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Abstract
An effective approach to solving problems involving mixed
(continuous and discrete) variables and constraints, such as
hybrid systems, is to decompose them into subproblems and
integrate dedicated solvers geared toward those subproblems.
Here, we introduce a new framework based on a tree search
algorithm to solve hybrid discrete-continuous problems that
incorporates: (1) a quantum annealer that samples from the
configuration space for the discrete portion and provides in-
formation about the quality of the samples, and (2) a classical
computer that makes use of information from the quantum an-
nealer to prune and focus the search as well as check a contin-
uous constraint. We consider four variants of our algorithm,
each with progressively more guidance from the results pro-
vided by the quantum annealer. We empirically test our algo-
rithm and compare the variants on a simplified Mars Lander
task scheduling problem. Variants with more guidance from
the quantum annealer have better performance.

Introduction
One approach to solving complex problems is to decom-
pose them into subproblems that can be handled by dedi-
cated solvers. Such an approach is particularly effective for
large problems that involve different types, such as discrete
and continuous, of variables and constraints. The key tech-
nical issue in such an approach is developing a framework to
effectively decompose the problem and integrate the solvers.

Here, we introduce a new framework based on a tree
search algorithm to solve hybrid discrete-continuous prob-
lems that incorporates:
• a quantum annealer that samples from the configuration

space for the discrete portion and provides information
about their quality

• a classical computer that (1) makes use of information
from the quantum annealer to prune and hone the search;
and (2) checks the continuous constraints on results re-
turned by the quantum annealer.
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Our framework takes advantage of the strength of quantum
annealing, a metaheuristic for combinatorial optimization,
and complements it with classical processing that enables
the entire algorithm to be complete. As a result, this en-
ables larger problems to be solved than is possible on current
quantum annealing hardware. We evaluated our framework
on a simplified Mars lander task scheduling problem that in-
cludes a continuous battery constraint and discrete require-
ments on the tasks to be scheduled. To keep the problem size
manageable for the quantum annealer, we use it to search for
schedules that meet the discrete requirements, and then use
the classical computer to check the continuous requirements.

The results returned by the quantum annealer can be used
for two different purposes: (1) prune the high-level search
tree; and (2) guide which part of the tree to explore next
using quality of results. Within our framework, we compare
two different heuristics to guide the tree search:

1. node selection based only on the estimation by the classi-
cal computer without incorporating a quality measure for
the results returned by the quantum annealer.

2. node selection incorporating information about the qual-
ity of the results returned by the quantum annealer.

The intuition behind the second heuristic is that parts of the
tree that have returned better results for the discrete sub-
problem are more promising places to explore than parts that
have returned worse results.

We compare specific settings of these two heuristics on in-
stances of the Mars lander activity scheduling problem. For
the quantum annealing component, we ran on the D-Wave
2X machine housed at the NASA Ames Research Center.
Each run of a quantum annealer returns a pre-determined
number of configurations, variable assignments to all of the
variables in the cost function for the subproblem run on the
annealer. We reserve the phrase candidate solution for feasi-
ble solutions to the subproblem and global solution for fea-
sible solutions to the full problem. We also compare with
a baseline approach in which instead of using the quantum
annealer, random configurations are generated and used to
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Figure 1: NASA’s Phoenix Mars Lander. Source: NASA

prune the tree.
The main contributions of this work are:

• A novel framework for quantum-classical approaches to
optimization problems that iteratively concentrates first
on the discrete aspects of the problem and then on the
continuous constraints.

• Instantiations of this framework that make use of a quan-
tum annealer to sample the search space and guide future
searches.

• Instantiations that make use of all configurations returned
by the quantum annealer, not just the best configurations.

• Full integration of a quantum annealer and a classical al-
gorithm.

• Empirical results comparing different instantiations of
this framework, with each other, and with a baseline.

• Established that feasible solutions can be found with less
effort when the search is guided using configurations re-
turned by the quantum annealer.

While our work is in an early stage and the scale
of the problems we tested is limited, this decomposition
framework also supports many other instantiations of these
quantum-classical algorithms. We intend to explore other in-
stantiations in future work.

The Mars Lander Problem
As a testbed to explore quantum-classical approaches, we
consider a Mars lander that is tasked to perform multiple ac-
tivities over the course of a Martian day. The Mars lander
robotic spacecraft can land on the surface of Mars, but is not
mobile like a rover. The lander has various scientific instru-
ments and a robotic arm that can interact with its environ-
ment. Its activities include (1) scientific studies to achieve
mission goals, (2) communication of data, and (3) operations
to maintain the lander in a functioning state. The number of
requested tasks can be large.

We consider a simplified application with a shorter
scheduling horizon than a typical Martian day and fewer
tasks. The scientific activities we consider are:

• Obtain panoramic pictures: Panoramic pictures of Mars
landscape requires a time-window when there is sunlight,

but also must take into account the strength and direction
of the sun due to shadows and glare.

• Measure Martian weather: Measuring the Martian
weather can have time-windows since scientists may be
interested in measurements of particular times as the con-
ditions change over the course of a day.

• Sample Martian soil: Sampling of Martian soil is sub-
divided into three different tasks: (1) taking a picture of
the workspace, (2) digging, and (3) baking. The prece-
dence constraints mean that digging can only occur once
a picture of the workstation is taken and baking a sample
only after soil is retrieved via digging.

The Mars lander will also need to send stored data via com-
munication satellites when it has unobstructed line-of-sight
to these satellites. Thus, there are only several disjoint time-
windows in which an uplink task can occur.

In addition to the time-window and precedence con-
straints, the Mars lander has a limited-capacity battery and
performing tasks depletes the battery at different rates.
To ensure that there is enough power, the Mars lander is
equipped with solar panels that recharge the battery when
the sun is visible. The solar panel can be used at any time
that the sun is visible, but the amount of power will depend
on the amount of light which varies with weather conditions,
time of day, and time of year. If the battery is at its max-
imum capacity, the excess power production from the sun
cannot be stored. However, it is possible for the lander to
draw power directly from the solar panels to power tasks
rather than from the battery. This allows the lander to uti-
lize power from the solar panels when the battery is fully
charged rather than wasting it.

In our simplified problem, the Mars lander is capable of
performing only a single task at a time. The only operation
that can be done in parallel with other tasks is solar panel
charging, which occurs automatically when the sunlight and
battery capacity conditions are met. The goal is to construct
a schedule that assigns each task a start time, adhering to the
tasks’ time-windows, precedence and battery constraints.

Problem Details: The parameters chosen here are artifi-
cially generated for the purposes of providing a problem in-
spired by the real NASA’s Phoenix Mars lander problem.
The scheduling horizon is 10 hours broken into twenty 30-
minute-long time segments.

Table 1 provides a list of the tasks, their duration (in mul-
tiples of 30-minute slots), time-window(s), any precedence
constraints, and the battery consumption rates. The type of
tasks chosen are based on actual tasks performed by the
Phoenix Mars lander, but the detailed values are fabricated.
The durations and time-windows were chosen with three ob-
jectives in mind: to provide an interesting scheduling prob-
lem, to have it small enough to fit on the quantum hardware,
and to still be an abstracted version of the real Mars lan-
der problem with reasonable values. The consumption rate is
the total power consumed every 30 minutes. This consump-
tion is assumed to be constant throughout the duration of the
task. Therefore, a baking task that lasts for two hours will
consume a total of 0.115 × 4 = 0.46 units of power. Con-
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ID Description Duration Time-Window(s) Precedences Battery Consumption Rate
1 Take Panoramic Picture 2 [6, 16] - 0.04
2 Measure Weather 1 [2, 8] - 0.03
3 Take Workspace Picture 3 [0, 13] - 0.05
4 Gather Soil 3 [3, 16] 3 0.08
5 Bake Sample 4 [6, 20] 4 0.115
6 Send Data 1 [3, 5], [14, 16] - 0.04

Table 1: Scheduling information regarding tasks.

sumption rates were chosen so that the total battery power
required to complete all tasks sum to 1.

Finally, Table 2 presents an example of the battery charge
increase due to solar power during each time segment. We
chose these parameters to mimic changing conditions in the
course of a day, and to sum to 1 so the production total is
equivalent to the consumption total. The time periods at the
start and end of the schedule have charging rate of 0, repre-
sent times when the sun is not visible to the solar panels. As
the day progresses, the sunlight increases until midday, after
which the sunlight decreases.

The instances we consider all have the same tasks and
task constraints. We vary instances by altering the parame-
ters that correspond to the battery constraints. The battery
has a starting charge that varies during a mission based on
the battery consumption and production from previous time
periods. For our experiments, we use initial battery levels
of either 0.3, 0.5, or 0.7. The maximum capacity changes
due to battery degradation over the length of a mission.
Early on, the battery capacity may be large, but over time,
the battery will be expected to hold much less of a charge.
For our experiments, we use battery capacities of either
0.5, 0.7, or 0.9. Finally, we vary the solar power production
intensity. Table 2 acts as the baseline power production from
the solar panels. We test three power production scenarios
where all production is updated to be 75%, 100% or 125%
of the baseline. These intensities represents changes in
the distance of Mars to the Sun and the visibility of the
Sun due to the Martian weather, dust storms and other
such obstructions. Ignoring any cases in which the initial
battery power is larger than the maximum capacity and any
instances that do not have a feasible solution,1 we are left
with a total of 21 problem instances.

Scheduling problem formulation: Let J be the set of all
tasks to schedule. For each task j ∈ J , let pj be its process-
ing time, andWj its set of time windows. For each time win-
dow wi ∈ Wj , let rj,i and dj,i be the start and end times of
that window. Let Tj = {t| ∀wi ∈Wj , rj,i ≤ t ≤ dj,i − pj}
be the set of all possible start times of task j. To encode the
task scheduling problem, we use a time-indexed formula-
tion: for each task j and time index t, we introduce a binary
variable xj,t, which is 1 if and only task j starts at time t.

A valid schedule for a Mars lander task scheduling prob-
lem is a complete assignment for all xj,t variables satisfy-
ing the following constraints: (1) no two tasks overlap; (2)

1We determined the infeasible problem instances by performing
a complete search using our algorithm.

precedence constraints between tasks are satisfied; and (3)
battery constraints are satisfied.

Quantum Annealing
Quantum computing enables more efficient solution to cer-
tain classes of problems than classical computing (Rief-
fel and Polak 2011; Chuang 2001). While large-scale uni-
versal quantum computers are likely decades away, special
purpose quantum computational devices are emerging. The
first of such are quantum annealers, special purpose hard-
ware designed to run quantum annealing (Farhi et al. 2000;
Das and Chakrabarti 2008; Johnson et al. 2011; Smelyan-
skiy et al. 2012), a metaheuristic that can make use of certain
non-classical effects, such as quantum tunneling and quan-
tum interference (Das and Chakrabarti 2008; Boixo et al.
2014), for computational purposes. For classically-trained
computer scientists, quantum annealing is one of the most
accessible quantum algorithms because of its close ties to
classical optimization algorithms such as simulated anneal-
ing (Smelyanskiy et al. 2012; Nishimori, Tsuda, and Knysh
2015) and because the most basic aspects of the algorithm
can be captured by a classical cost function and classical
parameter setting. Special purpose hardware such quantum
annealers mean it is now possible to empirically evaluate
heuristic quantum algorithms such as quantum annealing,
potentially opening up a broader range of applications for
quantum computation.

A quantum annealer is designed to minimize Quadratic
Unconstrained Binary Optimization (QUBO) problems,
problems of minimizing a cost function of the form

C(x) =
∑
i

cixi +
∑
i<j

ci,jxixj ,

where {ci, ci,j} are real coefficients and x ∈ {±1}n is a
vector of binary-valued variables. Using a quantum annealer
requires mapping the problem of interest to QUBO; the fol-
lowing section contains an example for the discrete portion
of the Mars lander problem. The solution space of the origi-
nal problem is mapped to a subset of bit strings, and the cost
function encoded in the coefficients such that the minimum
value of f(s) and corresponding optimum s give the solu-
tion to the original problem. Penalty functions are added so
that bit strings that do not correspond to valid solutions are
penalized.

Figure 2 shows the procedure for solving on the quantum
annealer the Mars lander scheduling problem without the
battery constraint (MLWoB), a single-machine scheduling
(SMS) problem which is the discrete part of our hybrid
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Time 0 - 4 5 6 7 8 9 10 11 12 13 - 19
Production Rate 0.00 0.03 0.06 0.12 0.15 0.15 0.12 0.06 0.03 0.00

Table 2: Example solar power production rate.

Figure 2: Steps in solving the Mars lander scheduling prob-
lem without the battery constraints (MLWoB) using quan-
tum annealer.

problem. The first step is to encode our MLWoB scheduling
problem in the QUBO form described above. To implement
the resulting QUBO on the quantum annealer hardware,
an additional embedding step is needed. Variables in
the QUBO map to qubits on the hardware. A quadratic
constraint can only be implemented directly when the
qubits corresponding the variables in the constraint are
connected in the hardware. But the physical hardware
has only limited connectivity, so often multiple qubits are
needed to represent a single variable. Embedding is the
process of determining which physical qubits will represent
which variables (Kaminsky and Lloyd 2004; Choi 2008;
2011). The coupling strength used between physical qubits
representing the same variable is a parameter of the quantum
annealing algorithm. More details about embedding and the
process of using a quantum annealer to solve application
problems can be found in (O’Gorman et al. 2015).

Mapping Mars lander without battery (MLWoB) prob-
lems to QUBO: For the rest of this section, we will describe
in details how to map MLWoB problems to QUBO form, us-
ing the notations, variables, and constraints described in the
problem formulation at the end of the previous section.

In the QUBO representation we model constraints in the
MLWoB through penalty terms in the cost function objec-
tive. To ensure that every task is assigned to exactly one
starting time, the term

Cone−start =
∑
j∈J

(
∑
t∈Tj

xj,t − 1)2

is added to the objective function. To ensure that no two

tasks overlap, we introduce another cost function term

Coverlap =
∑
j∈J

∑
t∈Tj

∑
l∈J
l 6=j

∑
t′∈T ′

j,t∩Tl

xj,txl,t′ .

The set T ′j,t = {t′|t ≤ t′ ≤ t + pj − 1} represents the
time points that the Mars lander will be occupied with task
j if it starts at time t. Thus, if another task starts during this
time, a penalty is incurred. Finally, to model the precedence
constraints, the cost function term

Cprec =
∑

(j,l)∈P

∑
t∈Tl

∑
t′∈T̃j,t

xj,t′xl,t

is used. Let P be the set of all pairs of tasks with precedence
constraints such that (j, l) ∈ P implies that task j must be
scheduled before task l. The set T̃ ′j,t = {t′ ∈ Tj |t ≤ t′}
represents the times where task j cannot start if a task that
must start after task j is scheduled at time t. The objective
function for the complete QUBO is

C = Cone−start + Coverlap + Cprec.

A candidate solution will haveC = 0. IfC > 0, one or more
of the constraints has been violated and the configuration is
infeasible.

Quantum Annealing Guided Tree Search
We propose a classical-quantum decomposition algorithm
that makes use of (1) a classical computer to manage the
global search tree and check battery-profile feasibility for
schedules produced by the quantum annealer; and (2) a
quantum annealer to generate the lander schedules, ignoring
the battery constraints. Our algorithm is outlined in Figure 3.
At a high-level, the main steps are:

1. Build the global search tree: with root node representing
an empty schedule and leaf nodes representing the com-
plete Mars lander’s schedules.

2. Search node simplification: Ignore the constraints on the
continuous variable representing battery. This results in a
MLWoB problem outlined in the previous section.

3. Run the quantum annealer on the MLWoB problems: Each
run consists of a preset number of anneals, each of which
returns a qubit configuration for the MLWoB problem.

4. Use results from the quantum annealer to guide the high-
level tree search: Each configuration x returned by the
quantum annealer has an associated “energy” value or
cost C(x). The results returned from the quantum an-
nealer are used to (1) prune infeasible nodes from the
high-level search tree; and (2) guide the subsequent ex-
ploration of the remaining search tree.
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(Classical	  Computer)	  
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MLWoB solution 

battery feasibility 

check result 

Figure 3: Tree-search based Quantum-Classical Algorithm.

Checking Battery Constraint: Candidate solutions x re-
turned by the quantum annealer that have zero cost (C(x) =
0) must be checked to see if they satisfy the battery con-
straints and are therefore a global solution. The check calcu-
lates the battery state at every time point t,

Bt = min(Bmax, Bt−1 + b+t − b−t ),

where b+t is the battery power produced by the solar panels
and b−t is the battery consumption for the task processed at
time t. If Bt < 0 at any time, the schedule is infeasible.

Complete Tree Search guided by the Quantum
Annealer’s Results Profile
For the rest of this section, we will describe in details the
guided tree search, which ties the quantum annealer and the
classical computation together.

As a stochastic solver, the quantum annealer returns mul-
tiple configurations of varying quality, and has no guarantee
of finding one with C(x) = 0 when one exists. In order
to guarantee that a candidate solution is found when one
exists, a systematic search over the state space of the ML-
WoB problem must be performed. We introduce a binary
tree search that is guided by the quantum annealer. We pro-
vide pseudocode for the algorithm, and then describe each
step in more detail in the subsequent subsections.

Using the Quantum Annealer to build the partial tree.
For each job submitted to the quantum annealer, K anneals
are performed (see the last step in Figure 2). Of the K con-
figurations returned, K̄ are unique with K̄ ≤ K. Configura-
tions are of varying quality with associated cost C(x) ≥ 0.
All configurations x with C(x) = 0, representing candidate
solutions, are checked to see if the battery constraints are
satisfied. If none of them satisfies the battery constraint, the
search is continued.

From the K̄ configurations, a partial tree can be built, a
binary tree with a fixed variable ordering, where variables
pertaining to the same task are grouped together. The un-
shaded nodes (1), (2), and (3) in Figure 4 presents an exam-
ple of such a partial tree where the square nodes are the con-
figurations. The left (right) branch of a node represents the
corresponding variable being set to 0 (1). A problem withN
variables will have a tree of size 2N+1 − 1, of which 2N are
leaf nodes corresponding to configurations (assignment of 0
or 1 to all variables). The partial tree is traversed to generate
all open nodes (the shaded nodes (A), (B), and (C) in Figure

Algorithm 1 Quantum Annealing Guided Tree Search.
open nodes: a priority queue
push root node to open nodes
while open nodes 6= NULL do

pop first node n from open nodes
run quantum annealer on n with pre-defined number
of anneals to return a set S of configurations
if any C ∈ S is a battery-ignorant schedule then

check battery constraints on C
else

build partial tree from the configurations
generate open node(s)
for each open node generated do

if node is infeasible then
prune node

else
perform forward checking on node
push node onto open nodes

return infeasible

A B

1 2 C 3

Figure 4: Partial binary search tree example with open nodes
shown as shaded nodes. Square nodes here represent the
configurations.

4), which are defined as nodes that do not exist in the partial
tree, but have a sister node that does.

Node pruning. Open nodes are pruned by an inference
algorithm based on the MLWoB problem constraints and
the battery constraints. At any open node, a subset of de-
cisions variables, xj,t, have been set. Based on this partial
configuration, it is possible to check whether any of the con-
straints have been violated by looking at the three MLWoB
constraints: (1) a task must be assigned to one start time
(
∑

t∈Tj
xj,t = 1), (2) no tasks can overlap (

∑
j∈J xj,t ≤ 1),

and (3) precedence constraints cannot be violated (txj,t +
pj ≤ t′xl,t′ ). These constraints are checked only for the
tasks that have been assigned a start time (or have been as-
signed 0 to all possible start time variables) at the open node
in question. If any of the constraints are violated, the node
can be pruned.

Constraint propagation is also performed on the battery
constraint. Let J ′ ∈ J be the set of already scheduled tasks
and yl their scheduled start times. For j ∈ J \ J ′, the set of
tasks that have yet to be scheduled, consider all remaining
decision variables xj,t and check whether

yl + pl ≤ t or t+ pj ≤ yl ∀l ∈ J ′.

For all such times t that are still available for task j, the bat-
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tery check is called for the set of tasks J ′ starting at times
yl and the task j assuming that it is assigned to start at time
t. Let τj be the set possible values for t where both the tem-
poral and battery constraints for a task j are satisfied given
the partial schedule. If any remaining task to schedule has
τj = ∅, it is impossible to schedule the task with the partial
schedule and so the node can be pruned.

If no constraints have been violated, then a final forward
checking procedure is performed. The depth of a node in-
dicates the task that is currently being considered. In some
cases, it is possible to set the next few variables in the tree
that pertain to the task at the current depth. For example, if
the start time of a task has already been decided, the remain-
ing start time decision variables for that task can be set to 0.
The current open node can then skip down to the proper lo-
cation and ignore branches to the right since configurations
built from the partial solution of those nodes would violate
the single start time constraint.

Node exploration. Once an open node is selected for fur-
ther exploration, we set the variables of the corresponding
partial configurations and invoke the quantum annealer to
find the configurations for the remaining variables. New con-
figurations are found and the partial tree beneath the open
node is built in the same manner as described above. Be-
cause configurations are built upon the partial configurations
of the open node, all configurations found will not have been
explored previously.

Node selection. To decide which node to explore next,
we considered three node selection heuristics. The first
uses task scheduling slackness. The second heuristic uses
the cost value C(x) of the configurations returned by the
quantum annealer to guide selection. The final combines
slackness with the cost value. We call the first heuristic
Slack-Only, the second QA-Only, and the last Weighted.

Slack-Only measures the remaining slack of times left
that a task can be scheduled as sj = |τj |, where τj is the
set defined during constraint propagation. We calculate

a scoring function, S =
(∏

j∈J\J′ sj

) 1
|J\J′| , for each

node. The geometric mean is taken over the slack of each
remaining task to better compare nodes at different depths
and to avoid partial candidate solutions that greatly restrict
some tasks even if others have large slack. Nodes with more
slack have more time in which to fit all the remaining tasks,
so slack is a reasonable measure of how likely candidate
solutions x with C(x) = 0 exists below the node.

QA-Only uses the cost value C(x) of configurations to
guide node selection. A score C∗ is defined for each open
node as the lowest C(x) for any configuration x that has
been found from the sub-tree of the open node’s parent. This
is a proxy measure for how good the partial configuration is
for the MLWoB. Here, we choose the open node with the
minimum cost value since these configurations are closer in
cost to candidate solutions.

Weighted (α) weights the Slack-Only and QA-Only heuris-

tics. The scoring function that Weighted (α) uses is (1 −
α)S −αC∗, where α ∈ [0, 1] is a control parameter that de-
termines how much influence the cost function will have on
the scoring function. In general, we see the slack function
ranges between 1 and 7. The cost value has a much greater
range, but the nodes of interest will have low cost within
the same range as the slack since these solutions are closer
values to candidate solutions. Note that we subtract the cost
value from the scoring function as a lower cost value is asso-
ciated with a better configuration. If α = 1, then the scoring
function is the QA-Only heuristic and if α = 0 then the scor-
ing function will be equivalent to the Slack-Only heuristic.
Thus, an open node that has a parent that was found to be
part of a good MLWoB schedule will have increased priority
when α > 0. The intuition for this heuristic is that it is better
to explore parts of the tree where other good configurations
were found rather than parts where only poor configurations
have been found.

Conditions for Termination. The algorithm continues to
explore open nodes until either a global solution has been
found or there are no longer any open nodes to explore. An
empty open node list implies that no global solution exists.

Empirical Evaluation and Analysis
We evaluated our algorithm 10 times on each of the 21 Mars
lander instances. Since the MLWoB problem is the same
across instances, the initial QUBO at the root node is always
the same. This QUBO has 52 variables, one for each possi-
ble start time of a task. For example, the “measure weather”
action has time-window [2, 8] and a processing time of 1,
so it will have 6 binary variables representing the possible
start times of the task from time 2 until time 7. Embedding
this QUBO into the D-Wave 2x hardware results in the use
of many more qubits. For our experiments, we generated a
single embedding at the root node and used the same em-
bedding for all problems. This embedding has 764 qubits.
Nodes deeper in the tree correspond to restricted MLWoB
problems where some variables are already set, so we can
use the same embedding but with a subset of the variables.

We examine four variants of our algorithm:

1. Slack-Only

2. QA-Only

3. Weighted heuristic with four different weightings

4. a Random-Sample baseline algorithm that does not make
use of the quantum annealer, but instead generates config-
urations from open nodes through random sampling.

The baseline algorithm naively explores the tree without di-
rectly trying to find feasible MLWoB schedules. Constraint
propagation is still performed on the nodes of the tree to
guide search and the node selection is done by choosing the
node with the largest geometric mean of the slack.

We implement all classical components of our algorithms
in Python and run quantum annealing on the D-Wave 2X
machine housed at NASA Ames. To explore an open node,
we submit a job request with K = 10, 000 anneals with an
anneal time of 20 micro-seconds. Embedding and parameter
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avg. # of avg. # of
open nodes configurations

explored found
Random-Sample 420.27 4,088,269.03
Slack-Only (0.0 4.10 2,143.21
Weighted (0.2) 3.27 2,042.94
Weighted (0.4) 2.38 1,795.79
Weighted(0.6) 2.27 1,784.30

Weighted (0.8) 2.22 1,728.33
QA-Only (1.0) 3.25 1,822.60

Table 3: Results for the algorithm variants on the twenty-
one problem instances considered: solving each instance ten
times for each variant. Slack-Only uses the quantum anneal-
ing configurations to build the tree and Weighted and QA-
Only goes a step further to use the objective function from
configurations to guide node selection, with the Weighted
(0.8) variant performing best.

setting for the embedded QUBO are done using D-Wave’s
software with default parameters (Cai, Macready, and
Roy 2014) with one exception. Our previous experiments
showed that for the MLWoB problem, increasing by 5 times
the default D-Wave parameter for the coupling strength be-
tween qubits representing the same single variable resulted
in greatly improved performance. For Random-Sample, we
generate 10,000 samples at each explored node.

Results: Table 3 displays the performance of the different
variants. The number of explored nodes correlates with the
effort required to solve a problem. The number of unique
configurations found defines the size of the tree built. A
larger tree results in a larger computation on the classical
computer because the number of open nodes increases.

The results show a reduction in the number of open nodes
explored with guidance from the configurations found by
the quantum annealer. The most naive approach, Random-
Sample, explores the most open nodes. Slack-Only and QA-
Only significantly reduce the search effort as the configura-
tions used to build the partial tree is guided by a better solver.
All values of α tested for the Weighted variation further im-
prove the results. A deeper understanding of how to choose
the α value is left for future work.

Not only is exploration happening in a more directed
manner in our algorithms compared to Random-Sample, but
the construction of the tree is more focused. For Random-
Sample, a much larger portion of the tree is built during ex-
ploration than for the quantum annealing guided searches;
Random-Sample usually returns 10, 000 distinct configura-
tions, whereas the quantum annealer often returns the same
configuration multiple times as it tries to find good quality
MLWoB schedules. Random-Sample also had significantly
more open nodes due to the larger partial trees built.

Figure 5 provides further insight into the performance of
the different variants. We see that the Weighted variants gen-
erally find global solutions much faster than the Slack-Only
or QA-Only variants. The Weighted variants exhibit more
regular distributions. QA-Only is able to solve many prob-
lems quickly, but has a heavy tail as strictly using low cost
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Figure 5: Cumulative proportion of instances solved versus
the number of open nodes explored. This graph provides a
better picture into the distribution of performance over the
set of instances tested. Random-Sample results are omitted.

value configurations to guide search can lead to the search
staying longer in bad branches. Slack-Only is not able to
quickly find global solutions, but does solve many problems
at the sixth open node explored. We suspect this behavior
is in part due to the order of the variables, with variables
representing a single job’s start time clustered.

Figure 6 indicates how often a node of a certain depth is
explored for all variants other than Random-Sample. We see
that Slack-Only spends proportionately more time at shal-
lower depths. Particularly, between depths of 10 and 26,
we see a large increase in exploration. Using the quality
of configurations from the quantum annealer, search is fo-
cused towards deeper nodes in the tree. Weighted (0.6 and
0.8) along with QA-Only are the only variants that searches
nodes deeper than a depth of 26, with Weighted (0.8) and
QA-Only searching even to depth of 33. As more empha-
sis is given to the C(x) values to guide node selection, the
search algorithm will spend time at deeper nodes near what
it believes are other good configurations.

The results presented should not to be considered thor-
ough benchmarks of the quantum annealer’s performance.
Several performance boosting methodologies have been de-
veloped (Perdomo-Ortiz et al. 2015; Venturelli et al. 2015;
Vinci et al. 2015) that can improve the quality of the config-
urations by orders of magnitude with respect to the basic use
of the annealer. In order to keep the discussion restricted to
the topic of the decomposition approach, other than for the
coupling strength between qubits representing the same log-
ical variables, we used the default parameters of the D-Wave
2X APIs. To make the best use of quantum annealers, it will
be crucial to take full advantage of state-of-the-art tuning
and programming techniques.

Related Work
Given the relative novelty of the quantum annealing hard-
ware, research in this area has been limited. Pure quantum
annealing formulations have been built for some planning
and scheduling problems (Rieffel et al. 2015; Venturelli,
Marchand, and Rojo 2015). Instead of using the quantum
annealer to optimize, Benedetti et al. (2015), and Adachi
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Figure 6: Node Depth Histogram. Proportion of time spent exploring nodes of various depths. Using the quantum annealing
results guides search towards deeper nodes that were found to be near other good configurations.

and Henderson (2015) explore the possibility of using it as a
Boltzmann sampler to aid the training in deep learning, quite
a different use of sampling than our approach.

Combining quantum and classical computing in algo-
rithms have only recently begun being explored. Rosen-
berg et al. (2015) present a large-neighbourhood local search
with a method to integrate the quantum annealer as a sub-
routine within a classical algorithm. In a similar fashion,
Zintchenko, Hastings, and Troyer (2015) propose a hier-
archical search that decomposes the set of decisions vari-
ables into multiple groups and cycles through groups opti-
mizing the sub-problem of a particular group while fixing
all other variables, performing quantum annealing on each
group. However, both of these studies do not implement the
algorithm on a quantum annealer. Rosenberg et al. present
results using a tabu-search and Zintchenko, Hastings, and
Troyer use simulated annealing in place of quantum anneal-
ing. Furthermore, our work is distinguished from these in
that our approach performs a complete search.

Conclusion and Future Work
We presented a tree-search based quantum-classical frame-
work in which all results from a quantum annealer are used
to prune and guide the search. We tested multiple heuris-
tics in this framework on instances of a Mars Lander ac-
tivity scheduling problem. The framework enables the use
of a stochastic quantum-annealing solver within a complete
search framework. In summary, key observations include (1)
results from the quantum annealer can effectively prune and
guide the search process; (2) taking into account all, and
not just the low-cost, configurations returned by the quan-
tum annealer is useful. The extent to which quantum anneal-
ing results are used in node selection improves performance,
suggesting that further exploration of node selection metrics
incorporating quantum annealing results is warranted. Other
metrics of different forms should be explored. For example,
such a metric could incorporate other information, such as
how close the configuration is to being feasible in terms of
battery power.

An obvious direction for future work is to apply this
framework to a larger variety of problems beyond the Mars

Lander task scheduling problem. Our approach is adaptable
to a large set of problems with a variety of characteristics,
which can be incorporated directly into the QUBO or allo-
cated to a classical sub-solver in a similar manner to how we
handle the battery constraint. A particularly interesting set to
explore would be problems with more complicated battery
models, such as models in which production and consump-
tion of battery power is nonlinear and depends on the bat-
tery’s state. Also, the framework could be extended to larger
problems in which the battery-ignorant problem doesn’t fit
on the D-Wave machine, but parts of the tree are explored
via classical and quantum guided tree search.

Our framework is not limited to strictly quantum-classical
algorithms. The tree search we propose can just as easily be
applied to classical-classical decompositions. In particular,
it allows the use of specialized heuristic solvers for difficult
problems that can be decomposed in a way similar to the
Mars lander task scheduling problem. The heuristic can be
used to find good solutions quickly, while the framework
ensures that a complete search is being performed.

Another potential extension of this work is to incorporate
further classical heuristics into the tree search, borrowing
ideas from the extensive classical literature, such as vari-
able ordering (Smith 1996), conflict analysis and cutting
planes (Achterberg 2007; Kelley 1960), and discrepancy-
based search (Harvey and Ginsberg 1995; Walsh 1997). One
challenge to incorporating these ideas is keeping the result-
ing problems small enough that they can be run on current
or near-term quantum annealers. Additional variable would
need to be added to the QUBO formulation in order to incor-
porate constraints from cutting planes or nogood cuts. For
this reason, it is interesting to explore the design of such ex-
tensions while keeping additional variables to a minimum.

There remains much to learn about quantum annealing
and about the optimal interplay between classical and
quantum approaches. This work contributes an early step to
a broader effort to provide insights into how best to design
and use special-purpose quantum hardware in service of
practical applications.
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