
Objective-Based Counterfactual Explanations for
Linear Discrete Optimization

Anton Korikov[0009−0003−4487−9504] and J. Christopher
Beck[0000−0002−4656−8908]

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto,
Canada

{korikov,jcb}@mie.utoronto.ca

Abstract. Given a user who asks why an algorithmic decision did not
satisfy some conditions, a counterfactual explanation takes the form of a
minimally perturbed input that would have led to a decision satisfying
the user’s conditions. Building on recent work, this paper develops tech-
niques to generate counterfactual explanations for linear discrete con-
strained optimization problems. These explanations take the form of a
minimally perturbed objective vector that induces an optimal solution
satisfying the newly stated user constraints. Drawing inspiration from
the inverse combinatorial optimization literature, we introduce a novel
non-convex quadratic programming algorithm to generate such explana-
tions. Furthermore, we develop conditions for the existence of an expla-
nation, addressing a limitation of past approaches. Finally, we discuss
several future directions for explanations in discrete optimization such
as actionable and sparse explanations.

1 Introduction

As the use of automated decision-making systems has increased, research has
turned toward the question of providing explanations for the decisions that are
made [12, 13]. Such explanations enhance people’s ability to interact with auto-
mated systems, improving performance of deployed systems [8] and facilitating
better human oversight [7]. While much of explainability research has focused
on deep learning (e.g., [13]), explainability is also important for model-based
decision making systems, such as those studied in Constraint Programming,
Operations Research, and Artificial Intelligence. Unlike deep learning models,
declarative models are often decomposable into human-understandable symbols
(e.g., costs, weights, priorities, etc.), yet decision algorithms are typically too
complex or involve too many steps for a human to easily follow, making it dif-
ficult for people to contemplate relationships between modelling choices and
algorithmic decisions [12]. Working in the context of AI planning, Smith [21]
therefore proposed that explainability techniques are needed to support human
reasoning about the effects of modeling choices on algorithmic decisions. Ex-
plainable AI Planning (XAIP) has since emerged as a rapidly growing research
area [3], successful both in developing techniques specialized to AI planning [10,

2 A. Korikov and J. C. Beck

4] as well as integrating broader explainable AI (XAI) research (e.g., contrastive
explanations [17]).

In the field of optimization, an explainability literature similar in scope to
XAIP has yet to emerge. Most explainability research in optimization has focused
on explaining why a problem instance is infeasible, typically by identifying min-
imal sets of conflicting constraints [20], and there is little work on explaining
feasible or optimal decisions [12]. Furthermore, integration between explainabil-
ity research in optimization and XAI research at large has been limited.

Aiming to address this gap, our recent work [14, 15] applied the XAI tech-
nique of counterfactual explanations [24] to optimal solutions of discrete opti-
mization problems. Given an explainee1 asking why an algorithmic decision was
not different in a specific way, a counterfactual explanation presents minimally
perturbed inputs to the algorithm that would have led to the decision being dif-
ferent in the way specified. In the framework introduced in our past work [14], an
explainee asks why an optimal solution to a discrete optimization problem did
not satisfy a previously unstated set of constraints. An explanation then takes
the form of a minimally perturbed objective vector, so that, with the perturbed
objective vector replacing the original one, an optimal solution would satisfy
both the initial and new constraints.

Example 1. (Production Scheduling). A manager at a factory examines a month-
ly production schedule computed by an optimization system, the objective of
which is determined by job priority levels and completion times. She asks: “Why
were jobs 1 and 2 not completed in less than one week?”. The explanation shows
her the minimal change to the job priorities in the upcoming month so that jobs
1 and 2 would be completed in under one week in an optimal schedule. After
receiving the explanation, the manager can either choose to keep the initial job
priorities and accept the initial schedule or to produce a new schedule with the
modified priority levels.

The task of generating such objective-based counterfactual explanations is a
valuable research direction for several reasons. Objectives are the result of mod-
eling choices, however, complex optimization algorithms make it difficult for a
person to understand how a particular modeling choice leads to certain solution
features [21]. For instance, in Example 1, the manager desires more information
on how the job priority values (a modeling choice) impact whether jobs 1 and
2 are completed within a week (a solution feature). While such information can
take many forms (see Section 7), one of the standard forms studied in XAI is a
minimal change to a set of problem inputs that induces the solution feature in
question [24]. The explanation in Example 1 takes this form. The goal of pro-
viding such information is to facilitate counterfactual reasoning, a fundamental
human reasoning strategy [11], about an algorithm’s inputs and outputs. Fur-
thermore, when explainees are shown how decisions can be changed, they are
empowered to contest or act to change decisions they believe are wrong [24].

1 A person receiving an explanation.

Counterfactual Explanations for Linear Discrete Optimization 3

Finally, research on counterfactual explanations in machine learning is devel-
oping rapidly, and many opportunities for cross-pollination exist between this
literature and explainable optimization (see Section 7).

Furthermore, an objective-based explanation formulation allows connections
to be made between explanation and inverse combinatorial optimization [6].
Given a possibly suboptimal solution, inverse optimization aims to find the min-
imal change to an optimization problems objectives such that the given solution
becomes optimal. The use of inverse optimization as a methodological basis for
objective-based explanation is discussed further in Sections 2 and 4.

However, while our past work [14, 15] defined an explanation framework for
discrete optimization, the algorithms we used could only compute explanations
for limited forms of questions. Specifically, an explainee could only ask why a
subset of variables did not satisfy a partial assignment, or why a single vari-
able did not satisfy a linear constraint (see Section 2.2). Their experiments also
showed that for these restricted questions, no explanation existed for many nat-
ural problem instances.

Addressing these limitations, we introduce a novel, non-convex quadratic
programming algorithm which can compute explanations for any linear discrete
optimization problem when the user’s question can be represented by linear or
quadratic constraints. This new algorithm is inspired by a well-known algorithm
in inverse combinatorial optimization [25], and capitalizes on recent advances in
commercial solvers. Numerical simulations are performed to evaluate the new
algorithm and demonstrate the explanation process for two combinatorial opti-
mization problems. Additionally, we establish conditions for the existence of an
explanation and apply them to design experimental problem instances. Finally,
several future directions are identified, such as actionable and sparse explana-
tions, and the limitations of the methods in this paper are discussed.

2 Background

2.1 Counterfactual Explanations

Given an algorithm which computes output p from input k, a counterfactual
explanation responds to a contrastive question of the form: “Why p, and not
some other output q ∈ Q?” [24]. Here, Q, called a foil set, is a set of alternative
outputs, and each alternative output q ∈ Q is called a foil. Given such a question,
a counterfactual explanation shows the explainee an alternative input l which
would have led to the output being in Q, with l typically selected such that it
minimally perturbs k.2

2.2 Nearest Counterfactual Explanations

Given an objective vector c ∈ D ⊆ Rz, the purpose of a standard (or forward)
optimization problem FW⟨c, f,X⟩ is to find values for a decision vector x ∈
2 Counterfactual means “contrary to the facts”. The alternative input l and outputs
q ∈ Q are contrary to the initial input k and output p, respectively.

4 A. Korikov and J. C. Beck

X ⊆ Rn which optimize an objective function f : D×X −→ R. In a minimization
problem, the goal is to find an optimal x∗ so that f(c, x∗) = minx{f(c, x) : x ∈
X}. If no optimization direction is specified, we assume minimization.

A counterfactual explanation process for an optimal solution x∗ to a forward
problem FW⟨c, f,X⟩ can be modeled using a Nearest Counterfactual Explana-
tion (NCE) problem [14]. The explainee must first describe a set of alternative
solutions Xψ ⊂ X, and ask the contrastive question “Why x∗ and not a solu-
tion xψ ∈ Xψ?”. As per Section 2.1, Xψ is called the foil set and each solution
xψ ∈ Xψ is called a foil. To define the foil set, the explainee must specify an ad-
ditional set of constraints describing a feasible set ψ ⊂ Rn, with x∗ /∈ ψ. These
additional constraints are called foil constraints, and the foil set is defined as
Xψ = X ∩ ψ.

Example 2. (Production Schedule - Contrastive Question). In Example 1, as-
sume that a schedule for n jobs is generated by solving a FW⟨c, f,X⟩ with a
decision vector x ∈ X ⊆ Nn0 , where xi represents the number of days before
job i is completed. In the objective vector c ∈ D ⊆ Nn0 , ci represents the pri-
ority of job i, and the objective is to minimize f = c · x,3 the sum of priority
weighted completion times. Given n = 4 and c = [4, 4, 3, 3], an optimal solution
is x∗ = [8, 13, 1, 3], prompting the manager to ask why jobs 1 and 2 were not
completed in under one week. In this case, the foil constraints are x1 ≤ 7 and
x2 ≤ 7, and the contrastive question is “Why x∗ and not an xψ ∈ Xψ?", where
Xψ = X ∩ ψ and ψ = {x ∈ Nn0 : x1 ≤ 7, x2 ≤ 7}.

The NCE addresses this type of question by searching for a counterfactual
objective vector d ∈ D ⊆ Rz that would lead to one of the foils xψ ∈ Xψ

being optimal to the modified problem FW⟨d, f,X⟩, such that d is minimally
perturbed from the initial objective vector c. This perturbation is measured
by some norm || · ||, assumed to be L1 if unspecified. If such a d is found, an
explanation is: “A solution xψ ∈ Xψ would have been optimal if the objective
vector had been d instead of c.” Formally, assuming a minimization forward
objective, the NCE⟨c,D, f, ψ, x∗, X, || · ||⟩ is

min
d∈D

||d− c|| (1)

s.t. min
xψ∈Xψ

f(d, xψ) = min
x∈X

f(d, x). (2)

If the optimization direction of the underlying forward problem is maximization,
the minimization terms in constraint (2) are replaced with maximization terms.

Example 3. (Production Scheduling - Explanation). Assume the manager from
Examples 1 & 2 is interested in explanations where job priorities can be adjusted
to integers between 1 and 5, giving D = {d ∈ N4 : 1 ≤ di ≤ 5, ∀i ∈ {1, ..., 4}}.
If an optimal solution to the resulting NCE⟨c,D, f, ψ, x∗, X⟩ is d∗ = [5, 5, 2, 2],
the explanation is “Jobs 1 and 2 would have finished in under a week if their
3 Where clear from context, c · x is used as shorthand for cTx.

Counterfactual Explanations for Linear Discrete Optimization 5

priorities were increased to the maximum level (5) and the priorities of the other
two jobs were both one level lower (2)”.

NCEs provide a general way to model objective-based explanations of optimal
forward solutions. However, previous solution methods could only solve NCEs for
two restricted question types: questions about a single variable [14] and questions
that ask why x∗ did not satisfy a partial assignment [15]. Both methods, in
addition, restrict some components of d from being perturbed. In fact, neither
of these methods can solve the NCE described by Examples 1 - 3. Also, other
than observing that it is necessary for Xψ ̸= ∅ in a feasible NCE, we previously
did not formally study NCE feasibility conditions.

The main contribution of this paper is a novel quadratic programming algo-
rithm which can solve any NCE where the forward problem is a discrete linear
optimization problem, the foil constraints are linear or quadratic, and the norm
is L1. This new algorithm is inspired by inverse combinatorial optimization [25].

2.3 Inverse Combinatorial Optimization

Given a forward problem FW⟨c, f,X⟩ and a feasible target solution xd ∈ X,
the inverse optimization problem is to find a new objective vector d ∈ D ⊆ Rz,
minimally perturbed from c, so that xd becomes optimal. Given some norm || · ||,
the inverse optimization problem INV⟨c,D, f, xd, X, || · ||⟩ [6] is

min
d∈D

||d− c|| (3)

s.t. f(d, xd) = min
x∈X

f(d, x). (4)

The inverse optimization problem can be interpreted as a special case of the
NCE where the foil set is the singleton Xψ = {xd}. Though most inverse opti-
mization algorithms have focused on continuous optimization [5], methods also
exist for discrete optimization, with the standard technique being the InvMILP
algorithm for inverse Mixed Integer Linear Programming (MILP) [25]. Our new
algorithm is inspired by InvMILP .

A MILP⟨c,X⟩ is a forward problem FW⟨c, f,X⟩ with c ∈ D ⊆ Rn, f =
c · x, and X = {x ∈ Rn+ : Ax ≤ b, xI ∈ N0} with A ∈ Rv×n, b ∈ Rv, and
I ⊆ {1, ..., n}. An inverse MILP, INVMILP⟨c,D, xd, X⟩, is an inverse problem
where the forward problem is a MILP⟨c,X⟩, D ⊆ Rn, and the norm is L1.

To solve such inverse MILPs, InvMILP (Algorithm 1) uses an iterative, two-
level approach where a master problem MPINV (5) - (8) is initialized with a
set S0 ⊆ X of known extreme points of conv(X), the convex hull of X. MPINV
then searches for a d, minimizing ||d − c||1, such that xd is at least as good
of a solution to MILP⟨d,X⟩ as any any point in S0. If such a d is found, a
subproblem MILP⟨d,X⟩ is solved to optimality, returning an extreme point x0.
If x0 gives a better objective value for d · x than xd, then x0 is added to S0 and
the algorithm proceeds to the next iteration of MPINV . InvMILP continues
iterating either until the subproblem finds that xd is optimal to MILP⟨d,X⟩,

6 A. Korikov and J. C. Beck

Algorithm 1: InvMILP [25].
1 Inputs: INVMILP⟨c,D, xd, X⟩.
2 Output: d∗.
3 Step 1: Initialize S0 ← ∅.
4 Step 2: Solve MPINV⟨c,D, xd, X,S0⟩.
5 If infeasible , return INFEAS.
6 Otherwise , get di = (c− gi + hi).
7 Step 3: Solve MILP⟨di, X⟩ to get x0.
8 If di,Txd ≤ di,Tx0, stop. Return di = d∗.
9 Otherwise , update S0 = S0 ∪ {x0} and return to Step 2.

in which case d is an optimal solution to the inverse problem, or until the master
problem is found infeasible, which will occur if the inverse problem is infeasible.

To formulate the master problem MPINV (5) - (8), the objective ||d − c||1
is first linearized using g, h ∈ Rn+, such that c − d = g − h: the magnitude of
the change to parameter cj is represented by gj if the change is negative and
hj if it is positive. Constraints (6) force xd to be at least as good a solution to
MILP⟨d,X⟩ as any point in S0. Finally, to avoid any d for which the forward
problem is unbounded, Wang introduces the decision variable u ∈ Rv+ and adds
the constraint ATu ≥ d (7), ensuring that d results in a feasible dual problem.
Thus, MPINV⟨c,D, xd, X,S0⟩, a linear program, is given by

min
u,g,h

g + h (5)

s.t (c− g + h)Txd ≤ (c− g + h)Tx0 ∀x0 ∈ S0 (6)

ATu ≥ c− g + h (7)
(c− g + h) ∈ D, g ∈ Rn+, h ∈ Rn+, u ∈ Rv+. (8)

The complete InvMILP algorithm, which has been proven to terminate finite-
ly [25], is given by Algorithm 1.

Noticeably absent from the discrete inverse optimization literature are algo-
rithms capable of handling changes to constraint parameters. Such constraint
parameter changes would add a degree of difficulty to the inverse optimization
problem since they could induce the existence of multiple alternative feasible
sets. The absence of such constraint-based inverse optimization methods is the
reason that we choose to study objective-based explanations, as opposed to ex-
planations based on changes to both objectives and constraints.

3 Problem Definition

This paper focuses on NCEs where the forward problem is a MILP⟨c,X⟩, the
foil constraints defining Xψ are linear or quadratic, and || · || is L1. Such an NCE
is denoted NCEMILP⟨c,D, ψ, x∗, X⟩, and Examples 1 - 3 are examples of an
NCEMILP , given that the forward scheduling problem is a MILP.

Counterfactual Explanations for Linear Discrete Optimization 7

Definition 1. (NCEMILP). An NCEMILP⟨c,D, ψ, x∗, X⟩ is an NCE⟨c,D, f,
ψ, x∗, X, || · ||⟩ where the forward problem is a MILP⟨c,X⟩, ψ is defined by
linear or quadratic constraints, f = cTx, and || · || is L1. A feasible NCEMILP
solution, d, must not result in an unbounded MILP⟨d,X⟩.

3.1 Existence of an Explanation

We now introduce conditions for the existence of a feasible, non-trivial solution
to an NCEMILP , defined as any d ∈ D feasible to (1)-(2) such that d ̸= 0.
While our past work [15] showed that NCE infeasibility can be an issue, no NCE
feasibility conditions have been established other than the observation that it is
necessary for Xψ ̸= ∅. We formalize a simple, necessary condition (Proposition
1) as well as a sufficient condition (Theorem 1) for NCEMILP feasibility, and
Section 5 uses these conditions to design experimental instances.

Proposition 1 For an NCEMILP⟨c,D, ψ, x∗, X⟩ to have a non-trivial feasible
solution, Xψ cannot lie entirely in the interior region of conv(X).

Proof. If Xψ lies entirely in the interior region of conv(X), Xψ cannot contain
an optimal solution to MILP⟨d,X⟩ for any d ̸= 0. □

Next, we present a sufficient feasibility condition for an NCEMILP . Intu-
itively, assuming minimization, setting a single variable xj to its minimal value
in the feasible set will lead to an optimal MILP⟨d,X⟩ solution if dj is greater
than zero while all other components of d are zero. Formally, for all i ∈ {1, ..., n},
let xi,min = minx{xi : x ∈ X ⊆ Rn+} and xi,max = maxx{xi : x ∈ X ⊆ Rn+}.
Also, let Df,+

j = {d ∈ Rn+ : 0 < dj ≤ dUBj , di = 0 ∀ i ̸= j}, where dUBj =
maxd{dj : d ∈ D} and j ∈ {1, ..., n}.

Theorem 1 An NCEMILP⟨c,D, ψ, x∗, X⟩ has a non-trivial feasible solution if
all following conditions hold:
1. – If the forward optimization direction is minimization, ∃ x̃ψ ∈ Xψ and

∃ j ∈ {1, ..., n} so that x̃ψj = xj,min.
– If the forward optimization direction is maximization, ∃ x̃ψ ∈ Xψ and

∃ j ∈ {1, ..., n} so that x̃ψj = xj,max.
2. Df,+

j ⊆ D.
3. ∃M ∈ R where M > dUBj x̃ψj .

Proof. For any df ∈ Df,+
j , the non-negative term dfj xj is the only component

contributing to the forward objective value (df)Tx. If the forward objective is
minimization, no minimization of dfj xj is possible below dfj x̃

ψ
j . Similarly, if the

forward objective is maximization, no maximization of dfj xj is possible above
dfj x̃

ψ
j . Condition (3) ensures the objective is bounded. Thus, x̃ψ is optimal to

MILP⟨d,X⟩ for any df ∈ Df,+
j . □

An analogous theorem can be defined for negative dfj values that isolate a
non-positive objective component dfj xj , which we omit in the interests of space.

8 A. Korikov and J. C. Beck

4 The NCXplain Algorithm

This section introduces NCXplain, a novel non-convex quadratic programming
algorithm which optimally solves an NCEMILP . Letting S be the set of all ex-
treme points of conv(X) and decision vector xψ ∈ Xψ be a foil, the NCEMILP⟨c,
D, ψ, x∗, X⟩ can be expressed as:

min
d,xψ,u

||d− c||1 (9)

s.t. d · xψ ≤ d · x0 ∀ x0 ∈ S (10)

ATu ≥ d (11)

xψ ∈ Xψ, d ∈ D, u ∈ Rv+. (12)

Constraints (10) force a foil to have a forward objective no worse than any
extreme point of conv(X), and have a non-convex, quadratic left-hand side which
is bilinear in d and xψ. Constraints (11) ensure that MILP⟨d,X⟩ is bounded
by forcing its dual problem to be feasible.

NCXplain (Algorithm 2) follows a similar cutting plane approach to InvMILP
(Algorithm 1), with the main difference being NCXplain’s quadratic master
problem MPNCE (13)-(17) and stopping conditions. The NCEMILP objective
is linearized using d = c−g+h, where g, h ∈ Rn+. Then, taking the NCEMILP (9)
- (12) and relaxing constraints (10) by replacing S with a set of known extreme
points S0 ⊆ S gives the MPNCE ⟨c,D, ψ, x∗, X,S0⟩:

min
g,h,x,u

g + h (13)

s.t. (c− g + h) · x ≤ (c− g + h) · x0,∀ x0 ∈ S0 (14)

ATu ≥ c− g + h (15)
x ∈ Xψ, (c− g + h) ∈ D (16)
g, h ∈ Rn+, u ∈ Rv+. (17)

Given an optimal MPNCE solution (di, xψ,i, ui) at iteration i of NCXplain,
solving a subproblem MILP⟨di, X⟩ to get an optimal extreme point x0,i allows
NCXplain to either show di is an optimal solution to the NCEMILP or add a new
extreme point of conv(X) to S0. The complete NCXplain algorithm is given by
Algorithm 2, and its properties are formalized by Lemmas 1 - 2 and Theorem 2.
Both the master problem and the MILP subproblem can be modelled in Gurobi
9.0+ due to recent advances allowing non-convex quadratic constraints such as
(14) to be expressed directly.

Lemma 1. NCXplain only terminates in Step 3 if di is feasible for NCEMILP .

Proof. (Lemma 1). If di · x0,i = di · xψ,i (Case 1), then the foil xψ,i is optimal to
MILP⟨di, X⟩. If di · x0,i < di · xψ,i but x0,i ∈ Xψ (Case 2), then x0,i is a foil
and optimal to MILP⟨di, X⟩. □

Counterfactual Explanations for Linear Discrete Optimization 9

Algorithm 2: NCXplain.
1 Inputs: NCEMILP⟨c,D, ψ, x∗, X⟩
2 Output: d∗

3 Step 1: Initialize S0 ← x∗.
4 Step 2: Solve MPNCE ⟨c,D, ψ, x∗, X,S0⟩.
5 If infeasible , return INFEAS.
6 Else get (di, xψ,i, ui) with di = (c− gi + hi).
7 Step 3: Solve MILP⟨di, X⟩ to get x0,i.
8 If di · x0,i = di · xψ,i (Case 1)
9 Stop and return d∗ = di.

10 Elif di · x0,i < di · xψ,i and x0,i ∈ Xψ(Case 2)
11 Stop and return d∗ = di.
12 Else (Case 3)
13 Update S0 = S0 ∪ {x0,i}, go to Step 2.

Lemma 2. Let S0,i be S0 during iteration i of NCXplain. If in Step 3, x0,i ∈
S0,i, NCXplain must terminate. If x0,i /∈ S0,i, then NCXplain either terminates
or a new extreme point of conv(X) is added to S0 before iteration i+ 1.

Proof. (Lemma 2). If x0,i ∈ S0,i, then due to constraint (14), xψ,i must satisfy
di ·xψ,i ≤ di ·x0,i, but due to the optimality of x0,i to MILP⟨di, X⟩, di ·xψ,i ≮
di · x0,i. Thus, di · xψ,i = di · x0,i (Case 1), and NCXplain must terminate. If
x0,i /∈ S0,i and NCXplain does not terminate (Case 3), the new extreme point
of conv(X), x0,i, is added to S0. □

Theorem 2 NCXplain will optimally solve an NCEMILP⟨c,D, ψ, x∗, X⟩ or
prove it is infeasible in a finite number of iterations.

Proof. (Theorem 2). Let XMP and XNCE represent the solution sets of MPNCE
(13) - (17) and NCEMILP (9) - (12), respectively. Since the two problems have
the same objective, differ only in constraints (10) and (14), and S0 ⊆ S, then
XNCE ⊆ XMP and MPNCE is a relaxation of NCEMILP . Thus, if an MPNCE is
found infeasible in Step 2, then NCEMILP must also be infeasible. Similarly, if
a solution (di, xψ,i, ui) is optimal to an MPNCE and di is feasible to NCEMILP ,
then di must also be optimal to NCEMILP .

By these observations and Lemmas 1 and 2, in any iteration, NCXplain either
terminates having proven the NCEMILP is infeasible, terminates having found
an optimal NCEMILP solution d∗, or continues after adding a new extreme
point of conv(X) to S0. Because S is a finite set, the number of iterations before
S0 = S is finite, and when S0 = S, Lemma 2 implies that NCXplain must
terminate since any extreme point x0,i obtained in Step 3 is in S. □

10 A. Korikov and J. C. Beck

5 Experimental Method

Simulations demonstrating our explanation approach and testing NCXplain were
carried out based on two forward MILP problems. These experiments were per-
formed in three steps, focusing on the last:

1. Optimally solving a MILP⟨c,X⟩ instance to get x∗.
2. Simulating a contrastive question and creating a NCEMILP⟨c,D, ψ, x∗, X⟩

instance.
3. Optimally solving the NCEMILP⟨c,D, ψ, x∗, X⟩ with NCXplain.

We do not numerically compare NCXplain to alternatives because it is the first
algorithm capable of solving an NCEMILP .

5.1 Forward Problems

The two forward MILP problems were the 0-1 knapsack problem (KP) and the
single machine scheduling with release dates problem, 1|rj |

∑
wjCj . The KP was

selected because it is NP-complete [19], has a simple structure, and is easy to
understand. The scheduling problem was chosen because it matches a potential
use case for NCEMILP based explanations (Examples 1 - 3) and is a relatively
simple, though strongly NP-Hard [16] problem.

0-1 Knapsack Problem (KP) We are given a set of n ∈ N items, a profit
vector c ∈ Nn0 , a weight vector w ∈ Nn0 , and a knapsack capacity W ∈ N0,
with W <

∑n
i=1 wi. A decision variable xi ∈ {0, 1}, i ∈ {1, ..., n}, is assigned

to 1 if item i is included in the knapsack and 0 otherwise, and the complete
KP is maxx{c · x : x ∈ X}, X = {x ∈ {0, 1}n : w · x ≤ W}. Problem
instances of sizes n ∈ {250, 500, 1000} were generated using independent ran-
dom uniform distributions ci ∈ [1, R] and wi ∈ [1, R] with R = 1000, where
W = max{⌊P

∑n
i=1 wi⌋, R} with P = 0.5.

Scheduling Problem (1|rj|
∑

wjCj) There are n ∈ N jobs with each job
i ∈ {1, ..., n} having a processing time qi ∈ N, a weight4 ci ∈ N, a release
date ri ∈ N0, and a completion time tci ∈ N0. The objective is to minimize the
weighted sum of all completion times, c · tc, given that no job can start before
its release date or be interrupted and no two jobs can be processed at the same
time. Letting xi,t ∈ {0, 1} be a decision variable which is 1 if job i starts at time
t and 0 otherwise, and T be an upper bound on latest completion time of any

4 Though w is typically used for job weights, we use c instead to keep notation con-
sistent throughout the paper.

Counterfactual Explanations for Linear Discrete Optimization 11

job, a MILP model for 1|rj |
∑
wjCj is

min
x

n∑
i=1

T−qi∑
t=0

ci(t+ qi)xi,t (18)

s.t.
T−qi∑
t=0

xi,t = 1, ∀ i = 1, ..., n (19)

n∑
i=1

t∑
s=max(0,t−qi+1)

xi,s ≤ 1, ∀ t = 0, ..., T − 1 (20)

ri−1∑
t=0

xi,t = 0, ∀ i ∈ {1, ..., n} (21)

xi,t ∈ {0, 1}n×(T−1). (22)

Constraints (19) force each job to start exactly once. Constraints (20) ensure no
two jobs are processed at the same time, and constraints (21) enforce the release
dates. Problem instances of sizes n ∈ {6, 9, 12} were generated using random
uniform distributions qi ∈ [1, 10], ci ∈ [1, 10], and ri ∈ [0, ⌊αQ⌋], where α = 0.3
and Q =

∑n
i=1 qi, and the time horizon T was calculated as T = ⌊αQ⌋+Q.

5.2 NCEMILP Instances

Knapsack Questions Given a subset of m items Sψ ⊆ {1, ..., n}, |Sψ| = m,
Sψ ̸= ∅, and a parameter βψ ∈ (0, 1], the simulated question asked “Why were
at least βψm items from Sψ not included in the knapsack?”. The foil set corre-
sponding to this question is Xψ = {x ∈ X :

∑
j∈Sψ xj ≥ βψm}. Questions were

simulated with β = 0.75 by randomly selecting m items to form Sψ such that
x∗ /∈ Xψ.

Scheduling Questions The simulated question asked why m randomly se-
lected jobs M ⊆ {1, ..., n} were not scheduled earlier, as in Examples 1 - 3.
Letting t∗ ∈ [0, T]n denote job start times in x∗, a tψ ∈ [0, T]m was created
with tψj representing the maximal counterfactual start time of job j ∈ M such
that rj ≤ tψj < t∗j . Then, the question asked “Why was each job j ∈ M not
completed by (tψj + qj), respectively?”. This question is represented with the foil
set Xψ = {x ∈ X :

∑T−qj
t=0 txj,t ≤ tψj ∀ j ∈ M}. For each job j ∈ M, the

maximal counterfactual start time tψj was randomly selected from the interval
[tψ,LBj , tψ,UBj], where tψ,UBj = t∗j − 1, tψ,LBj = ⌈rj + θ(t∗j − 1− rj)⌉, and θ = 0.5.

Non-Empty Foil Sets For both problems, after a foil set was generated, it
was checked whether Xψ was non-empty. If Xψ was empty, the question data
was re-randomized until a non-empty foil set was found, though such cases were
rare.

12 A. Korikov and J. C. Beck

(a) Knapsack NCEMILP Problems (b) Scheduling NCEMILP Problems

Fig. 1: NCXplain Runtime Distributions.

Counterfactual Objectives The set of feasible counterfactual objectives was
set to D = {d ∈ Nn0 : 0 ≤ di ≤ cUBi ∀i ∈ {1, ..., n}}, where cUBi ∈ N is the
maximum value for ci in a forward instance (cUBi = 1000 for KP, cUBi = 10 for
1|rj |

∑
wjCj). Given that X is finite for both forward problems, it is impossible

for any d ∈ D to result in an unbounded MILP⟨d,X⟩, so constraints (15) were
omitted in these simulations.

NCEMILP Feasibility Any NCEMILP in these experiments meets Conditions
(1)-(3) of Theorem 1, and thus has a non-trivial feasible solution df ∈ Df,+

j .
Intuitively, any df ∈ Df,+

j implies that in the KP, there is no benefit from
including any items other than item j, while in the scheduling problem, there is
no benefit from achieving an earlier completion time for any jobs other than job
j. Specifically, Condition (2) is satisfied since Df,+

j ⊆ D for any j ∈ {1, ..., n}.
Condition (1) is met by the KP instances since the maximal value of any xj is
1, and any foil xψ ∈ Xψ must contain at least one component xψj = 1. For the
scheduling problem, taking any schedule xψ ∈ Xψ and left-shifting it causes the
first job in the schedule, which we will call job j, to start at its release date
rj . Condition (1) is thus satisfied since there exists a schedule in the foil set
where job j is completed at its minimal possible time, tcj,min = rj + qj . Finally,
Condition (3) is met since dfj xj,max is bounded from above by cUB for KP, while
for scheduling, dfj t

c
j,min is bounded from above by cUB(rj + qj).

5.3 Computational Details

Python 3.9.7 and Gurobi 9.5 were used to implement NCXplain for NCEMILP
instances, as well as to solve the initial MILP instances. Twenty instances
were tested for each value of (n,m) reported in Section 6, using a single core
of a 2.6 GHz Intel Core i7-10750H CPU. A time limit of 30 minutes was used

Counterfactual Explanations for Linear Discrete Optimization 13

n m tF,µ tF,σ tNCE tMP tSP nITR nS
250 3 0.003 0.001 0.5 0.5 0.01 6 20

10 0.003 0.001 0.9 0.8 0.02 8 20
33 0.003 0.001 6.8 6.6 0.07 28 20

100 0.003 0.001 862.4 853.2 1.16 860 11
500 3 0.004 0.001 270.8 259.6 1.16 443 17

10 0.005 0.001 271.5 259.1 1.39 469 17
33 0.004 0.001 278.4 270.0 0.96 361 17

100 0.004 0.001 778.0 770.5 1.18 355 12
1000 3 0.008 0.003 360.7 343.4 2.11 376 16

10 0.011 0.003 721.3 648.5 10.14 1129 12
33 0.008 0.003 371.3 351.6 2.25 420 16

100 0.008 0.003 655.7 640.2 3.00 345 13
Table 1: Knapsack Explanation Results

for NCXplain, and if an NCEMILP was not solved before this time limit, its
runtime was recorded as 30 minutes. Thus, the NCXplain runtimes should be
interpreted as lower bounds on the true runtimes.

6 Experimental Results

Figure 1 illustrates the NCXplain runtime distributions. For NCXplain, Tables
1 and 2 report the mean runtime (tNCE), mean number of iterations (nITR),
the number of instances solved optimally before the time limit (nS), as well as
the mean cumulative time in the subproblem (tSP) versus the master problem
(tMP). For the initial forward problem MILP⟨c,X⟩, these tables show the
runtime mean (tF,µ) and standard deviation (tF,σ). All runtimes are in seconds.

No instances were infeasible, demonstrating the successful use of Theorem 1.
The number of instances solved (nS) shows that most NCEMILP instances were
solved in under 30 minutes, though the solution times for the initial forward
problem (tF,µ) were much faster.

As indicated by the values of tMP versus tSP , NCXplain spends 90%-99.9%
of its runtime solving master problems (Step 2, Algorithm 2), showing that these
non-convex, quadratic problems are significantly harder than the MILP⟨d,X⟩
subproblems (Step 3, Algorithm 2). That is, it is computationally cheaper to
add a new point to S0 than to solve MPNCE . A direction for future work may
thus be to reduce the number of master problem iterations with a variation of
NCXplain which adds multiple points to S0 for each iteration of MPNCE .

While a larger n almost always resulted in longer NCEMILP solve times,
the effects of m (the number of items or jobs in a user question), as well as
compound effects of n and m, are difficult to observe from our data. Future
work should study these effects more rigorously, including investigating whether
any phase transitions exist. The existence of phase transitions may explain why
the scheduling NCEMILPs with n = 6 became easier as m increased, while those
with n = 12 became harder (Figure 1b, Table 2).

14 A. Korikov and J. C. Beck

n m tF,µ tF,σ tNCE tMP tSP nITR nS
6 2 0.006 0.002 0.9 0.9 0.01 4 20

3 0.005 0.002 0.6 0.6 0.02 4 20
4 0.005 0.002 0.2 0.2 0.02 5 20

9 2 0.010 0.002 89.5 89.3 0.08 7 20
3 0.011 0.005 467.0 466.6 0.15 13 16
4 0.012 0.008 150.8 150.3 0.19 15 19

12 2 0.025 0.022 694.8 694.5 0.13 7 15
3 0.016 0.005 1499.0 1498.4 0.24 13 5
4 0.021 0.013 1365.4 1364.6 0.33 17 6

Table 2: Scheduling Explanation Results

7 Limitations and Future Work

Algorithmic Improvements Currently, NCXplain can only explain small MILP
problems. However, Bodur et al. [1] recently showed that InvMILP can be sped
up by modifying Step 3 of Algorithm 1 to add non-extreme point solutions of
MILP⟨c,X⟩ to S0 after finding these points using early stopping criteria and
trust regions. Additionally, Duan and Wang [9] extend InvMILP with a heuristic
to parallelize cut generation and compute feasible solutions as upper bounds to
the inverse MILP problem. These extensions to InvMILP can likely be adapted to
NCXplain to improve performance and produce feasible solutions to NCEMILP
before the problem is solved optimally.

Minimizing Decision Perturbation A limitation of the NCEMILP is that an
optimal solution to MILP⟨d∗, X⟩ may be arbitrarily far from x∗, the decision
being explained. Given an arbitrarily large change to x∗, an explainee may find
it difficult to evaluate the effects of perturbing c on the decision, especially if
multiple iterations of explanation and objective modification are performed. A
future modification to the NCEMILP and NCXplain could add a term |x∗−xψ|
to the objective (9), thus optimizing for smaller perturbations to both c and x∗.

Actionability and Sparsity The concepts of actionability [22] and sparsity [18]
could be adapted from machine learning (ML) to NCEMILP explanations. Since
some objective components ci may be easier to change, or more actionable, than
others, a weighted L1 norm wT ||d − c||1, w ∈ Rn+, could replace objective (9),
with weight wi representing the ease of changing parameter ci. To induce sparsity,
an L0 term measuring the number of perturbed objective components could be
added to objective (9), since an explainee may prefer explanations perturbing
fewer componenets of c.

Meaningful Objectives A fundamental assumption in an NCEMILP is that the
objective parameters represented by c and d are meaningful to the explainee.
Otherwise, the explainee requires an additional explanation of what these pa-
rameters mean before the NCEMILP explanation is useful.

Counterfactual Explanations for Linear Discrete Optimization 15

8 Related Work

Our past work [14, 15] discussed in Section 2, introduced the NCE (1) - (2) and
solved two restricted versions of it. The only other work we are aware of which
uses counterfactual explanations for a model-based optimization problem is that
of Brandao et al. [2], in which inverse optimization is applied in its classical form
to explain a path planning problem. As mentioned in Section 2.3, the inverse
optimization problem can be interpreted as a special case of an NCE where the
explainee is interested in exactly one alternative solution xd. Our approach is
more general since we enable an explainee to define a set of alternative solutions
using linear or quadratic constraints.

In the inverse optimization literature, Wang [26] formulates a variant of in-
verse optimization which is similar to the NCEMILP . However, this variant
assumes d is continuous, while the NCEMILP allows the domain of d ∈ D to
be an integer or mixed-integer set, such as the set of integer job priorities in
the scheduling experiments. Additionally, other than the equivalent of bilinear
constraints (10), all constraints in Wang’s problem must be linear, while the
NCEMILP allows constraints (12) defining Xψ and D to be quadratic. Most
notably, while providing interesting theoretical contributions, Wang’s work does
not connect inverse optimization with explanation, the focus of our paper.

Finally, an emerging literature on counterfactual explanations exists in ML
[23], providing potential for cross-polination with explainability research in dec-
larative optimization, such as the actionability and sparsity extensions proposed
in Section 7.

9 Conclusion

This paper presents techniques to respond to users asking why an optimal solu-
tion x∗ to a linear discrete optimization problem MILP⟨c,X⟩ did not satisfy
some previously unstated constraints. We address such questions by formulating
the NCEMILP (9)-(12), the solution to which is a counterfactual explanation
d: an alternative objective vector minimally perturbed from c so that an op-
timal solution to MILP⟨d,X⟩ satisfies the additional user constraints. After
establishing feasibility conditions for the NCEMILP , we introduce NCXplain, a
non-convex, quadratic cutting-plane algorithm which solves the NCEMILP . Ex-
periments are performed to simulate explanations for two discrete optimization
problems, evaluating NCXplain and identifying next steps for improving it. Fi-
nally, we discuss future directions for counterfactual explanations in optimization
such as actionability, sparsity, and minimizing decision perturbation.

References

1. Bodur, M., Chan, T.C., Zhu, I.Y.: Inverse mixed integer optimization: Polyhedral
insights and trust region methods. INFORMS Journal on Computing (2022)

16 A. Korikov and J. C. Beck

2. Brandao, M., Coles, A., Magazzeni, D.: Explaining path plan optimality: Fast ex-
planation methods for navigation meshes using full and incremental inverse opti-
mization. In: Proceedings of the International Conference on Automated Planning
and Scheduling. vol. 31, pp. 56–64 (2021)

3. Chakraborti, T., Sreedharan, S., Kambhampati, S.: The emerging landscape of ex-
plainable automated planning & decision making. In: IJCAI. pp. 4803–4811 (2020)

4. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations
as model reconciliation: Moving beyond explanation as soliloquy. In: IJCAI (2017)

5. Chan, T.C., Mahmood, R., Zhu, I.Y.: Inverse optimization: Theory and applica-
tions. arXiv preprint arXiv:2109.03920 (2021)

6. Demange, M., Monnot, J.: An introduction to inverse combinatorial problems.
Paradigms of Combinatorial Optimization: Problems and New Approaches pp.
547–586 (2014)

7. Doshi-Velez, F., Kortz, M.: Accountability of AI under the law: The role of expla-
nation. Tech. rep., Berkman Klein Center Working Group on Explanation and the
Law, Berkman Klein Center for Internet and Society (2017)

8. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

9. Duan, Z., Wang, L.: Heuristic algorithms for the inverse mixed integer linear pro-
gramming problem. Journal of Global Optimization 51(3), 463–471 (2011)

10. Eiffer, R., Cashmore, M., Hoffmann, J., Magazzeni, D., Steinmetz, M.: A New
Approach to Plan-Space Explanation: Analyzing Plan-Property Dependencies in
Oversubscription Planning. In: AAAI (2020)

11. Epstude, K., Roese, N.J.: The functional theory of counterfactual thinking. Per-
sonality and social psychology review 12(2), 168–192 (2008)

12. Freuder, E.: Explaining ourselves: human-aware constraint reasoning. In: AAAI
(2017)

13. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Inter-
pretability beyond feature attribution: Quantitative testing with concept activation
vectors (TCAV). In: International conference on machine learning. pp. 2668–2677.
PMLR (2018)

14. Korikov, A., Shleyfman, A., Beck, J.C.: Counterfactual explanations for
optimization-based decisions in the context of the GDPR. In: International Joint
Conferences on Artificial Intelligence (IJCAI) (2021)

15. Korikov, A., Beck, J.C.: Counterfactual Explanations via Inverse Con-
straint Programming. In: Michel, L.D. (ed.) 27th International Confer-
ence on Principles and Practice of Constraint Programming (CP 2021).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 210,
pp. 35:1–35:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CP.2021.35,
https://drops.dagstuhl.de/opus/volltexte/2021/15326

16. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
In: Annals of discrete mathematics, vol. 1, pp. 343–362. Elsevier (1977)

17. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence 267, 1–38 (2019)

18. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency. pp. 607–617 (2020)

19. Pisinger, D., Kellerer, H., Pferschy, U.: Knapsack problems. Handbook of Combi-
natorial Optimization p. 299 (2013)

Counterfactual Explanations for Linear Discrete Optimization 17

20. Senthooran, I., Klapperstueck, M., Belov, G., Czauderna, T., Leo, K., Wallace,
M., Wybrow, M., de la Banda, M.G.: Human-Centred Feasibility Restoration. In:
Michel, L.D. (ed.) 27th International Conference on Principles and Practice of Con-
straint Programming (CP 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 210, pp. 49:1–49:18. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CP.2021.49,
https://drops.dagstuhl.de/opus/volltexte/2021/15340

21. Smith, D.E.: Planning as an iterative process. In: Twenty-Sixth AAAI Conference
on Artificial Intelligence (2012)

22. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In:
Proceedings of the Conference on Fairness, Accountability, and Transparency. pp.
10–19 (2019)

23. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learn-
ing: A review (2020), NeurIPS Workshop on ML Retrospectives, Surveys and Meta-
Analyses

24. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: Automated decisions and the GDPR. Harv. JL & Tech.
31, 841 (2017)

25. Wang, L.: Cutting plane algorithms for the inverse mixed integer linear program-
ming problem. Operations Research Letters 37(2), 114–116 (2009)

26. Wang, L.: Branch-and-bound algorithms for the partial inverse mixed integer linear
programming problem. Journal of Global Optimization 55(3), 491–506 (2013)

