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1. Introduction

Scheduling concerns the allocation of resources to activities over time in
order to achieve some goals: produce some raw material that has been ordered,
allow a class to be taught, or transport people or cargo from one location to
another. Automated scheduling technology developed in the fields of Artificial
Intelligence (AI) and Operations Research (OR) is increasingly being deployed
to provide that scheduling functionality. However, scheduling in industry and
particularly in the research literature is usually seen as a function of known,



perfect inputs. The set of orders, capacities of machines, duration of activities,
and other characteristics of the scheduling problem are assumed to be known and
static.

In a real world environment such as a factory, however, the probability of
a precomputed schedule will be executed exactly as planned is low: machines
malfunction, raw material deliveries are delayed, and resources are not available
when required. Such disrupted execution incurs higher costs due to missed cus-
tomer delivery dates, higher work-in-process inventory, and higher idle time for
both people and machines. In a study of the job shop problem, McKay et al.
claim that the dynamic characteristics of some real-world scheduling environ-
ments render the bulk of existing solution approaches unusable when applied to
practical problems [32].

Uncertainty in scheduling may arise from many sources:

e machine breakdown;

e staffing/operator problems;

e unexpected arrival of new orders;

e cancellation or modification of existing orders;
e early or late arrival of raw materials;

e modification of release and due dates;

e uncertainty in the duration of processing of activities.

Since the real world is not static, decisions based upon rigid assumptions
about real world behavior are not reliable. Hildum [24] notes that a sched-
ule which is determined to be optimal prior to its execution is optimal only to
the degree that the real world behaves as expected during the schedule’s execu-
tion. As a result, in uncertain environments, it may not be practical to devote
significant effort to achieving optimality, since the true optimality can only be
ascertained in conjunction with its execution in the real world. An apparently
optimal schedule may be based on an unreasonable set of expectations about the
real world, and therefore may be significantly less than optimal when executed.
Similarly, a schedule which appears less than optimal before execution but which
contains some built-in flexibility for dealing with unexpected events, may turn
out to be a good schedule upon execution.

The aim of this document is to survey the field of scheduling in the presence
of uncertainty. We give a high level overview of the work carried out in scheduling



which deals in some way with uncertainty and describe a number of such systems
in detail.

1.1. Common Models of Scheduling

Informally, scheduling problems are composed of activities, resources and
constraints'. An activity represents a process which uses resources to produce
goods or provide services. Activities have a start time, end time and duration,
specifying the period of time over which execution of the activity takes place. The
two most important classes of constraints are temporal constraints and resource
constraints. Temporal constraints express temporal relationships between activ-
ities, such as one activity must take place after another. Resource constraints
express constraints on resource usage, such as a resource may process only one
activity at a time. A full ontology of scheduling is outside the scope of this paper
and can be found in Smith & Becker [40].

Two common models of scheduling which have been widely studied are the
Job Shop Scheduling Problem and the Resource Constrained Project Scheduling
Problem. We briefly review these two models in the remainder of this section.
We use these perfect information models to provide a basis for understanding the
ways in which reasoning about uncertainty has been introduced into scheduling.

An n x m job shop scheduling problem (JSSP) consists of n jobs and m re-
sources. Each job consists of a set of m completely ordered activities, where each
activity has a duration for which it must execute and a resource which it must ex-
ecute on. The complete ordering defines a set of precedence constraints, meaning
that no activity can begin execution until the activity that immediately precedes
it in the complete ordering has finished execution. Each of the m activities in a
single job requires exclusive use of one of the m resources defined in the problem.
No activities that require the same resource can overlap in their execution and
once an activity is started it must be executed for its entire duration (i.e., no
pre-emption is allowed). The job shop scheduling decision problem is to decide
if all activities can be scheduled, given for each job a release date of 0 and a due
date of the desired makespan, D, while respecting the resource and precedence
constraints. The job shop scheduling decision problem is NP-complete [16].

A resource constrained project scheduling problem (RCPSP) consists of a

1 In the Operations Research literature, activities are often referred to as operations or tasks

and resources are often referred to as machines.



set of n activities and m resources. Each activity has a defined duration and may
be linked by precedence constraints to any of the other activities. Each activity
requires some amount of one or more of the m resources during its duration of
execution. Each resource has a maximum capacity expressing the total amount
of the resource that can be used at any time point by any set of activities. As
with the job shop problem, a solution to the decision problem is to determine,
given a release date for all activities of 0 and a due date of the desired makespan,
if there exists a schedule that respects the resource capacity constraints and the
precedence constraints. The decision variant of the RCPSP is NP-complete [23].

More realistic models of scheduling problems include components of JSSP
and RCPSP [36] as well as a variety of additional constraints (e.g., breaks during
which a particular resource cannot be used, time dependent resource availability,
set-up and tear-down activities required before each activity, etc.).

It should be noted that it is seldom the case that a schedule is executed
in isolation. Real world schedules depend on and are depended on by external
entities such as customers and suppliers in a supply chain of a manufacturing
organization. A schedule therefore is not simply an internal recipe for a set
of activities but also a basis for communication and coordination with external
entities. These external dependencies make the management of uncertainty even
more critical as unexpected events that are not reacted to and contained may
have an impact that far out-weighs their original importance.

1.2. Uncertainty in Scheduling

Two examples from the literature are presented in this section in order to
provide concrete examples of uncertainty that arises in the execution of schedules.

1.2.1. The Pathological Machine Shop

As part of a larger analysis, McKay et al.[32] studied a factory for the
machining of alloy castings. The scheduling problem contained approximately 80
activities per job, 300 work centers, and 5000 active jobs at any one time. When
the study took place, all orders were behind schedule.

There are very many sources of uncertainty in this problem:

e Set-up time: the set-up time for the same part on the same machine with the

same operator can vary from two days to six weeks.



e Release dates: the arrival of castings cannot be forecast accurately because of
the alloys used and the difficulties in preparing the raw materials.

e Climatic sensitivity: machines are very sensitive to temperature and humidity,
which affects their yield as well as their failure rate. A two degree ambient
temperature shift can cause close tolerance parts to go in and out of specifi-
cation while waiting for assembly.

e High priority orders: the practice of preempting jobs and pushing politically
sensitive jobs through the shop throws the production cycle off and causes
many jobs to be late. Senior management accepts orders and guarantees results
without consulting shop floor schedulers.

e Overtime: the unionized work-force was accustomed to weekend overtime, and

decreases productivity on Thursday and Friday to ensure weekend activity.

The conclusion of their study was that the theoretical formulation of job
shop scheduling problem may be irrelevant: “it does not capture the essence
of the job-shop scheduling problem faced by schedulers, and consequently, the
research results have little applied value”.

1.2.2. Airport Ground Service Scheduling

Another example of an uncertain scheduling environment is the Airport
Ground Service Scheduling Problem (AGSSP) [24]. The AGSSP is defined as
follows:

Definition 1: We are given a master timetable of flights F : {Fu, ..., F1}
and a collection of resources R : {Rw,..., Rr}. Each of the flights in F
requires the execution of some sequence of ground-servicing tasks from the
activity set 7 : {T~,...,T7}, depending on the particular type of ground
service requested. A job, comprised of some sequence of T;’s (T1,...,Ty), is
instantiated for each flight F; in F. All flights have a ready time, corresponding
to flight arrival time, and a due date, corresponding to flight departure time.
The goal of the problem is to allocate resources to activities while satisfying
the temporal and resource constraints.

Once again, there are many sources of uncertainty in this problem. The set
of flights F is not fixed. Airport timetables are subject to fluctuation as flights
are canceled, delayed or modified in the course of execution. Processing time is
inherently dynamic. The duration of an activity may depend on the time of day



it is executed or on which resource is used to process the activity. Weather con-
ditions, both local and remote, also have a significant impact on flights arriving
and leaving the airport. Delays in timetables as a result of problems at other
airports can also add to uncertainty. Many ground servicing tasks take longer to
complete under difficult weather conditions, and may require extra, unplanned
for activities to be executed in such situations.

1.3. Dealing with uncertainty

In general, there are two approaches to dealing with uncertainty in a schedul-
ing environment: proactive and reactive scheduling. Proactive scheduling con-
structs predictive schedules that account for statistical knowledge of uncertainty.
Reactive scheduling involves revising or reoptimizing a schedule when an unex-

pected event occurs.

1.3.1. Proactive scheduling

The goal of proactive scheduling is to take into account the uncertainty in
forming the original predictive schedule. The consideration of uncertainty infor-
mation is used to make the predictive schedule more robust. A robust schedule
has been defined as:

e one that is likely to remain valid under a wide variety of disturbances [31];

e one where “the violation of the assumptions upon which it is built are of no
or little consequence” [29];

e “the ability to satisfy performance requirements predictably in an uncertain

environment” [29].

The utility of these approaches depends to some extent on whether the un-
certainty in the environment can be quantified in some way (e.g., mean time
between failure statistics). If so, this information can be used by proactive
scheduling techniques. If the degree of uncertainty in the environment is very
high, however, or if the uncertainty is “unknown”, a more reactive approach to
scheduling may be appropriate.

Despite the fact that relatively little work has looked at the creation of robust
schedules, predictive schedules are being executed everyday in the presence of

environmental uncertainty. There exist a number of standard techniques within



manufacturing scheduling, for example, to achieve some level of robustness. These
techniques include:

e Manipulation of production lead time. This technique is used in MRP /MRPII
systems, where simple dispatch rules are used during schedule execution.
Safety lead-time is “an element of time added to normal lead-time for the
purpose of completing a job in advance of its real need date” [45]. In a make-
to-order environment, the extra lead time is inserted into the schedule to ab-
sorb events such as machine breakdowns and demand surges. Such lead times
are typically obtained from historical data on the manufacturing of specific
orders. The amount of safety lead-time to insert is critical: too much time
may result in low machine utilization, high inventory costs and uncompetitive
due dates. Too short a lead-time may result in high tardiness costs. A number
of techniques for determining safety lead-times are surveyed in [25].

e Use of inventory buffers both within the factory (e.g., between production
stages) and at the either end of larger decompositions of the production pro-
cess. For example, the use of input buffers for raw material entering a factory
as well as output buffers for finished goods awaiting delivery are both common.

These approaches are expensive. Both techniques result in a significant re-
tardation in the speed at which production expenses can be recouped from the
customer. In the case of inventory buffers, further storage costs and potential
safety risks (due to crowding of production facilities) are introduced. Further-
more, both long lead times and large inventory buffers inhibit the ability of the
enterprise to quickly respond to external events, potentially resulting in signifi-
cant lost revenue, customers, and reputation.

These techniques also act to obscure sources uncertainty. Rather than char-
acterizing and dealing with uncertainty, enterprises use lead time and buffers to
attempt to ensure that the uncertainty will have little impact. As the informa-
tion technology and supply chain optimization techniques mature, this lack of
insight into the uncertainty will limit the extent to which gains in efficiency can
be achieved.

1.3.2. Reactive scheduling
Reactive scheduling takes place at the time of the execution of the schedule.
Based on up-to-date information regarding the state of the system and perhaps



based on an existing predictive schedule, reactive techniques decide when and
where activities should execute.

At one extreme, reactive scheduling may not be based on a predictive sched-
ule at all: job dispatching can be done at execution time. Allocation and sequenc-
ing decisions take place dynamically in order to account for disruptions as they
occur.

A less extreme approach is to completely regenerate a new, up-to-date pre-
dictive schedule when schedule breakage occurs. This approach may in principle
be capable of maintaining optimal solutions, however computation times are likely
to be prohibitive and production may be significantly delayed while regeneration
of the schedule takes place. Furthermore, frequent schedule regeneration can re-
sult in instability and lack of continuity in detailed shop floor plans, resulting in
increased costs attributable to what has been termed “shop floor nervousness”
[32].

Finally, reactive scheduling techniques might simply repair the existing pre-
dictive schedule to take into account the current state of the system. Repairs
may take the form of simple, fast control rules to make decisions within some
real time execution constraints and to tend to minimize the perturbation to the
original schedule.

In practice, it appears that the final technique is the most commonly used.
Human schedulers often use their experience with the system to reassign and re-
route jobs so that processing can continue. Scheduling technology that provides
opportunity to perform “what-if” scenarios supports this approach, however, it
is unclear how much automated reactive scheduling is done.

1.3.3. Proactive and reactive scheduling

A scheduling system that is able to deal with uncertainty is very likely to
employ both proactive and reactive techniques. A proactive technique will typi-
cally require a, perhaps trivial, reactive component to deal with the occurrence
of uncertain events during schedule execution: obviously, the schedule, exactly as
defined, cannot continue to be executed with a broken machine, therefore some
execution time reasoning is necessary even if it is to put in place a contingent
schedule that was proactively computed. Furthermore, it is unlikely that it will
be worthwhile to take into account all unexpected events proactively. Some will
be too improbable or too minor and therefore if they do occur will have to be
dealt with reactively. Similarly, as we discuss below, a major constraint on re-



active scheduling is the timeliness of the response. This requirement means that
optimization at execution time is not a realistic goal. However, use of a proactive
technique may provide the reactive component with strict bounds on the com-
plexity of its computation while possibly allowing higher quality solutions to be
found.

1.4. Plan of paper

The research reviewed in this paper is organized in two ways. The first, more
implicit organization concerns the placement along the proactive/reactive axis
noted above. We begin with work that focuses more on the proactive techniques
and then move toward more the reactive. Within this organization, we categorize
the work based on more specific characteristics of its approach to scheduling with
uncertainty.

Section 2 examines proactive techniques that account for uncertainty by in-
serting some form of redundancy, typically extra time, into the schedule. This
is followed, in Section 3, by techniques using more formal probabilistic reasoning
and then, in Section 4, by techniques which create multiple schedules to deal with
different contingencies that may arise during schedule execution. Section 5 ad-
dresses approaches that more explicitly make use of both off-line (proactive) and
on-line (reactive) scheduling while the final section, Section 6 looks at techniques
for rescheduling at execution time.

While each of the above sections contains brief discussions of the work that
is presented, in Section 7, we present a more general discussion of all the work
that is surveyed. We conclude in Section 8.

2. Redundancy-based Techniques

The main characteristic of the work reviewed in this section is the reservation
of extra time and/or resources so that unexpected events during execution (e.g.,
machine breakdowns, long activity durations) can be dealt with by using some

of this “extra” time and resources.
2.1. Foult Tolerant Real Time Scheduling

While there are a number of differences between scheduling problems and
solution techniques typical of manufacturing and project scheduling and those
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typical of the scheduling of real time systems, a critical component of providing
real time guarantees for schedule execution is the ability to cope with faults.
Therefore, there has been significant work done on dealing with uncertainty for
real time systems.

Redundancy is the typical way in which fault tolerance is guaranteed. Two

forms of redundancy are common:

1. Resource redundancy - Multiple identical sets of resources are used to exe-
cute multiple versions of each task in parallel. Error detection, which can be
non-trivial in such systems, can then be provided by a voting mechanism. Re-
source redundancy is the only technique that can deliver real time guarantees
in the presence of permanent failures (e.g., a disk crash) [17].

2. Time redundancy - Time is reserved to re-execute tasks that fail. If the
primary task does not fail, the backup task then does not have to be executed.

Resource and time redundancy can be combined in a multi-processor system
by scheduling backup tasks on different processors from the primary task.

For the types of scheduling problems we are interested in here, pure resource
redundancy is unrealistic. The cost of providing redundant resources and/or run-
ning the same task multiple times in parallel is prohibitive. It is unrealistic that a
manufacturer, for example, would double its resources and inventory production.
Time redundancy, however, is relevant.

In general, there are two types of time redundancy. The first, which we will
refer to as a priori redundancy, generates a schedule with all primary tasks and as
many backup tasks as necessary to guarantee the desired level of fault tolerance.
The second type of time redundancy is a posteriori redundancy in which the
schedule is initially created without redundancy. Slack time is then inserted into
the existing schedule. In both cases, the amount of redundancy that is inserted
is determined by the fault model. No system can cope with an arbitrary number
of faults within a time interval. Therefore, the some worst-case fault frequency
must be assumed. For example, Ghosh et al. [18] assume a queue-based schedule,
where the sequence of tasks on the resource is already generated. Based on an
analysis of the fault frequency and worst-case activity duration, back-up tasks
are inserted into the queue. Rather than corresponding to specific primary tasks,
these back-up tasks simply reserve time for re-execution in the event of a fault.
It is not always the case that sufficient redundancy can be inserted to guarantee
fault tolerance and the meeting of all due dates.
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The work in real time systems has developed a rich mathematical basis for
the determination of the slack time that must be added to a schedule. Unfor-
tunately, much of this formalism depends on the theoretical characteristics of
the scheduling problem and the techniques for solving the scheduling problems.
While it is hoped that this mathematical foundation is extendible to the schedul-
ing problems we are interested in, one challenge will arise from the difficulty of the
underlying scheduling problem as well as the variety of scheduling approaches.
With multiple resources and complicated interrelations among activities, stan-
dard models of scheduling in AT and OR are usually NP-hard. The pre-emptive
single processor scheduling model often used in real time scheduling has poly-
nomial solutions. This difference in complexity for the underlying problem may
make the adaptation of the fault tolerance guarantee challenging.

2.2. Slack-based Protection

Leon et al. [31] approach robust scheduling by redefining the evaluation
function of a schedule to include an expression of robustness. Given such an
evaluation function, optimal schedules can be found using traditional OR search
techniques.

In order to define an evaluation function, a number of robustness measures
are developed and evaluated. The problem model used is as follows: let .S be a job
shop schedule specifying the order in which activities are executed on machines,
and let M,(S) be the deterministic makespan of S assuming no disruptions. Let
the random variable M (S) denote the actual makespan of S in the presence of
disruptions. No activity can be processed during a disruption and disrupted ac-
tivities must be restarted from the beginning. When disruptions occur, schedule
breakage is fixed by applying the Right Shift rule, described in section 6.1. This
rule pushes activities affected by the disruption forward in time, without changing
the sequence of activities processed by any machine.

The schedule delay is defined as a random variable expressing the difference
between executed and deterministic schedule makespan:

0(5) = M(S) — M,(S) (1)

Since M,(S) is deterministic, we can write the expected values of M and ¢ as:
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E[M(S)] = E[6(S)] + Mo (S) (2)

E[5(S)] = E[M(S)] = Mo(S) (3)

A small value for expected delay implies that the schedule is affected little
by random disruptions. However, zero delay can be achieved by inserting large
amounts of idle time into the schedule, therefore simply minimizing expected de-
lay is unlikely to lead to usable schedules. Expected makespan is also important
in maximizing the use of the resources in the scheduling environment, there-
fore, the authors define schedule robustness as a linear combination of expected
makespan and delay. Let r be a real valued weight in the interval [0, 1]. Schedule
robustness, R(S), is defined as:

R(S)=r x E[M(S)] + (1 —r) x E[§(5)] (4)

The authors demonstrate that R(S) can be computed directly for a sched-
ule when only one disruption occurs. However, when there is more than one
disruption, exact calculation is intractable since the effect of one disruption de-
pends upon the outcome of all previous disruptions. For such problems the
authors develop three surrogate measures of robustness based on the determinis-
tic makespan and some value correlated with expected delay. The simplest such
measure, RM3(S), rests on the assumption that the expected delay is negatively
correlated with the average activity slack.

The slack for activity A;, slack;, is the amount of room A; has to shift within
the schedule without breaking any constraint nor extending the makespan. Slack
is simply the number of possible start times that an activity has within a schedule

as shown in equation 5.

slack; = lst; — est; (5)

There is a negative correlation between activity slack and delay in the sched-
ule because the amount of slack represents the idle time that can be used, in some
cases, to absorb unexpected events. Therefore, as one surrogate measure of ro-
bustness, Leon et al. suggest RM3(S), the deterministic makespan minus the

mean activity slack, as shown in equation 6:
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2ien, slack;

RM3(S) = M,(S) — v

(6)

where Ny is the set of activities executing on fallible machines.

The surrogate measures were evaluated using a simulation study. Inter-
estingly, the simulation demonstrated that the mean activity slack was as good
a predictor of E[6(S)] as the more sophisticated surrogates. Furthermore the
RM3(S) was found to perform better than the exact calculation of expected
delay for the single disruption case.

In a subsequent experiment it was shown that using an optimization criteria
that was a linear combination RM3(S) and mean activity slack enabled search to
find schedules with a smaller expected delay and a only slightly longer expected
makespan than when makespan minimization was the criteria.

There are a number of comments to be made about this work:

e The R(S) robustness measure is one of the few attempts outside the real-time
scheduling community to formalize the definition of schedule robustness. Un-
fortunately, the measure conflates the notion of robustness with the traditional
job shop optimization criteria of makespan minimization. A formalization of
schedule robustness must be independent of a specific optimization criteria if it
is to be useful. It is likely to be necessary to balance robustness against other
measures of schedule quality and therefore including a particular optimization
criteria in the definition of robustness limits its applicability.

e This work is considered in the context of the Right Shift control rule for re-
covering from machine failure. More sophisticated rules exist [39] and, indeed,
complete rescheduling can be viewed as an extreme form of recovery (see Sec-
tion 6.1). However since the more sophisticated rules do not preserve activity
orderings on a resource, they are even less amenable to mathematical analysis
than even Right Shift rule.

2.3. Temporal Protection

Another redundancy-based technique for schedule robustness is the use of
temporal protection [7,15] which extends activity durations to account for the
possibility of machine breakdown. Since the actual execution time will be shorter,
the extra time is used in the event of schedule disruption.
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A temporally protected activity is composed of an inner interval Pj,q,e, and
an outer interval P, sharing the same end time and with lower-slack being
the difference as shown in Figure 1.

Activity A
release-time . Rnnes.
L [ N
I _-lower-slack -~ i . ]
PO‘L;t/ Activity B
R Pinner
l [ ]

[~ lower-slack | )

release-time
Pouter

D
>

time

Figure 1. Temporal protection, illustrating overlapping activities A and B, where A must

execute before B

Pjyner defines the start time and the time during for which the activity is
expected to execute and the interval over which critical (that is, fallible) resources
are allocated. Py, defines the earliest time the activity is expected to be able
to start and the interval over which non-critical resources are allocated. When
executing a schedule, if the previous activity takes less time than the protected
duration, the critical resources are released early and so the activity can start
before Pjyner-

Piyner and Pyyer are functions of the original activity duration and resource
failure statistics. Their actual lengths are obviously an important issue in bal-
ancing robustness against other schedule performance metrics.

The following parameters were used in formulating the amount of temporal
protection:

e P, the original processing time of an activity;
e F a random variable representing time between machine failure;

e D, a random variable representing the duration of a failure.
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P/F, therefore, is the expected number of breakdowns during the processing
of an activity. The extended duration P,.,; with machine breakdowns is:

P
Pext:P‘i‘FXD (7)

If the mean of D and F are known, as D and F, then we can calculate the
mean of P.,; as follows:

P _
Pmean:P—i—F x D (8)

Instead of being random variables of known distribution, the failure duration
and time between failures may only be known to be bounded approximately. Let
the bounds be (D, D) for D and (Fyy, Fyp) for F. We can then calculate the
lower and upper bounds on P,,; as follows:

P

Pewtlb:P+F— Xle (9)
ub
P

Pemtub =P+ F_ X Dub (10)
b

Four different combinations of statistics were used for the calculation of
the temporal protection. A preliminary single-machine scheduling experiment
indicated that the most robust performance was achieved with Pjyer set to Prean
and Py ter et to0 Paypyp-

Experiments were then run on a set of job shop problems with simulated
schedule execution. Results indicated that temporal protection significantly re-
duced the deviation between predicted and executed makespan and that, while
work-in-process cost was reduced over non-protected schedules, the tardiness
costs of protected schedules were higher.

2.4. Discussion

For tractable classes of scheduling problems, such as those studied in the
real-time fault tolerant systems work, there has been significant formalization of
redundancy-based techniques for schedule robustness. While it is unclear at the
moment whether the formality of these techniques can be usefully extended to
harder scheduling problems, the work presents a firm foundation.
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The work that has been done with more complex problem classes seems
preliminary but does, however, provide some insight. In particular, it seems
that the more global measure of average activity slack has distinct advantages
over temporal protection. In the latter, the durations of each activity must
be extended. At execution time if no breakdown occurs it is difficult for the
“extra” time that was part of the extended duration to be shared with subsequent
activities on the critical resource. Reasoning about slack time, on the other hand,
allows such sharing as the slack between consecutive activities can be used by
either depending on the timing of the machine breakdowns.

Unfortunately, with both techniques, the critical issue is the amount of slack
(or duration extension) that should be used given the uncertainty conditions of
the schedule.

A number of other points about this work should be noted:

e While the real-time fault tolerant community has looked at hardware redun-
dancy for dealing with non-transient faults, there is no work that we are aware
of that uses resource redundancy in more complicated classes of scheduling
problems. However, in situations where switching among resources is not too

costly, it might be useful to reserve extra capacity to deal with uncertainty.

e The temporal redundancy work treats all activities on critical resources
equally. In fact, however, there is a much smaller likelihood of resource break-
age before or during the execution of an activity early in the schedule than late
in a schedule. Therefore, it would seem useful to bias any method for dealing
with uncertainty to have an increasing effect across the scheduling horizon.

e Given the insight of Leon et al., that mean slack time of each activity was
a good predictor of delay, we can imagine a number of ways to control the
slack time of activities. For example, we could directly constrain each activity
to have at least some level of slack (perhaps based on the earliest time at
which it can be scheduled). Alternatively, we could insert breaks on the crit-
ical resource during the original scheduling. These breaks can be removed at
execution/rescheduling time, resulting in slack that can be used to deal with
disruptions. The problem, as we noted above, is still deciding on how much
slack should be added to the schedule.

e Finally, it is interesting to note that the work on redundancy has really only
addressed uncertainty arising from machine breakdowns. While temporal re-
dundancy may well work with other sources of uncertainty, it is even less clear
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how to determine the appropriate level of redundancy under conditions where,
for example, activity durations are variable, orders may change or deliveries

of raw materials could be late (or early).

3. Probabilistic Techniques

Redundancy-based techniques address the problem of uncertainty with the
assumption that adding redundancy can be a solution. Probabilistic techniques
take a different approach. Rather than starting with the assumption that redun-
dancy is the solution, they start from the position that a key piece of information
is the probability that the schedule can be executed. A priori, this is a diagnostic
tool rather than a solution: it does not produce robust schedules, rather it allows
the uncertainty in a schedule to be measured. However, once we have the ability
to measure such probabilities, we may also be able to build schedules so as to
maximize them. For example, perhaps we use probabilistic techniques to guide
the amount and location of redundancy that should be inserted into the schedule?

3.1. Probabilistic Real Time Foult Tolerant Scheduling

The standard form for real-time system fault tolerance guarantees is to as-
sume a fault model as part of the problem definition. A schedule is created based
on the fault model and the typical fault tolerant guarantee is that all due dates
will be achieved as long as the faults arrive no more quickly than assumed by the
fault model.

Burns et al. [4] introduce the notion of a probabilistic guarantee for hard
real-time systems. This probabilistic guarantee is a guarantee of schedulability
with an associated probability. In particular, this means that a guarantee of 99%
for a schedule does not indicate that 99% of the jobs will meet their due dates but
rather that in 99% of the executions of this schedule, all jobs will meet their due
dates. This is a similar notion of probabilistic customer service levels in inventory
management where the level of inventory allocated to a warehouse is such that
all customer orders will be met some percentage of the time.

Burns et al.? use a single processor, pre-emptive, fixed priority scheduling
model. In such a model a finite number of tasks must be repeatedly executed.

Each task, 7;, has a minimum inter-arrival time, T}, a worst-case execution time,

% Unless otherwise noted, the details in this section are taken from [4].
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C;, and a deadline, D;, (relative to its arrival) where the deadline of each task is
less than or equal to the minimum inter-arrival time. Tasks may be pre-empted
at any time during their execution. The problem, then, is to define a policy
which guarantees that each instance of each task will finish by its deadline. Such
a policy, if it exists, can be found by assigning a priority, F;, to each task, such
that D; < D;j — P; > Pj, and by always executing the highest priority task. This
execution includes pre-empting a task if a higher priority task arrives.

To incorporate faults, Burns et al. define F; to be the extra time needed by
task 7; if a fault occurs during its execution. Depending on the scheduling model,
F; may represent the duration of the fault plus:

e the amount of time left for 7; to execute after the fault,
e the time required to completely re-execute 7; after the fault, or

e the time required for some “recovery” operation followed by either of the two

above amounts.

Regardless of the actual semantics of Fj, the worst-case completion time of
each task, R;, can be obtained from solving the recurrence relation (adapted from

[4]):

n n
= O+ i | o, + Ti max  F 1"
Z je%n;(i) Ty Ty | kehp(i)+{n} g (11)

Where:

e hp(i) is the set of tasks with higher priority than task 7;.
e T is the minimal inter-arrival time for faults.

o ) =C;.

The summation term is the delay during the execution of 7; resulting from
pre-emption by higher priority tasks while the final term is the delay due to
the occurrence of faults. The authors note that faults are essentially treated as
sporadic tasks with priority higher than any other task.

When 7“?"'1 becomes equal to r;’, this value is also equal to R;. However,
it is possible that r]' becomes greater than D;, in which case the system is un-
schedulable as no deadline guarantee can be given.

Instead of providing a firm guarantee, however, the authors use sensitivity
analysis to find T which is the minimum value of T such that all tasks meet
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their deadlines. A probabilistic guarantee can then be provided by finding the
probability that the observed minimum inter-arrival time for faults, W, is less
than TF.

If Pr(U) is the probability that a system is unschedulable and the conser-
vative assumption is made that any interval between faults that is less than Tr
will result in an unschedulable system, then the probability that the system is
unschedulable is equal to the probability that the minimal arrival time between
faults is less than Tp: Pr(U) = Pr(W < Tg). The formulation of Pr(W < Tp)
requires use of the Taylor series approximation and is beyond the scope of this
review.

While no empirical results are provided, the authors demonstrate that their
Taylor series approximation achieves a very high degree of numerical accuracy.

3.2. B-Robust Scheduling

Rather than faults as the source of uncertainty, another model is that of
duration or processing time uncertainty. That is, the time that each activity must
execute is not precisely known and the goal is to produce a schedule with the
maximum probability of achieving a specific level of some performance measure.

Daniels & Carrillo [10] introduce the notion of a S-robust schedule for a
single-machine scheduling model with processing time uncertainty. In particular,
the authors note that with such a source of uncertainty, it is insufficient to simply
consider the mean value of a measure of schedule quality (e.g., mean flow time)
as the variance provides critical information. Under uncertainty, a schedule with
optimal mean performance may have an extremely high variance while a schedule
with a sub-optimal mean performance may have a much lower variance. If it is
important to minimize the risk of unacceptable performance rather than achieve
optimal performance, the latter schedule may be preferable.

Clearly, the expected system performance depends both on the actual
processing time of each job and on the sequence of jobs on the (single) ma-
chine. Given a desired level of system performance, T, a S-robust schedule is
the sequence of jobs that maximizes the probability of achieving system per-
formance less than or equal to 7. This notion is formalized by considering
A = {A1,A2,..., Az}, where A is the ordered set of all scenarios, A;, such that
each scenario assigns a processing time to each job. The ordering of A is in
descending order of system performance given a particular sequence of jobs, 7.
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Clearly, the system performance and therefore the ordering of the scenarios in A
can be different for each sequence of jobs.

Given a job sequence and the ordering of scenarios, it is easy to identify
Aj« € A, the scenario with highest rank in the order that has a performance value
of less than or equal to T'.

Assembling these components, the authors form equation 12 which expresses
that the the 5 robustness value of a sequence of jobs can be found by summing the
probabilities of each scenario under which the desired level of system performance
is achieved.

Ve
B(m,T) =3 P(X)) (12)
j=1

Where P();) is the probability that the actual processing time of each job
follows scenario A;.

The final step is, then, to find the ”3-robust schedule”, the sequence, g
that maximizes 3(mg,T).

Assuming that the processing time of each job is an independent random
variable with a known mean and variance and that the performance measure is the
flow time, Daniels & Carrillo reformulate equation 12 and prove that the resulting
problem is NP-hard. Note that this complexity results arises even though the
underlying scheduling problem (without uncertainty) can be solved in O(nlogn).

A branch-and-bound solution procedure including dominance rules, bound-
ing techniques, and heuristics for branch selection is developed for this problem.
Empirical results using expected flow time as the performance measure demon-
strate that the S-robust schedule significantly reduces the risk associated with
execution of the schedule as compared with the shortest expected processing time
(SEPT) dispatch rule which does not take into account uncertainty: the -robust
schedule resulted in an mean error of 0.2% above the optimal expected flow time
whereas the SEPT rule resulted in mean error of 14.1%.

Further experiments examined an extended problem in which there is the
opportunity of allocating a resource to a job in order to reduce its processing time
variation. The authors indicate that such a model could be used, for example,
in situations where management time can be allocated to interviewing customers
so as to achieve a better understanding of their detailed requirements. In such a
situation, a S-robust schedule must not only find the optimal sequence of jobs, but
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also the optimal allocation of resources to jobs so as to maximize the probability
of acceptable system performance. Again, S-robust schedules were shown to
achieve significantly higher system performance even when compared to SEPT
schedules to which the optimal resource allocation was applied.

3.8. Multiobjective Stochastic Dominance A* Search

In recent years much work has been carried out in the Al planning commu-
nity on decision theoretic planning. This differs from classical Al planning in the

following ways [46]:

e the effects of actions are described by probability distributions over outcomes;
e objectives are described by utility functions;

e the criteria for effective plan generation is expected utility maximization.

Although this work seems applicable to scheduling, and a number of re-
searchers have suggested using decision theory to deal with uncertainty in the
scheduling domain [29,11], little work has been carried out in this area. Here,
we look at work that applies multiobjective stochastic dominance A* search on a
single-machine scheduling problem. In Sections 4.2 and 5.4 we look at other work
within decision theoretic planning with contingent and off-line/on-line approaches
to uncertainty, respectively.

Wurman & Wellman [48] address a single machine, stochastic processing
time, sequence dependent stochastic setup time scheduling problem with due
dates from the perspective of state space search. The optimization criteria is the
expected weighted number of tardy jobs.

The actual problem studied is the stochastic lot-sizing problem which con-
sists of a set of orders for different inventories and a task schema defining produc-
tion and shipping tasks for different quantities of each inventory and for setting up
the machine to produce each inventory. The processing time of each production
task is stochastic but proportional to the amount of inventory produced. Ship-
ping tasks are instantaneous and do not require the machine while setup tasks
have a stochastic processing time independent of the preceding and succeeding
production tasks. Each order has a due date and a penalty that must be paid if
the inventory is not shipped by the due date.

The authors adopt a state encoding that consists of a set of orders (and
whether they have already been met), the quantity of each inventory that cur-



22

rently exists, and the current machine setup. The cost of a state is represented
by a pair of distributions: one for the accrued cost and one for the time.

The authors show that this state encoding requires the use of Multiobjective
Stochastic Dominance A* (MO-SDA*) to ensure a sound and complete search of
the state space. The precise definition of MO-SDA* is beyond the scope of this
paper, however, it should be noted that the critical contribution of the method
is a necessary and sufficient basis on which paths in the search can be pruned.

A careful definition of the conditions in which particular operators can be
applied is done to significantly limit the size of the search space (but yet not
remove optimal solutions). Finally, two heuristics are defined, based on problem
relaxations, to aid in the evaluation of promising nodes.

Empirical results compared the MO-SDA* solutions with the solutions found
for the deterministic model (e.g., with the stochasticity ignored). Execution of
the two schedules is then simulated (under the stochastic conditions) and the
overall cost of the schedules was compared. Based on a set of 700 randomly
produced problems (with total estimated capacity ranging from 95% to 125%
and ranging from 6 to 20 orders), results indicated that the stochastic schedule
always achieved cost at least as small as the deterministic schedule. However, in
the problems above 100% capacity, the stochastic schedule was strictly superior
in almost three-quarters of the problems. Comparison of search effort shows that
in problems with 100% or higher capacity, the MO-SDA* expands approximately
twice as many nodes as the deterministic algorithm.

3.4. Discussion

There are a number of interesting issues raised by a comparison of the work
reviewed in this section with the redundancy based work. First, it would appear
that there is a subtle difference in the problems that are actually being solved.
The probabilistic work attempts to find a solution which maximizes some reward
function based on the meeting of due dates for each order. The operators available
are simply the usual scheduling operators (i.e., the sequencing of activities in the
examples above). In contrast, the redundancy based techniques change the ac-
tual problem definition by inserting slack requirements into the original problem.
A good redundancy-based solution allows the user visibility into the actual time
at which each activity will complete. In contrast, a probabilistic based solution
communicates the information about the probability that the original due date
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of the job will be met. Ideally, in terms of coordination with other supply chain
components, we would like a mix of information: a completion time together
with a probability that that will be the true completion time. Obviously, it is
important that the schedule attempts to make this completion time close to the
original due date, however, it is often more important to establish a completion
time with a high probability of achieving it. This is especially the case in situa-
tions with the opportunity for negotiation with the customer and where there is
a complex supply chain of which the schedule is only one part.

The second point of comparison concerns the relationship between redun-
dancy and the probabilistic analysis. There would seem to be a close relationship
between the ability to insert time redundancy in order to guarantee schedulabil-
ity (under an assumed fault model) and the probabilistic level of schedulability:
that is, if it is possible to insert slack to guarantee fault tolerance, the prob-
abilistic analysis is also able to establish that the system is 100% schedulable
without explicit slack inserted. Furthermore, in situations where a guarantee is
impossible, the probabilistic analysis provides more information: a probability
that the system will experience failure due to faults. This suggests that explicit
insertion of slack time may not be necessary. Rather, combined with the point
made just above, it is sufficient to simply manipulate the completion time of the
jobs: minimize tardiness under the requirement that each order must have some
level of probability of achieving its completion date. A critical point, then, is
the tractability of reasoning about the probability that each order will achieve
its completion date, especially with more complex underlying scheduling models
such as JSSP. In such case, it may be that explicit insertion of redundancy is nec-
essary, perhaps as an approximation, in order to allow practically sized problems
to be solved.

The MO-SDA* work of Wurman & Wellman shares the advantages of direct
probabilistic reasoning just noted. However, given its origin as an Al planning
technique, it is explicitly based on state-space search. Such search techniques
can be applied to problems that are significantly more general that scheduling
problems. Given the specialized scheduling techniques developed in the AI and
OR fields, it is an open question whether the state-space search infrastructure is
necessary even for scheduling problems including uncertainty.

It seems reasonable that explicit probabilistic reasoning is necessary to
achieving formality in dealing with uncertainty in scheduling. Indeed, the re-
dundancy based techniques often derive the redundancy inserted in the schedule
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based on some, perhaps informal, probabilistic reasoning. The critical issue that
arises from the probabilistic work reviewed here is the tractability of the reason-
ing versus the benefit. All the examples here apply probabilistic reasoning to
a one-machine scheduling problem resulting in a problem that is NP-hard, even
though the underlying problem is polynomial. Adapting these problem models to
harder scheduling problems (e.g., JSSP or RCPSP) which are already NP-hard,
would seem even more challenging.> Therefore, while extending such models to
harder scheduling problems is necessary from a theoretical perspective, it would
appear that approximation techniques and heuristics employing some probabilis-
tic reasoning is a more viable approach to these problems in practice.

4. Contingent Scheduling

Redundancy and probabilistic techniques are based on the approach of gen-
erating a single schedule that is likely to be able to incorporate unexpected events
without major disruptions. A different approach is represented by contingent
scheduling techniques. These techniques are based on attempting to anticipate
likely disruptive events and generating multiple schedules (or schedule fragments)
which optimally respond to the anticipated events. This is all done a prior: so
that at execution time a set of schedules are available. Responding to unexpected
(but anticipated) events and execution time simply consists of switching to the
schedule that corresponds to the events that have occurred.

4.1. Just-in-Case Scheduling

Just-in-Case (JIC) scheduling [11] is a technique for generating schedules in
a domain where activities have uncertain durations, which can lead to schedule
breakage. It has been developed and applied in the domain of telescope observa-
tion scheduling.

The telescope observation problem consists of a single resource, the tele-
scope. Each job is of an observation activity, which has a time window deter-
mined by the possible observation times for the activity. The activity durations
are stochastic, modeled using a normal distribution using statistics from previous
execution data.

® However, as Wurman & Wellman note, some NP-hard scheduling problems become polynomial

(under strict assumptions) when uncertainty is added.
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One way of dealing with duration uncertainty is to always assume the worst
case: set all activity durations to their longest time possible and solve the re-
sulting deterministic duration scheduling problem. When some activity finishes
early, introduce a “wait” activity to fill up the remaining time. This technique
is quite similar to the temporal protection technique discussed above (Section
2.3). A weakness of this technique is that resource usage may be very low as the
duration is a worst-case estimate and therefore it is likely that the resources will
be idle for much of the time. An alternative is to initially schedule with mean
durations, using the Right Shift Rule (see Section 6.1) to reassign the start time
of activities when some activity takes longer than its mean duration to execute.
If a breakage occurs, that is, if any activity is right shifted so that it can no
longer execute given its original time window, then rescheduling is performed.
This approach also results in idle time during the rescheduling. The goal then is
to avoid schedule breakage without sacrificing schedule quality.

Given an initial schedule and a model of how action durations can vary, JIC
approaches the problem by identifying the time point where a schedule break
is most likely. The break point is split into two cases: one where the schedule
breaks and the other where it does not. The scheduler is then invoked on the
subproblem in which the break occurs in order to generate a new schedule from
that point on. This produces a schedule for a single break. Given more time,
JIC can be repeatedly applied to consider more possible break cases using the
multiply contingent schedule as input.

JIC scheduling has been evaluated on real telescope scheduling data [11].
One experiment showed that the amount of the schedule that could be success-
fully executed (without the need to reschedule on-line) increased from 62% to
96% when 10 breaks were considered. Another experiment showed that using
the original, non-contingent schedule, the percentage of the schedule executed
decreases rapidly with increasing duration uncertainty. As the contingency of
the schedule is increased there is an increase in the percentage of the schedule ex-
ecuted; however, the size of the increase diminishes as the uncertainty increases,
regardless of number of breaks considered. Furthermore the amount of improve-
ment in schedule robustness diminishes as contingency increases. The maximum
uncertainty considered in the experiments was characterized by the standard de-
viation of the duration being 10% of the mean duration. At this point, about
40% of the schedule was executed before breaking with a non-contingent schedule.
With 16 breaks considered, just over 70% of the schedule was executed. Given
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the diminishing returns in schedule robustness as the number of cases considered
by JIC is increased, there will probably not be much improvement on this 70%
figure by considering more breaks.

4.2. Markov Decision Processes

Markov Decision Processes (MDPs) are a traditional tools in the AT and OR
communities for decision theoretic planning (see Section 3.3). Briefly, the MDP

framework consists of a number of components [3]:

e a set of states, S.

e a set of actions, A, which are defined as a probability distribution for mapping
between states. A transition matrix is defined for each action, a, specifying
the probability that action e performed in state s will move the system to
state s'.

e a set of observations, O, which represent execution time information about
the state of the system. Because there is no assumption that the agent will
necessarily be able to determine the exact state of the system, a probabil-
ity distribution is defined over the possible observations. For each possible
observation, o,,, for each action, aj, and for every pair of states, s,s’, the
probability of obtaining observation o,, given that action a; has moved the
system from state s to state s’ is defined.

e a value function, V', which maps the set of states that have been visited (e.g.,
the state trajectory or state history) into a real number.

e a horizon, T, which defines that length of the state trajectory to be used in
evaluating V.

The goal, in the classical MDP formulation, is to find a policy, a mapping
of state trajectories into actions, that maximizes the objective function. The
objective function can vary but is typically based on the expected value of V
(e.g., expected total reward). See Boutilier et al. [3] for an introduction to
MDPs and survey of extensions and solution techniques.

Meuleau et al. [33] apply MDPs to a resource allocation problem using the
example of air campaign planning. Given a set of targets to be destroyed and
a set of weapons to be allocated to targets, the goal is to compute the optimal
allocation under the conditions that there is:

e a (constant) cost for each weapon used
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a (variable) reward for each target destroyed depending on the target

e a non-zero probability that the allocation of a weapon to a target will not

result in its destruction

a global limit on the number of weapons available

a local limit on the number of weapons that can be used at each state

a time window within which each target is vulnerable to a weapon

The local limit on weapons in each state is expressed using the constraints
that there are a limited number of planes that can be used in each state and that
each plane carries a limited number of weapons. In one state, a plane allocates
all its weapons to a single target.

The authors conclude that the limit of tractability in applying standard
MDP solution techniques to the problem is when there are 6 targets and 60
weapons: computation time was on the order of 6 hours. As the actual prob-
lems that were to be address were significantly larger (e.g., hundreds of targets,
thousands of weapons, and tens of planes), the authors turned to other solution
methods that are discussed below (Section 5.4).

4.8. Discussion

There are two major weaknesses concerning the use of contingent scheduling
to cope with uncertainty. The first issue is that of the combinatorics of contin-
gent scheduling. The JIC approach was used in problems with one resource and
considered fewer than 20 disruptions for which a contingency had to be found.
Adapting JIC scheduling to a multi-resource problem appears problematic as
the contingencies on different machines are combinatoric. Given ten resources
which may experience breakdowns, a fully contingent schedule that accounts for
one breakdown for each resource requires the creation of 1024 schedules: each
resource can either break or not, independently of all other resources. Further-
more, the creation of a contingency for one break for one resource also includes
specification of the time at which the breakdown occurs. These are the combi-
natorics with which the MDP model of Meuleau et al. has to cope. As shown
in their experimental results, this strictly limits the size of problems that can be
realistically addressed.

The second weakness of the contingency approach arises from the view that
a schedule is likely to be part of a larger supply chain. Contingent scheduling does
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not provide visibility into when jobs are actually likely to be completed. There
is an initial schedule and then a set of contingencies. These contingencies can be
wildly different from the original schedule and from each other. If only the original
schedule is communicated to other supply chain nodes, these nodes will make their
schedule based on a schedule that does not make any attempt at robustness.
Unfortunately, even if the entire multi-contingent schedule is communicated, the
other nodes have poor information: a job may finish at one of a set of possible
times (perhaps with an associated probability) and it may finish at some time
not in this set (hopefully with a very low probability). A contingent schedule
becomes a major source of uncertainty when input to another node in the supply
chain.

5. Off-line/On-Line Approaches

The techniques discussed to this point have focussed on the generation of
predictive schedules that, in some way, take into account the uncertainty in the
environment. While some of them (e.g., the redundancy-based and the contin-
gency techniques) assume that some reasoning will have to be done at the time
of schedule execution (e.g., shifting activities to take advantage of the slack time
that was reserved or choosing one of the contingencies), in general they are off-line
techniques, minimizing the need for and complexity of on-line reasoning.

In this section, we turn to work that has looked more explicitly at off-line/on-
line algorithms. Traditionally, such algorithms consist of two-phases:

1. The off-line, proactive, phase which is performed sometime before the sched-
ule has to be executed. The off-line phase typically has the luxury of signifi-
cant time in which to search for a solution that will optimize or come close to
optimizing schedule quality. As we will see, in some cases, the off-line phase
does not actually solve the overall problem, but rather a set of sub-problems
that then must be integrated.

2. The on-line, reactive, phase which is performed at schedule execution time.
This phase has up-to-date information about the state of the scheduling prob-
lem but little time in which complex search procedures can be executed.

The work reviewed in this section does not necessarily explicitly discuss
both off-line and on-line techniques but rather is written from the perspective
that both phases are necessary even if only one is discussed. For example, the
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work on least and delayed commitment scheduling and the work on supermodels,
both focus on off-line techniques without explicitly detailing an accompanying
on-line technique. This is because a variety of on-line techniques are possible and
that the theme of the work is, in the former case, to make decisions only when
the appropriate level of information is available, and, in the latter case, to solve
the off-line problem so that strong theoretical limits can be placed on the amount
of work required by an on-line phase. The other two pieces of work discussed in
this section present both off-line and on-line phases from the perspective of arti-
ficial immune systems and from the perspective of decomposed Markov Decision
Processes.

5.1. Least Commitment and Delayed Commitment Scheduling

A common approach to off-line algorithms that specifically assume, but do
not necessarily define, an on-line counterpart is least or delayed commitment
scheduling. In general, the two terms refer to the creation of a predictive schedule
that does not completely define all characteristics of all activities to be executed.
Rather, a set of constraints are added to the scheduling problem significantly
narrowing the search space that needs to be explored in an on-line phase. Least
and delayed commitment [2] are based on the idea that decisions should not be
taken where information is incomplete or uncertain if it can be avoided. In highly
uncertain environments, it may be better to only generate predictive schedules
for a short time in the future, since they are highly likely to break soon anyway.
On the other hand, in more certain environments it may be useful to vary the
level of commitment across the scheduling horizon. In the near term, generate
schedules with a high level of commitment, but further in the future make weaker
commitments which can be refined when more information about the state of the
world is known. This idea is explored in [37], and more recently in the sliding
scale of commitment approach [26,27].

For example, a least/delayed commitment approach to the JSSP is to post
sequencing constraints between the activities on each resource, rather than as-
signing specific start times. A single sequencing solution represents many possible
start time solutions. The actual start times of the activities can be found with
a polynomial technique in the on-line phase which may take into account pref-
erences and up-to-date operating conditions on the shop floor. The sequence

solution can absorb minor variations in schedule execution; for instance an activ-
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ity starting later than planned as a result of an unplanned disruption may still
be able satisfy the sequencing constraints posted in the scheduling solution.

Though we do not make a distinction between least and delayed commit-
ment scheduling in this paper, there is often a subtle difference between the two
approaches. Least commitment scheduling typically provides a guarantee that at
least one solution exists in the search space defined by the predictive schedule
while delayed commitment scheduling provides no such guarantee.

In addition to the work we have already noted, least and delayed commit-
ment approaches have been adopted by a number of scheduling projects, includ-

ing:

e the Honeywell Batch Scheduler [20], where it is called constraint envelope
scheduling

e the Dynamic Scheduling System [24,35]
e the ODO scheduling project [1]
e work associated with Carnegie Mellon University [6,5]

A weakness of many of these projects is that while robustness is seen as
a goal of the least and delayed commitment scheduling, little is done to define
robustness and there tends to be no experimental work in determining if the
approach actually leads to more robust schedules. The work typically reported
focuses on effort to find least commitment predictive schedules. One exception
is the work of Cesta et al. [5] where a robustness measure is formally defined
and schedules are generated that are, partially, rated by this measure. Again,
however, the focus of the work is the solving methods and so no evaluation of the
actual (or simulated) robustness of the solutions is performed.

An interesting least /delayed commitment approach together with simulation
of schedule execution is explored in Wu et al. [47]. This work attempts to identify
some critical subset of scheduling decisions that, to a large extent, dictate global
scheduling performance. The scheduling problem is solved for these decisions
while the remaining decisions are left to be resolved later. The critical decisions
which are made result in a sufficiently detailed “sketch” of the schedule to serve as
a basis for other system planning requirements, yet retain enough flexibility such
that disturbances and detailed shop constraints can be dealt with dynamically
during execution.

The problem studied is job shop scheduling to minimize weighted tardiness.
The least commitment approach works by only making some of the sequencing
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decisions necessary for a full solution to the scheduling problem. The activities
are decomposed into a sequence of mutually exclusive, exhaustive subsets, spec-
ified by an ordered assignment. The order of the subsets establishes additional
precedence relationships between the activities. For instance, if activity A is as-
signed to subset e; and activity B is assigned to e;, and e, precedes e;, then there
exists a precedence constraint between A and B.

For each assignment of activities to subsets, we can associate a cost function
which is the minimum weighted tardiness with the extra precedence constraints
induced by the assignment. The problem we are now concerned is the ordered as-
signment problem (OAP) where the goal is to partition the activities into ordered
subsets such as to respect the precedence constraints that are already specified
and to minimize the cost function.

Wu et al. develop a branch and bound scheme to generate schedules by
solving the OAP followed by partial scheduling of the subsets. Experimentation
used an on-line algorithm based on a dynamic dispatching heuristic that respects
the precedence constraints specified by the OAP solution. These experiments
showed that solving the OAP before partial scheduling significantly improved
scheduling performance and provided more robust performance under a wide
range of disturbances than traditional static and dynamic scheduling methods.

5.2. Supermodels

Though not directly applied to scheduling, Ginsberg et al. [19] present the
supermodel concept to characterize robust solutions. This work is motivated by
the need to build off-line solutions that can be quickly repaired on-line with a
small set of modifications.

The work is presented in the context of the SATISFIABILITY problem [16] in
which a solution is called a model. A supermodel is defined as follows:

Definition 4: An (a,b)-supermodel is a model such that if we modify the
values taken by the variables in a set of size at most a, another model can be
obtained by modifying the values of the variables in a disjoint set of size at
most b.

For example, a (1, 1)-supermodel guarantees that if the value of any single
variable is changed, we can recover a model by changing the value of at most one
other variable.
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A proof, demonstrating that if finding models is in NP then finding super-
models is also in NP, is used as a basis for the generation of supermodels. Rather
than rely on a problem solver which knows about and attempts to generate su-
permodels, the original problem P is transformed to a new problem P by adding
extra variables and clauses which specify that any solution to P’ is an (a, b)-
supermodel of P. The advantage of this technique is that any problem solver for
P can also be used to generate supermodels.

For random 3-SAT problems it is well-known that a phase transition be-
tween solvable and unsolvable instances is found where the ratio of the number
of clauses to the number of variables is about 4.2 [9]. When this ratio is higher,
problems tend to be overconstrained and unsatisfiable. Below this ratio problems
are underconstrained and almost always satisfiable. The mean cost of finding a
solution or proving unsatisfiability tends to be highest at this ratio. Experimen-
tal results show that the phase transition peak for finding (1, 1)-supermodels of
random 3-SAT occurs around a ratio of 1.5, which is in the relatively under-
constrained region for 3-SAT. (1, 1)-supermodels were not found for more highly
constrained problems.

These results indicates that the full supermodel concept is applicable only to
very underconstrained problems. More constrained problems, though they may
have many models, do not appear to have any (1,1)-supermodels. While they
may have higher order supermodels, the modification of the underlying problem
to express the search for such supermodels tends to significantly increase the

problem size.

5.8. Artificial Immune Systems

A very different approach to off-line/on-line algorithms for robust schedul-
ing is preliminary work that examines the creation of an artificial immune system
[21,22]. The approach rests on the conjecture that the conditions underwhich a
new schedule is needed in response to some unexpected event in a factory are
to some extent predictable. For example, there may patterns of customer orders
and resource loads (perhaps depending on seasonality), there may be particu-
lar machines that breakdown, or there may be factories from which deliveries
are typically late (or early). Furthermore, these patterns of events may have
corresponding actions that can be taken during rescheduling to minimize their
impact. The reactions are actually the partial schedules that are put in place
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during rescheduling. Therefore, the authors’ goal, is to use genetic algorithms
(GAs) to evolve a set of partial schedules (based on historical schedules of a fac-
tory) that can be used as building blocks to respond to an unexpected event.
These schedule pieces encode some specific domain dependent knowledge about
reasonable schedules for the factory and therefore will significantly reduce the
search space required for rescheduling.

A set of schedule fragments is therefore evolved, off-line, for each resource
using a GA. The fragments are represented by a sequence of activities that can
execute on that resource plus a “wildcard” activity. The fitness criteria for the
evolution involves the matching of the fragment against historical schedules. A
match occurs if some sub-sequence of activities in a fragment is found to exist in
an historical schedule. The wildcard activity matches any activity allowing the
possibility of evolving more complex, non-contiguous patterns. The on-line phase
is then to combine the evolved sequences to form schedules that are reactions to
the unexpected state of the factory. Since similar states are likely to have been
encountered in the past, a combination of the evolved sequences is likely to encode
a good schedule.

The experimental results from this technique have so far focused on the
creation of the schedule fragments and the extent to which these fragments could
be used to “recognize” schedules (both those that they had been evolved with
and new factory schedules). It has been shown that, depending on parameter
settings during the evolution, fragments could be successfully evolved to match
portions of the existing schedules.

While the artificial immune system concept has a certain appeal, it is, at
this stage, far too preliminary even to compare against other techniques. It would
seem to still be a significant step from matching valid schedules to being able to
react to such standard types of unexpected events as machine breakdowns and

duration uncertainties.

5.4. Markov Tasks Sets

As discussed above in Section 4.2, work by Meuleau et al. [33] examined
the modeling of resource allocation problems with Markov Decision Processes
(MDPs). In order to solve problems beyond the tractability limit of standard
MDP techniques the authors also developed an off-line/on-line approach in which
the problem is first decomposed so that the allocation for each target is solved to
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optimality independently and then the individual solutions are greedily integrated
to find a good, but not necessarily optimal, global solution.

In the first, off-line, phase, an MDP for each target is solved independently
using standard MDP solving techniques (e.g., dynamic programming) and ignor-
ing constraints on the overall number of weapons as well as on the number of
planes per state. These solutions result in a set of optimal weapon allocations
that are integrated in the second, on-line, phase. In this phase, the set of actions
with respect to each target are calculated and executed. The result of execution
in terms of the number of remaining weapons and the status of each target (i.e.,
destroyed or not) is then observed and used to find the set of actions in the next
state.

Given a the set of undamaged, available targets in a state, the set of ac-
tions is found in a greedy manner by using the component solutions to define a
marginal expected utility of assigning a weapon to a target (given the number of
weapons already assigned). The weapons are assigned one-by-one to the target
with highest marginal expected utility until that utility is less than or equal to
zero or until the limit on the number of weapons is reached.

This schedule, however, may still fail to satisfy the limit on the number
of planes that can be used in a single state. A greedy deallocation-reallocation
technique is then used to satisfy the plane constraints. The authors calculate the
expected marginal decrease in utility from deallocating each plane (individually)
at the state in question and then reallocation its weapons to targets at some
future state. This utility is found again using the component solutions and a
single step lookahead of the algorithm originally used to allocate weapons. That
is, for each plane, its weapons are deallocated from the previous state (incurring
a decrease in utility) and then the greedy allocation algorithm is run to allo-
cate these available weapons to some subsequent states (increasing utility). The
plane whose deallocation results in the smallest net decrease in expected utility
is deallocated and the reallocation already computed in the lookahead is put in
place.

Empirical evaluation of this technique against a single global MDP as well
as two variations on a greedy technique (based also on the component solutions)
reveals that in problems that could be solved by the single MDP, both the MTS
model and one of the greedy models resulted in competitive solutions in terms
of quality (i.e., expected utility). On larger problems, the MTS model performs
substantially better than the two greedy variations.
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The authors point to three insights that allow the solving of large MDPs in
the fashion demonstrated:

1. the ability to decompose the the MDP into pseudo-independent sub-processes

2. the use of the solutions to the sub-processes to guide in the construction of
a global solution

3. the use of an online policy to remove the need to reason about future contin-

gencies

5.5. Discussion

Delayed and least commitment scheduling together with problem decompo-
sition techniques such as Markov Task Sets would appear to be critical tools in
dealing with uncertainty. Indeed, the form of decomposition used in the MTS
work can be seen as a form of delayed commitment scheduling: the integration
of the sub-problems is left until execution time when the information about the
success or failure of each task is available. Unless care is taken, however, these ap-
proaches can suffer from the same drawback as the contingency-based techniques:
the off-line schedule may not produce enough information, for other, dependent
nodes in the supply chain to confidently create local schedules. This is most ap-
parent in the MTS work as the off-line schedules for each target may have little
relation to the integrated schedule. The goal in the off-line phase must be, as
noted by Wu et al. [47], to make a sufficiently detailed schedule so as to serve
as a basis for dependent entities in the supply chain while maintaining enough
flexibility to deal with disturbances at execution time. Though work reviewed
here has begin to address this goal, it remains a challenging problem.

The concept of supermodels is certainly attractive however its applicabil-
ity to real scheduling problems seems limited. While scheduling problems can
be encoded in SAT [8], the results noted concerning the existence of supermod-
els only for underconstrained problems would seem to discount many real-world
scheduling problems. Nonetheless, the idea of off-line algorithms creating solu-
tions (or even partial solutions) with guarantees in the amount of work necessary
in the on-line phase is certainly valuable. Perhaps, the concept, if not the actual
implementation of supermodels, can be applied to scheduling.
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6. Rescheduling

Although there is much that can be done to ensure that a predictive schedule
can absorb uncertainties, even the most robust schedules can be overwhelmed by
an unstable, rapidly changing environment. In a dynamic environment, a variety
of unexpected events are continually occurring and any schedule may in practice
be subject to frequent revision to reflect this. Scheduling in such an environment
is thus an ongoing and continuous process. Furthermore, even in a less dynamic
environment, it is unlikely that a predictive schedule will be able to cope with all
possible sources of uncertainty: some events will be judged too unlikely to plan
for and so when they happen some sort of rescheduling will have to be done.

The approach to rescheduling considered in this section is to “repair” the
previous predictive schedule to take into account the unexpected events that
have occurred. Repairs may take the form of simple, fast control rules to make
decisions within some real time execution constraints and to tend to minimize
the perturbation to the original schedule.

Examples of constraint based systems which perform rescheduling are ISIS
[14], MicroBoss [39,38], SONIA [29], OPIS [43,41,42], DSS [24] and Gerry [50,49].
Leon et al [30] propose a predictive and reactive control system which treats
recovering from disruptions as a game playing problem against nature.

A number of techniques have been proposed to reschedule with minimal
perturbation. ISIS [14] performs rescheduling with preferences on the new so-
lution being the values of the variables in the old solution. Some researchers
have suggested using iterative repair to perform rescheduling. Zweben et al. [49]
claim that a disadvantage of constructive rescheduling techniques is that the task
of determining the set of activities to reschedule is not straightforward. Itera-
tive repair techniques need not remove any tasks from the schedule to perform
rescheduling, so are not faced with this problem. In contrast, Sadeh et al. [39]
claim that a drawback of iterative repair techniques is that in the process of re-
solving existing conflicts they may introduce new conflicts which in turn require
more repairs: such iterative behavior can sometimes lead to myopic decisions
which can be difficult to deal with. Although we are unaware of any theoretical
or empirical work which compares these two approaches, some theoretical anal-
ysis for iterative repair does show that if a candidate, inconsistent solution is
“sufficiently” close to a consistent solution in terms of hamming distance, there
is a high probability that iterative repair will converge to the consistent solution
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[34,28]. However there is no way of knowing a priori whether a solution is close
enough for these results to apply.
In this section we consider three approaches to rescheduling:

1. MicroBoss [39] utilizes a range of control rules and uses them either in a
reactive fashion to quickly restore consistency or as a procedure to identify
which activities need to be fully rescheduled.

2. Sakkout et al. [12,13] formulate the rescheduling problem as a minimal per-
turbation problem, and perform full rescheduling using a combination of
constraint programming and linear programming techniques with the goal
of minimizing changes from the original schedule.

3. Wallace & Freuder [44] describe a CSP technique for generating stable solu-
tions based on previous data of the causes of solution breakage. While this
is not, strictly speaking, a rescheduling technique, it is a concept that may
have applications for scheduling problems as well as the more general CSPs.

6.1. Reactive Scheduling in MicroBoss

In the MicroBoss scheduler there are two levels of control within which
disruptions to the schedule can be handled:

1. Control level: small disruptions which require fast responses are handled by
simple control rules, such as “process the operation with the earliest scheduled
start time first” or “when a machine is down, reroute critical jobs to any

available equivalent machines”.

2. Scheduling level: when more severe disruptions have occurred, the schedul-
ing algorithms within MicroBoss are used to repair or reoptimize the schedule
from a more global perspective, while still continuing to attend to more im-
mediate decisions.

An important issue is deciding which disruptions should be handled by which
level. There is a tradeoff, depending on the conditions within which a breakdown
occurs, between the slower, better decisions of the scheduling level and the faster,
more local decisions at the control level.

In repairing a schedule at the scheduling level, MicroBoss first selects a num-
ber of activities to unschedule, then reschedules them using the full MicroBoss
micro-opportunistic search procedure. The rescheduling occurs in the context of
the remaining current schedule which is not invalidated by the schedule breakage.
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A number of conflict propagation procedures are proposed that can be used
either at the control level to reschedule activities or at the scheduling level to
identify the set of activities to be rescheduled. It might be the case the the
identified activities are insufficient to enable a new solution to be generated. In
such a case, this set of activities can be expanded incrementally until a solution
is found. An example of the one of these propagation procedures, the Right Shift

Rule, is illustrated in Figure 2.
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Figure 2. The Right Shift Rule

In this example there a three resources, R;, Ry and R3, and five jobs j; to
Jjs executing on these resources. Resource Ry breaks down near the beginning of
the schedule. The Right Shift Rule can be applied at the control level by moving
forward in time all those activities which are affected by the breakdown, either
because they were executing on the resource when the breakdown occurred or as
a result of precedence constraints. This technique can produce poor solutions at
the control level as it does not resequence activities. For instance, the activity
in job j4 on resource R3 can still execute at its current time, even though in
the original schedule it came after activity j; on this resource. Therefore, better
schedules can be achieved by using the rule to identify the set of activities to
be rescheduled by the full MicroBoss scheduler at the scheduling level, where
resequencing can occur.

A number of control rules and procedures of varying complexity for identi-
fying sets of activities to reschedule are presented in Sadeh et al. [39]. These are
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evaluated on a set of randomly generated problems with or without bottleneck
resources, with a single simulated machine breakdown. The experimental study
found that the total rescheduling of all remaining activities produced the best
quality solutions, but, unsurprisingly, resulted in the greatest disruption to the
original schedule and took the longest time. However, it was shown that one of
the more sophisticated activity identification procedures followed by reschedul-
ing was able to find almost as good schedules as complete rescheduling of the
remaining activities, while rescheduling 30% fewer activities.

6.2. Minimal Perturbation Rescheduling

Often the goal in rescheduling is not just to restore consistency to the orig-
inal schedule, but also to find a new schedule which deviates from the original
schedule as little as possible. This is the problem of rescheduling with minimal
perturbation. Minimal perturbation is important when the schedule serves as a
basis for other planning activities in the supply chain (e.g., deliveries to and from
other nodes). It is also important when we want to avoid “shop floor nervousness”
caused by frequent changes to a schedule.

More formally, El Sakkout et al. [12,13] define the minimal perturbation
problem as the need to reschedule a set of activities such that all resource and
temporal constraints are respected and such that the sum of the absolute differ-
ences between the start time of each activity and the original start time of that
activity (i.e., in the original schedule) is minimized.

Unimodular probing [12,13] is used to solve this problem by representing
the temporal and resource constraints in a constraint programming solver, while
representing the temporal constraints and the cost function as a linear program.
In particular, the linear program does not represent the resource constraints. A
branch-and-bound technique is used where, at each search node:

e The linear program is solved to generate a supra-optimal start time for each
activity: minimizing the cost function subject to the temporal constraints.

e The constraint programming solver then analyses the optimal start times to
evaluate the breakage, if any, of the resource constraints.

e One of the broken resource constraints is heuristically selected and a new
precedence constraint is added between a pair of activities contributing to the
resource breakage. The new precedence constraint is the branching step and
it is added to both the constraint solver and the linear solver.
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e Constraint propagation is used to derive new constraints implied by the new

precedence constraint.

The unimodular probing technique was evaluated on a number of random
benchmark problems and compared with a number of constraint solving tech-
niques and mixed-integer programming (MIP). Given a fixed timeout, the uni-
modular probing technique was capable of proving optimality for many of the
benchmark problems, where the constraint programming techniques failed to do
so. MIP performed relatively well but was still inferior to unimodular probing.

6.3. Stable Solutions

When rescheduling occurs frequently in an environment, it may be possible
to gather information characterizing the frequency and impact of stochastic events
as they occur. This information can be used later when rescheduling to move to
more robust schedules. This idea has been investigated in the context of solving
the recurrent dynamic CSP [44].

A dynamic CSP is one in which constraints may be added or removed over
time and where the goal is to maintain a solution to the current model. In a
recurrent dynamic CSP (RDCSP) [44], the changes tend to be temporary and
there are differences in the likelihood of changes. For example, a value may be
externally removed from a domain of a variable but later re-inserted and the
likelihood that a particular value is removed is different from the likelihood that
some other value is removed. Such assumptions can be understood from the
perspective of scheduling by allowing the modeling of the fact that a resource
may breakdown, removing it as a possible value for the resource requirement of
an activity. However, after some time for repair, the resource will be reinserted
as a possible value.

During the process of repeatedly solving the RDCSP over time, the authors
gather statistics for the frequency at which variables and values of the CSP which
become unavailable. These statistics are used in iterative repair technique. The
technique, based on Min-Conflicts hill-climbing [34], repairs the assignments of
variables which violate problem constraints. The value to select for a variable
when making a repair is guided by an evaluation function which rates highly
those values which violate the fewest constraints while also taking into account
how often in the past each value has become unavailable. During the search
for a solution, good values for a variable which become unavailable often might
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not be preferred to other values which violate more constraints but which are
more reliable. A number of issues are investigated with respect to creating an
evaluation function which takes into account both constraint violations and value

reliability.

6.4. Discussion

It seems clear that, regardless of the techniques to generate a robust, pre-
dictive schedule, if any, some rescheduling will need to be done at execution time.
The, perhaps unachievable, goal of such rescheduling is to quickly deliver a new
schedule that is optimal both in terms of the relevant measures of schedule quality
and in terms of minimal deviation from the original schedule.

This rescheduling may be as simple as the Right Shift Rule or may involve
a complete rescheduling of all activities that have not yet executed. As the work
using MicroBoss indicates, the appropriate trade-off is far from clear and, indeed,
depends on the external situation at the time of rescheduling. In this context,
the unimodular probing work provides provably minimal deviation rescheduling,
however, does not address the requirement of fast rescheduling. One possibility
that may preserve many of the advantages of this approach is to reschedule near-
term activities using a simple rule and then, after execution of the schedule has
recommenced, to reschedule the later activities with unimodular probing or some
other technique that can guarantee optimality.

Interestingly, the stable solution concept shares some of the approach of the
artificial immune system work discussed above: both attempt to gather statistics
(implicitly or explicitly) about the schedules and events that have occurred in the
factory in order to guide the search for a reaction to subsequent events. However,
it is unclear how well stable solutions fit into the scheduling framework. For
example, if a value in the domain of a variable is used to represent a possible
resource assignment for an activity and this resource frequently breaks down, a
stable solution will tend to avoid assigning activities to the resource. Given a
resource load that requires the resource to execute some activities, it is not clear
that this implicit reasoning about uncertainty will result in robust solutions. It
may be better to explicitly reason about the uncertainty associated with the
resource and so, for example, assign it to activities that are otherwise uncritical:
low priority activities that are not on the critical path and that are part of jobs
which have low penalties for missing due dates.
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7. Discussion

Schedules are executed in uncertain environments. At its most general, the
ability to deal with uncertainty in scheduling is the ability to achieve high quality
schedule execution despite the occurrence of unforeseen events. The quality of
schedule execution has a variety of standard measures in industry and research:
minimal makespan, maximal throughput, minimal idle time, maximum on-time
delivery rate, etc. While this definition of dealing with uncertainty does not
necessarily preclude dealing with uncertainty solely at schedule execution time,
the theoretical difficulty of scheduling, the need for quick decision-making, and
the dependencies among schedules at different nodes in a supply chain necessitate
the incorporation of robustness into predictive schedules.

Most of the work we have reviewed in this paper deals with schedule ro-
bustness. While there is a general, informal understanding of what robustness is
(i.e., the ability of a predictive schedule to cope with unforeseen events), there is
no agreement on a formal definition of schedule robustness. Based on the work
reviewed here, however, we believe that the reason for such a lack of agreement is
that there is no formal definition that will fit the myriad of ways in which robust-
ness can be defined in specific systems. A formal definition that limits robustness
to a particular form will only be applicable in to applications that precisely meet
that definition. Any system that hopes to address robustness in scheduling, in
general, will have to allow a different, specific definition of robustness in different
situations to which it is applied.

While robust predictive schedules are necessary, they do not remove the
requirement for execution time reasoning. Some reasoning, even if it is as simple
as the Right Shift Rule, will have to be done at execution time. This reasoning
is able to take advantage of truly up-to-date information, however it is highly
constrained by the amount of time it can spend in reasoning. Furthermore,
regardless of the ability to generate robust predictive schedules, there will be
unexpected events that are too expensive and too unlikely to account for. When
such events occur, some execution time rescheduling is necessary.

In summary, then, a system that is able to deal with uncertainty in schedul-
ing is one for which:

e the specific manifestation of uncertainty and definition of robustness can be
specified.

e uncertainty can be taken into account in generation of predictive schedules.
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e the occurrence of unexpected events can be reacted to at execution time.

All of these issues are currently still open questions. Obviously, work that
contributes to the an understanding of these questions, even in isolation, is valu-
able, however we view the above description as the overall goal for such research.

7.1. Techniques for Dealing with Uncertainty in Scheduling

This paper has surveyed research from a number of different areas that all
bear on the issue of dealing with uncertainty in scheduling. In this section, we
comment specifically on approaches which appear to have the most and least
promise. These comments are, of course, to some extent subjective, however, we
believe they are useful at the very least as an indication of where future research

directions may lie.

e Probabilistic reasoning appears to be an important step in terms of bringing
a level of formality to reasoning about uncertainty in scheduling. Even if it is
shown that exact probabilistic guarantees of schedulability are intractable in
practice, the very existence of a formal theory will provide significant support
on which approximation techniques can be based. Of the approaches reviewed
in this paper and of which we are aware, it appears to be the only one which
may be able to be developed into a formal theory.

e As shown in the fault tolerant real-time scheduling field, redundancy tech-
niques can provide the tools for a significant simplification of both predictive
robustness measures and the complexity of rescheduling. It may be possible to
achieve some degree of formality and still allow tractable schedule generation
by combining redundancy techniques with probabilistic reasoning.

e Contingent scheduling techniques do not appear promising both from the per-
spective of the combinatorics of dealing with contingencies from multiple re-
source and from the need to have some “firm” information from the predictive
schedule from which other dependent nodes in the supply chain can form their

own schedules.

e An off-line/on-line approach to dealing with uncertainty is explicit in the com-
ments in the our delineation of a system which addresses uncertainty in the
previous section. There is clearly a need for both off-line, predictive techniques
and on-line, reactive techniques of dealing with uncertainty. The challenge is to
have an off-line technique which provides enough information for other nodes
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in the supply chain without becoming inflexible while having an on-line phase
that can quickly take near-optimal decisions.

The technique of decomposing scheduling problems such as seen in the Markov
Task Sets and in delayed/least commitment scheduling would seem to be a
powerful tool to deal with the complexity of large scheduling problems. There
is still a danger that unless some of the reintegration of sub-problems is done
off-line, the information produced by the solving of the sub-problems will not
be sufficient for other nodes in the supply chain. Furthermore, it should be
noted that delayed commitment scheduling may, in fact, make it more difficult
to perform probabilistic reasoning about a predictive schedule. Not only must
the probabilistic reasoning cover the various external probabilities, it must also
reason about all the different schedules that can still be produced at execution

time.

The minimal perturbation rescheduling problem forms a standard concerning
what can be achieved at execution time by an on-line algorithm. While it
is unlikely that such reasoning is possible in the limited time available, it
may be that similar problem solving can be incorporated at nonetheless. As
suggested above, perhaps some subset of rescheduling decisions can be made
with a quick, sub-optimal rule so that the schedule can continue to execute
while the other activities disturbed by a disruption are optimally rescheduled.

7.2. Open Issues

Above we implicitly presented a number of open issues in terms of how

uncertainty can be dealt with in scheduling. In this section, we explicitly present

a number of other open issues that can be distilled from the work that has been

surveyed here.

Most of the research into uncertainty in scheduling addresses only one source
of uncertainty: usually either machine breakdowns or uncertain durations.
As noted at the beginning of this paper, the sources of uncertainty in real
world scheduling are significantly more varied and, indeed, it would be unusual
that a factory would experience only one form of uncertainty. A challenge,
then, is not only to investigate other sources of uncertainty and how they
impact the reasoning techniques discussed here, but also how the combination
of sources of uncertainty (e.g., machine breakdown plus durational uncertainty
plus modified due dates) can be dealt with.
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e There is no understanding of the tradeoff between robustness and other
scheduling performance metrics, such as tardiness and work in progress. While
it seems clear that, at least with redundancy techniques, robustness will tend
to increase tardiness, in a factory that runs robust schedules, the opposite may
happen: because the management has a more accurate picture of when orders
may be realistically delivered, they will be more accurate in the due dates that

they promise to customers.

e There is no work that we are aware of that extends the notion of robustness to
the problem of rescheduling. For example, minimal perturbation rescheduling
focuses on the start and end times of the activities in the previous schedule. If
such a technique or, indeed, other repair techniques, pay no attention to the
robustness of the solution which they generate, an increasingly brittle schedule
may result. Such a situation may result in catastrophic schedule failure in
response to a relatively minor unexpected event. Clearly in an evolving system
where a schedule is going to be repaired multiple times, the robustness of the
repaired schedule, so that future repairs can be made, must be taken into

account.*

8. Conclusion

After conducting a field study of a number of real world job shops, McKay et
al. [32] are scathing about the state of job shop scheduling research: “the (static
job shop) problem definition is so far removed from job-shop reality that perhaps
a different name for the research should be considered”. Although they do not
claim that no job-shop would benefit from the scheduling research conducted
over the last few decades, a particular industry would need to have a number of
deterministic characteristics for such research to be useful. McKay et al. believe
that a new model of scheduling is needed, which takes into account conditions on
the shop floor/operating environment and models how people use the schedule in
practice.

The survey by McKay et al. was carried out ten years ago. Scheduling
research has advanced considerably since then, especially within the area of con-
straint directed scheduling. Some of this research has made its way into the real

world, where a number of successful commercial scheduling systems are now be-

4 Thanks to Amedeo Cesta and Angela Oddi for this comment.
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ing widely deployed (e.g. ILOG Scheduler, Cosytec CHIP, i2 Rhythm). Most of
the research dealing with uncertainty reported in this survey has been carried out
within the last few years. We have discussed research which deals with known
and unknown uncertainties, as well as systems which learn about uncertainties
in the scheduling environment. However, in general, we believe that the findings
of McKay et al. still hold: there appears to be very little understanding or char-
acterization of dynamic, uncertain scheduling environments. Despite this, the
potential gains from improving our understanding can have a significant impact
in the real world. The research surveyed in this article is a first step in that

direction.
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