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Abstract
Decision-making in large-scale compute clouds relies on ac-

curate workload modeling. Unfortunately, prior models have

proven insufficient in capturing the complex correlations

in real cloud workloads. We introduce the first model of

large-scale cloud workloads that captures long-range inter-

job correlations in arrival rates, resource requirements, and

lifetimes. Our approach models workload as a three-stage

generative process, with separate models for: (1) the number

of batch arrivals over time, (2) the sequence of requested

resources, and (3) the sequence of lifetimes. Our lifetime

model is a novel extension of recent work in neural survival

prediction. It represents and exploits inter-job correlations

using a recurrent neural network. We validate our approach

by showing it is able to accurately generate the production

virtual machine workload of two real-world cloud providers.

Keywords: cloud workload modeling, trace generation, re-

current neural networks, deep learning, survival analysis
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1 Introduction
Many decisions must be made in the operation of large-scale

compute clouds. Scheduling systems must decide how to

route workload requests to different physical resources (e.g.,

servers). Capacity planners must decide which resources to

provision, and when, in order to support expected future

workloads. Better scheduling and planning decisions can

improve resource utilization and reduce costs. Given both

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00

https://doi.org/10.1145/3477132.3483590

the enormous scale of resources [31], and the surprisingly

low levels of utilization currently observed in cloud data cen-

ters [46, 58], there is tremendous potential for improvement.

Accurate models of cloud workload can improve decision-

making in a number of ways [9]. For example, models can

provide estimates of future workload to the scheduler; the

scheduler may then pro-actively take steps to reduce future

resource contention and fragmentation [17, 46]. In this paper,

we model the total job demand over time: the job arrival

times, lifetimes, and resource requirements (e.g., requested

CPU/memory). We do not address the topic of modeling a

job’s actual CPU or memory usage once running in the cloud

(also known as “cloud workload prediction” [55, 69, 72]).

We propose a generative model of total job demand, capa-

ble of generating synthetic workload traces. Both historical

and synthetic data are used to evaluate production cloud sys-

tems, such as VM schedulers [31]. Unfortunately, historical

data is limited in size, and, because of so-called “workload

churn” [5], quickly becomes obsolete. Meanwhile, synthetic

data is unlimited, and can be be designed to reflect possible

future workload dynamics. We can use it to optimize our

decision-making processes, in advance. We can also adjust

model parameters to simulate various conditions of interest

(e.g., scaling up arrivals for scheduler stress-testing). Further-

more, by repeatedly sampling traces from our model, we can

obtain a probability distribution over different future work-

load scenarios. We may then incorporate this information

into downstream decision-making processes (e.g., we can

assess whether we have enough servers to cover 95% of pos-

sible workload scenarios over the next month). Generative

models of cloud workload can also provide the quantity and

variety of input needed for training cloud systems based on

deep reinforcement learning [49, 50, 52].

Unfortunately, “workload modeling is surprisingly hard to

do well” [68]. Cloud workloads are commonly referred to as

“heterogeneous” [57] and “imbalanced” [46], both spatially

(in resources), and temporally (in lifetimes). Verma et al. [68]

point to the variety of job types and shapes, as well as the

complex inter-job dependencies, as factors that make cloud

workloads unsuitable towhat they call “naive”modeling tech-

niques. And while there is much prior work analyzing real

workload traces [17, 19, 46, 57], practitioners lack a means

to generate the full workload process (including job arrivals,

resources, and lifetimes) that reflects these real-world com-

plexities. In practice, particularly in the development of cloud

https://doi.org/10.1145/3477132.3483590
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(a) Real trace from Microsoft Azure

(b)Workload generated by naive approach

(c)Workload generated by our approach

Figure 1.Workload/model visualization: Each rectangle represents a VM, each row shows all VM arrivals in one 5-minute

period. Color represents VM flavor, width represents lifetime (compressed non-linearly to discrete bins; bin indices are used

as width). Rows are not timelines showing when VMs start/stop, but rather depict resource and lifetime properties of VMs

arriving sequentially in a period. In real workloads (and in those from our generator), VMs arrive in user-specific batches

(space-separated here), within each batch VMs have similar properties, and arrival rates vary a lot from period to period.

workload schedulers [34], job requests are assumed to be sub-

mitted independently, with a Poisson process for sampling

arrivals (e.g., [12, 21, 26, 47, 48]), and simple distributions for

sampling job type and lifetime (e.g., [12, 17, 21, 54]). Here,

we use the term “naive” to specifically refer to models that

ignore statistical inter-job correlations.

We propose a generative model with enough expressive

power to represent complex inter-job relationships, and eval-

uate this model on the production virtual machine (VM)

workload of two large-scale cloud providers: (1) Microsoft

Azure and (2) Huawei Cloud. These workloads exhibit both

the heterogeneity and complex correlations documented in

other traces. Figure 1 provides a visualization of the Azure

VM data [17]. We observe great variation in the arrival rate,

lifetime, and flavor (specific resource requirement) of VMs.

But these features of the workload are not random: VMs of

the same flavor and similar lifetime tend to arrive consec-

utively. There is noticeable momentum — statistical depen-

dence — in properties of VMs in the arrival sequence.

We propose the first model of large-scale cloud work-

loads that captures long-range inter-job correlations in job

arrival rates, resource requirements, and lifetimes. Our gen-

erative process consists of three stages, each building on

the output of the previous stage. First, we model the arrival

of user-specific batches of work using Poisson regression

(Section 2.1). Next, we use a long-short-term memory neu-

ral network (LSTM) (a type of recurrent neural network),

to effectively model the sequence of requested resources

(Section 2.2). Finally, we use a separate LSTM to model the

discrete-time hazard rate for job lifetimes (Section 2.3).

Our lifetime LSTM is a key contribution of this work. It

extends prior work in neural survival prediction [24, 39] by

modeling inter-case relationships, allowing the predicted

lifetime distribution of an individual (job) to depend on the

lifetimes of all individuals that arrived in the past. To en-

able such a model, we enhance both the input and output

representations of our network. In particular, we enhance

the network to handle censoring (dependence on incomplete

lifetime information), an important practical consideration.

A good generative model should not only generate qual-

itatively realistic data, it should assign high probability to

new data and be useful in applications. We show that com-

pared to standard approaches, our model computes higher

probability of real production workloads (Section 5). We also

show that end-to-end traces from our model are beneficial

in two cloud applications: (1) capacity planning (Section 6.1)

and (2) workload scheduling (Section 6.2).
1

1
Code is available at https://github.com/huaweicloud/trace_generation_rnn

https://github.com/huaweicloud/trace_generation_rnn
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temporal information

1. Batch Arrival Model

2. Resource Model

3. Lifetime Model

generated trace

+Num. batches

+Requested resources

+Lifetime sequence

Figure 2. Three-stage workload generation process for one

period. Temporal information includes a period’s hour-of-

day, day-of-week, etc. Each stage builds on information from

previous stages. The generated trace outputs start times, end

times, and resource requirements, for all jobs in each period.

2 Methods
Our workload model is a generative model, trained from a

trace of historical jobs, where the trace indicates each job’s:

1. Start time

2. End time (possibly empty, if the job is still running)

3. Requested resources (e.g., CPU, memory, network, etc.)

The trace should reflect raw workload demand, without de-

lays due to limited server resources; for example, VM traces

typically reflect raw demand, since cloud providers ensure

sufficient capacity such that requested VMs are served with

minimal delay. As an input to help organize the generative

process, we also assume that each job in the data has a user

ID. However, we do not generate specific IDs in our output.

Our workload model generates the data as visualized in

Figure 1. We generate all jobs for one specific period, then

generate for the next period, and so on. Each period is a

fixed time interval (e.g. 5 minutes), corresponding to a row

in Figure 1.Within each period, we generate all jobs from one

user first, then from the next user, and so on. We refer to the

sets of jobs from the same user and within the same period as

batches. In the figure, each batch corresponds to a sequence

of horizontally-contiguous rectangles, and different batches

within the same period are separated by whitespace. Within

a batch, jobs are generated in order of their arrival time.

Batches themselves are generated in order of the arrival time

of their first job. When we train our generative model, we

organize and process the data in the same manner.

Within each period, our generative process consists of

three stages, illustrated in Figure 2. Each stage relies on

the output of the previous stage: we generate the number

of batches in each period given the period’s temporal in-

formation (Section 2.1). We generate the number of jobs

and requested resources, given the number of batches (Sec-

tion 2.2). Then we generate job lifetimes, given the batches of

requested resources (Section 2.3). The generated data is then

converted to job start/end times, plus resource requirements,

and we output a trace (Section 2.4).

2.1 Batch Arrival Modeling
The arrival model provides a distribution over the number of

batches in each time period (where batch is defined above).

2.1.1 Model. We fit the number of batch arrivals in each

5-minute period using Poisson regression. An (inhomoge-

neous) Poisson regression assumes the number of events 𝑁𝑝
occurring in each time period, 𝑝 , is modeled by a Poisson

distribution with mean 𝜇𝑝 . Rather than being a constant,

Poisson regression assumes this rate varies with some fea-

tures of the period, according to 𝜇𝑝 = exp(w · xp), where xp
is a feature vector, and w is a vector of learned parameters.

Given some training examples consisting of a vector of

event counts, y, and a matrix of feature vectors, X, we fit the
parameters by minimizing the negative-log-likelihood (NLL)

of the training data:

𝐿𝑜𝑠𝑠 = − log(Pr(y|X,w))

=
∑︁
𝑝

𝜇𝑝 − 𝑦𝑝 log(𝜇𝑝 )

We add an elastic net regularization term [75] to this loss

function (with the penalty weight tuned on development

data), and minimize the regularized NLL.

2.1.2 Features. Arrival features encode coarse-granularity
temporal information about the period for which we are gen-

erating batches. We have three types of temporal features:

1. Hour-of-day (HOD), from 1 to 24 (one-hot-encoded)

2. Day-of-week (DOW), from 1 to 7 (one-hot-encoded)

3. Day-of-history (DOH), from 1 to 𝑁 (survival-encoded),

where there are 𝑁 total days in the history

A one-hot-encoding represents the 𝑛th-of-𝑁 -features using

a length-𝑁 vector of all zeros, except for the 𝑛th element,

which is equal to 1. A survival-encoding represents the 𝑛th-

of-𝑁 -features using a length-𝑁 vector such that all elements

≤ 𝑛 are 1, and all elements > 𝑛 are zero. The HOD and DOW

features capture the seasonality inherent in cloud workloads

(typically fewer arrivals on nights and weekends). The DOH

feature captures both the workload trend, as well as any

change-points (a common attribute of real time series [64]).

When applying our model to a test period beyond our

training window, we explore two options for setting the day

used for the DOH feature: (1) encoding the last day of the his-

tory (day 𝑁 ) or (2) sampling a day from 1 . . . 𝑁 . For sampling,

we assume that more recent days (i.e., 𝑁 , 𝑁−1, etc.) are more

likely to reflect future behavior. We therefore sample a day

𝑘-days-before-𝑁 (i.e., 𝑁 −𝑘) using a geometric distribution

for 𝑘 , with success probability tuned on development data.

Sampling the day for the DOH feature is one mechanism to

mitigate the effects of forecasting in the presence of work-

load churn [5]. In the cloud, every day is unique, but with
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DOH features, we can sample traces where the future varies

in a manner similar to the past.

2.2 Resource Modeling
The resource model predicts the requested resources for all

the jobs in one period. VM workloads are usually drawn

from a discrete set of flavors, where each flavor represents a

distinct bundle of resources. In HPC [19], jobs may request

arbitrary combinations of resources, while in DAG-of-task

workloads [57], jobs may be composed of multiple phases,

where each phase is composed of a homogeneous set of short-

lived tasks. We focus on VM flavors below in this paper, but

briefly discuss possible extensions in Section 2.2.3.

2.2.1 Flavor Sequence Model. We model sequences of

flavors using a recurrent neural network, specifically an

LSTM [32], an established tool for generating “complex, real-

istic sequences containing long-range structure” [30]. In an

RNN, at step 𝑡 the network takes as input a feature vector x𝑡
and generates as output a vector of scores, y𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , . . .).
For flavors, these scores parameterize a distribution over the

next flavor in the sequence (see below). The inputs to an RNN

pass through a stack of connected hidden layers, parameter-

ized by weight matrices, that compute the outputs at each

step. As we iterate through subsequent steps, hidden layer

values are updated from both new input features, and from

the values of hidden layers at preceding steps in the network

(allowing internal state to flow through the network). An

LSTM is an enhanced RNN architecture that is better able to

manage state over arbitrary step intervals through the use

of special gated cells in the hidden layers.

At each step, 𝑡 , the flavor LSTM returns a distribution over

𝐾 possible flavors, plus a special end-of-batch (EOB) token to

indicate the conclusion of one user’s set of job requests for a

period. That is, the LSTM generates𝐾+1 output scores, which
are input to a softmax function returning a multinomial

distribution over the 𝐾+1 options for flavor ˆ𝑓 at step 𝑡 :

Pr( ˆ𝑓𝑡 = 𝑘 |y𝑡 ) =
exp(𝑦𝑘𝑡 )∑𝐾+1

𝑘′=1 exp(𝑦𝑘
′
𝑡 )

When training, the true (observed) previous flavors are en-

coded as input for the next step, following [30].

To train the parameters of the network, we follow the stan-

dard approach in minimizing the negative-log-likelihood of

training data [30]. The probability of an observed sequence

of flavors of length𝑇 , 𝑓1, . . . , 𝑓𝑇 is the product of probabilities

of each flavor in the sequence. Our loss is the negative-log

of this likelihood (plus a regularization penalty). We com-

pute the gradients of the loss with respect to our network

parameters through backpropagation.

2.2.2 Flavor Sequence Features. Our primary flavor fea-

ture at step 𝑡 is a one-hot-encoding of the flavor at the pre-

vious step, 𝑡−1. If the previous step was the end of a batch,

or we are generating the first flavor in the sequence, we

encode the EOB token as the input. The network can learn

that after an EOB token, there is little correlation with the

flavors occurring earlier in the sequence.

We also use the temporal features from Section 2.1.2. These

features remain constant throughout one period. Temporal

features allow the network to capture any time-varying pat-

terns in the popularity of different flavors.

2.2.3 Beyond Flavors. To model jobs with arbitrary com-

binations of resources, we can use a different LSTM output

layer. One approach is to replace the softmax with a mix-

ture density, as was done for handwriting synthesis [30].

Another approach is to discretize the possible values in each

resource dimension, as was done for RGB channels of im-

age pixels [66]. Such a resource LSTM could have a softmax

for generating CPU, then a separate softmax for generating

memory (conditioned on the generated CPU), etc.

For generating DAG-of-task workloads, the key question

is whether to model the within-job structure using a neural

network. One option is to cluster jobs into distinct “pseudo-

flavors” and use the flavor LSTM to generate a sequence

of pseudo-flavors. Specific workloads can be generated by

sampling an historical job for each generated pseudo-flavor,

similar to howMapReduce workloads are synthesized in [14].

Another option is to have the LSTM generate the phase

boundaries, tasks-per-phase, task resource requirements, etc.

The proper approach will depend on the amount of training

data and the level of detail desired in the generated traces.

For DAG-of-task workloads, the lifetime model (below)

need not change. It can generate lifetimes for the sequence

of tasks, rather than for the sequence of jobs.

2.3 Lifetime Modeling
The lifetime model returns a distribution over the possible

lifetimes of every job in the resource sequence. We propose

to again use an LSTM, but in this case, the outputs will pa-

rameterize the hazard function over a discrete set of lifetime

bins. We first describe considerations for discrete lifetime

estimation in general, and then the details of our network.

2.3.1 Discrete lifetime estimation. In discrete lifetime

estimation, possible lifetimes are divided into discrete bins,

𝑏1, . . . 𝑏 𝐽 , representing 𝐽 consecutive intervals of time. Let

𝑗 indicate the bin index. There are three related statistical

functions over these bins (each derivable from each other):

The probability mass function (PMF) 𝑓 ( 𝑗) gives the prob-

ability that the lifetime falls into the bin 𝑗

The survival function 𝑆 ( 𝑗) gives the probability that the

lifetime falls into any bin 𝑖 where 𝑖 > 𝑗

The hazard function ℎ( 𝑗) gives the probability that the

lifetime falls into the bin 𝑗 , given that the lifetime did

not fall into any bin 𝑖 where 𝑖 < 𝑗
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Kvamme and Borgan [39] show that for feed-forward

neural survival models, parameterizing the hazard function

works “slightly better” than parameterizing the PMF.

We can estimate these functions using historical data. The

main complication that arises is right censoring: how to han-

dle jobs that have not yet terminated by the end of the obser-

vation window. We could discard all such jobs, but then our

estimates will be biased (although this is common in systems

work, e.g., Cortez et al. [17] analyze “only VMs that started

and completed in [the] observation period”). In the field of

survival analysis, it is common to instead use the Kaplan-

Meier (KM) estimator [35]. KM is a non-parametric estimator

that captures the empirical distribution of lifetimes in his-

torical data through the hazard function, but only counting

hazard events for bins where we observe either a survival

or a termination (and ignoring bins beyond the observation

window). KM is preferred over parametric estimators un-

less the sample size is very small [51]. KM inspires both the

features and loss function of our lifetime RNNmodel (below).

To determine the bin boundaries, Kvamme and Borgan [39]

propose setting boundaries at evenly-spaced quantiles of life-

times in training data. We found this approach resulted in

very coarse bins for the longest-lifetimes, so we instead took

the approach of binning 5-minute intervals up to 1-hour,

1-hour intervals up to 10-hours, daily intervals up to 10 days,

and a final bin boundary for greater than 20 days.

2.3.2 Model. Our model is an LSTM that, at each step, 𝑡 ,

takes as input a feature vector, x𝑡 , and generates as output a

vector of 𝐽 scores, y𝑡 = (𝑦1𝑡 , . . . , 𝑦
𝐽
𝑡 ), one for each of a job’s

possible lifetime bins. Unlike the flavor LSTM that uses the

scores as logits in a softmax, here each score is input to a

logistic function that maps the score into a hazard probability:

ℎ( 𝑗 |x𝑡 ) =
1

1 + exp(𝑦 𝑗𝑡 )

To train the parameters of the network, we minimize the

negative-log-likelihood of training data. The likelihood of

an observed sequence of job lifetimes is the product of prob-

abilities of the lifetimes of each job (i.e., at each step).

Let us consider the probability, at one step, of the lifetime

occurring in an observed bin 𝑘 given a single set of outputs,

ℎ( 𝑗), 𝑗 = 1 . . . 𝐽 (dropping the implicit dependence on x𝑡 for
convenience). This outcome requires avoiding the hazard for

the first 𝑘−1 bins and suffering the hazard in bin 𝑘 :

Pr(lifetime = 𝑘) = ℎ(𝑘)
𝑘−1∏
𝑗=1

(1 − ℎ( 𝑗))

Now consider when a job’s lifetime is in bin 𝑐 , but the job has

not yet terminated (i.e, the lifetime is right-censored). In this

case, we still get credit for surviving (avoiding the hazard)

up until bin 𝑐 (similar to the Kaplan-Meier estimator):

Pr(censored at 𝑐) =
𝑐−1∏
𝑗=1

(1 − ℎ( 𝑗))

Unlike RNNs that parameterize multinomial distributions,

for our network, at every step of every sequence (andwhether

lifetimes are censored or not), there may be many network

outputs that do not factor into the loss calculation.

For those outputs that factor into the loss calculation, the

negative-log-likelihood of a dataset is also the binary cross

entropy (BCE). We add a regularization penalty to the BCE

loss, and compute the gradients with respect to our network

parameters through backpropagation.

2.3.3 Features. At each step, we encode a variety of infor-

mation that may influence the job’s lifetime distribution:

• Temporal features (Section 2.1.2)

• Requested resources of current job (Section 2.2.2)

• Number of jobs in current batch

• Lifetime of previous job

To encode the previous job’s lifetime, we use a survival-

encoding of the previous job’s lifetime bin (Section 2.1.2).

To handle cases where preceding jobs have not terminated

by the end of the observation window (i.e., lifetime is right-

censored), we use another set of features: we have one unique

feature for every discrete lifetime bin, but for these, we en-

code a value of 1 for all bins where the job is known to be

terminated. If a job is censored, these features are all zero.

Censoring is important because real-world data is always

right-censored: some jobs will still be running at the end of

any observation window. Censoring is especially pervasive

in VM workloads because VMs, for a variety of reasons, run

much longer than other workloads [17]. We could continue

collecting lifetimes after the end of the observation window,

but the unfortunate trade-off is that as we wait for jobs to

finish, data can grow obsolete. Accounting for censoring al-

low us to train on very recent data, while deriving maximum

information from the lifetimes in that data.

2.4 Generating Traces
We use our trained model to generate traces for new periods

by running our three-stage generative process (Figure 2):

given the period’s temporal features, we estimate the arrival

rate for that period, 𝜇𝑝 , using our batch arrival model. We

sample the number of batches, 𝑛𝑝 , from the resulting Poisson

distribution. Next, we use the resource LSTM to generate a

sequence of requested resources for the period. We do this

one-step-at-a-time, iteratively re-encoding the generated

resources of the previous job as part of the input for the next

step. As we generate resources, we track how many EOB

tokens have been generated, and terminate the sequence

after exactly 𝑛𝑝 batches. Finally, we run the lifetime LSTM

over the input resources to generate the hazard functions.
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We sequentially sample a lifetime bin from each job’s hazard

function, and iteratively re-encode that lifetime as part of

the input for the hazard prediction for the next job.
2

We then convert our jobs and lifetimes to job start/end

times (plus resource requirements) in order to create the

output trace. To convert our discretized lifetime bins to real-

valued durations, we use the continuous-density interpola-

tion (CDI) method, which was shown to perform well in [39].

CDI assumes job terminations are distributed evenly within

each lifetime bin. To get precise intra-period start times, we

must also generate the inter-arrival times of jobs in each

batch. Recall that job start/end times in our data have been

quantized to 5-minute intervals (Section 3), so all jobs in one

period effectively start at the period timestamp. For capacity

planning (Section 6.1), where a “relatively small percentage

of long-running VMs actually account for >95% of the to-

tal core hours” [17], modeling time with higher precision is

unnecessary. For applications requiring specific orderings

of arrivals and departures, such as scheduling (Section 6.2),

we distribute the arrivals across the 5-minute period in their

generative order (Section 2); the departures are randomly

distributed within each period and interleave with arrivals.

By repeatedly sampling traces that cover the same time

period, we can compute probability distributions over the

projected workload. These distributions enable confidence

intervals on various dimensions of generated data. For exam-

ple, for capacity planning (Section 6.1), we use distributions

over the total number of CPUs in a future time period.

For other applications, such as workload scheduling (Sec-

tion 6.2), we may instead tune on a collection of generated

traces (for the same period), ensuring our systems are opti-

mized for a variety of possible future workloads.

3 Data
We evaluate on the VM workload of: (1) Microsoft Azure and

(2) Huawei Cloud. We first describe general characteristics

of each cloud, and then detail the experimental datasets.

3.1 Azure Data
Azure data is a large public trace of VM data from a 30-day

window, originally released as AzurePublicDatasetV1 [17].

The trace contains VM start, stop, resource, and (anonymized)

customer/user ID information for over 2 million VMs, as well

as CPU utilization readings at 5-minute intervals (not used

in this paper). There are 16 different CPU/memory combina-

tions, which we take as the workload flavors.

All timestamps in the Azure trace are quantized to 5-

minute intervals, and the data is both left and right censored

(i.e., VM start/end times have been truncated to the start/end

2
Rather than sampling a lifetime for every job incrementally as we iter-

ate through the sequence, it is also possible to sample entire sequences of

lifetimes according to their joint probability with the resources, using a

variation of the forward-backward algorithm for HMMs [11].

Window size (days) Number of VMs

Train Dev Test Train Dev Test

Azure 20.8 3.5 5.7 1.2M 259K 410K

Huawei Cloud 274 14 17 1.7M 116K 140K

Table 1. Experimental datasets

time of the trace observation window). We discard any VMs

that are running at the beginning of the trace (avoiding sur-

vivorship bias). For VMs that have an end time equal to the

end of the observation window, we mark the VM as censored

in the data at that time. Even though timestamps are quan-

tized to 5-minute intervals, the ordering in vmtable.csv
reflects the actual arrival order of VMs,

3
so we are able to

determine the within-period ordering.

The Azure data does not identify the exact date and time

of the observation window, so we simply treat the offset

timestamps as Linux epoch times. Since the offset of the

mapping between real-world time and our temporal features

is arbitrary, the temporal features remain equally effective

at modeling daily and weekly seasonality.

3.2 Huawei Cloud data
Huawei Cloud data comes from a subset of our own public

cloud. We collect VM start, stop, flavor, and anonymized

customer/user ID information from a 10-month observation

window, and again discard VMs running at the beginning

of this window. The collected data contains 259 distinct VM

flavors (reflecting CPU/memory combinations, specific re-

source attributes such as local disk or GPU requirements,

and multiple generations of server hardware).

To mitigate the impact of censoring in our held-out evalu-

ation data, we continue monitoring test VMs for two months

beyond the test window, and right-censor any VMs still run-

ning at the end of that time (i.e., marking VMs as censored,

with a known lifetime up to the end of those two months).

We order the arrivals within each 5-minute period, and then

quantize our timestamps to 5-minute intervals.

3.3 Experimental Datasets
Table 1 provides statistics on the experimental datasets. We

treat each experimental window as a distinct observation

window. That is, whenever we train on a training set or

tune on a development set, we only include information

that is available by the end point of that respective win-

dow. Specifically, for all VMs that start in one observation

window that are still running at the end of the window, we

right-censor their lifetimes to the end of that window. Fig-

ure 3 illustrates this concept. The only exception is the test

window of Huawei Cloud data, where, as mentioned earlier,

we censor two months beyond the end of the test window.

3
See https://github.com/Azure/AzurePublicDataset/issues/7. The absence
of this property precluded our use of the Azure V2 dataset.

https://github.com/Azure/AzurePublicDataset/issues/7
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Figure 3. VM censoring: VMs are represented as horizontal

bars spanning from the VM start to the VM end time. VM

lifetimes are censored at the end of each respective observa-

tion window.

4 Experimental Setup
We now provide further details on model training and hy-

perparameter tuning (descriptions of evaluation metrics and

baselines are in relevant subsections of the results).

4.1 Model Training
The Poisson regression models are trained using iteratively

re-weighted least squares (IRLS) (via the GLM package in

statsmodels (www.statsmodels.org)). The LSTM losses are

iteratively minimized using minibatch gradient descent with

the Adam optimizer [37]. All LSTM experiments are done

using PyTorch (http://pytorch.org). Since our workloads are
VMs, we use the flavor LSTM as our resource LSTM.

To achieve better numerical stability when computing the

lifetime loss, we use a loss function that combines the logis-

tic mapping together with the log likelihood computation

into a single (vectorized) function (BCEWithLogitsLoss in
Pytorch). We pass a mask vector into the weight parameter

of this function in order to ignore the loss on those outputs

that do not factor into the loss calculation.

4.2 Model Hyperparameters
The elastic net regularization penalty for Poisson regres-

sion, and the weight decay and learning rate for the LSTM

resource/lifetime models, are tuned on the corresponding

Azure or Huawei Cloud development sets. That is, we do not

optimize these parameters for end-to-end generation, but for

their stage-specific (and cloud-specific) development data.

The following parameters were tuned on Azure develop-

ment data, and we use the same values for Huawei Cloud.

We use a 2-layer LSTM with 200 hidden units in each layer.

Unless otherwise noted, we use 47 bins in the hazard function.

The final bin starts at 20 days (virtually all uncensored life-

times in both clouds terminate within 20 days). For sampling
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Figure 4.Actual and generated (with median, 90% prediction

intervals) batch arrivals over Azure test window. 82.5% of

true values are captured in the 90% prediction interval.

the DOH day (Section 2.1.2), we use the geometric approach

(going backward from 𝑁 ), with a success probability of 1/7

(i.e., the expected value is 7 days before N).

We train both our resource and lifetime LSTMs using mini-

batches, each containing 50 sequences of length 5000. We

zero the hidden state before each forward pass. We use long

sequences partly to allow the models to capture any mo-

mentum in properties that may persist across periods. Our

networks are thus uniquely deep both in space (multiple

layers transform inputs to outputs) and time (data passes

through thousands of layers of computation as we step for-

ward through jobs). Backpropagation remains tractable due

to the massive parallelism and available GPU hardware.

5 Prediction Results
In this section, we evaluate the predictions of each stage of

our model and compare our approach to traditional methods.

5.1 Batch Arrivals
For batch arrivals (Section 2.1), we sample 500 values from

our Poisson distribution on each test period and compute 90%

prediction intervals of the sample distribution. We compute

the coverage of true arrivals by the prediction intervals.

Azure. On Azure, the batch arrival prediction intervals (Fig-

ure 4) capture 82.5% of true values. For the batch model,

we sample the DOH day using the geometric approach (Sec-

tion 2.1.2). If we instead always encode the last day of the

history (day 𝑁 ), only 56.5% of true values are captured in the

90% prediction interval (not shown). On this dataset, sam-

pling DOH days evidently improves coverage significantly.

Huawei Cloud. On Huawei Cloud, the prediction intervals

capture 94.5% of arrivals (Figure 5). Coverage is higher here

because, with lower counts, the quantile function has fewer

steps, so 90% intervalsmatch larger intervals inmany periods.

Instead of sampling DOH days, if we encode the last day of

the history, coverage is 95.0% (not shown). Here, sampling

DOH days is not essential for high coverage.

www.statsmodels.org
http://pytorch.org
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Figure 5. Actual and generated (with median, 90% predic-

tion intervals) batch arrivals over Huawei Cloud test window.

94.5% of true values are captured in the 90% prediction inter-

val (counts are jittered slightly to better show the density).
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Figure 6.Actual and generated (with median, 90% prediction

intervals) individual VM arrivals over Azure test window.

Modeling raw job arrivals with Poisson greatly underesti-

mates the variance in the arrival process (only 18% of true

values are captured in the 90% prediction interval).

Modeling Individual Job Arrivals. In prior work, Poisson

models are not used to model batch arrivals, but rather the

arrival of individual jobs [12, 21, 26, 47, 48]. We evaluate

how well such models capture the arrival process in VM

workloads. We use the same Poisson regression model as for

batch arrivals, but train on the raw number of VM arrivals

in the training periods (and we do not use DOH features).

On Azure, modeling individual VM arrivals clearly does

not capture the true variation in arrivals (Figure 6). On

Huawei Cloud, the results are better, but only 52.9% of true

values are captured in the 90% prediction interval (not shown).

If we include sampled DOH days, 90% coverage increases to

51.4% for Azure data, and 68.2% for Huawei Cloud.

For arrivals in the cloud, Poisson is a better fit for batches

than for jobs. In either case, sampling DOH days is an effec-

tive method for increasing forecast coverage.

Azure Huawei Cloud

System NLL 1-Best-Err NLL 1-Best-Err

Uniform 2.83 93.9% 5.55 99.6%

Multinomial 1.58 54.7% 3.34 89.7%

RepeatFlav N/A 29.7% N/A 71.3%

LSTM 0.65 25.7% 2.10 59.2%
Table 2. Modeling flavor sequences with an LSTM signif-

icantly improves NLL and 1-Best-Err in both clouds (N/A

indicates undefined results for non-probabilistic baselines).

The LSTM’s accuracy at predicting next flavors (1 of 259

possible options for Huawei Cloud) is impressive.

5.2 Flavors
We evaluate our flavor LSTM (Section 2.2.1) by comparing

its predictions to the predictions of the following baselines:

Uniform Each flavor is equally likely to occur at each step

Multinomial Each flavor’s probability is given by the em-

pirical count of that flavor in training data (replicating

the traditional, independent-arrival model)

RepeatFlav The next flavor is always predicted to be the

same as the previous one (defaulting to multinomial

after EOB)

We use the following evaluation metrics:

NLL Negative-log-likelihood of next-step probabilities

1-Best-Err Next-step 1-best classification error rate (note,

for this metric, the traditional Multinomial approach

will output the most frequent flavor)

Thesemetrics (and those for lifetimes below) are computed

at each step assuming knowledge of the sequence up to that

step. By the chain rule of probability, NLL is thus effectively

computing the log likelihood of the entire test set; test set

likelihood is the standard evaluation for generative neural

networks (when the computation is tractable) [28, 30, 66].

Results are presented in Table 2. Selecting flavors accord-

ing to their empirical probability is more predictive than

selecting uniformly, but significantly worse than repeating

the previous flavor. The LSTM works best; for both NLL and

1-Best-Err, it is significantly better than RepeatFlav; the most

probable flavor is not always a repeat of the previous one.

5.3 Lifetimes
We now evaluate our lifetime LSTM (Section 2.3). Our first

set of results concerns predicting the binned lifetime. We

compare the LSTM’s predictions to the following baselines:

CoinFlip Hazard in every bin is assumed to be 50%

Overall KM Lifetimes are estimated using the Kaplan-Meier

discrete hazard for all flavors pooled into one group

Per-flavor KM Lifetimes are estimated using the Kaplan-

Meier discrete hazard for each specific flavor type
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Azure Huawei Cloud

System BCE 1-Best-Err BCE 1-Best-Err

CoinFlip 0.693 97.1% 0.693 49.5%

Overall KM 0.277 73.8% 0.383 49.5%

Per-flavor KM 0.270 71.5% 0.322 40.1%

RepeatLifetime N/A 43.4% N/A 23.9%

LSTM 0.127 27.8% 0.098 11.2%
Table 3. Modeling lifetimes with an LSTM significantly im-

proves BCE and 1-Best-Err in both clouds (N/A indicates

undefined results for non-probabilistic baselines). The LSTM

has exceptional prediction ability, picking the single lifetime

bin (from 47 options) with 89% accuracy for Huawei Cloud.

System Discretization Interpolation Survival-MSE

KM 47 bins None (Stepped) 1.12%

KM 495 bins None (Stepped) 1.11%

KM 47 bins CDI 1.11%

KM 495 bins CDI 1.11%

KM Continuous N/A 1.09%

LSTM 47 bins None (Stepped) 0.52%

LSTM 47 bins CDI 0.47%
Table 4. Evaluation in continuous domain: number of bins

and interpolation method has very minor impact on accuracy

of KM survival functions. Meanwhile, continuous-density

interpolation (CDI) is important for the LSTM. The benefits

of using an LSTM far exceed the drawbacks of discretization.

RepeatLifetime Next VM lifetime is always assumed to be

same as previous (defaulting to Overall KM after EOB).

The following evaluation metrics are used:

BCE Binary cross entropy loss of next-step probabilities

1-Best-Err Next-step error rate where hazard converted to

PMF and maximum likelihood bin selected

LSTM predictions are much more accurate than flipping a

coin, but also more accurate than Kaplan-Meier estimators

(Table 3). Looking at 1-Best-Err, it is remarkable that the

LSTM is able to predict the single lifetime bin (out of 47

options) with only 27.8% error on Azure and 11.2% error in

Huawei Cloud, in the latter case less than half the error rate

achieved when repeating the lifetime of the previous VM.

Next, we consider the question of how well our models

perform when their discretized probabilities are converted

to the continuous domain. Discretization is a double-edged

sword: using a smaller number of bins makes our models

less complex and easier to train, but potentially increases

the reconstruction error in mapping back to real values. And

unlike an LSTM, the Kaplan-Meier baseline applies directly

in continuous space. Thus an important question is: do the

benefits of discretization exceed potential drawbacks?

To test this, we use the continuous-domain Survival-MSE

evaluation [39] on the Azure test data: we convert our dis-

crete hazard outputs to a continuous survival function, then

compare the MSE between this survival function and the

true survival function for each job. For interpolation, we

compare the CDI method (Section 2.4) to a survival “step

function”. That is, whereas CDI assumes job terminations

are spread evenly within a lifetime bin, Stepped assumes that

all job terminations happen at the lifetime boundaries.

Having more bins helps Kaplan-Meier only marginally,

while having good interpolation seems to help more, espe-

cially for the LSTM (Table 4). Having a better model helps

even more: the LSTM has half the MSE of other models, re-

gardless of bins or interpolation. We experimented with a

495-bin-LSTM, but results were not nearly as good as with

47 bins. Having more bins hurts the LSTM due to increased

complexity in both input features and output dimensionality.

We experimented with alternate versions of the KM es-

timator that either (1) ignored censored VMs entirely or

(2) assumed censored VMs terminated at the end of the ob-

servation window. Version (2) consistently worked better

than version (1), and, notably, BCE was usually close to

the vanilla censoring-aware KM. In typical survival analysis

work [39], sometimes 86% of data is censored. But in Azure,

only 3.2% of arriving VMs are censored. If we had focused

on estimating lifetime solely for VMs that arrived within

the past 20 minutes, censoring would play a major role, but

in our current evaluation, handling censoring is much less

important than modeling inter-job correlations.

6 Use Case Results
We now evaluate our proposed trace generator end-to-end

in the context of two use cases, and we compare to two

end-to-end generation baselines: Naive and SimpleBatch.

Naive is a three-stage process that ignores inter-job corre-

lations: (1) sample a number of VM arrivals for each period

from a Poisson regression (Section 5.1), (2) sample a flavor

for each VM from the flavor multinomial (Section 5.2), and

(3) sample a lifetime for each VM from the per-flavor Ka-

plan-Meier (Section 5.3). We also explore whether a novel

batch-based baseline (one that does not use RNNs) can be

effective: SimpleBatch follows a four-stage process: (1) sam-

ple a number of batch arrivals for each period from our

proposed Poisson regression, (2) sample a size of each batch

from the empirical batch size distribution in training data,

(3) sample one flavor for all VMs in a batch from the flavor

multinomial (Section 5.2), (4) sample one lifetime for all VMs

in a batch from the per-flavor Kaplan-Meier (Section 5.3).

6.1 Capacity Planning
Capacity planning is the task of forecasting future demand in

order to ensure sufficient supply. At Huawei Cloud, capacity

engineering teams rely on forecasts of future resource usage
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(a) Naive-generated: 0% captured in 90% prediction interval
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(b) SimpleBatch-generated: 88% captured in 90% prediction interval
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(c) LSTM-generated: 83% captured in 90% prediction interval

Figure 7. Actual and generated (with median, 90% predic-

tion intervals) total workload over Azure test window for

(a) Naive, (b) SimpleBatch, and (c) LSTM.

in order to make server purchasing decisions. We evaluate

howwell our system can support this use case by considering

how well it generates forecasts for the total number of CPUs

active at each moment of the test window.

We sample a single workload from our model by running

our three-stage process for each test period (Section 2.4). To

compute a distribution over possible future workloads, we

generate 500 such workloads. We calculate total CPU usage

over time in each of these samples, and compute the median

and 90% prediction intervals over this distribution. To evalu-

ate, we compute the proportion of true data covered by the

90% prediction interval. As a constant across all models, we

include in the total workload all VMs already running at the

beginning of the test window (using their actual lifetimes).
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(a) Naive-generated: 1% captured in 90% prediction interval
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(b) SimpleBatch-generated: 24% captured in 90% prediction interval
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(c) LSTM-generated: 93% captured in 90% prediction interval

Figure 8.Actual and generated (with median, 90% prediction

intervals) total workload over Huawei Cloud test window

for (a) Naive, (b) SimpleBatch, and (c) LSTM.

Azure. On Azure, Naive does not capture any of the future

workload in its 90% intervals (Figure 7a). This is remarkable

considering Naive has been the default workload model

used by practitioners [34, 38]. In modern cloud workloads,

VMs are simply not independent and should not be modeled

using independence assumptions. Both SimpleBatch and

LSTM work much better (Figures 7b and 7c). SimpleBatch

intervals miss the actual workload briefly on day 2 and 6,

while LSTM misses for parts of day 5 and 6.

Huawei Cloud. For Huawei Cloud, Naive is again a poor

workload predictor (Figure 8a). SimpleBatch, though better,

generates a total CPU load well above the observed ground

truth (Figure 8b). Meanwhile, LSTM covers 92.8% of the

true workload in the 90% interval (Figure 8c). We attribute

the strong performance of LSTM over SimpleBatch on this
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dataset to two factors. First, SimpleBatch uses distributions

calculated over the entire training set, but Huawei Cloud

training data covers 9 months, over which the workload was

growing quickly. Workload growth had leveled-off signifi-

cantly by the test window. By sampling DOH days according

to our geometric approach, LSTM generates future work-

load that resembles the recent past. Indeed, if we remove the

DOH features, LSTM only covers 61.9% of the true workload.

Secondly, on this dataset, LSTM is better able to capture the

daily workload pattern. Comparing the median and upper

90% limit in Figures 8b and 8c, we see the LSTM output is

significantly more reflective of the true workload pattern.

In Huawei Cloud, the median LSTM workload almost ex-

actly matches the true workload for the final 7 days of the

test window (Figure 8c). Since the training window ends

almost a month earlier, it is remarkable that future workload

can be generated with such high fidelity, so far in advance.

6.2 Workload Scheduling
Workload scheduling is the process of placing VM requests

onto specific physical servers. At Huawei Cloud, our VM

scheduler [36] handles clusters of up to 10K machines. Like

Azure’s Protean [31], it has been designed and optimized

using both historical and synthetic data. To be useful in evalu-

ating schedulers, synthetic datamust reflect key properties of

real data. In this section, we describe two properties of traces,

reuse distance and packing fragmentation, that directly affect

scheduling performance and quality, respectively. We gener-

ate 500 traces for each test period for each of our generators,

and evaluate whether measurements of these properties on

our generated traces match those on actual test data.

Scheduling Performance. Hadary et al. [31] introduce a

workload metric called reuse distance, “which for each re-

quest of VM type v, measures the number of unique VM types

requested since the last time that vwas requested.” Computed

over a large trace, higher frequency of small reuse distances

implies subsequent requests tend to be similar to previous

ones. Observation of such a pattern in Azure data “moti-

vate[d] the caching of placement evaluation logic, and reuse

across multiple requests – this idea is central in [Protean’s]

design and facilitates scaling to large zones and regions.” The

size of Protean’s cache is tuned based on “memory footprint

and hit-rate considerations.” Reuse distance therefore affects

both the design and tuning of VM schedulers. When tuning

on synthetic data, it is imperative that such data reflect the

reuse behavior of actual data.

We evaluate our generated data by computing the dis-

tribution of reuse distances across the 500 sampled traces

from each generator, and compare to the true reuse distance

pattern in our actual test period.

Results are shown in Figure 9. In both clouds,Naive traces

exhibit larger reuse distances (i.e., less reuse) than actual data.

A scheduler tuned on Naive traces would appear to require

a very large cache in order to achieve a desired hit-rate,

and thus could be configured with an unnecessarily-large

memory footprint. On Azure, SimpleBatch has a similar

distribution to test data (but very small variance), whereas

onHuawei Cloud, SimpleBatch greatly overestimates flavor

reuse. Tuning our scheduler on SimpleBatch traces would

lead us to configure too small a cache, resulting in poor

performance in production. LSTM traces are the only traces

that match the reuse pattern of the actual test data across

both clouds.

Scheduling Quality. Due to the heterogeneity of VM work-

loads, VM requests cannot be packed perfectly onto servers,

and some fragmentation of resources is inevitable. Since ex-

tra capacity must be provisioned in order to cover resources

lost this way, cloud providers require good fragmentation es-

timates. Moreover, schedulers must efficiently place requests

in order to minimize fragmentation.

It is common to compare different packing algorithms

on traces and choose the one that achieves the lowest frag-

mentation (e.g. [29, 36, 54]). Packing algorithms may also

have parameters that can be tuned in order to minimize frag-

mentation. Schedulers based on deep reinforcement learn-

ing [49, 50] may have thousands or millions of such pa-

rameters and they must be optimized on large amounts of

synthetic data. On the scale of cloud providers, such tuning

is very important; Hadary et al. report that “even 1% in frag-

mentation reduction can lead to cost savings in the order of

$100M per year” [31].

When quantifying the resources lost to fragmentation,

or when optimizing packing algorithms in order to achieve

lower fragmentation, we need to estimate the true fragmen-

tation of a given packing algorithm as accurately as possible.

For synthetic data to be useful, packing of this data must

achieve similar fragmentation to packing of actual data.

Here, we measure fragmentation by computing the first-

failure allocation ratio (FFAR). FFAR computes the proportion

of allocated capacity at the point of first scheduling failure

(i.e., first point with nowhere to place a request). The full

evaluation procedure is as follows: for each of our 500 gener-

ated traces (and 500 times on actual test data), we randomly

sample a scheduling tuple consisting of a: (1) start point for

packing, (2) number of servers, (3) server CPU and Memory

capacity, and (4) packing algorithm from one of {Random

placement, busiest-fit, cosine similarity [29], delta perp-dis-

tance [36]}. We then pack the trace onto the servers using the

given algorithm, beginning from the start point and proceed-

ing through arrivals, and departures, until we have a failure,

at which point we compute FFAR for CPU and Memory. We

selected ranges for server number and capacity such that

CPU and Memory were each the limiting resource in roughly

50% of packings on training data. To reduce variance, we use

the same random 500 scheduling tuples for each generator.
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Figure 9. Reuse distance distributions for generated traces and actual data over Azure (9a) and Huawei Cloud (9b) test windows.
LSTM traces are the only traces that consistently match the reuse pattern of actual test data across both clouds.
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Figure 10. Packing results on generated traces and actual test data over Azure (10a) and Huawei Cloud (10b) test windows.

Each point is the outcome of a packing experiment, indicating the first-failure allocation ratio for the CPU (y-axis) and Memory

(x-axis) resources. In both clouds, LSTM generates traces whose packability best matches that of actual data (see also Table 5).

Azure Huawei Cloud

Generator Median >0.95 Median >0.95

Naive 96.7 65.4 93.9 40.6

SimpleBatch 93.5 37.0 91.6 23.4

LSTM 95.4 53.5 92.3 21.6

Test data 94.5 47.2 92.2 18.6

Table 5. First-failure allocation ratio (FFAR) summary sta-

tistics for the limiting resource (corresponding to Figure 10

experiments): median value and proportion of times >95%.

LSTM-generated traces pack most similarly to real test data.

Table 5 provides the summary metrics for the packing

experiments, while full results are plotted in Figure 10. The

following key patterns emerge:

(1) Naively-generated traces are misleadingly easy to pack:

traces from the Naive method result in much higher FFARs,

with many more packings reaching >95% FFAR for the limit-

ing resource (e.g. 40.6% for Naive vs. 21.6% for real data in

Huawei Cloud). Scheduling failures and fragmentation are

driven by runs of many flavors of the same type in a row;

such requests suddenly exhaust one resource (e.g. CPU) even

while there is ample capacity in the other (e.g. Memory).

Naive traces do not have long runs of the same flavor.
4

(2) SimpleBatch traces are harder to pack than real traces:

SimpleBatch has the opposite problem: unlike real data,

SimpleBatch has no flavor-variation within batches, result-

ing exclusively in long, hard-to-pack runs of the same flavor.

(3) LSTM consistently packs the most similarly to real test

data: in both clouds, the packability of LSTM-generated

traces best matches that of the actual data.

4
One motivation for our work in this paper was a prior observation regard-

ing our VM scheduler: we found that traces generated using traditional

models were much easier to pack than real historical traces. We therefore

needed a method to generate synthetic traces that did not have this problem.
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We performed many variations of the above experiments

and these patterns held true. For example, we ran the pack-

ings using only arrivals and no departures. We also did an

arrival-only version with 10X the number of arrivals (by

simply scaling our sampled arrival rates); both the reuse and

FFAR distributions matched those from the unscaled setting.

This is an encouraging result; we often face a scenario where

workloads are increasing (either organically or because of

resource consolidation) and we are tasked with ensuring the

scheduler can handle a 10X higher rate of requests.

7 Related Work
Alternative Modeling Approaches. We have shown how

a trace of cloud jobs can be generated using Poisson regres-

sion and neural sequence models. We now briefly discuss

some alternative modeling approaches.

Rather than a three-stage generative process, it is possible

to generate the trace with a single LSTM. The LSTM could

control the number of batches in each period, via generation

of a special end-of-period (EOP) token. Flavors, and durations

conditioned on flavors, could be generated in a single output,

making use of MADE-style [25] masking in order to ensure

proper conditioning, as in PixelRNN [66]. While this would

permit greater parallelism in training, generation would still

require sequential output of flavors, then durations.

We did not pursue this direction for two main reasons.

First, when we experimented with EOP tokens, we found the

generated workload was exquisitely sensitive to the timely

sampling of these tokens, and it was difficult to convey their

supreme importance to our network without throwing off

our training procedure. Having a separate stage to generate

the number of batches was empirically more successful. Sec-

ondly, by having an explicit parameter for arrival rate, our

approach allowed us to generate 10X workloads by changing

a single line of code in our generator.
5

LSTMs are perhaps the simplest network (in terms of man-

ual tuning) that can reliably model long-term dependencies,

but other, more-complex architectures may also be used. For

example, a GAN [28] uses paired generator/discriminator

networks to enable very realistic output; our work provides

the networks that can now be used inside the GAN. Fur-

thermore, Transformers [67] provide a mechanism for super-

parallelizing training of sequence models (like ours) to enor-

mous data sets, and could be used in place of the LSTMs.

5
For the single-LSTM approach, it would theoretically be possible to perform

what-if experiments by post-processing the LSTM output probabilities (e.g.,

dividing EOP token probability by 10). We could use this strategy in our

current multi-stage approach as well, e.g., to simulate larger or smaller

batches (modifying the EOB probability), or greater likelihood of certain

flavors. More work is needed in order to determine whether such strategies

degrade any desired properties of the generated traces (e.g. reuse distance

for the 10X workloads). An interesting alternative to post-processing is the

use of autoencoding methods that “disentangle factors of variation” [41];

such methods permit modifications to latent attributes, which are then

reflected in the realistic generated data.

It required some domain expertise in order to develop our

initial effective generative process. There are approaches

that evolve neural architectures [74], either to better fit the

data, or because of changes in the environment (which may

be particularly common in the cloud domain).

Workload Analysis. For an overview of research in cloud

workload analysis (including analysis of arrivals, job behav-

ior, load fluctuations, etc.), see [9]. Much recent work has

been enabled by the release of large-scale traces from Face-

book [14], Google [58, 65], Alibaba [1], Microsoft Azure [17],

and others, including the influential work of Reiss et al. [57].

Chung et al [16] analyze a large trace in order to discover job

workflow constraints (e.g., job A consumes job B’s output).

Whether workflow constraints can be integrated into our

generative process merits further research.

Cortez et al. [17] provide the first detailed characterization

of public cloud provider workload, analyzing Azure’s entire

VM workload over a three-month window. They introduce

a discriminative classifier for predicting VM lifetime, with

lifetime binned into 4 groups (essentially a very coarse, non-

probabilistic PMF parameterization). However, when they

generate data for their scheduler evaluation, they notably

rely on a simple univariate (generative) lifetime distribution.

Hadary et al. [31] quantify flavor reuse across VM requests.

They also note that reuse occurs in other dimensions of VM

requests, such as priority and RequireIsolation.

Workload Generation. Moreno et al. [53] note that most

analysis papers “do not provide a structured model which

can be used for conducting simulations.” To remedy this,

and to take a step toward modeling the diversity of cloud

workloads, they introduce a system that models a few user-

specific arrival rates, resource requirements, and lifetimes. In

contrast, we do not focus on specific users, and can therefore

model large-scale future workloads that include entirely new

users. Bahga and Madisetti [4] introduce a workload gener-

ator for evaluation of cloud applications. They model user

behavior such as inter-session intervals and session lengths.

A number of papers focus specifically on modeling job ar-

rival rates. Juan et al. [34] introduce a dynamic, hierarchical

approach to group arrivals into “bundles”. In contrast, we

batch based on user ID and arrival time (Section 2) and show

this is effective. Koltuk and Schmidt [38] propose an itera-

tive, heuristic approach to generating time-varying arrival

rates in cloud workloads. In contrast, we sample from an

inhomogeneous Poisson regression. In non-cloud domains

requiring high-precision inter-arrival times, there is relevant

recent work modeling event streams (a.k.a. asynchronous

sequences), including deep point process models [20, 43].

In the domain of networking, packet traces exhibit similar

properties to VM workloads, including spatial/temporal het-

erogeneity [40], time-of-day and day-of-week patterns [7,

63], inhomogeneous arrival rates [71] and inter-packet cor-

relations [3]. Moreover, networking technology is evaluated
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using both real and synthetic traffic [13]. Avin et al. [3] de-

compose packet correlation into temporal and non-temporal

structure, and provide an information-theoretic approach

to analyze and generate traces. It would be interesting to

apply our LSTM approach in this domain (perhaps replacing

flavors with packet source/destination pairs, lifetimes with

packet sizes, etc.).

Workload Forecasting. While our model generates all in-

dividual workload start and stop events, an alternative ap-

proach to capacity planning is to leverage techniques from

time series forecasting. A number of recent papers have

shown that deep learning architectures, from LSTMs [60],

to transformers [70], to informers [73], can effectively esti-

mate future behavior from prior history, generating output

ranging from point predictions [10, 61], to full probabilistic

forecasts [23, 56]. DoppelGANger [44, 45] generates job-

specific time series without prior history; it first generates a

fixed set of “metadata” categorical attributes, and then gen-

erates the job’s time series conditional on its metadata. In

contrast, we generate both real-valued (durations) and cat-

egorical attributes (flavors) over time, and model inter-job

correlations.

Forecasting approaches can be used to predict the total

CPU, memory, etc. of specific flavors, groups of flavors, re-

gions, etc., by generating specific predictions for any of these

dimensions, at specific time granularities (e.g. daily averages).

In one sense, our workload model is more powerful: we can

generate full probabilistic predictions, for any dimensions

of interest, at any time granularity, by simply summing the

relevant VMs from our generated traces. However, forecast-

ing methods can predict dimensions that are not part of

our generative story (e.g., forecasting workload for specific

users).

Survival Analysis. Neural networks have been used previ-

ously to parameterize survival functions. Gensheimer and

Narasimhan [24] first proposed the hazard-based loss func-

tion. They note that this loss “has been well studied for

discrete-time survival models in a non-deep learning con-

text” and show how it differs from the similar, “heuristic”

loss used previously with neural networks [8]. Kvamme and

Borgan [39] provide an excellent synthesis of recent neural

network survival research, connecting prior work to param-

eterizations of either the discrete hazard function [24], the

discrete PMF [22, 42], or continuous-time methods based on

the Cox proportional hazards assumption [15]. Our work

can be viewed as a novel sequential, inter-case extension of

this line of research.

Recurrent neural networks have also been used in sur-

vival, but not to model inter-case relationships. Rather, RNNs

have been used to represent the sequence of survival states

for one patient [27] and the sequence of hazard functions

over time [59]. Although we focused on cloud workloads,

our approach to handling inter-case relationships should be

useful for other survival scenarios. Indeed, in any system

where there is congestion, there may be inter-case corre-

lations in the waiting or service times [62]. Our recurrent

lifetime model is a new tool for modeling such correlations.

Privacy and Synthetic Data. In the same way that com-

panies have released large pre-trained neural networks for

text (e.g. [18]), cloud providers could potentially leverage

our work to release large pre-trained models of systems data,

rather than the proprietary traces. Preserving privacy is an

active area of ML [2, 6, 33]. For systems data, preserving

privacy generally requires protecting both business secrets

and user information [45]. Since our model does not gener-

ate user-specific information, the primary concern of cloud

providers would be “leaking information about the types of

resources available and in use at the enterprise” [45]. Aspects

of our model (such as arrival rates or flavor trends) can be al-

tered for confidentiality reasons. Technically, this is the same

problem as performing what-if experiments (see Footnote 5).

Progress in what-if generation can provide mechanisms for

providers to release slightly fictitious, but still highly useful,

trace generators.

8 Conclusion
We have designed, implemented, and evaluated an approach

to cloud workload modeling that successfully models the real

production VM workload of two large-scale cloud providers.

The main conceptual contribution of the paper is an ex-

tension of recent advances in neural survival analysis in

order to model inter-job lifetime correlations. Our approach

draws on the ability of recurrent neural networks to model

complex, long-range dependencies, and to generate realis-

tic output with similar characteristics to training sequences.

This is the first model of large-scale cloud workloads that

captures long-range inter-job correlations in arrival rates,

flavors, and lifetimes, and it is able to create synthetic work-

load of a quality not previously seen from cloud workload

generators. Compared to commonly-used approaches, the

model is highly effective at estimating the probability of fla-

vors and lifetimes in actual data. Moreover, it shows promise

as a tool for medium-term capacity planning, and its gener-

ated traces have key properties necessary for optimizing the

performance and quality of VM schedulers.

As RNNs are easier to apply than ever, and more and more

data becomes available in cloud environments, we believe

there is great potential for both practitioners and researchers

to leverage and extend this work. In particular, designing and

evaluating extensions of the resource model to DAG-of-task

workloads [14, 57] is an important area for future research.
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