
Relaxed Decision Diagrams for Cost-Optimal Classical Planning

Margarita P. Castro†, Chiara Piacentini†, Andre A. Cire‡, and J. Christopher Beck†
†Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8

‡Department of Management, University of Toronto Scarborough, Toronto, Canada, ON M1C 1A4

Abstract

We explore the use of multivalued decision diagrams (MDDs)
to represent a relaxation of the state-transition graph for
classical planning problems. The relaxation exploits the ex-
act state transitions up to a pre-defined memory limit and
uses value-accumulating semantics when the limit is reached.
Moreover, it provides admissible heuristic values by means of
an efficient shortest-path algorithm, which is applied in anA∗

algorithm to find cost-optimal plans. We also consider a vari-
ant of A∗ that takes advantage of feasible solutions extracted
by the MDD to reduce the number of states that need to be
evaluated. Our experimental evaluation shows that the MDD-
based heuristic, despite being computationally more expen-
sive, can be more informative than some state-of-the-art ad-
missible heuristics.

1 Introduction
We present a new admissible heuristic based on a relaxed
multivalued decision diagram (MDD). A relaxed MDD is
a graph of restricted size that over-approximates the set of
feasible solutions to a discrete problem. Relaxed MDDs
have been largely applied to mathematical programming
and discrete optimization, in particular for obtaining opti-
mization bounds for combinatorial and scheduling problems
(Hoda, Van Hoeve, and Hooker 2010; Bergman et al. 2016;
Kinable, Cire, and van Hoeve 2017).

This paper defines relaxed MDDs for a classical planning
task and uses them to compute a novel admissible heuristic
to reach a goal node. We explore the relationship between re-
laxed MDDs and existing techniques to solve classical plan-
ning problems, showing that a relaxed MDD is an abstrac-
tion of the transition graph for a planning task and that our
heuristic dominates the well-known hmax heuristic (Bonet
and Geffner 2000).

The MDD-based heuristic is used in a variant of A∗ in-
spired by a branch-and-bound tree search. We enhance the
A∗ search algorithm with a bounding mechanism that re-
duces the number of states expanded via bounds on plan cost
derived from feasible plans extracted from the MDD. The
new algorithm is therefore suitable for finding both feasible
and optimal plans.

The paper is organized as follows. Section 2 defines a
classical planning task and presents related work. Section
3 defines a relaxed MDD for classical planning and Section

4 presents the construction procedure. Section 5 relates re-
laxed MDDs to transition graphs and compares them to other
heuristics in classical planning. Section 6 explains the imple-
mentation and our preliminary results are presented in Sec-
tion 7. Lastly, Section 8 discusses the approach and possible
directions for future research.

2 Background
This section presents a formal definition of a cost-optimal
classical planning, introduces the notation used in this paper,
and reviews work in the classical planning literature that is
related to our relaxed MDD approach.

2.1 Cost-Optimal Classical Planning
We consider cost-optimal classical planning tasks with non-
zero cost actions using the STRIPS formalism. A planning
task is a tuple Π = 〈P,A, I,G〉, whereP is the set of propo-
sitional variables,A is the set of actions, I ⊆ P is the initial
state, and G ⊆ P is the set of goal conditions. A state s is
defined as a subset of propositional variables, s ⊆ P .

An action a ∈ A is a tuple 〈pre(a), add(a), del(a), c(a)〉,
where pre(a) ⊆ P is the set of preconditions, add(a) ⊆ P
is the set of add effects, del(a) ⊆ P is the set of delete
effects, and c(a) > 0 is the action cost. An action a is ap-
plicable to a state s if the preconditions are satisfied in s,
i.e., pre(a) ⊆ s. The application of an action a to a state
s produces a successor state s′ given by s′ = φ(a, s) =
(s \ del(a)) ∪ add(a).

A solution of a planning task Π is a plan, i.e., a se-
quence of actions such that each action is applicable in its
predecessor state and the last state satisfies the goal condi-
tions. Formally, π = (a0, . . . , an) is a plan if for each ac-
tion ai in π, pre(ai) ⊆ φ(ai−1, φ(ai−2, . . . φ(a0, I))), and
G ⊆ φ(an, φ(an−1, . . . φ(a0, I))) = φ(π, I).

The cost of a plan π is the sum of all the actions appearing
in π, i.e., c(π) =

∑n
i=0 c(ai). A cost-optimal plan π̂ is a plan

with minimum cost, i.e, c(π̂) ≤ c(π) for any plan π of Π.
Given a planning task Π, we define a delete-free plan-

ning task Π+ where delete effects are ignored. Formally, the
delete-free task is given by Π+ = 〈P,A+, I,G〉, where
for each a ∈ A there is an action a′ ∈ A+ such that
pre(a′) = pre(a), add(a′) = add(a) and del(a′) = ∅. A
delete relaxation of a planning task Π refers to its associated
delete-free task Π+.

2.2 Related Work in Planning
Our work is closely related to heuristics based on graphical
structures, such as Graphplan (Blum and Furst 1997), red-
black relaxed plans (Katz, Hoffmann, and Domshlak 2013),
and abstractions (Edelkamp 2001; Helmert et al. 2007). We
also discuss the use of decision diagrams for symbolic A∗
search in classical planning (Torralba, Linares López, and
Borrajo 2016) and the differences with our approach.

Graphplan (Blum and Furst 1997) is a compact data struc-
ture for encoding planning problems. It is a directed and
layered graph with alternating propositional and action lay-
ers, in which nodes represent propositions and actions, re-
spectively. Edges connect a proposition to an action node if
the proposition is a precondition of the action, and an ac-
tion to a proposition node if the proposition belongs to the
add or delete effects of the action. Graphplan derives the ad-
missible heuristic hG by taking the index of the first layer
where the goal conditions appear without any mutex rela-
tion (Bonet and Geffner 2000). A relaxed version of Graph-
plan, called the Relaxed Planning Graph (RPG), represents
the delete relaxation of a planning task. Relaxed plans can
be extracted from the RPG in polynomial time and yield the
non-admissible heuristic hFF (Hoffmann and Nebel 2001).

While the delete relaxation provides several other heuris-
tics, e.g., hmax, hadd (Bonet and Geffner 2001) and hLM -cut

(Helmert and Domshlak 2009), ignoring the delete effects
can result in a poor heuristic estimation. Red-black planning
heuristics overcome some of the problems of delete relax-
ation heuristics by dividing the propositional variables into
two groups: one that follows the semantics of the delete re-
laxation and one that takes into account the delete effects of
actions (Domshlak, Hoffmann, and Katz 2015). Our relaxed
MDD heuristic follows a similar idea in the sense that we
partially ignore delete effects, though our approach to doing
so is by considering nodes as the union of plan states.

Abstraction-based heuristics are also related to our work.
An abstraction maps the search space into a smaller one in
which an optimal path from an abstract initial state to an ab-
stract goal state is an admissible heuristic. Different abstrac-
tion mappings result in different heuristics, for example pat-
tern database heuristics (Edelkamp 2001) and merge-and-
shrink (Helmert et al. 2007; Sievers, Wehrle, and Helmert
2014). Our relaxed MDD representation of a planning task
can be viewed as an abstraction, as detailed in Section 5.1.

Binary decision diagrams (BDDs) have been used in plan-
ning to succinctly represent sets of states (symbolic states).
Using this representation, a symbolic version of the A∗

search algorithm achieves state-of-the-art performance in
cost-optimal classical planning (Torralba, Linares López,
and Borrajo 2016). Several admissible heuristics have been
proposed to guide the search over the symbolic state-space,
e.g., abstraction-based heuristics (Edelkamp, Kissmann, and
Torralba 2012; Torralba, López, and Borrajo 2013). In con-
trast, our approach uses relaxed MDDs to compute admissi-
ble heuristics on a standard A∗ search algorithm.

Lastly, the planning literature has used edge-value multi-
valued decision diagrams (EVMDD) to represent cost func-
tions of planning problem with state-dependent actions costs
(Keller et al. 2016; Geißer, Keller, and Mattmüller 2016).

3 Relaxed MDDs for Planning
In this section, we demonstrate the use of relaxed MDDs as a
graphical structure to approximate the state-space transition
graph. We first define an MDD for classical planning and
then extend the definition to relaxed MDDs.

Consider τ as an upper bound on the number of actions in
a cost-optimal plan. An MDD for a classical planning task Π
is a graphical structure that, starting from the initial state I,
represents the set of reachable states after applying at most
τ actions. Specifically, an MDDM = (N , E) is a layered
directed acyclic graph where N is the set of nodes and E is
the set of edges. Each node u has a label σ(u) that represents
a reachable state, i.e., σ(u) ⊆ P is the set of propositions in
the state. In particular, the set of nodes is divided into layers
N = {N0,N1, ...,Nτ}, where layer N0 = {r} has a single
node, called the root node, and σ(r) = I.

Given an edge e = (u, v) ∈ E , its tail and head nodes
are given by ρ(e) = u and κ(e) = v, respectively. For a
given layer Nt (0 ≤ t < τ), all outgoing edges are directed
to a node in layer Nt+1, i.e., ρ(e) ∈ Nt iff κ(e) ∈ Nt+1.
Each edge e ∈ E has a label θ(e) that indicates its associ-
ated action. Given two nodes u ∈ Nt and v ∈ Nt+1 there
is an edge e = (u, v) connecting them iff the action associ-
ated to the edge, a = θ(e), is applicable in σ(u) and node
v represents the successor state, i.e., pre(a) ⊆ σ(u) and
φ(a, σ(u)) = σ(v).

Thus, an MDD for a task Π is a layered state-transition
graph. A node u ∈ Nt (0 ≤ t ≤ τ) is associated to a state
that can be reached after applying t actions from the initial
state I. Specifically, any path (e0, ..., et) inM from r to a
node u ∈ Nt represents a plan π = (θ(e0), ..., θ(et−1)) that
starts at I and reaches state σ(u).

The construction of such an MDD is, however, impracti-
cal. First, the number of reachable states in a planning task Π
can grow exponentially with the number of variables. More-
over, the number of actions needed for any cost-optimal plan
is unknown, i.e., the minimum number of layers that is re-
quired for its construction is also not available in advance.

We define instead relaxed MDDs, which are constructed
by imposing an additional limit on the number of nodes per
layer, i.e., its width w(M) := max{|Nt| : 0 ≤ t ≤ τ}
is bounded by a given parameterW . To enforce this bound,
each node in a relaxed MDD represents an approximation of
the union of one or more states as opposed to a single state.
The edges emanating from a node represent all possible ac-
tions that can be applied to the union of the states. Two ex-
amples of MDDs are depicted in Figure 2 and construction
details are presented in Section 4.

3.1 A Relaxed MDD-based Heuristic
Consider a relaxed MDDM and a node u ∈ N . Let δin(u)
and δout(u) be the set of edges directed to and emanat-
ing from node u, respectively. An edge e is in δout(u) if
pre(θ(e)) ⊆ σ(u). Then, the proposition label of node u is
defined as

σ(u) :=
⋃

e∈δin(u)

φ(θ(e), σ(ρ(e))). (1)

Given a planning task Π and a relaxed MDD with width
w(M) ≥ 1, we can compute the cost to reach each node
u ∈ N from r, using a shortest path algorithm. Let ω∗(u) be
the minimum cost to reach a node u ∈ N , with ω∗(I) = 0.
Consider NG ⊆ N as the set of goal nodes, i.e., u ∈ NG iff
G ⊆ σ(u). Then, the relaxed MDD-based heuristic hM is
given by the minimum cost to reach any goal node:

hM := min {ω∗(u) : u ∈ NG} . (2)

3.2 Example
Consider the planning task Π = 〈P,A, I,G〉 depicted in
Figure 1. The set of propositions is P = {q1, q2, b1, b2, c},
where qi indicates if the robot is in room i ∈ {1, 2},
bi if the block is in room i, and c if the robot is carry-
ing the block. The task has six unit cost actions, A =
{m1,m2, p1, p2, d1, d2}, where m1 represents moving the
robot from room 1 to room 2, m2 is the opposite move, and
for each i ∈ {1, 2}, pi and di correspond to picking-up and
dropping the block in room i, respectively. The initial state
and goal conditions are illustrated in Figures 1a and 1b, re-
spectively.

Room 1 Room 2

x �

(a) Initial State, I = {q1, b2}.

Room 1 Room 2

�

(b) Goals, G = {b1}.

Figure 1: Planning domain description.

Figure 2 shows two MDDs for this planning task, with
τ = 4. For each MDD, the edge labels correspond to appli-
cable actions and the nodes denote the set of propositions,
as described in equation (1). The first MDD (Figure 2a) has
one node per reachable state (i.e., it is an exact MDD). The
node outlined in black represents a goal node and the bold
path corresponds to the shortest path with cost hM = 4.

q1, b2

q2, b2

q1, b2 q2, c

q2, b2 q1, c

q1, b2 q2, c q1, b1

m1

m2 p2

m1

d2
m2

m2 p2 m1 d1

(a) Exact MDD, w = 3.

q1, b2

q2, b2

q1, q2, b2, c

q1, q2, b1, b2, c

m1

m2

p2

m1 d1m2 d2p2

(b) Relaxed MDD, w = 1.

Figure 2: MDDs for the example in Section 3.2.

In the second relaxed MDD (Figure 2b), nodes represent
the union of one or more states. In this case, the shortest
path in the relaxed MDD reaches a goal node after applying
3 actions, i.e., hM = 3.

As depicted in Figure 2b, width-one relaxed MDDs have
a similar structure to relaxed planning graphs (RPG) (Bonet
and Geffner 2000). However, the RPG completely ignores
delete effects while our relaxed MDD partially considers
them. For example, the second node in the relaxed MDD
omits proposition q1, while the RPG would consider it.

4 Relaxed MDD Construction
We present a top-down algorithm to construct a relaxed
MDD for a classical planning task Π. Our construction pro-
cedure, presented in Algorithm 1, results in a relaxed MDD
with width at mostW and with a finite number of layers.

The top-down procedure is as follows. Starting with a sin-
gle node in the first layer, σ(r) = I, the procedure itera-
tively constructs one layer at a time by performing three op-
erations. The first operation, UPDATENODES, updates the
nodes in a given layer by computing the set of achiev-
able propositions and calculating the cost to reach the node.
Moreover, this step updates the heuristic value if a node is
a goal node. The second operation, FINDAPPLICABLEAC-
TIONS, finds the set of actions applicable to the nodes and
eliminates any action that does not add any information for
the heuristic computation. The procedure creates an edge for
each action and directs all edges to a single node in the fol-
lowing layer. Lastly, operation SPLITNODES decides how
to partition the incoming edges of the new layer to create at
mostW nodes.

Algorithm 1 Relaxed MDD construction
1: procedure CONSTRUCTMDD(Input: Π,W)
2: t = 0, hM =∞
3: repeat
4: UPDATENODES(Nt, hM)
5: FINDAPPLICABLEACTIONS(Nt)
6: t = t+ 1
7: SPLITNODES(Nt,W)
8: until TERMINATE(Nt)
9: return hM

In each iteration, the algorithm checks whether or not we
should construct a new layer via the TERMINATE procedure.
When the construction is completed, Algorithm 1 returns the
heuristic value. The following sections explain each of the
procedures presented above.

4.1 Updating Nodes
For a given layer Nt, the procedure updates each node
u ∈ Nt to represent its set of propositions, σ(u), and the
minimal cost to reach u. The procedure also updates the
heuristic value hM if we encounter a goal node.

As described in Section 3, each node u ∈ N is associated
with a label σ(u) that corresponds to the set of propositions
that are true in at least one state encoded by u. This label is
computed by setting σ(r) = I and applying recursion (1).

Each node u ∈ Nt is also associated with a set of la-
bels that represents the minimum cost to reach u. Inspired
by the reachability analysis used in hmax, we compute the
minimum cost to reach each proposition represented in u.

For each p ∈ σ(u), let ω(u, p) be the cost to reach propo-
sition p in node u. We associate a cost label ν(e, p) to each
incoming edge e that has proposition p in its resulting state,
i.e., p ∈ φ(θ(e), ρ(e)). Then, ω(u, p) is calculated by setting
ω(r, p) = 0 to all p ∈ I, and applying the recursion

ω(u, p) := min{ν(e, p) : e ∈ δinp (u)}, (3)

where δinp (u) represents the set of edges in δin(u) that have
p in their resulting state.

For a given edge e and a proposition p ∈ φ(θ(e), ρ(e)),
we calculate ν(e, p) by considering (i) the cost to apply ac-
tion θ(e) and (ii) the cost to have p in the resulting state. Let
ν(e) be the minimum cost of applying action a = θ(e) in
node v = ρ(e). We have that ν(e) is the cost of action a plus
the cost of its most expensive precondition on v, i.e.,

ν(e) := c(a) + max{ω(v, q) : q ∈ pre(a)}. (4)

Then, for each edge e ∈ δinp (u), we compute ν(e, p) as the
minimum cost to have p. To do so, we identify two cases. If
action a = θ(e) adds proposition p, then the cost to reach p
is given by ν(e). If a does not add p, the cost of p in the tail
node v = ρ(e) might be larger than the cost of any precon-
dition of a in v. In that case, we compute ν(e, p) by consid-
ering the cost of the most expensive associated proposition.
The edge cost is hence:

ν(e, p) :=

{
ν(e) p ∈ add(a),
max{ν(e), c(a) + ω(v, p)} o.w.

To summarize, procedure UPDATENODES iterates over
all the nodes u ∈ Nt and updates labels σ(u) and ω(u, p)
for all p ∈ σ(u).

The procedure will also compute a heuristic estimate
whenever a node u ∈ Nt is a goal node, i.e., G ⊆ σ(u).
Given a goal node u, we compute its minimum cost, ω∗(u),
as the cost to reach its most expensive goal proposition, i.e.,

ω∗(u) := max{ω(u, p) : p ∈ G}. (5)

Then, we update the heuristic value hM as

hM = min
{
hM, ω∗(u)

}
. (6)

4.2 Applicable and Essential Actions
For a given layer Nt, the FINDAPPLICABLEACTIONS pro-
cedure iterates over each node u ∈ Nt to find its applicable
actions. The procedure eliminates actions that do not con-
tribute to the computation of the heuristic value and creates
an edge for each remaining action.

Given a node u ∈ Nt, let A(u) be the set of its applicable
actions, i.e., A(u) = {a ∈ A : pre(a) ⊆ σ(u)}. This set
can be computed, for instance, by iterating over all actions
a ∈ A and checking if their preconditions are satisfied.

It is possible to identify if an action a ∈ A(u) will lead
to a state that will be part of the heuristic computation. We
denote these actions byM-essential.
Definition 4.1. Given a relaxed MDD M and a node u ∈
Nt, we say that an action a ∈ A(u) is M-essential if its
successor state v = φ(a, σ(u)) satisfies all the following
conditions:

(i) State v has not been reached before with less cost, i.e., for
each node u′ ∈ Nt′ (t′ ≤ t) either v 6⊆ σ(u′) or v ⊆ σ(u′)
and ω(v, p) ≤ ω(u′, p) for all p ∈ v.

(ii) State v has a minimum cost less than the current heuristic
value, i.e., c(a) + max{ω(u, p) : p ∈ pre(a)} < hM.

(iii) State v has a minimum cost less than a given incumbent
η∗, i.e., c(a) + max{ω(u, p) : p ∈ pre(a)} < η∗.

We develop a set of rules to identify if an action is M-
nonessential, i.e., it violates at least one of the conditions
in Definition 4.1. Consider a node u ∈ Nt, an applicable
action a ∈ A(u), and its corresponding edge e. Action a is
M-nonessential if any of the following rules hold:

Rule 1. The resulting state adds no new propositions and
the cost of each proposition does not decrease, i.e., ∀p ∈
add(a) : p ∈ σ(u) ∧ ν(e, p) ≥ ω(u, p).

Rule 2. The minimum cost of the resulting state is higher
than the current heuristic value, i.e., ν(e) ≥ hM.

Rule 3. The minimum cost of the resulting state is higher
than a given incumbent, i.e., ν(e) ≥ η∗.

Note that Rules 2 and 3 are direct applications of con-
ditions (ii) and (iii) in Definition 4.1. However, Rule 1 is
a necessary, but not sufficient, condition to check if a node
has been reached before (i.e., condition (i) in Definition 4.1).
The main advantage of these rules, in comparison to the con-
ditions in Definition 4.1, is that we can check them in poly-
nomial time during the construction procedure iterating over
each edge only once.

Any action a ∈ A(u) that satisfies one of the above rules
is removed from the set of applicable actions, i.e., A(u) :=
A(u) \ {a}. After we have checked that each remaining ap-
plicable action a in node u is notM-nonessential, we gen-
erate a new edge e with label θ(e) = a that emanates from
u and points to node u0 in the next layer.

4.3 Splitting Nodes
The SPLITNODES procedure is similar to the one used for
solving sequencing problems in the literature (Andersen et
al. 2007). The procedure, shown in Algorithm 2, splits the
nodes in a layer Nt until it reaches the maximum sizeW or
there is no more splitting needed.

Algorithm 2 Split states procedure
1: procedure SPLITNODES(Input:Nt,W)
2: if hM =∞ and t > 10 andW > 1 then
3: W =W − 1
4: Q = {p1, ..., p|P|} priority queue
5: while Q.notEmpty() and |Nt| <W do
6: p = Q.pop()
7: for u ∈ Nt do
8: if δinp (u) = ∅ or δinp (u) = δin(u) then
9: continue

10: Create node v andNt = Nt ∪ {v},
11: redirect arcs using δin(v) = δinp (u) and
12: δin(u) = δin(u) \ δinp (u).
13: if |Nt| =W then break

Starting with a layer Nt = {u0} with a single node, the
procedure iteratively splits the nodes such that each result-
ing node represents fewer states. Specifically, the procedure
considers a priority queue of propositions. In each iteration,
the procedure chooses a proposition p from the queue (line
6). Then, it iterates over all the nodes u ∈ Nt to check if
there is any node with incoming edges that can be parti-
tioned such that one partition results in a node with p and
the other in a node without p (line 8). In such case, we cre-
ate a new node v where all edges that represent states where
p is true are now directed to v (line 10-12). The procedure
ends when there are no more propositions in the queue or we
have reached the width limitW .

The priority queue Q divides the propositions into three
priority levels. The first level corresponds to goal proposi-
tions, i.e., any propositions in G. The second level consid-
ers landmark propositions (Hoffmann, Porteous, and Sebas-
tia 2004). We use a simple reachability algorithm to identify
propositional landmarks. Finally, the last level corresponds
to propositions that are not in the previous levels. Inside each
level, we rank the propositions in lexicographical order.

In addition, SPLITNODES checks if the heuristic has been
updated (line 2), i.e., if a goal node has been reached in a pre-
vious layer. If that is not the case, we reduce the maximum
width by 1. The width reduction guarantees the termination
of the algorithm (Section 4.4). Our implementation starts the
width reduction after 10 layers, which gave the best perfor-
mance in our testing phase. WhenW = 1, the construction
procedure continues ignoring delete effects.

While there are many ways to split nodes that we intend
to investigate in the future, this algorithm has two main ad-
vantages. First, this splitting procedure guarantees that there
are no two nodes in a layer where one node is a subset of the
other. This is due to the fact that we start with a single node
and that, in each iteration, we separate the edges according
to their propositions. The second advantage is that, if W is
big enough, all nodes will represent a single reachable state.

4.4 Termination Condition
The last component of our top-down construction algorithm,
TERMINATE, checks whether we need to create a new layer
in our relaxed MDD by observing whether or not procedure
FINDAPPLICABLEACTIONS created any new edges.

If the planning task Π is solvable (i.e., a goal state is
reachable from I), it is sufficient to check if procedure
FINDAPPLICABLEACTIONS created a new edge. Specifi-
cally, if the task is solvable, we will eventually reach a goal
node, which will make hM < ∞. Since c(a) > 0 for all
a ∈ A, Rule 2 (Section 4.2) guarantees that there exists a
layer Nt such that all emanating edges have a cost greater
than hM. The same is true if we have an upper bound on the
cost-optimal plan (η∗ < ∞) and we use Rule 3 to remove
M-nonessential actions.

If the planning task is infeasible, the procedure will still
terminates due to the width reduction (Section 4.3). Since
our implementation ignores delete effects when we reach
W = 1, we can guarantee that there exists a layer Nt in
which A(u) = ∅ for each u ∈ Nt.

5 Relationship with Existing Techniques
This section explores the relationship of our relaxed MDD-
based heuristic with existing approaches. We start by relat-
ing the relaxed MDD structure to a transition graph.
Definition 5.1. (Helmert et al. 2007) A transition graph is
a 5-tuple T = 〈S,L,Σ, sI ,SG〉 where S is a finite set of
states, L is a finite set of transition labels, Σ is a the set of
(labeled) transitions Σ ⊆ S × L × S , sI is the initial state,
and SG is the set of goal states SG ⊆ S.

Consider a relaxed MDD M = (N , E) and a planning
task Π = 〈P,A, I,G〉. Note that a relaxed MDD is in
fact a transition graph. Specifically, we can represent a re-
laxed MDD as a transition graph T (M) = 〈N ,A, E , r,NG〉
where the set of states is given by the nodes inM, the set of
action corresponds to the labels, the edges define the tran-
sitions, and the initial and goal states are given by r ∈ N
and NG ⊆ N . In particular, each edge e ∈ E is associated
with the 3-tuple 〈ρ(e), θ(e), κ(e)〉, which is an element of
N ×A×N .

Helmert et al. (2007) define a transition graph induced by
a planning task Π as T (Π) = 〈S,A,Σ(Π), I,SG〉, where S
is the set of states of a planning task, Σ(Π) represents the set
of valid transitions and SG is a subset of states such that s ∈
SG iff G ⊆ s. In particular, any transition 〈s, a, s′〉 ∈ Σ(Π)
is such that pre(a) ⊆ s and s′ = φ(a, s).

Consider an unbounded (i.e., W = ∞) relaxed MDD
M∞ = {N∞, E∞}. The transition graph given by M∞,
T (M∞), is in fact a transition graph induced by the plan-
ning task Π. Any path from r to a node u ∈ NG is a valid
plan, and the shortest path represents a cost-optimal plan
with cost equal to hM.

5.1 Relaxed MDDs and Abstractions
Definition 5.2. (Helmert et al. 2007) An abstraction of
a transition graph T is a pair 〈T ′, α〉 where T ′ =
〈S ′,L,Σ′, s′I ,S ′G〉 is a transition graph called the ab-
stract transition graph and α : S → S ′ is a function
called the abstraction mapping. Specifically, we have that
〈α(s), a, α(s′)〉 ∈ Σ′ for all 〈s, a, s′〉 ∈ Σ, α(sI) = s′I , and
α(sG) ∈ S ′G for all sG ∈ SG .

Abstraction-based heuristics are admissible heuristics cal-
culated as shortest paths on an abstract transition graph. Sev-
eral works have studied different ways to define abstractions
(Edelkamp 2001; Helmert et al. 2007) and how to combine
them (Katz and Domshlak 2010).

We now show that an MDD relaxation is equivalent to
an abstraction of an unbounded MDD. For theoretical pur-
poses, assume that the construction procedure ignores Rule
2 (Section 4.2) and we have an upper bound on the optimal
plan cost, η∗. Note that these two requirements do not affect
the heuristic computation over a relaxed MDD.
Proposition 5.1. Consider a classical planning task Π. Let
M∞ = (N∞, E∞) and M = (N , E) be two relaxed
MDDs constructed using Algorithm 1, where M∞ has an
unbounded width, andM has a maximum width 1 ≤ W <
∞. For every node u ∈ N∞t there exists a node u′ ∈ Nt′
(t′ ≤ t) such that
σ(u) ⊆ σ(u′) and ω(u, p) ≥ ω(u′, p) ∀p ∈ σ(u). (7)

Proof. We prove the above statement by induction on the
number of layers ofM∞. Consider the base case where t =
0. By construction we have that N∞0 = N0 = {r}, where
σ(r) = I. Thus, condition (7) is satisfied.

Now consider that (7) is valid for all nodes u ∈ N∞t , for
a given t ≥ 0. Let v ∈ N∞t+1 and e ∈ δin(v) be any edge
directed to v. Take a = θ(e) and u = ρ(e), i.e., u ∈ N∞t . By
hypothesis, there exists a node u′ ∈ Nt′ (t′ ≤ t) such that
(7) is satisfied for node u. By construction, a is an applicable
action on u′. It might be, however, M-nonessential for u′.
If a 6∈ A(u′), then Rule 1 (Section 4.2) has to be true and
u′ satisfies (7) for node v. If a ∈ A(u′), then there exists a
node v′ ∈ Nt′+1 such that the edge associated to a directs
to it. Note that v′ satisfies (7) for v due to (4) and (3).

A direct result of the above proposition is the admissibil-
ity of our relaxed MDD based heuristic.
Theorem 5.1. Given a classical planning task Π and a max-
imum size W ≥ 1, Algorithm 1 computes an admissible
heuristic hM.

Proof. Consider a relaxed MDD M = (N , E) with 1 ≤
W < ∞ constructed using Algorithm 1 and an unbounded
MDDM∞ = (N∞, E∞). From Proposition 5.1, for every
goal node u ∈ N∞G there exists a goal node u′ ∈ NG such
that

ω(u′, p) ≤ ω(u′, p) ∀p ∈ G,
and so ω∗(u′) ≤ ω∗(u). Therefore, hM ≤ hM∞ = h∗, where
h∗ is the perfect heuristic.

We now use Proposition 5.1 to create an abstract map-
ping from an unbounded MDD to a relaxed one, as shown in
Proposition 5.2. In other words, we show that the transition
graph defined over a relaxed MDD is an abstract transition
graph for a planning task Π.
Proposition 5.2. Consider a planning task Π, a relaxed
MDDM = (N , E) with maximum widthW ≥ 1, and the
transition graph induced byM, T (M) = 〈N ,A, E , I,NG〉.
There exists an abstraction mapping α such that 〈T (M), α〉
is an abstraction of T (M∞), whereM∞ = (N∞, E∞) is
an unbounded MDD for Π.

Proof. We define an abstraction mapping α : N∞ → N
recursively over the layers ofM∞. We start with α(r∞) =
r and assume that we have defined α for all nodes in layer
N∞t . For each node v ∈ N∞t+1 take any incoming edge e ∈
δin(v) and its tail u = ρ(e). Consider u′ = α(u) ∈ N . If
there exists an edge e′ ∈ δout(u′) such that θ(e) = θ(e′),
then α(v) = ρ(e′), otherwise α(v) = u′.

Due to Proposition 5.1, the abstraction mapping α is
such that every goal node u ∈ N∞G is mapped to a goal
node u′ ∈ NG . Moreover, every transition 〈u, θ(e), v〉 de-
fined by an edge e ∈ E∞ has a corresponding transi-
tion 〈α(u), θ(e), α(v)〉 in T (M). Note that any transition
〈α(u), θ(e), α(v)〉 that defines a self loop (i.e., α(u) =
α(v)) is not explicitly defined by any edge in M. How-
ever, we can extend the set of transitions in T (M) without
impacting the heuristic value. Specifically, we can consider
E ′ = E ∪Eloops, where every edge in e ∈ Eloops corresponds
to an edge that violates Rule 1 (Section 4.2).

5.2 hM vs. hmax

We now compare our heuristic with the simplest admissi-
ble critical path heuristic, hmax (Haslum and Geffner 2000).
This heuristic computes the minimum cost to reach each
proposition from the initial state. Specifically, consider h(p)
as the minimum cost to reach p ∈ P , and h(a) as the mini-
mum cost to use action a. These values are computed recur-
sively using the formula below and setting h(p) = 0 for all
p ∈ I, h(p) =∞ for any p 6∈ I, and h(a) =∞.

h(p) := min
a∈A(p)

{h(p), h(a)} ∀p ∈ P

h(a) := c(a) + max{h(q) : q ∈ pre(a)} ∀a ∈ A

Then, the hmax heuristic is define as

hmax := max{h(p) : p ∈ G}

Proposition 5.3. Consider a classical planning task Π and a
relaxed MDDM = (N , E) with a maximum sizeW ≥ 1.
Then, hM ≥ hmax.

Proof. First, consider the following statement:

h(p) ≤ ω(u, p) ∀u ∈ N , p ∈ σ(u) (8)

We prove (8) by induction over the layers ofM. By con-
struction, (8) holds for N0 = {r}. Now consider that (8) is
true for all nodes u ∈ Nt and p ∈ σ(u). Consider a node
v ∈ Nt+1 and a proposition p ∈ σ(v). By construction,
there exists an edge e ∈ δin(v) such that ν(e, p) = ω(v, p).
Consider action a = θ(e) and node u = ρ(e) ∈ Nt. There
are two cases, either p ∈ add(a) or not. If p ∈ add(a), then

ν(e, p) = c(a) + max{ω(u, q) : q ∈ pre(a)}
≥ c(a) + max{h(q) : q ∈ pre(a)} ≥ h(p)

If p 6∈ add(a), then p ∈ σ(u). Since u ∈ Nt, we have
h(p) ≤ ω(u, p). Then it follows that

h(p) + c(a) ≤ ω(u, p) + c(a) ≤ ν(e, p)

Therefore, h(p) ≤ v(e, p), which proves (8). Since (8) is
true, it follows that hM ≥ hmax.

6 Implementation
This section presents how we can exploit the graphical struc-
ture given by the relaxed MDD to improve the search pro-
cedure. Our approach constructs M in each state s of the
search and uses hM as an admissible heuristic in a modi-
fied A∗ search algorithm. Specifically, we add a bounding
mechanism to A∗, similar to the branch-and-bound algo-
rithm used in Integer Programming (IP) solvers. To do so,
we useM to find feasible plans while computing hM. The
following sections explain how we can find a feasible plan
using a relaxed MDD and how the cost of this plan enhances
the A∗ search algorithm.

6.1 Finding Feasible Plans in a Relaxed MDD
Our implementation considers two different procedures to
find a feasible plan using the relaxed MDD graphical struc-
ture. The first procedure extracts a relaxed plan, denoted by

πh, with equal cost to the heuristic value and checks its va-
lidity. The second approach selects a subset of nodes from
the relaxed MDD that represent single states and uses them
to find a valid plan πb. For both procedures, plan extraction
and validation occur after the relaxed MDD construction.

Consider a relaxed MDD M for a state s with at least
one minimum cost goal node uG . We follow the edges ofM
backward to find a path from uG to s. The resulting path is
a relaxed plan, πh, that has the same cost as our heuristic
hM. If πh is a valid plan, we create a plan π that is valid for
the planning task. Consider πI as the plan from I to state
s given by the search algorithm. Then, we create a feasible
plan π concatenating πI and πh, i.e., π = (πI , πh).

The second method allocates a fixed number of nodes,
We ≤ W , in each layer ofM to participate in the extraction
of a valid plan. For each layer Nt, let N e

t be a set of nodes
that represent a single state (i.e., exact nodes), and N r

t be a
set of node that represent the union approximation of mul-
tiple states (i.e., relaxed nodes), where Nt = N e

t ∪ N r
t .

Specifically, we modify SPLITNODES such that in each
layer Nt we arbitrarily select We edges emanating from
nodes ue ∈ N e

t to be the exact nodes in N e
t+1. If an ex-

act node ue is a goal node, then we extract a plan taking
any path from r to ue. Since all parent nodes of an exact
node are exact, we can guarantee that the extracted plan is
valid. As previously, we generate a valid plan for the plan-
ning task by concatenating the extracted plan πb with πI ,
i.e., π = (πI , πb).

While having more exact nodes increases the chances of
finding a feasible plan πb, the heuristic quality can be nega-
tively affected. Since the maximum width does not change,
the union approximation of the relaxed nodes is weaker.
Hence, we use the second method only to find a first fea-
sible plan.

Note that whenever we find a valid plan π (created with
either πh or πb), we can use its cost as an upper bound η∗
in the construction procedure. Specifically, for a state s in
the search, the value of η∗ in Rule 3 (Section 4.2) is set to
c(π)− c(πI), where πI is the plan to reach s from I.

6.2 Exploiting Upper Bounds in A∗

To take advantage of the information represented by the
MDD, we propose a modified A∗ search algorithm that con-
siders the cost of feasible solutions. In particular, our ap-
proach is inspired by the branch-and-bound algorithm im-
plemented in IP solvers. Branch-and-bound uses a linear
programming (LP) relaxation as an admissible heuristic to
guide the search. Whenever the LP relaxation gives an in-
teger solution, the algorithm prunes any node in the search
for which the LP relaxation provides a cost greater than the
upper bound. Similarly to the branch-and-bound algorithm,
our approach uses feasible extracted plans to create an upper
bound and prune states in the search space.

We incorporate this idea in A∗, proposing a variant that
we call A∗BB . In every expanded state, A∗BB checks the fea-
sibility of a relaxed plan calculated by a relaxed MDDM.
The cost of such a valid plan plus the cost of reaching the
state is an upper bound on the cost of the optimal solution.

3

53 3 5

54 5 4 3

44 5 54 4

44 4 55 5

Figure 3: Nodes explored by A∗ (in black and gray) and
A∗BB (in black). Dashed nodes are states that do not need
to be inserted in the search queue by A∗BB . Nodes circled in
red are the ones with a feasible plan πh. Node labels indicate
the f -value of a state.

In A∗, states with a f -value1 strictly greater than the opti-
mal solution are never expanded, thus, the benefit of pruning
states with a greater f -value than the upper bound is limited
to memory saving during search.

The real advantage ofA∗BB arises whenM extracts a fea-
sible plan πh with the same cost as hM for a state s. If s
is retrieved from the open list, the search terminates and the
minimum-cost plan is π = (πI , πh). The termination crite-
ria is correct since s has the minimum f -value among the
states in the list, i.e., f = hM + g is a lower bound for the
minimum-cost plan. Since π = (πI , πh) is a valid plan with
cost equal to f , this proves that π is a minimum-cost plan.
Notice that A∗BB can be used with any admissible heuristic
(consistent or not) that has a plan extraction procedure.

Therefore, A∗BB may avoid expanding states with an f -
value equal to the optimal solution, while A∗ would need to
explore them. Figure 3 shows an example of the difference
in states expanded by A∗ and A∗BB . Of course, in the worst
case,A∗BB will still look at the same number of states asA∗.

7 Preliminary Results
We now present an empirical analysis on the relaxed MDD
heuristic using the LPRGP planning system (Coles et al.
2008). We experiment with both A∗ and A∗BB algorithms,
where ties are broken preferring higher h-values. We con-
sider three variations of relaxed MDDs, where we limit the
maximum width to 256, 512 and 1024, respectively. This
analysis includes a comparison between our heuristics and
hmax and the operator counting heuristic hoc (Pommeren-
ing et al. 2014). We implemented a STRIPS version of hoc
with landmarks and state equation constraints. The LP mod-
els are solved using CPLEX v12.7. All experiments are run
on a Xeon 3.5GHz processor machine, with a 2 GB memory
limit and a 30 minute time limit.

We selected 6 domains with positive action costs, from
the last two International Planning Competitions (IPCs): no-
mystery, wood-working, floortile, tetris, transport, and visit-
all. No-mystery and visit-all have unary action costs, while

1We assume the usual heuristic search notation: f = h+ g.

100 101 102 103 104 105
100

101

102

103

104

105

states exp. A∗BB

#
st

at
es

ex
p.
A
∗

hM256

hM512

hM1024

Figure 4: Number of states expanded using A∗BB and A∗.

the other domains feature non-uniform action costs. These
domains were chosen due to their range in difficulty and to
illustrate the strong and weak aspects of our approach.

7.1 A∗ vs. A∗BB

We compare A∗ with A∗BB using our relaxed MDD heuris-
tics hM256, hM512 and hM1024 (with W ∈ {256, 512, 1024}, re-
spectively).

Figure 4 shows the number of expanded states (logarith-
mic scale) for each search algorithm and heuristic. A point in
the plot represents an instance and its (x, y) coordinate the
number of states expanded by A∗BB and A∗, respectively.
Figure 4 shows that A∗BB expands fewer (or equal) number
nodes than A∗ in all instances, especially for instances that
need a small number of expansions to find the cost-optimal
plan. In fact, on average A∗BB reduces the number of ex-
panded nodes by 1%, 2% and 6% when using heuristic hM256,
hM512 and hM1024, respectively. Similar results are found for
number of states evaluated, where A∗BB decreases the num-
ber of states evaluated by 1%, 4% and 12% when hM256, hM512
and hM1024 are used, respectively.

As expected, the benefit of using A∗BB is more prominent
when using a bigger width. A larger relaxed MDD is more
likely to provide valid relaxed plans.

7.2 hM vs. Existing Techniques
We now compare the performance of our proposed relaxed
MDD heuristics against hmax and hoc. We use A∗BB as the
search algorithm for the hM heuristics, while we employ
A∗ for both hmax and hoc. Table 1 shows the number of
instances that each approach solves to optimality (# Opti-
mal plans) and the number of instances for which a relaxed
MDD heuristic finds a feasible plan (# Valid plans). It should
be noted that, due to the nature of A∗, on the problems for
which hmax and hoc fail to find optimal solutions, they also
do not find feasible solutions.

With respect to the number of optimal plans, hoc achieves
the best coverage, followed by hmax and the hM heuristics.
In particular, hM256 performs best among the relaxed MDD
heuristics, finding an optimal plan on 15 instances.

Table 1: Coverage performance.

Optimal plans # Valid plans

hM256 hM512 hM1024 hoc hmax hM256 hM512 hM1024

floortile 20 0 0 0 2 2 19 20 20
no-mystery 20 8 8 8 15 7 10 10 11
tetris 20 3 3 3 13 5 15 14 15
transport 20 1 0 0 1 5 12 15 14
visit-all 20 1 1 1 6 0 8 11 13
wood-working 20 2 2 2 5 2 19 19 19
TOTAL 120 15 14 14 42 21 83 89 92

To understand these results, Table 2 compares the run time
and number of states expanded over the instances that all
heuristics solve to optimality. The symbol # indicates the
number of instances considered. We can see that the hM
heuristics have the highest average run time. However, we
observe an opposite trend in terms of the number of states
expanded: all hM heuristics expand orders of magnitude
fewer states than hmax and a similar number as hoc. The
only exception is wood-working, where hM expands signif-
icantly fewer states than hoc.

Table 2: Average run time and states expanded.

Average run time (sec)

hM256 hM512 hM1024 hoc hmax

no-mystery 7 20.5 24.8 27.9 0.6 49.0
tetris 3 45.3 55.4 69.4 1.1 3.1
wood-working 2 307.0 192.1 97.0 32.2 223.9

Average # states expanded

no-mystery 7 35.6 15.1 6.4 45.6 35053.6
tetris 3 360.7 193.7 99.7 33.0 6326.0
wood-working 2 553.5 117.0 20.5 2238.5 97394.0

While relaxed MDD-based heuristics seem to be highly
informative, their computational cost is currently too high to
make them competitive with state-of-the-art heuristics.

We also point out the strength of our approach to find valid
plans. As shown in Table 1, all relaxed MDD-based heuris-
tics have a high coverage when finding a valid plan. Specif-
ically, our approach has an exceptional performance finding
feasible plans in floortile, the only domain where none of the
hM heuristics found an optimal solution.

With respect to solution quality, Table 3 shows the mean
relative error (MRE) for the best feasible solution found by
each MDD-based heuristic. We compute the MRE for in-
stances where all relaxed MDD heuristics found a feasible
plan. For a given heuristic and instance, we compute the rel-
ative error as (UB − LB)/UB, where UB is the best in-
cumbent found the heuristic and LB is the best known lower
bound, i.e., either the optimal solution or the best heuristic
value in the initial state. The table shows that hM1024, on aver-
age, finds the best quality plan. However, on most domains,
the feasible plans are still quite far from optimal.

8 Conclusions and Future Works
This work presents a new heuristic to solve cost-optimal
classical planning problems based on relaxed multivalued

Table 3: Mean Relative Error for all domains.

Domain # hM256 hM512 hM1024

floortile 19 0.61 0.58 0.59
no-mystery 10 0.04 0.06 0.03
tetris 14 0.18 0.18 0.18
transport 12 0.63 0.59 0.55
visit-all 8 0.31 0.46 0.46
wood-working 19 0.25 0.25 0.22
All instances 82 0.36 0.36 0.35

decision diagrams (MDDs), a graphical structure that pro-
vides an adjustable approximation of the state-space transi-
tion graph. We present an algorithm that constructs relaxed
MDDs and calculates an admissible heuristic. Moreover, we
show how to exploit the graphical structure to find valid
plans and enhance an A∗ search algorithm by considering
upper bounds. We relate this graphical structure to transition
graphs and show that a relaxed MDD is an abstraction of the
state transition graph. Moreover, we show that our heuristic
is strictly more informative than the hmax heuristic.

Preliminary results in a subset of IPC domains show that
relaxed MDD heuristics can considerably reduce the num-
ber of states expanded during search. However, the effort to
compute a relaxed MDD currently makes the approach un-
competitive.

Future directions include an extension of our framework
to SAS+ planning and a more in-depth study of the relation-
ship between relaxed MDD and abstractions. In particular,
we want to exploit MDDs to represent projections and com-
bine them using a Lagrangian decomposition method (Fisher
2004) similarly to the cost-partition framework (Katz and
Domshlak 2010).

References
Andersen, H. R.; Hadzic, T.; Hooker, J. N.; and Tiedemann,
P. 2007. A constraint store based on multivalued decision
diagrams. In CP 2007. Springer. 118–132.
Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. N. 2016. Decision Diagrams for Optimization. Springer
International Publishing, 1 edition.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial intelligence 90(1):281–
300.
Bonet, B., and Geffner, H. 2000. Planning as Heuris-
tic Search: New Results. Recent Advances in AI Planning
1809:360–372.
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(February 2000):5–33.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid
relaxed planning graph-lp heuristic for numeric planning do-
mains. In ICAPS 2008, 52–59.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artificial Intelligence 221:73–114.

Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic a* search with pattern databases and the merge-and-
shrink abstraction. In ECAI 2012, 306–311.
Edelkamp, S. 2001. Planning with pattern databases. In
ECP 2001, 13–24.
Fisher, M. L. 2004. The lagrangian relaxation method for
solving integer programming problems. Management sci-
ence 50(12):1861–1871.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstractions
for planning with state-dependent action costs. In ICAPS
2016, 140–148.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS 2000, 140–149.
Helmert, M., and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS 2007, 176–183.
Hoda, S.; Van Hoeve, W.-J.; and Hooker, J. N. 2010. A sys-
tematic approach to MDD-based constraint programming.
In CP 2010. Springer. 266–280.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research 22:215–278.
Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12-13):767–798.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Red-black
relaxed plan heuristics. In AAAI 2013, 489–49.
Keller, T.; Pommerening, F.; Seipp, J.; Geißer, F.; and
Mattmüller, R. 2016. State-dependent cost partitionings for
cartesian abstractions in classical planning. In IJCAI 2016,
3161–3169.
Kinable, J.; Cire, A. A.; and van Hoeve, W.-J. 2017.
Hybrid optimization methods for time-dependent sequenc-
ing problems. European Journal of Operational Research
259(3):887 – 897.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
ICAPS 2014, 226–234.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
Label Reduction for Merge-and-Shrink Heuristics. In AAAI
20014, 2358–2366.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2016. Ab-
straction heuristics for symbolic bidirectional search. In IJ-
CAI 2016, 3272–3278.
Torralba, Á.; López, C. L.; and Borrajo, D. 2013. Symbolic
merge-and-shrink for cost-optimal planning. In IJCAI 2013.

