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Introduction

The senior transportation problem (STP) is an optimization
problem in which a fixed fleet of volunteer-operated, het-
erogeneous vehicles from multiple depots must satisfy as
many elderly door-to-door transportation requests as possi-
ble within a fixed time horizon. All requests consist of a one-
to-one pickup and delivery with time windows. Moreover,
as the clients are seniors, a maximum ride time is enforced to
minimize user discomfort and inconvenience. The problem
is similar to the classical dial-a-ride Problem (DARP) or the
pickup and delivery problem with time windows (PDPTW).
However, due to the limited resources, not all requests can
be met within the time horizon and, therefore, the problem is
to select a subset of requests such that the total weight of all
served requests is maximized. Additionally, all drivers op-
erate on a volunteer basis, thus aspects such as multi-depots,
heterogeneous vehicles, and time windows on vehicles also
need to be considered. This document formally defines the
STP and presents related work and a mixed integer program-
ming formulation for the STP.

Problem Definition

The STP is described as follows. Let G = (V,A) be a di-
rected graph with vertex set V = D ∪ C where D represents
the depot vertices and C represents the client vertices. The
set D is partitioned into D+ = {1, ...,M} (starting depot
vertices) and D− = {M + 1, ..., 2M} (ending depot ver-
tices) where M is the number of vehicles. The set C is parti-
tioned into C+ = {2M + 1, ..., 2M +N} (pickup vertices)
and C− = {2M +N +1, ..., 2M +2N} (delivery vertices)
where N is the number of requests. Each vertex i ∈ V is as-
sociated with a time window [Ei, Li] and a service duration,
Si indicating how much time needs to be spent at the loca-
tion. Each arc (i, j) ∈ A has a non-negative routing time
Ti,j satisfying the triangular inequality.

Vehicles and Depots

Let K represent the set of vehicles. Each vehicle k ∈ K is as-
sociated with a starting depot ik+ ∈ D+ and an ending depot
ik− ∈ D−. Each vehicle must start and end at its associated
depots. Multiple vehicles can share the same geographical
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location for depots, however, relocation of vehicles between
depots is not allowed. Each vehicle also specifies its avail-
able time windows. If a vehicle has non-overlapping multi-
ple time windows, then it is considered as multiple vehicles.
Furthermore, vehicles are heterogeneous and differ in capac-
ity, thus each vehicle k ∈ K is associated with a maximum
capacity Pk.

Therefore, each vehicle has known depot locations
(ik+ , ik− ) with Sk = 0, a capacity Pk, and a time window
[Ek, Lk] in which the vehicle must leave the starting depot,
perform all pickup and delivery requests assigned to it and
travel to its ending depot.

Pickup and Delivery Requests

Let R represent the set of requests. Each request, r, is paired
with a positive weight, Wr, denoting the importance of the
request. The total weight of served requests contributes to
the objective function. Each request also specifies the size
of its load, Qr, that represents the number of people travel-
ling or any accompanying mobility aid. A request r ∈ R
has an associated pickup location ir+ ∈ C+ and delivery lo-
cation ir− ∈ C−. Requests are divided into two categories:
outbound and inbound trips. In an outbound trip, the client
is typically travelling from his/her home location to a des-
tination location and in an inbound trip, the client requests
a return trip to their home location. In the context of the
STP, the client only imposes a time window on the delivery
location of an outbound trip and on the pickup location of
an inbound trip. In addition, all clients are restricted to a
maximum ride time, F , on any vehicle.

Let Z be the end of the time horizon. For an outbound
trip r, the time window associated with its pickup loca-
tion is [0, Z], whereas the time window of an inbound trip’s
delivery location is [0, Z]. The load size is positive for a
pickup location vertex and negative for a delivery vertex,
Qir+

= −Qir− , ∀r ∈ R+.

Routing Plan

A route for vehicle k is a sequence of vertices,
[ik+ , ..., ik− ]. A request is served when it is part of a route.
The set of routes must satisfy the following constraints for
the served requests:

1. The pickup and delivery vertices of a request must be on
the same route;
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2. The pickup vertex must precede the delivery vertex;
3. A vertex is visited by at most one vehicle;
4. The load of a vehicle k cannot exceed its maximum ca-

pacity Pk at any point;
5. A route must start and end within the vehicle’s availability

window;
6. No subtours are allowed in any route;
7. The ride time of a client cannot exceed the maximum ride

time F ;
8. All pickup and delivery vertices must be served within

their specified time windows.

Related Work
There are three levels of decisions in the STP: the selection
of requests, the assignment of requests to vehicles, and the
routing of all vehicles. Subsets of these decisions form well-
studied optimization problems.

Selectivity and routing arise in the Team Orienteering
Problem (TOP), extensively reviewed in Gunawan et al.’s
survey paper (Gunawan, Lau, and Vansteenwegen 2016).
The assignment and routing of requests are seen in PDPTW
and DARP. Parragh et al. (Parragh, Doerner, and Hartl
2008a; 2008b) surveyed multiple variations of the pickup-
and-delivery problem while Cordeau & Laporte presented a
survey of solution methods for the DARP (Cordeau and La-
porte 2007). Though in the classical DARP the objective is
to minimize the travel costs, the authors recognize that there
can be other objectives such as maximizing satisfied demand
or quality of service. However, no formulations or refer-
ences to such problems are provided. With the current state-
of-the-art algorithms, PDPTW has been solved to optimality
for problems with up to 209 requests. The DARP, however,
has only been solved to optimality for problems with 96 re-
quests. Most approaches in the literature that have been ap-
plied to these two problems are heuristic-based methods.

To our knowledge, these three decisions have been looked
at together by two groups. Baklagis et al. (Baklagis, Dikas,
and Minis 2016) proposed a branch-and-price framework
while Qiu et al. (Qiu, Feuerriegel, and Neumann 2016) de-
veloped graph search and maximum set packing formula-
tions to tackle this problem. However, these two works ne-
glect three characteristics of the STP: the existence of mul-
tiple depots, the maximum ride time of a client, and hetero-
geneous fleets. As our problem involves volunteer drivers,
these three constraints are crucial.

A MIP Formulation
To provide a formal definition of the STP, we present
a mixed integer programming (MIP) formulation adapted
from that of Ropke & Cordeau (Ropke and Cordeau 2009).
The objective function has been modified to reflect the se-
lective nature of the STP. Constraints (2) and (3) have been
added to model the multi-depots aspect and that not all vehi-
cles have to be used in the final solution. Big M constraints
are introduced in (7), (8), and (9) to model the optionality of
location visits and the sequencing. Constraint (11) is a new
constraint to represent the maximum ride time.

Decision Variables

Our MIP formulation uses three variables: a binary variable
xk,i,j and two continuous variables yk,i and uk,i. xk,i,j = 1
if vehicle k visits location j immediately after visiting lo-
cation i and 0 otherwise. xk,i,j is only instantiated for
(i, j) ∈ A′ ⊆ A where (i, j) ∈ A′ if one of the follow-
ing is true: 1. i ∈ D+ and j ∈ C+, 2. both i and j ∈ C, 3.
i ∈ C− and j ∈ D−, or 4. i ∈ C+ and j ∈ C−. yk,i indicates
the load of the vehicle k after visiting location i ∈ V . It is
non-negative and is less than or equal to the vehicle capacity.
uk,i indicates the time when vehicle k leaves location i ∈ V .
It is non-negative and less than or equal to the maximum
time horizon Z.

MIP Formulation

max
∑
k∈K

∑
r∈R

∑
j∈V

(
Wr × xk,ir+ ,j

)
(1)

s.t.
∑
r∈R

xk,ik+ ,ir+
≤ 1 ∀k ∈ K (2)

∑
r∈R

xk,ir− ,ik− ≤ 1 ∀k ∈ K (3)

∑
k∈K

∑
j∈V

xk,ir+ ,j ≤ 1 ∀r ∈ R (4)

∑
j∈V

(xk,i,j − xk,j,i) = 0 ∀k ∈ K, i ∈ C (5)

∑
j∈V

(
xk,ir+ ,j − xk,j,ir−

)
= 0 ∀k ∈ K, r ∈ R (6)

uk,j ≥ (uk,i + Ti,j + Sj)−M × (1− xk,i,j) ∀k ∈ K, i, j ∈ V (7)

uk,i ≥ Ei −M ×
⎛
⎝1−

∑
j∈V

xk,i,j

⎞
⎠ ∀k ∈ K, i ∈ V (8)

uk,i ≤ Li − Si +M ×
⎛
⎝1−

∑
j∈V

xk,i,j

⎞
⎠ ∀k ∈ K, i ∈ V (9)

uk,ir+
≤ uk,ir− ∀k ∈ K, r ∈ R (10)(

uk,ir− − uk,ir+

) ≤ F ∀k ∈ K, r ∈ R (11)

yk,j ≥ (yk,i +Qi)−M × (1− xk,i,j) ∀k ∈ K, i, j ∈ V (12)

xk,i,j ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A′ (13)

xk,i,j = 0 ∀k ∈ K, (i, j) �∈ A′ (14)
0 ≤ uk,i ≤ Z ∀k ∈ K, i ∈ V (15)
0 ≤ yk,i ≤ Pk ∀k ∈ K, i ∈ V (16)

The objective function (1) maximizes the sum of weights
of served requests. Constraints (2) and (3) ensure that each
vehicle leaves from its starting depot and ends at its ending
depot. Constraint (4) allows for the selectivity of requests.
Constant flow is enforced with Constraint (5). Both the
pickup and delivery locations must be visited by the same
vehicle as enforced through Constraint (6).

In Constraint (7), the travel time and service time of vis-
ited nodes are enforced. Constraints (8) and (9) make sure
that each node that is visited must be visited within its time
window. Constraint (10) imposes that pickup nodes must
precede delivery nodes. Constraint (11) enforces that each
ride does not exceed the maximum ride time. The capacity
Constraint (12) keeps track of the load of each vehicle af-
ter visiting the node. Constraints (13), (14), (15) and (16)
bound the variables x, u and y.
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