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Abstract. Constraint Programming is a proven successful technique, but it re-
quires skill in modeling problems, and knowledge on how algorithms interact
with models. What can be a good algorithm for one problem class can be very
poor for another; even within the same class performance can vary wildly from
one instance to another. CP could be easier to use if we could design robust algo-
rithms that perform well across a range of problems, models and instances. In this
paper we look specifically at variable and value ordering heuristics for backtrack-
ing search and propose a multi-heuristic algorithm based on time-slicing, and we
demonstrate its performance on two different problem classes, showing it is more
robust than the standard heuristics.

1 Introduction

Constraint Satisfaction is a proven AI technique, with many successful and profitable
applications. However, representing and solving problems in terms of constraints can
be difficult to do effectively. A single problem can be modeled in many different ways,
either in terms of representation or in terms of the solving process. Different approaches
can outperform each other over different problem classes or even for different instances
within the same class. It is possible that even the best combination of model and search
on average is still too slow across a range of problems, taking orders of magnitude more
time on some problems than combinations that are usually poorer. This fact complicates
the use of constraints, and makes it very difficult for novice users to produce effective
solutions. The modeling and solving process would be easier if we could develop robust
algorithms, which perform acceptably across a range of problems.

In this paper, we present one method of developing a robust algorithm. We combine
a single model and a single basic search algorithm with a set of variable and value
ordering heuristics, in a style similar to iterative deepening from standard AI search.
The aim is to exploit the variance among the orderings to get a more robust procedure,
which may be slower on some problems, but avoids the significant deterioration on
others. During the search, we allocate steadily increasing time slices to each ordering,
restarting the search at each point. We demonstrate its performance on two different
problem classes, showing that it is robust across problem instances, and is competitive
with standard orderings used for those problems.



2 Background

A Constraint Satisfaction Problem (CSP) is defined by a set of decision variables,
{X1, X2, ..., Xn}, with corresponding domains of values {D1, D2, ..., Dn}, and a set
of constraints, {C1, C2, ..., Cm}. Each constraint is defined by a scope, i.e. a subset of
variables, and a relation which defines the allowed tuples of values for the scope. A
state is an assignment of values to some or all of the variables, {Xi = vi, Xj = vj , ...}.
A solution to a CSP is a complete and consistent assignment, i.e. an assignment of val-
ues to all of the variables, {X1 = v1, X2 = v2, ..., Xn = vn}, that satisfies all the
constraints.

The standard process for generating solutions to a CSP is based on backtracking
search. This proceeds by selecting a variable and then choosing a value to assign to it.
After each assignment, it propagates the constraints by removing inconsistent values
from the domains of future variables. If none of the future domains are empty then
search continues by selecting another variable; otherwise it backtracks, selects another
value from the domain of the current variable and continues; if no other values are
possible, it backtracks to the previous variable. The order in which variables and values
are tried has to be specified as part of the search algorithm, and has a significant effect
on the size of the search tree.

The standard ordering heuristic is based on the so called ”fail-first” principle, stating
that we should choose the variable with the tightest constraints. This is normally imple-
mented by choosing the variable with the smallest remaining domain, or the smallest
ratio of domain size to degree (representing the CSP as a graph, with variables as nodes
and constraints as edges). Strategies aiming to ”succeed first” have also been inves-
tigated, e.g. in [4] where different variable heuristics showed different search efforts,
depending on their level of ”promise”. Even the choice of a value ordering heuristic
represents an important aspect in setting up a good search algorithm. Among the most
effective for many CSPs is the min-conflicts value heuristic [5], which chooses the value
that rules out the fewest choices for the neighboring variables in the constraint graph.
The reason why ordering heuristics matter is because if the search makes a bad choice
at the top of the search tree, it can waste a lot of effort exploring sub-trees that have
no solution. In [8], the behavior of standard variable ordering heuristics over insoluble
sub-trees is compared to optimal refutations, with the advice that some knowledge on
how refutations distribute may be relevant to improve the search.

For a single instance of a CSP, a single run with a single ordering heuristic can get
trapped in the wrong area of the tree, even if the heuristic is the best on average. For
this reason, the randomized restart strategy has been proposed - for a single heuristic, if
no result has been found up to a given time limit, the search is started again. Tie break-
ing and, typically, value ordering are done randomly, and so each restart explores a
different path. This approach has been shown to work well on certain problems, includ-
ing quasi-group with holes [7]. Algorithm portfolios [6] is another randomized restart
search method, which interleaves a number of randomized algorithms.



3 Multi-heuristic and time-slicing

As discussed above, for many problem classes no single ordering heuristic performs
well across all problem instances. In some initial experiments on a scheduling prob-
lem, we had noticed that some instances caused a 1000-fold increase in running time
in comparison to others. Further, the hard instances appeared to be different for each
ordering. Therefore, we have developed an approach which tries each ordering in turn
for a limited time, restarting the search after each one, and gradually increasing the time
limit if no result was found. This is similar to the way iterative deepening explores each
branch to a certain depth, and then increases the depth limit, and is similar to random-
ized restarts, except we use different ordering heuristics.
The pseudocode for the multi-heuristic (MH) algorithm is:

while solve(heuristic(i),limit) == false
limit = increase(i,limit)
if i == n then i = 1
else i = i + 1

Solve(.,.) simply takes heuristic i (composed of a variable ordering and a value
ordering), and applies standard search up to a time limit. If it finds a solution, or
proves there is no solution, it returns true; otherwise it hits the time limit and returns
false. Increase(.,.) is the time limit function. We have considered two versions: (lin-
ear) increase(i,limit)=limit+δ and (magnitude) increase(i,limit)=limit*10 if i=n; limit
otherwise.

Note that MH is complete: the CSP backtracking search space is finite, each or-
dering heuristic is systematic, and limit increases indefinitely, so eventually one of the
heuristics will be given enough time to complete the search. Secondly, if any one of the
heuristics is deterministic, then MH has a guaranteed upper bound on the ratio of the
time it takes compared to that heuristic.

4 Experiments

We want to test the performance of the time-sliced multi-heuristic approach. Specifi-
cally,

(i) is it more robust than the standard default ordering heuristic, i.e. does it report a
result within acceptable time limits in more cases across a range of problems?

(ii) does it avoid a significant increase in run time, i.e. is the overhead of restarting
the search, and repeating some search paths, significant?

(iii) how does it compare to the randomized restart method, i.e. is its performance
due to the restart mechanism, or to the multiple heuristics?

To answer these questions, we have tested the approach on two problem classes:
scheduling tasks with fixed start and end points, and quasi-groups with holes (QWH).



All implementations are coded in C++ using Ilog Solver 6.0, and run on a Pentium
2.6 GHz processor under Linux. In each case we compare our multi-heuristic approach
against the recommended heuristics. For (i) and (ii), we compare MH against the small-
est remaining domain (msd) variable ordering heuristic (with lexicographic tie break-
ing). For (iii) we compare against the same variable ordering heuristic but with random
tie breaks, and random value ordering.

4.1 Scheduling

The problem - We considered one class of scheduling problems, where tasks have fixed
start and end times, but can be allocated to a number of different resources. We assume
that resources come in categories, and that categories are ranked. Each task has a rank,
and must be allocated to a resource of that rank or higher. Each resource can process
one task at a time, and each task must be processed without interruption on a single
resource. Given a set of categorized resources and ranked tasks, with fixed start and end
times, the problem is to determine whether or not the tasks can be scheduled. This prob-
lem is known to be NP-complete [2]. In our model, we represent the tasks as variables,
and the resources as the values to be assigned, and the constraints ensure tasks do not
overlap.

Example - In Fig. 1 we represent: four tasks with rank, and fixed start and end times
(left); and a possible solution (right).

 

Task Rank Start End 

T1 3 0 2 
T2 2 0 2 

T3 3 1 3 

T4 1 2 4 

 

Res.[rank]              1                2                3  

R1[1]   T4 

R2[3] T2   

R3[3] T1   
R4[4]  T3  

 

Fig. 1. Scheduling tasks with fixed start and end times over ranked resources

Variable orderings - We utilized the list of variable (task) orderings represented in
Table 1. H1 and H2 are two standard versions of min-size domain. H3 to H10 are static
orderings created from sorting the set of tasks by start time and minimum resource class.
H11 involves a measure of time contention [3] among tasks, i.e. it sorts by counting,
for each task, the number of other tasks which overlaps in time. Thus, in the example
of Fig. 1, task T3 would count 3 (overlapping with T1, T2, T4), T1 and T2 would count
2, and T4 would count 1, so T3 would be tried first.

Value orderings - We utilized the list of value (resource) orderings represented in
Table 2, including three static orders: two choose among resources with the smallest or
highest (suitable) class first; one consisting of a random resource order.



Table 1. List of variable ordering heuristics

Heuristic id Ordering Tie breaking
H1 min size domain random
H2 min size domain lexicographic
H3 increasing start time increasing min-resource class
H4 increasing start time decreasing min-resource class
H5 decreasing start time increasing min-resource class
H6 decreasing start time decreasing min-resource class
H7 increasing min-resource class increasing start time
H8 increasing min-resource class decreasing start time
H9 decreasing min-resource class increasing start time

H10 decreasing min-resource class decreasing start time
H11 most overlapping in time lexicographical

Table 2. List of value ordering heuristics

Heuristic id Ordering Tie breaking
W1 min class resource first lexicographic
W2 max class resource first lexicographic
W3 arbitrary fixed order

Multi heuristic approach - We combined both lists of variable and value heuristics
together, implementing four different MH versions: MH(11x3), MH(11x1), MH(1x3),
and MH(1x1), all with H1 and W1 as first variable and value heuristics.

Test setting - We consider one set of test problems, 〈 100, 10, N 〉, with 100 resources
in 10 classes. We varied the number of tasks, N, from 130 to 200 (in single steps),
and for each one we generated 500 random problems, choosing start times in [0..40],
durations in [17..25] and ranks in [1..10], all uniformly at random. For each instance,
we impose a maximum time of 41 seconds, which allows time slices of 0.01, 0.1, and 1
second for 33 possible heuristics, including the overhead on initializing the problem.

4.2 Quasi-group with holes

The problem - A quasi-group of order N is a Latin Square of N by N cells. The solution
of a Latin Square requires an allocation to each cell of a number from 1 to N, so that
all the elements appearing on each row are different and all the elements appearing
on each column are also different. A quasi-group with holes (QWH) is a solved Latin
Square from which some allocations are deleted. The problem is to find an allocation
which completes the Latin Square. In our model, the variables are the empty square
cells and the values are the elements to be assigned. In our model, we represent the
empty cells as variables, and the numbers as the values to be assigned. We use the Ilog
global constraint IloAllDiff to ensure each row and column has allocations that are all
different.



Example - In Fig. 2 we represent: a problem instance of QWH(N=4) with H=13 holes
(left); the remaining domains (centre); and a possible solution (right).

                                                                                                                                
 

1  2  
 2   
    
    

1 3 2 4 
3  2 4 1 
2 4 1 3 
4 1 3 2 

1 3,4 2 3,4 
3,4 2 1,3,4 1,3,4 

2,3,4 1,3,4 1,3,4 1,2,3,4 
2,3,4 1,3,4 1,3,4 1,2,3,4 

Fig. 2. Quasi group with holes: an instance, remaining domains, and a solution

Variable orderings - We utilized the list of variable (cell) orderings represented in
Table 3. H1 and H2 are two standard versions of min-size domain. H3 to H10 are static
orderings created from sorting the square cells by column and row.

Table 3. List of variable ordering heuristics

Heuristic id Ordering Tie breaking
H1 min size domain random
H2 min size domain lexicographic
H3 increasing column increasing row
H4 increasing column decreasing row
H5 decreasing column increasing row
H6 decreasing column decreasing row
H7 increasing row increasing column
H8 increasing row decreasing column
H9 decreasing row increasing column

H10 decreasing row decreasing column

Value orderings - We utilized the list of value (number) orderings represented in
Table 4, which includes three orders, two static and one dynamic. W1 (W2) simply
chooses smallest (biggest) numbers first. W3 involves a measure of conflict among
numbers: if variable X is chosen, W3 looks the number frequency in the domains of all
the unassigned variables in the same row and column as X. Knowing that all numbers
must appear once in the column and once in the row W3 choose the number that ap-
pears least in domains of the other unassigned variables in the row and column. Thus,
in the example of Fig. 2 above, assuming the bottom-right cell (variable) is chosen first,
number 1 would count 4, number 2 would count 2, and numbers 3 and 4 would count
6, so W3 would choose number 2 first.



Table 4. List of value ordering heuristics

Heuristic id Ordering Tie breaking
W1 min number first lexicographic
W2 max number first lexicographic
W3 least (x, y)-conflicted number lexicographic

Multi heuristic approach - Similarly to the way we proceeded for the scheduling
problem, we combined both lists of variable and value heuristics together, implementing
MH(10x3), with H1 and W1 as first variable and value heuristics.

Test setting - Experiments regarded balanced QWH problems of order N=20. We
used the Gomes generator [1] and generated 10 balanced instances for problems with H
holes, and did it for a series of different H around the difficulty peak. On each instance,
each algorithm had a limited time length t-max of 200 seconds to solve, after that we
considered the run as failed.

5 Results

5.1 Comparing to the standard recommended heuristic (msd)

Scheduling - In Fig. 3 we show the number of times msd and MH(11x3) hit the time
limit, and the mean run time of all 4 versions. MH in its full 11x3 version consistently
outperforms and improves msd (i.e. 1x1). It is more robust - it hits the time limit on
fewer occasions. It also has a lower mean run time across the range. We can also ob-
serve that, as we start introducing more than one value heuristic, i.e. 1x3, we obtain
a first clear improvement. There is benefit also by including more than one variable
heuristic, i.e. 11x1. Note that passing from 1x1 to 11x1 the majority of the variable
heuristics we add to the dynamic msd are all static. Things get better again when com-
bining all the variable heuristics with all the value heuristics, i.e. 11x3. On other tests
we also saw that excluding msd from the full version 11x3 has only a small effect on
performance. Note that the line on the graph from top left to bottom right shows solu-
bility, and relates to the right hand axis - e.g. almost 50% of size 150 problems have a
solution. The hardness peak is where most problems have no solution.



failure frequency [%]
Size msd MH
[N] magnitude
130 10 4
140 22 12
150 62 16
160 58 32
170 82 40
180 28 22
190 2 0
200 0 0
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Fig. 3. Scheduling(MH vs. msd): left, frequency of failure to solve within tmax; right, mean r-time

QWH - In Fig 4, we again show robustness and run time, this time for balanced QWH(20).
MH (10x3) again consistently outperforms min-size domain both in terms of robustness
and run time. The graphs show two versions of MH, one with linear time-limit increase,
and one with the order of magnitude increase every n restarts. All problems have solu-
tions.

failure frequency [%]
Size msd MH
[N] magnitude
150 0 0
170 70 20
190 100 50
210 60 20
230 70 0
250 60 0
270 30 0
290 20 0
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Fig. 4. QWH(MH vs. msd): left, frequency of failure to solve within tmax; right, mean r-time

5.2 Comparing to randomized-restarts on min domain

Randomized restarts (RR) is regarded to be the best method for QWH. We have com-
pared MH with RR on both QWH and scheduling. RR is generally used with time limits
that increase each restart, so we have implemented MH with the same time policy, and
RR with an order of magnitude time increased every n restarts, for comparison.



QWH (Fig. 5) - RR is better than MH almost everywhere, regardless of which time
slicing mechanism we use. MH performed slightly better with time slices increased
by a magnitude every loop of restarts, for which version we report the statistic on the
frequency of failure.

failure frequency [%]
Size RR MH
[N] magnitude magnitude
150 0 0
160 0 0
170 30 20
180 40 50
190 20 50
200 10 30
210 0 20
220 10 0
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RR(msd) magnitude

Fig. 5. QWH(MH vs. RR): left, frequency of failure to solve within tmax; right, mean r-time

Scheduling (Fig. 6) - MH clearly improves on RR at the peak of difficulty, which is
located in the region where approximately 90% of instances have no solution. The gap is
present for both slicing versions, i.e. increasing linearly every single restart (MH-Linear
vs. RR-Linear), and increasing by an order of magnitude every loop (MH-Magnitude
vs. RR-Magnitude). There is actually only a slight difference between the two slicing
versions, with the ”magnitude” mechanism better on average.

failure frequency [%]
Size RR MH
[N] magnitude magnitude
130 2 4
140 14 12
150 18 16
160 42 32
170 62 40
180 32 22
190 0 0
200 0 0
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Fig. 6. Scheduling(MH vs. RR): left, frequency of failure to solve within tmax; right, mean r-time



6 Conclusions and future work

We have developed a multi-heuristic approach for constraint solving, designed to im-
prove search robustness. We have tested it on two problem classes, and shown that it
is more robust than the standard recommended heuristic, without degrading the run
time - in fact, on average it improves the run time. We have also compared to random-
ized restarts, the leading method for one of our problem classes (QWH) and which uses
a similar restart policy. We have shown that the multi heuristic approach is poorer in
run time and robustness on QWH, but better on our scheduling problem class. Note that
the different heuristics we use and the different time limits have not been tuned - they
were generated by inspection of the problem characteristics, and better performance
should be achievable. For the immediate future, we intend to investigate whether MH
does perform better on insoluble problems (as indicated by the scheduling results).

We can conclude that the multi heuristic method offers a robust and competitive ap-
proach to constraint solving, and merits further investigation, since it offers one possible
solution to the goal of making CP easier to use.
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