we observed that the issue seems 
to be related to the compression-safe action detection 
mechanism (Coles et al. 2012). When this mechanism is 
disabled, the issue no longer occurs. POPF has a similar 
mechanism; however, disabling it does not eliminate the 
issue. Given that the compression-safe action detection is a 
default mechanism in both planners, we decided to keep it 
enabled in our experiments. Further experimentation and 
analysis is needed. 
 Table 3 shows the runtime and number of states 
evaluated for COLIN and POPF to find a solution with the 
four models. In most cases, the planners stopped before the 
timeout. The density of non-interruptible user activities 
seems to have some impact on the performance of both 
planners. Different trends are observed in Table 3. For 
example, the runtime decreases as the density increases in 
Scenario 3 for COLIN with models RP and RN. Moreover, 
the runtime increases in Scenario 5 for POPF with model 
RN as the density increases. 
 As OPTIC had the best performance, we ran it to search 
for better solutions until the timeout. OPTIC was the only 
planner that was able to find solutions that included Bingo 
games. Table 4 shows the runtime, number of states 
evaluated and the number of users playing Bingo games in 
the plans found by the OPTIC planner. This table focuses 



on the first and last solutions found to illustrate how fast 
the planner can find a solution and the quality of the best 
solution found. For problems for which the planner 
generated no solution or only one solution, we show the 
time the planner stopped instead. 
 As shown in Table 4, plans with Bingo games were only 
found in Scenario 1. Most of these plans were found with 
models RN and NN, i.e., the models without the reminder 
time constraint. Problem instances from Scenario 1 with 
Density 0 are the only instances in which OPTIC generated 
plans with Bingo games with all models. OPTIC generated 
solutions for Scenarios 3, 4 and 5 across all non-
interruptible user activity densities only with models RP 
and RN (models with required concurrency).  Most of the 
solutions with the highest number of Bingo participants 
were generated with model NN, the simplest PDDL model. 
During the optimization process of all the scenarios, most 
improvements to the plan resulted in lower battery 
consumption. OPTIC stopped running before the timeout 
in most cases. While the reason is unclear but we suspect 
that it reached its internal memory limits. 
 With respect to the impact of the different non-
interruptible user activity densities, Table 4 shows that 
both the runtime and the number of evaluated states 
increased as the density was increased with model RP and 
RN in Scenarios 4 and 5. An increase in runtime can also 
be observed with modes NP and NN in Scenario 2. In order 
to investigate whether the different non-interruptible user 
activity densities affected the performance of the planner 
on finding a solution with a Bingo game, we further 
investigated the very first solutions found by OPTIC in 
which a Bingo game was scheduled. Table 5 shows the 
runtime and number of evaluated states for those cases in 
Scenario 1 across the four models and the five densities. 
The density increment tends to decrease the runtime to find 
a solution with a Bingo game as well as the number of 
evaluated states with models RN and NP. We suspect that 
this pattern is due to the decreasing number of time 
windows in which a game can be scheduled leading to a 
reduction in the alternatives during the search. 

Discussion 
The experimental results show that existing domain-
independent temporal planners are not able to solve the 
proposed multi-robot, multi-user, single and multi-user 
HRI activities problem for realistic scenarios. Although 
some of the planners provide feasible solutions, optimal 
solutions do not appear to be achievable. In particular, the 
expected optimization of the number of Bingo players is 
observed in very few small-scale cases, most of the time in 
models that do not consider the full requirements of the 
problem.  

 The advancement of P&S technology in representing 
and solving problems with temporal constraints, time-
windows and numeric quantities is noticeable since the 
1980s (Boddy, Cesta, and Smith 2004). However, the 
challenges in modeling and solving problems that require 
integrated P&S with such a combination of complex 
features are evident from our experiment. From the 
modeling perspective, not all temporal requirements can be 
represented in standard PDDL. While few planners can 
handle the aforementioned features together, even fewer 
represent the PDDL+ features our problem requires. Due to 
the few temporal planners available for these challenging 
problems, the modeling process becomes driven by the 
planner at hand. Namely, we found ourselves faced with 
tailoring the model to the solver’s abilities at the expense 
of accurately representing our problem.  
 From the perspective of a user of AI planning 
technology (e.g., a roboticist who wants to focus on the 
challenges of sensing, navigation, and HRI), current 
domain-independent AI planning technology is not up to 
the task. We hope that the application we have introduced 
can form a challenge to spur advances in this direction.  
 We intend to extend this work to investigate timeline-
based planning (Muscettola 1994) and scheduling 
approaches such as constraint programming and mixed-
integer programming. Our preliminary indication is that 
none of these technologies will be able to reliably solve 
these problems. If that is the case, we intend to identify the 
most promising technology and investigate its extension to 
be able to solve our real-world problem. 

Conclusion 
We have introduced a new planning and scheduling 
problem in which multiple robots have to interact with 
residents in a retirement home environment to perform 
single- and multi-user activities while considering the 
users’ schedules. We have investigated an AI P&S 
approach by: 1) designing variations of a PDDL model and 
realistic problem instances using the itSIMPLE KE tool, 
and 2) studying the performance of five state-of-the-art 
domain-independent temporal planners. Experimental 
results demonstrate that current temporal planners can 
sometimes provide valid solutions even with a complex 
combination of model features. However, in most of the 
cases they failed to provide solutions in which both single- 
and multi-user activities are present, even when using 
simplified models. The results reinforce the existing 
technology gap in the AI P&S approach for both modeling 
and solving real problems that combine temporal, numeric 
and optimization requirements.  
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Table 3. Runtime (s) and number of evaluated states for the planners COLIN and POPF. The ‘-’ indicates that no solution 

was found and the ‘(inv)’ indicates the invalid solutions. 

Scenarios 

POPF COLIN 
RP RN NP NN RP RN NP NN 

runtime 
(s) 

states runtime 
(s) 

states runtime 
(s) 

states runtime 
(s) 

states runtime 
(s) 

states runtime 
(s) 

states runtime 
(s) 

states runtime 
(s) 

states 

Density 0 

1 0.04 - 0.04 11 0. 06 - 0.10 11 0.04(inv) 8 0.06(inv) 8 0.16(inv) 8 0.10(inv) 8 

2 0.07 - 0.18(inv) 30 3.12 - 312.7(inv) 30 0.14(inv) 16 0.14(inv) 16 1806.6(inv) 16 179.0(inv) 16 

3 0.17 - 1.00(inv) 65 46.9 - timeout - 0.70(inv) 30 0.64(inv) 30 timeout - timeout - 

4 0.32 - 2.56(inv) 107 97.6 - 96.5 - 1.70(inv) 56 1.52(inv) 56 121.4 - 120.8 - 

5 0.74 - 10.0(inv) 188 308.3 - 282.8 - 5.82(inv) 59 4.92(inv) 59 432.6 - 414.5 - 

Density 1 

1 0.04 - 0.12 127 0.12 - 0.24 127 0.08 127 0.08 127 0.20 127 0.14 127 

2 0.08 - 0.66 336 3.20 - 318.6 336 1.88 2326 1.74 2326 1890.0 2326 194.1 2326 

3 0.18 - 4.60 933 46.8 - timeout - 906.2 199559 628.3 199559 timeout - timeout - 

4 0.32 - 15.2 1676 98.1 - 96.3 - 2838.7 - 2118.1 - 121.7 - 120.7 - 

5 0.74 - 66.4 3164 307.9 - 284.7 - timeout - timeout - 433.2 - 416.5 - 

Density 2 

1 0.05 - 0.14 139 0.14 - 0.24 139 0.08 139 0.08 139 0.22 139 0.16 139 

2 0.08 - 0.72 359 3.22 - 344.4 359 0.94 1052 0.86 1052 1905.8 1052 203.9 1052 

3 0.18 - 6.08 1264 46.9 - timeout - 111.5 27155 76.9 27155 timeout - timeout - 

4 0.32 - 14.1 1615 98.4 - 95.9 - 2362.9 255989 1493.7 255989 122.1 - 120.5 - 

5 0.75 - 85.7 4060 307.2 - 285.0 - timeout - timeout - 432.0 - 414.0 - 

Density 3 

1 0.05 - 0.14 139 0.14 - 0.28 139 0.08 139 0.08 139 0.22 139 0.16 139 

2 0.08 - 0.70 359 3.26 - 324.2 359 0.96 1052 0.88 1052 2000.7 1052 158.5 1052 

3 0.18 - 5.96 1228 46.9 - timeout - 57.2 13911 39.0 13911 timeout - timeout - 

4 0.32 - 13.5 1570 97.7 - 96.0 - 2405.8 256743 1548.6 256743 120.8 - 120.7 - 

5 0.76 - 126.9 5375 310.9 - 283.8 - timeout - timeout - 431.9 - 414.9 - 

Density 4 

1 0.06 - 0.14 139 0.14 - 0.24 139 0.08 139 0.08 139 0.22 139 0.16 139 

2 0.09 - 0.72 359 3.24 - 327.2 359 0.96 1052 0.86 1052 2043.0 1052 173.6 1052 

3 0.20 - 6.00 1228 47.0 - timeout - 55.5 13911 39.4 13911 timeout - timeout - 

4 0.34 - 19.9 2080 98.1 - 95.9 - 1711.9 191594 1119.9 191594 121.0 - 120.3 - 

5 0.76 - 313.4 11352 308.2 - 284.6 - timeout - timeout - 432.6 - 413.0 - 

 
 
  



Table 4. OPTIC planner performance in all models and scenarios: runtime (s), number of states evaluated and the number of 
Bingo game participants (part.) for the first and the last solutions found by the planner.  The ‘*’ indicates that the planner 

stopped at the specified time and ‘-’ that no solution was found. 

Scen-
arios 

RP RN NP NN 

first last first last first last first last 
runtime 

(s) 
states part. runtime 

(s) 
states part. runtime  

(s) 
states part. runtime  

(s) 
states part. runtime  

(s) 
states part. runtime  

(s) 
states part. runtime  

(s) 
states part. runtime  

(s) 
states part. 

Density 0 

1 0.06 11 0 389.1 67419 3 0.06 11 0 730.6 92553 3 0.18 11 0 3197.0 94794 4 0.14 11 0 2179.6 188659 4 

2 0.34 40 0 821.5 89927 0 0.32 40 0 745.2 89927 0 273.5 40 0 1772.5 6585 0 127.8 40 0 1612.9 6585 0 

3 27.9 2268 0 260.0 14516 0 22.6 2268 0 224.8 14516 0 timeout - - - - - timeout - - - - - 

4 48.5 2508 0 1271.0 41283 0 35.2 2508 0 1062.0 41283 0 141.2* - - - - - 140.1* - - - - - 

5 345.1 7692 0 2561.5* - - 264.7 7692 0 2987.5* - - 485.3* - - - - - 458.5* - - - - - 

Density 1 

1 0.06 8 0 2002.2 90623 3 0.06 8 0 1775.7 183257 3 0.20 8 0 2936.0* - - 0.14 8 0 1478.0 167930 4 

2 0.24 26 0 190.0 22792 0 0.24 26 0 179.3 22792 0 254.3 26 0 2761.1 11713 0 128.5 26 0 2505.7 11713 0 

3 26.7 2115 0 1163.6 59770 0 21.8 2115 0 1040.1 59770 0 timeout - - - - - timeout - - - - - 

4 34.4 1882 0 2027.2* - - 24.5 1882 0 2358.0* - - 140.5* - - - - - 140.1* - - - - - 

5 158.8 4062 0 2593.4* - - 118.2 4062 0 2995.6* - - 487.3* - - - - - 463.2* - - - - - 

Density 2 

1 0.06 8 0 timeout - - 0.06 8 0 1269.6 154476 3 0.18 8 0 3529.2* - - 0.14 8 0 1250.8 139669 4 

2 0.24 26 0 1209.9 151592 0 0.22 26 0 1115.7 151592 0 256.1 26 0 2879.9 11713 0 136.8 26 0 2657.7 11713 0 

3 26.2 2129 0 1604.2 86052 0 21.3 2129 0 1403.1 86052 0 timeout - - - - - timeout - - - - - 

4 58.7 2797 0 1981.9* - - 44.0 2797 0 2287.8* - - 141.8* - - - - - 139.7* - - - - - 

5 316.6 6977 0 2587.9* - - 234.8 6977 0 2955.9* - - 487.4* - - - - - 464.2* - - - - - 

Density 3 

1 0.06 8 0 timeout - - 0.06 8 0 1945.2 202444 4 0.20 8 0 timeout - - 0.14 8 0 2764.9 281129 4 

2 0.26 26 0 1272.9 151592 0 0.22 26 0 1133.7 151592 0 354.0 26 0 2993.6 11713 0 207.3 26 0 2811.5 11713 0 

3 26.8 2075 0 965.9 50272 0 20.7 2075 0 1609.5 100868 0 timeout - - - - - timeout - - - - - 

4 63.5 2959 0 1990.5* - - 48.5 2959 0 2292.8* - - 140.7* - - - - - 140.3* - - - - - 

5 331.7 7338 0 2541.6* - - 253.8 7338 0 2967.7* - - 485.3* - - - - - 468.1* - - - - - 

Density 4 

1 0.06 8 0 timeout - - 0.06 8 0 1974.3 222945 3 0.22 8 0 1037.5 90968 3 0.12 8 0 1315.0 172596 4 

2 0.24 26 0 1115.1 143131 0 0.22 26 0 1031.5 143131 0 807.0 26 0 2707.3 11360 0 581.6 26 0 timeout - - 

3 24.6 2075 0 898.7 50272 0 20.1 2075 0 1559.2 100868 0 timeout - - - - - timeout - - - - - 

4 66.4 3047 0 1537.6 50611 0 51.9 3047 0 1311.3 50611 0 141.2* - - - - - 139.8* - - - - - 

5 461.8 9850 0 1776.2 32746 0 346.8 9850 0 1377.4 32746 0 486.0* - - - - - 461.5* - - - - - 

 
 
 

Table 5. Runtime (s) and number of evaluated states for the planner OPTIC to find a solution with a Bingo game in the 
Scenario 1. The ‘-’ indicates that the planner could not find a solution with a Bingo game. 

Density 

Models 
RP RN NP NN 

runtime (s) states runtime (s) states runtime (s) states runtime (s) states 

0 389.1 67419 305.3 67547 1430.5 84353 338.9 56550 

1 562.7 73856 271.7 67234 - - 314.2 56316 

2 - - 269.7 66577 - - 310.8 55659 

3 - - 263.5 64858 - - 304.7 54286 

4 - - 296.2 71191 1037.5 90968 284.1 54212 

 
 
  


