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Abstract
Classically, scheduling research in artificial intelligence has
concentrated on the combinatorial challenges arising in a
large, static domain where the set of jobs, resource capacities,
and other problem parameters are known with certainty and
do not change. In contrast, queueing theory has focused pri-
marily on the stochastic arrival and resource requirements of
new jobs, de-emphasizing the combinatorics. We study a dy-
namic parallel scheduling problem with sequence-dependent
setup times: arriving jobs must be assigned (online) to one
of a set of resources. The jobs have different service times
on different resources and there exist setup times that are re-
quired to elapse between jobs, depending on both the resource
used and the job sequence. We investigate four models that
hybridize a scheduling model with techniques from queue-
ing theory to address the dynamic problem. We demonstrate
that one of the hybrid models can significantly reduce ob-
served mean flow time performance when compared to the
pure scheduling and queueing theory methods. More specifi-
cally, at high system loads, our hybrid model achieves a 15%
to 60% decrease in mean flow time compared to the pure
methodologies. This paper illustrates the advantages of in-
tegrating techniques from queueing theory and scheduling
to improve performance in dynamic problems with complex
combinatorics.

1 Introduction
Many real-world scheduling problems are dynamic: jobs ar-
rive over time and the existence of a job is not known be-
fore it arrives. Typical scheduling approaches to dynamic
scheduling problems solve a series of inter-dependent static
problems (Bidot et al. 2009), allowing the techniques that
have been developed for static problems to be applied. How-
ever, such methods suffer from sub-optimal long-run solu-
tion quality due to optimization over only a short time hori-
zon. Thus, decisions made during one static scheduling pe-
riod can have unforeseen impact on a later period. The study
of queueing theory, in contrast, is primarily concerned with
dynamic environments, tending to consider relatively simple
combinatorics in order to develop rigorous mathematical re-
sults (Gross and Harris 1998).

It has recently been proposed that the hybridization of
scheduling and queueing is a fruitful direction for research
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into problems which are challenging both from combina-
torial and stochastic perspectives (Terekhov et al. 2012).
While that work demonstrated substantial benefits from con-
sidering both scheduling and queueing from a theoretical
view, a substantial gap in that paper stems from the fact that
no hybrid algorithm was explored. We address a more chal-
lenging underlying scheduling problem and develop a hy-
brid model that outperforms the pure queueing and schedul-
ing approaches stemming from the work of Terekhov et al.
(2012).

The specific problem of interest in this paper is a dy-
namic unrelated parallel machine scheduling problem with
sequence-dependent setup times. This problem is dynamic
and combinatorially complex, and inspired by a prob-
lem from the queueing literature. We present a schedul-
ing model and four modifications to this model using con-
cepts from queueing to create hybrid queueing/scheduling
models. We illustrate experimentally that guiding schedul-
ing with queueing theory improves the performance signif-
icantly. Our experiments show that a hybrid model can be
constructed to provide the lowest mean flow time when com-
pared to pure scheduling or queueing models.

In the following section, the dynamic scheduling prob-
lem is defined. The background and motivation for our
work is found in Section 3. Section 4 briefly presents a
decomposition-based scheduling model for the static prob-
lem. Hybridization of the scheduling model to incorporate
queueing guidance and apply it to the dynamic version of
the problem is proposed in Section 5. Experimental results
are then presented, followed by a discussion.

2 Problem Definition
The problem of interest is inspired by Andradóttir, Ayhan,
and Down (2003). It consists of M , a set of heterogeneous
resources, and K, a set of independent job classes. Jobs ar-
rive over time via an arrival process with rate λ and inde-
pendent and identically distributed (i.i.d.) inter-arrival times.
Each job belongs to a class k ∈ K with probability prk.
When a job enters the system and is not immediately served,
it waits in a queue of infinite capacity. Each job can be served
by a number of resources but must be assigned to only one.
We assume that there are no pre-emptions. When a job j of
class k is assigned to resource i, a service time of pij that is
i.i.d. with rate µik = 1

E[pij ]
is required. Both the existence
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of a job and its service time become known upon arrival.
At any time when a resource is not busy, it may switch

to serving a different class. However, a setup time is in-
curred when making the change. The nth occurrence of re-
source i switching from class k to class l has a setup time
sikl(n). Such a definition for setup times differs from stan-
dard scheduling definitions which often assume setting up
is strictly dependent on the jobs or classes scheduled di-
rectly before and after the setup; the same setup between
two classes will always be the same. We use a more general
queueing theory definition of setup times where switching
classes incurs a setup and the magnitude varies each time a
setup occurs. This definition follows that of Andradóttir, Ay-
han, and Down (2003). The setup times are generated such
that they follow the triangle inequality so that the shortest
time to change from serving a class k to a class l is a direct
switch. Section 6 will provide further details on the genera-
tion of setup times.

The goal is to assign jobs to resources and sequence the
jobs so as to minimize the mean flow time: the mean, over
all jobs, of the time between when a job arrives to the system
and when it completes service.

3 Background and Motivation
Queueing theory and scheduling have both developed tech-
niques to deal with dynamic resource allocation and se-
quencing. In the scheduling literature, dynamic problems are
often handled by periodically solving static, deterministic
scheduling problems (Bidot et al. 2009; Ouelhadj and Petro-
vic 2009). Such approaches apply existing scheduling meth-
ods to the combinatorics but are only able to reason about a
short time horizon. Because the scheduling approaches typi-
cally solve an NP-complete problem during each scheduling
period, it is assumed that the “time pressure” of the prob-
lem is low. That is, one time unit in the scheduling model
represents a reasonable amount of “real time” and therefore
we have time to use optimization techniques to improve the
schedule. With high time pressure, it is likely that online de-
cisions must be made by a polynomial dispatching rule or
policy. We make the assumption of low time pressure in this
work.

Queueing theory addresses dynamic problems with poli-
cies similar to dispatch rules (Gross and Harris 1998). It of-
ten involves theoretical analysis of a system under specific
policies and long-run system performance metrics and guar-
antees. However, the analysis tends to be limited to problems
with simple combinatorics.

In the queueing literature, Andradóttir, Ayhan, and Down
(2003) study the problem presented above with the addi-
tion of rerouting, which allows jobs to change to another
job class and stay in the system after service. They com-
pute the maximum arrival rate for which the system can be
stabilized, along with an explicit policy that guarantees sta-
bility. Stability, in queueing theory, can be informally under-
stood to mean that the expected queue size is finite over an
infinite time horizon (Dai 1995).1 The queueing policy of

1We follow Terekhov et al. (2012) in adopting the queueing
definition of stability, not others found in the scheduling literature

max λ

s.t.

|M |∑
i=1

δikµik ≥ λprk, k ∈ K (1)

|K|∑
k=1

δik ≤ 1, i ∈M (2)

δik ≥ 0 k ∈ K; i ∈M (3)

Figure 1: Allocation LP.

Andradóttir, Ayhan, and Down (2003) is not evaluated with
respect to common scheduling performance metrics such as
flow time. A stable system has better flow time performance
than an unstable one. However, knowing that two differ-
ent policies both stabilize a system does not provide insight
about their flow time performance. From the perspective of a
customer who wishes to have his/her jobs served in a timely
manner, good overall behaviour of a system is not as impor-
tant as measures like flow time.

Andradóttir, Ayhan, and Down (2003) present a linear
programming (LP) model to find the maximum arrival rate,
λ∗, for which the system can be stabilized. Figure 1 shows
the allocation LP, adjusted to the problem we study. Here,

λ: The arrival rate of jobs,
δik: The fractional amount of time that resource i

serves jobs of class k.

Constraint (1) ensures that sufficient resources are allo-
cated to each class to guarantee stability. Constraint (2)
corresponds to not over-allocating any resource, and non-
negativity is enforced by constraint (3). The allocation LP
coincides with a fluid representation of the problem (Dai
1995). Such an approach examines the system at very heavy
loads and is strictly concerned with system stability - as a
consequence, the allocation LP can disregard setup times.
As the number of jobs to be served between setups increases,
the proportion of time spent setting up becomes negligible;
that is,

∀n, lim
Z→∞

∑Z
j=1 pij + sikl(n)∑Z

j=1 pij
= 1.

The solution of the allocation LP provides a tight upper
bound on the maximum arrival rate for which the system can
be stabilized, λ∗, and the required resource allocation pro-
portions, δ∗ik. To then make use of the solution from the LP
and sequence jobs, Andradóttir, Ayhan, and Down (2003)
develop the Round Robin policy: each resource i cyclically
visits classes in Vi, where Vi is an ordered list of all classes
k with µikδ∗ik > 0. A resource will serve a class k ∈ Vi
until either there are no more jobs of class k waiting or the
resource has served lik jobs. Assume we are given a desired
arrival rate λ, ε = λ∗−λ

λ∗+λ , mik = 1
µik

, and si, the expected
sum of setup times for resource i to serve each class in Vi and

(Bidot et al. 2009; Sotskov et al. 2010).
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cycle back to the initial class. Andradóttir, Ayhan, and Down
(2003) show that the δ∗ik values are sufficiently tracked to
stabilize the system if lik is chosen to be

lik =

⌈
(1− ε)(si +

∑
l∈K mil1{δ∗ik > 0})δ∗ik
εmik

⌉
.

Here, 1{δik > 0} is a function that is 1 if δik > 0 and 0
otherwise.

The Round Robin policy guarantees stability when λ is
less than λ∗ by reasoning about the proportion of time spent
setting up between classes and serving jobs. As the load on
a system becomes high, the number of jobs tends to infinity.
At these conditions, the lik values also become high and the
Round Robin policy ensures that the time spent setting up
between classes is insignificant when compared to the time
that resources are busy with jobs. By following the lik val-
ues, the resources are guaranteed to spend the correct pro-
portion of time to manage the demand from arriving jobs.
Therefore, the Round Robin policy guarantees stability for
any system which is stabilizable.

Al-Azzoni and Down (2008) study a setting similar to the
queueing network with flexible servers. In their work, het-
erogenous computing systems are assigned to job classes
using an allocation LP. Their work does not consider setup
times or provide stability guarantees, but their heuristic pro-
vides improved performance with respect to the long-run
number of tasks in the system. Their work shows the poten-
tial of using the allocation LP to help improve more common
scheduling performance metrics for a dynamic system.

4 A Dynamic Scheduling Model
Our first dynamic scheduling model, MinMksp, adopts the
periodic scheduling approach. In order to make use of clas-
sically developed scheduling techniques in a dynamic envi-
ronment, a periodic scheduler treats the dynamic system as
many static problems in sequence. The scheduler observes
the system at a given time instant and forms a schedule with
the jobs that are present. Later, the scheduler will once again
observe the system and generate a new schedule, incorporat-
ing the jobs that have arrived in the interim. This method al-
lows the scheduler to solve static “snapshots” of the dynamic
problem. Although periodic scheduling enables us to use
classical scheduling tools for dynamic environments, it does
not make use of any insight into the dynamics of the sys-
tem. While solving the static schedule, decisions are made
without consideration of the fact that jobs will arrive in the
future. Therefore, the MinMksp model is a pure scheduling
model. We present our hybrid models in Section 5, where
the MinMksp model provides the framework but scheduling
decisions are guided by queueing theory.

We define a scheduling period to be the time from when
the scheduler creates a schedule to when any resource has
completed serving all jobs that were assigned to it. In the
case that the schedule does not assign any jobs to a re-
source, the period ends with the arrival of a new job that
can be executed on any idle resource. All jobs scheduled
in the previous period but not yet executed are frozen: they
stay assigned to the resource and job sequence as in the

previous period’s schedule. The scheduling objective is to
minimize makespan rather than flow time of each period.
Makespan is chosen because of results indicating that short-
term makespan is a stronger proxy for long-term flow time
than is short-term flow time (Terekhov et al. 2012) and be-
cause makespan is empirically much easier to minimize for
problems of our scale.

Although optimizing makespan is simpler than optimiz-
ing flow time, minimizing makespan for the static version
of our problem is still strongly NP-hard because the sin-
gle machine problem is equivalent to a traveling salesman
problem (TSP) (Baker 1974). Due to the difficulty of solv-
ing the problem, much of the literature on makespan min-
imization with setups in a static environment has focused
on heuristic approaches (Arnaout, Rabadi, and Musa 2010;
Rabadi, Moraga, and Al-Salem 2006). However, we expect
that finding optimal periodic solutions will be important: a
solution that is sub-optimal by one time unit may result in
all jobs in later periods starting one time unit later, leading
to a substantial increase in flow time. Logic-based Benders
decomposition (LBBD) (Hooker 2005) is a technique that
has been successfully applied to a number of static schedul-
ing problems with multiple servers. We make use of a state-
of-the-art LBBD due to Tran and Beck (2012) to solve our
periodic scheduling problem.

In our LBBD, the problem is decomposed into a master
problem and a set of subproblems. A mixed integer pro-
gramming (MIP) model is used to solve the master problem,
while the subproblems are solved with a specialized trav-
eling salesman problem (TSP) solver. In the master prob-
lem, jobs are assigned to resources. Once assignments are
made, one subproblem will be created for each resource and
the TSP solver sequences the assigned jobs to minimize the
makespan. The LBBD algorithm then iterates between solv-
ing the master problem and subproblems, adding cuts from
the subproblems to the master problem to create an optimal
schedule. We restate the LBBD approach of Tran and Beck
(2012) below for our queueing network.

4.1 Master Problem

The MIP formulation of the master problem assigns jobs to
a resource and sequences them, relaxing the requirement
for a complete sequence. Rather than finding an optimal
single sequence of jobs on each resource, the model allows
multiple sequences. These sequences share no jobs in
common and together include all jobs assigned to the
resource and the sum of the incurred setup times is a lower
bound on the minimum sum of setup times achievable for
the job set if a complete sequence was created. The MIP
model is formulated in Figure 2 where:

Cmax: Makespan of the master problem,
ξi: Total setup time incurred from all

sequences on resource i,
xij : 1 if job j is served on resource i,
yijo: 1 if job o is served directly after job j

on resource i,
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sikjko(n): Next setup time for switching from class
kj to class ko, where kj is the class that job
j belongs to and n− 1 is how many times a
switch between these two classes occured,

νi: Remaining service time of previously
scheduled jobs on resource i that have
not yet completed,

N : Set of jobs that need to be scheduled,
N ′: Set of jobs that need to be scheduled with

the addition of an auxiliary job.

min Cmax

s.t.
∑
j∈N

xijpij + ξi + νi ≤ Cmax, i ∈M (4)

∑
i∈M

xij = 1, j ∈ N (5)

ξi =
∑
j∈N

∑
o∈N,j 6=o

yijosikjko(n), i ∈M (6)

xij =
∑

j∈N ′,j 6=o

yijo, o ∈ N ′; i ∈M (7)

xij =
∑

j∈N ′,j 6=o

yioj , o ∈ N ′; i ∈M (8)

cuts (9)

xij ∈ {0; 1}, j ∈ N ; i ∈M (10)

0 ≤ yijo ≤ 1, j, o ∈ N ′; i ∈M (11)

Figure 2: The Master Problem Formulation.

The makespan on each resource is defined by constraint
(4). Constraint (5) ensures that each job is assigned to ex-
actly one resource. The relaxed setup time is calculated in
constraint (6) where constraints (7) and (8) enforce the re-
quirement that all assigned jobs must be accounted for in
the calculation. ξi is a lower bound on the additional time
required from setup times of the jobs assigned to resource i
since we do not enforce the requirement that the sequence
on a single resource is a true feasible schedule; rather, the
only requirement is that a setup exists before and after each
scheduled job (note that jobs of the same class incur 0 setup
time). In this way, a sequence of setups may be a cycle that
does not include all jobs assigned to a resource and is there-
fore infeasible. Thus ξi gives a lower bound on the feasible
schedule for the set of assigned jobs. To make a single cycle
including all jobs be a feasible schedule, we assign an auxil-
iary job to each resource (xi0 = 1, ∀ i ∈ M ) that is defined
as the first and last job of a schedule. This auxiliary job has
no service time or setup time from other jobs. However, we
include a setup time from this job to other jobs depending

on the most recent class of jobs served on the resource (i.e.,
in the previous scheduling period). Thus, a feasible schedule
will start at this auxiliary job, serve each assigned job on a
resource, and then return back to the auxiliary job to com-
plete the cycle. Constraints (9) are cuts added to the master
problem from a subproblem each time an infeasible solu-
tion is found. During the first iteration of solving the master
problem, the set is empty. The final constraints (10) and (11)
force the decision variables xij to be binary and yijo to be
between 0 and 1.

4.2 Subproblems
When an optimal solution to the master problem is found,
|M | subproblems are created, one for each resource. The
subproblem will sequence the assigned jobs to minimize the
makespan.

A TSP formulation is used for the subproblem. Sequenc-
ing jobs on a single resource is equivalent to an asymmetric
TSP if jobs are represented by nodes and the edges represent
the service time of the first job plus the required setup be-
tween the jobs. Figure 3 presents the TSP and how a sched-
ule can be defined using the TSP representation. Traveling
along an edge (a, b) incurs the service time of job a and the
setup time between the class of job a and the class of job b.
The makespan of a schedule is defined by a cycle of the TSP
from the auxiliary node (0) to all other nodes and back to the
auxiliary node. If the order of nodes visited is (0, 3, 1, 2, 0),
the distance traveled is s03 + p3 + s31 + p1 + s12 + p2. This
tour distance is equal to the makespan of the job sequence
(3, 1, 2).

Figure 3: TSP representation.

4.3 Cuts
The solution to each subproblem is compared with Cmax
from the master problem. If a complete sequence for each
resource has a makespan equal to or less than the relaxed
optimal makespan obtained from the master problem, the
relaxed optimal makespan is, in fact, globally optimal. Oth-
erwise, a cut is created for each subproblem with makespan
greater than the value of Cmax.

We use a simple no good cut that removes the current
master problem solution from the feasible solution space.
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Given Nh
i , the set of jobs assigned to resource i in iteration

h, the cut for a subproblem i is

Cmax ≥ Chi∗max −
∑
j∈Nh

i

(1− xij)Chi∗max

where Chi∗max is the optimal makespan for subproblem i in
iteration h. This cut implies that if the same assignment is
made in future periods, the makespan must be at least as
large as the makespan found in the subproblem. In the sce-
nario where the master problem makes a different assign-
ment, one or more xij terms will be zero and the constraint
is redundant.

Tran and Beck (2012) made use of a tighter cut for their
problem. Although the cut is also valid for this problem and
would lead to faster solve times, we did not implement the
cut for our model since the simpler no good cut was suffi-
ciently fast.

LBBD iterates between the master problem and the sub-
problems until either all subproblems have a makespan less
than or equal to the Cmax value of the master problem or
the Cmax value is equal to the best global solution found
so far. For the second condition, observe that in each itera-
tion, the subproblems together generate a globally feasible
schedule whose makespan is an upper bound on the globally
optimal makespan. If a master problem subsequently finds
an optimal Cmax value that is equal to this upper bound, it
has proved that no better solutions exist.

5 Hybridizing Scheduling and Queueing
Four hybridizations are proposed: Tracking, Restricted,
Reschedule, and Restricted + Reschedule. The first three ap-
proaches each alter the MinMksp model to make use of ideas
or analysis from queueing theory. Restricted + Reschedule
combines changes proposed by Restricted and Reschedule.

5.1 Tracking
Our first approach to integrating long-term guidance into the
myopic scheduling problem is to replace the objective func-
tion of the MinMksp model by one that accounts for the dy-
namics of the system. We wish to update the periodic sched-
uler by using a bi-criteria objective of minimizing a linear
combination of the makespan and the deviation from δ∗ik
found by the allocation LP. We adapt the MinMksp model
by changing the LBBD master problem in Figure 2 to the
one shown in Figure 4. Here, we define the parameters:

α: A parameter used to scale the importance of
deviation from δ∗ik versus the makespan,

∆ik: Deviation between a realized assignment of
resource i to class k and what δ∗ik suggests,

Sk: The set of jobs that belong to class k.
The ∆ik values are defined by the master problem solution
and no changes are needed in the subproblems.

By using the Tracking model, we are able to guide the
MinMksp scheduling model with the high level analysis used
in Round Robin as defined in Section 3. The Tracking model
attempts to imitate the short-term behaviour of MinMksp and
the long-term behaviour of Round Robin.

min αCmax + (1− α)
∑
i∈M

∑
k∈K

∆ik

s.t. Constraints (4) to (11),∑
j∈Sk

xijpij − δ∗ik
∑
j∈N

xijpij ≤ ∆ik,

i ∈M,k ∈ K (12)

Figure 4: Updated Master Problem Formulation for Track-
ing.

5.2 Restricted
When the job arrival rate is low, resources are expected to
have idle periods since the supply of resources is greater than
the demand from jobs. Low resource usage causes the Min-
Mksp model to make assignments that are inefficient from a
long-term perspective. For example, Figure 5 presents two
feasible schedules. Each job is defined by (j,k), the job’s in-
dex and class. Schedule 5.a is the MinMksp schedule while
schedule 5.b is a schedule with longer makespan. However,
in the former schedule a setup is incurred between jobs 4 and
3, and that resource capacity cannot be regained. In contrast,
the scheduling period for schedule 5.b ends at the end of job
4. If a new job of class 1 arrives before job 4 completes, we
could have one of the two schedules in Figure 6. With the
new job, we can see that 5.b is a much better schedule.

Figure 5: Possible schedules for a period.

Figure 6: Possible schedules for the subsequent period.

The MinMksp model does not reason about jobs that may
arrive in the future, and we have observed that in scheduling
for short-term objectives, it often falls into the trap of Figure
6.a. To reduce the probability of such assignments, the Re-
stricted model allows a job to be assigned to a resource only
if the corresponding δ∗ik value is non-zero; where δ∗ik = 0,
the corresponding xij is set to 0. Therefore, if the allocation
LP solution states that the decision to assign class 2 jobs to
the bottom resource is inefficient, then the schedule in Fig-
ure 5.a cannot occur. With such a restriction, the schedule
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Figure 7: Comparison for a system with two resources and
four job classes with short setup times.

from Figure 6.a would not occur.

5.3 Reschedule
The MinMksp model ignores job arrivals until the end of
each scheduling period. However, the new jobs change the
scheduling problem and are likely to reduce the quality of
the scheduling decisions that have already been made. In
contrast, the Round Robin policy immediately accounts for
new jobs. In particular, a resource does not switch classes
until after lik jobs have been served or the class queue is
empty. A new job results in a non-empty queue, which is
considered before making any switches.

To make MinMksp more responsive, we modify the defi-
nition of a scheduling period. Observations of Round Robin
suggest that the more frequent consideration of arriving jobs
results in the ability to opportunistically continue service of
jobs in a particular class, avoiding a costly setup. For ex-
ample, if at the beginning of a period there are three jobs
of a class, then at best, the MinMksp model could schedule
these three jobs together. For a period with many jobs, it is
likely that the server must serve more jobs upon completion
of these three jobs, thereby incurring a setup time. If, during
service, a new job of the same class arrives, setup time can
be saved by executing the new job together with the three
existing jobs. We therefore redefine the end of a scheduling
period to be the earliest time that a resource has no more jobs
to execute or is scheduled to switch to another job class. If
the end of a period occurs because a resource is switching
classes, we will then examine every other resource. Those
with jobs still yet to be served can either be committed,
which means that the resource will continue to serve the job
following the original schedule, or removed from the current
schedule to be rescheduled with the new jobs. If a resource
has incomplete jobs, we commit only those belonging to the
same class as the current job being served. Any other jobs
not belonging to the class of jobs currently being served by a
resource are pooled with the newly arrived jobs and resched-

uled. Here, νi is calculated to be the remaining time to serve
only the jobs committed to resource i. Rescheduling in such
a manner allows the scheduler to consider if it is worthwhile
to incur a setup given the most up-to-date information on the
existing jobs. As a result, each resource serves only one job
class for any given scheduling period.

Unfortunately, this change may result in starvation for a
job class. At heavy loads it may be optimal in the short-term
to continue executing jobs of the same class, thereby avoid-
ing all setup times but failing to ever serve jobs in some
classes. To avoid such starvation, we use lik of the Round
Robin policy to limit the number of consecutive jobs of class
k that resource i can serve. Service is halted after the likth
job and rescheduling occurs immediately with changes to
the optimization model. We set the corresponding yijo val-
ues to 0 in the LBBD master problem and remove edges
linking the source node to all jobs in class k. These changes
remove the ability of LBBD to consider serving a job from
the offending class first in the following period.

5.4 Restricted + Reschedule
We also incorporate both the Restricted and Reschedule
changes to MinMksp. The two modifications are motivated
by different observed strengths of the Round Robin policy:
the ability to incorporate system dynamics at a high level (al-
location LP) and the use of more up-to-date information than
the MinMksp model. The hybrid model incorporating both
changes makes assignments with positive δ∗ik values only
and ends a scheduling period prior to performing a setup.

6 Empirical Investigations
We test the models by simulating two systems: a system
with two resources and four job classes and another one with
four resources and four job classes. In the first system, the
resources must switch between classes more often than in
the second system. Furthermore, each system is tested under
two setup time configurations: long and short. When setup
times are long, the setup is in expectation an order of mag-
nitude larger than the mean service times. For short setup
times, the mean setup and service times are equal in magni-
tude. The difference in setup times is used to understand the
effects of using the scheduling algorithms which make direct
use of the exact setup times with the Round Robin, which
does not. One would expect that ignoring setup times in the
allocation LP will lead to much worst performance as the
magnitude of setup times increases. Test cases are asymmet-
ric: the service rates of the classes differ for each resource.
Symmetric systems are not examined to emphasize the het-
erogeneity of the system. In the case of a homogenous sys-
tem, we can see that any assignment of δjk in the allocation
LP will lead to the maximum λ and assignment decisions
will have less of an impact on overall system performance.

For each of the test cases, five loads between 0.8 and 0.99
of the maximum theoretical load the system can handle (i.e.,
λ∗) are simulated. At each load, 20 instances are tested for
10,000 time units to create a total of 400 simulations for
each of the six models. Based on preliminary experiments,
we choose to use α = 0.6 for the Tracking model.

220



80 82 84 86 88 90 92 94 96 98 100
0

20

40

60

80

100

120

140

Percent of Theoretical Maximum Load

M
ea

n 
Fl

ow
 T

im
e

 

 
MinMksp
Tracking
Reschedule
Restricted
Round Robin
Restricted + Reschedule

Figure 8: Comparison for a system with two resources and
four job classes with long setup times.

Service times are exponentially distributed and arrivals
follow a Poisson process. The service rates vary depend-
ing on class and resource pairs. The magnitude of service
rates ranges between 1 and 9 jobs per time unit. To generate
setup times, we randomly assign each class two positions on
a Cartesian plane using a uniform distribution along the x
and y axes. Given two coordinates (xk1, yk1) and (xk2, yk2)
for each class k, the setup time from class a to class b is the
straight line distance from (xa1, ya1) to (xb1, yb1). Sequenc-
ing classes in the reverse direction leads to a different setup
time equal to the straight line distance between (xa2, ya2)
and (xb2, yb2). Once a resource switches classes, new posi-
tions are assigned to calculate the setup times for the next
setup occurrence. This approach maintains the triangle in-
equality when setup times are sequence dependent.

The simulation is written in C++ and run on an Intel Pen-
tium 4 CPU 3.00GHz, 1 GB of main memory, running Red
Hat 3.4.6-3. The MIP in LBBD is solved using IBM ILOG
CPLEX 12.1 and the TSP solver is tsp solve.2

Figures 7-10 show the performance of our policies for the
four test cases. We see that MinMksp performs the worst for
all systems under all loads. The Tracking model marginally
improves over the MinMksp model. Surprisingly, the Round
Robin policy, which is not designed with flow time in mind,
exhibits very good flow time performance. In fact, while
the Restricted and Reschedule models show improvement
over MinMksp, they are both worse than Round Robin. This
implies that following an efficient pairing of jobs and re-
sources, according to the allocation LP, is important when
scheduling jobs.

The Restricted + Reschedule model is the best performer
overall. Other than in a few cases at very low loads where the
Round Robin policy slightly outperforms the Restricted +
Reschedule model, the lowest average flow time is achieved

2tsp solve is a TSP solver in C++ available online at
http://www.cs.sunysb.edu/∼algorith/implement/tsp/implement.shtml.
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Figure 9: Comparison for a system with four resources and
four job classes with short setup times.

by Restricted + Reschedule. At high loads, the Restricted
+ Reschedule hybrid realizes mean flow time performance
from 15% to 60% better than the next best algorithm. Under
light system loads, for all but the smaller two-server system,
the hybrid is able to outperform Round Robin by 0.2% to
5%.

7 Discussion
Using the δ∗ik values to guide the MinMksp model improves
performance. The two models that directly make use of the
δ∗ik values are Tracking and Restricted. In both, we see lower
mean flow time compared with MinMksp for all tested cases,
though the gains observed for Tracking are marginal. Our in-
tuition was that since the Tracking model more closely mim-
ics the allocation LP solution, performance should be better
than that of the Restricted model. We see that the opposite
is true. We can understand these results by examining the
impact of the setup times on the Tracking approach. Using
the Tracking model, assignments where δ∗ik = 0 are still
possible but costly due to setup times that are incurred over
multiple scheduling periods. Since such assignments are ex-
pected to occur infrequently in Tracking, the number of jobs
from class k assigned to resource i in a single period will
be small. In an extreme, but not too uncommon, case where
a single such assignment is made, two setups are incurred:
one before the job and one after, with the second setup oc-
curring in the next scheduling period as in Figure 6.a. If the
setup times are an order of magnitude greater than the ser-
vice times, the time used to serve this single job could have
been more efficiently allocated to roughly twenty other jobs.

Turning to the Restricted and Reschedule models, we see
that the former performs well at lower loads, while the latter
is better at higher loads. This pattern occurs since at low
loads, the scheduler is expected to make more inefficient
assignments when there is naturally more idle time for re-
sources. As a result, the Restricted model has more impact
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Figure 10: Comparison for a system with four resources and
four job classes with long setup times.

at low loads. As the load increases, the scheduler has less
slack and the restrictions have less impact as MinMksp natu-
rally mimics δ∗ik. The Reschedule model, in contrast, makes
more changes to previous schedules at higher loads where
there is a higher probability that jobs arrive during a period.

Combining the modifications in Restricted + Reschedule
leads to the best performance. Alone, the Restricted model
commits to more setup times than required because a sched-
ule does not change when new jobs arrive. The Resched-
ule model may assign a job to a resource where δ∗ik = 0
and schedule it at the beginning of the period. Reschedul-
ing prior to a setup time is then too late because the ineffi-
ciently assigned job, with δ∗ik = 0, has already been served
and a setup is required to switch back to a more efficiently
assigned job class. Therefore, the two models complement
each other and deal with the dynamic properties of the sys-
tem in different ways. The Restricted + Reschedule model
is able to realize up to 60% better mean flow times than the
next best approach at high system loads.

Finally, the performance of Round Robin comes as a
surprise for two reasons, the relatively strong performance
overall and the large drop in performance at high loads in
Figure 10. The reason why the strong performance is not
expected is because flow time is not considered as an objec-
tive and setup times are even ignored by assuming an infinite
horizon. The fact that it is able to achieve performance bet-
ter than all but one of our models suggests that a deeper in-
vestigation of its long- and short-term behaviour is merited.
These results suggest that getting the long-run proportion
of efficient allocations right is important for flow time per-
formance as well. The performance drop at high loads for
Round Robin in Figure 10 is surprising since we expect that
if Round Robin were to perform well anywhere along the
spectrum of system loads, it would be at higher loads. The
allocation LP and calculation for lik in the Round Robin pol-
icy assume the system is at heavy loads and is designed to
handle the system at these specific loads. One would believe

that the fluid model should be most accurate as the load of
the system approaches 1, but there does not seem to be any
indication that the Round Robin policy is more accurate at
higher loads as it is in fact one of the worst performers in
Figure 10. This suggests that there are additional factors that
have significant impact on flow time performance which the
fluid solution does not capture. The loss of performance may
also be due to the fact that Round Robin is a static policy
only concerned with stability. As loads increase, it may be
beneficial to make use of more state information to improve
flow time performance.

An issue not addressed in our paper is the guarantee
of stability in the system. Unlike the Round Robin pol-
icy, none of the other models guarantee that the system
remains stable for any λ < λ∗. The stability conditions
of a periodic scheduler in dynamic flow shop environ-
ments have been previously shown (Terekhov et al. 2012;
Terekhov, Down, and Beck 2012). We expect that the mod-
els presented also stabilize the system when λ < λ∗, given
that the experimental results exhibit stable behaviour for all
models up to loads of 0.99. Further, one could intuitively
see how minimizing makespan of a period will maximize
throughput for the jobs belonging to the period. However,
the interplay between maximizing throughput at a myopic
scale and at the long-run system scale is not completely ap-
parent. Thus, a formal proof is difficult and so we leave the
stability conditions of our hybrid models for future work.

8 Conclusion
We studied a dynamic scheduling problem with sequence-
dependent setup times. Building on recent work that seeks
to combine queueing theory and scheduling approaches to
address both stochastic and combinatorial challenges, four
hybridizations of queueing and scheduling approaches were
presented. Experimental evidence showed that each of the
modifications improved on the standard scheduling model,
but failed to perform as well as a simple policy from the
queueing literature. We demonstrated that a combination of
two hybridizations resulted in a model that achieved up to
60% better observed mean flow time performance than the
pure scheduling or queueing-based policy. The strong per-
formance of the queueing policy for an optimization criteria
that it does not consider is surprising and deserves further
research.

We believe that this paper contributes to ongoing research
into the advantages of integrating techniques from queueing
theory and scheduling to solve dynamic scheduling prob-
lems with complex combinatorics.
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