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Abstract
Before a medical procedure requiring anesthesia, patients are required to not eat or drink non-clear fluids for 6 hours
and not drink clear fluids for 2 hours. Fasting durations in standard practice far exceed these minimum thresholds due to
uncertainties in procedure start time. The aim of this retrospective, observational study was to compare fasting durations
arising from standard practice with different approaches for calculating the timepoint at which patients are instructed
to stop eating and drinking. Scheduling data for procedures performed in the cardiac catheterization laboratory of an
academic hospital in Canada (January 2020 to April 2022) were used. Four approaches utilizing machine learning
(ML) and simulation were used to predict procedure start times and calculate when patients should be instructed to
start fasting. Median fasting duration for standard practice was 10.08 hours (IQR 3.5) for both food and clear fluids
intake. The best performing alternative approach, using tree-based ML models to predict procedure start time, reduced
median fasting from food/non-clear fluids to 7.7 hours (IQR 2) and clear liquids fasting to 3.7 hours (IQR 2.4). 97.3%
met the minimum fasting duration requirements (95% CI 96.9% to 97.6%). Further studies are required to determine
the effectiveness of operationalizing this approach as an automated fasting alert system.
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Introduction

Clinical practice guidelines recommend that patients should
not consume clear liquids for 2 hours and not eat food or
drink non-clear liquids for 6 hours before medical procedures
requiring anesthesia care such as general anesthesia, regional
anesthesia, or procedural sedation and analgesia [1, 2].
Despite the fact that similar recommendations have been in
place for over 20 years, it is still common for patients to
receive a standardized instruction such as “don’t eat or drink
anything after midnight”. Such instructions are typically
not changed regardless of alterations in scheduling even
when there are significant delays in procedure start time.
As a result, fasting durations far exceed the recommended
requirement for most patients undergoing medical and
surgical procedures [3, 4, 5]. A recent study, which
was undertaken in departments where standardized fasting
instructions are used, found that the mean duration of fasting
from food and non-clear fluids was 12.7 hours (SD = 3.8)
and clear fluids was 9 hours (SD = 4.5) [6]. Of great concern
is that extended fasting periods in frail older adults can result
in significant harm such as dehydration and malnutrition [7]
and increased mortality [8, 9].

A solution is needed to properly address this difficult
and long-standing operational problem that affects the very
large number of people undergoing medical and surgical
procedures with sedation or anesthesia. Prior attempts to
more closely adhere to the 6 and 2-hour fasting duration
recommendations that relied on additional workload for
clinicians to communicate messages between departments
have been ineffective (i.e., staff in the procedure department
would need to contact a nurse on an in-patient ward who
would then inform the patient about a change in fasting

status) [10, 11]. Compounding the problem is the difficulty
clinicians face in trying to anticipate procedure start time
when devising appropriate cut-offs for pre-procedure fasting.
It is common for there to be several changes in procedure
scheduling, and there is considerable variation in durations
for even similar types of procedures. With the procedural
and scheduling data available in the hospital’s system, it is
possible to apply health informatics techniques to develop
an automated solution where up-to-date fasting instructions
are generated based on predictions of procedure start time.
These instructions can be directly delivered to patients
through mobile devices (e.g., sending the instructions as
a text message to the patient’s cellphone), which reduces
clinician workload rather than increasing it. The aim of
this study was to develop different data-driven approaches
for providing pre-procedure fasting instructions that could
be operationalized into an automated system that takes
variations in procedure duration and changes in scheduling
into account. Utilizing information technologies, we believe
the automated system can improve patient experience related
to pre-procedure fasting.

Materials and Methods

Design

A single-site retrospective observational design was used for
this study. Approval from the University Health Network
Research Ethics Board was received April 21, 2021 (ID: 21-
25375). Machine learning and simulation techniques were
used to predict procedure start times and the consequent
fasting instruction alerts in an attempt to reduce overall
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deviation from the 2-hour (clear fluids) and 6-hour (food)
thresholds.

Outcomes
The outcomes for this study reflect the requirements for
an automated fasting instruction system, which are to limit
violations of the recommended fasting duration thresholds
and minimize the total fasting duration. To evaluate the
different approaches to generating fasting instruction alerts,
we compared:

• Percentage of patients with a fasting duration below
the 2-hour clear fluids and the 6-hour solid food fasting
threshold.

• Median fasting duration from clear fluids and food.

Setting
This study was undertaken using routinely collected
procedure and scheduling data for the cardiac catheterization
laboratory (Cath Lab) in a large academic hospital in
Canada. The Cath Lab has six procedure rooms and performs
diagnostic and interventional coronary procedures, the full
suite of electrophysiology and cardiac implantable electronic
device procedures as well as complex interventions for
valvular and congenital heart disease. Procedures are
scheduled to be performed in one of the six rooms in
a specific proceduralist’s “session”. The time that each
procedure within a session is estimated to start is included
in the schedule. The proceduralists do not provide input
to this estimation based on characteristics of the exact
procedure to be performed. Instead, the estimated start times
for procedures are based on the order of procedures in the
schedule, with a standardized duration allocated to similar
types of procedures. For example, if a morning session
begins at 8 a.m. and there are four coronary angiogram
procedures scheduled to be performed, the procedure start
times would be listed as 8 a.m., 8:45 a.m., 9:30 a.m. and
10:15 a.m. for the first to fourth procedure, respectively. If
one of these procedures is completed early or is cancelled,
the next procedure would be performed as soon as practically
possible, even if this is before the scheduled start time. If a
procedure takes longer to complete, the estimated times in
the schedule will not be corrected. In this study, the standard
fasting instruction is defined as follows. Patients who are
scheduled for a procedure in a session that starts in the
morning are instructed to not eat or drink anything from
midnight before the procedure. If the procedure is scheduled
for a session that starts after midday, patients are instructed to
have a light breakfast before 6 a.m. and then not eat or drink
afterwards. However, the exact instructions provided to each
patient are not routinely documented at Cath Lab.

Data
The procedural data contained patient research IDs, basic
demographic information, and procedure details such as
procedure start time and participating staff members.
Duplicate records with the same IDs were removed and
missing values of patient heights and weights were filled by
the means of these two features, calculated based on patient
gender. The scheduling data contained 6,918 records from

June 2020 to April 2022. Each record corresponded to a
snapshot of the planned schedule for procedures in the Cath
Lab on weekdays at every hour from 6 a.m. to 8 p.m.. The
snapshots included a unique identifier, scheduled date and
start time for the procedure, procedure type, name of the
proceduralist, and room number as well as procedure notes
made by the cardiac triage nurse. Entries in the schedules
that did not have an assigned proceduralist were randomly
assigned one based on an empirical proceduralist distribution
for a specific procedure type.

To combine the procedural data and the scheduling data,
we used a mapping file connecting the research IDs in the
former dataset and the patients’ medical IDs in the latter.
Only records that exist in both sources were selected and the
final dataset contains one-to-one mappings between the two
datasets and 8,200 unique procedures.

Fasting Instruction Strategies
We compared the standard practice against the following
four approaches for sending alerts directly to patients with
instructions to stop either eating or drinking:

1. Fasting alerts are sent exactly 2 and 6 hours before the
scheduled start times.

2. Fasting alerts are sent with a buffer added to the 2 and
6-hour time-points before the scheduled start times,
where the buffer accounts for the deviation between
scheduled and actual procedure start times observed in
historical data.

3. Procedure start times are predicted with simulation
and fasting alerts are sent 2 and 6 hours earlier.

4. Procedure start times are predicted with simulation
and fasting alerts are sent with a buffer added to the 2
and 6-hour time-points before the predicted start time,
where the buffer accounts for the deviation between
scheduled and actual procedure start times observed in
historical data.

Specific details about each approach are outlined below.

Predicting Start Times with Simulation There are several
components to consider to predict procedure start times.
First, there were six procedure rooms and 52 proceduralists
included in the dataset. For procedures that are the first
case for a given session, we defined their start times as the
“session start times”. Session start times were influenced
by multiple factors, such as the duration of the previous
procedure in the same room. For procedures within a session,
the start times depended on their predecessor’s duration and
the changeover time. Therefore, the simulator consisted of
three components: changeover times, session start times,
and procedure duration predictions. Table 1 presents the
fitted distributions for changeover and session start time
deviations, which were selected based on minimizing the
sum of square errors with the Fitter Python package [12].
We only considered the changeover times between two
consecutive procedures in the same session that were less
than 100 minutes. We divided the sessions into three groups
based on the scheduled start time of the first case since we
found that the start time deviations of procedures scheduled
in different times of the day have different characteristics.
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We split the data into training and test sets based on the
dates of the procedures: procedures before October 23, 2021
are in the training set while the rest of the procedures are in
the test set. There were 5,382 data points in the training set
and 2,368 in the test set. We split the dataset temporally to be
more aligned with the real-world scenario where we can only
use past information to predict the future. We also tested the
robustness of our approach on different data splits as shown
in Appendix II.

Machine Learning Methods for Procedure Duration
Prediction One key input to the simulation process was
each procedure’s duration. The duration of one procedure
contributes to the start times of the subsequent procedures in
the same session and, sometimes, in the following session.
We used machine learning (ML) to predict procedure
duration and included these predictions in the simulation
approach.

The features selected for the machine learning model and
their descriptions are shown in Table 2 with the feature
importance information in Table 6 in Appendix III. A
combination of patient and procedure-based features were
selected either directly from the data or through feature
engineering. All features describe information that can be
obtained prior to procedures, such as the patient’s age and
weight. Proceduralist case-volume was created by counting
the unique procedures performed by each proceduralist in the
dataset and applying k-means clustering. We selected k = 3
using the elbow method. Finally, we created 9 procedure
groups by inspection of procedure types.

Six ML models (linear regression, lasso regression [14],
support vector regression [15], a decision tree regressor [16],
a random forest regressor [17], and a gradient boosting
regressor [18]) were evaluated. The root-mean-square
error (RMSE) was calculated for the performance metric
following different surgical duration prediction studies in the
literature [19, 20, 21].

Procedure Schedule Simulation The simulation process
is described in Algorithm 1. The simulation takes the
schedule of M procedures to be performed in a day as input
and generates a distribution of N predicted start times for
each procedure. Therefore, the output of the simulation is
M distributions of N predicted start times.

The GetRandomVar(Distribution) function (in line 4, 6,
and 12) generates a random value based on the distributions
described in Table 1. The end time of a procedure is
calculated by adding the predicted duration to its simulated
start time.

For each procedure in a session, there are three possible
scenarios:

1. The procedure is the first case of the first session.
2. The procedure is the first case of a later session.
3. The procedure is not a session-first case.

The start times of procedures in Scenario 1 are calculated
based on the generated deviations from the scheduled start
times. For procedures in Scenario 2, the duration of the last
procedure from the previous session is taken into account.
Thus, the simulated start time is the maximum time between
the end time of the previous procedure (prev ses et) plus
changeover time, and the session’s scheduled start time plus

the deviation. For Scenario 3, the changeover time is added
to the end time of the previous procedure (prev et) to obtain
the start time. The process is repeated N times where N is
an arbitrarily large number (e.g., N = 1000).

The simulation produces a start time distribution for each
procedure in the snapshot and the pth percentile of the
distribution can be selected as the procedure’s predicted start
time. The pth percentile start time is the time, t, such that
p% of the simulated start times for the procedure are earlier
than or equal to t. For example, if we want the expected
proportion of fully fasted patients to be 98%, we would select
the second percentile as the predicted start time.

Determining Fasting Alert Time After obtaining the
predicted procedure start time, the timing of the fasting alert
can be determined. One approach is to assume the predicted
start times are accurate and subtract 2 and 6 hours directly
from the start times. This approach is denoted as “no buffer”.
A second method to determine the fasting alert times is based
on the historical differences between predicted and actual
start times for procedures grouped by the scheduled hour j
(j ∈ {8, 9, ..., 16}) and we denote these buffers as “historical
buffers”.

The method for calculating the historical buffers is
described as follows. Let f be the minimum fasting
duration requirements (2 or 6 hours) and bj be the fasting
requirements with an added buffer for scheduled hour
group j, where group j represents the procedures that
were scheduled to start within hour j. For each historical
procedure, its prediction error e is the difference between the
actual start time and the predicted start time. Thus, for each
group j, we can obtain a prediction error distribution, fj(e).
Next, a threshold, w, is defined as the minimum acceptable
proportion of patients that would be fully fasted (w ≤ 1)
and we determine a set of historical buffers that satisfy this
threshold by

bj = f − P1−w

where P1−w represents the (1− w) percentile of fj(e) and
thus −P1−w is the buffer for group j according to our
definition. The process is repeated twice for each scheduled
hour j, once for calculating the buffers for clear liquids
intake and once for solid food. Then, bj hours is subtracted
from the predicted start times based on the scheduled hour j
to obtain the fasting alert times for each procedure.

Hourly Approaches

Recall that a new schedule snapshot is published every
hour, thus, we can also use the fasting instruction strategies
presented in this section with the later snapshots during the
day. At each hour, we use one of the four approaches to
obtain the fasting alert times. The final alert time comes from
the last snapshot used that outputs a feasible time (i.e., we
only update the procedure’s fasting alert time if it is later
than when the snapshot is captured). However, we did not
choose to pursue this direction since the hourly approach is
more complicated to implement and, as discussed later in this
paper, did not result in significantly better performance.
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Table 1. Distributions fitted to the changeover and the session start time deviations of the simulation.

Component Distribution
Parameters

(Inputs to the SciPy Python package [13])
Shape Scale Location

Changeover
(Number of data points, N= 2,396) Lognormal 0.49 35.81 -7.62

Session
Start Time
Deviations

(N = 2,201)

Procedures
scheduled
between

8 and 9 a.m.

Lognormal 0.28 76.65 -56.68

Procedures
scheduled
between

9 and 1 p.m.

Beta
α = 5.06
β = 1.9

323.53 -220.2

Procedures
scheduled

after 1 p.m.
Normal N/A 68.33 -4.63

Table 2. Features used in the duration prediction ML model.

Feature Type Description
Age Numerical Age of the patient (years)
Weight Numerical Weight of the patient (kgs)
Gender Categorical Gender of the patient (i.e., Male or

Female)
Height Numerical Height of the patient (cms)
Expected Procedure
Duration

Numerical The difference between the sched-
uled start times of two consecutive
procedures within the same session
(minutes)

Proceduralist Case-
Volume Cluster

Categorical Cluster created based on the per-
forming surgeon’s number of pro-
cedures performed

Day Of Week Categorical Day the procedure was performed
(i.e., Monday to Friday)

Procedure Group Categorical Group the procedure belongs to
(i.e., Implantable Loop Recorder,
Pacemaker, Defibrillator, Cardiac
Resynchronization, CATH, Biopsy,
Structural Intervention, Coronary
Intervention, Complex Coronary
Intervention)

Results

Procedure Duration Prediction
A gradient boosting regressor [18] had the lowest RMSE
(37.23 minutes) in 5-fold cross validation and was selected
as the duration prediction model. The gradient boosting
regressor has 64 estimators, a maximum depth of 5, a
learning rate of 0.1, the minimum number of samples
required to split an internal node is 10, the minimum number
of samples required to be at a leaf node is 4, and the
proportion of features to consider when looking for the best
split is 30%. A summary of the results for the models that
were evaluated is in Appendix I.

Comparison of Simulated Fasting Instruction
Alert Strategies
We evaluated the performance of the proposed approaches
for a test set of procedures performed between October 25,

2021 to April 22, 2022 and compared the results against
standard practice. For the simulation-based approaches, we
selected the second percentile from the procedure start time
distribution as the predicted start time. For the historical
buffer approaches shown in this section, we set the threshold
defined in the Determining Fasting Alert Time section, w, to
be 98%. That is, the historical buffers obtained ensured that
98% of the patients in historical data were fully fasted.

Table 3 shows the performance of each approach in the test
set by the procedures’ scheduled hour for clear liquids intake.
For solid food, the percentage of fully fasted patients are the
same with the fasting durations being simply an addition of
4 hours to the results for clear liquids.

Table 3 shows that the percentage of fully fasted
patients for the historical buffer approaches was higher than
the approaches without buffers. However, median fasting
duration was higher, especially for procedures scheduled
in the afternoon. To compare the two start time prediction
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Algorithm 1 Simulation Process
Input: A snapshot of the procedure schedule
Output: Distribution of start times for each procedure in the snapshot

1: repeat
2: for Session s in Snapshot do
3: for Procedure pr in s do
4: ChangeOver = GetRandomVar(Distribution)
5: if pr is the first case of the first session of the day then
6: FirstCaseDelay = GetRandomVar(Distribution)
7: SimulatedStartTime = pr.ScheduledStartTime +
8: FirstCaseDelay
9: else if pr is the first case of the second, third etc. session then

10: Calculate the end time of the last procedure in the previous
11: session, prev ses et
12: FirstCaseDelay = GetRandomVar(Distribution)
13: SimulatedStartTime = max{pr.ScheduledStartTime +
14: FirstCaseDelay, prev ses et + ChangeOver}
15: else if pr is not a session first case then
16: Calculate the previous procedure’s end time prev et
17: SimulatedStartTime = ChangeOver + prev et
18: end if
19: Record SimulatedStartTime
20: end for
21: end for
22: until Iteration N

Table 3. Proportion of fully fasted patients (in percentages) and the median fasting duration (in hours) for clear liquids by scheduled
hour.

Initial Scheduled Hour

Method
8

(N = 662)
9

(N = 325)
10

(N = 204)
11

(N = 231)
12

(N = 274)
13

(N = 191)
14

(N = 122)
15

(N = 65)
16

(N = 13)

Scheduled
Start Time

No
Buffer

86.23%
(2.43 hr)

79.08%
(2.82 hr)

83.82%
(3.01 hr)

79.65%
(3.12 hr)

76.64%
(3.04 hr)

82.81%
(3.32 hr)

82.79%
(3.08 hr)

70.77%
(2.65 hr)

76.92%
(2.3 hr)

Historical
Buffer

97.88%
(2.77 hr)

95.69%
(3.71 hr)

95.59%
(3.9 hr)

97.84%
(3.98 hr)

97.81%
(4.68 hr)

99.48%
(5.38 hr)

98.36%
(5.48 hr)

90.78%
(4.8 hr)

100%
(6.84 hr)

Simulated
Start Time

No
Buffer

89.43%
(2.52 hr)

79.69%
(2.7 hr)

83.82%
(3.26 hr)

83.98%
(3.38 hr)

79.93%
(3.43 hr)

85.86%
(3.75 hr)

77.05%
(3.31 hr)

75.38%
(3.26 hr)

76.92%
(3.56 hr)

Historical
Buffer

97.43%
(2.94 hr)

97.23%
(3.78 hr)

98.03%
(4.18 hr)

98.27%
(4.21 hr)

95.62%
(4.3 hr)

98.43%
(5 hr)

98.36%
(5.61 hr)

93.85%
(5 hr)

100%
(6.54 hr)

approaches, if we choose to not use any buffer to determine
the fasting alert times, the simulated start time approach
generally performed better than simply using the scheduled
start time, though the simulated start time approach had
longer median fasting durations for the afternoon procedures
compared to scheduled start time. If we choose to use the
historical buffers, both start time prediction approaches had
similar fully fasted rates and median fasting durations.

Figures 1 and 2 illustrate the aggregated results of the
percentage of patients fasting for more than x hour(s)
(x ∈ {0, ..., 12}) for solid food and clear liquids intake,
respectively. An ideal approach for would have 100% at
x = 6 (or 2) followed by an immediate drop to zero.

Consistent with the results shown in Table 3, the
approaches that applied a buffer using historical data had
the best performance: 97.28% of the patients in the test
set were fully fasted for the approach where simulated
start times were used (95% confidence interval (CI) using
a normal approximation: [96.92%, 97.64%]). For the no
buffer approaches, 83.94% and 81.84% were fully fasted
for simulated and scheduled start times, respectively (95%

CI: [83.14%, 84.74%], [81%, 82.68%]). Note that the results
from Figure 2 are essentially the same as Figure 1 but shifted
4 hours to the left because the only difference is the timing
of the fasting alert for solid food and liquids.

Figures 3 and 4 compare approaches for both outcomes.
The x-axis corresponds to each approach’s percentage of
underfasted patients at x = 6 or 2 and the y-axis shows the
median fasting duration. The ideal points are (0,6) and (0,2),
respectively (i.e., all patients exactly meet the requirements).
Standard practice resulted in the longest fasting duration:
10.08 hours (Interquartile range (IQR) = 3.45) for both food
and clear liquids intake.

The approaches that applied a historical buffer had shorter
median fasting durations than standard practice. The average
fasting from solid food duration was 7.77 hours (IQR = 2.43)
for the scheduled start times, and 7.7 hours (IQR = 2.35)
for the simulated start times. Clear liquids median fasting
durations were 3.77 hours (IQR = 2.43) and 3.77 hours (IQR
= 2.35), respectively. The approaches that directly used 2
and 6 hours resulted in shorter fasting duration but a higher
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Figure 1. Percentage of patients fasting for more than x hours for solid food intake by approaches.
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Figure 2. Percentage of patients fasting for more than x hours for clear liquids intake by approaches.
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Figure 3. The median fasting duration and the proportion of
underfasted patients for solid food.

proportion of underfasted patients, which is consistent with
the results shown in Figures 1 and 2.

Performance of the Hourly Approaches
We also tested rerunning each of the four approaches
presented above every hour to calculate the new fasting alert
times and the results are shown in Appendix IV.

Since the final alert time is based on the last snapshot
that produced a feasible time, we recorded the snapshot used
for the fasting alert time of each procedure in the test set,
and we aggregated the results by each snapshot. Figure 5
shows the frequency of snapshots used when fasting alerts
were generated from simulated start times with no buffer
at every hour. It shows that 84% of the solid food fasting
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Figure 4. The median fasting duration and the proportion of
underfasted patients for clear liquids.

alerts were generated from the initial snapshot of the day
(i.e. the 6 a.m. schedule). Figure 6 shows the frequency
of the snapshots used for clear liquids fasting alerts, which
is less right-skewed compared to Figure 5. Although more
procedures used the later snapshots to determine the fluid
fasting alert times, Figure 8 (Appendix IV) indicates that
using the hourly snapshots led to little or no improvement
compared to only using the initial snapshot.

Discussion
All four approaches for generating times for fasting alerts
shortened the total fasting duration considerably for both
clear liquids and solid food intake compared to standard
practice. The solution using scheduled start times and
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Figure 5. Pareto chart of the frequency of snapshot used for
solid food fasting alert (hourly approach with simulated start
times and no buffer).
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Figure 6. Pareto chart of the frequency of snapshot used for
clear liquids fasting alert (hourly approach with simulated start
times and no buffer).

historical buffers had the best overall performance in terms
of limiting the number of patients who violate the 2 and 6-
hour fasting recommendation and minimizing total fasting
duration. In addition, as long as scheduled start times
are readily available in a hospital’s database, integrating
this solution would be simpler than the simulation-based
approaches because the algorithm computes the solution
quickly and requires few computational resources. The logic
behind the protocol (i.e. “subtract 2 or 6 hours with a
historically calculated buffer time from the scheduled start
time”) is also more readily understood by patients and staff.
Additional research would be needed to determine the best
frequency for rerunning the buffer calculation algorithm with
more historical data of the differences between scheduled
and actual procedure start times (e.g. once every month or
once every three months).

Instead of directly predicting the start times of procedures,
we decided to use simulation to represent our knowledge of
how the daily procedure schedule is executed. We did so by
breaking the schedule down into several components using
historical data. One of the components was to predict the
durations of the procedures, for which there are two major
lines of research in the literature. The first direction is fitting
the data to a known distribution, such as normal [22, 23]
or log-normal [24, 25, 26, 27]. While studies show that
such models can produce accurate predictions and increase
operating room efficiency [27], they did not offer insight
into the factors that may impact the predictions. Therefore,
we chose to focus on the second direction, which uses

statistical and machine learning models to identify important
features and produce predictions. The features selected for
our prediction model are all known prior to the procedure
and can be divided into two categories: patient factors and
clinical factors. Basic information about the patients such as
age and gender is often selected for the modeling process
[21, 28, 29]. Some other features that are popular in the
literature such as American Society of Anesthesiologists
score (ASA class) [28, 30, 31] were not available in our
datasets.

Common ML models used for procedure duration
prediction include linear regression [32, 33, 30, 21, 34, 35,
36], tree-based algorithms such as regression trees, bagged
trees, and random forests [34, 21, 31, 37, 19, 20], neural
networks [34], and Support Vector Machines (SVM) [37,
20]. Of the features that were selected (Table 2), Table 6
in Appendix III indicates that the expected duration feature
has higher impact on the tree-based models than on the
linear regression models, while the procedure group feature
is important for all models tested. In this study, we chose
to focus on classical machine learning algorithms instead
of more involved models such as neural networks due to
the issue of interpretability. Since the target users for this
application are clinicians and nurses, we believe the ML
models should be easy to understand and apply. We chose a
gradient boosting regressor because the model has the lowest
RMSE, and combining tree-based models with boosting
techniques is also fairly common in literature [31, 38, 28,
20, 39].

When using historical buffers, the more complicated
simulation-based approach had nearly identical results with
the scheduled start time approach. The exact cause of the
comparative performance is not known since there were
multiple components used in the simulation process. One
hypothesis is that this lack of difference may be a result of
little variability in procedure durations in different procedure
groups. However, Table 7 in Appendix V shows that there
is considerable difference in procedure duration means and
standard deviations, indicating that the similar performance
between the two approaches are not related to the duration
variability. One observation is that the simulation process
relied on the order of procedures in each snapshot. Thus,
similar to the approach with scheduled start times, the
simulation was built on the assumption that the procedures
were executed in that exact order, which may not be true.
While the simulation captured the uncertainty in procedure
durations and changeovers, information such as a procedure
being moved from the morning to an afternoon session is
not available in the initial snapshot. Even if these changes
were included in the later snapshots, since most of the
fasting alerts were determined using the initial snapshot,
neither of the approaches could use the new information
when predicting procedure start times. Further, note that the
two start time prediction approaches are not independent: to
produce the start time distributions, we used the scheduled
start time for each session’s first procedure to start the
simulation process. As such, one of the reasons for the
similar performance may be that both methods depend on
the schedule in the snapshots. To improve the simulation-
based approach, we would need to develop an additional
component for the system that can accurately predict, or,
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actually specify, the order of procedures and use this
prediction instead of the snapshot as the input to the
simulation process.

The approaches that applied a historical buffer to generate
fasting alerts reduced fasting duration, but it is important to
consider the implications arising from the small proportion
of patients in the test set who had not yet reached the 2 and
6-hour minimum fasting requirements before the “actual”
procedure start time. When a patient has not fasted for the
minimum recommended duration, there are two potential
actions that can be taken: i) delay the procedure until the
patient meets the minimum fasting period; or ii) change the
schedule to start a procedure for a patient who has met the
fasting requirement. These two approaches have their trade-
offs in terms of costs, risks, and patient experience. For
the first option, leaving the procedure room idle is costly
and would delay subsequent procedures. Further, this option
may not be applicable to urgent or emergency procedures as
they may not need to be delayed to accommodate fasting
requirements [40]. The second option may not be ideal for
the hospital either, since changing the schedule may lead to
logistical difficulties and confusion among staff and patients.

It is interesting that using schedules at each hour
throughout the day to generate fasting alerts did not result in
improved overall performance of the system in comparison
to approaches using the first schedule. One reason why the
hourly approaches did not outperform the single snapshot
approach is that the majority of procedures were scheduled
before noon. Therefore, most of the patients would start
fasting for solid food early in the morning, which means
that the alerts would be sent out based on the start times
generated using the initial snapshot. Another reason is that
the snapshots of each day remained mostly unchanged
compared to the initial snapshot, meaning that even if the
alert comes from a later snapshot in the day, it would be very
similar or identical to the one from the initial snapshot.

Limitations
The data used in this study were extracted during the
COVID-19 pandemic, which may have impacted how the
Cath Lab schedules functioned during that time. As the
hospital returns to its operation level before the pandemic,
the procedure schedule may change as well. Additionally, as
more data becomes available over time, the changeover time
distribution may change as COVID-19 cleaning protocols
related to ventilation may no longer be in place.

Nonetheless, the approaches to generating fasting instruc-
tion alerts in this study have the flexibility to be refined
with new data and have the potential to adapt to changing
trends. Other aspects of the context in which the study
was conducted should also be considered. This study was
conducted at a single-site in the cardiac catheterization
laboratory setting. Further studies are required to confirm
the effectiveness of the approaches we have evaluated in
other similar settings that require pre-procedure fasting, such
as peri-operative suites and diagnostic and interventional
radiology departments.

Another limitation of our approach is the lack of use
of more advanced ML models such as neural networks
for the procedure duration prediction task. Although tree-
based models are widely used in the literature and have

achieved good results [34, 31, 20, 39], neural networks
can model more complex relationships between variables
and therefore potentially produce better predictions than the
classical ML models implemented in this study. For neural
networks, we can compute the features’ Shapley values to
gain some insights into how much each feature contributes
to the model’s predictions [41]. Future work includes further
investigation and testing to determine the suitable neural
architecture for procedure duration prediction.

Conclusion
In this study, we identified four approaches for generating
fasting instruction alerts that would shorten pre-procedure
fasting duration for Cath Lab patients in comparison to
standard practice. We found that using scheduled start times
and historical buffers had the best overall outcomes: this
approach has the minimum total fasting duration while
limiting the number of patients who did not meet the 2 and
6-hour fasting requirement. If implemented in a system that
automates the delivery of these instructions to patients, the
unnecessary discomfort and distress arising from symptoms
associated with fasting could be reduced or avoided entirely.
Utilizing the procedural and scheduling data available in
the hospital’s system, an implementation of our proposed
approach has the potential to create a positive impact on
patient experience and an improvement in the efficiency of
healthcare delivery. Further studies are required to determine
the effectiveness of operationalizing the proposed fasting
alert system approach into practice.
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Appendix I Test Results of the ML Models

Table 4. Six ML models were selected and a GridSearch was
performed for each model. Test results of ML models with the
best result in bold.

Machine Learning Model Hyperparameters Best Parameters
5-fold CV
RMSE
(minutes)

Linear Regression N/A N/A 39.64
LASSO Regression α = [0.01, 0.02 . . . , 1] α = 0.01 39.64

Random Forest Regressor

max depth: [1,2,3,4,5,6],
max features: [‘auto’, ‘log2’,‘sqrt’],
min samples leaf: [3,4,5],
min samples split: [8,9,10,11,12],
n estimator: [32, 64, 100, 128, 200, 256]

max depth = 6,
max features = ’auto’,
min samples leaf = 5,
min samples split = 12,
n estimator = 128

38.1

Decision Tree Regressor

max depth: [1,2,3,4,5,6],
max features: [‘auto’, ‘log2’,‘sqrt’],
min samples leaf: [3,4,5],
min weight fraction leaf: [0,0.1,0.3,0.5],
min samples split: [2,4,6,8],
max leaf nodes: [3,5,7],
splitter: [‘best’, ‘random’]

max depth = 4,
max features = ‘auto’,
max leaf nodes = 7,
min samples leaf = 3,
min samples split = 2,
min weight fraction leaf = 0,
splitter = ‘best’

39.53

Gradient Boosting Regressor

Learning rate: [0.1, 0.2, 0.3, 0.4, 0.5],
max depth: [1,2,3,4,5,6],
max features: [0.2, 0.3, 0.4],
min samples leaf: [3,4,5]
min samples split:[8,9,10,11,12],
n estimators: [32, 64, 100, 128,200, 256]

Learning rate = 0.1 ,
max depth = 5,
max features = 0.3,
min samples leaf = 4,
min samples split = 10,
n estimators = 64

37.23

Support Vector Regressor
kernel: [‘rbf’],
C = [0.1,0.2,. . . ,10] ,
gamma: [1,2,. . . ,10]

C = 9.9, gamma = 1 51.45
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Appendix II Sensitivity Analysis for Data
Split
Table 5 shows the performance comparison among different
splits of data. In the paper, we divided the dataset into a
training set and a test set based on a specific date (i.e.,
October 25th, 2021) to be aligned with the real-life situation
where we can only use historical data to predict the future.
However, to test the robustness of our ML models to how
the data is split, we conducted a sensitivity analysis with
three additional training-test splits. Random Split 1 and 2 are
two 70-30 splits with different seeds. The Odd vs. Even split
represents a training set that only has odd months (52.2% of
the data) while the test set contains data from even months
(47.8% of the data).

Table 5. Sensitivity analysis for different data splits.

Temporal Split Random Split 1 Random Split 2 Odd vs. Even Month Split
RMSE of GBR

(in minutes) 37.23 37.13 36.45 38.28

Median Fasting Duration
(Clear Liquids)

(in hours)
2.8 2.91 2.96 2.95

Underfasting Percentage 16.05% 11.83% 10.24% 11.48%

For the ML model for duration prediction, the perfor-
mance across all four splits is quite similar. We also tested the
different splits using the simulated start time with no buffer
approach to compare the median fasting duration and the
percentage of underfasting patients. For the fasting duration
metric, the results among the splits are close to each other;
for the underfasting percentage, however, we can see that
the additional splits outperform the original temporal split
used in the paper. Further analysis shows that a relatively
small increase in the median fasting duration (e.g. 2.8 hours
to 2.95) results in a non-trivial decrease in the underfasting
percentage.
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Appendix III Feature Importance of Models
Tested
Table 6 presents the feature importance information for the
ML models (except for SVR). The top three most important
features are bolded. The procedure group features (e.g.,
Cardiac Resynchronization, Coronary Interventions) have a
high importance in all models, while the expected duration
feature has higher impact on the tree-based models.

Table 6. Feature importance of models tested (except for SVR).

ML Model

Feature Name GRB
Linear

Regression LASSO Decision Tree Random Forest

Age 0.045 0.205 0.206 0.0 0.021
Height 0.035 0.021 0.024 0.0 0.015
Weight 0.037 0.047 0.048 0.0 0.01

Expected Duration 0.345 0.166 0.167 0.535 0.465
Proceduralist

Case-Volume Cluster 0.035 2.473 2.466 0.0 0.011

Implantable Loop Recorder 0.0 -46.021 -18.449 0.0 0.0
Pacemaker 0.007 -21.075 -0.0 0.0 0.019

Defibrillator 0.004 -21.191 -0.0 0.0 0.015
Cardiac Resynchronization 0.079 50.112 70.429 0.0 0.001

Circulatory Support 0.0 0.0 0.0 0.0 0.0
Coronary Interventions 0.086 14.961 35.853 0.0 0.01

CATH 0.063 -35.715 -14.648 0.202 0.187
EPS 0.0 0.0 0.0 0.0 0.0

Biopsy 0.111 -56.546 -35.322 0.263 0.207
Structural Interventions 0.04 -1.352 19.539 0.0 0.0

Ablation 0.0 0.0 0.0 0.0 0.0
Complex

Coronary Intervention 0.067 116.826 135.019 0.0 0.02

Gender Female 0.003 -0.441 -0.781 0.0 0.001
Gender Male 0.003 0.441 0.0 0.0 0.0

DayOfWeek Mon 0.008 2.447 3.19 0.0 0.005
DayOfWeek Tue 0.01 -0.795 0.0 0.0 0.001
DayOfWeek Wed 0.004 2.814 3.595 0.0 0.002
DayOfWeek Thur 0.013 -3.498 -2.663 0.0 0.009
DayOfWeek Fri 0.003 -0.969 -0.101 0.0 0.002
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Appendix IV Details of the Hourly
Approaches
The simulation approach considered the start time prediction
at one time-point. During the day, a new schedule is produced
hourly, providing an opportunity to incorporate changes due
to late arrivals or emergency procedures. Recalculating the
fasting alert times using these updated schedules may lead to
better performance since they better represent the anticipated
schedules.

We tested two scenarios that utilize snapshots published
between 6 a.m. and 17 p.m.: i) All Snapshots (AS): we use
the newly published snapshots to calculate the fasting alert
time; ii) Actual (Actl): we use the actual start times of the
procedures that have started before the time the snapshot is
generated.
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Figure 7. Percentage of patients fasting for more than x hours
for solid food intake by all tested approaches.
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Figure 8. Percentage of patients fasting for more than x hours
for clear liquids intake by all tested approaches.

Figures 7 and 8 show the performance of all strategies
tested for solid food and clear liquids fasting. The results
indicate that the hourly approaches have nearly identical
performance as the single-schedule approaches presented in
this study.
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Appendix V Procedure Duration Means and
Standard Deviations
Table 7 shows the procedure duration means and standard
deviations for the different procedure groups. We can see
that there is considerable difference in the durations and the
standard deviation of each group is quite high, between 30%
and 60% of the mean.

Table 7. Procedure duration means and standard deviations for
different procedure groups.

Procedure Group
Procedure Duration Mean

(minutes)

Procedure Duration
Standard Deviation

(minutes)
Biopsy 30.81 15.67
CATH 61.59 33.09

Cardiac Resynchronization 174.97 58.86
Complex Coronary Intervention 233.33 99.34

Coronary Intervention 115.66 70.53
Defibrillator 78.24 43.33

Implantable Loop Recorder 39.44 17.13
Pacemaker 77.07 41.26

Structural Intervention 89.55 47.86
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