
Solving a Stochastic Queueing Control Problem with
Constraint Programming

Daria Terekhov and J. Christopher Beck

Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario, Canada

{dterekho,jcb}@mie.utoronto.ca

Abstract. In a facility with front room and back room operations, it is useful to
switch workers between the rooms in order to cope with changing customer de-
mand. Assuming stochastic customer arrival and service times, we seek a policy
for switching workers such that the expected customer waiting time is minimized
while the expected back room staffing is sufficient to perform all work. Three
novel constraint programming models and a shaving algorithm are presented. Ex-
perimental results show that the best constraint programming model, using shav-
ing, is able to find and prove optimal solutions for almost all problem instances
within a reasonable run-time, but that an existing heuristic algorithm performs
better in terms of solution quality over time. A hybrid method combining the
heuristic and the best constraint programming method is shown to perform better
than either of these approaches separately. This is the first work of which we are
aware that solves a queueing control problem with constraint programming.

1 Introduction

Many retail facilities, such as stores or banks, have back room and front room opera-
tions. In the front room, workers have to serve arriving customers, and customers form
a queue and wait to be served when all workers are busy. In the back room, work is
less time-sensitive, and may include such tasks as sorting or processing paperwork. All
workers in the facility are cross-trained and are assumed to be able to perform back
room tasks equally well and serve customers with the same service rate. Therefore, it
makes sense for the managers of the facility to switch workers between the front room
and the back room depending both on the number of customers in the front room and the
amount of work that has to be performed in the back room. These managers are thus in-
terested in finding a switching policy that minimizes the expected customer waiting time
in the front room, subject to the constraint that the expected number of workers in the
back room is sufficient to complete all required work. This queueing control problem
has been studied in detail by Berman et al. [3], who propose a heuristic for solving it.

In this paper, a constraint programming (CP) approach is proposed for the problem.
Thus, the contributions of this paper are twofold. Firstly, CP is, for the first time, used
to solve a stochastic queueing control problem. Secondly, a complete approach for a
problem for which only a heuristic algorithm existed previously is presented.

The paper is organized as follows. Section 2 presents a description of the problem
and the work done by Berman et al. [3]. Section 3 presents three CP models for this

P. Van Hentenryck and L. Wolsey (Eds.): CPAIOR 2007, LNCS 4510, pp. 303–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 D. Terekhov and J.C. Beck

problem. Section 4 describes a shaving procedure used for improving the efficiency of
the CP models. In Section 5, the performance of the three CP models is compared and
the best CP approach is contrasted with the Berman et al. heuristic. Based on these
results, a hybrid method is proposed and evaluated in Section 6. In Section 7, a discus-
sion of the results is presented. Section 8 describes related problems and states some
directions for future work. Section 9 concludes the paper.

2 Problem Description

Let N denote the number of workers in the facility, and let S be the maximum number
of customers allowed in the front room at any one time.1 When there are S customers
present, arriving customers will be blocked from joining the front room queue. Cus-
tomers arrive according to a Poisson process with rate λ. Service times in the front
room follow an exponential distribution with rate μ. The minimum expected number of
workers that is required to be present in the back room in order to complete all of the
necessary work is assumed to be known, and is denoted by Bl, where l stands for ‘lower
bound’. Only one worker is allowed to be switched at a time, and both switching time
and switching cost are assumed to be negligible. The goal of the problem is to find an
optimal approach to switching workers between the front room and the back room so as
to minimize the expected customer waiting time, denoted Wq , while at the same time
ensuring that the expected number of workers in the back room is at least Bl. Thus, a
policy needs to be constructed that specifies how many workers should be in the front
room and back room at a particular time, and when switches should occur.

2.1 Problem Definition

Berman et al. define a policy in terms of quantities ki, for i = 0, . . . , N . This policy
states that there should be i workers in the front room whenever there are between
ki−1 + 1 and ki customers (inclusive) in the front room, for i = 1, 2, . . . , N . As an
illustration, consider the policy (k0, k1, k2, k3) = (0, 2, 3, 6), with N = 3. This policy
states that when there are k0 +1 = 1 or k1 = 2 customers in the front room, there is one
worker in the front room; when there are 3 customers, there are 2 workers; and when
there are 4, 5, or 6 customers, all 3 workers are employed in the front. This definition
of a policy forms the basis of the model proposed by Berman et al., with the switching
points ki, i = 0, . . . , N − 1, being the decision variables of the problem, and kN being
fixed to S, the capacity of the system. In this paper, we follow Berman et al. and define
an optimal policy as a set of values for the switching points, ki, which minimize the
expected waiting time subject to the back room constraint.2

In order to determine the expected waiting time and the expected number of workers
in the back room given a policy defined by particular values of ki, Berman et al. first

1 The notation used by Berman et al. [3] is adopted throughout this paper.
2 The term optimal policy is used in queueing control literature [6] to mean both the optimal

type of policy and the optimal parameter values for a given policy type. In particular, for our
problem, it is possible that an alternative type of policy (e.g., one that allowed randomization
in the switching decision) may lead to a smaller expected waiting time.

Solving a Stochastic Queueing Control Problem with Constraint Programming 305

define a set of probabilities, P (j), for j = k0, k0 + 1, . . . , S. Each P (j) with j > k0
denotes the steady-state (long-run) probability of there being exactly j customers in the
facility. Since k0 may not necessarily be 0 in a particular policy, P (k0) has a different
interpretation – it is the probability of having between 0 and k0 (inclusive) customers
in the front room. Berman et al. define a set of balance equations for the determination
of these probabilities:

P (j)λ = P (j + 1)iμ j = ki−1, ki−1 + 1, . . . , ki − 1 i = 1, ..., N. (1)

An additional constraint on the values of P (j) is
∑S

j=k0
P (j) = 1.

All quantities of interest can be expressed in terms of the probabilities P (j). Ex-
pected number of workers in the front room is

F =
N∑

i=1

ki∑

j=ki−1+1

iP (j) (2)

while the expected number of workers in the back room is B = N − F . The expected
number of customers in the front room is

L =
S∑

j=k0

jP (j). (3)

Expected waiting time in the queue can be expressed as

Wq =
L

λ(1 − P (S))
− 1

μ
. (4)

This expression is derived using Little’s Laws [6,8] for a system of capacity kN = S.
Given a family of switching policies K = {K; K = {k0, k1, ..., kN−1, S}, ki inte-

ger, ki − ki−1 ≥ 1, k0 ≥ 0, kN−1 < S}, the problem can formally be stated as:

minimize Wq (5)

s.t B ≥ Bl

equations (1), (2), (3), (4).

Note that B, F and L are expected values and can be real-valued. Consequently, the
constraint B ≥ Bl states that the expected number of workers in the back room resulting
from the realization of any policy should be greater than or equal to the minimum
expected number of back room workers needed to complete all back room work. At any
particular time point, there may, in fact, be fewer than Bl workers in the back room.

2.2 Berman et al.’s Heuristic

Berman et al. propose a heuristic method for the solution of this problem based on the
following theorem, the details and proof of which are presented in [3].

306 D. Terekhov and J.C. Beck

Theorem 1 (Berman et al.). Consider two policies K and K ′ which are equal in all
but one ki. In particular, suppose that the value of k′

J equals kJ − 1, for some J from
the set {0, ..., N − 1} such that kJ − kJ−1 ≥ 2, while k′

i = ki for all i �= J . Then (a)
Wq(K) ≥ Wq(K ′), (b) F (K) ≤ F (K ′), (c) B(K) ≥ B(K ′).

In addition, Berman’s heuristic is based on two policies having special properties.
Firstly, consider the policy K̂ = {k0 = 0, k1 = 1, . . . , kN−1 = N − 1, kN = S}.
This policy results in the largest possible F , and the smallest possible B and Wq . Be-
cause this policy yields the smallest possible expected waiting time, if it is feasible, then
it is optimal. On the other hand, the smallest possible F and the largest possible Wq and

B are obtained by applying the policy ˆ̂
K = {k0 = S−N, k1 = S−N+1, . . . , kN−1 =

S − 1, kN = S}. Thus, if this policy is infeasible, the problem (5) is infeasible also.

Heuristic P1 of Berman et al. starts with the policy ˆ̂
K. If this policy is feasible, then

the switching point ki with the smallest index i satisfying the condition ki − ki−1 > 1
for 0 < i < N and ki > 0 for i = 0 is decreased by 1. By Theorem 1, this results
in a policy with a better Wq value but smaller B. The heuristic continues decreasing
switching points with this property until the resulting policy becomes infeasible (or is
the policy K̂, in which case P1 stops because this policy is optimal). Once infeasibility
is reached, a switching point ki having the smallest index and satisfying the condition
ki+1 − ki > 1, for i < N , is increased by 1. By Theorem 1, increasing a switching
point with such properties allows the policy to become more feasible in terms of the
back room constraint, but also increases Wq . Once a feasible policy is found again, the
heuristic tries to find switching points to decrease. Thus, the heuristic alternates between
trying to reach a policy with smaller Wq and a policy that is feasible with respect to the
Bl constraint. Each time an infeasible policy is found, the set of switching points that
can be increased or decreased at subsequent steps is reduced in order to prevent cycling.
Assuming the problem is feasible, P1 stops when it is unable to find any more switching
points to decrease or increase, in which case it returns the best feasible policy that it has
been able to find. The heuristic guarantees optimality only when the policy it returns is

K̂ or ˆ̂
K.

Empirical results regarding the performance of heuristic P1 are not presented in [3]
and so the ability of P1 to find good switching policies is not explicitly evaluated. In
particular, it is not clear how close policies provided by P1 are to the optimal policies.

3 Constraint Programming Models

Some work has been done on extending CP to stochastic problems [12,13,16]. Our
problem is different from the problems addressed in these papers because all of the
stochastic information can be explicitly encoded as constraints and expected values, and
there is no need for either stochastic variables or scenarios. The major motivation for
our work is to investigate whether CP can be successfully used to solve such problems.
To this end, we investigate three CP models for our queue control problem:

– The If-Then model is a CP version of the formal definition of Berman et al.

Solving a Stochastic Queueing Control Problem with Constraint Programming 307

– The PSums model uses some slightly different sets of variables, and some con-
straints are included which are based on closed-form expressions derived from the
constraints that are used in the If-Then model.

– The Dual model includes a set of dual decision variables in addition to the variables
used in the If-Then and PSums models. Most of the constraints of this model are
expressed in terms of these dual variables.

Implementation of our models uses the predefined constraints available in standard CP
solvers.

The proposed models have some similarities. Firstly, all of them have a set of de-
cision variables ki, i = 0, 1, . . . , N , representing the switching policy. Each ki with
i < N has the domain [i, i + 1, . . . , S − N + i] (since ki < ki+1) and kN is con-
strained to equal S. Secondly, a set of auxiliary variables is included in each model
to represent the probabilities needed for the calculation of the quantities of interest. In
addition, a constraint stating that B ≥ Bl, a set of constraints ki < ki+1, for all i from
0 to N − 1, (since the number of workers in the front room, i, increases only when the
number of customers, ki, increases) and constraint (6) are included in all three models.
Constraint (6) ensures that an assignment of all decision variables leads to a unique
solution of the balance equations.

P (k0)
N∑

i=0

βSum(ki) = 1 (6)

The calculation of
∑N

i=0 βSum(ki) requires some auxiliary variables, which are de-
fined in Equations (7) and (8). The derivation of these equations, based on expressions
presented in [3], can be found in [14].

βSum(ki) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xi

(
λ

μ

)ki−1−k0+1 (
1
i

)

⎡

⎢
⎢
⎢
⎣

1−
�
� λ

iμ

�
�

ki−ki−1

1−
�
� λ

iμ

�
�

⎤

⎥
⎥
⎥
⎦

if λ
iμ �= 1

Xi

(
λ

μ

)ki−1−k0+1 (
1
i

)

(ki − ki−1) otherwise.

(7)

Xi =
i−1∏

g=1

(
1
g

)kg−kg−1

i = 1, . . . , N ; (X1 ≡ 1) (8)

All models also include constraints for representing F , L and Wq . However, the expres-
sions for F and L differ slightly depending on the model, as described below.

3.1 If-Then Model

The initial model is based directly on the formulation of Berman et al. The model in-
cludes the variables P (j) for j = k0, k0 + 1, . . . , k1, k1 + 1, . . . , S − 1, S, each repre-
senting the probability of there being j customers in the front room. These are floating
point variables with domain [0..1]. The balance equations are represented by a set of

308 D. Terekhov and J.C. Beck

if-then constraints. For example, the first balance equation, P (j)λ = P (j + 1)μ for
j = k0, k0 + 1, ..., k1 − 1, is represented by the constraint: (k0 ≤ j ≤ k1 − 1) →
P (j)λ = P (j + 1)μ. Thus, somewhat inelegantly, an if-then constraint of this kind has
to be added for each j between 0 and S − 1 in order to represent one balance equation.
In order to represent the rest of these equations, this technique has to be applied for
each pair of switching points ki, ki+1 for i from 0 to N − 1. In addition, such if-then
constraints are used for Equation (2), due to the dependence of this constraint on sums
of variables between two switching points.

3.2 PSums Model

In order to avoid the if-then constraints, closed-form expressions3 for the sums of prob-
abilities between two switching points were derived and used as the basis of the second
model. The set of P (j) variables from the formulation of Berman et al. is replaced by
a set of PSums(ki) variables for i = 0, ..., N − 1, together with a set of probabili-
ties P (ki) for i = 0, 1, 2, . . . , N . The PSums(ki) variable represents the sum of all
probabilities between ki and ki+1 − 1 and is defined in Equation (9). Equation (10) is a
recursive formula for computing P (ki). P (k0) can be computed using Equation (6).

PSums(ki) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P (ki)
1 −

[
λ

(i + 1)μ

]ki+1−ki

1 − λ

(i + 1)μ

if λ
(i+1)μ �= 1

P (ki)(ki+1 − ki) otherwise.

(9)

P (ki+1) =
[

λ

(i + 1)μ

]ki+1−ki

P (ki) (10)

All quantities of interest can be expressed in terms of the PSums(ki) variables and the
switching point probabilities, P (ki). In particular, the expected number of workers in
the front room is

F =
N∑

i=1

i [PSums(ki−1) − P (ki−1) + P (ki)] . (11)

L, the expected number of customers in the front room, is

L =
N−1∑

i=0

L(ki) + kNP (kN) (12)

3 The derivation of most of these expressions is based on expressing each P (j) in terms of
P (ki) for ki ≤ j via the balance equations. In some derivations, such as that of Equation (9),
the geometric series formula is used. Details can be found in [14].

Solving a Stochastic Queueing Control Problem with Constraint Programming 309

where

L(ki) = kiPSums(ki) +

P (ki)
[

(λ
(i+1)μ)ki+1−ki (ki−ki+1)+(λ

(i+1)μ)ki+1−ki+1(ki+1−ki−1)+ λ
(i+1)μ

[(i+1)μ−λ
(i+1)μ]2

]

. (13)

3.3 Dual Model

The problem can be alternatively formulated using variables wj , which represent the
number of workers in the front room when there are j customers present. Several ex-
pressions and constraints of the above models can be simplified by using these variables.
Firstly, the balance equations can be stated as

P (j)λ = P (j + 1)wj+1μ j = 0, 1, . . . , S − 1. (14)

This formulation of the balance equations avoids the inefficient if-then constraints.
Secondly, F , the expected number of workers in the front room, can be stated as

F =
S∑

j=0

wjP (j). (15)

The difficulty with this model arises from the fact the P (j) variables should be de-
fined only for j ≥ k0 (since P (k0) is the probability of having from 0 to k0 customers in
the front room). It is hard to express this condition without explicitly having the variable
k0 in the model. Because of this, and since it is known that adding redundant variables
to a model may be beneficial [11], it was decided that both the ki and the wj variables
would be included in this model. In order to use two sets of redundant variables, the
following channelling constraints4 have to be included:

wj < wj+1 ↔ kwj = j j = 0, 1, . . . , S − 1, (16)

wj = wj+1 ↔ kwj �= j j = 0, 1, . . . , S − 1, (17)

wj = i ↔ ki−1 + 1 ≤ j ≤ ki j = 0, 1, . . . , S, i = 1, . . . , N. (18)

Additional constraints on the worker variables that are included in the model are:
w0 = 0, wS = N and wj ≤ wj+1 for all j from 0 to S − 1.

Preliminary experiments with these models showed poor performance. As one might
expect from a problem with few constraints between decision variables, there was lit-
tle constraint propagation, and search was required to essentially investigate the entire
branch-and-bound tree. As a consequence, we examine shaving [4,9].

4 Constraints (16) and (17) are redundant given the constraint wj ≤ wj+1. However, such
redundancy can often lead to increased propagation [7]. In future work, we will examine the
effect that removing one of these constraints may have on the performance of the program.

310 D. Terekhov and J.C. Beck

4 Shaving

Shaving is a procedure for enforcing consistency in CSPs. It is based on temporarily
adding constraints to the problem, performing propagation and making inferences ac-
cording to the resulting state of the problem [5,15]. In our proposed shaving algorithm,
AlternatingSearchAndShaving, two shaving procedures are run initially until they are
no longer able to make domain reductions. Search is then performed until a better so-
lution is found, at which point the shaving procedures are applied again. Subsequently,
search and shaving alternate until one of them proves optimality of the best solution
found. The first of the two shaving procedures makes inferences based on the feasibil-
ity of policies with respect to the Bl constraint, while the second one is based on the
constraint Wq ≤ bestWq, where bestWq is the Wq value of the best policy found up
to that point. In both shaving procedures, if the inferred constraint violates the current
upper or lower bound of a ki, then the best policy found up to that point is optimal.

Bl Shaving. Let min(ki) and max(ki) be, respectively, the smallest and largest values
in the current domain of variable ki. At each step of the Bl-based shaving procedure,
ki = min(ki) or ki = max(ki) is temporarily added to the model for i ∈ {0, ..., N−1}.
If ki = min(ki) is added, then all other switching points are assigned the maximum
possible values subject to the condition that kn < kn+1, ∀n ∈ {0, ..., N − 1}. If the
resulting policy is infeasible, the constraint ki > min(ki) can be permanently added:
if all variables except ki are set to their maximum values, and the problem is infeasible
(based on the Bl constraint), then, by Theorem 1, in any feasible policy ki must be
greater than min(ki). If ki = max(ki) is added, all other switching points are assigned
the minimum possible values. If the resulting policy is feasible, the constraint ki <
max(ki) can be permanently added to the model. Since all variables except ki are at the
minimum values already, and ki is at its maximum, it must be true, again by Theorem 1,
that in any better solution the value of ki has to be smaller than max(ki). In both cases,
after the resulting policy is checked for feasibility, the temporary constraint is removed.

Wq Shaving. The Wq-based shaving procedure makes inferences based strictly on the
constraint Wq ≤ bestWq. The constraint B ≥ Bl is removed prior to running this
procedure in order to eliminate the possibility of incorrect inferences. Similarly to the
Bl-based shaving procedure, a constraint of the form ki = max(ki) is added and the
smallest possible values are assigned to the rest of the variables. As the Bl constraint
has been removed, the only reason why the policy could be infeasible is because it has a
Wq value greater than the best Wq that has been encountered so far. Since all switching
points except ki are assigned their smallest possible values, this implies that in any
solution with a better Wq , the value of ki has to be strictly smaller than max(ki).

5 Experimental Results

Several sets of experiments were performed in order to evaluate the efficiency of the
proposed models and the shaving procedure, as well as to compare the performance of
the best CP model with the performance of the heuristic proposed by Berman et al. All

Solving a Stochastic Queueing Control Problem with Constraint Programming 311

CP models were implemented in ILOG Solver 6.2, while Berman et al.’s heuristic was
implemented using C++. In all models, search assigns switching points in increasing
index order and the smallest value in the domain of each variable is tried first.

The experimental results presented here are based only on the instances for which

the optimal is between K̂ and ˆ̂
K, as instances in which either of these policies is opti-

mal, or ˆ̂
K is infeasible, are easily solved both by the heuristic and the CP models with

the elementary Bl-based shaving procedure. Preliminary experiments indicated that the
value of S has a significant impact on the efficiency of the algorithms since higher val-
ues of S result in larger domains for the ki variables for all models and also a higher
number of wj variables for the Dual model. Therefore, we considered instances for
each value of S from the set {10, 20, . . . , 100} in order to gain an accurate understand-
ing of the performance of the model and the heuristic.5 Thirty feasible instances for

which the optimal policy is neither K̂ nor ˆ̂
K were generated for each S. A 10-minute

time limit on the overall run-time of the program was enforced in the experiments. All
experiments were performed on a Dual Core AMD 270 CPU with 1 MB cache, 4 GB
of main memory, running Red Hat Enterprise Linux 4.

In order to perform comparisons between the CP models and the heuristic, we look
at the number of instances in which the optimal solution was found and in which op-
timality was proved, and the mean relative error (MRE). MRE is a measure of so-
lution quality that allows one to observe how quickly a particular algorithm is able
to find a good solution. MRE is defined as 1

|M|
∑

m∈M
c(a,m)−c∗(m)

c∗(m) , where a is a
particular algorithm used to solve the problem, M is the set of problem instances on
which the algorithm is being tested, c(a, m) is the cost of a solution found for instance
m by algorithm a, and c∗(m) is the best solution for instance m found during our
experiments.

5.1 Comparison of Constraint Programming Models

Table 1 presents, for each model, the number of instances in which it finds the best
solution (out of 300), the number of instances in which it finds the optimal solution
(out of the 240 instances for which the optimal solution is known), and the number of
times it proves optimality. It can be seen that all models find the optimal solution in
the 240 instances for which it is known. However, the PSums model outperforms the
other two models in the rest of the performance measures, proving optimality in 79%
of all instances, and finding the best-known solution of any algorithm in 97.3% of all
the instances considered.

Observations from Table 1 can be further confirmed by looking at Figure 1 (Left).
The figure shows how MRE changes over the first 50 seconds of run-time for If-Then,
PSums and Dual models with AlternatingSearchAndShaving, and for P1 (we com-
ment on the performance of P1 in Section 5.2). It can be seen that PSums is, on av-
erage, able to find better solutions than the other two models given the same amount of
run-time.

5 For most instances with S greater than 100, neither our method nor Berman et al.’s heuristic
P1 may be used due to numerical instability. The maximum value of S used in the experiments
of Berman et al. is also 100.

312 D. Terekhov and J.C. Beck

Table 1. Comparison of three CP models with AlternatingSearchAndShaving with Berman’s
Heuristic P1. The Hybrid model is presented in Section 6.

best found (/300) # optimal found (/240) # optimal proved (/300)
PSums 292 240 238
If-Then 280 240 234
Dual 281 240 234
P1 282 239 0

PSums-P1 Hybrid 300 240 238

5.2 P1 vs. the Best Constraint Programming Approach

It can be seen, from Table 1, that the heuristic performs extremely well, finding the
best-known solution in only ten fewer instances than the PSums model, in two more
instances than the If-Then model and in one more than the Dual. Moreover, it finds,
but, of course, cannot prove, the optimal solution in 79.6% of all instances (239 out of
the 240 instances for which the optimal is known). Its run-time is negligible, while the
mean run-time of the best CP model, PSums, is approximately 130 seconds.

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Run Time (seconds)

M
ea

n
R

el
at

iv
e

E
rr

or

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

If−Then Model
PSums Model
Dual Model
Berman Heuristic P1

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

Values of S

M
ea

n
R

el
at

iv
e

E
rr

or

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

20 40 60 80 100

1
 e

−
09

1
 e

−
07

1
 e

−
05

1
 e

−
03

1
 e

−
01

PSums Model At 10 seconds
PSums Model At 150 seconds
PSums Model At 500 seconds
Berman Heuristic

Fig. 1. Left: Comparison of MRE of three CP models with AlternatingSearchAndShaving with
Berman’s P1 heuristic. Right: MRE for each value of S for P1 and the PSums model.

From Figure 1 (Left), it can be observed that the heuristic achieves a very small
MRE in a negligible amount of time. After about 50 seconds of run-time, the MRE
over 300 instances resulting from PSums with AlternatingSearchAndShaving becomes
comparable to that of the heuristic MRE.

In Figure 1 (Right), the MRE for the 30 instances for each value of S is presented
for P1 and for PSums with AlternatingSearchAndShaving at 10, 150 and 500 seconds
of run-time. After 10 seconds, the performance of PSums is comparable to that of the
heuristic for S ≤ 40, but the heuristic appears to be quite a bit better for higher values
of S. At 150 seconds, the performance of PSums is comparable to that of the heuristic

Solving a Stochastic Queueing Control Problem with Constraint Programming 313

except at S of 50 and 80. After 500 seconds, PSums has a smaller or equivalent MRE
over the 300 instances and also a lower MRE for each value of S except 50 and 100.

Overall, these results indicate that P1 performs extremely well—its run-time is neg-
ligible, it finds the optimal solution in 79.6% of the instances and the best-known so-
lution in 94%. Moreover, it results in very low MRE. Although PSums with Alternat-
ingSearchAndShaving is able to achieve better performance in both of these measures,
it is clear that these improvements are quite small given that the PSums run-time is so
much higher than the run-time of the heuristic.

6 PSums-P1 Hybrid

Naturally, it is desirable to create a method that would be able to find a solution of
high quality in a short amount of time, as does Berman’s heuristic, and that would
also have the same high rate of being able to prove optimality within a reasonable run-
time as does PSums with AlternatingSearchAndShaving. It is therefore worthwhile to
experiment with a PSums-P1 Hybrid, which starts off by running P1 and then, assuming
the instance is feasible, uses the PSums model with AlternatingSearchAndShaving to
find a better solution or prove the optimality of the solution found by P1 (infeasibility

of an instance is proven if the heuristic determines that policy ˆ̂
K is infeasible).

Since P1 is very fast, running it first incurs almost no overhead. We have also shown
that P1 provides solutions of very high quality (in 94% of instances used in the experi-
ments, it found the best-known solution). Therefore, the first iteration of the Wq-based
procedure should be able to significantly prune the domains of switching point variables
because of the good quality solution found by the heuristic. Continuing by alternating
the two shaving techniques and search, which has also been shown to be an effective
approach, should result in at least as many instances for which optimality is proven as
for the PSums model with AlternatingSearchAndShaving.

The proposed hybrid algorithm was tested on the same set of 300 instances that was
used above. Results of the hybrid are presented in Table 1. The hybrid was able to find
the best-known solution in all 300 cases while still being able to prove optimality in as
many cases as PSums. Thus, in spite of the good quality solutions that are discovered
quickly because of the heuristic, the domains of switching points in some instances are
not reduced enough to increase the number of cases in which optimality is proved. The
mean run-time for the hybrid is 130.18 seconds, which is essentially identical to the
mean run-time of 129.98 seconds for PSums with AlternatingSearchAndShaving.

Thus, the hybrid is the best choice for solving this problem: it finds as good a solution
as the heuristic in as little time (close to 0 seconds), it is able to prove optimality in as
many instances as the best pure CP method, and it finds the best-known solution in all
instances considered. Moreover, all these improvements are achieved with a negligible
increase in the average run-time over the PSums model with shaving.

7 Discussion

In this section, we examine some of the reasons for the poor performance of the CP
models without shaving and suggest reasons for the observed differences among them.

314 D. Terekhov and J.C. Beck

7.1 Lack of Back-Propagation

In our experiments, we have some instances for which even the PSums-P1 hybrid with
AlternatingSearchAndShaving is unable to find and prove optimality within the 10-
minute time limit. Further analysis of the algorithm’s behaviour suggests that this per-
formance can be explained by the lack of back-propagation. Back-propagation refers to
the pruning of the domains of the decision variables due to the addition of a constraint
on the objective function: the objective constraint propagates “back” to the decision
variables, removing domain values and so reducing search. In the CP models presented
above, there is very little back-propagation. We illustrate this by focusing on the PSums
model without shaving.

Throughout search, if a new best solution is found, the constraint Wq ≤ bestWq,
where bestWq is the new objective value, is added to the model. However, the domains
of the switching point variables are usually not reduced in any way after the addition of
such a constraint. This can be illustrated by observing the amount of propagation that
occurs in the model when Wq is constrained.

For example, consider an instance of the problem with S = 6, N = 3, λ = 15,
μ = 3, and Bl = 0.32. The initial domains of the switching point variables are
[0..3], [1..4], [2..5] and [6]. The initial domains of the probability variables P (ki) for

each i, after the addition of Wq bounds provided by K̂ and ˆ̂
K, are listed in Table 2.

The initial domain of Wq , also determined by the objective function values of K̂ and
ˆ̂
K, is [0.22225..0.425225]. The initial domains of L and F , are [2.8175e−7..6] and
[0..2.68], respectively. Upon the addition of the constraint Wq ≤ 0.306323, where
0.306323 is the known optimal value for this instance, the domain of Wq is reduced
to [0.22225..0.306323], the domain of L becomes [1.68024..6] and the domain of F
remains [0..2.68]. The domains of P (ki) after this addition are listed in Table 2. The do-
mains of both types of probability variables are reduced by the addition of the new Wq

constraint. However, the domains of the switching point variables remain unchanged.
Therefore, even though all policies with value of Wq less than 0.306323 are infeasible,
constraining Wq to be less than this value does not result in any reduction of the search
space. It is still necessary to enumerate all remaining policies in order to show that no
better feasible solution exists.

One of the reasons for the lack of pruning of the domains of the ki variables due to
the Wq constraint is likely the complexity of the expression for Wq . In particular, recall
that Wq is expressed in all models as Wq = L

λ(1−P (S)) − 1
μ . In the example above,

when Wq is constrained to be less than or equal to 0.306323, we get the constraint
0.306323 ≥ L

15(1−P (S)) − 1
3 , which implies that 9.594845(1 − P (S)) ≥ L. This ex-

plains why the domains of both L and P (S) change upon this addition to the model. The
domains of the rest of the P (ki) variables change because of the relationships between
the P (ki)s (Equation (10)) and because of the constraint that the sum of all probability
variables has to be 1. Similarly, the domains of PSums(ki) change because these vari-
ables are expressed in terms of P (ki) (Equation (9)). However, because the actual ki

variables mostly occur as exponents in expressions for PSums(ki), P (ki), and L(ki),
the minor changes in the domains of PSums(ki), P (ki), or L(ki) that happen due to
the constraint on Wq have no effect on the domains of the ki. This analysis suggests

Solving a Stochastic Queueing Control Problem with Constraint Programming 315

Table 2. Domains of P (j) and PSums(j) variables for j = k0, k1, k2, k3, before and after the
addition of the constraint Wq ≤ 0.306323

Before addition of Wq ≤ 0.306323 After addition of Wq ≤ 0.306323
j P (j) PSums(j) P (j) PSums(j)
k0 [4.40235e−6 ..0.979592] [0..1] [4.40235e−6 ..0.979592] [0..0.683666]
k1 [1.76094e−7 ..1] [0..1] [0.000929106..1] [0..0.683666]
k2 [2.8175e−8 ..0.6] [2.8175e−8 ..1] [0.0362932..0.578224] [0.0362932..0.71996]
k3 [4.6958e−8..1] N/A [0.28004..0.963707] N/A

that it may be interesting to investigate a CP model based on log-probabilities rather
than on the probabilities themselves. Such a model may lead to stronger propagation.

7.2 Differences in the Constraint Programming Models

Experimental results demonstrate that the best CP model of those proposed is PSums.
In all models, the shaving procedures make the same number of domain reductions
because shaving is based on the Wq and Bl constraints. However, the time that each
shaving iteration takes is dependent on the model. Our empirical results show that each
iteration of shaving takes a smaller amount of time with the PSums model than with
the other two. This appears to be the primary reason for the PSums model finding good
solutions faster than the other models, as shown in Figure 1 (Left). PSums is radically
different from the other two models because it does not include an explicit representa-
tion of the balance equations. This model thus avoids the if-then constraints required in
the If-Then model. Moreover, PSums has a smaller number of probability variables than
the other two models, because it calculates sums of probabilities between two switching
points rather than the probability of j customers being present in the front room for all
j from 0 to S. This reduces the number of probability variables from S + 1 to 2N + 1.
In addition, the probability variables included in this model are more tightly linked by
the closed-form expressions. Thus, because of the tighter links between variables, and a
smaller number of variables, each iteration of shaving in PSums takes a smaller amount
of time than in the other two models.

A comparison of the If-Then model with the Dual using Figure 1 shows that the If-
Then model is usually able to find good solutions in a smaller amount of time. This is
slightly surprising because the Dual model uses a much simpler representation of the
balance equations and the expression for F , avoiding the use of if-then constraints. One
possible explanation for the Dual sometimes taking more time to find a good solution is
that, at each shaving iteration, it has to assign more variables (via propagation) than the
other two models. In particular, in order to represent a switching policy, the Dual has to
assign S wj variables in addition to N ki variables (usually, S is much larger than N).

On the other hand, within the given time limit, the Dual found the best solution
in one more instance than the If-Then model. This may be due to an increase in the
amount of propagation which results from the use of dual variables. In fact, an exam-
ination of the initial domains of the probability variables for the example instance of
Section 7.1 shows that these domains are quite a bit smaller in the Dual model than
in the If-Then model (e.g. the domain of P (0) is [0..1] in the If-Then model, while it

316 D. Terekhov and J.C. Beck

is [0..0.00926208] in the Dual). This examination also shows that the initial domains
of probability variables in the If-Then and Dual models are actually smaller than those
in the PSums model. This implies that there exist some instances in which more initial
propagation occurs in the If-Then model or the Dual model than in PSums.

8 Related Work and Possible Extensions

Several papers exist that deal with similar types of problems as the one considered here.
For example, Berman & Larson [2] study a similar problem of switching workers between
two rooms in a retail facility where the customers in the front room are divided into two
categories, those “shopping” in the store and those at the checkout. Similarly, Palmer &
Mitrani [10] consider the problem of switching computational servers between different
types of jobs where the randomness of user demand may lead to unequal utilization of
resources. Batta et al. [1] study the problem of assigning cross-trained customer service
representatives to different types of calls in a call centre, depending on estimated demand
patterns for each type of call. These three papers provide examples of problems for which
CP could prove to be a useful approach. Investigating CP solutions to these problems is
therefore one possible direction of future work. In particular, it may be interesting to look
at problems with more complex constraints (e.g., on capacities or between workers) that
may be naturally suitable for the CP approach. A complementary direction is to study
the basic models of queueing theory in order to understand the applicability of CP.

9 Conclusions

In this paper, a constraint programming approach is proposed for the problem of finding
the optimal times to switch workers between the front room and the back room of
a retail facility under stochastic customer arrival and service times. This is the first
work of which we are aware that examines solving such stochastic queueing control
problems using constraint programming. The best pure CP method proposed is able
to prove optimality in a large proportion of instances within a 10-minute time limit.
Previously, there existed no non-heuristic solution to this problem aside from naive
enumeration. As a result of our experiments, we hybridized the best pure CP model with
the heuristic proposed for this problem in the literature. This hybrid technique is able to
achieve performance that is equivalent to, or better than, that of each of the individual
approaches alone: it is able to find very good solutions in a negligible amount of time
due to the use of the heuristic, and is able to prove optimality in a large proportion of
problem instances within 10 CPU minutes due to the CP model.

This work demonstrates for the first time that constraint programming can be a good
approach for solving a stochastic optimization problem based on queueing theory.

References

1. R. Batta, O. Berman, and Q. Wang. Balancing staffing and switching costs in a
call/service center. European Journal of Operations Research. To Appear. Available at:
http://www.acsu.buffalo.edu/˜batta/papers/Batta et al.pdf.

Solving a Stochastic Queueing Control Problem with Constraint Programming 317

2. O. Berman and R. Larson. A queueing control model for retail services having back room
operations and cross-trained workers. Computers and Operations Research, 31(2):201–222,
2004.

3. O. Berman, J. Wang, and K. P. Sapna. Optimal management of cross-trained workers
in services with negligible switching costs. European Journal of Operations Research,
167(2):349–369, 2005.

4. Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. In Proceedings of
the Joint International Conference and Symposium on Logic Programming, pages 363–377.
MIT Press, 1996.

5. S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-based cutting planes:
An application to the resource-constrained project scheduling problem. INFORMS Journal
on Computing, 17(1):52–65, 2005.

6. D. Gross and C. Harris. Fundamentals of Queueing Theory. John Wiley & Sons, Inc., 1998.
7. B. Hnich, B. Smith, and T. Walsh. Dual modelling of permutation and injection problems.

Journal of Artificial Intelligence Research, 21:357–391, 2004.
8. J. D. C. Little. A proof of the queueing formula L = λW . Operations Research, 9:383–387,

1961.
9. P. Martin and D. B. Shmoys. A new approach to computing optimal schedules for the job

shop scheduling problem. In Proceedings of the Fifth Conference on Integer Programming
and Combinatorial Optimization, pages 389–403, 1996.

10. J. Palmer and I. Mitrani. Optimal server allocation in reconfigurable clusters with multiple
job types. In Proceedings of the Computational Science and Its Applications International
Conference, pages 76–86, 2004.

11. B.M. Smith. Modelling for constraint programming. Lecture Notes for the
First International Summer School on Constraint Programming, 2005. Available at:
http://www.math.unipd.it/˜frossi/cp-school/.

12. S.A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint programming: A scenario-
based approach. Constraints, 11(1):53–80, 2006.

13. S.A. Tarim and A. Miguel. A hybrid Benders’ decomposition method for solving stochastic
constraint programs with linear recourse. In Joint ERCIM/CoLogNET International Work-
shop on Constraint Solving and Constraint Logic Programming, pages 133–148, 2005.

14. D. Terekhov and J. C. Beck. Solving a stochastic queueing control problem with
constraint programming. Technical Report MIE-OR-TR2006-06, Department of Me-
chanical and Industrial Engineering, University of Toronto, 2006. Available from
http://www.mie.utoronto.ca/labs/ORTechReps/.

15. M.R.C. van Dongen. Beyond singleton arc consistency. In Proceedings of the 17th European
Conference on Artificial Intelligence, pages 163–167, 2006.

16. T. Walsh. Stochastic constraint programming. In Proceedings of the 15th European Confer-
ence on Artificial Intelligence, pages 111–115, 2002.

	Introduction
	Problem Description
	Problem Definition
	Berman et al.'s Heuristic

	Constraint Programming Models
	If-Then Model
	PSums Model
	Dual Model

	Shaving
	Experimental Results
	Comparison of Constraint Programming Models
	P1 vs. the Best Constraint Programming Approach

	PSums-P1 Hybrid
	Discussion
	Lack of Back-Propagation
	Differences in the Constraint Programming Models

	Related Work and Possible Extensions
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

