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Abstract. We address a location-allocation problem that requires de-
ciding the location of a set of facilities, the allocation of customers to
those facilities under facility capacity constraints, and the allocation
of the customers to trucks at those facilities under per truck travel-
distance constraints. We present a hybrid approach that combines integer
programming and constraint programming using logic-based Benders’
decomposition. Computational performance against an existing integer
programming model and a tabu search approach demonstrates that the
Benders’ model is able to find and prove optimal solutions an order of
magnitude faster than an integer programming model while also finding
better feasible solutions in less time for the majority of problem instances
when compared to the tabu search.

1 Introduction

Location-routing problems are well-studied, challenging problems in the area of
logistics and fleet management [1]. The goal is to find the minimum cost solutions
that decides on a set of facilities to open, the allocation of clients and vehicles
to each facility, and finally the creation of a set of routes for each vehicle. Given
the difficulty of this problem, Albareda-Sambola et al. [2] recently introduced
a location-allocation problem which simplifies the routing aspect by assuming a
full truckload per client. Multiple clients can be served by the same vehicle if the
sum of the return trips is less than the maximum travel distance of the truck.

In this paper, we develop a logic-based Benders’ decomposition [3] for the
location-allocation problem . We compare our approach empirically to an integer
programming (IP) model and to a sophisticated tabu search [2]. Our experimen-
tal results demonstrate an order of magnitude improvement over the IP model
in terms of time required to find and prove optimality and significant improve-
ment over the tabu search approach in terms of finding high-quality feasible
solutions with small CPU time. To our knowledge, this is a first attempt to
solve a location-allocation problem using logic-based Benders’ decomposition.



2 Problem Definition and Existing Approaches

The capacity and distance constrained plant location problem (CDCPLP) [2]
considers a set of capacitated facilities, each housing a number of identical ve-
hicles for serving clients. Clients are served by full return trips from the facility.
The same vehicle can be used to serve several clients as long as its daily work-
load does not exceed a given total driving distance. The goal is to select the set
of facilities to open, determine the number of vehicles required at each opened
site, and assign clients to facilities and vehicles in the most cost-efficient manner.
The assignments must be feasible with respect to the facilities’ capacities and
the maximum distance a vehicle can travel.

Formally, let J be the set of potential facilities (or sites) and I be the set of
clients. Each facility, j ∈ J , is associated with a fixed opening cost, fj , and a
capacity, bj (e.g., a measure of the volume of material that a facility can process).
Clients are served by open facilities with a homogeneous set of vehicles. Each
vehicle has a corresponding fixed utilization cost, u, and a maximum total daily
driving distance, l. Serving client i from site j generates a driving distance, tij , for
the vehicle performing the service, consumes a quantity, di, of the capacity of the
site, and has an associated cost, cij . The available vehicles at a site are indexed
in set K with parameter k ≥ |K| being the maximum number of vehicles at any
site. Albareda-Sambola et al. formulate an integer programming (IP) model of
the problem as shown in Figure 1, where the decision variables are:

pj =
{

1, if facility j is open
0, otherwise

zjk =
{

1, if a kth vehicle is assigned to site j
0, otherwise

xijk =
{

1, if client i is served by the kth vehicle of site j
0, otherwise

The objective function minimizes the sum of the costs of opening the facilities,
using the vehicles, and the travel. Constraint (1) ensures that each client is served
by exactly one facility. The driving distance limits are defined by constraint (2).
Constraint (3) limits the demand allocated to facility j. Constraints (4) and (5)
ensure that a client cannot be served from a site that has not been opened nor
by a vehicle that has not been allocated. Constraint (6) states that at a site,
vehicle k will not be used before vehicle k − 1.

Albareda-Sambola et al. compare the IP performance to that of a three-level
nested tabu search. The outermost level decides the open facilities, the middle
level, the assignment of clients to facilities, and the innermost level, the assign-
ment of clients to trucks. Tabu search is done on each level in a nested fashion:
first neighborhoods that open, close, and exchange facilities are used to find a
feasible facility configuration, then, using that configuration, the client assign-
ment neighborhoods are explored, and finally the truck assignment is searched
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s.t.
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xijk = 1 i ∈ I (1)

∑
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tijxijk ≤ l · zjk j ∈ J, k ∈ K (2)

∑
i∈I

∑
k∈K

dixijk ≤ bjpj j ∈ J (3)

zjk ≤ pj j ∈ J, k ∈ K (4)
xijk ≤ zjk i ∈ I, j ∈ J, k ∈ K (5)
zjk ≤ zjk−1 j ∈ J, k ∈ K\{1} (6)
xijk, pj , zjk ∈ {0, 1} i ∈ I, j ∈ J, k ∈ K (7)

Fig. 1. An IP model of the CDCPLP [2].

over. Search then returns (i.e., as in a nested-loop) to the client assignments and
eventually back to the facility openings. Computational results showed strong
performance for the tabu search: it was able to find close-to-optimal solutions
within a few minutes of CPU time.

3 A Logic-Based Benders’ Decomposition Approach

In Benders’ decomposition [3], a problem is partitioned into a master problem
and a subproblem, which are solved iteratively until the optimal solution is
found. When the subproblem is infeasible subject to current master solution, a
cut that eliminates at least the current master solution is added to the master
problem. The cut ensures that all future solutions are closer to being feasible.

The CDCPLP can be decomposed into a location-allocation master problem
(LAMP) and a set of truck assignment subproblems (TASPs). The LAMP is
concerned with choosing the open facilities, allocating clients to these sites, and
deciding on the number of trucks at each site. The TASP assigns clients to specific
vehicles and can be modeled as a set of independent bin-packing problems: clients
are allocated to the trucks so that the total-distance constraint on each truck is
satisfied. We use IP for the master problem and CP for the subproblems.

The Location-Allocation Master Problem An IP formulation of LAMP is shown
in Figure 2 where pj is as defined above and:

xij =
{

1, if client i is served by site j
0, otherwise

numV ehj : number of vehicles assigned to facility j
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cuts (13)
xij ≤ pj i ∈ I, j ∈ J (14)
xij , pj ∈ {0, 1} i ∈ I, j ∈ J (15)

Fig. 2. An IP model of the LAMP.

Constraint (8) ensures that all clients are served by exactly one facility. The
distance limitations are defined by constraints (9) and (10). Constraint (11)
limits the demand assigned to facility j. Constraint (12) defines the minimum
number of vehicles assigned to each site. cuts are constraints that are added
to the master problem each time one of the subproblems is not able to find a
feasible solution. Initially, cuts is empty.

The cut for a given TASP j after iteration h is:

numV ehj ≥ numV eh∗jh −
∑

i∈Ijh

(1− xij), j ∈ Jh

where, Ijh = {i | xh
ij = 1} is the set of clients assigned to facility j in iteration

h, Jh is the set of sites for which the subproblem is infeasible in iteration h,
and numV eh∗jh is the minimum number of vehicles needed at site j to serve the
clients that were assigned. Informally, the summation is the maximal decrease
in the minimal number of trucks needed given the clients reassigned to other
facilities: the largest possible reduction in reassigning one client is one truck.
The form of this cut is directly inspired by the Benders’ cut for scheduling with
makespan minimization formulated by Hooker [4].

The Truck Assignment Subproblem Given the set of clients allocated (Ij) and the
number of vehicles assigned to an open facility (numV ehj), the goal of the TASP
is to assign clients to the vehicles of each site such that the vehicle travel-distance
constraints are satisfied. The TASP for each facility can be modeled as a bin-
packing problem. A CP formulation of TASP is shown in Figure 3 where: load is
an array of variables such that load[k] ∈ {0, ..., l} is the total distance assigned to



min numV ehBinPackingj

s.t. pack(load, truck, dist) (16)
numV ehj ≤ numV ehBinPackingj < numV ehFFDj (17)

Fig. 3. A CP model of the TASP.

vehicle k ∈ {1, ..., numV ehBinPackingj}, truck is an array of decision variables,
one for each client i ∈ Ij , such that truck[i] ∈ {1, ..., numV ehj} is the index of
the truck assigned to client i, and dist is the vector of distances between site
j and client i ∈ Ij . The pack global constraint (16) maintains the load of the
vehicles given the distances and assignments of clients to vehicles [5]. The upper
and lower bounds on the number of vehicles is represented by constraint (17).

Algorithm 1 shows how we solve the sub-problems in practice. We first use
the first-fit decreasing (FFD) heuristic (line 3) to find numV ehFFDj , a heuristic
solution to the sub-problem. If this value is equal to the value assigned by the
LAMP solution, numV ehj , then the sub-problem has been solved. Otherwise, in
line 5 we solve a series of satisfaction problems using the CP formulation, setting
numV ehBinPackingj to each value in the interval [numV ehj ..numV ehFFDj−
1] in increasing order.

4 Computational Results

We compare our Benders’ approach to the IP and tabu search models in turn.
Unless otherwise noted, the tests were performed on a Duo Core AMD 270 CPU
with 1 MB cache, 4 GB of main memory, running Red Hat Enterprise Linux
4. The IP model was implemented in ILOG CPLEX 11.0. The Benders’ IP/CP
approach was implemented in ILOG CPLEX 11.0 and ILOG Solver 6.5.

IP vs. Benders’ We generated problems following exactly the same method as
Albareda-Sambola et al [2]. We start with the 25 instances of Barceló et al. [6] in

Algorithm 1: Algorithm for solving the TASP
SolveTASP():

1 cuts = ∅
2 for each facility do
3 numV ehFFD = runFFD()
4 if numV ehFFD > numV ehj then
5 numV ehBinPacking = runCPBinPacking()
6 if numV ehBinPacking > numV ehj then
7 cuts ← cuts + new cut

8 return cuts



Uncorrelated Correlated
Problem IP Benders’ Time IP Benders’ Time

Set Time % Uns. Time % Uns. Iter Ratio Time % Uns. Time % Uns. Iter Ratio
20× 10 252 0 33 0 3.8 9.6 65 0 24 0 4.1 6.3
30× 15 55303 23 17593 6 16 13.6 29514 12 8065 2 13.1 20.5
40× 20 144247 75 72598 35 26.2 2.4 79517 38 28221 10 22.8 6.5
Overall 70553 34 30980 14 16.3 9.1 38447 17 12585 4 14.0 12.6

Table 1. The mean CPU time (seconds) and percentage of unsolved problem instances (% Uns.)
for the IP and Benders’ approaches and for the Benders’ approach, the mean number of iterations.
Overall indicates the mean results over all problem instances–recall that each subset has a different
number of instances.

three sizes: 6 instances of size 20×10 (i.e., 20 clients, 10 possible facility sites), 11
instances of size 30×15, and 8 instances of size 40×20. The fixed facility opening
cost, fj , demands for each client, di, assignment costs, cij , and facility capacities,
bj , are extracted from Barceló et al. with the exception that the facility capacities
are multiplied by 1.5 as they are very tight. Six different pairs of truck distance
limit, l, and truck usage cost, u, values are then used to create different prob-
lem sets: (40, 50), (40, 100), (50, 80), (50, 150), (100, 150), (100, 300). Finally, the
travel distances, tij , are randomly generated based on the costs, cij in two differ-
ent conditions. In the correlated condition: tij = scale(cij , [15, 45])+rand[−5, 5].
The first term is a uniform scaling of cij to the integer interval [15, 45] while the
second term is a random integer uniformly generated on the interval [−5, 5].
In the uncorrelated condition, tij = rand[10, 50]. Overall, therefore, there are
300 problem instances: 25 original instances times 6 (l, u) conditions times 2
correlated/uncorrelated conditions.

Table 1 compares the mean CPU time in seconds required to solve each
problem instance for each set. In all cases, 48 hours was used as a maximum
time. The “Time Ratio” for a given instance is calculated as the IP run-time
divided by the Benders’ run-time. The mean over each instance in each subset
was then calculated. For unsolved instances, the 48-hour time limit was used. As
can be seen Benders’ is able to solve substantially more problems than IP and,
on average, has a run-time about an order-of-magnitude faster.

Figure 4 shows a scatter-plot of the run-times of each problem instances for
both IP and the Benders’ approach. Both axes are log-scale and the points below
the x = y line indicate lower run-time for the Benders’ approach. On all but 26
of the 300 instances, the Benders’ achieves equivalent or better run-time.

Tabu search vs. Benders’ One of the weaknesses of a Benders’ decomposition
approach is that usually the first globally feasible solution found is the opti-
mal solution. This means that cutting off runs due to a time-limit will result
in no feasible solutions. For problems too large for a Benders’ approach to find
optimality, another algorithm is needed to find a good but not necessarily opti-
mal solution. Metaheuristic techniques, such as tabu search, are widely used for
location and routing problems for this purpose [7].

With our Benders’ formulation, however, we have a globally feasible, sub-
optimal solution at each iteration. In generating a cut, we find the minimum
number of trucks needed at each facility. This number of trucks constitutes a
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Fig. 4. Run-time of IP model (x-axis, log-scale) vs. Benders’ IP/CP model (y-axis,
log-scale) of the 300 problem instances. Points below the x = y line indicate lower
run-time for the Benders’ model.

feasible solution even though fewer trucks were assigned in the master solution.1

Thus, at the end of each iteration, we have a globally feasible solution.
Albareda-Sambola et al. used 19 medium and large problem instances to

evaluate their tabu search approach, reporting run-times and bounds on the
optimality gap. All instances are correlated and have (l, u) values of (50, 80).
We received these exact instances form the authors.2 We believe that the run-
time for our Benders’ model to find the first feasible solution and the gap from
optimality provide some basis for comparison.

Table 2 presents the mean and median time for the first iteration and mean
percentage gap from optimal for the Benders’ approach. This is compared to
the run-time on a 2.4GHz Pentium IV and mean percentage gap from optimal
reported by Albareda-Sambola et al.3 The columns labeled “# Dom.” indicate
the number of problems in each set for which one approach was clearly dominant
with respect to both lower CPU time and lower % gap. As can be seen, on average
the Benders’ approach is 13.6% worse than Tabu search with respect to the mean
CPU time to find a feasible solution but finds solutions with substantially smaller

1 This is not true when the minimal number of trucks required at a facility is greater
than k. This did not occur in any of our experiments.

2 We would like to thank Maria Albareda-Sambola for providing these instances.
3 Albareda-Sambola et al. presented the cost of their best solution and bounds on the

percentage gap. As we found the optimal solutions we were able to calculated the
exact gap from optimality for the tabu search.



Problem Benders’ Tabu
Set Time % Gap # Dom. Time % Gap # Dom.

Mean Median Mean Mean Median Mean

30× 15 60.4 13.5 2.07 4 60.5 66.1 4.12 0
40× 20 185.4 86.2 1.82 6 148.7 163.0 10.41 0

Overall 113.0 39.5 1.96 10 97.6 78.8 6.77 0

Table 2. The mean and median CPU time (seconds), the mean percentage gap from
optimal and the bounds of that gap for Tabu, and the number of instances for which
each approach dominated the other.

optimality gaps. However, Benders’ exhibits three run-time outliers that obscure
the results. Out of 19 problem instances, Benders’ finds a better solution faster
than tabu on 10 instances while tabu search was not able to find a better solution
faster than Benders’ for any instance.

5 Conclusion

In this paper, we presented a novel logic-based Benders’ decomposition approach
to a location-allocation problem. Our approach was able to substantially out-
perform an existing IP model by finding and proving optimality, on average, more
than ten times faster. Our approach also performed better than an existing tabu
search in finding good, feasible solutions in a short time.
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