
Journal of Artificial Intelligence Research 75 (2022) 1477-1548 Submitted 06/2022; published 11/2022

The LM-Cut Heuristic Family for
Optimal Numeric Planning with Simple Conditions

Ryo Kuroiwa ryo.kuroiwa@mail.utoronto.ca

Department of Mechanical and Industrial Engineering

University of Toronto

Canada

Alexander Shleyfman shleyfman.alexander@gmail.com

The Department of Computer Science

Bar-Ilan University

Israel

Chiara Piacentini chiara@augmenta.ai

Augmenta Inc

Canada

Margarita P. Castro margarita.castro@ing.puc.cl

Department of Industrial Engineering and Systems

Pontificia Universidad Católica de Chile

Chile

J. Christopher Beck jcb@mie.utoronto.ca

Department of Mechanical and Industrial Engineering

University of Toronto

Canada

Abstract

The LM-cut heuristic, both alone and as part of the operator counting framework,
represents one of the most successful heuristics for classical planning. In this paper, we
generalize LM-cut and its use in operator counting to optimal numeric planning with simple
conditions and simple numeric effects, i.e., linear expressions over numeric state variables
and actions that increase or decrease such variables by constant quantities. We introduce
a variant of hmax

hbd (a previously proposed numeric hmax heuristic) based on the delete-
relaxed version of such planning tasks and show that, although inadmissible by itself, our
variant yields a numeric version of the classical LM-cut heuristic which is admissible. We
classify the three existing families of heuristics for this class of numeric planning tasks
and introduce the LM-cut family, proving dominance or incomparability between all pairs
of existing max and LM-cut heuristics for numeric planning with simple conditions. Our
extensive empirical evaluation shows that the new LM-cut heuristic, both on its own and
as part of the operator counting framework, is the state-of-the-art for this class of numeric
planning problem.

1. Introduction

The presence of numeric state variables in planning problems introduces an additional
degree of complexity over classical planning, making plan existence undecidable in the
general case (Helmert, 2002). Nevertheless, since the introduction of numeric variables

©2022 AI Access Foundation. All rights reserved.

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

in PDDL2.1 (Fox & Long, 2003), in addition to approaches to satisficing numeric plan-
ning (Hoffmann, 2003b; Shin & Davis, 2005; Gerevini, Saetti, & Serina, 2008; Eyerich,
Mattmüller, & Röger, 2009; Coles, Coles, Fox, & Long, 2013; Scala, Ramı́rez, Haslum, &
Thiébaux, 2016; Scala, Haslum, Thiebaux, & Ramirez, 2016b; Illanes & McIlraith, 2017;
Li, Scala, Haslum, & Bogomolov, 2018), a number of exact techniques have appeared in the
literature for restricted cases of numeric planning. One approach is model-based, compil-
ing a numeric planning task to another problem such as mixed integer linear programming
(Piacentini, Castro, Ciré, & Beck, 2018b) and optimization modulo theories (Leofante,
Giunchiglia, Ábrahám, & Tacchella, 2020). Another approach is heuristic search, the main
focus of this paper.

In the past decade, a number of heuristics have been developed for optimal numeric
planning with simple conditions, that is, where numeric variables can be increased or de-
creased by constant quantities and where preconditions are inequalities involving linear
expressions (Scala, Haslum, & Thiébaux, 2016a; Scala, Haslum, Magazzeni, & Thiébaux,
2017; Piacentini, Castro, Ciré, & Beck, 2018a; Piacentini et al., 2018b; Kuroiwa, Shleyf-
man, Piacentini, Castro, & Beck, 2021). All but one of these heuristics are delete-relaxation
heuristics that are either an approximation of numeric hmax or (as we show in Section 7)
a set of operator counting (OC) constraints that are used to estimate/compute h∗ via lin-
ear/integer programming (LP/IP), respectively (Pommerening, Röger, Helmert, & Bonet,
2014; Piacentini et al., 2018b). Thus, the already existing heuristics for optimal numeric
planning with simple conditions can be divided into three families:

• hmax Relaxations: hirmax (Aldinger & Nebel, 2017) and hmax
hbd (Scala et al., 2016), with

the latter extended to ĥrmax
hbd+ (Scala et al., 2020);

• Operator-counting: hlm+
hbd (Scala et al., 2017), hcIP, hcLP (Piacentini et al., 2018b);

• Generalised Subgoaling: hgen
hbd (Scala et al., 2020).

Figure 1 shows the relationship of all existing admissible heuristics for numeric planning
with simple conditions and the main contribution of this paper: the hLM-cut heuristic family.
We show through theoretical and experimental analysis that our heuristic is the state-of-the-
art for this class of planning problems. This paper is an extension of our conference paper
on the LM-cut heuristic for numeric planning (Kuroiwa et al., 2021), with the following
additional contributions:

1. We propose novel variants of numeric LM-cut heuristics, hLM-cut
ir , hLM-cut

ir,m , hLM-cut
ir,m+ ,

hLM-cut
cri,+ , and h

LM-cut
cri , with theoretical and experimental comparisons.

2. We provide a thorough empirical evaluation of new operator-counting heuristics com-
bining existing constraints with the LM-cut constraints.

3. We examine the complexity of delete-free restricted numeric planning.

The rest of the paper is as follows. Section 2 defines the problem and the necessary
background. Sections 3 and 4 evaluate the computational complexity of the heuristics h+

and hmax for numeric planning with simple conditions. We show that, although computing

1478

Numeric LM-Cut

h∗

h+

hmax hLM-cut OC

LP/IP

hgen
hbd

Figure 1: The schematic representation of heuristics for restricted numeric planning tasks.
Each box corresponds to a family of heuristics, solid arrows represent relaxations,
and dashed arrows represent information propagation. For example, the hLM-cut

heuristic family is a relaxation of h+, i.e., delete-relaxation, it uses information
obtained by hmax heuristics, and can be used to provide strengthening information
to the OC heuristics. The red dashed box represents the focus of this work.

these heuristics is NP-hard, checking whether there is a plan of bounded length in delete-free
planning tasks still lies in NP.

In Section 5, we show that the well-known classical LM-cut heuristic (Helmert & Domsh-
lak, 2009) based on hmax can be modified to account for numeric conditions and simple
numeric effects. We identify the criterion of hmax relaxations that determines the admissi-
bility of the resulting LM-cut heuristic variant. By doing so, we introduce an inadmissible
variation of numeric hmax based on subgoaling relaxations (Scala et al., 2016a) that results
in admissible LM-cut heuristics and grants us state-of-the-art performance. We also theo-
retically compare all admissible LM-cut versions and hmax relaxation variants presented in
the literature; for each pair, we show either dominance or incomparability relations.

Section 6 presents a detailed empirical comparison of numeric and classical LM-cut
variants in both classical and numeric settings, showing strong performance of our novel
heuristics in both settings. In Section 7, we use the LM-cut heuristics to produce constraints
for the operator-counting framework (Pommerening, Helmert, Röger, & Seipp, 2015). We
compare our methods with all other operator-counting constraints in the literature. The
empirical evaluation of the resulting admissible heuristics indicates a good trade-off be-
tween informativeness and computational time. These heuristics favorably compete with
the state-of-the-art heuristics and overall achieve higher coverage. Lastly, Section 8 presents
experimental evaluations for all available heuristics and Section 9 concludes our study.

2. Preliminaries

We consider a fragment of numeric planning restricted to the Strips formalism (Fikes &
Nilsson, 1971) with the addition of numeric state variables. We first present a subclass of
numeric planning defined by Hoffmann (2003a), called the restricted numeric planning task

1479

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

(rt). Formally, an rt is defined as a 5-tuple Πrt = 〈Fp,N ,A, sI , G〉, where Fp is a finite
sets of facts and N is a set of numeric variables. Numeric variables v ∈ N have rational
values in Q. A state s is a tuple 〈sp, sn〉, where sp ⊆ Fp is a set of facts and sn is a full
assignment over the variables in N ; s[v] indicates the value of the variable v ∈ N in state
s. For simplicity, we sometimes write s = sp ∪ sn as a minor abuse of notation.

Conditions can be either propositional ψ ∈ Fp or numeric. A numeric condition is
defined as ψ : v D w, with D ∈ {≥, >}, v ∈ N and w ∈ Q, and the set of all numeric
conditions is denoted by Fn. A propositional condition ψ ∈ Fp is satisfied by the state s if
ψ ∈ sp. A numeric condition ψ : v D w ∈ Fn is satisfied by s if s[v] D w. When a state s
satisfies a condition ψ, or a set of conditions Ψ, we write s |= ψ and s |= Ψ, respectively.
If s does not satisfy ψ, we write s 6|= ψ. In what follows, we replace ψ : v > w with
ψ′ : v ≥ w + ε, where ε > 0 is a sufficiently small constant, assuming only ≥ conditions.

An action a ∈ A is a triplet 〈pre(a), eff(a), cost(a)〉, where pre(a) is the set of precon-
ditions, eff(a) the effects, and cost(a) ∈ R0+ is the cost. Preconditions are defined as
prep(a) ∪ pren(a), with propositional and numeric conditions, respectively. Effects are a
triplet eff(a) = 〈add(a), del(a), num(a)〉, where add(a), del(a) ⊆ Fp are added and deleted
facts, and num(a) is the set of numeric effects, i.e., an assignment of a numeric variable
v += k where k ∈ Q is a constant quantity. We assume that each action has at most
one numeric effect on each numeric variable. We say that an action a is applicable in the
state s if s |= prep(a) ∪ pren(a). The result of applying action a to state s is denoted by
sJaK = 〈s′p, s′n〉, where s′p = (sp\del(a))∪add(a), and for each variable v ∈ N , s′n[v] = sn[v]+k
if (v += k) ∈ num(a), and s′n[v] = sn[v] otherwise.

The set of goal conditions G = Gp ∪Gn denotes propositional and numeric conditions,
respectively. We say that s∗ is a goal state if s∗ |= G. The set of numeric conditions
F̄n = {ψ ∈ Fn | ψ ∈ Gn ∨ ∃ a ∈ A : ψ ∈ pren(a)} is called active numeric facts, that is,
the set of all numeric conditions that are either goal conditions and preconditions for some
action. Note that F̄n is finite since the number of the goal conditions and the preconditions
of the actions is finite.

An s-plan is an action sequence π that can be applied successively to state s and results
in a goal state s∗ |= G. The cost of an s-plan π is the sum of all its action costs and
an optimal s-plan has the minimal cost among all possible s-plans. The optimal cost of
an s-plan is denoted by h∗(s). Therefore, a plan for planing task Π is an sI -plan and the
minimum cost of Π is h∗(sI).

A disjunctive fact landmark LF ⊆ Fp ∪ Fn is a set of facts such that in the execution
of any plan π, there is a state s such that s |= ψ for some ψ ∈ LF . A disjunctive action
landmark L ⊆ A is a set of actions such that L ∩ π 6= ∅, for every plan π for Π.

If a Πrt does not have any numeric state variables (N = ∅), we have a classical (Strips)
planning task Π. A numeric variable v ∈ N is called a resource variable if it has non-
negative domain [0, Rv], where Rv ∈ Q0+ is the maximum capacity, and it is only affected
by actions a ∈ A with effects of the type v += kav ∈ Q. If all the numeric variables are
resources and kav ∈ Q0− for all a ∈ A, v ∈ N , we have a resource-constrained planning task
(rcp) (Nakhost, Hoffmann, & Müller, 2012), while if there exists at least one action with
kav ∈ Q+, we have a planning task with resources (rp) (Wilhelm, Steinmetz, & Hoffmann,
2018). rt generalizes rp by allowing numeric variables to have domain Q and numeric

conditions of the form: ψ : v ≥ wψ0 , with wψ0 ∈ Q.

1480

Numeric LM-Cut

2.1 Planning with Simple Conditions

Scala et al. (2016a) introduce numeric planning with simple conditions (sc), an extension of

rt where numeric preconditions can be written as ψ :
∑

v∈N v ·w
ψ
v ≥ wψ0 , with wψv , w

ψ
0 ∈ Q.

Tasks with only sc are called sc tasks (sct). They can be reduced to rt by introducing
a new numeric variable for each sc and modifying numeric effects so that they change the
variable by the net effects on the sc.

Given an sct Πnum = 〈Fp,N ,A, sI , G〉, a transformed task Πrt is defined as the 5-tuple
〈Fp,N rt,Art, srtI , G

rt〉. For every numeric expression mentioned in every numeric condi-

tion ψ ∈ F̄n, we add an additional numeric variable vψ ∈ N rt, with sI [v
ψ] =

∑
v∈N w

ψ
v sI [v].

Each numeric condition is replaced by vψ ≥ wψ0 and, for every action a ∈ A, a numeric effect

on every variable vψ must be added, with the form vψ +=
∑

v∈N w
ψ
v kav , where v += kav ∈ Q

are the original numeric effects of the action. This translation is polynomial in the number
of active numeric conditions of the planning task.

2.2 Delete-Free rt and Delete-Relaxed rt

In his seminal work on numeric planning, Hoffmann (2003a) defines a delete-free (or mono-
tonic) rt as follows: for each action a ∈ A it holds that del(a) = ∅ and all numeric effects
are of the form (v += kav) ∈ num(a) with kav > 0. The support function supp : Fp∪Fn → 2A

for such tasks is defined to be supp(ψ) = {a ∈ A | ψ ∈ add(a)} if ψ ∈ Fp and supp(v ≥
w0) = {a ∈ A | v += kav ∈ num(a)} if v ≥ w0 ∈ Fn.

An rt can be relaxed to a delete-free rt by setting del(a) = ∅ for each action a and
removing numeric effects of the form (v += k) with k < 0. We call the resulting delete-free
task the delete-relaxed rt. The optimal cost of the delete-relaxed rt is denoted by h+.

3. The Complexity of Delete-Free Numeric Planning

We start with an important complexity result for delete-free numeric planning. It is well-
known that classical planning with actions having empty delete lists is NP-complete. Here
we obtain the same result for delete-free rt. The lower bound, NP-hardness, follows from
the fact that any classical Strips problem is also an rt problem with no numeric effects.
However, obtaining the upper bound result is somewhat less trivial, since as shown by the
following example, there can be plans with exponentially many actions.

Example 1. Let Π = 〈Fp,N ,A, sI , G〉 be an rt with Fp = ∅ and N = {v}. Let sI = {v =
0}, G = {v ≥ 2k}, and A = {a}, where a = 〈∅, {〈v += 1〉}, 1〉. The optimal plan of Π
consists of applying action a 2k times to sI .

In contrast to classical delete-free planning where each optimal plan is bounded by the
number of actions in the task (i.e., each action is applied at most once along an optimal
plan), in the example above the unique optimal plan consists of 2k actions, and therefore
cannot be checked in polynomial-time in a direct fashion. Thus, to prove membership in
NP, we need to employ a different way to check the plan. To this end, we employ the
following two observations:

1. if action a was applied at some point t along a plan, it can be applied at any point
t′ > t afterwards,

1481

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

2. let v += kav be an effect of action a, then if we apply action a consecutively ma times
the resulting effect on variable v is v += ma · kav .

We use these observations to construct a non-deterministic Turing machine (NTM) to solve
the following decision problem.

Name. Bounded-Plan Length problem (BPL)
Instance. An rt Π and a number K.
Question. Is there a plan π for Π such that cost(π) ≤ K?

At each decision point the NTM should “guess” the tuple (a,ma), where a ∈ A is the
action that should be applied next, and ma is the number of times that a should be applied.
We denote the application of ma actions a to a state s as amaJsK. Then, the result of
this application is amaJsK = 〈s′p, s′n〉, where s′p = (sp \ del(a)) ∪ add(a) = sp ∪ add(a), and
s′n[v] = sn[v] + ma · kav if (v += kav) ∈ num(a), and s′n[v] = sn[v] otherwise, for each v ∈ N .
Note that the complexity of this application is linear in Fp and logarithmic in ma. The
machine terminates, returning accept, if a state s is a goal state and, for a decision path
π (a compact representation of a plan), the following holds:∑

(a,ma)∈π

ma · cost(a) ≤ K.

Otherwise, the NTM returns reject. Note, that we can restrict the NTM to choose an
action a at most once and the upper bound on ma is given by the input, i.e., for each action
a ∈ A:

ma ≤
wmax

0

kmin
, where wmax

0 = max{w0 | (v ≥ w0) ∈ F̄n}

and kmin = min{kav | ∃ a ∈ A : (v += kav) ∈ num(a)}.

The NTM requires at most (logwmax
0 − log kmin) · |A| guesses, assuming that the mas are

guessed bit by bit. Thus, we can conclude with the following proposition.

Proposition 1. The decision problem BPL for delete-free rts is NP-complete.

The NP membership may also be obtained by first transforming the rt into an integer
linear program (Piacentini et al., 2018a), and then applying the theorem from Papadimitriou
(1981). Note, however, that the straightforward proof presented here provides a better
intuition on the nature of the BPL problem.

4. hmax in Numeric Planning

This section presents and compares different hmax variants for rt in the literature, since
hmax is one of the major components of the LM-cut heuristic. We also introduce a variant
hmax

cri , which is a key component of the numeric variant of LM-cut heuristic described in the
next section, even though we show that it is an inadmissible heuristic.

1482

Numeric LM-Cut

4.1 NP-completeness of hmax with Numeric State Variables

We start with the following observation: while computing hmax in classical planning can
be done in polynomial time (Bonet & Geffner, 2001), the problem of calculating hmax with
numeric state variables is NP-hard even if we restrict the problem to rts. The proof of this
observation follows. First, for a given state s we define hmax(s) = ĥ(s,G) to be a maximal
fixed-point of the following recursive equations:

ĥ(s, F) = max
ψ∈F

ĥ(s, ψ) for F ⊆ Fp ∪ Fn,

ĥ(s, ψ) =

{
0 if s |= ψ

min
a∈supp(ψ)

ĥ(s, preψ(a)) + cost(a) otherwise.

Here, preψ(a) is pre(a) if ψ ∈ Fp, or pre(a)∪{v ≥ w−kav} if ψ : v ≥ w ∈ Fn. The fixed-point
can be computed in a finite number of time steps (Scala et al., 2016a).

Proposition 2. Given an rt and a state s, the problem of computing hmax(s) is NP-hard.

Proof. We show this result by reduction from the minimization version of the unbounded
knapsack problem (mUKP), which is proved to be NP-hard (Zukerman, Jia, Neame, &
Woeginger, 2001). Let [n] := {1, . . . , n} be a set of n elements, each element i ∈ [n] has
a value wi and cost ci, all positive rational (real) numbers. Let w0 be a rational number.
Then, the mUKP problem is given by the following optimization problem:

min
n∑
i=1

cixi (1)

s.t.
n∑
i=1

wixi ≥ w0 (2)

xi ∈ N0, i ∈ [n]. (3)

We assume w0 is positive, as xi = 0 for all i ∈ [n] is a trivial solution for w0 ≤ 0. Consider
C∗(w0) to be the optimal cost for an mUKP with constraint

∑n
i=1wixi ≥ w0. Then, the

following recursive formula holds:

C∗(w0) = min
i∈[n]

C∗(w0 − wi) + ci.

Given an instance of the mUKP, we can build an rt with no propositional variables and
with one numeric variable v. For every element i we have an action ai such that pre(ai) = ∅,
num(ai) = {v += wi}, and cost(ai) = ci. We set s[v] = 0 and G contains one condition
v ≥ w0. This rt instance is constructed in O(n) time. We show that the solution of the
mUKP is equivalent to the solution of hmax. By definition,

hmax(s) = ĥ(s,G) = ĥ(s, {v ≥ w0}) = ĥ(s, v ≥ w0).

Because no actions have preconditions, we get that

ĥ(s, v ≥ w0) =

{
0 if w0 ≤ 0

minai∈supp(v≥w0) ĥ(s, {v ≥ w0 − wi}) + cost(ai) otherwise.

1483

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Since num(ai) = {v += wi} for each action ai, supp(v ≥ w0) = {ai | i ∈ [n]}, and

ĥ(s, v ≥ w0) = min
i∈[n]

ĥ(s, v ≥ w0 − wi) + ci

for w0 > 0. Thus, hmax(s) = ĥ(s, v ≥ w0) is equivalent to C∗(w0).

4.2 Relaxations of hmax

The hmax heuristic can be interpreted using both interval (Aldinger & Nebel, 2017) and
subgoaling relaxations (Scala et al., 2016a), but because of its intractability, a further
relaxation is needed. Scala et al. (2016a) modified hmax by introducing a function ma(s, ψ)
that, intuitively, accounts for the number of times action a can be applied in the state s to
reach a fact ψ.

Definition 1. Given a delete-free rt, a state s, a fact ψ ∈ F , and action a, We define an
action multiplier ma as1

ma(s, ψ) =

0, if s |= ψ,

w−s[v]
ka , if a ∈ supp(ψ) ∧ ψ : v ≥ w ∈ Fn,
1, if a ∈ supp(ψ) ∧ ψ ∈ Fp,
∞, otherwise

where ka ∈ Q is the numeric effect of action a on variable v, i.e., v += ka ∈ eff(a).

This definition allows us to restrict our facts to the set of active numeric facts, F̄n. Note
that in contrast to Fn, F̄n is a finite set. Using this action multiplier, Scala et al. (2016a)
propose an additional level of relaxation, decoupling preconditions and numeric effects of
actions, that assures the admissibility of their hmax variant, i.e., hmax

hbd .

Definition 2. Given an rt and a state s, the heuristic function hmax
hbd (s) := hmax

hbd (s,G) is
defined as

hmax
hbd (s, F) = max

ψ∈F
hmax
hbd (s, ψ),

for any set of facts F ⊆ Fp ∪ Fn, and

hmax
hbd (s, ψ) =

0, if s |= ψ,

min
a∈supp(ψ)

hmax
hbd (s, pre(a)) + cost(a), if ψ ∈ Fp,

min
a∈supp(ψ)

hmax
hbd (s, pre(a)) + min

a∈supp(ψ)
ma(s, ψ) · cost(a), if ψ ∈ Fn

for any fact ψ ∈ Fp ∪ Fn.

The fixed point of the above equations may not be unique, but one can be computed
in polynomial time in the number of active numeric conditions and actions (Scala et al.,
2016a). In the computation, first, the values are initialized as hmax

hbd (s, ψ) = ∞ for each
ψ ∈ Fp∪F̄n. If hmax

hbd (s) =∞ for a state s, it is a dead-end, i.e., a goal state is not reachable

1. Here, and in what follows, we assume that the first matching condition will be active.

1484

Numeric LM-Cut

from s. Note that compared to the heuristics proposed in this paper, hmax
hbd is applicable

for more general numeric planning tasks than rt and sct, where preconditions and goal
conditions can be disjunctive (Scala et al., 2020).

Another relaxation of hmax is the repetition relaxation based max heuristic, hirmax,
proposed by Aldinger and Nebel (2017). hirmax relaxes the number of executions of actions
to achieve numeric conditions. Although it is originally defined for more general numeric
planning tasks, we show a simplified definition of hirmax for rt here. To stay consistent
with our previous notation we write hmax

ir instead of hirmax.

Definition 3. Given an rt and a state s, the heuristic function hmax
ir (s) := hmax

ir (s,G) is
defined as

hmax
ir (s, F) = max

ψ∈F
hmax
ir (s, ψ)

for any set of facts F ⊆ Fp ∪ Fn, and

hmax
ir (s, ψ) =

{
0 if s |= ψ,

mina∈supp(ψ) h
max
ir (s, pre(a)) + cost(a) otherwise

for a fact ψ ∈ Fp ∪ Fn.

Lastly, we define a variant of hmax that we denote by hmax
cri . The notation “cri” is chosen

since this version of hmax admits the critical path value in our version of the justification
graph, which is explained below. This heuristic is defined specifically for the numeric LM-
cut heuristic, which we present in the next section.

Definition 4. Given an rt and a state s, the heuristic function hmax
cri (s) := hmax

cri (s,G) is
defined as

hmax
cri (s, F) = max

ψ∈F
hmax
cri (s, ψ)

for any set of facts F ⊆ Fp ∪ Fn, and

hmax
cri (s, ψ) =

{
0 if s |= ψ,

mina∈supp(ψ) h
max
cri (s, pre(a)) + ma(s, ψ) · cost(a) otherwise

for a fact ψ ∈ Fp ∪ Fn.

This heuristic can be interpreted as a combination of hmax
hbd and hadd

hbd, an inadmissible
heuristic proposed by Scala et al. (2016a); hmax

cri uses the same formula as hmax
hbd for a set of

facts and the same formula as hadd
hbd for a single fact. Also, it is important to note that for

any state s in a given rt, hmax
hbd (s, ψ′) ≤ hmax

cri (s, ψ′) because hmax
hbd decouples preconditions

and effects of actions that have numeric facts, while hmax
cri does not.

Even though these heuristic definitions (i.e., hmax
hbd , hmax

ir , and hmax
cri) address all subsets

of Fp ∪ Fn, in practice, we only need to compute the fixed point of hmax
x , where x can be

hbd, ir, or cri, for the facts in the finite set Fp ∪ F̄n. We can therefore compute all three
heuristics in polynomial time in the sizes of the sets of facts, active numeric conditions, and
actions of rt.

In what follows we show that hmax
cri is in fact an inadmissible heuristic with Example 2.

This is quite interesting considering the similarities of hmax
cri to hmax

ir and hmax
hbd , which are

known to be admissible (Scala et al., 2016a; Aldinger & Nebel, 2017).

1485

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Example 2. Let 〈Fp,N ,A, sI , G〉 be an rt with Fp = ∅ and N = {v}. Let sI = {v = 0},
G = {v ≥ 6}, and A = {a1, a2}, where

action pre eff cost

a1 ∅ v += 1 1
a2 v ≥ 2 v += 2 1

We show the hmax-values of facts for all three heuristics in Table 1.

a ψ ma(sI , ψ)

a1 v ≥ 2 2
a1 v ≥ 6 6
a2 v ≥ 2 1
a2 v ≥ 6 3

ψ hmax
hbd (sI , ψ) hmax

ir (sI , ψ) hmax
cri (sI , ψ)

v ≥ 2 1 1 2
v ≥ 6 3 1 5

Table 1: The action multipliers for each action and the hmax-values for each ψ.

It is easy to check that an optimal plan for this task is π = 〈a1, a1, a2, a2〉 with cost
h∗(sI) = 4. We also have that hmax

cri (sI , v ≥ 2) = 2 and hmax
cri (sI , v ≥ 6) = 5, which results

in an inadmissible heuristic:

hmax
cri (sI) = 5 > h∗(sI) = 4.

The derivation of the heuristic values in the previous example are most easily seen using
the concept of a justification graph (JG). As the JG is also key to obtain LM-cut estimates,
we delay this presentation to the next section.2

5. LM-Cut in rt Planning

We now introduce the LM-cut heuristic for rt planning problems. We start by describing
the well-known classical version and show how to extend it to its numeric counterpart. We
then present several variants of LM-cut heuristics that arise from different choices for the
hmax relaxation. We conclude this section with a theoretical comparison of these variants
and show the dominance relationships among them.

5.1 LM-Cut in Classical Planning

Helmert and Domshlak (2009) introduce the LM-cut heuristic for classical planning and
show that it produces excellent estimates of h+ for many planning tasks. We now provide
a complete description of the LM-cut heuristic in classical planning, which is fundamental
for our extension to numeric tasks, as shown in Section 5.2.

The LM-cut heuristic is computed as a cut in a labelled weighted digraph called justifica-
tion graph (JG). Given the large number of concepts associated with this heuristic, we first
formally define labelled weighted digraphs, cuts, and JGs. We then introduce the goal zone
and before-goal zone sets of vertices in a JG. Finally, using these definitions, we present the
LM-cut heuristic in classical planning.

2. Interested readers can see the JG representation of Example 2 in Appendix B, Example 11, Figure 16.

1486

Numeric LM-Cut

A labelled weighted digraph is formally defined by a triplet G = 〈N,E,W〉, where N are
the vertices of the graph, E ⊆ N ×N ×A are labelled edges of the graph, where A denotes
the label set, and W : E → R0+ is the weight function on edges. Function lbl : E → A is
defined as (n, n′, a) 7→ a, that is, a function that returns the label of a given edge. For a set
of edges E′ ⊆ E, we define lbl(E′) = {lbl(e) | e ∈ E′} (i.e., the set of labels associated with
edges in E′). An interleaved sequence of vertices and labels (n0, a0, n1, . . . , am, nm+1) (that
can be viewed as a sequence of edges) is called a path if for each i ∈ [m] := {1, . . . ,m} it
holds that (ni, ni+i, ai) ∈ E. We denote such path by path(n0, nm+1) and say that nm+1

is reachable from n0 if such path exists. Given two disjoint sets of nodes N1, N2 ⊆ N , we
define a directed cut to be (N1, N2) = {(n1, n2, a) ∈ E | n1 ∈ N1, n2 ∈ N2}. The weight of
a path π and a cut L are denoted respectively as

W(π) =
∑
e∈π

W(e) and W(L) = min
e∈L

W(e).

Lastly, for a vertex n0 ∈ N , we define the set of edges incident to n0 as in(n0) = {(n, n0, a) ∈
E | n ∈ N, a ∈ A} and the in-border of E′ ⊆ E as ∂in(E′) = {n0 ∈ N | in(n0) ∩ E′ 6= ∅}.

Example 3. Let G = 〈N,E,W〉 be a labelled weighted digraph with N = {p, q, r, s}, and E
and W given by

e ∈ E W(e) lbl(e)

(p, q, a1) 1 a1

(p, r, a2) 2 a2

(q, s, a3) 2 a3

(r, s, a4) 1 a4

Figure 2 depicts graph G, where a cut L = ({p}, {q, r}) is represented by a vertical line. For
this cut, W(L) = 1, lbl(L) = {a1, a2}, and ∂ in(L) = {q, r}.

p

q

r

s

W(L) = 1

a1

a2

a3

a4

Figure 2: Example of a labelled weighted digraph.

Helmert and Domshlak (2009) defined a JG to have a singleton goal set and all operators
to have exactly one precondition, one add effect, and no delete effects. These conditions
define a directed weighted graph G whose vertices correspond to the facts of the planning
task and labelled weighted edges correspond to actions. The weight of the shortest path
from a vertex representing some fact in s to another fact ψ corresponds to the hmax(s, ψ)
value, hence the graph is said to justify hmax. To meet the requirement of having one

1487

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

precondition in a JG, one of the preconditions is chosen for an action while justifying
hmax values. Intuitively speaking, the precondition choice function defined by Bonet and
Helmert (2010) maps each action to one of its preconditions, which is done via maximizing
hmax. Definition 5 formally defines the function that chooses the precondition of each action
and Definition 6 formalizes JG for classical planning.

Definition 5. Given a classical planning task and a state s, a precondition choice func-
tion pcf : S ×A → Fp is the function that satisfies the condition

pcf(s, a) ∈ argmax
ψ∈pre(a)

hmax(s, ψ).

Definition 6. Given a classical planning task and a state s, the justification graph is
the labelled weighted digraph G = 〈N,E,W〉 with

1. a set of vertices N = {nψ | ψ ∈ Fp ∪ {∅}};

2. a set of labelled edges E = Ê ∪ {(nψ, nψ′ , a) | a ∈ supp(ψ′), ψ = pcf(s, a)}; where we

include the following zero-cost edges Ê = {(n∅, nψ, a0) | s |= ψ} with a dummy action
a0 (i.e., pre(a0) = eff(a0) = ∅ and cost(a0) = 0);

3. and a weight function W : E → R0+, (nψ, nψ′ , a)→ cost(a).

Given a JG as presented in Definition 6, we now introduce the two zones (i.e., sets of
nodes) needed to define a cut over the JG.

Definition 7. Given a classical planning task, a state s, and the JG G = 〈N,E,W〉, the
goal fact g is defined as the most costly fact in G with respect to hmax and state s, that is,

g ∈ argmax
g′∈G

hmax(s, g′).

The goal zone of the graph G is the set of vertices that can reach g at zero cost and is
defined as:

Ng = {nψ ∈ N | ∃ path(nψ, ng) : W(path(nψ, ng)) = 0}.

The before-goal zone is a set of vertices that can be reached from the vertex n∅ without
passing through Ng:

N0 = {nψ ∈ N | ∃ path(n∅, nψ) : path(n∅, nψ) ∩Ng = ∅}.

Lastly, the beyond-goal zone is N b = (N \Ng) \N0.

Definition 8 presents the LM-cut heuristic for classical planning. The heuristic iteratively
creates a JG for the task, finds a cut, and adds its cost to the heuristic value. The procedure
then updates the cost of the actions present in the cut and re-builds the JG for the updated
task. The procedure continues until no more positive cost actions can be added.

Definition 8. Given a classical planning task Π = 〈Fp, ∅,A, sI , G〉 and a state s, the
heuristic value of the LM-cut heuristic, hLM-cut(s), is computed by the following procedure.

1488

Numeric LM-Cut

1. Let hLM-cut(s) = 0.

2. Initialize hmax(s, ψ) = ∞ and compute a fixed-point of hmax(s, ψ) for each ψ ∈ Fp
in Π. Let g be the goal fact in Definition 7, i.e., g ∈ argmaxg′∈G h

max(s, g′). If

hmax(s, g) = 0 return hLM-cut(s). Otherwise, if hmax(s, g) =∞ return ∞.

3. Construct the JG for Π and s as in Definition 6.

4. Let L = (N0, Ng) be a cut in the JG where N0 is the before-goal zone and Ng is the
goal zone in Definition 7. Increase hLM-cut(s) by W(L).

5. Let Ac = {〈pre(a), eff(a), costc(a)〉 | a ∈ A} where

costc(a) =

{
cost(a)−W(L), if a ∈ lbl(L),

cost(a), if a /∈ lbl(L).

Update Π to be 〈Fp, ∅,Ac, sI , G〉 and go back to Step 2.

Example 4 illustrates all the steps of the LM-cut heuristic for a small classical planning
task.

Example 4. Let Π = 〈Fp, ∅,A, sI , G〉 be a classical planning task with Fp = {p, q, r, g1, g2},
sI = ∅, G = {g1, g2}, and A = {a1, a2, a3, a4, a5}, where

actions pre eff cost

a1 ∅ p 2
a2 ∅ p, q 3
a3 ∅ r 1
a4 p g1 0
a5 p, q g2 0
a6 r g2 0

We show hmax-values of facts, action costs, and the cut in each iteration in Table 2
and the JGs in Figure 3, where nodes from which the goal proposition is not reachable are
ignored. The cuts extracted in the first two iterations, L1 and L2, are visually represented
by vertical lines in the figure. In the first JG, since g1 is reachable from p with a zero-cost
path 〈a4〉, the goal zone is {np, ng1}. In the second JG, similarly, since g2 is reachable from
q or r with a zero-cost path 〈a5〉 or 〈a6〉, the goal zone is {nq, nr, ng2}. Note that

W(L1) = min{cost(a1), cost(a2)} = cost(a1) = 2

and
W1(L2) = min{costc1(a2), costc1(a3)} = 1

where costc1 is the updated cost function after the first iteration. We have

hmax(sI) = hmax(sI , g1) = 2 < hLM-cut(sI) = W(L1) + W1(L2) = 3.

As shown in this example, hLM-cut takes multiple goal propositions into consideration al-
though hmax considers only one goal proposition. This results in the higher h-value of hLM-cut

than hmax. In fact, hLM-cut is proved to dominate hmax in classical planning (Helmert &
Domshlak, 2009).

1489

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax(sI , ψ) p q r g1 g2

1 2 3 1 2 1
2 0 1 1 0 1
3 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6

1 2 3 1 0 0 0
2 0 1 1 0 0 0
3 0 0 0 0 0 0

pcf(sI , a) a1 a2 a3 a4 a5 a6

1 ∅ ∅ ∅ p q r
2 ∅ ∅ ∅ q q r

N0 Ng lbl W

L1 n∅ ng1 , np a1, a2 2
L2 n∅ nq, nr, ng2 a2, a3 1

Table 2: hmax(sI , ψ), pcf(sI , a), cost(a), and the cut in each iteration.

∅ p g1

W(L1) = 2

a1

a2

a4

(a) The first cut.

∅

q

r

g2

W1(L2) = 1

a2

a3

a5

a6

(b) The second cut.

Figure 3: JGs for a classical planning task in Example 4. The functions W and W1 denote
the cut weights of the LM-cut procedures, where action costs are reduced in each
iteration.

The admissibility of the LM-cut heuristic is ensured by the concept of cost-partitioning.
In their works, Katz and Domshlak (2008) and Yang et al. (2008) independently proposed
an approach to additively combine individual admissible heuristic estimates.

Definition 9. Given a planning task Π, a cost partition is a family of planning tasks
{Πi}ni=1 where each task differs from Π only by its cost function costi and it holds that
∀a ∈ A :

∑n
i=1 costi(a) ≤ cost(a).

The following proposition is a simplified version of the claim proposed by Katz and
Domshlak (2008).

Proposition 3. Given a planning task Π, cost partition {Πi}ni=1, and an admissible heuris-
tic function hi for each Πi, the heuristic function h(s) =

∑n
i=1 hi(s) is admissible.

Proof. Consider the case n = 2. For any state s, let π be an optimal s-plan with the cost
h∗(s) for Π. Since Π1 and Π2 are the same as Π except for the cost functions, π is also
a valid s-plan for both Π1 and Π2. Let the cost of π in Π1 and Π2 be h′1(s) and h′2(s),
respectively. Since ∀a ∈ A : cost1(a) + cost2(a) ≤ cost(a), it holds that h′1(s) + h′2(s) ≤
h∗(s). Let h∗1(s) and h∗2(s) be the optimal solution costs for Π1 and Π2. As h1 and h2

are admissible in Π1 and Π2, h1(s) ≤ h∗1(s) ≤ h′1(s) and h2(s) ≤ h∗2(s) ≤ h′2(s). Thus,
h1(s) + h2(s) ≤ h′1(s) + h′2(s) ≤ h∗(s), so h1(s) + h2(s) is admissible in Π.

1490

Numeric LM-Cut

The n > 2 case follows by induction.

The proof of Proposition 3 does not use any property which is present in classical
planning but not in numeric planning. Thus, it also holds for numeric planning.

The admissibility of the LM-cut heuristic is guaranteed by cost-partitioning. Let Li be
the cut found by the LM-cut heuristic at iteration i and Wi be the weight function after
iteration i with W0 = W. Suppose that n iterations are performed by LM-cut. Let Πi be a
classical planning task that is the same as the original task Π except that the action cost
costi is defined as

costi(a) =

{
Wi−1(Li) if a ∈ lbl(Li)

0 if a /∈ lbl(Li)

for each action a. Helmert and Domshlak (Helmert & Domshlak, 2009) showed that {Πi}ni=1

constitutes a cost partition, and Wi−1(Li) is admissible for Πi. We will prove the admissi-
bility of numeric LM-cut using the cost-partitioning in the same way.

5.2 Numeric LM-Cut

Similarly to classical LM-cut, we need an hmax heuristic and JGs based on the heuristic to
properly define numeric LM-cut. Section 4 has introduced three tractable variants of hmax

for numeric planning. Therefore, following the scheme of Helmert and Domshlak (2009),
we now present a construction procedure for the JG in numeric planning. Since there are
three hmax alternatives, hmax

cri , hmax
ir , and hmax

hbd , there can be multiple LM-cut heuristics. We
first present the definition of the numeric LM-cut heuristic family ; it is parameterized and
different combinations of these parameters result in different LM-cut heuristics. The main
difference between the numeric JG and its classic counterpart is that the cost of an edge
(nψ, nψ′ , a) is given by Wa(s, a, ψ

′) · cost(a) instead of cost(a), where Wa is an action weight
function, as described in Definition 10.

Definition 10. Given an rt and a state s, a precondition choice function pcf : S × A ×
Fp ∪ F̄n → Fp ∪ F̄n, and an action weight function Wa : S × A × Fp ∪ F̄n → R0+, the
justification graph is the labelled weighted digraph G = 〈N,E,W〉 with

1. a set of vertices N = {nψ | ψ ∈ Fp ∪ F̄n ∪ {∅}};

2. a set of labelled edges E = Ê∪{(nψ, nψ′ , a) | a ∈ supp(ψ′), ψ = pcf(s, a, ψ′)}; where we

include the following zero-cost edges Ê = {(n∅, nψ, a0) | s |= ψ} with dummy action
a0 (i.e., pre(a0) = eff(a0) = ∅ and cost(a0) = 0);

3. and a weight function W : E → R0+, (nψ, nψ′ , a) 7→Wa(s, a, ψ
′) · cost(a).

Definition 11. Given an rt, a state s, a precondition choice function pcf : S × A× Fp ∪
F̄n → Fp ∪ F̄n and the JG G = 〈N,E,W〉 using pcf, the goal fact g is defined as

g = pcf(s, ag, g
′)

where g′ is a dummy proposition and ag is a dummy action with pre(ag) = G, add(ag) = {g′},
and num(ag) = ∅. The goal zone of the graph G is the set of vertices that can reach g at

1491

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

zero cost and is defined as:

Ng = {nψ ∈ N | ∃ path(nψ, ng) : W(path(nψ, ng)) = 0}.

The before-goal zone is a set of vertices that can be reached from the vertex n∅ without
passing through Ng:

N0 = {nψ ∈ N | ∃ path(n∅, nψ) : path(n∅, nψ) ∩Ng = ∅}.

Lastly, the beyond-goal zone is N b = (N \Ng) \N0.

We now present the definition of the numeric LM-cut heuristic family. One of the key
differences with classic LM-cut is that numeric LM-cut considers the action weight function
Wa to update the cost of an action a. This change is needed because the corresponding JG
includes Wa in the edge costs.

Definition 12. Given an rt Πrt = 〈Fp,N ,A, sI , G〉, a state s, a precondition choice
function pcf : S ×A×Fp∪F̄n → Fp∪F̄n, and an action weight function Wa : S ×A×Fp∪
F̄n → R0+, the heuristic value of the numeric LM-cut heuristic, hLM-cut(s), is computed by
the following procedure.

1. Let hLM-cut(s) = 0.

2. Construct a JG using Πrt, pcf, and Wa as described in Definition 10. Let g be the
goal fact in Definition 11. If ng is unreachable from n∅ in the JG, return ∞. If
W(path(n∅, ng)) = 0, return hLM-cut(s).

3. Let L = (N0, Ng) be a cut in the JG where N0 is the before-goal zone and Ng is the
goal zone in Definition 11. Increase hLM-cut(s) by W(L).

4. Let Ac = {〈pre(a), eff(a), costc(a)〉 | a ∈ A} where

costc(a) =

cost(a)− W(L)
min(nψ,nψ′ ,a)∈L

Wa(s,a,ψ′)
if a ∈ lbl(L)

cost(a) if a /∈ lbl(L).

Update Πrt to be 〈Fp,N ,Ac, sI , G〉 and go to Step 2.

We note that, as opposed to Definition 8, hmax does not appear in Definition 12 and its
role is incorporated in pcf and Wa. In classical LM-cut, pcf(s, a) ∈ argmaxψ∈pre(a) h

max(s, ψ)
and Wa(s, a, nψ) = 1, which results in W(path(n∅, nψ)) = hmax(s, ψ). Therefore, hmax(s, g)
is used in Step 2 of Definition 8. In our numeric LM-cut, pcf and Wa are not necessar-
ily determined by a single hmax variant. As a result, Step 2 of Definition 12 considers
W(path(n,ng)) instead of hmax(s, g). In addition, the weight of the cut W(L) is divided by
min(nψ ,nψ′ ,a)∈L Wa(s, a, ψ

′) in Step 4.

Now, we define different LM-cut heuristics by specifying the parameters. Except for
hLM-cut

ir,m , they are defined based on hmax
cri , hmax

ir , and hmax
hbd .

1492

Numeric LM-Cut

Definition 13. Heuristic hLM-cut
cri is a numeric LM-cut heuristic using a precondition choice

function such that
pcf(s, a, ψ′) ∈ argmax

ψ∈pre(a)
hmax
cri (s, ψ)

and an action weight function

Wa(s, a, ψ
′) = ma(s, ψ

′).

For hLM-cut
cri , without compromising the admissibility, which is proven later, we restrict

the set of vertices N of a JG such that for each nψ ∈ N it holds that there are facts ψ′ ∈ s
and ψ′′ ∈ G such that there exist a path(nψ′ , nψ) and a path(nψ, nψ′′). Note that both
checks are polynomial, and assure that hmax

cri (s, ψ) <∞. Otherwise, the facts are irrelevant
for the solution of the task. The computation of hmax

cri -values and the construction of the
JG, which are performed simultaneously in practice, are at most quadratic in the size of
the rt problem.

Definition 14. Heuristic hLM-cut
ir is a numeric LM-cut heuristic using a precondition choice

function such that
pcf(s, a, ψ′) ∈ argmax

ψ∈pre(a)
hmax
ir (s, ψ)

and an action weight function
Wa(s, a, ψ

′) = 1.

Definition 15. Heuristic hLM-cut
hbd is a numeric LM-cut heuristic using a precondition choice

function such that
pcf(s, a, ψ′) ∈ argmax

ψ∈pre(â)
hmax
hbd (s, ψ)

where â = a if ψ′ ∈ Fp and

â ∈ argmin
a′∈supp(ψ′)

hmax
hbd (s, pre(a′))

if ψ′ ∈ Fn and an action weight function

Wa(s, a, ψ
′) = ma(s, ψ

′).

The previous two definitions introduce the numeric LM-cut heuristics based on hmax
ir

and hmax
hbd , respectively. We note that action multiplier ma is used to build both hLM-cut

cri

and hLM-cut
hbd , but not in hLM-cut

ir because these values are omitted in hmax
ir . However, we can

create another LM-cut variant, hLM-cut
ir,m , that employs hmax

ir and includes ma in the weight
function, as introduced in the following definition.

Definition 16. Heuristic hLM-cut
ir,m is a numeric LM-cut heuristic using a precondition choice

function such that
pcf(s, a, ψ′) ∈ argmax

ψ∈pre(a)
hmax
ir (s, ψ)

and an action weight function

Wa(s, a, ψ
′) = ma(s, ψ

′).

1493

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

To ease exposition, in what follows we write pcf(s, a) instead of pcf(s, a, ψ′) when the
precondition choice function depends only on a state and an action, as in hLM-cut

cri , hLM-cut
ir ,

and hLM-cut
ir,m .

Example 5. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt with Fp = {p}, N = {v, u}, sI = ∅,
G = {v ≥ 4, u ≥ 1}, and A = {a1, a2, a3}, where

actions pre eff cost

a1 ∅ v += 1, p 1
a2 v ≥ 2 v += 2 1
a3 p u += 1 1

We show the action multipliers and hmax
hbd -values in Table 3. We have

hmax
hbd (sI) = hmax

hbd (sI , v ≥ 4) = 2.

a ψ ma(sI , ψ)

a1 v ≥ 2 2
a1 v ≥ 4 4
a1 p 1
a2 v ≥ 2 1
a2 v ≥ 4 2
a3 u ≥ 1 1

ψ hmax
hbd (sI , ψ)

v ≥ 2 1
v ≥ 4 2
p 1

u ≥ 1 2

Table 3: The action multipliers for each action and hmax
hbd (sI , ψ) for each ψ.

We show hmax
cri -values of facts, action costs, and the cut in each iteration in Table 4 and

the JGs in Figure 4, where nodes from which g is not reachable are ignored. In the figure,
for each edge (nψ′ , nψ, a), we show tuple (a,ma(sI , ψ)), a tuple of the label and the action
multiplier. The cuts extracted in iterations, L1, L2, and L3, are visually represented by
vertical lines in the figure. Note that

W(L1) = min{ma1(sI , v ≥ 4) · cost(a1),ma2(sI , v ≥ 4) · cost(a2)} = 2 · cost(a1) = 2,

W1(L2) = ma3(sI , u ≥ 1) · costc1(a3) = cost(a3) = 1

where costc1 is the updated cost function after the first iteration, and

W2(L3) = min{ma1(sI , v ≥ 2) · costc2(a1),ma1(sI , v ≥ 4) · costc2(a1)} = 2 · costc2(a1) = 1,

where costc2 is the updated cost function after the second iteration. We have

hLM-cut(sI) = W(L1) + W1(L2) + W2(L3) = 4.

In this example, as in classical case, hLM-cut
cri takes multiple goal conditions into consideration

while hmax
hbd only considers v ≥ 4. This is one of the most important factors on the heuristic

value difference (i.e., hmax
hbd (sI) = 2 and hLM-cut

cri (sI) = 4).

1494

Numeric LM-Cut

hmax
cri (sI , ψ) v ≥ 2 v ≥ 4 p u ≥ 1

1 2 4 1 2
2 1 1 1 1.5
3 1 1 0.5 0.5
4 0 0 0 0

cost(a) a1 a2 a3

1 1 1 1
2 0.5 0 1
3 0.5 0 0
4 0 0 0

pcf(sI , a) a1 a2 a3

1 ∅ v ≥ 2 p
2 ∅ v ≥ 2 p
3 ∅ v ≥ 2 p

N0 Ng lbl W

L1 n∅, nv≥2 nv≥4 a1, a2 2
L2 n∅, np nu≥1 a3 1
L3 n∅ nv≥2, nv≥4 a1 1

Table 4: hmax
cri (sI , ψ), pcf(sI , a), cost(a), and the cut in each iteration.

∅

v ≥ 2

v ≥ 4

W(L1) = 2W2(L3) = 1

(a1, 2)

(a1, 4)

(a2, 2)

(a) The first and third cuts.

∅ p u ≥ 1

W1(L2) = 1

(a1, 1) (a3, 1)

(b) The second cut.

Figure 4: JGs for an rt in Example 5. The functions W, W1, and W2 denote the cut weights
of the LM-cut procedures, where action costs are reduced in each iteration.

5.3 Properties of Numeric LM-Cut

We now present several theoretical results related to the proposed numeric LM-cut heuris-
tics. We first study the relationship between the LM-cut heuristics and their associated
hmax variants by analyzing their JGs. We then present several theoretical results that show
the admissibility (or inadmissibility) of the proposed hLM-cut heuristics.

To analyze the dominance relationship between hmax and hLM-cut for our numeric vari-
ants, we first need to analyze their JGs. As previously mentioned, the name justification
graph comes from classical planning where the weight of the shortest paths from n∅ to nψ
equals to the value hmax(s, ψ). This property is used, for example, to show that classical
hLM-cut dominates hmax. We would like to obtain the same property for our JG versions to
show dominance between heuristics (see Section 5.5 for the heuristic comparisons). In the
classical version, the fact that the JG of hLM-cut justifies hmax is almost immediate because
there is not much distinction between the weight of the shortest path and the hmax heuristic
value. In the numeric version, however, the proof is a bit more intricate, thus we need a
more formal definition.

Definition 17. Given an rt, a state s, and a pcf, let G = 〈N,E,W〉 be a corresponding
JG. Consider W(nψ) as the weight of the shortest path from n∅ to nψ in G.

Let h : S ×Fp ∪ F̄n → R0+ to be a heuristic that, given a state s, computes a value for
each fact ψ. We say that G justifies h if for each nψ ∈ N it holds that h(s, ψ) = W(nψ).

1495

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

In the following, we prove that the JGs of hLM-cut
cri and hLM-cut

ir indeed justify hmax
cri and

hmax
ir , respectively. We omit the proof for hLM-cut

hbd since, as we show in Appendix A, hLM-cut
hbd

is inadmissible, and so it is not useful to discuss its JG.

Proposition 4. Given an rt, a state s, and the justification graph of hLM-cut
cri , the weight

of the shortest path from n∅ to nψ ∈ N is equal to hmax
cri (s, ψ).

Proof. The shortest paths to other nodes can be incrementally computed in the topological
order, where the first node is n∅. Thus, we assume that the weight W(nψ) of the shortest
path from n∅ to nψ is already known for all nψ ∈ N . We prove by induction that W(nψ) =
hmax

cri (s, ψ) for all nψ ∈ N . Trivially, for ψ = ∅ it holds W(n∅) = hmax
cri (s, ∅) = 0. Then,

W(nψ) = min
(nψ′ ,nψ ,a)∈E

ma(s, ψ) · cost(a) + W(nψ′)

= min
(nψ′ ,nψ ,a)∈E

ma(s, ψ) · cost(a) + hmax
cri (s, ψ′).

Since ψ′ = pcf(s, a) ∈ argmaxψ̂∈pre(a) h
max
cri (s, ψ̂),

hmax
cri (s, ψ′) = max

ψ̂∈pre(a)
hmax

cri (s, ψ̂) = hmax
cri (s, pre(a)).

Because supp(ψ) = {a | (nψ′ , nψ, a) ∈ E},

W(nψ) = min
a∈supp(ψ)

ma(s, ψ) · cost(a) + hmax
cri (s, pre(a)) = hmax

cri (s, ψ).

By induction, the shortest path from n∅ to any node nψ is equal to hmax
cri (s, ψ).

Proposition 4 shows that the JG associated with hLM-cut
cri indeed justifies hmax

cri . A similar
result can be obtained for the JG of hLM-cut

ir , as stated in Proposition 5. The proof of this
proposition is analogous to the previous one but replacing ma(s, ψ

′) with 1.

Proposition 5. Given an rt, a state s, and the justification graph of hLM-cut
ir , the weight

of the shortest path from n∅ to nψ ∈ N is equal to hmax
ir (s, ψ).

In what follows, we study the admissibility status of the six combinations of hmax and
LM-cut heuristics discussed in the previous section. Table 5 summarizes the main results
shown in this paper and the ones available in the literature for hmax

ir and hmax
hbd .

The JG based of hLM-cut
cri , hLM-cut

ir , and hLM-cut
hbd admit the property of justifying hmax

cri ,
hmax

ir , and hmax
hbd , correspondingly. It is important to note that only two out of three of the

resulting LM-cut heuristics are admissible. Specifically, Proposition 6 states that hLM-cut
hbd is

inadmissible. The intricate example of inadmissibility is shown in Appendix A.

hyx hbd ir cri

max 3 (Scala et al., 2016a) 3 (Aldinger & Nebel, 2017) 7 (Sec. 3, Ex. 2)
LM-cut 7 (App. A, Ex. 11) 3 (Thm. 1) 3 (Thm. 1)

Table 5: Admissibility chart: 3– admissible, 7– inadmissible. The hyx is the heuristic name
where y ∈ {max,LM-cut} (rows) and x ∈ {cri,hbd, ir} (columns).

1496

Numeric LM-Cut

Proposition 6. The LM-cut heuristic hLM-cut
hbd is inadmissible.

We now present the admissibility proofs for hLM-cut
cri , hLM-cut

ir , and hLM-cut
ir,m . To do so,

we first show the relationship between numeric landmarks (Scala et al., 2017) and the JGs
associated with these LM-cut heuristics. Following Helmert and Domshlak (2009), we show
in Lemma 1 how to extract such landmarks from numeric JGs. We note that this lemma
holds for hLM-cut

cri , hLM-cut
ir , and hLM-cut

ir,m .

Lemma 1. Assume an rt of a non-zero cost and a state s. Let G be the JG corresponding
to Πrt, where pcf(s, a, ψ′) ∈ pre(a) holds for each a ∈ A, and let L be a directed cut in G
that separates n∅ from ng, such that W(L) = mine∈L W(e) > 0. Then,

1. ∂ in(L) is a disjunctive fact landmark.

2. lbl(L) is a disjunctive action landmark.

Proof. Let π be a plan for Πrt. Let us construct a sub-sequence π′ of the plan π. Let ag
be the first action in π that achieves the atom g.

By construction s 6|= g, thus such an action should exist. For the action ag we choose
the first action in π that achieves pcf(s, ag, g), and repeat the process until we reach a fact
ψ such that s |= ψ. By construction, π′ induces a path from n∅ to ng in the JG. Thus, for
every cut L that separates n∅ from ng we have that at least one fact in ∂in(L) is achieved
by π′, and π′ ∩ lbl(L) 6= ∅. Thus, ∂ in(L) is a disjunctive fact landmark.

Note that a0, an artificial action label, is never included in L. If a0 ∈ lbl(L), it holds
that ∃ (n∅, nψ, a0) ∈ L, nψ ∈ Ng. Since the cost of a0 is zero, n∅ ∈ Ng, and this contradicts
that L = (N0, Ng). Therefore, lbl(L) is a disjunctive action landmark.

The proof of Lemma 1 is based on the property that pcf(s, a, ψ′) ∈ pre(a). The lemma
cannot be extended to the JG associated with hLM-cut

hbd since pcf(s, a, ψ) ∈ pre(a) does not
necessarily hold.

In addition to showing how to obtain numeric landmarks from a JG, Lemma 1 allows us
to state and prove the main theoretical claim of this section: the numeric LM-cut heuristics
hLM-cut

cri , hLM-cut
ir , and hLM-cut

ir,m are admissible. In particular, Theorem 1 shows that the weight
of a cut extracted in each iteration of numeric LM-cut is admissible for a task resulting from
cost-partitioning. This is the key theoretical result to prove the admissibility.

Theorem 1. Let Πrt = 〈Fp,N ,A, s,G〉 be a solvable rt with a non-zero optimal cost. Let
G = 〈N,E,W〉 be the JG corresponding to Πrt, where pcf(s, a, ψ′) ∈ pre(a) holds for each
a ∈ A and Wa(s, a, ψ

′) = ma(s, ψ
′). Let N0, N b and Ng be before-, beyond- and goal zones,

as defined above. Let L = (N0, Ng) be a directed cut in G.

The heuristic value h1(s) = W(L) is admissible for Πrt
1 , where Πrt

1 is a copy of Πrt,
with the augmented cost function cost1

cost1(a) =

{
W(L)

mmin
a (L)

if a ∈ lbl(L)

0 if a /∈ lbl(L)

where mmin
a (L) = min(nψ ,nψ′ ,a)∈L ma(s, ψ

′).

1497

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Proof. First, we show that cost1(a) ≤ cost(a) for all a ∈ A to ensure that costc(a) =
cost(a)− cost1(a) ≥ 0, i.e., action costs are non-negative in every iteration of numeric LM-
cut. The cost partitioning condition

∑n
i=1 costi(a) ≤ cost(a) follows then by the telescopic

argument. The claim is clear for a /∈ lbl(L), otherwise there is (nψ, nψ′ , a) ∈ L such that
W(nψ, nψ′ , a) = mmin

a (L) · cost(a), thus

cost1(a) =
W(L)

mmin
a (L)

≤ mmin
a (L) · cost(a)

mmin
a (L)

= cost(a).

To finish the claim, we show that the weight of L is an admissible estimate for the
solution of Πrt

1 . Assume in contradiction that it is not, i.e., there is a plan π such that

cost1(π) < W(L).

By Lemma 1 point 1, ∂ in(L) is a disjunctive fact landmark. Thus, there is at least one
fact in ∂ in(L) that is achieved by the plan π.3 We denote by ψ0 the first fact in ∂ in(L)
that is achieved by π. Note that lbl(in(nψ)) = supp(ψ); we write Lψ = L ∩ in(nψ). Since
ψ0 is the first fact achieved in ∂ in(L), it is achieved by an action in lbl(L); otherwise, ψ0

is achieved by an action that is applicable only after achieving some other fact in ∂ in(L),
which contradicts the assumption. Therefore,

min
a∈lbl(Lψ0)

ma(s, ψ0) · cost1(a)

constitutes a lower bound on achieving the fact ψ0. Intuitively, ma(s, ψ0) is the (not neces-
sarily integer) number of times that action a should be applied from s to achieve ψ0. Thus,
there is an action â0 ∈ lbl(Lψ0) such that

mâ0(s, ψ0) · cost1(â0) ≤ cost1(π) < W(L).

The fact that mmin
â0

(L) ≤ mâ0(s, ψ0) allows us to conclude with the following contradic-
tion

W(L) ≤ mâ0(s, ψ0)
W(L)

mmin
â0

(L)
≤ mâ0(s, ψ0) · cost1(â0).

Note that Theorem 1 assumes that the JG utilizes the action multiplier ma for a ∈ A.
This assumption holds for hLM-cut

cri and hLM-cut
ir,m , but not for hLM-cut

ir . Nonetheless, the proof

of Theorem 1 also holds for hLM-cut
ir if we replace ma with 1.

We formalize our admissibility results for hLM-cut
cri , hLM-cut

ir , and hLM-cut
ir,m in the following

corollaries. Note that the following proof mostly relies on the admissibility of the JG cuts
(i.e., Theorem 1) and the results from the cost-partition literature (i.e., Proposition 3).

Corollary 1 (Admissibility). The LM-cut heuristics hLM-cut
cri , hLM-cut

ir , and hLM-cut
ir,m are ad-

missible and can be computed in polynomial time.

3. This is a minor abuse of notation: fact ψ corresponds to the node nψ ∈ ∂ in(L).

1498

Numeric LM-Cut

Proof. Admissibility follows from Theorem 1 and Proposition 3. In each iteration, LM-cut
increases the h-value by W(L), where L is the extracted cut. As shown in Theorem 1,
W(L) is admissible for Πrt

1 . In Step 4 of LM-cut, the cost function is updated to be costc,
which is defined to be costc(a) = cost(a) − cost1(a) for each action a. Therefore, LM-
cut incrementally performs cost-partitioning and increases the h-value by an admissible
estimate for a task in the cost-partition in each iteration, so the admissibility is guaranteed
by Proposition 3.

The computation of the values of hmax
cri (s, g) or hmax

ir (s, g) and the construction of the
corresponding JG are both polynomial in rt and the cuts L are produced in polynomial
time in the size of JG. Thus, if we show that the number of such cuts does not exceed |A|
we can prove our claim. We show that for each L there is at least one action a ∈ lbl(L) that
goes to zero.

Let (nψ, nψ′ , a) ∈ L be the edge where W(L) achieves its minimum (W(L) > 0). By
definition of W we have that

W(L) = W(nψ, nψ′ , a) = ma(s, ψ
′) · cost(a) = mmin

a (L) · cost(a).

Thus, the updated cost of a ∈ A is

cost1(a) = cost(a)− W(L)

mmin
a (L)

= cost(a)− mmin
a (L) · cost(a)

mmin
a (L)

= 0.

If we replace ma(s, ψ
′) with 1, the claim also holds.

5.4 Tightening hLM-cut
cri

In what follows, we present three different alternatives to improve the hLM-cut
cri and other

possible heuristics for rt. These variants are based on rounding mechanisms and slight
modifications of the action multiplier ma in the hopes to build a heuristic that is admissible
and dominates its predecessor (e.g., hLM-cut

cri). While some of these results are general and
can be applied to other heuristics, we mainly focus on improving hLM-cut

cri .
Our first attempt utilizes a rounded-up version of the action multiplier ma by replacing

ma(s, ψ) with dma(s, ψ)e. Unfortunately, as it is shown Example 6 the resulting heuristic is
inadmissible when applied to hLM-cut

cri .

Example 6. Let 〈Fp,N ,A, sI , G〉 be an rt with Fp = ∅ and N = {v}. Let sI = {v = 0},
G = {v ≥ 6}, and A = {a1, a2}, where

action pre eff cost

a1 ∅ v += 4 4
a2 ∅ v += 2 3

An optimal plan is π = 〈a1, a2〉 with the cost of 7. Note that ma1(sI , v ≥ 6) = 1.5,
dma1(sI , v ≥ 6)e = 2, and ma2(sI , v ≥ 6) = dma2(sI , v ≥ 6)e = 3. Thus, while for the
basic version of numeric LM-cut we have

hLM-cut
cri (sI) = min{ma1(sI , v ≥ 6) · cost(a1),ma2(sI , v ≥ 6) · cost(a2)}

= min{6, 9} = 6 < h∗(sI) = 7,

1499

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

for the rounded up version, the JG has two edges of the following weights (see Figure 5):

dma1(sI , v ≥ 6)ecost(a1) = 8 and ma2(sI , v ≥ 6)cost(a2) = dma2(sI , v ≥ 6)ecost(a2) = 9.

This results in

h∗(sI) = 7 < 8 = min{dma1(sI , v ≥ 6)ecost(a1), dma2(sI , v ≥ 6)ecost(a2)}.

∅ v ≥ 6

W(L1) = 8

(a1, 2)

(a2, 3)

Figure 5: The JG with rounded up ma values for an rt in Example 6.

Considering the unsuccessful attempt of rounding-up the action multipliers, we propose
another variant for this multipliers, denoted by m+

a . This variant has the property that
ma(s, ψ) ≤ m+

a (s, ψ) and, as shown in what follows, it preserves the admissibility of the
heuristic. Intuitively, this change should result in a heuristic that dominates the variant
that utilize ma. However, as we explain in what follows, this intuition holds partially at
best.

We start by defining the new action multiplier m+
a and its corresponding hmax heuristic

(i.e., hmax
cri,+). We then define the LM-cut variant based on hmax

cri,+, that is, hLM-cut
cri,+ .

Definition 18. Given an rt and a state s, the heuristic function hmax
cri,+(s) := hmax

cri,+(s,G)
is defined as follows. For a set of facts F ⊆ Fp ∪ Fn:

hmax
cri,+(s, F) = max

ψ∈F
hmax
cri,+(s, ψ).

For a fact ψ ∈ Fp ∪ Fn,

hmax
cri,+(s, ψ) =

{
0 if s |= ψ,

mina∈supp(ψ) h
max
cri,+(s, pre(a)) + m+

a (s, ψ) · cost(a) otherwise

where
m+
a (s, ψ) = max{1,ma(s, ψ)}.

if s 6|= ψ, and m+
a (s, ψ) = ma(s, ψ) otherwise.

Definition 19. Heuristic hLM-cut
cri,+ is a numeric LM-cut heuristic using a precondition choice

function such that
pcf(s, a, ψ′) ∈ argmax

ψ∈pre(a)
hmax
cri,+(s, ψ)

and an action weight function

Wa(s, a, ψ
′) = m+

a (s, ψ′).

1500

Numeric LM-Cut

In addition, given the similarities of hLM-cut
cri and hLM-cut

ir,m , we define a new variant of

hLM-cut
ir,m that utilize m+

a instead of ma.

Definition 20. Heuristic hLM-cut
ir,m+ is a numeric LM-cut heuristic using a precondition choice

function such that
pcf(s, a, ψ′) ∈ argmax

ψ∈pre(a)
hmax
ir (s, ψ)

and an action weight function

Wa(s, a, ψ
′) = m+

a (s, ψ′).

In what follows we show that hLM-cut
cri,+ and hLM-cut

ir,m+ are indeed admissible heuristics. The

admissibility proof is analogous to the proof of Theorem 1 by replacing ma with m+
a . Note

that the admissibility is still preserved because we need to apply an action at least once to
achieve a numeric condition.

Theorem 2. The LM-cut heuristics hLM-cut
cri,+ and hLM-cut

ir,m+ are admissible.

Intuitively, we would expect that hLM-cut
cri,+ would dominate hLM-cut

cri because ma(s, ψ) ≤
m+
a (s, ψ). However, as shown in Appendix B, this is not always the case. Moreover, the

difference between ma and m+
a is so small that in most tasks the two heuristics have the

same values. Formally, for a state s where there are no actions a and facts ψ such that
ma(s, ψ) < 1, heuristics hLM-cut

cri,+ and hLM-cut
ir,m+ are exactly the same as hLM-cut

cri and hLM-cut
ir,m ,

respectively.
Lastly, we present another variant of hLM-cut

cri that rounds the heuristic value instead
of each action multiplier ma. This rounding strategy is valid if we assume that action
costs are integer. While the assumption does not hold in general, we can generalize this
improvement if the costs of the actions are rational; when computing LM-cut, we can ensure
that all actions have integer costs by multiplying the action costs by some constant k and
obtain the admissible estimate for the original task by dividing the computed heuristic value
by k. Definition 21 presents the procedure to tighten the heuristic values.

Definition 21. Given an rt Πrt = 〈F ,N ,A, sI , G〉, state s, and heuristic h, rounded-up
heuristic value h(s) is computed as follows:

1. Find a constant k such that k · cost(a) is integer for all actions a ∈ A.

2. Let hk(s) be h(s) computed on Πrt
k = 〈F ,N ,Ak, sI , G〉 where

Ak = {〈pre(a), eff(a), k · cost(a)〉 | a ∈ A}.

3. Return dhk(s)e
k .

The main advantage of the above procedure is that it guarantees that h dominates h
for h = hLM-cut

cri because of the round-up step (see Theorem 4 for further details). As shown
in Theorem 3, heuristic h is always admissible as long as its predecessor (i.e., h) is also
admissible. The rounding procedure introduced in Definition 21 can be applied to any
heuristic for rt with rational action cost, because its definition does not assume anything
about the original h heuristic.

1501

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Theorem 3. If h is admissible, then h is admissible.

Proof. Let h∗(s) and h∗k(s) be the optimal costs from s in Πrt and Πrt
k , respectively. By

definition of Πrt
k , we have h∗k(s) = kh∗(s). Since hk(s) is admissible on Πrt

k , it holds that
hk(s) ≤ h∗k(s). Since all actions have integer costs in Πrt

k , h∗k(s) is integer, so dhk(s)e ≤
h∗k(s).

h(s) =
dhk(s)e

k
≤
h∗k
k

= h∗.

Thus, h is admissible for Πrt.

5.5 LM-Cut and Max – Theoretical Comparison

This section theoretically compares the admissible hmax and hLM-cut numeric variants pre-
sented so far. Specifically, we consider the following heuristics in our comparison:

• hmax relaxations: hmax
ir (Aldinger & Nebel, 2017), hmax

hbd (Scala et al., 2016);

• hLM-cut versions:

– hLM-cut
ir : hmax

ir based pcf and 1 as an action weight function;

– hLM-cut
ir,m : hmax

ir based pcf and ma as an action weight function;

– hLM-cut
ir,m+ : hmax

ir based pcf and m+
a as an action weight function;

– hLM-cut
cri : hmax

cri based pcf and ma as an action weight function;

– hLM-cut
cri,+ : hmax

cri,+ based pcf and m+
a as an action weight function;

– h
LM-cut
cri : hLM-cut

cri rounded up according to Definition 21.

Table 6 summarizes the pair-wise comparison among the eight heuristics and h+. The
table shows that there are few dominance relations among these heuristics. Some surprising
results are, for example, that hLM-cut

cri,+ does not dominate hLM-cut
cri and that this heuristic

is incomparable with hmax
ir and hmax

hbd . In what follows, we present the dominance proofs

among these heuristics: h
LM-cut
cri dominates hLM-cut

cri (Theorem 4) and heuristics hLM-cut
ir and

hLM-cut
ir,m+ dominate hmax

ir (Theorem 5). We refer the reader to Appendix B for the examples
that show that two heuristics are incomparable.

Theorem 4. Given an rt task Πrt and any state s, the following relation holds h(s) ≥ h(s)

when h = hLM-cut
cri . Therefore, h

LM-cut
cri dominates hLM-cut

cri .

Proof. Let hk(s) be the h-value of s computed by hLM-cut
cri on Πrt

k . We first show that

hk(s) = k · hLM-cut
cri (s)

by examining the steps in Definition 12. In Step 1, hk(s) is initialized to be 0. In Step 2,
since all action costs are scaled by the same factor, hmax

cri -values are just scaled by k in Πrt
k .

Therefore, the precondition choice function pcf is not changed, and a JG is not changed
except that the weight Wk(e) for an edge e = (nψ′ , nψ, a) is

Wk(e) = ma(s, ψ) · k · cost(a) = k ·W(e).

1502

Numeric LM-Cut

hmax
hbd hmax

ir hLM-cut
ir hLM-cut

ir,m hLM-cut
ir,m+ hLM-cut

cri hLM-cut
cri,+ h

LM-cut
cri

h+ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥
hmax

hbd 6= 6= 6= 6= 6= 6= 6=
hmax

ir ≤ 6= ≤ 6= 6= 6=
hLM-cut

ir 6= 6= 6= 6= 6=
hLM-cut

ir,m 6= 6= 6= 6=
hLM-cut

ir,m+ 6= 6= 6=
hLM-cut

cri 6= ≤
hLM-cut

cri,+ 6=

Table 6: Dominance relationships between the max and LM-cut heuristics for rt. ‘≥’ means
the heuristic in a row dominates the heuristic in a column, ‘≤’ means the converse,
and ‘ 6=’ means that the two heuristics are incomparable.

The before-goal zone and the goal zone are the same as those in Πrt since Wk(e) = 0 iff
W(e) = 0. In Step 3, the same cut is extracted by LM-cut, and hk(s) is increased by
k ·W(w). In Step 4, the weight function ensures that the updated cost function, denoted
costck, satisfies

costck(a) = k · costc(a)

for each action a ∈ A since

costck(a) = costk(a)− Wk(L)

mmin
a (L)

= k ·
(

cost(a)− W(L)

mmin
a (L)

)
if a ∈ lbl(L), and

costck(a) = costk(a) = k · cost(a)

otherwise. Since the same cut L is extracted and hk(s) is increased by k ·W(L) in each
iteration, hk(s) = k · hLM-cut

cri (s). Thus,

h
LM-cut
cri (s) =

dhk(s)e
k

≥ k · hLM-cut
cri (s)

k
= hLM-cut

cri (s).

Theorem 5. Given an rt Πrt and any state s, the following relations hold: hLM-cut
ir (s) ≥

hmax
ir (s) and hLM-cut

ir,m+ (s) ≥ hmax
ir . Therefore, hLM-cut

ir and hLM-cut
ir,m+ dominate hmax

ir .

Proof. Following Helmert and Domshlak (2009), we show that in each iteration of hLM-cut
ir ,

the hmax
ir -value of the task is reduced by at most the weight of the extracted cut. Note that

this is not the case with hLM-cut
cri ; in Example 13 in Appendix B, in the second iteration, the

critical path supporting the hLM-cut
cri -value contains more than one action in cut L2, so the

hmax
cri -value is reduced by W1(L2) + W1(L2)

2 = 3 > W1(L2) = 2.

Given an Πrt, a state s with hmax
ir (s) > 0, the JG of hmax

ir , and a cut extracted by hLM-cut
ir

L, let π be the shortest path from n∅ to ng in the JG. By Proposition 5 we know that JG
justifies hmax

ir , i.e., hmax
ir (s) = W(π).

1503

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Assume that π includes more than one label in lbl(L), and assume it is of the form

π = (n∅, . . . , ni, ai, ni+1, . . . , nj , aj , nj+1, . . . , ng), where ai, aj ∈ lbl(L).

Since ai ∈ lbl(L), there exists a node nψ0 in the goal-zone such that ai ∈ supp(ψ0). nψ0 ∈ Ng

implies that there is a zero-weight path from nψ0 to ng, i.e., W(path(nψ0 , ng)) = 0. Note
that all edges with the same label have the same origin node, thus (ni, ai, nψ0) is a valid
edge in JG.

We define a new path π′ = (n∅, . . . , ni, ai, nψ0 , . . . , ng) that coincides on its prefix with
π, both on vertices and edges, starting from n∅ and up to ai (note that more than one edge
may have this label), and its suffix from nψ0 to ng is a zero-cost path in the goal-zone.

Since in a JG constructed via hLM-cut
ir each edge (nψ, nψ′ , a) has the weight of cost(a),

not ma(s, ψ
′) · cost(a), two edges (ni, ni+1, ai) and (ni, nψ0 , ai) have the same weight, hence

W(π) ≥W(π′)+cost(aj). Recall that aj ∈ lbl(L). Since hmax
ir (s) > 0, the weight of L should

be non-zero, hence cost(aj) > 0. Thus, W(π) > W(π′), which contradicts the assumption
of π having the minimum weight. Therefore, π includes at most one edge in L.

In hLM-cut
ir , the cost of an action a is updated to be cost(a) −W(L) only if a ∈ lbl(L).

Since π includes at most one edge in L, the weight of π is reduced by at most by W(L).
Thus, the hmax

ir -value of the next iteration is at least hmax
ir (s)−W(L).

In the case of hLM-cut
ir,m , the action cost of a is reduced by W(L)

mmin
a (L)

. If mmin
a (L) < 1, the

hmax
ir -value is reduced by more than W(L). However, for hLM-cut

ir,m+ , it is guaranteed that

mmin
a (L) ≥ 1, so the above statement holds.

Finally, we show the dominance. Let m be the number of cuts extracted by hLM-cut
ir ,

Gi be the JG in the i-th iteration, Li be the cut extracted in the i-th iteration, and Wi

be the weight function after the i-th iteration with W0 = W. Let hi(s) be the hmax
ir -value

computed in Πc
i . As we showed above, for i ∈ [m], hi(s) ≥ hi−1(s)−Wi−1(Li). Therefore,

we can bound the heuristics value by a telescoping sum

hLM-cut
ir (s) =

m∑
i=1

Wi−1(Li) ≥
m∑
i=1

hi−1(s)− hi(s) = h0(s)− hm(s).

Since hm(s) = 0 as LM-cut terminates after extracting the m-th cut,

hLM-cut
ir (s) ≥ h0(s) = hmax

ir (s).

The above discussion also holds for hLM-cut
ir,m+ .

5.6 Empirical Evaluation of Numeric hLM-cut and hmax variants

As shown in the previous section, most numeric hmax and hLM-cut heuristics are theoretically
incomparable. In what follows, we empirically evaluate the performance of these heuristics
to investigate which alternatives work well in practice. We compare our numeric LM-cut
variants with the hmax-relaxation based heuristics: the repetition relaxation based max
heuristic hmax

ir (Aldinger & Nebel, 2017), and the numeric max heuristic ĥrmax
hbd+ (Scala et al.,

2020). We consider ĥrmax
hbd+ instead of hmax

hbd in this evaluation because the former is an

1504

Numeric LM-Cut

improved version of the latter which has shown better empirical performance in the literature
(Scala et al., 2020).

Our evaluation considers all the admissible LM-cut variants introduced in the previous
sections, that is, hLM-cut

cri , hLM-cut
cri,+ , hLM-cut

ir , hLM-cut
ir,m , and hLM-cut

ir,m+ . We note that in all the

tested domains actions have rational costs, which allow us to also consider h
LM-cut
cri . Our

h
LM-cut
cri implementation first finds the minimum non-negative integer i such that 10icost(a)

is integer for all a ∈ A and use k = 10i. In addition, we define a randomized hLM-cut
cri variant,

that is, hLM-cut
rnd , where pcf(s, a) is chosen uniformly at random from the set {ψ ∈ pre(a) |

hmax
cri (s, ψ) > 0}, and g is chosen uniformly at random from the set {g′ ∈ G | hmax

cri (s, g′) > 0}.
Note that Theorem 1 guarantees the admissibility of hLM-cut

rnd . The main purposes of this
randomize LM-cut version is as a baseline for JG construction and as a sanity check.

In all the experiments, we evaluate the heuristics inside an A∗ search imposing a 30
minute time limit and 4 GB memory limit on an Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz
processor. We implemented the heuristics in Numeric Fast Downward (NFD) (Aldinger &
Nebel, 2017)4 using C++11 with GCC 7.5.0 on Ubuntu 18.04.

In terms of implementation, we follow the LM-cut implementation for classical planning
included in Fast Downward (Helmert, 2006). In the first iteration of this implementation,
hmax-values are computed and a JG is constructed by the generalized Dijkstra algorithm
(Keyder & Geffner, 2008). A priority queue is initialized to contain all facts satisfied in
the initial state with the priority of 0. At each step, a fact with the minimum priority is
popped from the queue and marked as achieved, and its hmax-value is set to be the priority.
When all preconditions of action a are achieved, each fact ψ achieved by a, i.e., ψ such
that a ∈ supp(ψ), is pushed to the queue with the priority of cost(a) + hmax(s, pre(a)).
This procedure is repeated until all goal conditions are achieved. After the first iteration
of LM-cut, JGs are constructed incrementally; hmax-values and pcf are recomputed only
if they are changed due to updated action costs. For each action a included in the cut in
the previous iteration, each fact ψ achieved by a is pushed to the queue with the priority
of costc(a) + hmax(s, pre(a)), where costc(a) is the updated cost of a. The pseudo-code is
presented in Appendix C. Note that we incrementally construct JGs to compute a heuristic
value for a single state; we do not incrementally compute heuristic values on multiple states,
which is a method proposed by Pommerening and Helmert (2013).

We consider domains with simple conditions from the literature (Scala et al., 2016,
2017, 2020). We exclude ZenoTravel because some conditions are not simple conditions
(Piacentini et al., 2018b). From Counters, we exclude three instances that are in Small-
Counters. In Sailing, in addition to the original instances (Scala et al., 2016), we include
the instances with a single boat (Scala et al., 2017), removing duplicates. Since multiple
configurations solve all instances in Farmland, Gardening, and Sailing, we also add
satisficing versions of these domains (Farmland-SAT, Gardening-SAT, and Sailing-
SAT) excluding instances appearing in the optimal versions. A task is translated into an
rt when computing numeric LM-cut. In Counters-Inv, Counters-Rnd, Farmland,
and Farmland-SAT, some numeric conditions are strict inequalities. In rt we convert a
numeric condition v > w to v ≥ w + ε where ε is computed in a similar fashion as Defini-

4. https://github.com/Kurorororo/numeric-fast-downward

1505

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

tion 21; we find the minimum non-negative integer i such that 10i · cv is integer for each
numeric effect v += cv and use ε = 1

10i
.

For the numeric heuristics, we add the redundant constraints to the goal conditions and
preconditions of actions in the same fashion as Scala et al. (2016a).

Table 7 shows the experimental results across all the domains where we compared the
number of solved instances (Coverage), the time score (Time score), and the number of
expansions to solve an instance excluding the last f -layer (# States expanded). For each

run, the time score is computed as 1 − log(max{1,t})
log(1800) , where t is the wall-clock time to solve

the instance. Since the time limit is 30 minutes, this score is logarithmically decreasing
according to the wall-clock time and takes value 1 if an instance is solved within 1 second.
If the instance is not solved, we set the time score be 0. For each domain, the time score is
averaged over all instances, and the number of expansions is averaged over instances solved
by all methods. These settings are the same in all experiments in this paper. Farmland-
SAT is omitted from this table because NFD runs out of memory when translating PDDL
files to SAS+ files and, thus, the planner does not solve any instances. We note that this
memory issue is not related to our heuristics since it occurs during to the translation part
of NFD, which is performed before search and the heuristic computation.

In addition, Figure 6 depicts pairwise comparisons of expanded states between hLM-cut
cri

and the other LM-cut variants. In each plot, points represent one instance where its x and
y values are the numbers of expansions by hLM-cut

cri and the variant shown in y-axis. The
points above the diagonal correspond to instances where the LM-cut variant expands more
states than the hLM-cut

cri baseline. Similarly, Figure 7 compares initial h-values of hLM-cut
cri

and the other LM-cut variants.

One of the most surprising results of this evaluation is that hLM-cut
rnd outperforms hLM-cut

ir

and acts almost on par with hLM-cut
ir,m and hLM-cut

ir,m+ , despite the fact that hLM-cut
rnd randomly

constructs justification graphs while hLM-cut
ir and hLM-cut

ir,m are guided by hmax
ir . This result

may be a sign of low informativeness of the hmax
ir relaxations within the LM-cut framework.

In contrast, hLM-cut
cri and hLM-cut

cri,+ show much better results than all other heuristics in terms
of coverage, time, and number of expanded nodes, leading us to believe that the over-
approximation made by hmax

cri is beneficial to the quality of the heuristics. We speculate
that, because hmax

cri is inadmissible, it can be a more accurate approximation of h∗ on
average allowing both over- and under-approximations.

Figure 6 also shows that hLM-cut
cri,+ expands slightly fewer states than hLM-cut

cri , however,
the use of m+ does not result in any significant improvements on the overall heuristic

performance (i.e., coverage and time score). As shown in Figure 6, h
LM-cut
cri expands 0 states

excluding the last f -layer in instances where hLM-cut
cri expands 100-10000 states. Table 7 also

shows that h
LM-cut
cri is effective particularly in Sailing and Sailing-SAT, but the coverage

is not improved in any of the domains. In Small-Counters h
LM-cut
cri expands more nodes

than hLM-cut
cri while the former dominates the latter. This phenomenon is possible because

these heuristics are not necessarily consistent.

6. Comparison of Propositional and Numeric LM-Cut

In this section, we address two questions related to numeric domains and numeric heuristics.

1506

Numeric LM-Cut

hmax
ir ĥrmax

hbd+ h
LM-cut
cri hLM-cut

cri,+ h
LM-cut

cri hLM-cut
rnd hLM-cut

ir hLM-cut
ir,m hLM-cut

ir,m+

domain Coverage
SmallCounters (8) 6 7 7 7 7 7 6 7 7
Counters (8) 0 0 0 0 0 0 0 0 0
Counters-Inv (11) 2 2 2 2 2 2 2 2 2
Counters-Rnd (33) 6 7 9 9 9 7 6 8 8
Farmland (30) 11 30 30 30 30 12 11 17 14
Gardening (63) 63 63 63 63 63 63 63 63 63
Gardening-SAT (51) 12 12 12 12 12 12 12 12 12
Sailing (40) 8 25 40 40 40 14 10 13 13
Sailing-SAT (40) 3 9 14 14 14 3 3 3 3
Depots (20) 5 5 7 7 7 5 7 7 7
Rovers (20) 4 4 4 4 4 4 4 4 4
Satellite (20) 1 1 2 2 2 2 2 2 2
Total (344) 121 165 190 190 190 131 126 138 135
domain Time score
SmallCounters (8) 0.67 0.77 0.79 0.79 0.79 0.77 0.70 0.78 0.78
Counters (8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Counters-Inv (11) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
Counters-Rnd (33) 0.18 0.19 0.24 0.24 0.24 0.19 0.18 0.23 0.23
Farmland (30) 0.31 0.74 0.74 0.77 0.74 0.36 0.33 0.57 0.42
Gardening (63) 0.90 0.94 0.96 0.96 0.96 0.94 0.91 0.95 0.95
Gardening-SAT (51) 0.12 0.14 0.15 0.15 0.15 0.14 0.12 0.14 0.14
Sailing (40) 0.10 0.42 0.90 0.91 1.00 0.18 0.12 0.19 0.19
Sailing-SAT (40) 0.03 0.14 0.20 0.20 0.25 0.04 0.04 0.05 0.05
Depots (20) 0.14 0.12 0.22 0.22 0.22 0.15 0.22 0.22 0.22
Rovers (20) 0.15 0.15 0.16 0.17 0.17 0.16 0.17 0.17 0.17
Satellite (20) 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07
domain # States expanded
SmallCounters (8) 113996 12662 5699 5703 5811 8108 51750 7743 7731
Counters (8) - - - - - - - - -
Counters-Inv (11) 1325 158 0 30 0 96 1062 154 154
Counters-Rnd (33) 264 0 0 0 0 19 194 10 10
Farmland (30) 214884 57 57 56 36 25736 214802 15400 52778
Gardening (63) 91565 33046 15948 15534 15641 28124 78080 24006 22722
Gardening-SAT (51) 930434 486325 288808 282926 286263 426390 796766 361855 342849
Sailing (40) 1730733 50438 1544 1376 0 367630 1424337 325986 323133
Sailing-SAT (40) 3068452 155123 23238 23199 8739 1705729 3013637 668799 668693
Depots (20) 344868 344868 38675 38677 38675 107649 38677 38685 38677
Rovers (20) 0 0 0 0 0 0 0 0 0
Satellite (20) 1648 1648 260 260 260 262 260 260 260

Table 7: Coverage, time score, and # of states expanded excluding the last f -layer by the
LM-cut variants. hmax

ir and ĥrmax
hbd+ are presented for comparison purposes.

1. In numeric domains, is it necessary to reason about numeric conditions or can they
simply be ignored?

1507

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

100 102 104 106 n.a.

hLM-cut
cri

100

102

104

106

n.a.
h

L
M

-c
u

t
rn

d

100 102 104 106 n.a.

hLM-cut
cri

100

102

104

106

n.a.

h
L

M
-c

u
t

cr
i,
+

100 102 104 106 n.a.

hLM-cut
cri

100

102

104

106

n.a.

h
L

M
-c

u
t

cr
i

100 102 104 106 n.a.

hLM-cut
cri

100

102

104

106

n.a.

h
L

M
-c

u
t

ir

100 102 104 106 n.a.

hLM-cut
cri

100

102

104

106

n.a.
h

L
M

-c
u

t
ir
,m

100 102 104 106 n.a.

hLM-cut
cri

100

102

104

106

n.a.

h
L

M
-c

u
t

ir
,m

+
Figure 6: Comparison of the number of states expanded excluding the last f -layer by the

LM-cut variants. Unsolved instances are shown at ‘n.a.’. Instances solved with 0
expansions are shown at 100.

2. Some classical planning domains contain resource variables that can be automatically
detected and represented as numeric variables (Wilhelm et al., 2018). In such domains,
does a numeric reformulation of the domain with numerical reasoning (i.e., heuristics)
result in better performance than the purely propositional formulation?

Note that the theoretical results in this section also apply to h
LM-cut
cri , which dominates

hLM-cut
cri , since all action costs and heuristic values are integer in the examples.

6.1 LM-Cut: Propositional vs. Numeric Variants in Numeric Domains

Although our numeric LM-cut heuristics are designed to address numeric conditions, it
is unclear if doing so is necessary. A more straightforward adaptation of the classical
LM-cut to numeric planning is to ignore numeric conditions entirely by assuming that all
numeric conditions are achieved with zero-cost in the computation of the JGs. When only
propositional conditions are left unachieved, we can compute an admissible estimate using
the propositional LM-cut heuristic.

To validate the importance of considering numeric conditions, we investigate whether
numeric LM-cut provides a better estimation compared to the propositional one. In domains
without propositions such as Example 2, the h-value of the propositional LM-cut is always

1508

Numeric LM-Cut

0 250 500 750

hLM-cut
cri

0

250

500

750
h

L
M

-c
u

t
rn

d

0 250 500 750

hLM-cut
cri

0

250

500

750

h
L

M
-c

u
t

cr
i,
+

0 250 500 750

hLM-cut
cri

0

250

500

750

h
L

M
-c

u
t

cr
i

0 250 500 750

hLM-cut
cri

0

250

500

750

h
L

M
-c

u
t

ir

0 250 500 750

hLM-cut
cri

0

250

500

750
h

L
M

-c
u

t
ir
,m

0 250 500 750

hLM-cut
cri

0

250

500

750

h
L

M
-c

u
t

ir
,m

+
Figure 7: Comparison of the initial h-values of the LM-cut variants.

zero, so the numeric version is strictly better. However, as we show in Example 7, numeric
LM-cut is not always better than the propositional, i.e., the propositional LM-cut can
provide a higher h-value than its numeric counterpart.

Example 7. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt with Fp = {p, q, r, g} and N = {v}. Let
sI = {v = 0}, G = {g}, and A = {a1, a2, a3, a4}, where

action pre eff cost

a1 ∅ v += 1, p 1
a2 ∅ v += 1, q 1
a3 ∅ v += 1, r 1
a4 v ≥ 2, p, q, r g 0

Table 8 shows hmax
cri -values of facts and action costs in each iteration and Figure 8 depicts

the corresponding JGs. In hLM-cut
cri , pcf(sI , a4) = v ≥ 2, so a1, a2, and a3 are included in

the first cut, resulting in
hLM-cut
cri (sI) = 2.

Table 9 shows hmax-values of facts and action costs in each iteration and Figure 9
presents the associated JGs. Since the hmax-values of p, q, and r are the same, there can
be multiple pcfs. In such a case, the tie-breaking strategy determines which fact to select
for pcf. We assume that the tie-breaking strategy prefers p to q and q to r. Different tie-
breaking strategies change the order of JGs but result in the same h-value for this example.

1509

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax
cri (sI , ψ) v ≥ 2 p q r g

1 2 1 1 1 2
2 0 0 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 1 0
2 0 0 0 0

Table 8: hmax
cri (sI , ψ) and cost(a) in each iteration in Example 7.

∅ v ≥ 2 g

W(L1) = 2

(a1, 2)

(a2, 2)

(a3, 2) (a4, 1)

Figure 8: The JG constructed by hLM-cut
cri for an rt in Example 7.

In the propositional LM-cut, a1, a2, and a3 are included in the different cuts as shown in
Table 9, so we have

hLM-cut(sI) = 3 > hLM-cut
cri (sI) = 2.

Therefore, the propositional LM-cut provides a better estimate.

hmax(sI , ψ) v ≥ 2 p q r g

1 0 1 1 1 1
2 0 0 1 1 1
3 0 0 0 1 1
4 0 0 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 1 0
2 0 1 1 0
3 0 0 1 0
4 0 0 0 0

Table 9: hmax(sI , ψ) and cost(a) in each iteration.

∅ p g

W(L1) = 1

(a1, 1) (a4, 1)

(a) The first cut.

∅ q g

W1(L2) = 1

(a2, 1) (a4, 1)

(b) The second cut.

∅ r g

W2(L3) = 1

(a3, 1) (a4, 1)

(c) The third cut.

Figure 9: JGs constructed by propositional hLM-cut for an rt in Example 7. The functions
W, W1, and W2 denote the cut weights of the LM-cut procedures, where action
costs are reduced in each iteration.

6.2 Translation of Classical Domains to Numeric Domains

Previous research has shown that some classical planning domains contain resource vari-
ables, which can be automatically detected (Wilhelm et al., 2018). Using the detected
resource variables as numeric variables, we can translate the classical task into rp, which
can be translated into rt. Therefore, we can obtain a numeric encoding of a task which

1510

Numeric LM-Cut

is originally formulated with the classical planning formalism. In what follows we evaluate
the benefit of encoding tasks using numeric facts instead of propositions by comparing the
LM-cut heuristics in the classical and numeric versions of the same planning task.

Our comparison considers our best performing LM-cut variant, hLM-cut
cri , and its classical

planning counterpart hLM-cut. In each classical panning task, we compute hLM-cut on the
original task, while hLM-cut

cri is computed on the rts obtained by the translation algorithm
proposed by Wilhelm et al. (2018). We show that hLM-cut and hLM-cut

cri are incomparable in
theory using two example classical planning tasks and their numeric translations obtained
by the algorithm.5

Example 8. Let Π = 〈Fp,A, sI , G〉 be a classical planning task with Fp = {p0, p1, q0, q1,
v0, v1, v2}, sI = {p0, q0, v0}, and G = {p1, q1}. Let A = {a1, a2, a3, a4, a5, a6}, where

action pre add del cost

a1 p0 p1 p0 1
a2 p0, v0 v1 v0 1
a3 p0, v1 v2 v1 1
a4 p1, v0 v1 v0 1
a5 p1, v1 v2 v1 1
a6 q0, v2 q1, v0 q0, v2 1

We assume that the tie-breaking strategy prefers q1 to p1, p1 to v1, and v0 to p0.
We show hmax-values of facts and action costs in each iteration in Table 10 and JGs in

Figure 10. In this figure, edge (nv2 , nv0 , a6) is omitted. Note that cost(a0) = 0, so L3 with
lbl(L3) = {a1, a2} is the last cut. We have

hLM-cut(sI) = 3.

hmax(sI , ψ) v0 p0 q0 q1 p1 v1 v2

1 0 0 0 3 1 1 2
2 0 0 0 2 1 1 2
3 0 0 0 1 1 1 1
4 0 0 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1
2 1 1 1 1 1 0
3 1 1 0 1 0 0
4 0 0 0 1 0 0

Table 10: hmax(s, ψ) and cost(a) in each iteration in Figure 10.

In an FDR version of this task, if there are three variables where the first one is for p0

and p1, the second is for q0 and q1, and the last is for v0, v1, and v2, the last variable can
be translated into a resource variable. The resulting rt task is 〈Frt

p ,N ,Art, srtI , G〉 where
Frt
p = {p0, p1, q0, q1}, N = {v, u}, srtI = {p0, q0, v = 0, u = 0}. Here, two numeric variables

v and u are introduced to represent the upper and lower bounds of the resource variable.
Art = {a1, a2, a4, a6}, where

5. Although the algorithm relies on the finite-domain representation (FDR) of classical planning tasks,
we show Strips planning tasks since we use that formalism here. For simplicity, we only mention the
characteristics of the FDR versions of our examples and do not explain the translation algorithm. While
we consider the delete-relaxation, we need delete effects in this section because multiple propositions
composing an FDR variable cannot hold simultaneously.

1511

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

∅

p0

v0

p1

v1

v2 q1

W(L1) = 1W1(L2) = 1W2(L3) = 1

a0

a0

a1

a2

a4

a5

a3

a6

Figure 10: JGs constructed by hLM-cut for a classical planning task in Example 8. The
functions W, W1, and W2 denote the cut weights of the LM-cut procedures,
where action costs are reduced in each iteration.

action pre add del num cost

a1 p0 p1 p0 ∅ 1
a2 p0, u ≥ −1 ∅ ∅ v += 1, u += −1 1
a4 p1, u ≥ −1 ∅ ∅ v += 1, u += −1 1
a6 q0, v ≥ 2 q1 q0 v += −2, u += 2 1

We assume that the tie-breaking strategy prefers u ≥ −1 to p0 although the opposite results
in the same heuristic value.

We show hmax
cri -values of facts and action costs in each iteration in Table 11 and JGs in

Figure 11. In this figure, edge (nv≥2, nu≥−1, a6) is omitted. We have

hLM-cut
cri (srtI) = 4 > hLM-cut(sI) = 3.

Therefore, in this example, the h-value computed with the numeric version is more infor-
mative than that of the propositional version.

hmax
cri (sI , ψ) u ≥ −1 p0 q0 q1 p1 v ≥ 2

1 0 0 0 3 1 2
2 0 0 0 2 1 2
3 0 0 0 0 1 0
4 0 0 0 0 0 0

cost(a) a1 a2 a4 a6

1 1 1 1 1
2 1 1 1 0
3 1 0 0 0
4 0 0 0 0

Table 11: hmax
cri (s, ψ) and cost(a) in each iteration in Figure 11.

Example 9. Let Π = 〈Fp,A, sI , G〉 be a classical planning task. Fp = {p0, p1, v0, v1, v2, v3}.
sI = {p0, v0}, and G = {p1}. Let A = {a1, a2, a3, a4, a5, a6}, where

action pre add del cost

a1 v0 v1 v0 3
a2 v1 v2 v1 3
a3 v2 v3 v2 3
a4 v0 v2 v0 4
a5 v1 v3 v1 4
a6 p0, v3 p1, v0 p0, v3 1

1512

Numeric LM-Cut

∅

p0

u ≥ −1

p1

v ≥ 2 q1

W(L1) = 1W1(L2) = 2

(a0, 1)

(a0, 1)

(a1, 1)

(a2, 2)

(a4, 2)

(a6, 1)

(a) The first and second cuts.

∅ p0 p1

W2(L3) = 1

(a0, 1) (a1, 1)

(b) The third cut.

Figure 11: JGs constructed by hLM-cut
cri for the rt translated from a classical planning task

in Example 8. The functions W, W1, and W2 denote the cut weights of the
LM-cut procedures, where action costs are reduced in each iteration.

We show hmax-values of facts and action costs in each iteration in Table 12 and JGs in
Figure 12. In this figure, edge (nv3 , nv0 , a6) is omitted. We have

hLM-cut(sI) = 8.

hmax(sI , ψ) v0 v1 v2 v3 p0 p1

1 0 3 4 7 0 8
2 0 3 4 7 0 7
3 0 3 4 4 0 4
4 0 3 3 3 0 3
5 0 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6

1 3 3 3 4 4 1
2 3 3 3 4 4 0
3 3 3 0 4 1 0
4 3 2 0 3 0 0
5 0 2 0 0 0 0

Table 12: hmax(s, ψ) and cost(a) in each iteration.

∅ v0

v1

v2

v3 p1

W(L1) = 1W1(L2) = 3W2(L3) = 1W3(L4) = 3

a0

a1

a4

a2

a5

a3

a6

Figure 12: JGs constructed by hLM-cut for a classical planning task in Example 9. The
functions W, W1, W2, and W3 denote the cut weights of the LM-cut procedures,
where action costs are reduced in each iteration.

In an FDR version of this task, if there are two variables where the first one is for p0

and p1, and the second is for v0, v1, v2, and v3, the second variable can be translated into

1513

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

a resource variable. The resulting rt task is 〈Frt
p ,N ,Art, srtI , G〉 where Frt

p = {p0, p1},
N = {v, u}, srtI = {p0, v = 0, u = 0}. Here, two numeric variables v and u are introduced
to represent the upper and lower bounds of the resource variable. Art = {a1, a4, a6}, where

action pre add del num cost

a1 u ≥ −2 ∅ ∅ v += 1, u += −1 3
a4 u ≥ −1 ∅ ∅ v += 2, u += −2 4
a6 p0, v ≥ 3 p1 p0 v += −3, u += 3 1

We show hmax
cri -values of facts and action costs in each iteration in Table 13 and JGs in

Figure 13. In the figure, edges (nv≥3, nu≥−1, a6) and (nv≥3, nu≥−2, a6) are omitted. In the
numeric version, the second cut contains (a4,

3
2), and W((nu≥−1, nv≥3, a4)) = 3

2 · cost(a4) =
6. We have

hLM-cut
cri (srtI) = 7 ≤ hLM-cut(sI) = 8.

Therefore, in this example, the h-value computed with the propositional version is more
informative than that of the numeric version.

hmax
cri (sI , ψ) u ≥ −1 v ≥ 3 p0 p1

1 0 6 0 7
2 0 6 0 6
3 0 0 0 0

cost(a) a1 a4 a6

1 3 4 1
2 3 4 0
3 1 0 0

Table 13: hmax
cri (s, ψ) and cost(a) in each iteration in Figure 13.

∅

u ≥ −2

u ≥ −1

v ≥ 3 p1

W(L1) = 1W1(L2) = 6

(a0, 1)

(a0, 1)

(a1, 3)

(a4,
3
2
)

(a6, 1)

Figure 13: JGs constructed by hLM-cut
cri for the translated rt from a classical planning task

in Example 9. The functions W and W1 denote the cut weights of the LM-cut
procedures, where action costs are reduced in each iteration.

From Example 8 and Example 9, we can derive the following proposition.

Proposition 7. Given a classical planning tasks with resources Π and a state s, and their
counterparts translated to rt, Πrt and srt, the values hLM-cut(s) and hLM-cut

cri (srt) are in-
comparable.

1514

Numeric LM-Cut

Propositional (hLM-cut) Numeric (hLM-cut
cri)

c. t. e. c. t. e.

SmallCounters (8) 6 8.75 153890 7 0.43 5699
Counters-Inv (11) 2 0.04 1643 2 0.00 0
Counters-Rnd (33) 6 0.01 409 9 0.00 0
Farmland (30) 11 21.39 217229 30 0.04 57
Gardening (63) 63 7.78 191060 63 1.50 15948
Gardening-SAT (51) 10 93.12 2207237 12 15.39 149909
Sailing (40) 9 92.17 2283110 40 0.20 1617
Sailing-SAT (40) 3 64.76 3075681 14 0.98 23238
Depots (20) 7 95.36 49640 7 101.00 49687
Rovers (20) 4 6.91 0 4 10.10 0
Satellite (20) 2 36.70 78338 2 24.41 47278

Total (336) 123 - - 190 - -

Table 14: Coverage (‘c.’), average time (‘t.’), and # of states expanded (‘e.’) excluding
the last f -layer by the propositional and numeric LM-cut heuristics in numeric
domains. The time and # of states are averaged over instances solved by both
versions.

6.3 LM-Cut: Propositional vs. Numeric – Experimental Evaluations

We empirically evaluate the propositional and numeric LM-cut heuristics. The computa-
tional setting is the same as it was described in Section 5.6, where we employ A∗ as our
search algorithm.

6.3.1 Numeric Domains

First, we compare hLM-cut and hLM-cut
cri in numeric domains. Recall that the propositional

LM-cut assumes that all numeric conditions are achieved with zero cost and considers only
propositions in the computation of the JGs. Table 14 shows the results with Counters
and Farmland-SAT omitted because both versions of LM-cut solve no instances. In this
table, as there are only two methods, we show the wall-clock time averaged over instances
solved by both of the methods instead of the time score.

Table 14 shows a clear superiority of hLM-cut
cri in this domains, covering 63 more instances

than hLM-cut. Specifically, hLM-cut
cri outperforms hLM-cut in all three dimensions (i.e., cover-

age, wall time, and number of stated expanded) in most domains except for Depots and
Rovers, where wall time and number of state expanded is slightly better for hLM-cut. We
note that these two domains are from the IPC and contain several propositional facts and
just a few numeric facts and conditions. Therefore, these results indicate that consider-
ing numeric conditions is important particularly in domains with many numeric facts and
conditions.

1515

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

6.3.2 Classical Domains

Next, we evaluate the LM-cut heuristics using a set of classical planning domains containing
resource variables from the classical optimal track of IPC 1998–2014. If there are multiple
versions for the same domain, we use the latest one. Search is performed on the original
space, while the numeric heuristic is computed on the numeric version obtained by the
translation algorithm (Wilhelm et al., 2018). The results of this comparison are shown in
Table 15. In addition to the time to solve an instance, we also show the search time, where
the time to translate a task is excluded. Similarly to Table 14, we show solving time and
search time averaged over instances solved by the two methods instead of the time score.

Propositional (hLM-cut) Numeric (hLM-cut
cri)

c. t. s. e. c. t. s. e.

Elevat-11 (20) 18 165.26 165.25 54559 18 141.62 141.57 31038
Freec (80) 15 188.61 188.56 82292 18 64.23 61.27 376
Mprime (35) 22 49.51 49.46 5091 22 17.23 10.06 449
Mystry (30) 17 75.96 75.90 2763 16 16.22 1.46 46
NoMyst-11 (20) 14 29.62 29.60 4868 20 12.63 0.39 488
Openst-14 (20) 0 - - - 3 - - -
ParcPr-11 (20) 13 11.97 11.97 23101 13 22.30 22.28 22969
Pathway (30) 5 14.40 14.40 14621 5 39.10 39.09 14609
PipesT (50) 17 92.28 92.27 75427 16 183.64 183.16 76620
PipesNoT (50) 12 79.77 79.75 64296 6 489.09 488.80 64425
Rovers (40) 7 2.92 2.92 15767 7 8.89 8.88 16258
TPP (30) 6 1.02 1.02 4935 6 7.38 7.37 4403
Transp-14 (20) 6 112.76 112.74 85366 6 90.38 90.26 82886
Woodwor-11 (20) 12 173.65 173.63 78288 12 126.35 126.28 19620
Zenot (20) 13 40.89 40.88 8764 12 128.14 128.05 8764

Total (505) 177 - - - 180 - - -

Table 15: Coverage (‘c.’), average time (‘t.’), average search time excluding time to translate
tasks (‘s.’), and # of states expanded (‘e.’) excluding the last f -layer by the
propositional and numeric LM-cut heuristics in classical domains with resource
variables. The time and # of states are averaged over instances solved by both
versions.

The translation into a numeric task increases the coverage on three domains and reduces
the number of the expanded states and search time on seven domains. However, the propo-
sitional version solves more instances than the numeric version on four domains. Note also
that the number of states expanded is almost always smaller for the numeric version of the
LM-cut. While the grounding process for the numeric version is usually marginal when com-
pared to the total solving time, there are a few domains (e.g., Mystry and NoMyst-11)
where the grounding process takes significantly more time than the search itself.

1516

Numeric LM-Cut

7. Operator-Counting

In classical planning, LM-cut is combined with other techniques in the operator-counting
(OC) framework (Pommerening et al., 2014) to obtain strong admissible heuristics. This
section generalizes LM-cut in the OC framework to numeric planning and proposes a family
of novel admissible heuristics. We empirically show that our OC heuristics achieve state-
of-the-art performance in rt.

The OC framework unifies linear/integer programming (LP/IP) based heuristics using
the optimal cost for the following problem as a heuristic value (Pommerening et al., 2014):

minimize
∑
a∈A

cost(a)Xa

subject to DX + EY ≤ b,
Xa ≥ 0, ∀a ∈ A,

X ∈ N|A|0 , Y ∈ Rn,

where Xa for each a ∈ A is a decision variable representing the number of occurrences of
action a in a plan, and Y is a vector of auxiliary variables. The set of OC constraints is
represented by DX + EY ≤ b and corresponds to linear inequalities over Xa such that for
every plan π and a ∈ A, Xa = count(π, a) satisfies DX + EY ≤ b where count(π, a) is
the number of occurrences of action a in π.6 Since the optimal cost of the LP/IP problem
is a lower bound of the cost of every plan, the OC heuristics are admissible. Adding OC
constraints does not remove feasible solutions for a task and tightens the bound (i.e., results
in a stronger heuristic). Therefore, different types of OC constraints can be used together
to improve the heuristic informativeness.

7.1 Operator-Counting Heuristics

The OC framework was first proposed in classical planning and recent works by Scala
et al. (2017) and Piacentini et al. (2018b) applied this framework to numeric planning.
Scala et al. (2017) extract landmarks from the delete-relaxed task using the AND/OR
graph, while Piacentini et al. (2018b) introduced the state equation constraints (SEQ)
(Bonet, 2013) and the delete-relaxation constraints (Imai & Fukunaga, 2015) into sct.

In theory, OC heuristics do not have to be implemented in the delete-relaxed setting.
However, to the best of our knowledge, all the OC heuristics for rt that account for numeric
conditions, except for SEQ, under-approximate h+. This observation may be due to the fact
that all these heuristics were adapted from the delete-relaxed setting of classical planning.
As shown in our experiments, considering constraints from outside the delete-relaxed setting
may be the reason why the SEQ constraints are complementary to the landmarks and delete-
relaxation constraints.

We show that the cuts produced by hLM-cut
cri are also delete-relaxed OC constraints (see

Theorem 6 in the following subsection). Moreover, since these constraints approximate h+

or h∗ using an LP, they all can be combined in various configurations to obtain a tighter

6. Here X is a vector of decision variables Xa, D ∈ Q|A|×m and E ∈ Qn×m are matrices and b ∈ Qm is a
vector.

1517

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Heuristic OC Constraints Solver

hlm+
hbd AND/OR landmarks LP
hcIP delete-relaxation, SEQ IP
hcLP delete-relaxation, SEQ LP
hS

LP SEQ LP

hS,lm
LP SEQ, AND/OR landmarks LP

hc,lmIP delete-relaxation, SEQ, AND/OR landmarks IP
hLC

LP LM-cut (cri) LP

hLC,S
LP LM-cut (cri), SEQ LP

hLC,S
+,LP LM-cut (cri,+), SEQ LP

h
LC,S
LP LM-cut (cri), SEQ LP, rounded up

hLC,lm
LP LM-cut (cri), AND/OR landmarks LP

hLC,S,lm
LP LM-cut (cri), SEQ, AND/OR landmarks LP

hc,LC
IP LM-cut (cri), delete-relaxation, SEQ IP

Table 16: Constraints and solvers used by OC heuristics. ‘LM-cut (cri)’ and ‘LM-cut
(cri,+)’ indicate the OC constraints extracted by hLM-cut

cri and hLM-cut
cri,+ as in Theo-

rem 7. ‘LP, rounded up’ used by h
LC,S
LP indicates that the heuristic value computed

by LP is rounded up in the same way as h
LM-cut
cri , and the admissibility is proved

accordingly to Theorem 3.

approximations. Since the IP solution of the delete-relaxation constraints calculates h+,
the heuristic hcIP that combines the delete-relaxation and SEQ constraint, solving the IP,
approximates the delete-relaxation from above resulting in h+ ≤ hcIP ≤ h∗.

Table 16 shows different OC heuristic and solver configurations (i.e., LP or IP). The
hlm+

hbd heuristic as well as the delete-relaxed AND/OR graph landmark extraction, denoted as
‘AND/OR landmarks’ in Table 16, were proposed by Scala et al. (2017). The heuristics hcIP
and hcLP with the set of delete-relaxation constraints and SEQ were proposed by Piacentini
et al. (2018b). All other combinations of constraints in Table 16 are novel. Note that,
as in most planning problems, the informativeness of a heuristic is not the only relevant
characteristic: in most cases a good heuristic combines informativeness with speed.

7.2 LM-Cut for Operator-Counting Constraints

We now present how to obtain OC constraints using the numeric LM-cut heuristic hLM-cut
cri .

First, let us recall the general structure of a landmark constraint in classical planning. Given
a disjunctive action landmark L, the landmark constraint is as follows (Bonet & Helmert,
2010): ∑

a∈lbl(L)

Xa ≥ 1. (4)

Note that this inequality is an OC constraint. In classical planning, the landmarks extracted
by hLM-cut can be used to generate landmark constraints (Pommerening et al., 2014). We
generalize this approach for numeric tasks employing the following result.

1518

Numeric LM-Cut

Theorem 6. Given an rt, let L be a cut obtained by hLM-cut
cri . Let count(π, a) be the number

of times action a appears in a plan π. Then, the following relation holds for any π∑
a∈lbl(L)

count(π, a)

mmin
a (L)

≥ 1. (5)

Proof. Let π be a plan for the rt, and let L = (N0, Ng) be the cut in the JG. Recall that
∂ in(L) is a disjunctive fact landmark by Lemma 1. Thus, there is at least one fact in ∂ in(L)
that is achieved by the plan π. Let ψ0 be the first fact in Ng that is achieved by π, and let a0

be the action in π that achieves ψ0, i.e., a0 ∈ lbl(Lψ0)∩π, where lbl(Lψ0) = supp(ψ0)∩ lbl(L).
Note that we can restrict the actions that achieve ψ0 to lbl(Lψ0), since to apply an action
from supp(ψ0) \ lbl(Lψ0) we need to achieve at least one fact in Ng.

Next, note that if ma0(s, ψ0) ≤ 1, it holds that

1 ≤ count(π, a0)

ma0(s, ψ0)
≤ count(π, a0)

mmin
a0 (L)

≤
∑

a∈lbl(L)

count(π, a)

mmin
a (L)

. (6)

Thus, assume that ma0(s, ψ0) > 1 and ψ0 ∈ F̄n is a numeric fact, i.e., ψ0 is of the form
v ≥ w0. For each a ∈ supp(ψ0) it holds that v += ka ∈ eff(a). Recall that by assumption
ψ0 is the first fact in Ng that is achieved by π, thus we can write

w0 ≤ s[v] +
∑

a∈lbl(Lψ0)

ka · count(π, a).

To get the result stated in the theorem we need to subtract from both sides of the
inequality above s[v], and subsequently divide it by w0 − s[v], which is greater than zero,
by the assumption that s 6|= ψ0:

1 ≤
∑

a∈lbl(Lψ0)

ka

w0 − s[v]
· count(π, a) =

∑
a∈lbl(Lψ0)

count(π, a)

ma(s, ψ0)
≤

∑
a∈lbl(L)

count(π, a)

mmin
a (L)

.

From Theorem 6, we derive the following OC constraint:∑
a∈lbl(L)

Xa

mmin
a (L)

≥ 1, (7)

where L is a cut obtained by the LM-cut heuristic. Another immediate corollary of The-
orem 6 is that Constraint (7) can be used in an IP to provide a hyper-plane that can
potentially speed up the work of the solver in finding h+. However, as we see in the next
subsection, this approach does not grant a performance boost.

Note that repeating the proof for Theorem 6 verbatim we can also obtain the following.

Theorem 7. Given an rt, let L be a cut obtained by hLM-cut
cri,+ . Let count(π, a) be the number

of times action a appears in a plan π. The following holds for any π∑
a∈lbl(L)

count(π, a)

mmin +
a (L)

≥ 1 (8)

where mmin +
a = min(nψ ,nψ′ ,a)∈L m+

a (s, ψ′).

1519

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

We do not prove this claim directly because the proof repeats verbatim the proof of
Theorem 6, with the omission of Equation (6). As presented in the next subsection, OC
heuristics that are based on the cuts of hLM-cut

cri perform slightly better than those that are
based on the cuts generated by hLM-cut

cri,+ .

7.3 Operator Counting – Experimental Evaluation

The setting we use here is the same as in Section 5.6: we plan optimally using the A∗ search
with a time limit of 30 minutes and memory limit of 4 GB. The search and all heuristics were
implemented in NFD using C++11 with GCC 7.5.0, while the mathematical programming
solver used for these heuristics is IBM CPLEX 12.10.

In classical planning, the combination of the LM-cut constraints and SEQ outperforms
the individual components (Pommerening et al., 2014). To examine whether this is also the
case with numeric planning, we evaluate the following OC heuristics using LP:

• hLC
LP which uses the LM-cut constraints (Equation (7)),

• hS
LP which uses the numeric planning version of SEQ, and

• hLC,S
LP which uses both.

The constraints used by the LP and IP heuristics can be found in Table 16. A task is
translated into an rt when computing numeric LM-cut. For the numeric heuristics, we
add the redundant constraints to the goal conditions and preconditions of actions in the
same way as Scala et al. (2016a). The results of this comparison are shown in Table 17.
Farmland-SAT is omitted in this table because no instance is solved by any configuration.

While hLC
LP and hS

LP are complementary on most of the domains, the coverage of hLC,S
LP is

equal to the maximum of hLC
LP and hS

LP. Furthermore, on Gardening, Gardening-SAT,

and Satellite, hLC,S
LP expands fewer states and finds solutions faster than both of the

components.
In total, hLC,S

LP has the highest coverage among all of the evaluated heuristics including

hcIP. Heuristic hcIP expands fewer states than hLC,S
LP in all domains, which is consistent with

the fact that the LM-cut constraints in hLC,S
LP are an estimation of the delete-relaxation

constraints in hcIP. In contrast, hLC,S
LP has higher time scores than hcIP in all domains, which

suggests that the former is faster to compute than the latter. hcLP, the LP version of hcIP, is

also slower than hLC,S
LP , indicating that the delete-relaxation constraints are informative, but

slow to compute. In the majority of the domains, the computational advantage of hLC,S
LP

results in the higher coverage. However, on Sailing-SAT, hcIP solves 12 more instances

than hLC,S
LP , indicating that the informativeness of hcIP is more beneficial in this domain.

Using hLM-cut
cri,+ based constraints or the h

LM-cut
cri based rounding up and adding more

constraints to hcIP and hLC,S
LP do not improve the coverage.

8. Overall Experimental Evaluation

This section compares the best performing heuristics from Section 5 and Section 7 (i.e.,
hLM-cut

cri and hLC,S
LP , respectively) to the state-of-the-art heuristics in the literature. The

1520

Numeric LM-Cut

hlm+
hbd hcIP hcLP hSLP h

S,lm
LP hc,lmIP hLC

LP hLC,S
LP hLC,S

+,LP h
LC,S
LP hLC,lm

LP hLC,S,lm
LP hc,LC

IP

domain Coverage
SmallCounters (8) 7 8 8 8 8 8 7 8 8 8 7 8 8
Counters (8) 0 4 5 8 8 3 0 8 8 8 0 8 3
Counters-Inv (11) 2 6 7 11 11 6 2 11 11 11 2 11 6
Counters-Rnd (33) 9 21 23 33 33 19 9 33 33 33 9 33 21
Farmland (30) 30 30 30 30 30 30 30 30 30 30 30 30 30
Gardening (63) 63 63 63 63 63 63 63 63 63 63 63 63 63
Gardening-SAT (51) 12 14 14 12 15 13 12 15 15 15 12 15 13
Sailing (40) 20 40 20 9 20 40 40 40 40 40 40 40 40
Sailing-SAT (40) 6 24 3 3 5 24 14 12 12 12 10 10 23
Depots (20) 3 1 2 6 3 2 7 7 7 7 5 5 1
Rovers (20) 4 2 4 4 4 2 4 4 4 4 4 4 2
Satellite (20) 1 1 1 1 2 1 2 2 2 2 2 2 1
Total (344) 157 214 180 188 202 211 190 233 233 233 184 229 211
domain Time score
SmallCounters (8) 0.75 0.94 1.00 1.00 1.00 0.94 0.74 1.00 1.00 1.00 0.74 1.00 0.94
Counters (8) 0.00 0.13 0.21 0.76 0.55 0.13 0.00 0.72 0.71 0.72 0.00 0.55 0.12
Counters-Inv (11) 0.18 0.32 0.39 0.77 0.61 0.31 0.18 0.73 0.73 0.73 0.18 0.61 0.31
Counters-Rnd (33) 0.23 0.34 0.41 0.81 0.66 0.34 0.22 0.77 0.77 0.77 0.23 0.65 0.34
Farmland (30) 0.77 0.63 0.83 0.96 0.94 0.61 0.73 0.95 0.95 0.96 0.77 0.93 0.62
Gardening (63) 0.87 0.77 0.90 0.96 0.99 0.77 0.90 1.00 1.00 1.00 0.86 0.99 0.76
Gardening-SAT (51) 0.09 0.14 0.18 0.18 0.25 0.13 0.12 0.26 0.25 0.26 0.09 0.25 0.13
Sailing (40) 0.49 0.62 0.34 0.07 0.49 0.61 0.99 0.99 0.99 0.98 0.98 0.97 0.61
Sailing-SAT (40) 0.07 0.21 0.06 0.02 0.07 0.20 0.22 0.22 0.22 0.22 0.22 0.22 0.20
Depots (20) 0.09 0.03 0.06 0.13 0.09 0.03 0.20 0.19 0.18 0.18 0.13 0.13 0.03
Rovers (20) 0.10 0.03 0.05 0.11 0.11 0.03 0.12 0.11 0.10 0.10 0.09 0.10 0.03
Satellite (20) 0.04 0.04 0.03 0.03 0.05 0.04 0.06 0.08 0.08 0.08 0.06 0.08 0.04
domain # States expanded
SmallCounters (8) 40366 0 0 0 0 0 93959 0 0 0 39587 0 0
Counters (8) - - - - - - - - - - - - -
Counters-Inv (11) 0 0 0 0 0 0 0 0 0 0 0 0 0
Counters-Rnd (33) 116069 0 0 0 0 0 359419 0 0 0 116069 0 0
Farmland (30) 6537 0 0 0 0 0 16702 0 0 0 6537 0 0
Gardening (63) 15044 30 30 6341 30 30 15621 86 85 86 14275 30 30
Gardening-SAT (51) 321302 151 151 27506 151 151 286186 274 272 274 273409 151 151
Sailing (40) 0 0 0 2283110 0 0 0 0 0 0 0 0 0
Sailing-SAT (40) 8652 8357 8820 3075681 8652 8357 8654 8654 8650 8654 8652 8652 8357
Depots (20) 50 0 50 50 50 0 6 6 6 6 6 6 0
Rovers (20) 0 0 0 0 0 0 0 0 0 0 0 0 0
Satellite (20) 26906 98 1076 46560 7764 98 264 98 98 98 264 98 98

Table 17: Coverage, time score, and # of states expanded excluding the last f -layer by the
OC heuristics. # of states are averaged over instances solved by all methods.

experimental setting is the same as in the previous section. Domains with simple conditions
are due to Scala et al. (2016a, 2017, 2020) with duplicate tasks excluded. ZenoTravel
was excluded since some numeric conditions are not simple (Piacentini et al., 2018b). A
task is translated into an rt when computing numeric LM-cut. For the numeric heuristics,
we add the redundant constraints to the goal conditions and preconditions of actions in the
same way as Scala et al. (2016a).

The heuristics we compare to are: the numeric max heuristic ĥrmax
hbd+ (Scala et al., 2020),

the numeric landmark heuristic hlm+
hbd (Scala et al., 2017), the generalised subgoaling heuristic

hgen
hbd (Scala et al., 2020), and the optimal numeric delete-relaxation heuristic hcIP(Piacentini

1521

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

et al., 2018b). For ĥrmax
hbd+, hlm+

hbd , and hgen
hbd, in addition to our implementations in NFD, we

evaluate the original implementations in ENHSP-197 using OpenJDK 11.0.9.1.

hgenhbd hgenhbd ĥ
rmax
hbd+ ĥrmax

hbd+ hLM-cut
cri hlm+

hbd hlm+
hbd hcIP h

LC,S
LP

implementation E N E N N E N N N
domain Coverage
SmallCounters (8) 7 7 7 7 7 7 7 8 8
Counters (8) 0 0 0 0 0 0 0 4 8
Counters-Inv (11) 9 11 2 2 2 2 2 6 11
Counters-Rnd (33) 32 33 6 7 9 10 9 21 33
Farmland (30) 20 30 30 30 30 30 30 30 30
Farmland-SAT (20) 0 0 7 0 0 6 0 0 0
Gardening (63) 53 63 63 63 63 63 63 63 63
Gardening-SAT (51) 1 11 12 12 12 12 12 14 15
Sailing (40) 6 9 22 25 40 20 20 40 40
Sailing-SAT (40) 1 5 7 9 14 3 6 24 12
Depots (20) 1 1 4 5 7 4 3 1 7
Rovers (20) 1 2 3 4 4 3 4 2 4
Satellite (20) 0 1 1 1 2 1 1 1 2
Total (364) 131 173 164 165 190 161 157 214 233
domain Time score
SmallCounters (8) 0.62 0.74 0.74 0.77 0.79 0.73 0.75 0.94 1.00
Counters (8) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.72
Counters-Inv (11) 0.40 0.75 0.18 0.18 0.18 0.18 0.18 0.32 0.73
Counters-Rnd (33) 0.45 0.79 0.18 0.19 0.24 0.23 0.23 0.34 0.77
Farmland (30) 0.39 0.65 0.78 0.74 0.74 0.69 0.77 0.63 0.95
Farmland-SAT (20) 0.00 0.00 0.06 0.00 0.00 0.03 0.00 0.00 0.00
Gardening (63) 0.40 0.72 0.89 0.94 0.96 0.82 0.87 0.77 1.00
Gardening-SAT (51) 0.01 0.04 0.12 0.14 0.15 0.09 0.09 0.14 0.26
Sailing (40) 0.05 0.13 0.35 0.42 0.90 0.37 0.49 0.62 0.99
Sailing-SAT (40) 0.01 0.03 0.11 0.14 0.20 0.05 0.07 0.21 0.22
Depots (20) 0.02 0.03 0.11 0.12 0.22 0.09 0.09 0.03 0.19
Rovers (20) 0.01 0.02 0.10 0.15 0.16 0.12 0.10 0.03 0.11
Satellite (20) 0.00 0.01 0.05 0.05 0.07 0.04 0.04 0.04 0.08
domain # States expanded
SmallCounters (8) 18943 18945 0 242923 90990 40366 40366 0 0
Counters (8) - - - - - - - - -
Counters-Inv (11) 0 0 0 158 0 0 0 0 0
Counters-Rnd (33) 0 0 0 0 0 0 0 0 0
Farmland (30) 2185 1534 0 1753 1753 2191 657 0 0
Farmland-SAT (20) - - - - - - - - -
Gardening (63) 8014 5456 0 5352 3574 3504 3522 15 40
Gardening-SAT (51) 0 3137 0 3424 1321 0 1019 2 6
Sailing (40) 60572 31813 0 1128 629 628 0 0 0
Sailing-SAT (40) 0 15050 0 15050 15050 0 0 0 0
Depots (20) 111 80 50 30 6 76 50 0 6
Rovers (20) 0 0 0 0 0 0 0 0 0
Satellite (20) - - - - - - - - -

Table 18: Coverage, time score, and # of states expanded excluding the last f -layer by
different numeric heuristics on scts. ‘N’ and ‘E’ mean the implementations in
NFD and ENHSP-19, respectively. # of states are averaged over instances solved
by all methods.

Table 18 shows the experimental results. Our hLM-cut
cri heuristic improves coverage by 17

tasks compared to the next best non-LP heuristic. The overall best performing heuristic

7. https://sites.google.com/view/enhsp/

1522

Numeric LM-Cut

is hLC,S
LP , that is, the OC heuristic that includes the constraints produced by the LM-cut

procedure and the numeric version of SEQ. This heuristic improves coverage by 19 tasks
over the next best state-of-the-art heuristic hcIP.

9. Conclusion

We present a family of LM-cut heuristics that are extended to handle numeric planning
problems with simple conditions. In order to obtain a strong and admissible estimate, we
introduce an inadmissible variant of hmax which is used to construct a justification graph
that, in turn, produces cuts for the numeric version of LM-cut. We show that the resulting
heuristic, hLM-cut

cri , is admissible. Moreover, we present several procedures on how to employ
existing numeric versions of hmax to construct the justification graph and, thus, create novel
numeric LM-cut variants.

We provide a thorough theoretical comparison of all versions of numeric LM-cut we
developed with all numeric hmax-based heuristics present in the literature showing if there
is dominance or incompatibility relation between each pair of heuristics. Although our
admissible version of LM-cut does not show any theoretical dominance over the existing
heuristics, its empirical performance is much stronger, achieving a significant increase in
coverage when compared with numeric hmax relaxations present in the literature. Moreover,
we compare our version of LM-cut with the classical one and show, surprisingly, that our
version obtains a better coverage not only on numeric domains, but also on classical ones
that are translated to numeric domains.

We also transform the cuts produced by numeric LM-cut into operator-counting con-
straints. The strength of this technique is most evident when LM-cut constraints are com-
bined with SEQ constraints within the operator-counting framework. When compared
against various combinations of operator-counting constraints, this heuristic achieves state-
of-the-art performance in most numeric domains.

Acknowledgments

This work was partially supported by the Natural Sciences and Engineering Research Coun-
cil of Canada. The work of Alexander Shleyfman was partially supported by the Israel
Academy of Sciences and Humanities program for Israeli postdoctoral researchers. The
work of Margarita Castro was supported by the National Center for Artificial Intelligence
CENIA FB210017, Basal ANID.

1523

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Appendix A.

Here, we show an rt where hLM-cut
hbd returns an inadmissible heuristic value.

Example 10. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt with Fp = {p1, p2, p3, p4, p5, g1, g2} and
N = {v}. Let sI = {v = 0}, G = {g1, g2}, and A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}
where

action pre eff cost

a1 ∅ p1 3
a2 ∅ p2 1
a3 ∅ p3 5
a4 p1 p4 1
a5 p2 p5 1
a6 p3 v += 1 0
a7 p4, p5 v += 1 1
a8 p4 g1 0
a9 p5 g2 0
a10 v ≥ 1 g1, g2 0

The hypergraph representation of the task is shown in Figure 14. The optimal plan is
〈a3, a6, a10〉 with the cost of 5.

∅

p1

p2

p3

p4

p5

v ≥ 1

g1

g2

a1(3)

a2(1)

a3(5)

a4(1)

a5(1)

a6(0)

a7(1)

a8(0)

a9(0)

a10(0)

Figure 14: A hypergraph representation of Example 10. The action costs are shown in
parentheses.

Consider hLM-cut
hbd for this task using the justification graphs for hmax

hbd . Let Li be the cut
extracted in the i-th iteration in the computation of hLM-cut

hbd . For each task, we show the
value of hmax

hbd (sI , ψ) for each fact ψ and cost(a) for each action a is shown in Table 19.
Since hmax

hbd (sI , p3) = 5, hmax
hbd (sI , p4) = 4, and hmax

hbd (sI , p5) = 2 in Πrt and Πrt
1 and

hmax
hbd (sI , p3) = 3 in Πrt

1 ,

hmax
hbd (sI , v ≥ 1)

= min{hmax
hbd (sI , p3),max{hmax

hbd (sI , p4), hmax
hbd (sI , p5)}}+ min{cost(a6), cost(a7)}

= hmax
hbd (sI , p4) + min{cost(a6), cost(a7)}

and
pcf(sI , a6, v ≥ 1) = pcf(sI , a7, v ≥ 1) = p4.

1524

Numeric LM-Cut

hmax
hbd (sI , ψ) p1 p2 p3 p4 p5 v ≥ 1 g1 g2

1 3 1 5 4 2 4 4 2
2 3 1 5 3 2 3 3 2
3 0 1 5 0 2 2 0 2
4 0 1 5 0 1 1 0 1
5 0 0 5 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 3 1 5 1 1 0 1 0 0 0
2 3 1 5 0 1 0 1 0 0 0
3 0 1 5 0 1 0 1 0 0 0
4 0 1 5 0 0 0 1 0 0 0
5 0 0 5 0 0 0 1 0 0 0

Table 19: hmax
hbd (sI , ψ) and cost(a) in each iteration.

Since cost(a8) = 0, p4 ∈ Ng. Likewise, in Πrt
2 and Πrt

3 ,

pcf(sI , a6, v ≥ 1) = pcf(sI , a7, v ≥ 1) = p5

and p5 ∈ Ng. The justification graphs are shown in Figure 10. While the same justification
graphs are shared by Πrt and Πrt

1 , another one is shared by Πrt
2 and Πrt

3 . Note that p3

never appears in the justification graphs because pcf(sI , a6, v ≥ 1) 6= p3. We have

hmax
hbd (sI) = 4 < h∗(sI) = 5 < hLM-cut

hbd (sI) = 6.

∅

p1 p4

v ≥ 1

g1

W(L1) = 1W1(L2) = 3

(a1, 1)

(a4, 1)
(a8, 1)

(a10, 1)

(a6, 1)

(a7, 1)

(a) The first and second cuts.

∅

p2 p5

v ≥ 1

g2

W2(L3) = 1W3(L4) = 1

(a2, 1)

(a5, 1)
(a9, 1)

(a10, 1)

(a6, 1)

(a7, 1)

(b) The third and fourth cuts.

Figure 15: JGs for the rt in Example 10. The functions W, W1, W2, and W3 denote the
cut weights of the LM-cut procedures, where action costs are reduced in each
iteration.

The inadmissibility of hLM-cut
hbd follows directly from Example 10.

Next, we show that hmax
cri is inadmissible.

Example 11. Let 〈Fp,N ,A, sI , G〉 be an rt with Fp = ∅ and N = {v}. Let sI = {v = 0},
G = {v ≥ 6}, and A = {a1, a2}, where

1525

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

action pre eff cost

a1 ∅ v += 1 1
a2 v ≥ 2 v += 2 1

Note, that in this case F̄n = {v ≥ 2, v ≥ 6}, and the JG can be seen in Figure 16, where
the critical path is indicated in red and the landmarks of numeric LM-cut are denoted by
vertical lines. Thus, we have:

hmax
hbd (sI) = 3 < hLM-cut

cri (sI) = h∗(sI) = 4 < hmax
cri (sI) = 5.

∅

v ≥ 2

v ≥ 6

W(L1) = 3W1(L2) = 1

(a1, 2)

(a1, 6)

(a2, 3)

Figure 16: A JG for the rt in Example 11. The functions W and W1 denote the cut weights
of the LM-cut procedures, where action costs are reduced in each iteration.

Appendix B.

This appendix is dedicated to the proof of all incomparability relations presented in Table 6.
To prove that two heuristics, h1 and h2, are incomparable we need to present two planning
tasks Π1 and Π2 with two states s1 and s2, respectively such that h1(s1) < h2(s1) and
h2(s2) < h1(s2). The catalog for such examples can be found in Table 20 and Table 21. In
what follows, we compute and compare the h-values for the heuristics in the examples.

example hmax
hbd hmax

ir hLM-cut
ir hLM-cut

ir,m hLM-cut
ir,m+ hLM-cut

cri hLM-cut
cri,+ h

LM-cut
cri

Example 12 2 3 3 4 4 4 4 4
Example 13 5 3 3 4 4 4 4 4
Example 14 2 2 2 2 2 1.5 1.5 1.5
Example 15 1 2 2 1 2 1 2 1
Example 16 1 1 1 1 1 1.9 1 [1.9, 2.9]
Example 17 2 1 1 2 2 3 3 3
Example 18 2 2 3.9 2.9 2.9 2.9 2.9 [2.9, 3.9]
Example 19 2 1 1.6 2.6 2.1 2.6 2.6 [2.6, 3.6]

Table 20: h-values of the heuristics in examples.

Example 12. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt with Fp = ∅ and N = {v, u}. Let
sI = {v = 0, u = 0}, G = {v ≥ 2}, and A = {a1, a2}, where

1526

Numeric LM-Cut

hmax
ir hLM-cut

ir hLM-cut
ir,m hLM-cut

ir,m+ hLM-cut
cri hLM-cut

cri,+ h
LM-cut
cri

hmax
hbd 13, 12 13, 12 13, 12 13, 12 13, 12 13, 12 13, 12
hmax

ir ≤ 15, 12 ≤ 14, 12 14, 12 14, 12
hLM-cut

ir 15, 12 18, 12 14, 12 14, 12 14, 12
hLM-cut

ir,m 19, 15 14, 17 14, 15 14, 17

hLM-cut
ir,m+ 14, 16 14, 17 14, 16

hLM-cut
cri 16, 15 ≤
hLM-cut

cri,+ 15, 16

Table 21: Pairs of examples with which heuristics are proved to be incompatible. In each
cell, in the left example, the heuristic in a row has the higher h-value than the
heuristic in a column, and vice versa in the right example. ‘≤’ means the heuristic
in a column dominates the heuristic in a row.

action pre eff cost

a1 u ≥ 1 v += 1 1
a2 ∅ v += 1, u += 1 3

We show the h-values of the heuristics.

hmax
hbd (sI) = hmax

hbd (sI , v ≥ 2) = min{2 · cost(a1), 2 · cost(a2)} = 2 · cost(a1) = 2.

Since hmax
ir (sI , u ≥ 1) = cost(a2) = 3,

hmax
ir (sI) = hmax

ir (sI , v ≥ 2) = min{hmax
ir (sI , u ≥ 1) + cost(a1), cost(a2)} = cost(a2) = 3.

For the LM-cut heuristics, since this task has at most one precondition for each action
and only one goal condition, the JGs are the same for all iterations except for the edge
weights. For hLM-cut

ir , we show hmax
ir -values of facts and action costs in each iteration in

Table 22 and the justification graph and cuts in Figure 17. We have hLM-cut
ir (sI) = 3.

hmax
ir (s, ψ) u ≥ 1 v ≥ 2

1 3 3
2 2 2
3 0 0

cost(a) a1 a2

1 1 3
2 0 2
3 0 0

Table 22: hmax
ir (sI , ψ) and cost(a) in each iteration in Example 12.

For hLM-cut
cri , we show hmax

cri -values of facts and action costs in each iteration in Table 23
and the justification graph and cuts in Figure 18. We have hLM-cut

cri (sI) = 4. Since all action
costs and action multipliers are positive integer,

hLM-cut
cri (sI) = hLM-cut

cri,+ (sI) = hLM-cut
ir,m (sI) = hLM-cut

ir,m+ (sI) = 4.

Example 13. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt with Fp = {p, g} and N = {v}. Let,
the rest of elements in the tuple be sI = {v = 0}, G = {g}, and A = {a1, a2, a3, a4}, where

1527

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

∅

u ≥ 1

v ≥ 2

W(L1) = 1W1(L2) = 2

(a2, 1)

(a2, 1)

(a1, 1)

Figure 17: A JG created by hLM-cut
ir for the rt in Example 12. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

hmax
cri (s, ψ) u ≥ 1 v ≥ 2

1 3 5
2 2 2
3 0 0

cost(a) a1 a2

1 1 3
2 0 2
3 0 0

Table 23: hmax
cri (sI , ψ) and cost(a) in each iteration in Example 12.

∅

u ≥ 1

v ≥ 2

W(L1) = 2W1(L2) = 2

(a2, 1)

(a2, 2)

(a1, 2)

Figure 18: A JG created by hLM-cut
cri for the rt in Example 12. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

action pre eff cost

a1 ∅ v += 1 2
a2 v ≥ 1 p 2
a3 p g 1
a4 v ≥ 2 g 1

For the LM-cut heuristics, since each action has at most one precondition and there is
only one goal condition, the justification graphs are the same except for the edge weights.
We show the hmax

ir -values of facts and action costs in each iteration of hLM-cut
ir in Table 24

and the justification graph and cuts in Figure 19. We have

hmax
ir (sI) = hmax

ir (sI , g) = 3 and hLM-cut
ir (sI) = 3.

We show the hmax
cri -values of facts and action costs in each iteration of hLM-cut

cri in Table 25
and the justification graph and cuts in Figure 20. We have

hLM-cut
cri (sI) = 4.

1528

Numeric LM-Cut

hmax
ir (sI , ψ) v ≥ 1 p v ≥ 2 g

1 2 4 2 3
2 2 4 2 2
3 0 0 0 0

cost(a) a1 a2 a3 a4

1 2 2 1 1
2 2 2 0 0
3 0 0 0 0

Table 24: hmax
ir (sI , ψ) and cost(a) in each iteration in Example 13.

∅

v ≥ 1 p

v ≥ 2

g

W(L1) = 1W1(L2) = 2

(a1, 1)

(a1, 1)

(a2, 1)
(a3, 1)

(a4, 1)

Figure 19: A JG constructed by hLM-cut
ir for the rt in Example 13. The functions W and

W1 denote the consequent cut weights of the LM-cut procedures, where action
costs are reduced in each iteration.

Since all action costs and action multipliers are positive integer,

h
LM-cut
cri (sI) = hLM-cut

cri,+ (sI) = hLM-cut
ir,m (sI) = hLM-cut

ir,m+ (sI) = hLM-cut
cri (sI) = 4.

Since only one action has a numeric effect, hmax
hbd is the same as hmax

cri .

hmax
hbd (sI) = hmax

cri (sI) = hmax
cri (sI , g) = 5.

hmax
cri (sI , ψ) v ≥ 1 p v ≥ 2 g

1 2 4 4 5
2 2 4 4 4
3 1 1 2 1
4 0 0 0 0

cost(a) a1 a2 a3 a4

1 2 2 1 1
2 2 2 0 0
3 1 0 0 0
4 0 0 0 0

Table 25: hmax
cri (sI , ψ) and cost(a) in each iteration in Example 13.

Example 14. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt with Fp = {p, g} and N = {v}. Let
sI = {v = 0}, G = {v ≥ 2, g}, and A = {a1, a2}, where

action pre eff cost

a1 ∅ v += 1, p 1
a2 p v += 2, g 1

In this example, we assume that the tie-breaking strategy prefers v ≥ 2 to g.

1529

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

∅

v ≥ 1 p

v ≥ 2

g

W(L1) = 1W1(L2) = 2W2(L3) = 1

(a1, 1)

(a1, 2)

(a2, 1)
(a3, 1)

(a4, 1)

Figure 20: A JG constructed by hLM-cut
cri for the rt in Example 13. The functions W, W1,

and W2 denote the consequent cut weights of the LM-cut procedures, where
action costs are reduced in each iteration.

ψ hmax
hbd (sI , ψ)

p 1
v ≥ 2 1
g 2

Table 26: hmax
hbd (sI , ψ) for each ψ in Example 14.

We show the hmax
hbd -values of facts in Table 26. We have

hmax
hbd (sI) = hmax

hbd (sI , g) = 2.

We show the hmax
ir -values of facts and action costs in each iteration in Table 24 and the

justification graph and cuts in Figure 21. We have

hmax
ir (sI) = hLM-cut

ir (sI) = 2.

hmax
ir (sI , ψ) p v ≥ 2 g

1 1 1 2
2 1 1 1
3 0 0 0

cost(a) a1 a2

1 1 1
2 1 0
3 0 0

Table 27: hmax
ir (sI , ψ) and cost(a) in each iteration of hLM-cut

ir in Example 14.

For hLM-cut
ir,m , we show the hmax

ir -values of facts and action costs in each iteration in
Table 28 and the justification graph and cuts in Figure 22. We have

hLM-cut
ir,m (sI) = 2.

Since all action multipliers are grater than or equal to 1,

hLM-cut
ir,m+ (sI) = hLM-cut

ir,m (sI) = 2.

1530

Numeric LM-Cut

∅ p g

W(L1) = 1

(a1, 1) (a2, 1)

(a) The first cut.

∅

p

v ≥ 2

W1(L2) = 1

(a1, 1)

(a1, 1)

(a2, 1)

(b) The second cut.

Figure 21: JGs constructed by hmax
ir for the rt in Example 14. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

hmax
ir (sI , ψ) p v ≥ 2 g

1 1 1 2
2 1 1 1
3 0 0 0

cost(a) a1 a2

1 1 1
2 1 0
3 0 0

Table 28: hmax
ir (sI , ψ) and cost(a) in each iteration of hLM-cut

ir,m in Example 14.

∅ p g

W(L1) = 1

(a1, 1) (a2, 1)

(a) The first cut.

∅

p

v ≥ 2

W1(L2) = 1

(a1, 1)

(a1, 2)

(a2, 1)

(b) The second cut.

Figure 22: JGs constructed by hmax
ir,m for the rt in Example 14. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

We show the hmax
cri -values of facts and action costs in each iteration in Table 29 and the

justification graph and cuts in Figure 23. We have,

hLM-cut
cri (sI) = 1.5.

Since all action costs in Πrt and action multipliers are positive integer,

hLM-cut
cri,+ (sI) = h

LM-cut
cri (sI) = hLM-cut

cri (sI) = 1.5.

Example 15. Let 〈Fp,N ,A, sI , G〉 be an rt with Fp = ∅ and N = {v, u}. Let sI = {v =
0, u = 0}, G = {u ≥ 1}, and A = {a1, a2}, where

action pre eff cost

a1 ∅ v += 2 1
a2 v ≥ 1 u += 2 1

1531

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax
cri (sI , ψ) p v ≥ 2 g

1 1 2 2
2 0.5 0.5 0.5
3 0 0 0

cost(a) a1 a2

1 1 1
2 0.5 0
3 0 0

Table 29: hmax
ir (sI , ψ) and cost(a) in each iteration in Example 14.

∅

p

v ≥ 2

W(L1) = 1W1(L2) = 0.5

(a1, 1)

(a1, 2)

(a2, 1)

Figure 23: A JG for constructed by hLM-cut
cri for the rt in Example 14. The functions W

and W1 denote the cut weights of the LM-cut procedures, where action costs are
reduced in each iteration.

We show the h-values of the heuristics.

hmax
hbd (sI) = hmax

hbd (sI , u ≥ 1) = hmax
hbd (sI , v ≥ 1) + 0.5 · cost(a2) = 0.5 · cost(a1) + 0.5 = 1.

For the LM-cut heuristics, since each action has at most one precondition and there is
only one goal condition in this task, the justification graphs are the same except for the edge
cost. Since there is only one path to the goal node in the JG, the cost is the same as the
max heuristic which defines the edge weight. For hLM-cut

ir ,

hLM-cut
ir (sI) = hmax

ir (sI) = hmax
ir (sI , v ≥ 1) + cost(a2) = cost(a1) + 1 = 2.

For hLM-cut
cri ,

hLM-cut
cri (sI) = hmax

cri (sI) = hmax
cri (sI , v ≥ 1) + 0.5 · cost(a2) = 0.5 · cost(a1) + 0.5 = 1.

Since JGs are the same in hLM-cut
ir,m ,

hLM-cut
ir,m (sI) = hLM-cut

cri (sI) = 1.

Since all action costs are integer in Πrt,

h
LM-cut
cri (sI) = hLM-cut

cri (sI) = 1.

For hLM-cut
cri,+ and hLM-cut

ir,m+ , since m+
a1(sI , v ≥ 1) = 1 and m+

a2(sI , u ≥ 1) = 1,

hLM-cut
cri,+ (sI) = hLM-cut

ir,m+ (sI) = 1 · cost(a1) + 1 · cost(a2) = 2.

Example 16. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt task with Fp = {p, g} and N = {v}.
Let sI = {v = 0}, G = {v ≥ 0.9, g}, and A = {a1, a2, a3, a4}, where

1532

Numeric LM-Cut

action pre eff cost

a1 ∅ v += 1 1
a2 ∅ p 1
a3 v ≥ 0.9, p g 0
a4 p g 0

In this example, we assume that the tie-breaking prefers g to v ≥ 0.9 and v ≥ 0.9 to p.
We show the hmax

ir -values and costs of actions in each iteration of hLM-cut
ir in Table 30

and the justification graphs in Figure 24. We have

hmax
ir (sI) = 1 and hLM-cut

ir (sI) = 1.

Since all action multipliers are less than or equal to 1, hLM-cut
cri,+ and hLM-cut

ir,m+ are exactly the

same as hLM-cut
ir .

hLM-cut
cri,+ (sI) = hLM-cut

ir,m+ (sI) = hLM-cut
ir (sI) = 1.

hmax
ir (sI , ψ) g v ≥ 0.9 p

1 1 1 1
2 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 0 0
2 0 0 0 0

Table 30: hmax
ir (sI , ψ) and cost(a) in each iteration of hLM-cut

ir in Example 16.

∅

v ≥ 0.9

p

g

W(L1) = 1

(a1, 1)

(a2, 1)

(a3, 1)

(a4, 1)

Figure 24: The JG constructed by hLM-cut
ir for the rt in Example 16.

We show the hmax
ir -values and costs of actions in each iteration of hLM-cut

ir,m in Table 31

and the JGs in Figure 25. We have hLM-cut
ir,m (sI) = 1.

hmax
ir (sI , ψ) g v ≥ 0.9 p

1 1 1 1
2 0.1 0 0.1
3 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 0 0
2 0 0.1 0 0
3 0 0 0 0

Table 31: hmax
ir (sI , ψ) and cost(a) in each iteration of hLM-cut

ir,m in Example 16.

We show the hmax
cri -values and costs of actions in each iteration of hLM-cut

cri in Table 32
and the JGs in Figure 26. We have

hLM-cut
cri (sI) = 1.9.

1533

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

∅

v ≥ 0.9

p

g

W(L1) = 0.9

(a1, 0.9)

(a2, 1)

(a3, 1)

(a4, 1)

(a) The first cut.

∅ p g

W1(L2) = 0.1

(a2, 1)

(a3, 1)

(a4, 1)

(b) The second cut.

Figure 25: JGs constructed by hLM-cut
ir,m for the rt in Example 16. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

For h
LM-cut
cri ,

h
LM-cut
cri (sI) =

dc · hLM-cut
cri (sI)e
c

≤ hLM-cut
cri (sI) + 1 ≤ 2.9.

Since h
LM-cut
cri (sI) ≥ hLM-cut

cri (sI),

1.9 ≤ hLM-cut
cri (sI) ≤ 2.9.

Since only one action has a numeric effect,

hmax
hbd (sI) = hmax

cri (sI) = hmax
cri (sI , g) = 1.

hmax
cri (sI , ψ) g v ≥ 0.9 p

1 1 0.9 1
2 0 0.9 0
3 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 1 1
2 1 0 0 0
3 0 0 0 0

Table 32: hmax
cri (sI , ψ) and cost(a) in each iteration of hLM-cut

cri in Example 16.

Example 17. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt task with Fp = {p, g} and N = {v}.
Let sI = {v = 0}, G = {p, g}, and A = {a1, a2, a3}, where

action pre eff cost

a1 ∅ v += 1 1
a2 ∅ p 1
a3 v ≥ 2, p g 0
a4 v ≥ 2 g 0

In this example, we assume that the tie-breaking strategy prefers g to p and p to v ≥ 2.

1534

Numeric LM-Cut

∅ p g

W(L1) = 1

(a2, 1)

(a3, 1)

(a4, 1)

(a) The first and second cuts.

∅ v ≥ 0.9

W1(L2) = 0.9

(a1, 0.9)

(b) The third cut.

Figure 26: JGs constructed by hLM-cut
cri for the rt in Example 16. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

hmax
ir (sI , ψ) g p v ≥ 2

1 1 1 1
2 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 0 0
2 0 0 0 0

Table 33: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir in Example 17.

∅

p

v ≥ 2

g

W(L1) = 1

(a2, 1)

(a1, 1)

(a3, 1)

(a4, 1)

Figure 27: A JG constructed by hLM-cut
ir for the rt in Example 17.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir in Table 33
and the JGs in Figure 27. We have

hmax
ir (sI) = 1 and hLM-cut

ir (sI) = 1.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir,m in Table 34

and the JGs in Figure 28. We have hLM-cut
ir,m (sI) = 2.

Since all action multipliers are greater than or equal to 1,

hLM-cut
ir,m+ (sI) = hLM-cut

ir,m (sI) = 2.

We show the hmax
cri -values of facts and action costs in each iteration of hLM-cut

cri in Table 35
and the JGs in Figure 29. We have hLM-cut

cri (sI) = 3.

1535

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax
ir (sI , ψ) g p v ≥ 2

1 1 1 1
2 0.5 0 0.5
3 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 0 0
2 0.5 0 0 0
3 0 0 0 0

Table 34: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir,m in Example 17.

∅

p

v ≥ 2

g

W(L1) = 1

(a2, 1)

(a1, 2)

(a3, 1)

(a4, 1)

(a) The first cut.

∅ v ≥ 2 g

W2(L2) = 1

(a1, 2)

(a3, 1)

(a4, 1)

(b) The third cut.

Figure 28: JGs constructed by hLM-cut
ir,m for the rt in Example 17. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

Since all action costs in Πrt and action multipliers are positive integer,

h
LM-cut
cri (sI) = hLM-cut

cri,+ (sI) = hLM-cut
cri (sI) = 3.

Since only one action has a numeric effect,

hmax
hbd (sI) = hmax

cri (sI) = hmax
cri (sI , g) = 2.

hmax
cri (sI , ψ) g p v ≥ 2

1 2 1 2
2 0 1 0
3 0 0 0

cost(a) a1 a2 a3 a4

1 1 1 0 0
2 0 1 0 0
3 0 0 0 0

Table 35: hmax
cri (sI) and cost(a) in each iteration of hLM-cut

cri in Example 17.

Example 18. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt task with Fp = {p, q, r, g1, g2} and
N = {v}. Let sI = {v = 0}, G = {v ≥ 2, g1, g2}, and A = {a1, a2, a3, a4, a5, a6, a7}, where

1536

Numeric LM-Cut

∅ v ≥ 2 g

W(L1) = 2

(a1, 2)

(a3, 1)

(a4, 1)

(a) The first cut.

∅ p

W1(L2) = 1

(a2, 1)

(b) The second cut.

Figure 29: JGs constructed by hLM-cut
cri for the rt in Example 17. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

action pre eff cost

a1 ∅ p 1
a2 ∅ q 1
a3 ∅ r 1.5
a4 p v += 2 1
a5 q v += 1, g1 1
a6 g1, r g2 0.4
a7 r g2 0.4

In this example, we assume that the tie-breaking strategy prefers g2 to g1, g2 to v ≥ 2, v ≥ 2
to g1, and g1 to r.

We show the hmax
hbd -values of facts in Table 36. We have

hmax
hbd (sI) = hmax

hbd (sI , v ≥ 2) = 2.

ψ hmax
hbd (sI , ψ)

p 1
q 1
g2 1.9

v ≥ 2 2
g1 2
r 1.5

Table 36: hmax
hbd (s, ψ) for each ψ in Example 18.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir in Table 37
and the JGs in Figure 30. We have

hmax
ir (sI) = hmax

ir (sI , v ≥ 2) = 2

and
hLM-cut
ir (sI) = 3.9.

1537

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax
ir (sI , ψ) p q g2 v ≥ 2 g1 r

1 1 1 1.9 2 2 1.5
2 1 1 1.9 1 1 1.5
3 1 1 1.5 1 1 1.5
4 1 1 0 1 1 0
5 0 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6 a7

1 1 1 1.5 1 1 0.4 0.4
2 1 1 1.5 0 0 0.4 0.4
3 1 1 1.5 0 0 0 0
4 1 1 0 0 0 0 0
4 0 0 0 0 0 0 0

Table 37: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir in Example 18.

∅

p

q

v ≥ 2

W(L1) = 1W3(L4) = 1

(a1, 1) (a4, 1)

(a2, 1) (a5, 1)

(a) The first and fourth cuts.

∅ r g2

W1(L2) = 0.4W2(L3) = 1.5

(a3, 1)

(a6, 1)

(a7, 1)

(b) The second and third cuts.

Figure 30: JGs constructed by hLM-cut
ir for the rt in Example 18. The functions W, W1, W2,

and W3 denote the cut weights of the LM-cut procedures, where action costs are
reduced in each iteration.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir,m in Table 38
and the JGs in Figure 31. We have

hLM-cut
ir,m (sI) = 2.9.

Since all action multipliers are greater than or equal to 1,

hLM-cut
ir,m+ (sI) = hLM-cut

ir,m (sI) = 2.9.

We show the hmax
cri -values of facts and action costs in each iteration of hLM-cut

cri in Table 39
and the JGs in Figure 32. We have

hLM-cut
cri (sI) = 2.9.

Since all action multipliers are greater than or equal to 1,

hLM-cut
cri,+ (sI) = hLM-cut

cri (sI) = 2.9.

For h
LM-cut
cri ,

h
LM-cut
cri (sI) =

dc · hLM-cut
cri (sI)e
c

≤ hLM-cut
cri (sI) + 1 ≤ 3.9.

Since h
LM-cut
cri (sI) ≥ hLM-cut

cri (sI),

2.9 ≤ hLM-cut
cri (sI) ≤ 3.9.

1538

Numeric LM-Cut

hmax
ir (sI , ψ) p q g2 v ≥ 2 g1 r

1 1 1 1.9 2 2 1.5
2 1 1 1.9 1 1.5 1.5
3 1 1 1.5 1 1.5 1.5
4 1 1 1 1 1 1
5 1 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6 a7

1 1 1 1.5 1 1 0.4 0.4
2 1 1 1.5 0 0.5 0.4 0.4
3 1 1 1.5 0 0.5 0 0
4 1 1 1 0 0 0 0
5 1 0 0 0 0 0 0

Table 38: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir,m in Example 18.

∅

p

q

v ≥ 2

W(L1) = 1

(a1, 1)

(a2, 1)

(a4, 1)

(a5, 2)

(a) The first cut.

∅

q

r

g1

g2

W1(L2) = 0.4W2(L3) = 0.5W3(L4) = 1

(a2, 1)

(a3, 1)

(a5, 1)

(a6, 1)

(a7, 1)

(b) The second, third, and fourth cuts.

Figure 31: JGs constructed by hLM-cut
ir,m for the rt in Example 18. The functions W, W1, W2,

and W3 denote the cut weights of the LM-cut procedures, where action costs are
reduced in each iteration.

Example 19. Let Πrt = 〈Fp,N ,A, sI , G〉 be an rt task with Fp = {g1, g2} and N = {v, u}.
Let sI = {v = 0, u = 0}, G = {v ≥ 0.6, g1, g2}, and A = {a1, a2, a3, a4, a5}, where

action pre eff cost

a1 ∅ g1 0.6
a2 ∅ v += 1 1
a3 ∅ v += 0.3, u += 1 1
a4 g1, u ≥ 2 g2 0
a5 u ≥ 2 g2 0.1

In this example, we assume that the tie-breaking strategy prefers v ≥ 0.6 to g2, g2 to g1, and
g1 to u ≥ 2.

We show the hmax
hbd -values of facts in Table 40. We have

hmax
hbd (sI) = hmax

hbd (sI , g2) = 2.

1539

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax
cri (sI , ψ) p q g2 v ≥ 2 g1 r

1 1 1 1.9 2 2 1.5
2 1 1 1.9 1 1.5 1.5
3 1 1 1.5 1 1.5 1.5
4 1 1 1 1 1 1
5 1 0 0 0 0 0

cost(a) a1 a2 a3 a4 a5 a6 a7

1 1 1 1.5 1 1 0.4 0.4
2 1 1 1.5 0 0.5 0.4 0.4
3 1 1 1.5 0 0.5 0 0
4 1 1 1 0 0 0 0
5 1 0 0 0 0 0 0

Table 39: hmax
cri (sI) and cost(a) in each iteration of hLM-cut

cri in Example 18.

∅

p

q

v ≥ 2

W(L1) = 1

(a1, 1)

(a2, 1)

(a4, 1)

(a5, 2)

(a) The first cut.

∅

q

r

g1

g2

W1(L2) = 0.4W2(L3) = 0.5W3(L4) = 1

(a2, 1)

(a3, 1)

(a5, 1)

(a6, 1)

(a7, 1)

(b) The second, third, and fourth cuts.

Figure 32: JGs constructed by hLM-cut
cri for the rt in Example 18. The functions W, W1, W2,

and W3 denote the cut weights of the LM-cut procedures, where action costs are
reduced in each iteration.

ψ hmax
hbd (sI , ψ)

v ≥ 0.6 0.6
g2 2
g1 0.6

u ≥ 2 2

Table 40: hmax
hbd (sI , ψ) for each ψ in Example 19.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir in Table 41
and the JGs in Figure 33. We have

hmax
ir (sI) = hmax

ir (sI , v ≥ 0.6) = 1

and
hLM-cut
ir (sI) = 1.6.

1540

Numeric LM-Cut

hmax
ir (sI , ψ) v ≥ 0.6 g2 g1 u ≥ 2

1 1 1 0.6 1
2 0 0.1 0.6 0
3 0 0 0 0

cost(a) a1 a2 a3 a4 a5

1 0.6 1 1 0 0.1
2 0.6 0 0 0 0.1
3 0 0 0 0 0.1

Table 41: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir in Example 19.

∅ v ≥ 0.6

W(L1) = 1

(a2, 1)

(a3, 1)

(a) The first cut.

∅ g1

W1(L2) = 0.6

(a1, 1)

(b) The second cut.

Figure 33: JGs constructed by hLM-cut
ir for the rt in Example 19. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir,m in Table 42
and the JGs in Figure 34. We have

hLM-cut
ir,m (sI) = 2.6.

hmax
ir (sI , ψ) v ≥ 0.6 g2 g1 u ≥ 2

1 1 1 0.6 1
2 0 0.7 0.6 0.7
3 0 0.1 0.6 0
4 0 0 0 0

cost(a) a1 a2 a3 a4 a5

1 0.6 1 1 0 0.1
2 0.6 0 0.7 0 0.1
3 0.6 0 0 0 0.1
4 0 0 0 0 0.1

Table 42: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir,m in Example 19.

We show the hmax
ir -values of facts and action costs in each iteration of hLM-cut

ir,m+ in Table 43
and the JGs in Figure 35. We have

hLM-cut
ir,m+ (sI) = 2.1.

We show the hmax
cri -values of facts and action costs in each iteration of hLM-cut

cri in Table 44
and the JGs in Figure 36. We have

hLM-cut
cri (sI) = 2.6.

1541

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

∅ v ≥ 0.6

W(L1) = 0.6

(a2, 0.6)

(a3, 2)

(a) The first cut.

∅ u ≥ 2 g2

W1(L2) = 1.4

(a3, 2)

(a4, 1)

(a5, 1)

(b) The second cut.

∅ g1

W2(L3) = 0.6

(a1, 1)

(c) The third cut.

Figure 34: JGs constructed by hLM-cut
ir,m for the rt in Example 19. The functions W, W1,

and W2 denote the cut weights of the LM-cut procedures, where action costs are
reduced in each iteration.

hmax
ir (sI , ψ) v ≥ 0.6 g2 g1 u ≥ 2

1 1 1 0.6 1
2 0 0.6 0.6 0.5
3 0 0.5 0.5 0.5
4 0 0.25 0 0.25
5 0 0 0 0

cost(a) a1 a2 a3 a4 a5

1 0.6 1 1 0 0.1
2 0.6 0 0.5 0 0.1
3 0.5 0 0.5 0 0
4 0 0 0.25 0 0
5 0 0 0 0 0

Table 43: hmax
ir (sI) and cost(a) in each iteration of hLM-cut

ir,m+ in Example 19.

For h
LM-cut
cri ,

h
LM-cut
cri (sI) =

dc · hLM-cut
cri (sI)e
c

≤ hLM-cut
cri (sI) + 1 = 3.6.

Since h
LM-cut
cri (sI) ≥ hLM-cut

cri (sI),

2.6 ≤ hLM-cut
cri (sI) ≤ 3.6.

hmax
cri (sI , ψ) v ≥ 0.6 g2 g1 u ≥ 2

1 0.6 2 0.6 2
2 0 0.1 0.6 0
3 0 0 0 0

cost(a) a1 a2 a3 a4 a5

1 0.6 1 1 0 0.1
2 0.6 1 0 0 0.1
3 0 1 0 0 0.1

Table 44: hmax
cri (sI) and cost(a) in each iteration of hLM-cut

cri in Example 19.

We show the hmax
cri,+-values of facts and action costs in each iteration of hLM-cut

cri,+ in Ta-
ble 45 and the JGs in Figure 37. We have

hLM-cut
cri,+ (sI) = 2.6.

1542

Numeric LM-Cut

∅ v ≥ 0.6

W(L1) = 1

(a2, 1)

(a3, 2)

(a) The first cut.

∅

g1

u ≥ 2

g2

W2(L3) = 0.5 W1(L2) = 0.1

(a1, 1)

(a3, 2)

(a4, 1)

(a5, 1)

(b) The second and third cuts.

∅ u ≥ 2 g2

W3(L4) = 0.5

(a3, 2)

(a4, 1)

(a5, 1)

(c) The fourth cut.

Figure 35: JGs constructed by hLM-cut
ir,m+ for the rt in Example 19. The functions W, W1, W2,

and W3 denote the cut weights of the LM-cut procedures, where action costs are
reduced in each iteration.

∅ u ≥ 2 g2

W(L1) = 2

(a3, 2)

(a4, 1)

(a5, 1)

(a) The first cut.

∅ g1

W1(L2) = 0.6

(a1, 1)

(b) The second cut.

Figure 36: JGs constructed by hLM-cut
cri for the rt in Example 19. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

Appendix C.

In this appendix, we present the pseudo-code of the implementation of algorithms to con-
struct JGs for numeric LM-cut. Algorithm 1 shows the procedure to construct a JG
given a state s. This algorithm is based on the generalized Dijkstra’s algorithm (Key-

1543

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

hmax
cri,+(sI , ψ) v ≥ 0.6 g2 g1 u ≥ 2

1 1 2 0.6 2
2 0 0.1 0.6 0
3 0 0 0 0

cost(a) a1 a2 a3 a4 a5

1 0.6 1 1 0 0.1
2 0.6 1 0 0 0.1
3 0 1 0 0 0.1

Table 45: hmax
cri,+(sI) and cost(a) in each iteration of hLM-cut

cri,+ in Example 19.

∅ u ≥ 2 g2

W(L1) = 2

(a3, 2)

(a4, 1)

(a5, 1)

(a) The first cut.

∅ g1

W1(L2) = 0.6

(a1, 1)

(b) The second cut.

Figure 37: JGs constructed by hLM-cut
cri,+ for the rt in Example 19. The functions W and W1

denote the cut weights of the LM-cut procedures, where action costs are reduced
in each iteration.

der & Geffner, 2008), and f(ψ) is the priority of fact ψ in a priority queue Q. While
a JG is a triplet 〈N,E,W〉, the set of nodes N = Fp ∪ F̄n and the weight function
W : (nψ, nψ′ , a) → Wa(s, a, ψ

′) · cost(a) are independent of a state. The algorithm com-
putes the set of edges E and the goal fact g. We assume that the JG is constructed using
pcf that justifies some variant of hmax, ĥ, defined in the following form:

ĥ(s, F) = max
ψ∈F

ĥ(s, ψ)

for any set of facts F ⊆ Fp ∪ Fn, and

ĥ(s, ψ) =

{
0 if s |= ψ,

mina∈supp(ψ) ĥ(s, pre(a)) + m̂a(s, ψ) · cost(a) otherwise

for a fact ψ ∈ Fp ∪ Fn. The action multiplier m̂a is ma for hmax
cri , m+

a for hmax
cri,+, and 1 for

hmax
ir . Because pcf(s, a, ψ) is determined only by s and a for these variants, we use pcf(s, a)

instead of pcf(s, a, ψ) in the pseudo-code. The value of f(ψ) converges to ĥ(s, ψ). While the
algorithm is common in hLM-cut

cri , hLM-cut
cri,+ hLM-cut

ir , hLM-cut
ir,m , and hLM-cut

ir,m+ , we need to modify it

for hLM-cut
rnd . In hLM-cut

rnd , while ma is used for m̂a, lines 14 and 20 are replaced with a random
selection from {ψ ∈ pre(a) | s 6|= ψ} and {g ∈ G | s 6|= g}, respectively.

After the first iteration of the LM-cut, costs of actions included in the extracted cut
are updated, and the precondition choice function may be changed. With the extracted
cut L and the updated action cost costc, subsequent JGs are incrementally constructed by
Algorithm 2 until the goal fact g can be reached with zero cost. For hLM-cut

rnd , we need to
modify the algorithm by replacing lines 13 and 19 with random selections.

1544

Numeric LM-Cut

Algorithm 1 An algorithm to construct a JG.

Require: State s.
Ensure: E is the set of edges and g is the goal proposition in the JG.

1: E ← ∅.
2: Q← ∅.
3: for all ψ ∈ Fp ∪ F̄n do

4: ĥ(s, ψ), f(ψ)←∞.
5: if s |= ψ then
6: E ← E ∪ {(n∅, nψ, a0)}.
7: f(ψ)← 0.
8: Q← Q ∪ {ψ}.
9: while Q 6= ∅ do

10: ψ ← ψ̂ ∈ argminψ′∈Q f(ψ).
11: Q← Q \ {ψ}.
12: ĥ(s, ψ) = f(ψ).
13: for all a ∈ {a′ ∈ A : ψ ∈ pre(a′) ∧ ∀ψ′ ∈ pre(a′), ĥ(s, ψ′) <∞} do
14: pcf(s, a) = ψ.
15: for all ψ′ ∈ Fp ∪ F̄n : a ∈ supp(ψ′) do
16: E ← E ∪ {(npcf(s,a), nψ′ , a)}.
17: if m̂a(s, a) · cost(a) + ĥ(s, pcf(s, a)) < f(ψ′) then
18: f(ψ′)← m̂a(s, a) · cost(a) + ĥ(s, pcf(s, a)).
19: Q← Q ∪ {ψ′}.
20: g ← ĝ ∈ argmaxg′∈G ĥ(s, g′).
21: return E, g

1545

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Algorithm 2 An algorithm to incrementally construct a JG.

Require: State s and the set of edges E in the JG.
Ensure: E is the set of edges and g is the goal proposition in the updated JG.

1: Q← ∅.
2: for all a ∈ lbl(L) do
3: for all ψ ∈ Fp ∪ F̄n : a ∈ supp(ψ) do

4: if m̂a(s, a, ψ) · costc(a) + ĥ(s, pre(a)) < f(ψ) then
5: f(ψ)← m̂a(s, a, ψ) · costc(a) + ĥ(s, pre(a)).
6: Q← Q ∪ {ψ}.
7: while Q 6= ∅ do
8: ψ ← ψ̂ ∈ argminψ′∈Q f(ψ).
9: Q← Q \ {ψ}.

10: ĥ(s, ψ)← f(ψ).
11: for all a ∈ A : ψ ∈ pre(a) do
12: if ĥ(s, ψ) < maxψ′∈pre(a)\{ψ} ĥ(s, ψ′) then

13: pcf(s, a)← ψ̂ ∈ argmaxψ′∈pre(a)\{ψ} ĥ(s, ψ′).

14: for all ψ′ ∈ Fp ∪ F̄n : a ∈ supp(ψ′) do
15: E ← (E \ {(nψ, nψ′ , a)}) ∪ {(npcf(s,a), nψ′ , a)}.
16: if m̂a(s, a) · costc(a) + ĥ(s, pcf(s, a)) < f(ψ′) then
17: f(ψ′)← m̂a(s, a) · costc(a) + ĥ(s, pcf(s, a)).
18: Q← Q ∪ {ψ′}.
19: g ← ĝ ∈ argmaxg′∈G ĥ(s, g′).
20: return E, g

References

Aldinger, J., & Nebel, B. (2017). Interval based relaxation heuristics for numeric planning
with action costs. In KI 2017: Advances in Artificial Intelligence, pp. 15–28.

Bonet, B. (2013). An admissible heuristic for SAS+ planning obtained from the state
equation. In Proc. IJCAI, pp. 2268–2274.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artif. Intell., 129 (1), 5–33.

Bonet, B., & Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In
Proc. ECAI, pp. 329–334.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2013). A hybrid LP-RPG heuristic for modelling
numeric resource flows in planning. J. Artif. Intell. Res., 46, 343–412.

Eyerich, P., Mattmüller, R., & Röger, G. (2009). Using the context-enhanced additive
heuristic for temporal and numeric planning. In Proc. ICAPS, pp. 130–137.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell., 2, 189–208.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res., 20, 61–124.

1546

Numeric LM-Cut

Gerevini, A., Saetti, A., & Serina, I. (2008). An approach to efficient planning with numerical
fluents and multi-criteria plan quality. Artif. Intell., 172 (8-9), 899–944.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical
state variables. In Proc. AIPS, pp. 303–312.

Helmert, M. (2006). The Fast Downward planning system. J. Artif. Intell. Res., 26, 191–246.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway?. In Proc. ICAPS, pp. 162–169.

Hoffmann, J. (2003a). The metric-FF planning system: Translating ”ignoring delete lists”
to numeric state variables. J. Artif. Intell. Res., 20, 291–341.

Hoffmann, J. (2003b). Utilizing Problem Structure in Planning, A Local Search Approach,
Vol. 2854 of LNCS. Springer.

Illanes, L., & McIlraith, S. A. (2017). Numeric planning via abstraction and policy guided
search. In Proc. IJCAI, pp. 4338–4345.

Imai, T., & Fukunaga, A. (2015). On a practical, integer-linear programming model for
delete-free tasks and its use as a heuristic for cost-optimal planning. J. Artif. Intell.
Res., 54, 631–677.

Katz, M., & Domshlak, C. (2008). Optimal additive composition of abstraction-based
admissible heuristics. In Proc. ICAPS, pp. 174–181.

Keyder, E., & Geffner, H. (2008). Heuristics for planning with action costs revisited. In
Proc. ECAI, pp. 588–592.

Kuroiwa, R., Shleyfman, A., Piacentini, C., Castro, M. P., & Beck, J. C. (2021). LM-cut
and operator counting heuristics for optimal numeric planning with simple conditions.
In Proc. ICAPS. 210–218.

Leofante, F., Giunchiglia, E., Ábrahám, E., & Tacchella, A. (2020). Optimal planning
modulo theories. In Proc. IJCAI, pp. 4128–4134.

Li, D., Scala, E., Haslum, P., & Bogomolov, S. (2018). Effect-abstraction based relaxation
for linear numeric planning. In Proc. IJCAI, pp. 4787–4793.

Nakhost, H., Hoffmann, J., & Müller, M. (2012). Resource-constrained planning: A Monte
Carlo random walk approach. In Proc. ICAPS, pp. 181–189.

Papadimitriou, C. H. (1981). On the complexity of integer programming. Journal of the
ACM, 28 (4), 765–768.

Piacentini, C., Castro, M. P., Ciré, A. A., & Beck, J. C. (2018a). Compiling optimal numeric
planning to mixed integer linear programming. In Proc. ICAPS, pp. 383–387.

Piacentini, C., Castro, M. P., Ciré, A. A., & Beck, J. C. (2018b). Linear and integer
programming-based heuristics for cost-optimal numeric planning. In Proc. AAAI, pp.
6254–6261.

Pommerening, F., & Helmert, M. (2013). Incremental LM-cut. In Proc. ICAPS, pp. 162–
170.

Pommerening, F., Helmert, M., Röger, G., & Seipp, J. (2015). From non-negative to general
operator cost partitioning. In Proc. AAAI, pp. 3335–3341.

1547

Kuroiwa, Shleyfman, Piacentini, Castro, & Beck

Pommerening, F., Röger, G., Helmert, M., & Bonet, B. (2014). LP-based heuristics for
cost-optimal planning. In Proc. ICAPS, pp. 226–234.

Scala, E., Haslum, P., Magazzeni, D., & Thiébaux, S. (2017). Landmarks for numeric
planning problems. In Proc. IJCAI, pp. 4384–4390.

Scala, E., Haslum, P., & Thiébaux, S. (2016a). Heuristics for numeric planning via subgoal-
ing. In Proc. IJCAI, pp. 3228–3234.

Scala, E., Haslum, P., Thiebaux, S., & Ramirez, M. (2016b). Interval-based relaxation for
general numeric planning. In Proc. ECAI, pp. 655–663.

Scala, E., Haslum, P., Thiébaux, S., & Ramı́rez, M. (2020). Subgoaling techniques for
satisficing and optimal numeric planning. J. Artif. Intell. Res., 68, 691–752.

Scala, E., Ramı́rez, M., Haslum, P., & Thiébaux, S. (2016). Numeric planning with disjunc-
tive global constraints via SMT. In Proc. ICAPS, pp. 276–284.

Shin, J., & Davis, E. (2005). Processes and continuous change in a SAT-based planner.
Artif. Intell., 166 (1-2), 194–253.

Wilhelm, A., Steinmetz, M., & Hoffmann, J. (2018). On stubborn sets and planning with
resources. In Proc. ICAPS, pp. 288–297.

Yang, F., Culberson, J., Holte, R., Zahavi, U., & Felner, A. (2008). A general theory of
additive state space abstractions. J. Artif. Intell. Res., 32, 631–662.

Zukerman, M., Jia, L., Neame, T. D., & Woeginger, G. J. (2001). A polynomially solvable
special case of the unbounded knapsack problem. Oper. Res. Lett., 29 (1), 13–16.

1548

