Satisfaction Guaranteed*

Eugene C. Freuder and Tom Carchrae and J. Christopher Beck
Cork Constraint Computation Centre
University College Cork, Ireland
{e.freuder, t.carchrae, c.bd@4c.ucc.ie

Abstract CSPs through k-treels] and adaptive consistendg]; but
. . . these methods, of course, have exponential worst-case com-
A constraint satisfaction problem (CSP) model can  pjexity. We would argue that “offline” preprocessing time is
be preprocessed to ensure that any choices made ot 5 critical factor when we envision repeated “real time”
will lead to solutions, without the need to back- reuse of the backtrack-free representation, while users make
track. This can be especially useful in an inter- alternative choices (though these methods were not originally
active context in which different users access the  rgposed in this context). However, these methods also have

model to make choices on-line, e.g. in e-commerce  ayponential worst-casgpacecomplexity, which may indeed
configuration. The conventional machinery for en- make them impractical.

suring backtrack-free search, however, adds addi-
tional constraints, which may require an impracti-
cal amount of space. A new approach is presented
here that achieves a backtrack-free representation
by removing values. This may limit the choice of
solutions, but we are guaranteed not to eliminate
them all. Experimental experience suggests that the
trade-off for users between processing effort and
solution loss may be worthwhile.

In this paper we propose preprocessing methods that can
achieve a backtrack-free problem representation (BFR) with-
out incurring any space penalty. For many problems the pre-
processing time seems acceptable; in any event it is no worse
than for conventional methods. Of course, there is a trade-off:
some, though not all, of the solutions may be lost. This re-
stricts the range of choice during subsequent use of the BFR,
but experimental evidence suggests that in many cases this
trade-off may lie within acceptable bounds.

Consider a simple example: a coloring problem on vari-
1 Introduction ables X, Y and Z. We wish to choose either red or blue as a

color for each variable. We are constrained in that Z must be

A Constraint Satisfaction Problem (CSP) involves choosinGyitarent in color from both X and Y. Suppose our user wants
values for variables that satisfy restrictions (constraints) OR5 choose colors for X. Y and Z in that order. There is a dan-

allowed value combinations. The basic method for solving, . that he may choose red for X, blue for Y, and then be left
such problems is backtrack search, which involves choosingih no choice for Z. The conver{tional way’ of “fixing” this
values for variables in turn, backing up to make alternativg 1 he to add a new constraint between X and Y specifying
choices when there is no way to proceed without violating 4t the combination red for X and blue for Y is prohibited.
constraint. . . o The new constraint would prevent the user from getting in
Backing up is always costly, and in some situations may,q, hje in this way. However, the constraint requires addi-
be impractical or even impossible. A customer configuring;q -, space. This is a simple example of adaptive consis-

a purchase at an e-commerce website may abandon the pyLy, ey in general we may have to add constraints involving as
chase when forced to reconsider his choices. An on-line pror'nany as — 1 variables for am-variable problem.

?nl;)((:’t’l(i)tn F%Eﬁi(ic,esztzer‘tighr?q?)i?s;jti?egllx '2}‘3 t(i:\?;[;nécgl C\i‘lgﬂf tb YN our basic insight here is so simple that it may at first appear
- 'NIS paper 1s y y Y simpleminded; but we are reassured by the observation that
NASA scientists seeking assurances that autonomous SPaGkic'is often the case with perfectly good ideas. We will “fix”

crafts can commit to scheduling decisions in real tif@k : :
We would like to preprocess problems to obtain :;1“b¢'slcktrack-the problem by removing the choice of red for X. The user

" . : cannot get in trouble by choosing red for X because the choice
free” representation that' permits sgbsequ?nt repgateq uﬁﬁill not be there. Of course, this also removes a solution (red
where users can make different choices at “execution time

secure in the knowledge that none can lead to failure. X, red Y, blue Z), but another remains (blue X, blue , red

Earlv work on CSPs quaranteed backtrack-free search f Z). If we also remove red as a value for Y we are left with a
y g ; PBacktrack-free representation. (Of course, this also leaves us
tree-structured problenid]. This was extended to general

with no choices at all for this problem, just a single solution,

*This work has received support from Science Foundation Irebut in general we will only restrict, not eliminate, choice.)
land under Grant 00/P1.1/C075. In Section 2, we present a basic algorithm, BFRB, for pre-



Algorithm 1: BFRB - computes a BFR However, correctness is not as obvious as it might first ap-
BFRB(n): pear. It is clear that a BFR to a soluble problem must ex-
Obtains a BFR fo, (maintained as a global variable) ist; any individual solution provides an existence proof: sim-
. . . ply restrict each variable domain to the value in the solution.

1 if domain OfV" is emptythen However, we might worry that BFRB might not notice if the

2 | report Failure problem is insoluble, or in removing values it might in fact

3 if n =1then remove all solutions, without noticing it.

4 | report Success Theorem 1 If P is soluble, BFRB will find a backtrack-free
5 foreach solution S to the parent subproblem that does  representation.
not extend td/,, do
6 Choose avaluein S and remove it from the domain
of its variable.

7 recursively seek a BFR foiP,, _q:

8 If successful, report Success.

9 If not, make one different choice of a value to remove,
and recurse again.

10  When there are no more different choices to make,
report Failure.

Proof: Proof by induction.

Inductive step: If we have a solutionto P,_; we can
extend it to a solution td®, without backtracking. Solution
s restricted to the parents df; is a solution to the parent
subproblem ofV,. There is a valugj, for V;, consistent with
this solution, or else it would have been eliminated by BFRB.
Adding b to s gives us a solution t@, since we only need
worry about the consistency ofwith the parents of/,.

Base step: P, is soluble, i.e. the domain of; is not
empty after BFRB. Sincé is soluble, lets be one solution,

processing a problem to achieve a backtrack-free representyith s1 @s the value fo;. We will show that if it does
tion by removing values, and prove that it will find such a N0t succeed otherwise, BFRB will succeed by providing
representation for any soluble binary CSP. We also sugge& reépresentation that includes in the domain of/;. We
refinements, heuristics and alternatives. In Section 3 we déVill do this by demonstrating, again by induction, that in
scribe algorithm instantiations for obtaining a BFR, and study/ €MOVing a solution to a subprobles),, BFRB will always
their performance. We measure solution loss and preprocesd@ve & choice that does not involve a valuesofSuppose
ing effort as well as the effort saved during subsequent searcke” RB has proceeded up @, without deleting any value
In particular, we foresee the preprocessing as being of use #! §- It is processingV; and a solutions, to the parent
an interactive CSP setting, where human users make the val§¥PProblem does not extend . If all the values ins,, are
choices, e.g. for e-commerce product configuration, and cor? 5 then there is a value iki; that is consistent with them,

sider the savings the users gain, in avoiding tedious undoing@Mely the value fob;; in s. So one of the values ix), must
of choices or long processing delays, in return for restricting1©t P€ ins, and BFRB can choose at some point to remove

the choices available. In Section 4, we discuss our experil- (The base step fov), is trivial.) Now since BFRB tries,
mental result. In Section 5 we describe some interesting ex! nécessary, all choices for removing values, BFRB will

tensions to explore. In Section 6, we place this work in thech00se eventually, if necessary, not to remove any value in
context of several broad themes in constraint computation. 'ncludings:. O

2 Algorithm, Alternatives, and Analysis Theorem 2 If P is insoluble, BFRB will report failure.

We describe a basic algorithm for obtaining a BFR by deletProof: Proof by induction.

ing values, prove it correct and examine its complexity. Given P, = P is given insoluble. We will show that i is

a problemP and a variable search ord&t to V,,, we will insoluble, then after BFRB processEs, Pi._1 is insoluble.

refer to the subproblem induced by fifstvariables asP,.  Thus eventually BFRB will always backtrack whét be-

A variableV; is a parent ofV if it shares a constraint and comes insoluble (the domain &f is empty) if not before,

1 < k. We call the subproblem induced by the parents ofand BFRB will eventually run out of choices to try, and re-

V. the parent subproblenof V;.. P, will be a backtrack-free port failure.

representation if we can choose valuesi®rto V,, without SupposeP;, is insoluble. We will show thaP,_; is insol-

backtracking. BFRB operates on a problem and produces able in a proof by contradiction. Supposes a solution of

backtrack-free representation of the problem, if it is solvable,P,_;. Thens restricted to the parents 84, s,, is a solution

else reports failure. We will refer to the algorithm’s removal of the parent subproblem d¥;, which is a subproblem

of solutions to the parent subproblemigfthat do notextend of P,_,. There is a valué of V;, consistent withs,, for

to V}, asprocessingf V. otherwises,, would have been eliminated during processing
The BFRB algorithm is quite straightforward. It works of V.. But if b is consistent withs,,, s plusb is a solution to

its way upwards through a variable ordering, ensuring that/;,. Contradiction.O

no trouble will be encountered in a search on the way back

down, as does adaptive consistency; but here difficulties are The space complexity of BFRB is polynomial in the num-

avoided by removing values rather than adding (or refiningper of variables and values, as we are only required to repre-

constraints. (Of course, removing a value can be viewed asent the domains of each variable. The worst-case time com-

adding/refining a unary constraint.) plexity is, of course, exponential in the number of variables,



n. However, as we will see in the next section, by employ-main. Therefore, it is unclear whether the minimum domain
ing a “seed solution”, we can recurse without fear of failure,heuristicMinDom or the maximum domain heuristidlax-

in which case the complexity can easily be seen to be expd@om should be expected to perform bettBregree. The de-
nential in(p + 1), wherep is the size of the largest parent gree of variables in the constraint graph is also a component
subproblem. Of coursey, + 1 may still equaln in the worst  of existing CSP heuristics. Removing a value from a vari-
case; but when this is not so, we have a tighter bound on thable of high degree will have an impact on more of the other

complexity. variables in the problem than doing so from a variable of low
degree. This impact may be to add or remove dead-ends. We
3 Algorithm Instantiations cannot, a priori, predict whether the maximum degree heuris-

tic, MaxDeg or the minimum degree heuristiglinDeg, will
We can envision many potential improvements on the basigroduce better BFRs.
BFRB algorithm. In this paper, we will investigate some basic  To provide a baseline for comparison we also experiment
issues, describing more involved improvements in Section 5with selecting the value to be removed randomly, in -
Using Seed Solutiondn the basic BFRB algorithm, it is dom “heuristic’. For all heuristics, ties are broken lexico-
possible to remove all the values in the domain of a variablegraphically.
requiring the need to “backtrack” through the pruning choices Since we are using a seed solution, the pruning heuristic
for completeness. We can avoid the need to backtrack by finds restricted by the fact that a value in the seed solution is
ing an initial solution for the original CSP and using it as anever removed. If the heuristically preferred value occurs in
seed. We specify that we cannot remove any values in thahe seed solution, the next most preferred value is pruned. We
seed solution while searching for a BFR. There is a computaare guaranteed that at least one parent will have a value that is
tional cost to obtaining the seed, and “protecting” it reducesot part of the seed solution or else we would not have found
the flexibility we have in choosing which values to remove; 3 dead-end.
but we avoid thrashing when finding a BFR. Probing to Find Good BFRsSince we want BFRs to re-
We performed preliminary experiments on the use of a seeghin as many solutions as possible, it is useful to model the
solution to find a BFR versus finding one from scratch. Ourfinding of BFRs as an optimization problem rather than as a
results indicated that not only was using a seed significantlgatisfaction problem. We envision a humber of ways to do
faster, it also tended to produce a BFR which preserves mongjs, for example, by performing a branch-and-bound to find
solutions. Given the strength of these results, we only reporthe BFR that retains the maximum number of solutions. In
here on finding a BFR using a seed. this paper, we will take advantage of the fact that we gen-
Enforcing Consistency. We expect a second sets of erate BFRs starting with a seed solution to introduce a sim-
improvements to arise from applying consistency algo-ple probing algorithm. For a given seed solution, a BFR is
rithms while searching for a BFR. We could establish arc-generated and the number of solutions retained are counted.
consistency (AC) before starting the search for a BFR and/oThe search for a BFR is then restarted from a random seed
every time we prune a value. Since non-arc-consistent vakolution. This process is continued until no improving BFR
ues may lead to dead-ends, establishing AC will reduce theould be found in 1000 such iterations. This technique is, of
number of times that we must make a heuristic decision focourse, incomplete, however, we are interested to investigate
pruning. how much improvement we can achieve over the satisfaction
We experimented with two uses of arc consistency: estabalgorithms.
lishing AC once in a preprocessing step and establishing AC
whenever a value is pruned (line 6 of BFRB). The latter vari- ;
ation proved to incur less computational effort as measured i# Experiments
the number of constraint checks to find a BFR and resulted iThe purpose of this section is to evaluate the basic idea of
BFRs which retained more solutions. In our experimental refinding a BFR through pruning values and to perform prelim-
sults, therefore, we only show results where AC is establishethary investigations of some of the algorithm variations noted
whenever a value is pruned. above. Our basic interests are to look at the on-line process-
Using Pruning Heuristics.The selection of the value to ing effort that will be saved by using a BFR rather than the
be pruned to remove a dead-end may benefit from heuristiceriginal problem representation, the solutions lost by remov-
It is unclear how the standard CSP heuristics (e.g., based dng values, and the effort required to find a BFR.
domain size and degree) will transfer to BFRB, but it is rea- To evaluate our algorithm instantiations, we generated
sonable to expect that there will be some impact in preferringrroblems with 15 variables with 10 values in each domain.
to prune different values. Two heuristics (line 6 of BFRB), One problem set contains sparse instances (density = 0.3)
together with their corresponding anti-heuristic, are tested invhile the other contains dense problems (density = 0.7). For
this paper based on the following characteristics: each of these sets, we identified a range of tightness values
Domain Size.As in heuristics for finding a solution to a that allowed us to span the phase transition region from the
CSP, we expect that the size of the domain of the variableasy soluble problems, across the hardness ridge, to the (rel-
whose value we remove will have an impact on the qual-atively) easy insoluble problems. Since a BFR is only well-
ity of the BFR produced. A value in the minimum domain defined in a soluble problem, for each combination of density
is likely to participate in a larger proportion of both the re- and tightness we generated 100 soluble problem instances
maining dead-ends and solutions than a value in a larger ddy filtering out the insoluble problems. Table 1 presents the



range of tightness values used in each of the problem sets. * oo ——
We solved the problems with MA{S] using lexicographic i
search order, which is effectively a random search order. In 08
the interactive settings we envision the search order cannot
necessarily be chosen for efficient search: the chemicals may
need to be mixed in a specific order, the rockets may need to
be fired in a specific order, choice may be based on prefer-
ence or cost. Table 1 presents the mean and median number
of backtracks in finding an initial solution. This initial so-
lution is then used as a seed in the search for a BFR, which
will allow users to avoid any backtracking when interactively
seeking solutions. Even if we consider problems that do per-

fraction of solutions retained

mit a more efficient search order to be used, even moderately fohess
difficult problems will still require far more backtracks than (@) Sparse Problems
we can expect a human user to tolerate in an interactive set- e
ting. - e
0.8 B
Sparse (Density = 0.3) Dense (Density = 0.7) ~ '
Tightness | mean BTs | median BTs Tightness | mean BTs | median BTs 3
0.5 9.64 35 0.30 7 4 S 0s
0.51 6.24 3 0.31 12.49 7 2
0.52 4.89 3 0.32 19.05 15 §
0.53 6.93 4 0.33 26.59 20 if
0.54 5.52 4 0.34 31.81 23 § 04
0.55 6.21 4 0.35 24.59 19 g
0.56 4.28 3 0.36 24.78 20
0.57 2.93 2 0.37 17.19 14 02
0.58 2.98 2 0.38 13.46 11.5
0.59 3.05 3 0.39 8.90 8
0.6 2.16 1 — o 2

03 031 0.32 0.33 034 0.35 0.36 0.37 0.38 0.39
tightness

Table 1: The tightness of each problem sub-set for the sparse
and dense problems and the mean and median number of
backtracks required for MAC with lexicographic variable and
value ordering to find a first solution.

(b) Dense Problems

Figure 1: The mean number of solutions retained in the BFR
representations of the sparse problem set relative to the num-
ber of solutions for the original problem.

4.1 Satisfaction Results

Using the first solution found, we then found a BFR with eachof the solutions are retained with a single BFR. The relative
of the one-seed algorithm instantiations. Since we are usingerformance of the heuristics is similar to that on the sparse
a seed, we already have a BFR. However, for the purposddoblem set with MaxDeg and MinDom dominating.
of comparison, we consider that a BFR has been found when The effort to find a BFR is assessed in Figure 2, where the
algorithm BFRB terminates. We then count the number of sonumber of constraint checks for each algorithm instantiation
lutions of the original problem, that are still solutions to the are displayed. The largest difference between heuristics is
BFR: that is, the number of solutions that have value assigron the loose problems where MaxDom incurs over twice as
ments that are in the domains of the BFR representation. ~many constraint checks as MaxDeg. Interestingly, the heuris-
Figure 1(a) presents the relative number of solutions retICS that retain more S(_)Igtlons also spend less effort in finding
tained for each of the algorithm instantiations on the spars@ BFR. The data is noisier for the sparse set, however, the rel-
problem set. On the tighter problems, the best heuristic igtive perfo_rmance of the heuristics is similar _Wlth the numbe_r
able to find BERs which retains more than 80% of the soly0f constraint checks being an order of magnitude lower. This
tions in the original problem. On the loose problems, whichiS reasonable as the size of each subproblem is smaller.
have many solutions, a small percentage are retained however L
even for tightness of 0.52, the best heuristic finds BFRs re- -2 Optimization Results
taining more than 30% of the solutions. From the perspectiv&Vhile successful in retaining a large percentage of the so-
of the heuristics, MaxDeg and MinDom out-perform Min- lutions, especially, on the tighter problems, the satisfaction
Deg and MaxDom respectively. In general, the range fromalgorithms did not attempt to find a good BFR: the first satis-
the best heuristic to the worse appears to be about 10% of tHging BFR was reported. Figure 3 demonstrates that substan-
solutions in the original problem. tially better performance can be achieved by using the heuris-
Figure 1(b) presents the relative number of solutions retics within a simple probing algorithm. For the loosest prob-
tained on the dense problem set. In general, it appears thlems, where the satisfaction algorithms performed worse, the
the fraction of solutions retained is lower on the dense probeptimization algorithms are able to find BFRs that on average
lem set than on the sparse one, however, for the tightest halétain an order of magnitude more solutions than the satis-
of the problem set, on average at least 60% and up to 95%action algorithms. On the tighter problems, the advantage



140000

1000

T T
MaxDom —— all solutions —+—
MinDom ---x--- lter1000rand --x---
MinDeg - Iterl000MaxDeg -~
Minl =
=

MaxDeg & . Deg
Random --m-— N MaxDeg —-m--
120000 — e =
S N B S
— - - ‘
- 8 100F-

100000 o7

80000

effort to find BFR (in constraint checks)

60000 |-t -

.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 05 0.52 0.54 0.56 0.58 0.6
tightness tightness
) _ (a) Sparse Problems
Figure 2:Dense ProblemsThe mean number of consistency
checks required to find a BFR starting from a seed solution. s —

Iter1000MaxDeg -
MaxDom
MaxDeg -

I Y-FE1

for the optimization algorithms continues to be apparent as
almost all solutions are retained for the tightest problems.

k]
100

ns retaine

5 Future Work

This paper represents initial experiments with BFRs. Clearly
there are a number of extensions to be explored. More re- e .
search is needed in the area of heuristics as we have demon- R S S

imber of solutior

strated that much better BFRs exist than are discovered with .~ = ¢ ‘
the heuristics we used. More generally, though, by changing ' tghness ' '
our assumptions about the on-line processing, we can also (b) Dense Problems

expand the set of techniques applied in finding the BFR. For

example, so far we have assumed that the on-line algorithmigure 3: Using a log-scale we plot the mean number of so-
is simple backtracking with no consistency enforcement. Mutions in the original problem, the mean number of solutions
we make assumptions that we will use forward checking ofetained by the best and worst algorithm instantiations, and

MAC on-line, we can remove fewer dead-ends off-line andthe mean number of solutions retained by two variations of
lose less solutions. Dead-ends that will not be encountereghe probing technique.

by the on-line algorithm do not have to be removed off-line.

This means, in fact, that a backtrack-free representation iB ) . Lo

backtrack-free with respect to the on-line algorithm: a BFR e able to find a BFR for constraint optimization problems.
built for MAC will not be a BFR for backtracking (though

the converse is true). It is a relatively easy transformatio® ~Context

of BFRB to ensure that only those dead-ends that exist for #he work on BFRs presents a perspective on a number of
specific on-line algorithm will be pruned. fundamental dichotomies in constraint processing.

A different, though complementary, direction for further BFR vs. Adaptive ConsistenclRFRB can be viewed as
research is in storing more than one BFR for a problem inone extreme on a spectrum that has adaptive consistghcy
stance. The tighter a problem is, the smaller the number odit the other end. Our BFR algorithm could be termed a 1-BFR
solutions can be represented in a single BFR. However, if walgorithm, building a BFR by adding or altering unary con-
maintain a limited set of BFRs, we could still achieve poly- straints (removing values). A 2-BFR algorithm would add
nomial space complexity, backtrack-free on-line search, andr alter binary constraints when possible, rather than unary
significantly broader solution coverage. For example, if weones, and could thus achieve a BFR while removing fewer
storedn x d BFRs, we could ensure that every globally con-solutions. In general, we haveBFR, wherek is the “in-
sistent value of every variable was represented in at least orduced width” in the case of adaptive consistency, which in
BFR. the worst case ia& — 1 for ann variable problem. As in-

Finally, in a real application some BFRs will be more pre- creases, we suffer less solution loss, but incur a greater space
ferred than others, perhaps, not simply based on the nuntost. Further work is needed to explore the trade-offs here.
ber of solutions retained. In a configuration application, it Inference vs. SearchAs in many aspects of constraint
is likely that the vendor will have some guidance as to thecomputation, the axis that runs from inference to search is
attributes he/she would like to have in the most common sorelevant for BFRs. The basic BFR algorithm allows us to per-
lutions. This suggests that it would be very useful to be abldorm pure search online without fear of failure. BFRs for on-
to reason about soft constraints, preferences, or other optiine algorithms that use some level of inference require more
mization criteria while building a BFR or, more generally, to online computation while still ensuring no backtracks and



preserving more solutions. It would be interesting to studytions, arc-consistency, and a variety of pruning heuristics. We
the characteristics of BFRs as we increase the level of onlinbave evaluated experimentally the cost of obtaining a BFR,
consistency processing we are willing to do. the solution loss, and the execution time savings, for different
Implicit vs. Explicit SolutionsBFR models can be viewed problem parameters.
along a spectrum of implicit versus explicit solution represen- Overall, our results indicate that a significant proportion
tation, where the original problem lies at one end, and the seaf the solutions to the original problem can be retained es-
of explicit solutions at the other. The work on “bundling” so- pecially when an optimization algorithm that specifically
lutions provides compact representations of sets of solutionsearches for such “good” BFRs is used. We expect that such
Hubbe & Freudet7] represent sets of solutions as Cartesiarperformance can be improved, particularly with the increased
products, each one of which might be regarded as an extrenuse of consistency algorithms, the maintenance of multiple
form of backtrack-free representation. If we restrict the vari-BFRs, and the use of more sophisticated optimization tech-
able domains to one of these Cartesian products, every combiques.
nation of choices is a solution. All the solutions can be repre- Finally, we noted that the BFR concept provides an inter-
sented as a union of these Cartesian products, which suggesisting perspective on a number of theoretical and practical
that we might represent all solutions by a set of distinct BFRsdichotomies within the field of of constraint programming.
As we move toward explicit representation the preprocessinépiven these dichotomies and the potential for BFRs estab-
cost rises. Usually the space cost does as well, but 1-BFRshed in this paper, we feel that we have opened up a rich
representations are an exception that lets us “have our cakein of research to explore.
and eat it too”.
Removing values vs. SearcRemoving values is related References

in spirit to work on domain filtering consistencifg] though [1] J. Amilhastre, H. Fargier, and P. Marquis. Consistency
these do not lose solutions. Another spectrum in which BFRS™ ) oo ar’ld explanations in dynamic CSPs — appli-

play a part therefore is based on the number of values re- : : : P . .

moved. We could envision BFRB variations that remove g;i.ti%g_ttz)szonzf(l)%uzratlon. Artificial Intelligence 135(1

fewer values, allowing more solutions, but also accepting[ ' ' ' . S )

some backtracking. Freuder & Hubb@l remove solutions 121 R.Debruyne and C. Bessi. Domain filtering consisten-

in another manner, though not for preprocessing, but S|mp|y cies. Journal of Artificial Intelllgence Researcﬁl4:205—

in attempting to search more efficiently. Of course, a large 230, May 2001.

body of work on symmetry and interchangeability does this. [3] R. Dechter and J. Pearl. Network-based heuristics for
Offline vs. Online EffortBFRs lie at one end of an axis that constraint-satisfaction problemsArtificial Intelligence

increasingly incorporates offline preprocessing or precompi-  34(1):1-38, 1987.

lation to avoid online execution effort. These issues are ©SP§4] E.C. Freuder. A sufficient condition for backtrack-free

cially relevant to interactive constraint satisfaction, where hu= = (.- v 70 rnal of ACM 29(1):24-32, 1982.

man choices alternate with computer inference, and the same : )

problem representation may be accessed repeatedly by diffd] E.C. Freuder. Complexity df-tree-structured constraint-

ent users seeking different solutions. They may also prove Satisfaction problems. IRroceedings of the Eighth Na-

increasingly relevant as decision making fragments among tional Conference on Artificial Intelligence (AAAI-90)

software agents and web services. Amilhastre eftdlhave pages 4-9, 1990.

recently explored interactive constraint solving for configura-[g] E.C. Freuder and P.D. Hubbe. Using inferred disjunctive

tion, compiling the CSP offline into an automaton represent-  constraints to decompose constraint satisfaction prob-

ing the set of solutions. lems. InProceedings of the Thirteenth International Joint
“Customer-centric” vs. “Vendor-centric” Preference#\s Conference on Atrtificial Intelligence (IJCAI-93pages

constraints are increasingly applied to online applications, 254-261, 1993.

the preferences of the different participants in a transactior[|7] P.D. Hubbe and E.C. Freuder. An efficient cross-

\é\{lr"aicn??e :gfg;grfggi' a:;;vmri% erit'ggotrct)agé;? c?r?%gF;Ogo%Osrt]r-uc- product representation of the constraint satisfaction prob-
P P ’ lem search space. Broceedings of the Tenth National

tion to address the axis that lies between “customer-centric” o :

and “vendor-centric” processing. For example, a customer Sg{'{irze; cleggg Artificial Intelligence (AAAI-92pages
may tell us, or we may learn from experience with the cus- ' '
tomer, that specific choices are more important to retain. A{8] N. Muscettola, P. Morris, and I. Tsamardinos. Reformu-
ternatively, a vendor might prefer to retain an overstocked op-  lating temporal plans for efficient execution. Rrinci-

tion, or to remove a less profitable one. ples of Knowledge Representation and Reasqrpages
444-452, 1998.
7 Conclusion [9] D. Sabin and E.C. Freuder. Contradicting Conventional

o Wisdom in Constraint Satisfaction. Rroceedings of the
We have presented an approach to obtaining a backtrack-free gleventh European Conference on Atrtificial Intelligence
CSP representation (BFR) that does not require additional (ECAI-94) pages 125-129, 1994.

space. We investigated a number of variations on the basic
algorithm for finding BFRs including the use of seed solu-



