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We address the one-to-one multi-commodity pickup-and-delivery traveling salesman problem (m-PDTSP),

a challenging variant of the traveling salesman problem which includes the transportation of commodities

between locations. The goal is to find a minimum-cost tour such that each commodity is delivered to its

destination and the maximum capacity of the vehicle is never exceeded. We propose an exact approach

that uses a discrete relaxation based on multivalued decision diagrams (MDDs) to better represent the

combinatorial structure of the problem. We enhance our relaxation by using the MDDs as a subproblem

to a Lagrangian relaxation technique, leading to significant improvements both in bound quality and run

time performance. Our work extends the use of MDDs for solving routing problems by presenting new

construction methods and filtering rules based on capacity restrictions. Experimental results show that our

approach outperforms state-of-the-art methodologies, closing 33 open instances from the literature with 27

of those closed by our best variant.
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1. Introduction

Pickup-and-delivery refers to a large class of optimization problems that is primarily con-

cerned with the transportation of persons or commodities between geographically-dispersed

locations. Such problems represent core routing decisions in a wide range of practical

applications. Examples include parcel delivery (Holland et al. 2017), dial-a-ride problems

(Cordeau and Laporte 2007, Liu et al. 2018), home healthcare (Liu et al. 2013), robotics

(Coltin and Veloso 2014), and emergency dispatch (Cordeau et al. 2007), to name a few.

The area is associated with a pervasive and rich literature in optimization and scheduling;

see, e.g., Savelsbergh and Sol (1995), Parragh et al. (2008).
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This work investigates a new exact approach for the one-to-one multi-commodity pickup

and delivery traveling salesman problem (m-PDTSP), a variant of the classical traveling

salesman problem (TSP) that incorporates the delivery of a fixed set of commodities by

a capacitated vehicle. Specifically, the problem is defined over a directed graph G , where

nodes represent locations and arcs are associated with non-negative travel costs. We are

also given a set of commodities, each having a weight, a pickup location, and a delivery

location. A solution to the m-PDTSP is a minimum-cost Hamiltonian tour on G where each

commodity’s pickup location must be visited prior to its corresponding delivery location,

and the total weight carried by the vehicle never exceeds its capacity. Figure 1 depicts

an example with 5 locations, two commodities and a vehicle with capacity 5, where an

optimal tour starting and finishing at the depot 0 is presented in bold.

The m-PDTSP was introduced by Hernández-Pérez and Salazar-González (2009) and

can be viewed as an important subproblem in vehicle routing applications, for instance

when routes must be optimized for freight delivery (Holland et al. 2017). In contrast to clas-

sical pickup-and-delivery problems (Parragh et al. 2008), the locations in the m-PDTSP can

be both a source and a destination for multiple commodities at the same time. The problem

thereby generalizes several related single-vehicle variants, such as the pickup-and-delivery

TSP (Dumitrescu et al. 2008), where each location is either the source or destination of

at most one commodity; the sequential ordering problem (Ascheuer et al. 2000), where

the vehicle is uncapacitated; and the one-commodity pickup-and-delivery TSP (1-PDTSP)

(Hernández-Pérez and Salazar-González 2004), where all commodities are equivalent.

We propose a novel exact approach for the m-PDTSP that applies Lagrangian duality

to combine a linear and a discrete relaxation of the problem. In particular, the discrete

relaxation is encoded as a multivalued decision diagram (MDD), a graphical structure

that compactly represents a set of solutions to a problem. Our methodology considers

relaxed MDDs, which are diagrams of parametrized size that approximate the feasible

solution set. In this work, we leverage the underlying network representation of an MDD

to better exploit the combinatorial structure of the m-PDTSP while also incorporating

dual information from a linear programming relaxation of the problem.

The resulting approach provides a flexible relaxation that yields bounds on the opti-

mal solution value of the m-PDTSP and can be embedded, e.g., in any branching search.
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Figure 1 Example of an m-PDTSP instance. Bold arcs represent the optimal tour.

Computational experiments using a constraint programming solver indicate that the result-

ing MDD relaxation can enhance solution times by orders of magnitude in a number of

instances, in particular when capacities are small. We also find provably optimal solutions

to 33 instances in the literature for the first time, 27 of those with our best parametrization.

Main contributions. Our first contribution is to introduce an MDD-based discrete relax-

ation for the m-PDTSP. Its main purpose is to provide valid bounds on the optimal solu-

tion of the problem. Our data structure, inspired by a mixed-integer linear programming

(MILP) formulation introduced by Gouveia and Ruthmair (2015), compactly encodes all

feasible solutions as paths in a directed acyclic graph where edges represent positions in

a tour. We present structural results and strategies for constructing relaxed MDDs that

take into account both tour constraints and vehicle capacities, extending previous work on

MDDs for sequencing problems. Specifically, our capacity-based construction guarantees

the satisfaction of the capacity constraint for all solutions represented in the relaxed MDD.

Our second key contribution is a Lagrangian technique that significantly strengthens

the existing bounds for the m-PDTSP based on the concepts introduced by Bergman

et al. (2015). Namely, we incorporate Lagrange multipliers that penalize solutions of the

MDD which do not represent valid Hamiltonian tours or violate precedence and capacity

constraints. The key advantage of this framework is that it exploits the discrete represen-

tation of the m-PDTSP while still taking advantage of linear programming (LP) relaxation

information, thereby benefiting from both MDD and LP methodologies.

Finally, we present an extensive numerical study that evaluates our MDD construc-

tion strategies and the performance of distinct MDD-based Lagrangian relaxations for the

m-PDTSP. To this end, we incorporate our relaxation mechanism into a constraint pro-

gramming model and evaluate the quality of our bounds and the solution performance
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with respect to state-of-the-art techniques. We show that our integrated methodology can

provide significant improvements over the existing dataset, which is more pronounced when

the instance is associated with a small vehicle capacity relative to the commodity weights.

Outline of the paper. The paper is organized as follows. Section 2 presents a review of the

previous related works. We formalize the m-PDTSP and introduce notation in Section 3.

Specifically, Section 3.1 presents a mathematical formulation of the problem, while Section

3.2 describes an MDD representation for the problem. Section 4 introduces our MDD-based

Lagrangian relaxation and establishes the combinatorial structure that we exploit. Section

5 provides the associated MDD construction techniques to expose such structure. The

overall approach is presented in Section 6. Numerical experiments are presented in Section

7, which includes a comparison with the state-of-the-art approaches. Finally, Section 8

provides a discussion on the work presented, the main results obtained, and final remarks.

2. Literature Review

The m-PDTSP is a capacitated version of the sequential ordering problem (SOP), a vari-

ant of the asymmetric TSP where tours are subject to additional precedence constraints

between locations. Several mathematical formulations and heuristic techniques have been

previously investigated for the SOP; see, e.g., Balas et al. (1995), Ascheuer et al. (2000),

Hernádvölgyi (2004), Gouveia and Pesneau (2006). These works typically form the basis

upon which the existing m-PDTSP mathematical models are built.

The m-PDTSP remains a challenging problem with few exact approaches in the liter-

ature. Existing solution methods are primarily based on MILPs that exploit polyhedral

structure and decomposition strategies. The first models were investigated by Hernández-

Pérez and Salazar-González (2009), who propose a multi-commodity flow and a path-based

formulation. Both are solved using Benders decomposition strategies that iteratively add

vehicle capacity constraints to a relaxed MILP model, solving instances with up to 47

locations in less than two hours. Nonetheless, these techniques are not able to optimally

solve smaller instances when tighter vehicle capacities were considered. Letchford and

Salazar-González (2016) later extended this formulation by introducing valid inequalities

for the original multi-commodity flow model. These inequalities significantly improve the

LP relaxation bound at the root node, albeit negatively impacting their solution times due

to computationally expensive separation routines.
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The state-of-the-art solution methods for the m-PDTSP are branch-and-cut algorithms

proposed by Gouveia and Ruthmair (2015). The authors show that the problem can be

reduced to an 1-PDTSP by considering additional precedence constraints, and propose

new MILP formulations based on layered graph models. These models formulate tours

as paths in an expanded graph, where each layer corresponds to a position in the tour.

The models either combine flow and capacity constraints or are restricted to enforcing

precedence relations. The resulting MILPs are then solved by a branch-and-cut algorithm

that combines preprocessing methods, primal heuristics based on a variable neighborhood

descent, and separation routines. The authors significantly improve upon the existing run

times, solving several open instances to optimality.

Despite the significant solution time improvements, the state-of-the-art method by Gou-

veia and Ruthmair (2015) reports instances with 19 locations and 10 commodities that are

still left unsolved within a reasonable amount of time. Such instances typically involve small

vehicle capacities relative to the commodity weights, leading to a combinatorial structure

that is not well captured by current LP relaxations. Our model builds on the ideas by

Gouveia and Ruthmair (2015), but our approach exploits a different type of approximation

and focuses on operating directly on the MDD graphical structure.

As for heuristic methods, Rodŕıguez-Mart́ın and Salazar-González (2012) propose two

heuristics that combine a greedy randomized search with a variable neighborhood descent.

Their best algorithm computed high-quality solutions for instances with up to 300 locations

and 600 commodities, improving upon the best known solution for existing open instances.

A decision diagram is a pervasive data structure in computer science for representing

Boolean functions (Bryant 1992). An MDD is a variant where the function arguments can

take more than two values. A relaxed MDD, first introduced by Andersen et al. (2007),

is a diagram of limited size that approximates a set of solutions to a discrete problem.

It has been largely applied to mathematical programming and discrete optimization, in

particular for obtaining optimization bounds (Hoda et al. 2010). A survey on the use of

MDDs for optimization is presented by Bergman et al. (2016).

The use of MDDs for routing problems was initially investigated by Cire and van Hoeve

(2013) and Kinable et al. (2017). Cire and van Hoeve (2013) propose an MDD repre-

sentation for sequencing problems that is similar to a layered graph model, in that each

layer of the diagram corresponds to a position of the tour. However, such a model is not
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incorporated into an MILP formulation, but modified by a combinatorial algorithm during

search to more accurately represent the feasible solution space of the problem. The authors

investigate structural results of the diagram and improve upon existing bounds for open

instances of the TSPLIB. Kinable et al. (2017) extend these ideas for time-dependent TSPs,

proposing an additive bounding procedure (Fischetti and Toth 1989) that uses reduced-cost

information from an LP relaxation to strengthen an MDD bound. We provide structural

results showing that our methodology always produces bounds that are at least as strong

as the ones obtained from an MDD-based additive bounding technique.

Lagrangian duality is a bounding technique extensively investigated in mathematical

programming; see, e.g., the review by Fisher (2004). The methodology, as described by

Geoffrion (1974), consists of dropping constraints and penalizing their violation in the

objective function, thereby leading to a relaxed problem that is easier and possibly decom-

posed. Such constraint violations, in particular, are weighted by Lagrange multipliers. The

problem of finding the set of multipliers that provide the best possible bound defines a

maximization problem with a piecewise linear concave objective known as the Lagrangian

dual, initially tackled by Held and Karp (1971) using subgradient methods. In this paper,

we consider the methodology by Frangioni et al. (Frangioni 2002), which is a generalized

version of the Bundle method introduced by Lemaréchal (1975).

The use of MDDs for Lagrangian duality was first proposed by Bergman et al. (2015),

who introduce the general concept and report preliminary results for the TSP with time

windows. The concept has roots in a method proposed by Beasley and Cao (1998) that

combines dynamic programming (DP) with Lagrangian techniques for airline crew schedul-

ing. In contrast, the MDD methodology operates directly on a graphical representation of

the state-transition graph as opposed to the DP model.

Our MDD approach is related to the constrained shortest path problem (CSPP), in

that finding the optimal solution to the m-PDTSP is equivalent to solving the CSPP over

the relaxed MDD graph where the side constraints and costs are given by the m-PDTSP

parameters (Section 4). Our Lagrangian approach and filtering procedure share the same

underlying ideas as the techniques used to tackle the resource variant of the CSPP (Beasley

and Christofides 1989, Carlyle et al. 2008). Nonetheless, we generalize such techniques by

leveraging the graphical structure of an MDD through refinement techniques that exploit

the pickup-and-delivery constraint structure.
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The proposed methodology can also be viewed as a type of state-space relaxation similar

to what was considered by Baldacci et al. (2012) for the TSPTW. Nonetheless, while the

latter work used dual information to strengthen a specific DP state-space relaxation (the

ng-route), our diagram can be compiled to better exploit the m-PDTSP structure.

3. Problem Definition and Formulations

In this section, we present the m-PDTSP and the notation used throughout the text. We

also introduce the mathematical programming formulation and the decision diagram model

that will be combined in our MDD-based Lagrangian dual methodology.

The m-PDTSP is defined on a complete directed graph G = (V ,E ), where V := {0, . . . , n}

is a set of n+1 locations with 0 as the depot. Each arc (i, j)∈ E is associated with a travel

cost ci,j ∈ R≥0, where potentially ci,j 6= cj,i (i.e., costs may be asymmetric). We are also

given a set of commodities K = {1, . . . ,m}. A commodity k ∈K has an integral positive

weight wk ∈Z>0, a pickup location pk ∈ V \{0}, and a delivery location dk ∈ V \{0}. Finally,

we assume a single vehicle with capacity C.

A solution is a minimum-cost Hamiltonian tour on G that observes the vehicle capacity

and the pickup-and-delivery order established for each commodity. This can be formally

represented using the 1-PDTSP reduction by Gouveia and Ruthmair (2015). Namely, let

∆qi =
∑

k∈K ,pk=i

wk−
∑

k∈K ,dk=i

wk.

be the net weight of pickup and deliveries at a location i ∈ V . A feasible tour to the

m-PDTSP is a sequence of locations π := (π0, π1, . . . , πn, πn+1) which satisfies (i)-(iii):

(i) The sequence starts and ends at the depot, π0 = πn+1 = 0, and (π1, . . . , πn) is a permu-

tation of V \ {0}.

(ii) The accumulated net weight in every position of the sequence never exceeds the vehicle

capacity, i.e.,
∑t′

t=1 ∆qπt ∈ {0, . . . ,C} for all t′ ∈ {1, . . . , n}; and

(iii) For every commodity k ∈K , its pickup location is visited prior to its delivery location,

i.e., πt = pk and πt′ = dk implies t < t′.

The cost c(π) of a feasible tour π is the total travel cost starting at the depot, visiting

each location in V in the order defined by π, and returning to the depot. That is,

c(π) =
n∑
t=0

cπt,πt+1.
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The m-PDTSP requires a feasible tour π that minimizes the tour cost c(π). The optimal

tour cost is denoted by ν∗.

Example 1. Figure 1 depicts an instance of the m-PDTSP used as a running example

in the text. The underlying graph has 5 locations (with 0 as the depot), where travel costs

are represented as arc labels. The vehicle capacity is C = 5 and two commodities must be

considered, with weights and pickup-and-delivery locations described in the table in the

figure. Note that ∆q1 = 3, ∆q2 =−2, ∆q3 = 2, and ∆q4 =−3.

The optimal tour is π = (0,3,1,2,4,0) with a cost of ν∗ =1,863, as represented by the

bold arcs in Figure 1. The tour picks up commodity 2 at location 3, then picks commodity

1 at location 1, and finally delivers commodities 2 and 1 at locations 2 and 4, respectively.

The net weight in π is always between 0 and the vehicle capacity C = 5. Furthermore, the

delivery location for each commodity succeeds its corresponding pickup location. �

3.1. Mathematical Programming Formulation

We now formalize the m-PDTSP in terms of an integer linear program (ILP) that will

be leveraged in our MDD-based Lagrangian framework. The m-PDTSP has a large array

of formulations proposed in the literature (Letchford and Salazar-González 2016). We

consider a well-known time-indexed formulation for the TSP (see, e.g., Dash et al. 2012)

augmented with precedence constraints.

Let xtij be a binary variable indicating if location j follows location i at position t in the

tour, for i, j ∈ V and t∈ {0, . . . , n}. Also, let yi,t ∈ {0,1} be a binary variable that indicates

if location i is visited in position t of a feasible tour. Model P formulates the m-PDTSP:

min
x,y

n∑
t=0

n∑
i=0

n∑
j=0

ci,j x
t
i,j (P)

s.t.

n∑
i=0

yi,t = 1 t= 0, . . . , n+ 1, (1)

n∑
t=1

yi,t = 1 i∈ V \ {0}, (2)

t′∑
t=1

n∑
i=1

yi,t ·∆qi ≥ 0 t′ = 1, . . . , n, (3)

t′∑
t=1

n∑
i=1

yi,t ·∆qi ≤C t′ = 1, . . . , n, (4)
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n∑
t=1

t · ypk,t−
n∑
t=1

t · ydk,t ≤−1 k ∈K , (5)

y0,0 = y0,n+1 = 1, y0,t = 0 t= 1, . . . , n, (6)

yi,t−
n∑
j=0

xti,j = 0 i∈ V , t= 0, . . . , n, (7)

yj,t−
n∑
i=0

xt−1i,j = 0 j ∈ V , t= 1, . . . , n+ 1, (8)

yi,t ∈ {0,1} i∈ V , t= 0, . . . , n+ 1,

xti,j ∈ {0,1} i, j ∈ V , t= 0, . . . , n.

The objective function is a reformulation of the tour cost in terms of x. Equalities (1)

and (2) are matching constraints enforcing that tour positions are assigned to exactly one

location and that each location must be visited exactly once, respectively. Inequalities

(3) and (4) state the vehicle capacity limitation. Inequalities (5) impose precedence con-

straints, i.e., each pickup location is visited prior to its delivery location. Such precedence

inequalities are typical, e.g., in time-indexed formulations of resource-constrained project

scheduling problems (Artigues 2017). The equalities in (6) indicate that a tour should start

and end at the depot. Lastly, (7) and (8) establish the connection between x and y.

A feasible solution y′ to P defines a feasible tour π′ such that π′t =
∑n

i=0 i y
′
i,t for every

t ∈ {0, . . . , n+ 1}. Every tour can be converted to a feasible solution to P analogously.

Also, there is an one-to-one mapping between feasible binary vectors y and x based on

(7)-(8).

While other m-PDTSP formulations are also applicable in our framework, model P has

two advantages that we exploit. First, P has a polynomial number of linear inequalities,

which when relaxed leads to a tractable number of Lagrange multipliers that can be effi-

ciently optimized. Second, the time-indexed variables y have a direct translation to the

layered network representation of a decision diagram, as described in Sections 3.2 and 4.

3.2. Multivalued Decision Diagram Formulation

In this section, we introduce an MDD model for the m-PDTSP based on the sequencing

representation by Cire and van Hoeve (2013) and Kinable et al. (2017). The model is a

graphical representation of the set of feasible tours of an m-PDTSP instance, which can

be limited in size to provide valid bounds for the m-PDTSP.
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Formally, we define an MDD for the m-PDTSP as a directed acyclic layered graph

M = (N ,A ), where the set of nodes N is partitioned into n+3 layers N0, . . . ,Nn+2. The

layer of a node u is denoted by `(u), i.e., `(u) = t if u ∈Nt. The first and last layers, N0

and Nn+2, are singletons containing a root node r and a terminal node t, respectively. For

t ∈ {0, . . . , n+ 1}, an arc a := (u, v) ∈ A emanating from u ∈Nt is always directed to a

node v ∈Nt+1 in the next layer. Moreover, for each arc a= (u, v), `(u) = t, we associate

a label θ(a) ∈ V that represents the location assigned to the t-th position of a tour; i.e.,

paths traversing a are such that πt = θ(a). Thus, the set of tours encoded by M is:

Sol(M ) = {(θ(a0), θ(a1), θ(a2), . . . , θ(an+1)) : (a0, a1, a2, . . . , an+1) is an r− t path in M } .

An MDD is exact if there is an one-to-one correspondence between Sol(M ) and the

feasible tours of the m-PDTSP instance. Alternatively, an MDD is relaxed if Sol(M ) over-

approximates the set of feasible tours, i.e., every feasible tour is encoded in some path of

M , but not all paths in Sol(M ) are necessarily feasible tours. Specifically, infeasible tours

in M may either represent invalid permutations, violate the vehicle capacity, or fail to

observe pickup-and-delivery precedence constraints. While exact MDDs are exponential in

size in general, relaxed MDDs can be built with arbitrary size (Andersen et al. 2007).

Example 2. An exact MDD for the instance in Example 1 is depicted in Figure 2a.

Each r− t path encodes a feasible tour and equivalently every tour is encoded by exactly

one r− t path. In particular, path (r, u1, u3, u5, u8, u9, t), in bold, encodes the optimal tour

π= (0,3,1,2,4,0).

Figure 2b depicts a relaxed MDD for the same example. Every path in the exact MDD

has an associated path in the relaxed MDD. Nonetheless, the relaxed MDD contains the

infeasible tour (0,1,4,1,4,0) given by the path (r, u1, u2, u5, u6, u8, t). �

For notation purposes, let δin(u) and δout(u) be the set of incoming and outgoing arcs

at a node u∈N , respectively. An arc a := (t(a), h(a)) emanates from a tail t(a)∈N and

points at a head h(a) ∈N . The layer `(a) of an arc a is the layer of its tail node, i.e.,

`(a) = `(t(a)). The width ω(M ) of an MDD M is the maximum number of nodes in any

layer, i.e., ω(M ) := maxt=1,...,n+1 |Nt|.
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Figure 2 Exact and Relaxed MDDs for Example 1.

Optimizing Travel Costs over M . If M is an exact MDD encoding Hamiltonian paths

in a graph, Kinable et al. (2017) show that the minimum total travel cost, i.e.,

min{c(π) : π ∈ Sol(M )}, can be found in polynomial time in the size of M . To this end,

the authors equip M with a more general travel cost matrix ζ, where ζti,j represents the

cost of traveling from location i to location j when i is assigned to the t-th position of

the tour, for i, j ∈ V and t ∈ {0, . . . , n}. With such a matrix ζ, the cost c(π) of a tour π

becomes

c(π) =
n∑
t=0

ζtπt,πt+1
. (9)

Note that ζti,j = ci,j for all t ∈ {0, . . . , n} in any given m-PDTSP instance, i.e., we could

drop the additional index t. Nonetheless, we maintain this general cost representation when

optimizing over M , as it will be later directly applied to our Lagrangian dual in Section 4.2,

where travel costs are also position dependent.

Let τ(a) be the minimum cost of all partial tours encoded by paths starting at the root

r and ending at an arc a∈A . Such values are obtained using the recurrence

τ(a) :=

0, if `(a) = 0,

mina′∈δin(t(a))

{
τ(a′) + ζ

`(a′)
θ(a′),θ(a)

}
, otherwise.

(10)
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That is, for an arc a in an layer `(a) > 1, τ(a) is the minimum cost among its possible

predecessor locations, i.e., all locations θ(a′) such that a′ ∈ δin(t(a)), plus the cost to travel

from the predecessor to the arc’s location θ(a). The optimal tour cost ν∗ is, by definition,

τ(M ) := min
a∈A :`(a)=n+1

τ(a). (11)

A proof of the validity of (10) is presented by Kinable et al. (2017) in the context of

time-dependent sequencing. If M has a width of ω(M ), all such values can be computed

with a breadth-first search traversal in O(n|A |ω(M )).

If M is a relaxed MDD of arbitrary size, the value obtained in (11) provides instead

a lower bound to the optimal solution value of the m-PDTSP. This follows since Sol(M )

over-approximates the set of feasible tours. We further investigate relaxed MDD construc-

tion techniques for the m-PDTSP in Section 5, based on our Lagrangian dual framework

established in Section 4.

Example 3. Consider the exact MDD presented in Figure 2a. We use (10) to com-

pute the arc costs τ((r, u1)) = 0, τ((u1, u2)) = τ((r, u1)) + ζ0θ((r,u1)),θ((u1,u2)) = c0,1 = 447, and

analogously for the remaining arcs. In particular, the cost of arc (u5, u8) is given by

τ((u5, u8)) = min{τ((u2, u5)) + ζ1θ((u2,u5)),θ((u5,u8)), τ((u3, u5)) + ζ1θ((u3,u5)),θ((u5,u8))}

= min{τ((u2, u5)) + c3,2, τ((u3, u5)) + c1,2}= min{1154 + 666, 1131 + 295}= 1426.

Similarly, we apply recursion (10) to compute the arc costs of the relaxed MDD shown

in Figure 2b. In this case, the optimal tour cost (11) is given by τ(M ) = min{τ((u8, t))}=

1811, which encodes the infeasible tour π= (0,1,4,1,4,0). �

4. An MDD-based Lagrangian Dual for the m-PDTSP

This section introduces the Lagrangian dual for the m-PDTSP that combines the ILP and

the MDD formulations described in Section 3. Specifically, our main purpose is to provide

a new mechanism to obtain valid lower bounds to the problem. Such bounds can be used,

e.g., to certify the quality of a feasible solution or to enhance a branch-and-bound search.

Our approach assumes that we are given a relaxed MDD M for an m-PDTSP instance

(e.g., the one proposed in Section 5). Because M and a linear relaxation of P may be

complementary in terms of the combinatorial structure each encodes, we wish to combine

them into a single model that leverages the strengths of both formulations. To this end,
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we propose a Lagrangian dual that incorporates information from the LP relaxation of P

as costs into M , building on earlier works integrating dynamic programming and MDDs

with Lagrangian relaxation (Beasley and Cao 1998, Bergman et al. 2015).

In the remainder of this section, we first describe a model that integrates both relax-

ations to enhance bounds. Next, we show how such model can be addressed by solving its

Lagrangian dual, which yields a subproblem that is polynomially solvable in M .

4.1. Hybrid ILP-MDD Relaxation for the m-PDTSP

For ease of notation, let A ∈Rr×|V |×(n+2) and b ∈Rr represent the matrix coefficients and

right-hand side vector of the inequalities in P, respectively, that only involve y. Specifically,{
y ∈R|V |×(n+2) : Ay≤ b

}
=
{
y ∈R|V |×(n+2) : y satisfies (1)-(5)

}
,

assuming an appropriate dimension r > 0 encoding the number of constraints. In particular,

an element al,i,t of A is the coefficient of the variable yi,t in the l-th constraint of P. Notice

that Ay≤ b models the matching, capacity, and precedence constraints of P.

Furthermore, for a given exact or relaxed MDD M , let Solγ(M ) be the set of binary

solutions (x, y) that can be mapped to a tour encoded by M . That is,

Solγ(M ) :=

{
(x, y) binaries : ∃π ∈ Sol(M ) s.t.

n∑
i=0

i yi,t−πt = 0 for all t∈ {0, . . . , n+ 1},

and (x, y) satisfies (7)-(8)

}
,

where the dimensions of (x, y) are as in P, omitted above for exposition. Note that there

is an one-to-one mapping between a vector pair (x, y)∈ Solγ(M ) and a tour π ∈ Sol(M ).

Let M be a relaxed MDD and denote the convex hull of a set X by conv(X ). We

propose a new bound for the m-PDTSP obtained by solving the following hybrid relaxation

H :

νR := min
x,y

n∑
t=0

n∑
i=0

n∑
j=0

ci,j x
t
i,j (H )

s.t. Ay≤ b,

(x, y)∈ conv(Solγ(M )).

The optimal solution value of H is a lower bound to the original problem, i.e., ν∗ ≥ νR,

since H is the intersection of two over-approximations of the feasible tour set.
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The choice of formulation H follows from three key motivations. First, since a convex

hull can be equivalently described by a set of linear inequalities, problem H is a well-

defined linear program that captures both the linear relaxation of P and the relaxation

structure of M . Second, using Lagrangian duality, H can be solved by exploiting an

efficient combinatorial algorithm over M . Finally, the bound provided by H is never

worse than the original MDD bound or the LP relaxation of P when each is considered

separately. As indicated by our numerical study, such a bound is often stronger and leads

to significant speed-ups in our branch-and-bound search.

4.2. Solving H by Lagrangian Duality

We address H by dropping inequalities Ay≤ b and penalizing their violation in the objec-

tive function with Lagrange multipliers λ. This yields a Lagrangian dual that observes

strong duality with respect to H . Namely, by Conforti et al. (2014), Theorem 8.2, we have

that

νR = max
λ
{L (λ) : λ≥ 0} , (D)

where L (·) is the Lagrangian subproblem defined as

L (λ) := min
x,y

{
n∑
t=0

n∑
i=0

n∑
j=0

ci,jx
t
i,j +λT (Ay− b) : (x, y)∈ Solγ(M )

}
.

Notice that L (·) optimizes a linear function over Solγ(M ) as opposed to the convex hull

of such set. We now show that L (·) is also tractable in the size of M .

Proposition 1. For any λ≥ 0, the Lagrangian subproblem L (λ) can be solved in poly-

nomial time in the size of M . Specifically,

L (λ) = τ(M ) +λT b,

where τ(M ) is defined as in (11) and computed using the MDD cost structure

ζti,j = ci,j +

r∑
l=1

(λl al,i,t)

for all i, j ∈ V and t∈ {0,1, . . . , n}.
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Proof. By definition, any (x, y)∈ Solγ(M ) maps to a (unique) π ∈ Sol(M ). For such a

triple (x, y,π), recall that
∑n

t=0

∑n
i=0

∑n
j=0 ci,jx

t
i,j = c(π) =

∑n
t=0 cπt,πt+1. Thus,

n∑
t=0

n∑
i=0

n∑
j=0

ci,jx
t
i,j +λT (Ay− b) =

n∑
t=0

cπt,πt+1 +
r∑
l=1

λl

(
n∑
i=0

n∑
t=0

al,i,tyi,t− bl

)

=
n∑
t=0

cπt,πt+1 +

n∑
t=0

n∑
i=0

(
r∑
l=1

λlal,i,t

)
yi,t−λT b

=

n∑
t=0

(
cπt πt+1 +

r∑
l=1

n∑
i=0

(λlal,i,t)yi,t

)
−λT b

=
n∑
t=0

(
cπt,πt+1 +

r∑
l=1

(λlal,πt,t)

)
−λT b.

This implies that
∑n

t=0

∑n
i=0

∑n
j=0 ci,jx

t
i,j+λTAy=

∑n
t=0 ζ

t
πt,πt+1

for costs ζtπt,πt+1
of the same

form (9) as required for τ(M ). �

4.3. Incorporating the Lagrange Multipliers in M

In this section, we provide further details on how to incorporate the Lagrange multipliers

associated with the linear system Ay≤ b into a relaxed MDD M by means of Proposition 1.

Our implementation focuses on the Lagrange multipliers related to the tour equalities (2),

the capacity inequalities (3)-(4), and the precedence inequalities (5). Notice that we are not

required to consider inequalities (1) and (6) since they are enforced by construction of M .

Other valid linear inequalities to the m-PDTSP, however, can be incorporated analogously.

Consider the Lagrange multipliers λ = (β,µ,σ), where β ∈ R|V |, µ ∈ R2n (µ ≥ 0), and

σ ∈R|K | (σ≥ 0) are associated with constraints (2), (3)-(4), and (5), respectively. For this

set of multipliers, the cost matrix ζ of Proposition 1 is given by

ζti,j = ci,j + βi + ∆qi

n∑
t′=t

(µn+t′ −µt′) + t

 ∑
{k∈K :pk=i}

σk−
∑

{k∈K :dk=i}

σk

 .

Notice that the constant λT b is

λT b=−
∑
i∈V

βi−
2n∑

t=n+1

Cµt +
∑
k∈K

σk.

The cost matrix ζ is used in recurrence (10)-(11) to compute a new lower bound over M ,

as illustrated in the example below. Any valid set of multipliers suffice to obtain a valid

lower bound for the m-PDTSP. In particular, the strongest bound is at least as strong as

the one obtained from the original relaxed MDD M (Fisher 2004).
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Example 4. Consider our running example and the relaxed MDD M shown in Figure

2b. Suppose, for illustration purposes, that we incorporate only equalities (2) and let

β ∈R|V | be the vector of Lagrange multipliers associated with (2). If we set β1 = β4 = 100

and βi = 0 for all i ∈ V \ {1,4}, we obtain L (λ) = τ(M ) + λT b = 1863. This solution

corresponds to the optimal tour π= (0,3,1,2,4,0) and improves the original MDD bound

of 1811. �

4.4. Solution Method for the Lagrangian Dual

Problem D is the Lagrangian dual problem, maximization problem with a piecewise linear

concave objective (Fisher 2004). It can be solved iteratively by computing L (λ0) for some

λ0 ≥ 0, obtaining a new set of Lagrange multipliers λ1 based on the solution of L (λ0), and

repeating until some termination criteria is reached. The function L (·) can be computed

efficiently in O(n|A |ω(M )) as described in Sections 4.2 and 4.3.

For the update of the Lagrange multipliers, we apply Bundle methods (Lemaréchal 1975)

that have a relatively fast convergence rate in comparison to other methods; i.e., typically

bounded by O(1/ε3) for a given precision ε. A Bundle method is a variant of the cutting

plane method, which adds a quadratic stabilizer to improve convergence. The method

iteratively solves L (λ) until it converges to the optimal set of multipliers λ∗. Each optimal

solution (x′, y′) of L (λ) has an associated subgradient, Ay′− b, that is used to generate a

cutting plane that is valid to the function L (·).
For the specific case of the m-PDTSP, consider the k-th iteration of the procedure with

λk as the current set of multipliers associated with the system Ay≤ b. Our implementation

solves L (λk) using the recursive arc cost procedure ((10)-(11)) over M with the cost

structure shown in Proposition 1. Solution πk = arg max{τ(M )} is mapped to (xk, yk) for

the subgradient computation, Ayk − b. The method then solves the following quadratic

problem to generate a new set of multipliers λk+1,

λk+1 = arg max
λ

{
z+

1

2t
||λ−λk|| : z ≤L (λs) + (Ays− b)T (λ−λs), ∀s= 0, ..., k, z ∈R, λ∈Rr

≥0

}
.

In the problem above, z is a variable that over approximates the Lagrangian dual bound,

and λ corresponds to the set of Lagrange multipliers. The objective function includes

a quadratic stabilizer 1
2t
||λ− λk|| (t < 1) to improve convergence (Lemaréchal 1975). In

each iteration of the procedure, the set of constraints increases by one, where each new

constraint is a cutting plane derived from the subgradients in the previous iterations.
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5. Relaxed MDD Construction

In this section, we describe the relaxed MDD construction procedure that we use as an

input to the hybrid model H . Our methodology is a variant of the incremental refinement

framework by Andersen et al. (2007). Specifically, we generate a sequence of relaxed MDDs

M0,M1,M2, . . . that finitely converge to the exact MDD representation of an instance. In

this framework, an iterate Mt+1 is constructed by expanding nodes of the previous diagram

Mt to rule out infeasible solutions based on the constraint set of the problem.

In the context of the m-PDTSP, an infeasible solution is a tour that violates at least one

of the three possible constraints: (i) the ones imposing that each location must be visited

exactly once (i.e., the tour constraints); (ii) the ones which enforce that the vehicle capacity

must be observed at all visits; or (iii) the precedence relations that are implied by the

pickup-and-delivery conditions. While such conditions are approximated by inequalities

(1)-(5) in H , we can leverage the flexibility of MDDs to better encode the constraints that

are not tightly relaxed by these inequalities alone.

We propose a relaxed MDD construction that enforces each of the three constraint classes

one at a time, until either they are satisfied by all tours in the MDD, or a maximum allowed

size of the network is reached. To this end, we start with a small valid relaxed MDD and

rule out the solutions violating a particular constraint by expanding nodes and removing

arcs accordingly. Once a constraint type has been fully observed by the paths of the

MDD, we repeat this procedure iteratively with the remaining constraints. We give priority

to capacity constraints, which are well-known to be challenging in integer programming

formulations for the m-PDTSP (Letchford and Salazar-González 2016), while conversely

MDD relaxations may be weak when enforcing tour constraints (Cire and van Hoeve 2013)

and are better represented by linear assignment constraints.

The overall construction procedure is depicted in Algorithm 1. We start with a width-one

trivial relaxed MDD, as depicted in Figure 3a. Next, for each layer, we expand nodes to first

satisfy the vehicle capacity constraints (procedure ExpandNodesCapacity), and second

to satisfy the tour constraints and precedence relations (procedure ExpandNodesTour),

while ensuring that the width ω(M ) of the network does not exceed W > 0. We note that

the order of the expansion procedures can be inverted without loss of generality.
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Algorithm 1 Relaxed MDD construction for the m-PDTSP

1: procedure ConstructMDD(Input: m-PDTSP instance I, max. width W )

2: Construct an width-one relaxed MDD M for I

3: for each layer t= 1, . . . , n+ 1 do

4: ExpandNodesCapacity(Nt, W )

5: ExpandNodesTour(Nt, W )

6: return M .

5.1. Capacity Constraints

In this section, we develop the ExpandNodesCapacity procedure for Algorithm 1. Its

main purpose is to modify a given relaxed MDD so that the vehicle capacity constraints

are satisfied by the paths in Sol(M ).

Let M = (N ,A ) be a relaxed MDD. With each node u ∈N , we associate two labels,

Qmin(u),Qmax(u)∈R, representing the minimum and maximum accumulated net weights,

respectively, of all partial tours starting at r and ending at u. That is,

Qmin(u) := min


`(u)−1∑
t=0

∆qθ(at) : (a0, a1, . . . , a`(u)−1) is an r−u path in M

 ,

and analogously for Qmax(u) with “min” replaced by “max”. Such labels can be efficiently

computed by a breadth-first search on M by fixing Qmin(r) = Qmax(r) = 0 and, for any

node u 6= r, computing the following recurrence during a top-down search:

Qmin(u) = min
a∈δin(u)

{
Qmin(t(a)) + ∆qθ(a)

}
and (12)

Qmax(u) = max
a∈δin(u)

{
Qmax(t(a)) + ∆qθ(a)

}
. (13)

The labels above provide a mechanism to measure the degree of infeasibility of M with

respect to the capacity constraints. This is formalized in the result below.

Proposition 2. For all u ∈ N and some ε ≥ 0, suppose that (i) Qmin(u) ≤ C,

Qmax(u)≥ 0; and (ii) Qmax(u)−Qmin(u)≤ ε. Then, for all π ∈ Sol(M ),

−ε≤
t′∑
t=0

∆qπt ≤C + ε, t′ = 0, . . . , n+ 1. (14)

That is, tours in M violate the capacity constraints by at most ε.
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Proof. Assume (i) and (ii) hold for some ε≥ 0 as defined in the proposition statement.

For any partial path π from the root r to a node u∈Nt, t≥ 1,

`(u)−1∑
t=0

∆qπt ≤Qmax(u)≤Qmin(u) + ε≤C + ε.

The first inequality follows from the definition ofQmax(·). The second follows from condition

(ii), and the last is from (i). An equivalent reasoning can be used for
∑t′

t=1 ∆qπt ≥−ε. �

We can assume condition (i) from Proposition 2 always holds, since otherwise we can

simply remove the violating nodes from M as they only encode infeasible paths. This leads

directly to the following corollary.

Corollary 1. The tours in Sol(M ) satisfy the vehicle capacity constraints if

0≤Qmin(u) =Qmax(u)≤C, for all u∈Nt, t= 0, . . . , n+ 2.

We can now state our expansion procedure, which is formalized in Algorithm 2. Given

the nodes Nt in a layer t, we first compute labels Qmin(·) and Qmax(·) using (12) and (13),

respectively. Next, we define the expansion set EC(Nt) of Nt as the set of nodes in Nt

from which all parents satisfy the conditions of Corollary 1, i.e.,

EC(Nt) :=
{
u∈Nt : Qmin(t(a)) =Qmax(t(a)) for all a∈ δin(u)

}
.

Notice that, by definition of the labels, a node u 6∈EC(Nt) can never be expanded to satisfy

the corollary conditions, since the minimum net weight at u will always be strictly lower

than its maximum net weight regardless on how its incoming arcs are partitioned.

If all u∈EC(Nt) are such that Qmin(u) =Qmax(u), then, by Corollary 1, no more expan-

sion is needed. Otherwise, consider u∈EC(Nt) such that Qmin(u)<Qmax(u). Furthermore,

define A min(u) as the set of incoming arcs at u that certify the label Qmin(u), i.e.,

A min(u) :=
{
a∈ δin(u) : Qmin(t(a)) + ∆qθ(a) =Qmin(u)

}
. (15)

If the limit W on the maximum width is not met, we create a new node v and redirect

the tail of the arcs in a ∈ A min(u) to v. This redirection will ensure, by construction,

that Qmin(v) =Qmax(v) and will increase Qmin(u) as shown in Proposition 3. We also copy

the arcs emanating from u and assign them to emanate from v to ensure that the paths

originally crossing arcs in A min(u) are preserved. Finally, we update the labels Qmin(·) and

Qmax(·) accordingly and repeat the procedure until either the maximum width is met or

Corollary 1 is satisfied for the nodes in that layer.
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Algorithm 2 Expanding nodes based on capacity.

1: procedure ExpandNodesCapacity(Input: MDD node set Nt, max. width W )

2: Compute labels Qmin(u), Qmax(u) for each u∈EC(Nt).

3: while |Nt|<W and ∃u∈EC(Nt) such that Qmax(u)−Qmin(u)> 0 do

4: Create a new node v, add it to Nt.

5: Set t(a∗) = v for all a∗ ∈A min(u), as defined in (15).

6: For every arc a∈ δout(u), create a new arc a′ = (v,h(a′)).

7: Update labels Qmin(u),Qmax(u),Qmin(v),Qmax(v).

Proposition 3. For a sufficiently large W , the procedure ExpandNodesCapacity

ensures that, for every node u∈Nt, Q
min(u) =Qmax(u).

Proof. It suffices to show that the procedure ends for any arbitrarily large W . Assume

all previous layers satisfy the condition of the statement and consider an iteration that

chooses a certain u such that Qmin(u) < Qmax(u). The new node v satisfies Qmin(v) =

Qmax(v) because of (15). Moreover, for all arcs a′ ∈ δin(u) \A min(u),

Qmin(t(a′)) + ∆qθ(a′) >Q
min(u)

and therefore the updated label Qmin(u) strictly increases. Since Qmax(u) is finite and

remains constant for the next iterations that pick the same node u, the result follows. �

Proposition 3 and Corollary 1 ensure that, for a sufficiently large width W , all tours in

M satisfy the capacity constraints. Note that, if the input node set has a cardinality of

one (as in our width-one MDD case), then the maximum width required for Proposition 3

is C+ 1, since no two nodes will have the same labels. Second, the choice of node u in line

3 of Algorithm 2 can be done in a systematic fashion. For instance, if we choose the node

with maximum ε := Qmax(u) −Qmin(u), we move towards decreasing the total violation

ε of paths, based on Proposition 2. In our numerical experiments, we choose W to be

sufficiently large (i.e., C + 1) to ensure all paths do not violate vehicle capacities.

Example 5. Figure 3 shows three relaxed MDDs that illustrate the

ExpandNodesCapacity procedure for our running example. Notice that dotted lines

indicate infeasible arcs identified by our filtering algorithms (Section 5.3).

Starting with the width-one MDD in Figure 3a, the procedure expands layer N2 that

has a single node u2 with Qmin(u2) =−3 and Qmax(u2) = 3. The resulting MDD is shown
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in Figure 3b and has two nodes satisfying Corollary 1. Similarly, Figure 3c illustrate the

ExpandNodesCapacity procedure when it is applied to N3. �
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(a) Width-one relaxed MDD
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(b) Capacity node expansion in N2
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(c) Capacity node expansion in N3

Figure 3 Construction procedure. Depicts ExpandNodesCapacity procedure and filtering rules.

5.2. Tour and Precedence Constraints

In this section, we develop the ExpandNodesTour procedure for Algorithm 1 to impose

that tours in a relaxed MDD M do not violate precedence and tour constraints. We proceed

analogously to the capacity case and associate a label to each node, which will be used to

identify when an expansion is necessary. Such labels have been previously investigated by

Andersen et al. (2007) and Cire and van Hoeve (2013), who derive them from the classical

dynamic programming state representation for the traveling salesperson problem (see, e.g.,

Christofides et al. 1981). In the context of the m-PDTSP, we consider a simpler variant of

such labels that suffices to impose our desired conditions.

Let M = (N ,A ) be a relaxed MDD. For this expansion procedure, we associate one

label L(u)⊆ V to each MDD node u∈N . The label L(u) represents the subset of locations

that are visited by all r−u paths in M . That is,

L(u) :=
⋂

`(u)−1⋃
t=0

θ(at) : (a0, a1, . . . , a`(u)−1) is an r−u path in M

 .

Such a label can be efficiently computed by a breadth-first search on M by fixing L(r) = ∅
and, for any node u 6= r,

L(u) =
⋂

a∈δin(u)

{L(t(a))∪{θ(a)}} . (16)
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The tour and precedence feasibility can be verified by the following proposition.

Proposition 4. For all u∈Nt, t= 0, . . . , n+ 1, suppose that

(i) |L(u)|= `(u); and

(ii) For all arcs a∈ δout(u) emanating from u, the deliveries in θ(a) are preceded by their

associated pickups in L(u), i.e., if dk = θ(a) for some commodity k ∈K , then pk ∈

L(u).

If (i) and (ii) hold, the tours π ∈ Sol(M ) satisfy the tour and precedence constraints.

Proof. We show by induction on t that, for any node u∈Nt, the tours associated with

r−u paths satisfy the tour and precedence constraints. This is trivially valid for the basis

case t= 0. Assume now this statement holds for t= 0, . . . , t′ for some t′ ≥ 1.

Pick any node v ∈Nt′+1. For an arc a∈ δin(v) and a tour π′ = (π0, π1, . . . , πt′−1) encoded

by an r− t(a) path, the recursion (16) implies that |L(v)|= `(v) is true only if θ(a) 6= πt

for all t= 0, . . . , t′− 1; i.e., the extended tour π := (π′, θ(a)) satisfies the tour constraints.

Moreover, assumption (ii) directly implies that π also satisfies precedence constraints. �

Algorithm 3 states the tour expansion procedure. Given the nodes Nt, we first compute

the labels L(·) using (16). Next, we define the expansion set EL(Nt) of Nt as the set of

nodes in Nt from which all parents satisfy the assumption (i) of Proposition 4:

EL(Nt) :=
{
u∈Nt : L(t(a)) = |`(t(a))| for all a∈ δin(u)

}
.

Notice that, by definition of the labels, a node u 6∈EL(Nt) can never be expanded to satisfy

the required assumption, since the cardinality of L can increase by at most one per layer.

If all nodes u ∈ EL(Nt) are such that |L(u)| = `(u), then, by Proposition 4, no more

expansion is needed and we can stop. Otherwise, let u ∈ EL(Nt) be a node such that

|L(u)|< `(u). Furthermore, for any â∈ δin(u), define A L(v, â) as the set of incoming arcs

at u that lead to the same label L(·) as when applying â, i.e.,

A L(u, â) :=
{
a∈ δin(u) : L(t(a))∪{θ(a)}=L(t(â))∪{θ(â)}

}
. (17)

If the limit W on the maximum width is not met, we select any â∈ δin(u), create a new

node v, and redirect the tail of the arcs in a ∈A L(u, â) to v, which imposes assumption

(i) from Proposition 4. We also copy the arcs emanating from u to also emanate from v to

ensure that the paths originally crossing arcs in A L(u, â) are preserved, update the labels
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Algorithm 3 Expanding nodes based on tour and precedence.

1: procedure ExpandNodesTour(Input: MDD node set Nt, max. width W )

2: Compute label L(u) for each u∈Nt.

3: while |Nt|<W and ∃u∈EL(Nt) such that |L(u)|< `(u) do

4: Create a new node v, add it to Nt.

5: Select any arc â∈ δin(u).

6: Set t(a) = v for all a∈A L(u, â), as defined in (17).

7: For every arc a∈ δout(u), create a new arc a′ = (v,h(a)).

8: Update labels L(u),L(v).

9: for u∈Nt do

10: Remove all arcs a∈ δout(u) such that θ(a)∈L(u).

11: Remove all arcs a∈ δout(u) such that ∃k ∈K with dk = θ(a), pk 6∈L(u).

accordingly and repeat the procedure. Finally, we include an extra step to remove arcs

that violate condition (ii) of Proposition 4.

We state the following result, with proof analogous to Proposition 3.

Proposition 5. For a sufficiently large W , the procedure ExpandNodesTour ensures

that, for every node u∈Nt, assumptions (i) and (ii) of Proposition 4 are satisfied.

The minimum width required for Proposition 5 is O(2n), since it requires to enumerate

all subsets of V \{0}. Notice that it may be significantly larger than the pseudo-polynomial

size for the capacity constraints in the m-PDTSP case. The choice of â and u in Algorithm

3 can also be done in a systematic way, as discussed by Cire and van Hoeve (2013).

5.3. Filtering

Given a relaxed MDD M , filtering consists of identifying and removing arcs a for which all

paths traversing a only encode infeasible tours. Andersen et al. (2007) presents a number of

filtering conditions for relaxed MDDs representing Hamiltonian paths that can be directly

applied to our case. Here, we describe a new simple necessary condition that removes tours

in Sol(M ) violating the m-PDTSP capacity constraints.

With each node u∈N , we introduce new labelsQmin
↑ (u),Qmax

↑ (u)∈R that are symmetric

versions of Qmin(u) and Qmax(u). Namely, the labels Qmin
↑ (u) and Qmax

↑ (u) represent the
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minimum and maximum accumulated net weights, respectively, of all partial tours starting

at u and ending at the terminal node t. Thus, analogously as in the previous case,

Qmin
↑ (u) = min

a∈δout(u)

{
Qmin
↑ (h(a)) + ∆qθ(a)

}
and (18)

Qmax
↑ (u) = max

a∈δout(u)

{
Qmax
↑ (h(a)) + ∆qθ(a)

}
. (19)

Proposition 6. The arc a= (u, v) can be removed from M if:

Qmin(u) + ∆qθ(a) +Qmin
↑ (v)>C, or Qmax(u) + ∆qθ(a) +Qmax

↑ (v)< 0. (20)

Proof. By the definition of each label, it follows that any tour π ∈ Sol(M ) from a path

which includes a satisfies

Qmin(u) + ∆qθ(a) +Qmin
↑ (v)≤

n+1∑
t=0

∆qπt ≤Qmax(u) + ∆qθ(a) +Qmax
↑ (v),

and therefore π is infeasible if (20) are satisfied. �

Other similar rules that combine information from both r−u and u− t are analogously

defined for the tour constraints and costs, if an upper bound to the objective function is

given. We refer to Bergman et al. (2016), Chapter 11, for a comprehensive list of filtering

rules for general sequencing problems.

6. Overall Solution Approach

Our complete solution approach to the m-PDTSP uses the Lagrangian dual D as a bound-

ing mechanism in a branch-and-bound procedure. The approach exploits the graphical

structure of M to branch in sequential order with respect to the layers in M .

We first build a relaxed MDD of maximum width W using the construction procedure

described in Section 5. The Lagrangian dual is then solved to optimality (Section 4). We

then perform a depth-first search by branching on the π variables in this sequence. Each

branching decision fixes to either πt = i or πt 6= i, which is equivalent to a binary branching

over y. Given a variable πt to branch on, we choose the location i that is part of a shortest

r− t path (10) (ties are broken according to a lexicographic order).

When fixing πt = i, we update M by removing infeasible arcs, re-applying the expan-

sion method, and recomputing the Lagrangian dual objective function using the optimal

multipliers from the root node (i.e., we never resolve D to optimality). This provides us a
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new lower bound that is used to prune nodes according to the best feasible solution found

during search. We do not consider any additional primal heuristics.

We implement two variants of this methodology. The first, denoted by M C , builds

a relaxed MDD using ExpandNodesCapacity (Section 5.1) first. If the capacity con-

straints can be represented exactly with a smaller width (e.g., when W >C+1 ), we apply

the ExpandNodesTour until the maximum width is met. The second implementation,

denoted by M T , inverts the order of the expansion procedures, i.e., ExpandNodesTour

is performed before ExpandNodesCapacity. We will investigate the impact of dualizing

the different inequalities (2)-(5) over M T and M C .

7. Numerical Study

This section describes the experimental details and results of our comparison of the pro-

posed Lagrangian approach with current state-of-the-art methods. We use the benchmark

of 1,178 instances developed by Hernández-Pérez and Salazar-González (2009), divided

into three classes. Class 1 is a set of modified SOP problems from Ascheuer et al. (2000),

where each precedence relation in the original instance is associated with a commodity.

The class is divided into two groups that differ on the commodity weights: max1 for uni-

tary weights (i.e., wk = 1 for all k ∈K ), and max5 for discrete weights up to 5 units (i.e.,

wk ∈ {1, ...,5} for all k ∈K ). Classes 2 and 3 are generated by placing locations on a grid

uniformly at random and considering the Euclidean distance between locations as traveling

costs. The weights in these two classes are also generated uniformly at random from the

set {1, . . . ,5}. Instances of Class 2 have no restriction on the number of commodities that

each location can supply or demand. Instances of Class 3 have m= n/2 commodities and

each location is either a pickup or a delivery spot for exactly one commodity.

7.1. Experimental Set-up

All experiments use W = 1,024 and solve the Lagrangian dual D using the proximal

bundle method implemented by Frangioni (2002) in C++, kindly provided by the author,

using a specialized single-thread quadratic programming solver. The MDD construction

was implemented within the constraint solver ILOG CP Optimizer 12.7 (IBM 2017), which

was used only for the purpose of handling the depth-first search bookkeeping, i.e., we

disabled all constraint propagation and additional features of the solver. 1

1 The code is available as an Online Supplement Material and can also be found in the authors personal webpages.
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For comparison purposes, we also present the results of using ILOG CP Optimizer 12.7

modeling language and its complete set of features, except that computation was limited to

a single core (parameter Workers = 1). The constraint programming (CP) model applied

is presented in the Online Supplemental Material, referred to as C P.

The experiments were run on an Intel(R) Xeon(R) CPU E5-2640 v3 at 2.60GHz and

8 GB RAM considering a time limit of 2 hours (7,200 seconds). The MDD-related times

always account for both the Lagrangian dual solution times and the actual search time.

7.2. Experimental Results

Relaxation Analysis. We first investigate incorporating different subsets of inequalities

from P. As introduced in Section 4.3, we use β, µ, and σ to represent the Lagrange

multipliers related to the tour (2), capacity (3)-(4), and precedence (5) constraints, respec-

tively; e.g., Mβ corresponds to relaxing inequality (2). We note that, in all cases, solving

the Lagrangian dual takes less than 2 minutes. The experiments here only consider the

tour-based MDD, M T , as similar results were obtained with the capacity-based MDD.

We start analyzing the bound quality at the root node, i.e., the solution to the Lagrangian

dual problem. To this end, we compute the optimality gap for each relaxation as gap =

(opt−LB)/opt, where LB is the lower bound and opt the optimal value. We then compare

the gap obtained by each Lagrangian relaxation with the gap produced by M T with no

Lagrange multipliers.

Figures 4a, 4b and 4c show the gap improvement when constraints (2), (3)-(4), and

(5) are considered in the Lagrangian dual problem, respectively. For each graph, a point

represents an instance, its x-coordinate the gap computed by M T , and the y-coordinate

the gap obtained by solving the Lagrangian dual problem. Points below the diagonal are

instances where the Lagrangian gap is smaller.
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Figure 4 Optimality gap comparison at the root node
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The graphs show that relaxations based on the tour constraint obtain the greatest opti-

mality gap reduction. Moreover, this result directly correlates with a significant increase

in the number of instances solved (Table 1). In contrast, M T
µ and M T

σ slightly improve

the bound quality and solve no more than a couple of additional instances.

Table 1 Number of instances solved for different Lagrangian relaxations

Approach M T M T
β M T

µ M T
σ M T

β+µ M T
β+σ

Instances solved 503 518 505 504 518 518

Other combinations of multipliers were tested and have not shown substantial improve-

ments. For instance, relaxations including tour-based multipliers with any of the two others

had only a small optimality gap reduction (Table 1).

Comparison with state of the art. We now compare with previous methodologies in the

literature. Detailed results for all instances are included in the Online Supplement.

We consider the two best-performing MDD variants: the capacity-based MDD M C
β and

the tour-based MDD variant M T
β , both which are strengthened using the linear inequalities

(2) within our Lagrangian dual. These two versions are compared to the CP model C P,

to the Benders decomposition BE by Hernández-Pérez and Salazar-González (2009), and

to the branch-and-cut algorithm by Gouveia and Ruthmair (2015), CUTR∗, which we

will refer to as C U . Due to the lack of results presented in previous papers, we restrict

our comparison to a subset of 527 feasible instances. Notice that the results for BE were

obtained using CPLEX 10.2 and a personal computer with Intel Pentium 3.0 Ghz, while

the C U results used CPLEX 12.6 with an an Intel Xeon E5540 machine with 2.53 GHz.

To evaluate the robustness of the methodologies, Table 2 presents a summary of the num-

ber of instances solved for each class. The table includes the results for M T and M C (i.e.,

both construction procedures without Lagrange multipliers) to illustrate the performance

of a pure discrete relaxation approach. Both MDD-based Lagrangian techniques solve the

same instances as the MILP-based approaches, in addition to several open instances in

the literature. M C
β closes 27 open instances, while M T

β closes 26. If we consider the total

number of instances solved by M C
β and M T

β together, we were able to prove optimality

for 33 open instances for the first time. C P has the weakest performance solving only 387

instances to optimality. However, it should be noted that C P is the most basic approach
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Table 2 Total number of instances solved per class

# instances BE C U C P M T M C M T
β M C

β M T
β & M C

β

Class 1 36 24 26 18 22 22 35 30 35
Class 2 341 315 330 280 341 341 341 341 341
Class 3 150 134 136 89 140 137 142 148 149

Total 527 473 492 387 503 500 518 519 525
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Figure 5 Average run time comparison

tested, an “out-of-the-box” model without the substantial reformulation and algorithmic

effort that has gone into the other models.

Figure 5 compares the average run times for all techniques. The instances are divided

according to the capacity restriction C as follows: {C ≤ 5,C = 10,C = 15,C = 20,C =

25,C ≥ 30}. M C
β has the lowest average run time when the capacity is small, but M T

β is

stronger on instances with looser capacity restrictions.

8. Conclusions

We presented a novel approach to tackle the m-PDTSP, a challenging problem from the

vehicle routing literature. The approach considers a discrete relaxation, encoded as a

relaxed MDD, to better represent the combinatorial structure of the problem. We used

Lagrangian duality to combine the discrete relaxation with a linear representation of the

problem. Overall, the technique closes 33 instances in the literature, whereas our best

implementation closes 27 of those instances.

The work emphasizes the value of exploiting a discrete relaxation for problems with a

complex combinatorial structure, such as the m-PDTSP, alongside valid linear relaxations.

This extends the use of MDDs to solve sequencing problems with capacity restrictions

by presenting new construction and filtering strategies. Possible extensions of this work

include single-commodity and time windows pickup-and-delivery problems, which can be

naturally incorporated into this framework.
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Letchford AN, Salazar-González JJ (2016) Stronger multi-commodity flow formulations of the (capacitated)

sequential ordering problem. European Journal of Operational Research 251(1):74–84.

Liu C, Aleman DM, Beck JC (2018) Modelling and solving the senior transportation problem. van Hoeve WJ,

ed., International Conference on the Integration of Constraint Programming, Artificial Intelligence, and

Operations Research, 412–428 (Cham: Springer).

Liu R, Xie X, Augusto V, Rodriguez C (2013) Heuristic algorithms for a vehicle routing problem with simul-

taneous delivery and pickup and time windows in home health care. European Journal of Operational

Research 230(3):475 – 486.

Parragh SN, Doerner KF, Hartl RF (2008) A survey on pickup and delivery problems. Journal für Betrieb-

swirtschaft 58(1):21–51.
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