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Abstract

Many search techniques are available for solving
scheduling problems. Yet, little is known about
what problem features influence the cost of search.
We study a descriptive cost model of local search in
the job-shop scheduling problem (JSP), borrowing
from the local search cost models available for ran-
dom 3-SAT. We show that several factors known to
influence the difficulty of local search in random 3-
SAT directly carry over to the general JSP, including
the number of solutions, backbone size, the distance
to the nearest solution, and an analog of backbone
robustness. However, in applying the same analy-
sis to JSPs with structured constraints, we find that
many of these factors only weakly influence local
search cost. While the factors for the SAT cost mod-
els provide an accurate description of local search
cost in the general JSP, our results for JSPs with
structured constraints raise concerns regarding the
applicability of cost models derived using random
problems to those exhibiting specific structure.

1 Introduction
We study descriptive cost models of local search for the well-
known job-shop scheduling problem (JSP). Although many
state-of-the-art JSP algorithms are based on local search tech-
niques (e.g., [Nowicki and Smutnicki, 1996]), very little is
known about which search space features influence the search
cost. In contrast to the JSP, researchers have expended sig-
nificant effort in recent years to produce relatively accurate
descriptive models of local search cost for random 3-SAT
[Singer et al., 2000]. Intuitively, we would expect some fac-
tors present in the SAT cost models, including the number of
optimal solutions and the distance between sub-optimal and
optimal solutions, to influence the difficulty of local search in
other optimization problems such as the JSP. Yet, scheduling
problems differ in many important aspects from SAT, making
the applicability of these factors unclear a-priori.

Our research investigates whether or not the SAT mod-
els can be leveraged in an effort to understand local search
cost in the JSP. Concurrently, we are also asking the ques-
tion “Are there problem-independent factors influencing lo-
cal search cost?”. We demonstrate that the factors influenc-

ing local search cost in SAT also influence local search cost in
the JSP. These factors include the number of solutions [Clark
et al., 1996], backbone size [Parkes, 1997], the distance to
the nearest solution, and an analog of backbone robustness
[Singer et al., 2000]. Together, these factors provide a rela-
tively accurate model of local search cost in the JSP.

In contrast to random 3-SAT, constraints in real-world
scheduling problems are often structured. We apply the same
analysis to JSPs with workflow, which possess structured con-
straints. Here, we find that while the number of solutions and
backbone size continue to influence search cost, the distance
to the nearest solution has a surprisingly weak influence on lo-
cal search cost. We conclude by discussing the implication of
these contrasting results.

2 Descriptive Cost Models for Random 3-SAT
High-performance local search algorithms for SAT were in-
troduced in the early 1990’s and continue to represent the
state-of-the-art. Subsequently, significant effort has been de-
voted to understanding the factors influencing search cost for
these algorithms.

The problem backbone is a key concept underlying SAT
cost models. The backbone of a SAT instance consists of the
subset of literals that have the same truth value in all solutions.
[Parkes, 1997] showed that the proportion of literals appear-
ing in the backbone has a strong influence on local search cost.
When the backbone is small, there is a strong (negative) log-
log correlation between the number of solutions and the local
search cost. However, this correlation nearly vanishes when
the backbone is large [Singer et al., 2000].

The number of solutions to a problem instance says lit-
tle about the topology of sub-optimal solutions, although this
topology clearly influences local search cost. In SAT, local
search algorithms quickly locate sub-optimal quasi-solutions,
with relatively few unsatisfied clauses. These quasi-solutions
form a largely inter-connected region of the search space (con-
taining all global optima); once a point in this sub-space is
identified, local search algorithms for SAT typically restrict
search to the sub-space. This observation led Singer et al. to
hypothesize that the size of this sub-space dictates the overall
search cost.

To test this hypothesis, Singer et al. measured the mean
Hamming distance between the first quasi-solution encoun-
tered by a local search algorithm and the nearest global opti-



mum, and computed the correlation between this measure and
the logarithm of local search cost. The resulting correlations
were extremely high (r � 0:95) for problems with small back-
bones, degrading slightly for problems with larger backbones
(r � 0:75); no explanation for the degradation was provided.

While the distance from a quasi-solution to the nearest
global optimum does estimate the size of the quasi-solution
sub-space, it does not provide any intuition into the problem
features that cause the sub-space size to vary among SAT in-
stances. Singer et al. posited a causal explanation based on
the notion of backbone robustness. A SAT instance is said
to have a robust backbone if a substantial number of clauses
must be deleted before the backbone size is reduced by half.
Conversely, an instance is said to be backbone fragile if the
deletion of a few clauses reduces the backbone size by half.

Singer et al. argue that “backbone fragility approximately
corresponds to how extensive the quasi-solution area is”
([Singer et al., 2000], p. 251). Intuitively, a fragile backbone
allows for large Hamming distances between quasi-solutions
and solutions because of the sudden drop in backbone size.
Due to the small backbone, local search algorithms can eas-
ily find elements in the quasi-solution subspace. But because
these elements are distant from actual solutions, the search
cost is relatively high. In contrast, a robust backbone implies
a gradual fall in backbone size, and therefore no sudden jumps
in Hamming distance.

For large-backboned SAT instances, Singer et al. demon-
strated a moderate (� 0:5) negative correlation between back-
bone robustness and the log of local search cost. Surprisingly,
this correlation degraded as the backbone size was decreased.
Here, Singer et al. hypothesize that “finding the backbone is
less of an issue and so backbone fragility, which hinders this,
has less of an effect” (p. 254), although this conjecture was
not explicitly tested.

3 Problem Difficulty and the JSP
We consider the well-known n�m JSP, in which n jobs must
be processed exactly once on each of m machines for a pre-
specified duration. Each machine can only process one job at
a time, and pre-emption is disallowed. All jobs can start at
time 0 and the standard optimization problem is to minimize
the makespan, the maximum end time of all jobs.

In the general JSP, the machine processing orders for each
job are generated at random; a more constrained form of the
processing orders are found in JSPs with workflow partitions.
In a JSP with workflow, the machines are typically parti-
tioned into two equally-sized subsets consisting of machines
1 through m=2 and m=2 + 1 through m, respectively. Every
job must then be processed on all machines in the first parti-
tion before proceeding to any machine in the second.

Later in this paper, we make a distinction between random
and structured JSPs. Specifically, we refer to regularities in
the machine processing orders, which are completely random
in general JSPs, and have a specific form of structure in JSPs
with workflow. This is slightly different from the notion of
problem structure introduced in [Watson et al., 1999], where
structure refers to regularities in the operation durations.

Many high-quality search algorithms have been developed

for the JSP [Jain and Meeran, 1999], largely through competi-
tive testing on a widely used benchmark suite [Taillard, 1993].
Independent of algorithm, two observations regarding relative
problem difficulty have emerged:

1. “square” problem instances (n=m � 1) are significantly
harder than “rectangular” instances (n=m > 1)

2. given fixed n and m, workflow JSPs are substantially
more difficult than general JSPs.

Yet, almost no research has been devoted to explaining the
differences in terms of the underlying search space. The sole
exception is the study of [Mattfeld et al., 1999], which iden-
tified differences in the search spaces of some well-known
50� 10 general and workflow JSPs. However, no causal link
between these factors and local search cost was established.
A goal of our research is to account for the relative difficulty
of square versus rectangular JSPs, general versus workflow
JSPs, and for variance in local search cost for different prob-
lem instances of the same size and workflow configuration.

4 Adapting SAT Analysis to the General JSP
In this section, we adopt the experimental methodology that
Singer et al. used to develop their SAT local search cost
model and apply it to the general JSP.

4.1 Defining a Backbone for JSP
The disjunctive graph representation is a commonly used en-
coding for the JSP [Balas, 1965]. There are n(n � 1)=2
boolean “order” variables for each of the m machines, repre-
senting the precedence relations between all distinct pairs of
jobs on a machine. We define the backbone of a JSP, therefore,
as the set of order variables that have the same truth value in
all solutions at the optimal makespan. We define the backbone
size as the fraction of the possiblemn(n�1)=2order variables
that are fixed to the same value in all optimal solutions.

4.2 Test Problems and Algorithms
Given the requirement to enumerate all optimal solutions to
a problem, we are restricted to relatively small problems in
our experiments. We consider two problem sizes: 6 � 4 and
6 � 6. Operation durations are sampled uniformly from the
interval [1; 99] and machine processing orders are randomly
generated, following [Taillard, 1993]. While small, the prob-
lem sizes we consider are representative of some simpler JSP
benchmark suites [Beasley, 1990], and many of the instances
we generated were significantly harder than the benchmark
problems of equal size (as measured by the mean CPU time
required for Nowicki and Smutnicki’s (1996) tabu search al-
gorithm to locate an optimal solution).

Pilot experiments suggested a strong influence of backbone
size on local search cost in the JSP. Unfortunately, even for
the problems we consider, it is computationally infeasible to
control for a specific backbone size: solution evaluation and
construction in the JSP is considerably more expensive than
in SAT. Instead, we filter for problems within �5% of a tar-
get backbone size X , 0:0 � X � 1:0. We denote the back-
bone size of the resulting set by� X . For each problem size,
we generated 100 instances at each of the following backbone



Backbone Size
Problem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9

Mean Number of Optimal Solutions
6� 4 481837� 1158660 30007� 38072 3221� 3742 642 � 1374 21� 22
6� 6 6233821� 8070114 1405290� 3221150 85292� 157617 9037� 9037 85 � 106

Mean Local Search Cost
6� 4 6.69� 3.34 23.05 � 20.93 52.64 � 61.22 94.76� 136.56 312.27� 332.27
6� 6 8.34� 4.13 32.94 � 32.58 53.43 � 58.52 83.98 � 91.80 514.70� 1853.08

log10-log10 correlation (r) between the number of solutions and local search cost
6� 4 -0.7508 -0.5100 -0.4905 -0.4131 -0.2683
6� 6 -0.7328 -0.4865 -0.3807 -0.3227 -0.2010

Table 1: The mean number of solutions, mean local search cost, and log10-log10 correlation (r) between the number of solutions
and local search cost for general JSPs. X � Y denotes a mean of X with a standard deviation of Y .

sizes: � 0:1, � 0:3,� 0:5,� 0:7, and� 0:9. We refer to the
100 instances at a given problem and backbone size as a prob-
lem class.

Good local search algorithms for the JSP vary along two
primary dimensions: the meta-heuristic and the move oper-
ator. Many state-of-the-art local search algorithms use tabu
search as the meta-heuristic [Jain and Meeran, 1999]. Among
these, the choice of move operator varies considerably. Un-
fortunately, most advanced move operators induce search
spaces that are disconnected, where it is not always possi-
ble to move between randomly generated initial points and
a global optimum. And algorithms using such move opera-
tors are not Probabilistically Approximately Complete (PAC)
[Hoos, 1998], which severely complicates algorithm analysis.

For our local search algorithm, we use tabu search in con-
junction with the move operator introduced by [Laarhoven et
al., 1992] (often denotedN1), which induces a provably con-
nected search space. The N1 neighborhood is generated by
swapping all adjacent pairs of jobs on a single randomly se-
lected critical path (and belonging to the same critical block).
Our tabu search meta-heuristic is based on the algorithm
of [Nowicki and Smutnicki, 1996], which prevents recently
swapped pairs of adjacent jobs from being re-established. No
elite solution recovery (the diversification mechanism used by
[Nowicki and Smutnicki, 1996]) is performed. The algorithm
initially proceeds from a randomly generated active solution
[Giffler and Thompson, 1960]. A single iteration of our al-
gorithm consists of the evaluation of all N1 moves, and the
selection of the best non-tabu move available.

[Nowicki and Smutnicki, 1996] and other JSP researchers
generally use fixed-size tabu lists. However, in our pilot ex-
periments, we often found JSP instances where the optimal
solution was never located (even after several million itera-
tions), and special-purpose code failed to detect, and there-
fore escape, cycles in the search. Additional experiments in-
dicated that by using slightly different tabu list sizes, the in-
stances were easily solved. Therefore, we use a dynamic tabu
list length, where the length is sampled uniformly from the
interval [8; 12] (representing small deviations from our fixed-
length tabu list size of 10) after every 25 iterations of the al-
gorithm.

Following Singer et al. we take the local search cost of a
JSP instance as the median number of tabu search iterations

required to find an optimal solution, over 1000 independent
runs. We note that the medians are not completely stable at
this sampling rate. Complete stabilization requires roughly
10; 000 runs, but even the computational cost of 1; 000 runs
for each of our problem instances is nearly prohibitive (requir-
ing 6 CPU hours on 600 MHz Pentium III’s for the more dif-
ficult � 0:9 backbone 6� 6 instances).

4.3 Number of Solutions and Search Cost
Clark et al. first showed that the number of solutions influ-
ences the cost of local search in SAT. Singer et al. further
demonstrated that the strength of this influence depends criti-
cally on the backbone size: the influence is strong for small
backbones, but weak for large backbones. To study the in-
fluence of these two factors on local search cost in the gen-
eral JSP, we enumerated the solutions at the optimal makespan
for all 100 instances in each of our problem classes. Both the
mean number of solutions and the mean local search costs are
reported in Table 1. We see both a dramatic drop in the num-
ber of solutions and a gradual increase in local search cost as
the backbone size is increased. Further, the local search cost
is only slightly larger for the square 6�6 problems (although
the exponential growth in search cost is becoming apparent at
large backbones). This observation is consistent with the in-
crease in search space size, but inconsistent with the obser-
vation that square problems are generally more difficult than
rectangular problems.

The bottom third of Table 1 shows the log10-log10 correla-
tion between the number of solutions and the local search cost.
The computed r-values demonstrate that both the number of
solutions and the backbone size influence local search cost in
the general JSP. Correlation is strong for problems with small
backbones, and drops rapidly as backbone size increases. Al-
though more factors are required to explain local search cost
variance in large-backboned general JSPs, the results in Ta-
ble 1 demonstrate that the interaction effect between backbone
size and the number of solutions is not unique to SAT.

The results in Table 1 are produced by controlling for back-
bone size, instead of controlling for the number of solutions,
raising the question “Does the number of solutions predict the
search cost, independently of the backbone size?”. A linear
regression of log10(search cost) on the number of solutions
for all instances of a given problem size yields extremely high
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Figure 1: Histogram of backbone sizes for 50; 000 6� 4 (left
figure) and 6� 6 (right figure) general JSPs.

r-values, ranging from 0:82 to 0:91. While these values are
better than any r-values observed while controlling for back-
bone size, the utility of the model is negligible as the search
cost varies over three orders of magnitude for instances with
backbone size� 0:9 and a similar number of solutions. Simi-
lar observations led Singer et al. to control for backbone size,
correcting the methodological deficiency of Clark et al.

4.4 Distribution of Backbone Sizes
While rectangular JSPs are believed to be significantly eas-
ier than square JSPs, this difference was not observed in the
mean local search costs reported in Table 1. In a straightfor-
ward experiment, we generated 100 6 � 4 and 6 � 6 general
JSPs, leaving the backbone size uncontrolled, and computed
the mean local search cost for each group. The resulting mean
costs were 32:91 and 498:13 for the 6�4 and 6�6 problems,
respectively. This suggests a strong bias in the distribution of
backbone sizes for the two types of problem.

In SAT, the relative distribution of backbone sizes depends
on the ratio of the number of clauses c to the number of
variables v [Parkes, 1997]. Under-constrained SAT instances
(with small values of c=v) tend to have small backbones, while
over-constrained SAT instances (with large values of c=v)
tend to have large backbones. In the JSP, and many other op-
timization problems, there is no control parameter analogous
to c=v by which we can control the expected degree of con-
strainedness. Instead, we can only control for problem size,
asking the question “How common are various backbone sizes
for JSPs of varying size?”.

Problem Backbone Size
Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9

Distance-log10(local search cost) correlation
6� 4 0.9890 0.9526 0.9070 0.8296 0.5303
6� 6 0.9912 0.9327 0.8911 0.8371 0.6484

Backbone robustness-log10(local search cost) correlation
6� 4 -0.2193 -0.3993 -0.4412 -0.5277 -0.5606
6� 6 -0.1621 -0.3629 -0.4507 -0.4712 -0.5134

Table 2: Correlation (r) of 1) the mean distance to the nearest
solution and 2) backbone robustness with log10(local search
cost) for general JSPs.

To answer this question, we generated 50; 000 problem in-

stances for each problem size, and computed the backbone
size for each instance. Histograms of the resulting backbone
sizes for the general JSP instances are shown in Figure 1. The
most common backbone sizes for the square 6 � 6 instances
center near 0:9, and are exceedingly rare below 0:3. In con-
trast, the backbone sizes for the rectangular 6�4 instances are
more uniformly distributed, with a slight bias toward smaller
backbone sizes. We have also generated similar histograms
for other small problem sizes; for ratios of n=m > 1:5,
the bias toward small backbones becomes more pronounced,
while for ratios < 1, the bias toward larger backbones is fur-
ther magnified. Finally, we note that the utility of the corre-
lation between number of solutions and local search cost de-
pends heavily on problem size; the influence is negligible for
nearly all 6�6 JSPs (which generally have large backbones),
and for many 6� 4 JSPs.

Finally, we note a discrepancy in the distribution of back-
bone sizes between the general JSP and the Euclidean Travel-
ing Salesman Problem (TSP). In many TSP benchmark prob-
lems, there exists a single global optimum, causing the nor-
malized backbone size to be 1. Data presented in [Walsh and
Slaney, 2001] (Figures 3 and 4) further support the claim that
backbones in the TSP tend to be maximal. However, as Figure
1 shows, maximal backbones are relatively rare in the gen-
eral JSP. We believe this discrepancy is due to a fundamen-
tal difference in the objective functions of the TSP and JSP.
In the TSP, each solution attribute (edge) contributes to solu-
tion fitness (tour length). However, in the JSP, only some so-
lution attributes (operations) directly influence solution fitness
(makespan): namely, the operations on the critical path. De-
pending on the constrainedness of the problem, there can be
flexibility in the ordering of non-critical operations in the JSP,
leading to smaller backbone sizes. In the TSP, there is no such
flexibility, and multiple global optima can only be produced if
alternative edges with identical inter-city distances are avail-
able; a relatively rare event in both real-world and randomly
generated Euclidean TSPs.

4.5 Distance to Global Optima and Search Cost
Singer et al. hypothesized that the size of the quasi-solution
sub-space largely dictates the cost of local search in SAT,
and supported this conjecture by demonstrating strong corre-
lations between local search cost and the mean Hamming dis-
tance between the first quasi-solutions encountered by a local
search algorithm and the nearest optimal solution.

In applying this methodology to the general JSP, we en-
counter an immediate problem: what is a ’quasi-solution’ in
the JSP? Local search in the JSP is qualitatively different from
that of SAT, instead progressing via alternating series of de-
scent into and escape from deep local minima. Thus, local
minima in the JSP are naturally analogous to quasi-solutions
in SAT. Further, we hypothesize that the extent of the local
minima influences local search cost; if the first local mini-
mum encountered by a local search algorithm is distant from
a global optimum, search will be expensive.

For each problem instance in each of our problem classes,
we generated 1000 local optima, computed the Hamming dis-
tance to the nearest global optimum, and recorded the mean of
the 1000 distances. The Hamming distance between two solu-



Backbone Size
Problem Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9

Mean Number of Optimal Solutions
6� 4wf 27369� 71049 81255� 295593 2515.25� 4704 293� 425 18 � 16
6� 6wf 1147650� 6555440 429102� 1676350 19017� 44556 4553� 6898 80 � 94

Mean Local Search Cost
6� 4wf 119.44� 89.32 122.2 � 114.26 333.42� 442.39 920.72� 1515.75 2087.44� 2973.86
6� 6wf 318.77� 113.82 513.13� 143.72 1086.33� 1979.39 1730.53� 2846.15 5036.53� 5132.54

log10-log10 correlation (r) between the number of solutions and local search cost
6� 4wf -0.7650 -0.6663 -0.3484 -0.2613 -0.2208
6� 6wf -0.7345 -0.6877 -0.4316 -0.2700 -0.2561

Table 3: The mean number of solutions, mean local search cost, and log10-log10 correlation (r) between the number of solutions
and local search cost for JSPs with workflow. X � Y denotes a mean of X with a standard deviation of Y .

tions in the JSP is taken as the number of order variables, out
of themn(n�1)=2 possible, whose truth values are different.
Our local optima were generated by applying a next-descent
algorithm from random active solutions. Our next-descent al-
gorithm evaluates N1 neighbors in a random order, selecting
the first improvement in makespan; the algorithm terminates
when no such improvements are possible.

In Table 2, we report the correlation between the mean
Hamming distance to the nearest global optimum and
log10(local search cost). For backbone sizes of� 0:1 through
� 0:5, the correlation is extremely high, and only moderately
degrades at the larger backbone sizes. The r-values are
uniformly and significantly better than those achieved using
the number of solutions, and further account for much of the
variance in local search cost for large-backboned JSPs.

4.6 Backbone Robustness and Search Cost

Singer et al. propose backbone robustness as the primary fac-
tor determining the extent of the quasi-solution sub-space.
Abstractly, backbone robustness represents the number of
problem constraints that must be relaxed to produce a prob-
lem with a significantly smaller backbone. While in the JSP
there is no analog to relaxing individual constraints (as is pos-
sible in SAT), there is a parameter controlling the global con-
strainedness: deviation from the optimal makespan. Thus, we
define backbone robustness for the JSP as the minimum per-
centage above the optimal makespan at which the backbone
size is reduced by at least half (subject to integral makespan
constraints).

In the lower half of Table 2 we report the correlation be-
tween the backbone robustness and log10(local search cost)
for our general JSPs. The results are very similar to that re-
ported by Singer et al. for SAT; a moderate negative corre-
lation for large-backboned instances, and a gradual decay as
backbone size is decreased. And as with SAT, backbone ro-
bustness does influence the extent of the quasi-solution sub-
space in the general JSP. Because our research deals with the
extension of existing SAT cost models to the JSP, we did not
establish the cause of the lesser influence of backbone robust-
ness at smaller backbone sizes.

5 Extending the Analysis to Workflow JSPs
In both SAT and the general JSP, constraints are generated in
a uniform, random fashion. Yet, many real-world schedul-
ing problems have non-random constraints, and it is unclear to
what degree the factors present in the SAT cost models are af-
fected by such constraints. To study the effect of non-random
constraints, we performed the same series of experiments de-
tailed in the previous section on JSPs with workflow–which
impose a specific structure on the machine processing orders
for each job.

First, we considered the influence of the number of solu-
tions on the local search cost of JSPs with workflow, as shown
in Table 3. As with general JSPs, we see both a dramatic drop
in the number of solutions and a gradual increase in the search
cost as backbone size is increased. Workflow JSPs have sig-
nificantly fewer solutions than general JSPs, and the search
cost is generally an order of magnitude higher. However, the
log10-log10 correlation between the number of solutions and
the local search cost is nearly identical with the results for
general JSPs: correlation is strong for small-backboned prob-
lems, but decays as backbone size is increased.

Next, we generated histograms of the backbone size distri-
butions for both the 6�4 and 6�6 workflow JSPs; the results
are shown in Figure 2. In comparison with the distributions of
general JSPs (Figure 1), it is clear that the presence of work-
flow dramatically shifts the distribution mass to larger back-
bones. For the rectangular 6�4 problems, workflow changes
a bias toward small backbones into a relatively large bias to-
ward large backbones, and for the 6� 6 problems, workflow
magnifies the already large bias toward large backbones. We
note that the rarity of small-backboned workflow JSPs further
diminishes the utility of the number of solutions as a predictor
of local search cost for these instances.

Following the methodology of the previous section, we
measured the correlation between the mean Hamming dis-
tance to the nearest global optimum and log10(local search
cost); the results are shown in the upper portion of Table 4.
Here, we see a dramatic difference between general JSPs and
workflow JSPs: while the influence of the Hamming distance
to the nearest solution (which indirectly measures the size of
the quasi-solution sub-space) at small backbones is relatively
large, it drops very rapidly, ultimately vanishing at� 0:9. Ad-
ditionally, because of the lesser influence of Hamming dis-



tance to the nearest solution on local search cost, we see a cor-
responding drop in the influence of backbone robustness, as
shown in the bottom half of Table 4. Regardless of backbone
size, the moderate correlation with search cost observed for
general JSPs does not exist for JSPs with workflow.

6 Discussion
Realistic scheduling problems contain non-random con-
straints. Yet, it is unclear whether the same factors that
influence local search cost in random problems extend to
those with structured constraints. When applying the anal-
ysis we performed on general JSPs to JSPs with workflow
constraints, we observed that the presence of structured
constraints strongly biased the problem space toward
large-backboned instances. While the number of solutions
remained a strong predictor for the relatively rare small-
backboned instances, the correlation between the Hamming
distance to the nearest solution and local search cost was
negligible for the common large-backboned instances. Thus,
the source of the majority of variance in local search cost for
JSPs with workflow remains elusive.
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Figure 2: Histogram of backbone sizes for 50; 000 6� 4 (left
figure) and 6� 6 (right figure) JSPs with workflow.

Problem Backbone Size
Size � 0:1 � 0:3 � 0:5 � 0:7 � 0:9

Distance-log10(local search cost) correlation
6� 4wf 0.8727 0.7122 0.5109 0.1811 0.0862
6� 6wf 0.8231 0.6781 0.5264 0.1367 0.0711

Backbone robustness-log10(local search cost) correlation
6� 4wf -0.0029 -0.0217 -0.0372 -0.0752 -0.1423
6� 6wf -0.0165 -0.0348 -0.0513 -0.0941 -0.1239

Table 4: Correlation (r) of 1) the mean distance to the nearest
global optimum and 2) backbone robustness with log10(local
search cost) for JSPs with workflow.

Two, perhaps obvious, conjectures arise from the fact that
the factors influencing local search cost in general JSPs fail
to carry over to JSPs with workflow. The first is that there are
problem-independentfactors influencing local search cost that
have not yet been identified. These factors may play a much
stronger role in structured problems than in more general, ran-
dom problems. For both the general JSP and SAT, the corre-
lation between Hamming distance to the nearest solution and

local search cost was not overwhelmingly high, leaving room
for other factors.

The second conjecture is that structured constraints intro-
duce factors that do not influence search cost in random prob-
lems. If this is the case, work on descriptive models of search
cost in random problems will not be relevant to non-random
subclasses. This is especially critical in areas such as schedul-
ing, where problems found in real-world applications often
have a significant non-random component.

7 Conclusions
Our results clearly demonstrate that the factors influencing
local search cost in SAT also influence local search cost in
the general JSP, despite significant differences in search space
topology and local search algorithms between the two prob-
lems. These factors include backbone size, number of solu-
tions, Hamming distance to the nearest solution, and an analog
of backbone robustness. Together, these factors provide a rea-
sonably accurate local search cost model for the general JSP,
although there is still non-negligible unexplained search cost
variance for relatively dominant large-backboned instances.
Our results also suggest these cost factors may be applicable
to a wide range of optimization problems.

We also shed more light on the observation that rectangular
JSPs are significantly easier than square JSPs. If we control
for backbone size, rectangular JSPs are not significantly eas-
ier than square JSPs. Instead, the observed difference in diffi-
culty stems primarily from the relative distributions of back-
bone sizes in the two problems: large backbones are dominant
in square problems, while we see a bias toward smaller back-
bones in rectangular problems.

Finally, we also demonstrated that the same factors influ-
encing local search cost in the general JSP do not necessarily
transfer to JSPs with workflow, suggesting that the factors in-
fluencing local search cost in structured and random problems
may be different.
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