
Simple Rules for Low-Knowledge Algorithm

Selection?

J. Christopher Beck and Eugene C. Freuder

Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Cork, Ireland

{c.beck,e.freuder}@4c.ucc.ie

Abstract. This paper addresses the question of selecting an algorithm
from a predefined set that will have the best performance on a scheduling
problem instance. Our goal is to reduce the expertise needed to apply
constraint technology. Therefore, we investigate simple rules that make
predictions based on limited problem instance knowledge. Our results
indicate that it is possible to achieve superior performance over choosing
the algorithm that performs best on average on the problem set. The
results hold over a variety of different run lengths and on different types
of scheduling problems and algorithms. We argue that low-knowledge
approaches are important in reducing expertise required to exploit opti-
mization technology.

1 Introduction

Using constraint technology still requires significant expertise. A critical area
of research if we are to achieve large scale adoption is the reduction of the skill
required to use the technology. In this paper, we adopt a low-knowledge approach
to automating algorithm selection for scheduling problems. Specifically, given an
overall time limit T to find the best solution possible to a problem instance, we
run a set of algorithms during a short “prediction” phase. Based on the quality
of the solutions returned by each algorithm, we choose one of the algorithms to
run for the remainder of T . A low-knowledge approach is important in actually
reducing the expertise required rather than simply shifting it to another portion
of the algorithm selection process. Empirical analysis on two types of scheduling
problems, disjoint algorithm sets, and a range of time limits demonstrates that
such an approach consistently achieves performance no worse than choosing
the best pure algorithm and furthermore can achieve performance significantly
better.

The contributions of this paper are the introduction of a low-knowledge ap-
proach to algorithm selection, the demonstration that such an approach can
achieve performance better than the best pure algorithm, and the analysis of
the empirical results to characterize limits on the performance of any on-line
algorithm selection technique.

? This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075 and ILOG, SA. Copyright c©Springer-Verlag



2

2 The Algorithm Selection Problem

The algorithm selection problem consists of choosing the best algorithm from a
predefined set to run on a problem instance [1]. In AI, the algorithm selection
problem has been addressed by building detailed, high-knowledge models of the
performance of algorithms on specific types of problems. Such models are gener-
ally limited to the problem classes and algorithms for which they were developed.
For example, Leyton-Brown et al. [2] have developed strong selection techniques
for combinatorial auction algorithms that take into account 35 problem features
based on four different representations. Other work applying machine learning
techniques to algorithm generation [3] and algorithm parameterization [4–6] is
also knowledge intensive, developing models specialized for particular problems
and/or search algorithms and algorithm components.

Our motivation for this work is to lessen the expertise necessary to use opti-
mization technology. While existing algorithm selection techniques have shown
impressive results, their knowledge-intensive nature means that domain and al-
gorithm expertise is necessary to develop the models. The overall requirement
for expertise has not been reduced: it has been shifted from algorithm selection
to predictive model building. It could still be argued that the expertise will have
been reduced if the predictive model can be applied to different types of prob-
lems. Unfortunately, so far, the performance of a predictive model tends to be
inversely proportional to its generality: while models accounting for over 99% of
the variance in search cost exist, they are not only algorithm and problem spe-
cific, but also problem instance specific [7]. While the model building approach

is general, the requirement for expertise remains: an in-depth study of the do-
main and of different problem representations is necessary to identify features
that are predictive of algorithm performance. To avoid shifting the expertise
to model building, we examine models that require no expertise to build. The
feature used for prediction is the solution quality over a short period of time.

The distinction between low- and high-knowledge (or knowledge-intensive)
approaches focuses on the number, specificity, and computational complexity
of the measurements of a problem instance required to build a model. A low-
knowledge approach has very few, inexpensive metrics, applicable to a very wide
range of algorithms and problem types. A high-knowledge approach has more
metrics, that are more expensive to compute, and are more specific to particular
problems and algorithms. This distinction is independent of the model build-
ing approach. In particular, sophisticated model building techniques based on
machine learning techniques are consistent with low-knowledge approaches.

3 On-line Scenario and Prediction Techniques

We use the following on-line scenario: a problem instance is presented to a
scheduling system and that system has a fixed CPU time of T seconds to return
a solution. We assume that the system designer has been given a learning set
of problem instances at implementation time and that these instances are rep-
resentative of the problems that will be later presented. We assume that there



3

exists a set of algorithms, A, that can be applied to the problems in question.
Algorithm selection may be done off-line by, for example, using the learning set
to identify the best pure algorithm overall and running that on each problem
instance. Alternatively, algorithm selection can be done on-line, choosing the
algorithm only after the problem instance is presented. In the latter case, the
time to make the selection must be taken into account. To quantify this, let tp

represent the prediction time and tr the subsequent time allocated to run the
chosen pure technique. It is required that T = tp + tr.

For the low-knowledge techniques investigated here, each pure algorithm,
a ∈ A, is run for a fixed number of CPU seconds, t, on the problem instance.
The results of each run are then used to select the algorithm that will achieve
the best performance given the time remaining. We require that tp = |A| × t.
The learning set is used to identify t∗ which is the value of t that leads to the
best system performance.

Three simple prediction rules each with three variations are investigated:

– pcost - Selection is based on the cost of the best solution found by each
algorithm. The three variations are: pcost min(t): the algorithm that has
found the minimum cost solution over all algorithms by time t is selected;
pcost mean(t): the algorithm with the minimum mean of the best solutions
(sampled at 10 second intervals) is selected; pcost median(t): identical to
pcost mean(t) except the median is used in place of the mean.

– pslope - Selection is based on the change in the cost of the best solutions
found at 10 second intervals. The three variations are: pslope min(t): the al-
gorithm that has the minimum slope between t−10 and t seconds is selected;
pslope mean(t): the algorithm with minimum mean slope for each pair of
consecutive 10 second intervals is selected; pslope median(t): identical to
pslope mean(t) except the median is used in place of the mean.

– pextrap - Selection is based on the extrapolation of the current cost and
slope to a predicted cost at T . As above, the three variations are: pextrap min(t):
the best solutions for an algorithm at time t and t− 10 are used to define a
line which is used to extrapolate the cost at time T ; the algorithm that has
the minimum extrapolated cost is chosen; pextrap mean(t) the algorithm
with the minimum mean extrapolated cost over each interval of 10 seconds
from 20 seconds to t seconds is selected; pextrap median(t) identical to
pextrap mean(t) except the median is used in place of the mean.

For all rules ties are broken by selecting the algorithm with the best mean so-
lution quality on the learning set at time T . The sampling interval was arbitrarily
set to 10 seconds as it allowed time for a reasonable amount of search.

4 Initial Experiment

Our initial experiment divides a set of problem instances into a learning set
and a test set, uses the learning set to identify t∗ for each prediction rule and
variation, and then applies each rule variation using tp = |A| × t∗ to the test
problems.



4

4.1 Problem Sets and Algorithms

Three sets of 20 × 20 job shop scheduling (JSP) problems are used. A total of
100 problem instances in each set were generated and 20 problems per set were
chosen as the learning set. The rest were placed in the test set. The problem sets
have different structure based on the generation of the activity durations.

– Rand: Durations are drawn randomly with uniform probability from the
interval [1, 99].

– MC: Durations are drawn randomly from a normal distribution. The distri-
butions for activities on different machines are independent. The durations
are, therefore, machine-correlated (MC).

– JC: Durations are drawn randomly from a normal distribution. The distri-
butions for different jobs are independent. Analogously to the MC set, these
problems are job-correlated (JC).

These different problem structures have been studied for flow-shop scheduling
[8] but not for job shop scheduling. They were chosen based on the intuition that
the different structures may differentially favor one pure algorithm and therefore
the algorithms would exhibit different relative performance on the different sets.
Such a variation is necessary for on-line prediction to be useful: if one algorithm
dominates on all problems, the off-line selection of that algorithm will be optimal.

Three pure algorithms are used. These were chosen out of a set of eight
algorithms because they have generally comparable behavior on the learning
set. The other techniques investigated performed much worse (sometimes by an
order of magnitude) on every problem. The three algorithms are:

– tabu-tsab: a sophisticated tabu search due to Nowicki & Smutnicki [9]. The
neighborhood is based on swapping pairs of adjacent activities on a subset
of a randomly selected critical path. An important aspect of tabu-tsab is the
use of an evolving set of the five best solutions found. Search returns to one
of these solutions and moves in a different direction after a fixed number
(1000 in our experiments) of iterations without improvement.

– texture: a constructive search technique using texture-based heuristics [10],
strong constraint propagation [11, 12], and bounded chronological backtrack-
ing. The bound on the backtracking follows the optimal, zero-knowledge
pattern of 1, 1, 2, 1, 1, 2, 4, . . . [13]. The texture-based heuristic identi-
fies a resource and time point with maximum competition among the the
activities and chooses a pair of unordered activities, branching on the two
possible orders. The heuristic is randomized by specifying that the resource
and time point is chosen with uniform probability from the top 10% most
critical resources and time points.

– settimes: a constructive search technique using the SetTimes heuristic [14],
the same propagation as texture, and slice-based search [15], a type of
discrepancy-based search. The heuristic chronologically builds a schedule by
examining all activities with minimal start time, breaking ties with minimal
end time, and then breaking further ties arbitrarily. The discrepancy bound
follows the pattern: 2, 4, 6, 8, . . ..



5

4.2 Experimental Details

For these experiments, the overall time limit, T , is 1200 CPU seconds. Each
pure algorithm is run for T seconds with results being logged whenever a better
solution is found. This design lets us process the results to examine the effect of
different settings for the prediction time, tp, and different values for T ≤ 1200.
As noted, the number of algorithms, |A|, is 3.

To evaluate the prediction rules, we process the data as follows. Given a pure
algorithm time of t = tp/|A| seconds, we examine the best makespans found by
each algorithm on problem instance k up to t seconds. Based on the prediction
rule, one algorithm, a∗, is chosen. We then examine the best makespan found
by a∗ for k at t + tr where tr = T − t × |A|. This evaluation means that we are
assuming that each pure algorithm can be run for t CPU seconds, one can be
chosen, and that chosen one can continue from where it left off.

4.3 Results

Learning Set Table 1 displays the fraction of learning problems in each subset
and overall for which each algorithm found the best solution. It also shows the
mean relative error (MRE), a measure of the mean extent to which an algorithm
finds solutions worse than the best known solutions. MRE is defined as follows:

MRE (a, K) =

∑
k∈K

c(a,k)−c∗(k)
c∗(k)

|K|
(1)

Where:

– K is a set of problem instances
– c(a, k) is the lowest cost solution found by algorithm a on k
– c∗(k) is the lowest cost solution known k.

Tabu-tsab finds the best solution for slightly more problems than texture and
produces the lowest MRE. These differences are slight as in 50% of the problems,
texture finds the best solution. As expected, there are significant differences
among the problems sets: while tabu-tsab clearly dominates in the MC problem
set, the results are more uniform for the random problem set and texture is
clearly superior in the JC set.

MC Rand JC All
Frac. Best MRE Frac. Best MRE Frac. Best MRE Best MRE

tabu-tsab 0.7 0.00365 0.6 0.00459 0.3 0.00688 0.53 0.00504

texture 0.2 0.01504 0.4 0.00779 0.9 0.00092 0.5 0.00792

settimes 0.1 0.03752 0 0.03681 0.5 0.00826 0.2 0.02753
Table 1. Fraction of problems in each learning problem set for which the best solution
was found by each algorithm (Frac. Best) and their mean relative error (MRE).



6

 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250  300  350  400

R
el

at
iv

e 
M

ea
n 

R
el

at
iv

e 
E

rr
or

Prediction Time (secs)

pcost_max(t)
pcost_rand(t)
pcost_min(t)

pslope_mean(t)
pextrap_mean(t)

Fig. 1. The performance of the best variation of each prediction rule at prediction time
t ∈ {10, 20, . . . , 400} on the JSP learning set. The graph shows the MRE relative to
the MRE achieved by the best pure algorithm, tabu-tsab.

The best variation of each prediction rule are shown in Figure 1. This graph
presents the relative MRE (RMRE) found by the prediction rule as we varied the
prediction time, t ∈ {10, 20, . . . , 400}. The RMRE displayed for each prediction
rule, p, is the MRE relative to the MRE of best pure algorithm, in this case
tabu-tsab, calculated as follows: RMRE (p(t)) = MRE (p(t))/MRE (tabu-tsab).
Values below y = 1 represent performance better than the best pure algorithm.
For example, the RMRE for pextrap mean(50) is 0.736: the MRE achieved by
the pextrap mean rule at t = 50 is 73.6% that achieved by tabu-tsab.

It is possible that the pure algorithms have such similar performance that
any prediction rule would perform well. Therefore, two additional “straw men”
prediction rules are included in Figure 1: pcost max(t) and pcost rand(t). The
algorithm whose best solution at t is the maximum over all algorithms is cho-
sen in the former and a random algorithm is chosen in the latter. These two
techniques perform substantially worse than the real prediction rules, lending
support to the claim that the observed results are not due to a floor effect.

The best performance for each prediction rule is seen with pcost min(110),
pslope mean(50), and pextrap mean(120). The differences between the MRE of
each prediction rule and tabu-tsab are not statistically significant.1

1 All statistical results in this paper are measured using a randomized paired-t test
[16] and a significance level of p ≤ 0.005.



7

Test Set Table 2 displays the fraction of the problems in the test set for which
each algorithm found the best solution (Fraction Best) and the MRE for each
pure algorithm and for the best variation and prediction time, t∗, of each pre-
diction rule. On the basis of the fraction of best solutions, all prediction rules
are worse than the best pure algorithm (texture) however none of these differ-
ences are statistically significant. Based on MRE, while tabu-tsab and texture
are very closely matched, settimes performs significantly worse and each predic-
tion rule performs better than each pure algorithm. Statistically, however, only
pcost min(110) achieves performance that is significantly better than the best
pure algorithm. In fact, pcost min(t) is robust to changes in t as a difference at
the same level of significance is found for all t ∈ {80, . . . , 260}.

Algorithm t∗ Fraction Best MRE

tabu-tsab - 0.5125 0.00790

texture - 0.5458 0.00859

settimes - 0.125 0.02776

pcost min 110 0.5292 0.00474*

pslope mean 50 0.5208 0.00726

pextrap mean 120 0.475 0.00577

static - 0.725*
�

0.00460*

Table 2. The performance of each pure algorithm and the prediction techniques on
the test set. ‘*’ indicates that the prediction technique achieved an MRE significantly
lower or found the best solution in a significantly higher fraction of problem instances
than the best pure algorithm. ‘‡’ indicates that the static prediction technique found
the best solution in a significantly greater fraction of problems than pcost min.

A Static Prediction Technique The existence of widely differing pure algo-
rithm performance on the different problem subsets (Table 1) suggests that a
high-knowledge, static prediction technique could be built based on categorizing
a problem instance into one of the subsets and then using the algorithm that
performed best on that subset in the learning phase. The static prediction tech-
nique uses texture on the JC problems and tabu-tsab on the other two sets. The
results for static presented in Table 2 make two strong assumptions: the mapping
of a problem instance to a subset is both infallible and takes no CPU time. These
assumptions both favor the static technique over the low-knowledge prediction
techniques. The results indicate that the static technique outperforms all the
other prediction techniques and the pure algorithms in terms of the fraction of
problems solved and does the same as pcost min on MRE.

The static technique is knowledge-intensive: one has to know to look for
the specific duration structure before algorithm performance correlations can be
developed. Therefore, we are not interested specifically in the static technique. It
is included to demonstrate that a high-knowledge technique, even under idealized
assumptions, may not significantly out-perform a low-knowledge technique.



8

5 Investigations of Generality

Our initial experiment demonstrates that, at least for the problem sets, algo-
rithms, and time limit used, it is possible to use low-knowledge prediction and
simple rules to do algorithm selection. Furthermore pcost min(t) achieves MRE
performance that is significantly better than the best pure algorithm and com-
parable to an idealized high-knowledge approach. A number of questions are
raised with respect to the generality of these results. How sensitive are the re-
sults to different choices of parameters such as the overall time limit? Can such
simple rules be successfully applied to other problems and algorithms? Can we
develop a characterization of the situations in which such methods are likely to
be successful? Can we evaluate the results of the prediction rules in an absolute
sense and therefore provide intuitions as to the likelihood that more sophisti-
cated prediction techniques may be able to improve upon them? In this section,
we will address these questions.

5.1 Other Time Limits

In all experiments presented above, the overall CPU time limit, T , was 1200
seconds. Table 3 reports a series of experiments with T ∈ {100, 200, . . . , 1200}.
For each time limit, we repeated the experiment: t∗, the prediction time with the
lowest MRE on the learning set for the best variation of each prediction rule, was
identified, each problem in the test set was solved with each prediction rule using
its t∗ value, and the MRE was compared against the best pure algorithm. There
were no significant differences between the MRE of the best pure technique and
those of the prediction rules across all the T values on the learning set. The
results for the test set are displayed in the final four columns. For time limits
500 ≤ T ≤ 1200, pcost min(t∗) performs significantly better than the best pure
technique. For T = 100 the best pure technique (texture) has a significantly lower
MRE than pcost min(t∗) and pslope min(t∗). For T = 100, the static technique
is able to find significantly lower RMREs than pcost min. No other time limits
showed any difference between static and pcost min. These results indicate that
the results using T = 1200 are relatively robust to different T values.

5.2 Other Problems

Earliness/tardiness scheduling problems (ETSPs) define a set of jobs to be sched-
uled on a set of resources such that each job has an associated due date and costs
associated with finishing the last activity in a job before or after that due date.
The activities within jobs are completely ordered and the resources can only
execute a single activity at any time. Three ETSP algorithms are used here:

– hls: a hybrid local search algorithm combining tabu search with linear pro-
gramming.

– mip: a pure mixed-integer programming approach using the default search
heuristics in CPLEX 7.2 with an emphasis on good solutions over optimal.



9

Learning Set Test Set
Time pcost pslope pextrap pcost pslope pextrap static
Limit RMRE t∗ RMRE t∗ RMRE t∗ RMRE

100 1.114 20 1.139 20 1.094 20 1.110 � 1.134 � 1.062 0.821*
�

200 1.138 40 1.004 30 0.992 30 1.001 1.103 0.990 0.793*

300 1.048 60 0.967 30 0.935 30 0.925 1.067 1.012 0.782*

400 0.969 90 0.879 30 0.895 50 0.914 1.039 0.912 0.783*

500 0.849 90 0.761 30 0.730 50 0.814* 1.043 0.920 0.776*

600 0.815 110 0.751 50 0.740 50 0.799* 1.024 0.964 0.738*

700 0.824 110 0.683 50 0.683 50 0.752* 0.926 0.882 0.707*

800 0.772 100 0.668 50 0.668 50 0.683* 0.921 0.877 0.689*

900 0.748 110 0.702 30 0.679 120 0.650* 0.977 0.772 0.660 *

1000 0.681 90 0.663 50 0.646 120 0.625* 0.878 0.635 0.633*

1100 0.680 90 0.671 50 0.600 120 0.630* 0.909 0.724 0.618*

1200 0.754 110 0.736 50 0.642 120 0.600* 0.919 0.730 0.583*

Table 3. The results of the best variations of the prediction rules relative to the best
pure technique for different run-time limits for the JSP problems. ‘*’ indicates that the
prediction rule achieved an RMRE significantly lower than the best pure algorithm, ‘†’
indicates that the best pure technique is significantly better than the prediction rule,
and ‘‡’ indicates a time limit where static is significantly better than pcost min.

– probeplus: a probe-based algorithm combining linear programming and
constraint programming search.

Details of these algorithms, problems sets, and results can be found in Beck
& Refalo [17].

We divided the 90 ETSP problems into a learning set of 36 problems and a
test set of 54 problems. The experimental design is identical to our first experi-
ment. In particular, the overall time, T = 1200, and the number of algorithms,
|A| = 3.

Instead of makespan minimization, the optimization criteria on ETSPs is
the minimization of weighted earliness/tardiness cost. It is possible for problems
to have a optimal cost of 0 and a number of the easier problem instances do.
Therefore, MRE is not well-formed as it would require a division by 0. Instead,
we calculate the normalized cost (NC) for each problem and use the mean nor-
malized cost (MNC) as one of our evaluation criteria. NC is commonly used in
work that has applied genetic algorithms to ETSPs [18]. In that literature, the
cost of a solution is divided by the sum of the durations of all activities in the
problem weighted by the earliness/tardiness cost of each job. In our problems,
the earliness and tardiness weights for a single job are independent. Therefore,
we have modified this normalization to weight the duration sum with the mean
of the two cost weights. The NC for algorithm a on problem instance k is

NC (a, k) =
c(a, k)

∑
j∈Jobs(k)(

ecj+tcj

2 ×
∑

a∈Jobj
dura)

(2)



10

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  50  100  150  200  250  300  350  400

R
el

at
iv

e 
M

ea
n 

N
or

m
al

iz
ed

 C
os

t

Prediction Time (secs)

pcost_min(t)
pslope_min(t)

pextrap_min(t)

Fig. 2. The performance of the best variations of the three prediction rules at different
prediction times on the ETSP learning set. The graph plots the mean normalized costs
of each rule at each t value relative to the mean normalized cost achieved by the best
pure algorithm.

Where:

– c(a, k) is the lowest cost for algorithm a on problem instance k
– Jobs(k) is the set of jobs in problem instance k
– Jobj is the set of activities in job j
– ecj and tcj are respectively the earliness and tardiness costs for job j

Figure 2 presents the MNC of the three best prediction rule variations (rela-
tive to the best pure technique, hls for the learning set) with t ∈ {20, 30, . . . , 400}.
The plot is analogous to Figure 1. For each prediction rule the “min” variations
results in the best performance with the following t∗ values: pcost min(160),
pslope min(160), and pextrap min(170). As with the JSP problem set, how-
ever, none of these results are significantly different from those found by hls on
the learning set.

Table 4 presents the fraction of the test problems for which each pure and
prediction-based technique found the best solution and the MNC over all prob-
lem instances in the test set. The prediction rules perform very well on both
measures. However, none of them achieve performance on either measure that
is significantly different from the best pure technique. The pure technique that
achieves the best solution on the highest number of problem instances (hls) is
worst on the basis of MNC. The reverse is also true, as mip finds the lowest
MNC but finds the best solution on the fewest number of instances.



11

Algorithm t∗ Fraction Best MNC

mip - 0.4259 0.02571

hls - 0.6481 0.02908

probeplus - 0.5 0.02645

pcost min 160 0.6296 0.01721

pslope min 160 0.7407 0.01753

pextrap min 170 0.6667 0.01825

Table 4. The mean normalized cost (MNC) for each pure technique and the best pre-
diction rules on the ETSP test set. None of the prediction rules achieve a significantly
different MNC or fraction best than the best pure technique.

5.3 Characterizations of Prediction Techniques

Clearly, two interacting factors determine the performance of the prediction rules
tested in this paper and, indeed, any on-line prediction technique: the accuracy
of prediction and the computation time required to make the prediction.

We expect prediction accuracy to increase as tp is increased since more com-
putation time will result in better data regarding algorithm performance. Fur-
thermore, since we have a fixed time limit, the larger tp, the closer it is to this
time limit and the less far into the future we are required to predict. To evaluate
the data underlying the accuracy of predictions for the pcost rule, in Figure 3 we
present the mean Spearman’s rank correlation coefficient between t and t + tr

for the learning sets of both the JSP and the ETSP problems. For a problem
instance, k, and prediction time, t, we rank each of the pure algorithms in as-
cending order of the best makespan found by time t. We then create the same
ranking at time t + tr, the total run-time of the chosen algorithm. The corre-
lation between these rankings is calculated using Spearman’s rank correlation
coefficient and the mean coefficient over all the problems in the set is plotted. It
is reasonable to expect that the accuracy of pcost min(t) depends on the extent
to which the algorithm ranking at time t is correlated with that at t + tr. We
can see in the graph that the lower the value of t, the lower the correlation and,
therefore, the lower the accuracy of the predictions. Both from the graph and
from the reasoning above, to achieve a greater accuracy, prediction should be as
late as possible.

For t = 10 the JSP rankings are negatively correlated. The appropriate
heuristic for choosing a pure algorithm at t = 10 is to choose the algorithm whose
best makespan is largest. This is exactly pcost max(t) plotted in Figure 1 and
in that graph, pcost max(10) does indeed perform better than pcost min(10).

The second factor is the time required to measure the instance and make
the prediction. In an on-line context, more time spent predicting means less
spent solving the problem with the chosen algorithm. If T = 1200 and |A| = 3,
then t = 200 means that 600 seconds have expired when the algorithm choice
is made. Only 600 additional seconds are available to run the chosen algorithm.
This has a large implication for performance of prediction-based techniques. This
is illustrated in Figure 4. The pperf (t) plot is the MRE of a perfect prediction



12

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

M
ea

n 
S

pe
ar

m
an

’s
 R

an
k 

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Prediction Time (secs)

JSP learning
ETSP learning

Fig. 3. The mean Spearman’s rank correlation coefficient between rankings of the pure
algorithms at prediction time, t, and t + tr for problems in the JSP learning set and
the ETSP learning set.

on the test set. For example, for t = 200, the effective run time of the chosen
technique is 800 seconds: 200 seconds during the prediction phase and then the
remaining 600 seconds. The perfect MRE for t = 200 therefore is found using the
lowest makespan found by any pure technique by time 800 and calculating the
error compared to the best known makespan. When t is very small, the MRE
of pperf (t) is very small too. This reflects the fact that the pure algorithms
do not find large improvements extremely late in the run. As the t increases
however, the best case MRE increases: the time used in prediction instead of
solving results in worse performance even with perfect prediction.

These graphs demonstrate the trade-off inherent for any on-line prediction
technique: for accuracy the prediction time should be as late as possible but to
allow time for the pure algorithm to run after it is chosen, it should be as early
as possible. While the correlation graph presents data specific to a prediction
rule used in this paper, we expect a similar graph of accuracy vs. the prediction
time for all prediction techniques. The perfect prediction graphs clearly have a
general interpretation since, by definition, no prediction technique can achieve
better performance.



13

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  50  100  150  200  250  300  350  400

M
ea

n 
R

el
at

iv
e 

E
rr

or

Prediction Time (secs)

pcost_min(t)
pperf(t)

Fig. 4. The MRE on the JSP test set for pcost min(t) and when we assume perfect
prediction.

6 Discussion

We have shown that low-knowledge metrics of pure algorithm behavior can be
used to form a system that performs as well, and sometimes better, than the
best pure algorithm. If our goal was to win the algorithmic “track meet” and
publish better results, our results are not spectacular. However, our goal was
not to build a better algorithm through applying our expertise. Our goal was to
exploit existing techniques with minimal expertise. From that perspective, the
fact that applying simple rules to an instance-specific prediction phase is able to
outperform the best pure algorithm is significant. We believe this study serves
as a proof-of-concept of low-knowledge approaches and indicates that they are
an important area of study in their own right.

Beyond the importance of low-knowledge approaches to reduce expertise, a
prosaic reason to develop these approaches is that they can provide guidance in
deciding whether the effort and expense of applying human expertise is worth-
while. Figure 3 shows that at a prediction time of t = 100 the mean r-value
for pcost min(t) on the JSP learning set is 0.543. This is a relatively low cor-
relation, providing support for the idea that a more informed approach can
significantly increase prediction accuracy. On the other hand, if we expected the
on-line computation required for a high-knowledge approach to take more time
(e.g., t = 250), the return on an investment in a high-knowledge approach seems
less likely: the mean r-value is 0.775 so there is less room for improvement in pre-



14

diction accuracy. Similarly, Figure 4 shows that at a prediction time of t = 100
the MRE of pcost min on the JSP test set is 0.0046. Based on the pperf (t) plot,
any predictive approach can only reduce this MRE to 0.0013. Is the development
of a high-knowledge model worth the maximum theoretical reduction in MRE
from 0.46% to 0.13%? In high cost domains (e.g., airline scheduling) such an
effort would be worthwhile. In other domains (e.g., a manufacturing plant with
uncertainty) such a difference is irrelevant. The results of easy to implement
low-knowledge techniques can therefore guide the system development effort in
the more efficient allocation of resources.

7 Future Work

We intend to pursue two areas of future work. The first, directly motivated by
existing high-knowledge approaches, is the application of machine learning tech-
niques to low-knowledge algorithm selection. The variety of features that these
techniques can work with will be much more limited, but we expect that better
grounded techniques can improve prediction accuracy and system performance
over the simple rules. The second area for future work is to move from “one-
shot” algorithm selection to on-line control of multiple algorithms. The decision
making could be extended to allow the ability to dynamically switch among pure
algorithms based on algorithm behavior.

Another consideration is the types of problems that are appropriate for pre-
diction techniques or control-level reasoning. A real system is typically faced
with a series of changing problems to solve: a scheduling problem gradually
changes as new orders arrive and existing orders are completed. As the problem
or algorithm characteristics change, prediction-based techniques may have the
flexibility to appropriately change the pure algorithms that are applied.

8 Conclusion

We have shown that a low-knowledge approach based on simple rules can be used
to select a pure algorithm for a given problem instance and that these rules can
lead to performance that is as good, and sometimes better, than the best pure
algorithm. We have argued that while we expect high-knowledge approaches will
result in better performance, low-knowledge techniques are important from the
perspective of reducing the expertise required to use optimization technology
and have a useful role in guiding the expert in deciding when high-knowledge
approaches are likely to be worthwhile.

References

1. Rice, J.: The algorithm selection problem. Advances in Computers 15 (1976)
65–118



15

2. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness
of optimization problems: The case of combinatorial auctions. In: Proceedings
of the Eighth International Conference on Principles and Practice of Constraint
Programming (CP02). (2002) 556–572

3. Minton, S.: Automatically configuring constraint satisfaction programs: A case
study. CONSTRAINTS 1 (1996) 7–43

4. Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, M.: A
bayesian approach to tacking hard computational problems. In: Proceedings of
the Seventeenth Conference on uncertainty and Artificial Intelligence (UAI-2001).
(2001) 235–244

5. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies.
In: Proceedings of the Eighteenth National Conference on Artifiical Intelligence
(AAAI-02). (2002) 674–681

6. Ruan, Y., Horvitz, E., Kautz, H.: Restart policies with dependence among runs:
A dynamic programming approach. In: Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming (CP-2002),
Springer-Verlag (2002) 573–586

7. Watson, J.P.: Empirical Modeling and Analysis of Local Search Algorithms for the
Job-Shop Scheduling Problem. PhD thesis, Dept. of Computer Science, Colorado
State University (2003)

8. Watson, J.P., Barbulescu, L., Whitley, L., Howe, A.: Constrasting structured and
random permutation flow-shop scheduling problems: search-space topology and
algorithm performance. INFORMS Journal on Computing 14 (2002)

9. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem.
Management Science 42 (1996) 797–813

10. Beck, J.C., Fox, M.S.: Dynamic problem structure analysis as a basis for constraint-
directed scheduling heuristics. Artificial Intelligence 117 (2000) 31–81

11. Nuijten, W.P.M.: Time and resource constrained scheduling: a constraint satisfac-
tion approach. PhD thesis, Department of Mathematics and Computing Science,
Eindhoven University of Technology (1994)

12. Laborie, P.: Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143 (2003)
151–188

13. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Information Processing Letters 47 (1993) 173–180

14. Scheduler: ILOG Scheduler 5.2 User’s Manual and Reference Manual. ILOG, S.A.
(2001)

15. Beck, J.C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings
of the Second International Workshop on Integration of AI and OR Technologies
for Combinatorial Optimization Problems (CPAIOR’00). (2000)

16. Cohen, P.R.: Empirical Methods for Artificial Intelligence. The MIT Press, Cam-
bridge, Mass. (1995)

17. Beck, J.C., Refalo, P.: Combining local search and linear programming to solve ear-
liness/tardiness scheduling problems. In: Proceedings of the Fourth International
Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’02). (2002)

18. Vazquez, M., Whitley, L.D.: A comparision of genetic algorithms for the dynamic
job shop scheduling problem. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), Morgan Kaufmann (2000) 1011–1018


